Linux Audio

Check our new training course

Loading...
v5.9
  1/* SPDX-License-Identifier: GPL-2.0-only */
  2/*
  3 *  arch/arm/include/asm/pgtable.h
  4 *
  5 *  Copyright (C) 1995-2002 Russell King
  6 */
  7#ifndef _ASMARM_PGTABLE_H
  8#define _ASMARM_PGTABLE_H
  9
 10#include <linux/const.h>
 11#include <asm/proc-fns.h>
 12
 13#ifndef CONFIG_MMU
 14
 15#include <asm-generic/pgtable-nopud.h>
 16#include <asm/pgtable-nommu.h>
 17
 18#else
 19
 
 20#include <asm-generic/pgtable-nopud.h>
 21#include <asm/memory.h>
 22#include <asm/pgtable-hwdef.h>
 23
 24
 25#include <asm/tlbflush.h>
 26
 27#ifdef CONFIG_ARM_LPAE
 28#include <asm/pgtable-3level.h>
 29#else
 30#include <asm/pgtable-2level.h>
 31#endif
 32
 33/*
 34 * Just any arbitrary offset to the start of the vmalloc VM area: the
 35 * current 8MB value just means that there will be a 8MB "hole" after the
 36 * physical memory until the kernel virtual memory starts.  That means that
 37 * any out-of-bounds memory accesses will hopefully be caught.
 38 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 39 * area for the same reason. ;)
 40 */
 41#define VMALLOC_OFFSET		(8*1024*1024)
 42#define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
 43#define VMALLOC_END		0xff800000UL
 44
 45#define LIBRARY_TEXT_START	0x0c000000
 46
 47#ifndef __ASSEMBLY__
 48extern void __pte_error(const char *file, int line, pte_t);
 49extern void __pmd_error(const char *file, int line, pmd_t);
 50extern void __pgd_error(const char *file, int line, pgd_t);
 51
 52#define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte)
 53#define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd)
 54#define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd)
 55
 56/*
 57 * This is the lowest virtual address we can permit any user space
 58 * mapping to be mapped at.  This is particularly important for
 59 * non-high vector CPUs.
 60 */
 61#define FIRST_USER_ADDRESS	(PAGE_SIZE * 2)
 62
 63/*
 64 * Use TASK_SIZE as the ceiling argument for free_pgtables() and
 65 * free_pgd_range() to avoid freeing the modules pmd when LPAE is enabled (pmd
 66 * page shared between user and kernel).
 67 */
 68#ifdef CONFIG_ARM_LPAE
 69#define USER_PGTABLES_CEILING	TASK_SIZE
 70#endif
 71
 72/*
 73 * The pgprot_* and protection_map entries will be fixed up in runtime
 74 * to include the cachable and bufferable bits based on memory policy,
 75 * as well as any architecture dependent bits like global/ASID and SMP
 76 * shared mapping bits.
 77 */
 78#define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNG
 79
 80extern pgprot_t		pgprot_user;
 81extern pgprot_t		pgprot_kernel;
 
 
 
 82
 83#define _MOD_PROT(p, b)	__pgprot(pgprot_val(p) | (b))
 84
 85#define PAGE_NONE		_MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY | L_PTE_NONE)
 86#define PAGE_SHARED		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
 87#define PAGE_SHARED_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER)
 88#define PAGE_COPY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 89#define PAGE_COPY_EXEC		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
 90#define PAGE_READONLY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 91#define PAGE_READONLY_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
 92#define PAGE_KERNEL		_MOD_PROT(pgprot_kernel, L_PTE_XN)
 93#define PAGE_KERNEL_EXEC	pgprot_kernel
 
 
 
 
 
 
 94
 95#define __PAGE_NONE		__pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN | L_PTE_NONE)
 96#define __PAGE_SHARED		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
 97#define __PAGE_SHARED_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER)
 98#define __PAGE_COPY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 99#define __PAGE_COPY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
100#define __PAGE_READONLY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
101#define __PAGE_READONLY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
102
103#define __pgprot_modify(prot,mask,bits)		\
104	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
105
106#define pgprot_noncached(prot) \
107	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
108
109#define pgprot_writecombine(prot) \
110	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
111
112#define pgprot_stronglyordered(prot) \
113	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
114
115#define pgprot_device(prot) \
116	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_DEV_SHARED | L_PTE_SHARED | L_PTE_DIRTY | L_PTE_XN)
117
118#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
119#define pgprot_dmacoherent(prot) \
120	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
121#define __HAVE_PHYS_MEM_ACCESS_PROT
122struct file;
123extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
124				     unsigned long size, pgprot_t vma_prot);
125#else
126#define pgprot_dmacoherent(prot) \
127	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
128#endif
129
130#endif /* __ASSEMBLY__ */
131
132/*
133 * The table below defines the page protection levels that we insert into our
134 * Linux page table version.  These get translated into the best that the
135 * architecture can perform.  Note that on most ARM hardware:
136 *  1) We cannot do execute protection
137 *  2) If we could do execute protection, then read is implied
138 *  3) write implies read permissions
139 */
140#define __P000  __PAGE_NONE
141#define __P001  __PAGE_READONLY
142#define __P010  __PAGE_COPY
143#define __P011  __PAGE_COPY
144#define __P100  __PAGE_READONLY_EXEC
145#define __P101  __PAGE_READONLY_EXEC
146#define __P110  __PAGE_COPY_EXEC
147#define __P111  __PAGE_COPY_EXEC
148
149#define __S000  __PAGE_NONE
150#define __S001  __PAGE_READONLY
151#define __S010  __PAGE_SHARED
152#define __S011  __PAGE_SHARED
153#define __S100  __PAGE_READONLY_EXEC
154#define __S101  __PAGE_READONLY_EXEC
155#define __S110  __PAGE_SHARED_EXEC
156#define __S111  __PAGE_SHARED_EXEC
157
158#ifndef __ASSEMBLY__
159/*
160 * ZERO_PAGE is a global shared page that is always zero: used
161 * for zero-mapped memory areas etc..
162 */
163extern struct page *empty_zero_page;
164#define ZERO_PAGE(vaddr)	(empty_zero_page)
165
166
167extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
168
 
 
 
 
 
 
 
 
169#define pmd_none(pmd)		(!pmd_val(pmd))
170
171static inline pte_t *pmd_page_vaddr(pmd_t pmd)
172{
173	return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK);
174}
175
176#define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178#define pte_pfn(pte)		((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT)
179#define pfn_pte(pfn,prot)	__pte(__pfn_to_phys(pfn) | pgprot_val(prot))
180
181#define pte_page(pte)		pfn_to_page(pte_pfn(pte))
182#define mk_pte(page,prot)	pfn_pte(page_to_pfn(page), prot)
183
184#define pte_clear(mm,addr,ptep)	set_pte_ext(ptep, __pte(0), 0)
185
186#define pte_isset(pte, val)	((u32)(val) == (val) ? pte_val(pte) & (val) \
187						: !!(pte_val(pte) & (val)))
188#define pte_isclear(pte, val)	(!(pte_val(pte) & (val)))
189
190#define pte_none(pte)		(!pte_val(pte))
191#define pte_present(pte)	(pte_isset((pte), L_PTE_PRESENT))
192#define pte_valid(pte)		(pte_isset((pte), L_PTE_VALID))
193#define pte_accessible(mm, pte)	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
194#define pte_write(pte)		(pte_isclear((pte), L_PTE_RDONLY))
195#define pte_dirty(pte)		(pte_isset((pte), L_PTE_DIRTY))
196#define pte_young(pte)		(pte_isset((pte), L_PTE_YOUNG))
197#define pte_exec(pte)		(pte_isclear((pte), L_PTE_XN))
198
199#define pte_valid_user(pte)	\
200	(pte_valid(pte) && pte_isset((pte), L_PTE_USER) && pte_young(pte))
201
202static inline bool pte_access_permitted(pte_t pte, bool write)
203{
204	pteval_t mask = L_PTE_PRESENT | L_PTE_USER;
205	pteval_t needed = mask;
206
207	if (write)
208		mask |= L_PTE_RDONLY;
209
210	return (pte_val(pte) & mask) == needed;
211}
212#define pte_access_permitted pte_access_permitted
213
214#if __LINUX_ARM_ARCH__ < 6
215static inline void __sync_icache_dcache(pte_t pteval)
216{
217}
218#else
219extern void __sync_icache_dcache(pte_t pteval);
220#endif
221
222void set_pte_at(struct mm_struct *mm, unsigned long addr,
223		      pte_t *ptep, pte_t pteval);
 
 
 
 
 
 
 
 
 
 
 
224
225static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
226{
227	pte_val(pte) &= ~pgprot_val(prot);
228	return pte;
229}
230
231static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
232{
233	pte_val(pte) |= pgprot_val(prot);
234	return pte;
235}
236
237static inline pte_t pte_wrprotect(pte_t pte)
238{
239	return set_pte_bit(pte, __pgprot(L_PTE_RDONLY));
240}
241
242static inline pte_t pte_mkwrite(pte_t pte)
243{
244	return clear_pte_bit(pte, __pgprot(L_PTE_RDONLY));
245}
246
247static inline pte_t pte_mkclean(pte_t pte)
248{
249	return clear_pte_bit(pte, __pgprot(L_PTE_DIRTY));
250}
251
252static inline pte_t pte_mkdirty(pte_t pte)
253{
254	return set_pte_bit(pte, __pgprot(L_PTE_DIRTY));
255}
256
257static inline pte_t pte_mkold(pte_t pte)
258{
259	return clear_pte_bit(pte, __pgprot(L_PTE_YOUNG));
260}
261
262static inline pte_t pte_mkyoung(pte_t pte)
263{
264	return set_pte_bit(pte, __pgprot(L_PTE_YOUNG));
265}
266
267static inline pte_t pte_mkexec(pte_t pte)
268{
269	return clear_pte_bit(pte, __pgprot(L_PTE_XN));
270}
271
272static inline pte_t pte_mknexec(pte_t pte)
273{
274	return set_pte_bit(pte, __pgprot(L_PTE_XN));
275}
276
277static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
278{
279	const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER |
280		L_PTE_NONE | L_PTE_VALID;
281	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
282	return pte;
283}
284
285/*
286 * Encode and decode a swap entry.  Swap entries are stored in the Linux
287 * page tables as follows:
288 *
289 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
290 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
291 *   <--------------- offset ------------------------> < type -> 0 0
292 *
293 * This gives us up to 31 swap files and 128GB per swap file.  Note that
294 * the offset field is always non-zero.
295 */
296#define __SWP_TYPE_SHIFT	2
297#define __SWP_TYPE_BITS		5
298#define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
299#define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
300
301#define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
302#define __swp_offset(x)		((x).val >> __SWP_OFFSET_SHIFT)
303#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
304
305#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
306#define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
307
308/*
309 * It is an error for the kernel to have more swap files than we can
310 * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES
311 * is increased beyond what we presently support.
312 */
313#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
314
315/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
316/* FIXME: this is not correct */
317#define kern_addr_valid(addr)	(1)
 
 
318
319/*
320 * We provide our own arch_get_unmapped_area to cope with VIPT caches.
321 */
322#define HAVE_ARCH_UNMAPPED_AREA
323#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
324
325#endif /* !__ASSEMBLY__ */
326
327#endif /* CONFIG_MMU */
328
329#endif /* _ASMARM_PGTABLE_H */
v5.4
  1/* SPDX-License-Identifier: GPL-2.0-only */
  2/*
  3 *  arch/arm/include/asm/pgtable.h
  4 *
  5 *  Copyright (C) 1995-2002 Russell King
  6 */
  7#ifndef _ASMARM_PGTABLE_H
  8#define _ASMARM_PGTABLE_H
  9
 10#include <linux/const.h>
 11#include <asm/proc-fns.h>
 12
 13#ifndef CONFIG_MMU
 14
 15#include <asm-generic/4level-fixup.h>
 16#include <asm/pgtable-nommu.h>
 17
 18#else
 19
 20#define __ARCH_USE_5LEVEL_HACK
 21#include <asm-generic/pgtable-nopud.h>
 22#include <asm/memory.h>
 23#include <asm/pgtable-hwdef.h>
 24
 25
 26#include <asm/tlbflush.h>
 27
 28#ifdef CONFIG_ARM_LPAE
 29#include <asm/pgtable-3level.h>
 30#else
 31#include <asm/pgtable-2level.h>
 32#endif
 33
 34/*
 35 * Just any arbitrary offset to the start of the vmalloc VM area: the
 36 * current 8MB value just means that there will be a 8MB "hole" after the
 37 * physical memory until the kernel virtual memory starts.  That means that
 38 * any out-of-bounds memory accesses will hopefully be caught.
 39 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 40 * area for the same reason. ;)
 41 */
 42#define VMALLOC_OFFSET		(8*1024*1024)
 43#define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
 44#define VMALLOC_END		0xff800000UL
 45
 46#define LIBRARY_TEXT_START	0x0c000000
 47
 48#ifndef __ASSEMBLY__
 49extern void __pte_error(const char *file, int line, pte_t);
 50extern void __pmd_error(const char *file, int line, pmd_t);
 51extern void __pgd_error(const char *file, int line, pgd_t);
 52
 53#define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte)
 54#define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd)
 55#define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd)
 56
 57/*
 58 * This is the lowest virtual address we can permit any user space
 59 * mapping to be mapped at.  This is particularly important for
 60 * non-high vector CPUs.
 61 */
 62#define FIRST_USER_ADDRESS	(PAGE_SIZE * 2)
 63
 64/*
 65 * Use TASK_SIZE as the ceiling argument for free_pgtables() and
 66 * free_pgd_range() to avoid freeing the modules pmd when LPAE is enabled (pmd
 67 * page shared between user and kernel).
 68 */
 69#ifdef CONFIG_ARM_LPAE
 70#define USER_PGTABLES_CEILING	TASK_SIZE
 71#endif
 72
 73/*
 74 * The pgprot_* and protection_map entries will be fixed up in runtime
 75 * to include the cachable and bufferable bits based on memory policy,
 76 * as well as any architecture dependent bits like global/ASID and SMP
 77 * shared mapping bits.
 78 */
 79#define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNG
 80
 81extern pgprot_t		pgprot_user;
 82extern pgprot_t		pgprot_kernel;
 83extern pgprot_t		pgprot_hyp_device;
 84extern pgprot_t		pgprot_s2;
 85extern pgprot_t		pgprot_s2_device;
 86
 87#define _MOD_PROT(p, b)	__pgprot(pgprot_val(p) | (b))
 88
 89#define PAGE_NONE		_MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY | L_PTE_NONE)
 90#define PAGE_SHARED		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
 91#define PAGE_SHARED_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER)
 92#define PAGE_COPY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 93#define PAGE_COPY_EXEC		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
 94#define PAGE_READONLY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 95#define PAGE_READONLY_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
 96#define PAGE_KERNEL		_MOD_PROT(pgprot_kernel, L_PTE_XN)
 97#define PAGE_KERNEL_EXEC	pgprot_kernel
 98#define PAGE_HYP		_MOD_PROT(pgprot_kernel, L_PTE_HYP | L_PTE_XN)
 99#define PAGE_HYP_EXEC		_MOD_PROT(pgprot_kernel, L_PTE_HYP | L_PTE_RDONLY)
100#define PAGE_HYP_RO		_MOD_PROT(pgprot_kernel, L_PTE_HYP | L_PTE_RDONLY | L_PTE_XN)
101#define PAGE_HYP_DEVICE		_MOD_PROT(pgprot_hyp_device, L_PTE_HYP)
102#define PAGE_S2			_MOD_PROT(pgprot_s2, L_PTE_S2_RDONLY | L_PTE_XN)
103#define PAGE_S2_DEVICE		_MOD_PROT(pgprot_s2_device, L_PTE_S2_RDONLY | L_PTE_XN)
104
105#define __PAGE_NONE		__pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN | L_PTE_NONE)
106#define __PAGE_SHARED		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
107#define __PAGE_SHARED_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER)
108#define __PAGE_COPY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
109#define __PAGE_COPY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
110#define __PAGE_READONLY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
111#define __PAGE_READONLY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
112
113#define __pgprot_modify(prot,mask,bits)		\
114	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
115
116#define pgprot_noncached(prot) \
117	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
118
119#define pgprot_writecombine(prot) \
120	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
121
122#define pgprot_stronglyordered(prot) \
123	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
124
125#define pgprot_device(prot) \
126	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_DEV_SHARED | L_PTE_SHARED | L_PTE_DIRTY | L_PTE_XN)
127
128#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
129#define pgprot_dmacoherent(prot) \
130	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
131#define __HAVE_PHYS_MEM_ACCESS_PROT
132struct file;
133extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
134				     unsigned long size, pgprot_t vma_prot);
135#else
136#define pgprot_dmacoherent(prot) \
137	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
138#endif
139
140#endif /* __ASSEMBLY__ */
141
142/*
143 * The table below defines the page protection levels that we insert into our
144 * Linux page table version.  These get translated into the best that the
145 * architecture can perform.  Note that on most ARM hardware:
146 *  1) We cannot do execute protection
147 *  2) If we could do execute protection, then read is implied
148 *  3) write implies read permissions
149 */
150#define __P000  __PAGE_NONE
151#define __P001  __PAGE_READONLY
152#define __P010  __PAGE_COPY
153#define __P011  __PAGE_COPY
154#define __P100  __PAGE_READONLY_EXEC
155#define __P101  __PAGE_READONLY_EXEC
156#define __P110  __PAGE_COPY_EXEC
157#define __P111  __PAGE_COPY_EXEC
158
159#define __S000  __PAGE_NONE
160#define __S001  __PAGE_READONLY
161#define __S010  __PAGE_SHARED
162#define __S011  __PAGE_SHARED
163#define __S100  __PAGE_READONLY_EXEC
164#define __S101  __PAGE_READONLY_EXEC
165#define __S110  __PAGE_SHARED_EXEC
166#define __S111  __PAGE_SHARED_EXEC
167
168#ifndef __ASSEMBLY__
169/*
170 * ZERO_PAGE is a global shared page that is always zero: used
171 * for zero-mapped memory areas etc..
172 */
173extern struct page *empty_zero_page;
174#define ZERO_PAGE(vaddr)	(empty_zero_page)
175
176
177extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
178
179/* to find an entry in a page-table-directory */
180#define pgd_index(addr)		((addr) >> PGDIR_SHIFT)
181
182#define pgd_offset(mm, addr)	((mm)->pgd + pgd_index(addr))
183
184/* to find an entry in a kernel page-table-directory */
185#define pgd_offset_k(addr)	pgd_offset(&init_mm, addr)
186
187#define pmd_none(pmd)		(!pmd_val(pmd))
188
189static inline pte_t *pmd_page_vaddr(pmd_t pmd)
190{
191	return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK);
192}
193
194#define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
195
196#ifndef CONFIG_HIGHPTE
197#define __pte_map(pmd)		pmd_page_vaddr(*(pmd))
198#define __pte_unmap(pte)	do { } while (0)
199#else
200#define __pte_map(pmd)		(pte_t *)kmap_atomic(pmd_page(*(pmd)))
201#define __pte_unmap(pte)	kunmap_atomic(pte)
202#endif
203
204#define pte_index(addr)		(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
205
206#define pte_offset_kernel(pmd,addr)	(pmd_page_vaddr(*(pmd)) + pte_index(addr))
207
208#define pte_offset_map(pmd,addr)	(__pte_map(pmd) + pte_index(addr))
209#define pte_unmap(pte)			__pte_unmap(pte)
210
211#define pte_pfn(pte)		((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT)
212#define pfn_pte(pfn,prot)	__pte(__pfn_to_phys(pfn) | pgprot_val(prot))
213
214#define pte_page(pte)		pfn_to_page(pte_pfn(pte))
215#define mk_pte(page,prot)	pfn_pte(page_to_pfn(page), prot)
216
217#define pte_clear(mm,addr,ptep)	set_pte_ext(ptep, __pte(0), 0)
218
219#define pte_isset(pte, val)	((u32)(val) == (val) ? pte_val(pte) & (val) \
220						: !!(pte_val(pte) & (val)))
221#define pte_isclear(pte, val)	(!(pte_val(pte) & (val)))
222
223#define pte_none(pte)		(!pte_val(pte))
224#define pte_present(pte)	(pte_isset((pte), L_PTE_PRESENT))
225#define pte_valid(pte)		(pte_isset((pte), L_PTE_VALID))
226#define pte_accessible(mm, pte)	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
227#define pte_write(pte)		(pte_isclear((pte), L_PTE_RDONLY))
228#define pte_dirty(pte)		(pte_isset((pte), L_PTE_DIRTY))
229#define pte_young(pte)		(pte_isset((pte), L_PTE_YOUNG))
230#define pte_exec(pte)		(pte_isclear((pte), L_PTE_XN))
231
232#define pte_valid_user(pte)	\
233	(pte_valid(pte) && pte_isset((pte), L_PTE_USER) && pte_young(pte))
234
235static inline bool pte_access_permitted(pte_t pte, bool write)
236{
237	pteval_t mask = L_PTE_PRESENT | L_PTE_USER;
238	pteval_t needed = mask;
239
240	if (write)
241		mask |= L_PTE_RDONLY;
242
243	return (pte_val(pte) & mask) == needed;
244}
245#define pte_access_permitted pte_access_permitted
246
247#if __LINUX_ARM_ARCH__ < 6
248static inline void __sync_icache_dcache(pte_t pteval)
249{
250}
251#else
252extern void __sync_icache_dcache(pte_t pteval);
253#endif
254
255static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
256			      pte_t *ptep, pte_t pteval)
257{
258	unsigned long ext = 0;
259
260	if (addr < TASK_SIZE && pte_valid_user(pteval)) {
261		if (!pte_special(pteval))
262			__sync_icache_dcache(pteval);
263		ext |= PTE_EXT_NG;
264	}
265
266	set_pte_ext(ptep, pteval, ext);
267}
268
269static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
270{
271	pte_val(pte) &= ~pgprot_val(prot);
272	return pte;
273}
274
275static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
276{
277	pte_val(pte) |= pgprot_val(prot);
278	return pte;
279}
280
281static inline pte_t pte_wrprotect(pte_t pte)
282{
283	return set_pte_bit(pte, __pgprot(L_PTE_RDONLY));
284}
285
286static inline pte_t pte_mkwrite(pte_t pte)
287{
288	return clear_pte_bit(pte, __pgprot(L_PTE_RDONLY));
289}
290
291static inline pte_t pte_mkclean(pte_t pte)
292{
293	return clear_pte_bit(pte, __pgprot(L_PTE_DIRTY));
294}
295
296static inline pte_t pte_mkdirty(pte_t pte)
297{
298	return set_pte_bit(pte, __pgprot(L_PTE_DIRTY));
299}
300
301static inline pte_t pte_mkold(pte_t pte)
302{
303	return clear_pte_bit(pte, __pgprot(L_PTE_YOUNG));
304}
305
306static inline pte_t pte_mkyoung(pte_t pte)
307{
308	return set_pte_bit(pte, __pgprot(L_PTE_YOUNG));
309}
310
311static inline pte_t pte_mkexec(pte_t pte)
312{
313	return clear_pte_bit(pte, __pgprot(L_PTE_XN));
314}
315
316static inline pte_t pte_mknexec(pte_t pte)
317{
318	return set_pte_bit(pte, __pgprot(L_PTE_XN));
319}
320
321static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
322{
323	const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER |
324		L_PTE_NONE | L_PTE_VALID;
325	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
326	return pte;
327}
328
329/*
330 * Encode and decode a swap entry.  Swap entries are stored in the Linux
331 * page tables as follows:
332 *
333 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
334 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
335 *   <--------------- offset ------------------------> < type -> 0 0
336 *
337 * This gives us up to 31 swap files and 128GB per swap file.  Note that
338 * the offset field is always non-zero.
339 */
340#define __SWP_TYPE_SHIFT	2
341#define __SWP_TYPE_BITS		5
342#define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
343#define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
344
345#define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
346#define __swp_offset(x)		((x).val >> __SWP_OFFSET_SHIFT)
347#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
348
349#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
350#define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
351
352/*
353 * It is an error for the kernel to have more swap files than we can
354 * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES
355 * is increased beyond what we presently support.
356 */
357#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
358
359/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
360/* FIXME: this is not correct */
361#define kern_addr_valid(addr)	(1)
362
363#include <asm-generic/pgtable.h>
364
365/*
366 * We provide our own arch_get_unmapped_area to cope with VIPT caches.
367 */
368#define HAVE_ARCH_UNMAPPED_AREA
369#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
370
371#endif /* !__ASSEMBLY__ */
372
373#endif /* CONFIG_MMU */
374
375#endif /* _ASMARM_PGTABLE_H */