Loading...
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#include <linux/module.h>
35
36#include <net/tcp.h>
37#include <net/inet_common.h>
38#include <linux/highmem.h>
39#include <linux/netdevice.h>
40#include <linux/sched/signal.h>
41#include <linux/inetdevice.h>
42#include <linux/inet_diag.h>
43
44#include <net/snmp.h>
45#include <net/tls.h>
46#include <net/tls_toe.h>
47
48MODULE_AUTHOR("Mellanox Technologies");
49MODULE_DESCRIPTION("Transport Layer Security Support");
50MODULE_LICENSE("Dual BSD/GPL");
51MODULE_ALIAS_TCP_ULP("tls");
52
53enum {
54 TLSV4,
55 TLSV6,
56 TLS_NUM_PROTS,
57};
58
59static const struct proto *saved_tcpv6_prot;
60static DEFINE_MUTEX(tcpv6_prot_mutex);
61static const struct proto *saved_tcpv4_prot;
62static DEFINE_MUTEX(tcpv4_prot_mutex);
63static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64static struct proto_ops tls_sw_proto_ops;
65static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66 const struct proto *base);
67
68void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69{
70 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71
72 WRITE_ONCE(sk->sk_prot,
73 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
74}
75
76int wait_on_pending_writer(struct sock *sk, long *timeo)
77{
78 int rc = 0;
79 DEFINE_WAIT_FUNC(wait, woken_wake_function);
80
81 add_wait_queue(sk_sleep(sk), &wait);
82 while (1) {
83 if (!*timeo) {
84 rc = -EAGAIN;
85 break;
86 }
87
88 if (signal_pending(current)) {
89 rc = sock_intr_errno(*timeo);
90 break;
91 }
92
93 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
94 break;
95 }
96 remove_wait_queue(sk_sleep(sk), &wait);
97 return rc;
98}
99
100int tls_push_sg(struct sock *sk,
101 struct tls_context *ctx,
102 struct scatterlist *sg,
103 u16 first_offset,
104 int flags)
105{
106 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
107 int ret = 0;
108 struct page *p;
109 size_t size;
110 int offset = first_offset;
111
112 size = sg->length - offset;
113 offset += sg->offset;
114
115 ctx->in_tcp_sendpages = true;
116 while (1) {
117 if (sg_is_last(sg))
118 sendpage_flags = flags;
119
120 /* is sending application-limited? */
121 tcp_rate_check_app_limited(sk);
122 p = sg_page(sg);
123retry:
124 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
125
126 if (ret != size) {
127 if (ret > 0) {
128 offset += ret;
129 size -= ret;
130 goto retry;
131 }
132
133 offset -= sg->offset;
134 ctx->partially_sent_offset = offset;
135 ctx->partially_sent_record = (void *)sg;
136 ctx->in_tcp_sendpages = false;
137 return ret;
138 }
139
140 put_page(p);
141 sk_mem_uncharge(sk, sg->length);
142 sg = sg_next(sg);
143 if (!sg)
144 break;
145
146 offset = sg->offset;
147 size = sg->length;
148 }
149
150 ctx->in_tcp_sendpages = false;
151
152 return 0;
153}
154
155static int tls_handle_open_record(struct sock *sk, int flags)
156{
157 struct tls_context *ctx = tls_get_ctx(sk);
158
159 if (tls_is_pending_open_record(ctx))
160 return ctx->push_pending_record(sk, flags);
161
162 return 0;
163}
164
165int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
166 unsigned char *record_type)
167{
168 struct cmsghdr *cmsg;
169 int rc = -EINVAL;
170
171 for_each_cmsghdr(cmsg, msg) {
172 if (!CMSG_OK(msg, cmsg))
173 return -EINVAL;
174 if (cmsg->cmsg_level != SOL_TLS)
175 continue;
176
177 switch (cmsg->cmsg_type) {
178 case TLS_SET_RECORD_TYPE:
179 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
180 return -EINVAL;
181
182 if (msg->msg_flags & MSG_MORE)
183 return -EINVAL;
184
185 rc = tls_handle_open_record(sk, msg->msg_flags);
186 if (rc)
187 return rc;
188
189 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
190 rc = 0;
191 break;
192 default:
193 return -EINVAL;
194 }
195 }
196
197 return rc;
198}
199
200int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
201 int flags)
202{
203 struct scatterlist *sg;
204 u16 offset;
205
206 sg = ctx->partially_sent_record;
207 offset = ctx->partially_sent_offset;
208
209 ctx->partially_sent_record = NULL;
210 return tls_push_sg(sk, ctx, sg, offset, flags);
211}
212
213void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
214{
215 struct scatterlist *sg;
216
217 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
218 put_page(sg_page(sg));
219 sk_mem_uncharge(sk, sg->length);
220 }
221 ctx->partially_sent_record = NULL;
222}
223
224static void tls_write_space(struct sock *sk)
225{
226 struct tls_context *ctx = tls_get_ctx(sk);
227
228 /* If in_tcp_sendpages call lower protocol write space handler
229 * to ensure we wake up any waiting operations there. For example
230 * if do_tcp_sendpages where to call sk_wait_event.
231 */
232 if (ctx->in_tcp_sendpages) {
233 ctx->sk_write_space(sk);
234 return;
235 }
236
237#ifdef CONFIG_TLS_DEVICE
238 if (ctx->tx_conf == TLS_HW)
239 tls_device_write_space(sk, ctx);
240 else
241#endif
242 tls_sw_write_space(sk, ctx);
243
244 ctx->sk_write_space(sk);
245}
246
247/**
248 * tls_ctx_free() - free TLS ULP context
249 * @sk: socket to with @ctx is attached
250 * @ctx: TLS context structure
251 *
252 * Free TLS context. If @sk is %NULL caller guarantees that the socket
253 * to which @ctx was attached has no outstanding references.
254 */
255void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
256{
257 if (!ctx)
258 return;
259
260 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
261 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
262 mutex_destroy(&ctx->tx_lock);
263
264 if (sk)
265 kfree_rcu(ctx, rcu);
266 else
267 kfree(ctx);
268}
269
270static void tls_sk_proto_cleanup(struct sock *sk,
271 struct tls_context *ctx, long timeo)
272{
273 if (unlikely(sk->sk_write_pending) &&
274 !wait_on_pending_writer(sk, &timeo))
275 tls_handle_open_record(sk, 0);
276
277 /* We need these for tls_sw_fallback handling of other packets */
278 if (ctx->tx_conf == TLS_SW) {
279 kfree(ctx->tx.rec_seq);
280 kfree(ctx->tx.iv);
281 tls_sw_release_resources_tx(sk);
282 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
283 } else if (ctx->tx_conf == TLS_HW) {
284 tls_device_free_resources_tx(sk);
285 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
286 }
287
288 if (ctx->rx_conf == TLS_SW) {
289 tls_sw_release_resources_rx(sk);
290 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
291 } else if (ctx->rx_conf == TLS_HW) {
292 tls_device_offload_cleanup_rx(sk);
293 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
294 }
295}
296
297static void tls_sk_proto_close(struct sock *sk, long timeout)
298{
299 struct inet_connection_sock *icsk = inet_csk(sk);
300 struct tls_context *ctx = tls_get_ctx(sk);
301 long timeo = sock_sndtimeo(sk, 0);
302 bool free_ctx;
303
304 if (ctx->tx_conf == TLS_SW)
305 tls_sw_cancel_work_tx(ctx);
306
307 lock_sock(sk);
308 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
309
310 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
311 tls_sk_proto_cleanup(sk, ctx, timeo);
312
313 write_lock_bh(&sk->sk_callback_lock);
314 if (free_ctx)
315 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
316 WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
317 if (sk->sk_write_space == tls_write_space)
318 sk->sk_write_space = ctx->sk_write_space;
319 write_unlock_bh(&sk->sk_callback_lock);
320 release_sock(sk);
321 if (ctx->tx_conf == TLS_SW)
322 tls_sw_free_ctx_tx(ctx);
323 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
324 tls_sw_strparser_done(ctx);
325 if (ctx->rx_conf == TLS_SW)
326 tls_sw_free_ctx_rx(ctx);
327 ctx->sk_proto->close(sk, timeout);
328
329 if (free_ctx)
330 tls_ctx_free(sk, ctx);
331}
332
333static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
334 int __user *optlen)
335{
336 int rc = 0;
337 struct tls_context *ctx = tls_get_ctx(sk);
338 struct tls_crypto_info *crypto_info;
339 int len;
340
341 if (get_user(len, optlen))
342 return -EFAULT;
343
344 if (!optval || (len < sizeof(*crypto_info))) {
345 rc = -EINVAL;
346 goto out;
347 }
348
349 if (!ctx) {
350 rc = -EBUSY;
351 goto out;
352 }
353
354 /* get user crypto info */
355 crypto_info = &ctx->crypto_send.info;
356
357 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
358 rc = -EBUSY;
359 goto out;
360 }
361
362 if (len == sizeof(*crypto_info)) {
363 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
364 rc = -EFAULT;
365 goto out;
366 }
367
368 switch (crypto_info->cipher_type) {
369 case TLS_CIPHER_AES_GCM_128: {
370 struct tls12_crypto_info_aes_gcm_128 *
371 crypto_info_aes_gcm_128 =
372 container_of(crypto_info,
373 struct tls12_crypto_info_aes_gcm_128,
374 info);
375
376 if (len != sizeof(*crypto_info_aes_gcm_128)) {
377 rc = -EINVAL;
378 goto out;
379 }
380 lock_sock(sk);
381 memcpy(crypto_info_aes_gcm_128->iv,
382 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
383 TLS_CIPHER_AES_GCM_128_IV_SIZE);
384 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
385 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
386 release_sock(sk);
387 if (copy_to_user(optval,
388 crypto_info_aes_gcm_128,
389 sizeof(*crypto_info_aes_gcm_128)))
390 rc = -EFAULT;
391 break;
392 }
393 case TLS_CIPHER_AES_GCM_256: {
394 struct tls12_crypto_info_aes_gcm_256 *
395 crypto_info_aes_gcm_256 =
396 container_of(crypto_info,
397 struct tls12_crypto_info_aes_gcm_256,
398 info);
399
400 if (len != sizeof(*crypto_info_aes_gcm_256)) {
401 rc = -EINVAL;
402 goto out;
403 }
404 lock_sock(sk);
405 memcpy(crypto_info_aes_gcm_256->iv,
406 ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
407 TLS_CIPHER_AES_GCM_256_IV_SIZE);
408 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
409 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
410 release_sock(sk);
411 if (copy_to_user(optval,
412 crypto_info_aes_gcm_256,
413 sizeof(*crypto_info_aes_gcm_256)))
414 rc = -EFAULT;
415 break;
416 }
417 default:
418 rc = -EINVAL;
419 }
420
421out:
422 return rc;
423}
424
425static int do_tls_getsockopt(struct sock *sk, int optname,
426 char __user *optval, int __user *optlen)
427{
428 int rc = 0;
429
430 switch (optname) {
431 case TLS_TX:
432 rc = do_tls_getsockopt_tx(sk, optval, optlen);
433 break;
434 default:
435 rc = -ENOPROTOOPT;
436 break;
437 }
438 return rc;
439}
440
441static int tls_getsockopt(struct sock *sk, int level, int optname,
442 char __user *optval, int __user *optlen)
443{
444 struct tls_context *ctx = tls_get_ctx(sk);
445
446 if (level != SOL_TLS)
447 return ctx->sk_proto->getsockopt(sk, level,
448 optname, optval, optlen);
449
450 return do_tls_getsockopt(sk, optname, optval, optlen);
451}
452
453static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
454 unsigned int optlen, int tx)
455{
456 struct tls_crypto_info *crypto_info;
457 struct tls_crypto_info *alt_crypto_info;
458 struct tls_context *ctx = tls_get_ctx(sk);
459 size_t optsize;
460 int rc = 0;
461 int conf;
462
463 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) {
464 rc = -EINVAL;
465 goto out;
466 }
467
468 if (tx) {
469 crypto_info = &ctx->crypto_send.info;
470 alt_crypto_info = &ctx->crypto_recv.info;
471 } else {
472 crypto_info = &ctx->crypto_recv.info;
473 alt_crypto_info = &ctx->crypto_send.info;
474 }
475
476 /* Currently we don't support set crypto info more than one time */
477 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
478 rc = -EBUSY;
479 goto out;
480 }
481
482 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
483 if (rc) {
484 rc = -EFAULT;
485 goto err_crypto_info;
486 }
487
488 /* check version */
489 if (crypto_info->version != TLS_1_2_VERSION &&
490 crypto_info->version != TLS_1_3_VERSION) {
491 rc = -EINVAL;
492 goto err_crypto_info;
493 }
494
495 /* Ensure that TLS version and ciphers are same in both directions */
496 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
497 if (alt_crypto_info->version != crypto_info->version ||
498 alt_crypto_info->cipher_type != crypto_info->cipher_type) {
499 rc = -EINVAL;
500 goto err_crypto_info;
501 }
502 }
503
504 switch (crypto_info->cipher_type) {
505 case TLS_CIPHER_AES_GCM_128:
506 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
507 break;
508 case TLS_CIPHER_AES_GCM_256: {
509 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
510 break;
511 }
512 case TLS_CIPHER_AES_CCM_128:
513 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
514 break;
515 default:
516 rc = -EINVAL;
517 goto err_crypto_info;
518 }
519
520 if (optlen != optsize) {
521 rc = -EINVAL;
522 goto err_crypto_info;
523 }
524
525 rc = copy_from_sockptr_offset(crypto_info + 1, optval,
526 sizeof(*crypto_info),
527 optlen - sizeof(*crypto_info));
528 if (rc) {
529 rc = -EFAULT;
530 goto err_crypto_info;
531 }
532
533 if (tx) {
534 rc = tls_set_device_offload(sk, ctx);
535 conf = TLS_HW;
536 if (!rc) {
537 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
538 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
539 } else {
540 rc = tls_set_sw_offload(sk, ctx, 1);
541 if (rc)
542 goto err_crypto_info;
543 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
544 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
545 conf = TLS_SW;
546 }
547 } else {
548 rc = tls_set_device_offload_rx(sk, ctx);
549 conf = TLS_HW;
550 if (!rc) {
551 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
552 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
553 } else {
554 rc = tls_set_sw_offload(sk, ctx, 0);
555 if (rc)
556 goto err_crypto_info;
557 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
558 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
559 conf = TLS_SW;
560 }
561 tls_sw_strparser_arm(sk, ctx);
562 }
563
564 if (tx)
565 ctx->tx_conf = conf;
566 else
567 ctx->rx_conf = conf;
568 update_sk_prot(sk, ctx);
569 if (tx) {
570 ctx->sk_write_space = sk->sk_write_space;
571 sk->sk_write_space = tls_write_space;
572 } else {
573 sk->sk_socket->ops = &tls_sw_proto_ops;
574 }
575 goto out;
576
577err_crypto_info:
578 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
579out:
580 return rc;
581}
582
583static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
584 unsigned int optlen)
585{
586 int rc = 0;
587
588 switch (optname) {
589 case TLS_TX:
590 case TLS_RX:
591 lock_sock(sk);
592 rc = do_tls_setsockopt_conf(sk, optval, optlen,
593 optname == TLS_TX);
594 release_sock(sk);
595 break;
596 default:
597 rc = -ENOPROTOOPT;
598 break;
599 }
600 return rc;
601}
602
603static int tls_setsockopt(struct sock *sk, int level, int optname,
604 sockptr_t optval, unsigned int optlen)
605{
606 struct tls_context *ctx = tls_get_ctx(sk);
607
608 if (level != SOL_TLS)
609 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
610 optlen);
611
612 return do_tls_setsockopt(sk, optname, optval, optlen);
613}
614
615struct tls_context *tls_ctx_create(struct sock *sk)
616{
617 struct inet_connection_sock *icsk = inet_csk(sk);
618 struct tls_context *ctx;
619
620 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
621 if (!ctx)
622 return NULL;
623
624 mutex_init(&ctx->tx_lock);
625 rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
626 ctx->sk_proto = READ_ONCE(sk->sk_prot);
627 return ctx;
628}
629
630static void tls_build_proto(struct sock *sk)
631{
632 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
633 struct proto *prot = READ_ONCE(sk->sk_prot);
634
635 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
636 if (ip_ver == TLSV6 &&
637 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
638 mutex_lock(&tcpv6_prot_mutex);
639 if (likely(prot != saved_tcpv6_prot)) {
640 build_protos(tls_prots[TLSV6], prot);
641 smp_store_release(&saved_tcpv6_prot, prot);
642 }
643 mutex_unlock(&tcpv6_prot_mutex);
644 }
645
646 if (ip_ver == TLSV4 &&
647 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
648 mutex_lock(&tcpv4_prot_mutex);
649 if (likely(prot != saved_tcpv4_prot)) {
650 build_protos(tls_prots[TLSV4], prot);
651 smp_store_release(&saved_tcpv4_prot, prot);
652 }
653 mutex_unlock(&tcpv4_prot_mutex);
654 }
655}
656
657static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
658 const struct proto *base)
659{
660 prot[TLS_BASE][TLS_BASE] = *base;
661 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
662 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
663 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
664
665 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
666 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
667 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage;
668
669 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
670 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
671 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
672 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
673
674 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
675 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
676 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
677 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
678
679#ifdef CONFIG_TLS_DEVICE
680 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
681 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
682 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage;
683
684 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
685 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
686 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage;
687
688 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
689
690 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
691
692 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
693#endif
694#ifdef CONFIG_TLS_TOE
695 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
696 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash;
697 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash;
698#endif
699}
700
701static int tls_init(struct sock *sk)
702{
703 struct tls_context *ctx;
704 int rc = 0;
705
706 tls_build_proto(sk);
707
708#ifdef CONFIG_TLS_TOE
709 if (tls_toe_bypass(sk))
710 return 0;
711#endif
712
713 /* The TLS ulp is currently supported only for TCP sockets
714 * in ESTABLISHED state.
715 * Supporting sockets in LISTEN state will require us
716 * to modify the accept implementation to clone rather then
717 * share the ulp context.
718 */
719 if (sk->sk_state != TCP_ESTABLISHED)
720 return -ENOTCONN;
721
722 /* allocate tls context */
723 write_lock_bh(&sk->sk_callback_lock);
724 ctx = tls_ctx_create(sk);
725 if (!ctx) {
726 rc = -ENOMEM;
727 goto out;
728 }
729
730 ctx->tx_conf = TLS_BASE;
731 ctx->rx_conf = TLS_BASE;
732 update_sk_prot(sk, ctx);
733out:
734 write_unlock_bh(&sk->sk_callback_lock);
735 return rc;
736}
737
738static void tls_update(struct sock *sk, struct proto *p,
739 void (*write_space)(struct sock *sk))
740{
741 struct tls_context *ctx;
742
743 ctx = tls_get_ctx(sk);
744 if (likely(ctx)) {
745 ctx->sk_write_space = write_space;
746 ctx->sk_proto = p;
747 } else {
748 /* Pairs with lockless read in sk_clone_lock(). */
749 WRITE_ONCE(sk->sk_prot, p);
750 sk->sk_write_space = write_space;
751 }
752}
753
754static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
755{
756 u16 version, cipher_type;
757 struct tls_context *ctx;
758 struct nlattr *start;
759 int err;
760
761 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
762 if (!start)
763 return -EMSGSIZE;
764
765 rcu_read_lock();
766 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
767 if (!ctx) {
768 err = 0;
769 goto nla_failure;
770 }
771 version = ctx->prot_info.version;
772 if (version) {
773 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
774 if (err)
775 goto nla_failure;
776 }
777 cipher_type = ctx->prot_info.cipher_type;
778 if (cipher_type) {
779 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
780 if (err)
781 goto nla_failure;
782 }
783 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
784 if (err)
785 goto nla_failure;
786
787 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
788 if (err)
789 goto nla_failure;
790
791 rcu_read_unlock();
792 nla_nest_end(skb, start);
793 return 0;
794
795nla_failure:
796 rcu_read_unlock();
797 nla_nest_cancel(skb, start);
798 return err;
799}
800
801static size_t tls_get_info_size(const struct sock *sk)
802{
803 size_t size = 0;
804
805 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */
806 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */
807 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */
808 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */
809 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */
810 0;
811
812 return size;
813}
814
815static int __net_init tls_init_net(struct net *net)
816{
817 int err;
818
819 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
820 if (!net->mib.tls_statistics)
821 return -ENOMEM;
822
823 err = tls_proc_init(net);
824 if (err)
825 goto err_free_stats;
826
827 return 0;
828err_free_stats:
829 free_percpu(net->mib.tls_statistics);
830 return err;
831}
832
833static void __net_exit tls_exit_net(struct net *net)
834{
835 tls_proc_fini(net);
836 free_percpu(net->mib.tls_statistics);
837}
838
839static struct pernet_operations tls_proc_ops = {
840 .init = tls_init_net,
841 .exit = tls_exit_net,
842};
843
844static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
845 .name = "tls",
846 .owner = THIS_MODULE,
847 .init = tls_init,
848 .update = tls_update,
849 .get_info = tls_get_info,
850 .get_info_size = tls_get_info_size,
851};
852
853static int __init tls_register(void)
854{
855 int err;
856
857 err = register_pernet_subsys(&tls_proc_ops);
858 if (err)
859 return err;
860
861 tls_sw_proto_ops = inet_stream_ops;
862 tls_sw_proto_ops.splice_read = tls_sw_splice_read;
863 tls_sw_proto_ops.sendpage_locked = tls_sw_sendpage_locked,
864
865 tls_device_init();
866 tcp_register_ulp(&tcp_tls_ulp_ops);
867
868 return 0;
869}
870
871static void __exit tls_unregister(void)
872{
873 tcp_unregister_ulp(&tcp_tls_ulp_ops);
874 tls_device_cleanup();
875 unregister_pernet_subsys(&tls_proc_ops);
876}
877
878module_init(tls_register);
879module_exit(tls_unregister);
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#include <linux/module.h>
35
36#include <net/tcp.h>
37#include <net/inet_common.h>
38#include <linux/highmem.h>
39#include <linux/netdevice.h>
40#include <linux/sched/signal.h>
41#include <linux/inetdevice.h>
42#include <linux/inet_diag.h>
43
44#include <net/tls.h>
45
46MODULE_AUTHOR("Mellanox Technologies");
47MODULE_DESCRIPTION("Transport Layer Security Support");
48MODULE_LICENSE("Dual BSD/GPL");
49MODULE_ALIAS_TCP_ULP("tls");
50
51enum {
52 TLSV4,
53 TLSV6,
54 TLS_NUM_PROTS,
55};
56
57static struct proto *saved_tcpv6_prot;
58static DEFINE_MUTEX(tcpv6_prot_mutex);
59static struct proto *saved_tcpv4_prot;
60static DEFINE_MUTEX(tcpv4_prot_mutex);
61static LIST_HEAD(device_list);
62static DEFINE_SPINLOCK(device_spinlock);
63static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64static struct proto_ops tls_sw_proto_ops;
65static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66 struct proto *base);
67
68static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69{
70 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71
72 sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
73}
74
75int wait_on_pending_writer(struct sock *sk, long *timeo)
76{
77 int rc = 0;
78 DEFINE_WAIT_FUNC(wait, woken_wake_function);
79
80 add_wait_queue(sk_sleep(sk), &wait);
81 while (1) {
82 if (!*timeo) {
83 rc = -EAGAIN;
84 break;
85 }
86
87 if (signal_pending(current)) {
88 rc = sock_intr_errno(*timeo);
89 break;
90 }
91
92 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
93 break;
94 }
95 remove_wait_queue(sk_sleep(sk), &wait);
96 return rc;
97}
98
99int tls_push_sg(struct sock *sk,
100 struct tls_context *ctx,
101 struct scatterlist *sg,
102 u16 first_offset,
103 int flags)
104{
105 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
106 int ret = 0;
107 struct page *p;
108 size_t size;
109 int offset = first_offset;
110
111 size = sg->length - offset;
112 offset += sg->offset;
113
114 ctx->in_tcp_sendpages = true;
115 while (1) {
116 if (sg_is_last(sg))
117 sendpage_flags = flags;
118
119 /* is sending application-limited? */
120 tcp_rate_check_app_limited(sk);
121 p = sg_page(sg);
122retry:
123 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
124
125 if (ret != size) {
126 if (ret > 0) {
127 offset += ret;
128 size -= ret;
129 goto retry;
130 }
131
132 offset -= sg->offset;
133 ctx->partially_sent_offset = offset;
134 ctx->partially_sent_record = (void *)sg;
135 ctx->in_tcp_sendpages = false;
136 return ret;
137 }
138
139 put_page(p);
140 sk_mem_uncharge(sk, sg->length);
141 sg = sg_next(sg);
142 if (!sg)
143 break;
144
145 offset = sg->offset;
146 size = sg->length;
147 }
148
149 ctx->in_tcp_sendpages = false;
150
151 return 0;
152}
153
154static int tls_handle_open_record(struct sock *sk, int flags)
155{
156 struct tls_context *ctx = tls_get_ctx(sk);
157
158 if (tls_is_pending_open_record(ctx))
159 return ctx->push_pending_record(sk, flags);
160
161 return 0;
162}
163
164int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
165 unsigned char *record_type)
166{
167 struct cmsghdr *cmsg;
168 int rc = -EINVAL;
169
170 for_each_cmsghdr(cmsg, msg) {
171 if (!CMSG_OK(msg, cmsg))
172 return -EINVAL;
173 if (cmsg->cmsg_level != SOL_TLS)
174 continue;
175
176 switch (cmsg->cmsg_type) {
177 case TLS_SET_RECORD_TYPE:
178 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
179 return -EINVAL;
180
181 if (msg->msg_flags & MSG_MORE)
182 return -EINVAL;
183
184 rc = tls_handle_open_record(sk, msg->msg_flags);
185 if (rc)
186 return rc;
187
188 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
189 rc = 0;
190 break;
191 default:
192 return -EINVAL;
193 }
194 }
195
196 return rc;
197}
198
199int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
200 int flags)
201{
202 struct scatterlist *sg;
203 u16 offset;
204
205 sg = ctx->partially_sent_record;
206 offset = ctx->partially_sent_offset;
207
208 ctx->partially_sent_record = NULL;
209 return tls_push_sg(sk, ctx, sg, offset, flags);
210}
211
212bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
213{
214 struct scatterlist *sg;
215
216 sg = ctx->partially_sent_record;
217 if (!sg)
218 return false;
219
220 while (1) {
221 put_page(sg_page(sg));
222 sk_mem_uncharge(sk, sg->length);
223
224 if (sg_is_last(sg))
225 break;
226 sg++;
227 }
228 ctx->partially_sent_record = NULL;
229 return true;
230}
231
232static void tls_write_space(struct sock *sk)
233{
234 struct tls_context *ctx = tls_get_ctx(sk);
235
236 /* If in_tcp_sendpages call lower protocol write space handler
237 * to ensure we wake up any waiting operations there. For example
238 * if do_tcp_sendpages where to call sk_wait_event.
239 */
240 if (ctx->in_tcp_sendpages) {
241 ctx->sk_write_space(sk);
242 return;
243 }
244
245#ifdef CONFIG_TLS_DEVICE
246 if (ctx->tx_conf == TLS_HW)
247 tls_device_write_space(sk, ctx);
248 else
249#endif
250 tls_sw_write_space(sk, ctx);
251
252 ctx->sk_write_space(sk);
253}
254
255/**
256 * tls_ctx_free() - free TLS ULP context
257 * @sk: socket to with @ctx is attached
258 * @ctx: TLS context structure
259 *
260 * Free TLS context. If @sk is %NULL caller guarantees that the socket
261 * to which @ctx was attached has no outstanding references.
262 */
263void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
264{
265 if (!ctx)
266 return;
267
268 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
269 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
270 mutex_destroy(&ctx->tx_lock);
271
272 if (sk)
273 kfree_rcu(ctx, rcu);
274 else
275 kfree(ctx);
276}
277
278static void tls_sk_proto_cleanup(struct sock *sk,
279 struct tls_context *ctx, long timeo)
280{
281 if (unlikely(sk->sk_write_pending) &&
282 !wait_on_pending_writer(sk, &timeo))
283 tls_handle_open_record(sk, 0);
284
285 /* We need these for tls_sw_fallback handling of other packets */
286 if (ctx->tx_conf == TLS_SW) {
287 kfree(ctx->tx.rec_seq);
288 kfree(ctx->tx.iv);
289 tls_sw_release_resources_tx(sk);
290 } else if (ctx->tx_conf == TLS_HW) {
291 tls_device_free_resources_tx(sk);
292 }
293
294 if (ctx->rx_conf == TLS_SW)
295 tls_sw_release_resources_rx(sk);
296 else if (ctx->rx_conf == TLS_HW)
297 tls_device_offload_cleanup_rx(sk);
298}
299
300static void tls_sk_proto_close(struct sock *sk, long timeout)
301{
302 struct inet_connection_sock *icsk = inet_csk(sk);
303 struct tls_context *ctx = tls_get_ctx(sk);
304 long timeo = sock_sndtimeo(sk, 0);
305 bool free_ctx;
306
307 if (ctx->tx_conf == TLS_SW)
308 tls_sw_cancel_work_tx(ctx);
309
310 lock_sock(sk);
311 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
312
313 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
314 tls_sk_proto_cleanup(sk, ctx, timeo);
315
316 write_lock_bh(&sk->sk_callback_lock);
317 if (free_ctx)
318 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
319 sk->sk_prot = ctx->sk_proto;
320 if (sk->sk_write_space == tls_write_space)
321 sk->sk_write_space = ctx->sk_write_space;
322 write_unlock_bh(&sk->sk_callback_lock);
323 release_sock(sk);
324 if (ctx->tx_conf == TLS_SW)
325 tls_sw_free_ctx_tx(ctx);
326 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
327 tls_sw_strparser_done(ctx);
328 if (ctx->rx_conf == TLS_SW)
329 tls_sw_free_ctx_rx(ctx);
330 ctx->sk_proto->close(sk, timeout);
331
332 if (free_ctx)
333 tls_ctx_free(sk, ctx);
334}
335
336static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
337 int __user *optlen)
338{
339 int rc = 0;
340 struct tls_context *ctx = tls_get_ctx(sk);
341 struct tls_crypto_info *crypto_info;
342 int len;
343
344 if (get_user(len, optlen))
345 return -EFAULT;
346
347 if (!optval || (len < sizeof(*crypto_info))) {
348 rc = -EINVAL;
349 goto out;
350 }
351
352 if (!ctx) {
353 rc = -EBUSY;
354 goto out;
355 }
356
357 /* get user crypto info */
358 crypto_info = &ctx->crypto_send.info;
359
360 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
361 rc = -EBUSY;
362 goto out;
363 }
364
365 if (len == sizeof(*crypto_info)) {
366 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
367 rc = -EFAULT;
368 goto out;
369 }
370
371 switch (crypto_info->cipher_type) {
372 case TLS_CIPHER_AES_GCM_128: {
373 struct tls12_crypto_info_aes_gcm_128 *
374 crypto_info_aes_gcm_128 =
375 container_of(crypto_info,
376 struct tls12_crypto_info_aes_gcm_128,
377 info);
378
379 if (len != sizeof(*crypto_info_aes_gcm_128)) {
380 rc = -EINVAL;
381 goto out;
382 }
383 lock_sock(sk);
384 memcpy(crypto_info_aes_gcm_128->iv,
385 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
386 TLS_CIPHER_AES_GCM_128_IV_SIZE);
387 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
388 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
389 release_sock(sk);
390 if (copy_to_user(optval,
391 crypto_info_aes_gcm_128,
392 sizeof(*crypto_info_aes_gcm_128)))
393 rc = -EFAULT;
394 break;
395 }
396 case TLS_CIPHER_AES_GCM_256: {
397 struct tls12_crypto_info_aes_gcm_256 *
398 crypto_info_aes_gcm_256 =
399 container_of(crypto_info,
400 struct tls12_crypto_info_aes_gcm_256,
401 info);
402
403 if (len != sizeof(*crypto_info_aes_gcm_256)) {
404 rc = -EINVAL;
405 goto out;
406 }
407 lock_sock(sk);
408 memcpy(crypto_info_aes_gcm_256->iv,
409 ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
410 TLS_CIPHER_AES_GCM_256_IV_SIZE);
411 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
412 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
413 release_sock(sk);
414 if (copy_to_user(optval,
415 crypto_info_aes_gcm_256,
416 sizeof(*crypto_info_aes_gcm_256)))
417 rc = -EFAULT;
418 break;
419 }
420 default:
421 rc = -EINVAL;
422 }
423
424out:
425 return rc;
426}
427
428static int do_tls_getsockopt(struct sock *sk, int optname,
429 char __user *optval, int __user *optlen)
430{
431 int rc = 0;
432
433 switch (optname) {
434 case TLS_TX:
435 rc = do_tls_getsockopt_tx(sk, optval, optlen);
436 break;
437 default:
438 rc = -ENOPROTOOPT;
439 break;
440 }
441 return rc;
442}
443
444static int tls_getsockopt(struct sock *sk, int level, int optname,
445 char __user *optval, int __user *optlen)
446{
447 struct tls_context *ctx = tls_get_ctx(sk);
448
449 if (level != SOL_TLS)
450 return ctx->sk_proto->getsockopt(sk, level,
451 optname, optval, optlen);
452
453 return do_tls_getsockopt(sk, optname, optval, optlen);
454}
455
456static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
457 unsigned int optlen, int tx)
458{
459 struct tls_crypto_info *crypto_info;
460 struct tls_crypto_info *alt_crypto_info;
461 struct tls_context *ctx = tls_get_ctx(sk);
462 size_t optsize;
463 int rc = 0;
464 int conf;
465
466 if (!optval || (optlen < sizeof(*crypto_info))) {
467 rc = -EINVAL;
468 goto out;
469 }
470
471 if (tx) {
472 crypto_info = &ctx->crypto_send.info;
473 alt_crypto_info = &ctx->crypto_recv.info;
474 } else {
475 crypto_info = &ctx->crypto_recv.info;
476 alt_crypto_info = &ctx->crypto_send.info;
477 }
478
479 /* Currently we don't support set crypto info more than one time */
480 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
481 rc = -EBUSY;
482 goto out;
483 }
484
485 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
486 if (rc) {
487 rc = -EFAULT;
488 goto err_crypto_info;
489 }
490
491 /* check version */
492 if (crypto_info->version != TLS_1_2_VERSION &&
493 crypto_info->version != TLS_1_3_VERSION) {
494 rc = -ENOTSUPP;
495 goto err_crypto_info;
496 }
497
498 /* Ensure that TLS version and ciphers are same in both directions */
499 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
500 if (alt_crypto_info->version != crypto_info->version ||
501 alt_crypto_info->cipher_type != crypto_info->cipher_type) {
502 rc = -EINVAL;
503 goto err_crypto_info;
504 }
505 }
506
507 switch (crypto_info->cipher_type) {
508 case TLS_CIPHER_AES_GCM_128:
509 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
510 break;
511 case TLS_CIPHER_AES_GCM_256: {
512 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
513 break;
514 }
515 case TLS_CIPHER_AES_CCM_128:
516 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
517 break;
518 default:
519 rc = -EINVAL;
520 goto err_crypto_info;
521 }
522
523 if (optlen != optsize) {
524 rc = -EINVAL;
525 goto err_crypto_info;
526 }
527
528 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
529 optlen - sizeof(*crypto_info));
530 if (rc) {
531 rc = -EFAULT;
532 goto err_crypto_info;
533 }
534
535 if (tx) {
536 rc = tls_set_device_offload(sk, ctx);
537 conf = TLS_HW;
538 if (rc) {
539 rc = tls_set_sw_offload(sk, ctx, 1);
540 if (rc)
541 goto err_crypto_info;
542 conf = TLS_SW;
543 }
544 } else {
545 rc = tls_set_device_offload_rx(sk, ctx);
546 conf = TLS_HW;
547 if (rc) {
548 rc = tls_set_sw_offload(sk, ctx, 0);
549 if (rc)
550 goto err_crypto_info;
551 conf = TLS_SW;
552 }
553 tls_sw_strparser_arm(sk, ctx);
554 }
555
556 if (tx)
557 ctx->tx_conf = conf;
558 else
559 ctx->rx_conf = conf;
560 update_sk_prot(sk, ctx);
561 if (tx) {
562 ctx->sk_write_space = sk->sk_write_space;
563 sk->sk_write_space = tls_write_space;
564 } else {
565 sk->sk_socket->ops = &tls_sw_proto_ops;
566 }
567 goto out;
568
569err_crypto_info:
570 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
571out:
572 return rc;
573}
574
575static int do_tls_setsockopt(struct sock *sk, int optname,
576 char __user *optval, unsigned int optlen)
577{
578 int rc = 0;
579
580 switch (optname) {
581 case TLS_TX:
582 case TLS_RX:
583 lock_sock(sk);
584 rc = do_tls_setsockopt_conf(sk, optval, optlen,
585 optname == TLS_TX);
586 release_sock(sk);
587 break;
588 default:
589 rc = -ENOPROTOOPT;
590 break;
591 }
592 return rc;
593}
594
595static int tls_setsockopt(struct sock *sk, int level, int optname,
596 char __user *optval, unsigned int optlen)
597{
598 struct tls_context *ctx = tls_get_ctx(sk);
599
600 if (level != SOL_TLS)
601 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
602 optlen);
603
604 return do_tls_setsockopt(sk, optname, optval, optlen);
605}
606
607static struct tls_context *create_ctx(struct sock *sk)
608{
609 struct inet_connection_sock *icsk = inet_csk(sk);
610 struct tls_context *ctx;
611
612 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
613 if (!ctx)
614 return NULL;
615
616 mutex_init(&ctx->tx_lock);
617 rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
618 ctx->sk_proto = sk->sk_prot;
619 return ctx;
620}
621
622static void tls_build_proto(struct sock *sk)
623{
624 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
625
626 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
627 if (ip_ver == TLSV6 &&
628 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
629 mutex_lock(&tcpv6_prot_mutex);
630 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
631 build_protos(tls_prots[TLSV6], sk->sk_prot);
632 smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
633 }
634 mutex_unlock(&tcpv6_prot_mutex);
635 }
636
637 if (ip_ver == TLSV4 &&
638 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
639 mutex_lock(&tcpv4_prot_mutex);
640 if (likely(sk->sk_prot != saved_tcpv4_prot)) {
641 build_protos(tls_prots[TLSV4], sk->sk_prot);
642 smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
643 }
644 mutex_unlock(&tcpv4_prot_mutex);
645 }
646}
647
648static void tls_hw_sk_destruct(struct sock *sk)
649{
650 struct tls_context *ctx = tls_get_ctx(sk);
651 struct inet_connection_sock *icsk = inet_csk(sk);
652
653 ctx->sk_destruct(sk);
654 /* Free ctx */
655 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
656 tls_ctx_free(sk, ctx);
657}
658
659static int tls_hw_prot(struct sock *sk)
660{
661 struct tls_context *ctx;
662 struct tls_device *dev;
663 int rc = 0;
664
665 spin_lock_bh(&device_spinlock);
666 list_for_each_entry(dev, &device_list, dev_list) {
667 if (dev->feature && dev->feature(dev)) {
668 ctx = create_ctx(sk);
669 if (!ctx)
670 goto out;
671
672 spin_unlock_bh(&device_spinlock);
673 tls_build_proto(sk);
674 ctx->sk_destruct = sk->sk_destruct;
675 sk->sk_destruct = tls_hw_sk_destruct;
676 ctx->rx_conf = TLS_HW_RECORD;
677 ctx->tx_conf = TLS_HW_RECORD;
678 update_sk_prot(sk, ctx);
679 spin_lock_bh(&device_spinlock);
680 rc = 1;
681 break;
682 }
683 }
684out:
685 spin_unlock_bh(&device_spinlock);
686 return rc;
687}
688
689static void tls_hw_unhash(struct sock *sk)
690{
691 struct tls_context *ctx = tls_get_ctx(sk);
692 struct tls_device *dev;
693
694 spin_lock_bh(&device_spinlock);
695 list_for_each_entry(dev, &device_list, dev_list) {
696 if (dev->unhash) {
697 kref_get(&dev->kref);
698 spin_unlock_bh(&device_spinlock);
699 dev->unhash(dev, sk);
700 kref_put(&dev->kref, dev->release);
701 spin_lock_bh(&device_spinlock);
702 }
703 }
704 spin_unlock_bh(&device_spinlock);
705 ctx->sk_proto->unhash(sk);
706}
707
708static int tls_hw_hash(struct sock *sk)
709{
710 struct tls_context *ctx = tls_get_ctx(sk);
711 struct tls_device *dev;
712 int err;
713
714 err = ctx->sk_proto->hash(sk);
715 spin_lock_bh(&device_spinlock);
716 list_for_each_entry(dev, &device_list, dev_list) {
717 if (dev->hash) {
718 kref_get(&dev->kref);
719 spin_unlock_bh(&device_spinlock);
720 err |= dev->hash(dev, sk);
721 kref_put(&dev->kref, dev->release);
722 spin_lock_bh(&device_spinlock);
723 }
724 }
725 spin_unlock_bh(&device_spinlock);
726
727 if (err)
728 tls_hw_unhash(sk);
729 return err;
730}
731
732static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
733 struct proto *base)
734{
735 prot[TLS_BASE][TLS_BASE] = *base;
736 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
737 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
738 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
739
740 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
741 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
742 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage;
743
744 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
745 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
746 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
747 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
748
749 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
750 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
751 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
752 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
753
754#ifdef CONFIG_TLS_DEVICE
755 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
756 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
757 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage;
758
759 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
760 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
761 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage;
762
763 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
764
765 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
766
767 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
768#endif
769
770 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
771 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_hw_hash;
772 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_hw_unhash;
773}
774
775static int tls_init(struct sock *sk)
776{
777 struct tls_context *ctx;
778 int rc = 0;
779
780 if (tls_hw_prot(sk))
781 return 0;
782
783 /* The TLS ulp is currently supported only for TCP sockets
784 * in ESTABLISHED state.
785 * Supporting sockets in LISTEN state will require us
786 * to modify the accept implementation to clone rather then
787 * share the ulp context.
788 */
789 if (sk->sk_state != TCP_ESTABLISHED)
790 return -ENOTSUPP;
791
792 tls_build_proto(sk);
793
794 /* allocate tls context */
795 write_lock_bh(&sk->sk_callback_lock);
796 ctx = create_ctx(sk);
797 if (!ctx) {
798 rc = -ENOMEM;
799 goto out;
800 }
801
802 ctx->tx_conf = TLS_BASE;
803 ctx->rx_conf = TLS_BASE;
804 update_sk_prot(sk, ctx);
805out:
806 write_unlock_bh(&sk->sk_callback_lock);
807 return rc;
808}
809
810static void tls_update(struct sock *sk, struct proto *p)
811{
812 struct tls_context *ctx;
813
814 ctx = tls_get_ctx(sk);
815 if (likely(ctx))
816 ctx->sk_proto = p;
817 else
818 sk->sk_prot = p;
819}
820
821static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
822{
823 u16 version, cipher_type;
824 struct tls_context *ctx;
825 struct nlattr *start;
826 int err;
827
828 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
829 if (!start)
830 return -EMSGSIZE;
831
832 rcu_read_lock();
833 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
834 if (!ctx) {
835 err = 0;
836 goto nla_failure;
837 }
838 version = ctx->prot_info.version;
839 if (version) {
840 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
841 if (err)
842 goto nla_failure;
843 }
844 cipher_type = ctx->prot_info.cipher_type;
845 if (cipher_type) {
846 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
847 if (err)
848 goto nla_failure;
849 }
850 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
851 if (err)
852 goto nla_failure;
853
854 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
855 if (err)
856 goto nla_failure;
857
858 rcu_read_unlock();
859 nla_nest_end(skb, start);
860 return 0;
861
862nla_failure:
863 rcu_read_unlock();
864 nla_nest_cancel(skb, start);
865 return err;
866}
867
868static size_t tls_get_info_size(const struct sock *sk)
869{
870 size_t size = 0;
871
872 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */
873 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */
874 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */
875 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */
876 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */
877 0;
878
879 return size;
880}
881
882void tls_register_device(struct tls_device *device)
883{
884 spin_lock_bh(&device_spinlock);
885 list_add_tail(&device->dev_list, &device_list);
886 spin_unlock_bh(&device_spinlock);
887}
888EXPORT_SYMBOL(tls_register_device);
889
890void tls_unregister_device(struct tls_device *device)
891{
892 spin_lock_bh(&device_spinlock);
893 list_del(&device->dev_list);
894 spin_unlock_bh(&device_spinlock);
895}
896EXPORT_SYMBOL(tls_unregister_device);
897
898static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
899 .name = "tls",
900 .owner = THIS_MODULE,
901 .init = tls_init,
902 .update = tls_update,
903 .get_info = tls_get_info,
904 .get_info_size = tls_get_info_size,
905};
906
907static int __init tls_register(void)
908{
909 tls_sw_proto_ops = inet_stream_ops;
910 tls_sw_proto_ops.splice_read = tls_sw_splice_read;
911 tls_sw_proto_ops.sendpage_locked = tls_sw_sendpage_locked,
912
913 tls_device_init();
914 tcp_register_ulp(&tcp_tls_ulp_ops);
915
916 return 0;
917}
918
919static void __exit tls_unregister(void)
920{
921 tcp_unregister_ulp(&tcp_tls_ulp_ops);
922 tls_device_cleanup();
923}
924
925module_init(tls_register);
926module_exit(tls_unregister);