Linux Audio

Check our new training course

Loading...
v5.9
   1/*
   2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the
   8 * OpenIB.org BSD license below:
   9 *
  10 *     Redistribution and use in source and binary forms, with or
  11 *     without modification, are permitted provided that the following
  12 *     conditions are met:
  13 *
  14 *      - Redistributions of source code must retain the above
  15 *        copyright notice, this list of conditions and the following
  16 *        disclaimer.
  17 *
  18 *      - Redistributions in binary form must reproduce the above
  19 *        copyright notice, this list of conditions and the following
  20 *        disclaimer in the documentation and/or other materials
  21 *        provided with the distribution.
  22 *
  23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30 * SOFTWARE.
  31 *
  32 */
  33#include <linux/kernel.h>
  34#include <linux/in.h>
  35#include <linux/device.h>
  36#include <linux/dmapool.h>
  37#include <linux/ratelimit.h>
  38
  39#include "rds_single_path.h"
  40#include "rds.h"
  41#include "ib.h"
  42#include "ib_mr.h"
  43
  44/*
  45 * Convert IB-specific error message to RDS error message and call core
  46 * completion handler.
  47 */
  48static void rds_ib_send_complete(struct rds_message *rm,
  49				 int wc_status,
  50				 void (*complete)(struct rds_message *rm, int status))
  51{
  52	int notify_status;
  53
  54	switch (wc_status) {
  55	case IB_WC_WR_FLUSH_ERR:
  56		return;
  57
  58	case IB_WC_SUCCESS:
  59		notify_status = RDS_RDMA_SUCCESS;
  60		break;
  61
  62	case IB_WC_REM_ACCESS_ERR:
  63		notify_status = RDS_RDMA_REMOTE_ERROR;
  64		break;
  65
  66	default:
  67		notify_status = RDS_RDMA_OTHER_ERROR;
  68		break;
  69	}
  70	complete(rm, notify_status);
  71}
  72
  73static void rds_ib_send_unmap_data(struct rds_ib_connection *ic,
  74				   struct rm_data_op *op,
  75				   int wc_status)
  76{
  77	if (op->op_nents)
  78		ib_dma_unmap_sg(ic->i_cm_id->device,
  79				op->op_sg, op->op_nents,
  80				DMA_TO_DEVICE);
  81}
  82
  83static void rds_ib_send_unmap_rdma(struct rds_ib_connection *ic,
  84				   struct rm_rdma_op *op,
  85				   int wc_status)
  86{
  87	if (op->op_mapped) {
  88		ib_dma_unmap_sg(ic->i_cm_id->device,
  89				op->op_sg, op->op_nents,
  90				op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  91		op->op_mapped = 0;
  92	}
  93
  94	/* If the user asked for a completion notification on this
  95	 * message, we can implement three different semantics:
  96	 *  1.	Notify when we received the ACK on the RDS message
  97	 *	that was queued with the RDMA. This provides reliable
  98	 *	notification of RDMA status at the expense of a one-way
  99	 *	packet delay.
 100	 *  2.	Notify when the IB stack gives us the completion event for
 101	 *	the RDMA operation.
 102	 *  3.	Notify when the IB stack gives us the completion event for
 103	 *	the accompanying RDS messages.
 104	 * Here, we implement approach #3. To implement approach #2,
 105	 * we would need to take an event for the rdma WR. To implement #1,
 106	 * don't call rds_rdma_send_complete at all, and fall back to the notify
 107	 * handling in the ACK processing code.
 108	 *
 109	 * Note: There's no need to explicitly sync any RDMA buffers using
 110	 * ib_dma_sync_sg_for_cpu - the completion for the RDMA
 111	 * operation itself unmapped the RDMA buffers, which takes care
 112	 * of synching.
 113	 */
 114	rds_ib_send_complete(container_of(op, struct rds_message, rdma),
 115			     wc_status, rds_rdma_send_complete);
 116
 117	if (op->op_write)
 118		rds_stats_add(s_send_rdma_bytes, op->op_bytes);
 119	else
 120		rds_stats_add(s_recv_rdma_bytes, op->op_bytes);
 121}
 122
 123static void rds_ib_send_unmap_atomic(struct rds_ib_connection *ic,
 124				     struct rm_atomic_op *op,
 125				     int wc_status)
 126{
 127	/* unmap atomic recvbuf */
 128	if (op->op_mapped) {
 129		ib_dma_unmap_sg(ic->i_cm_id->device, op->op_sg, 1,
 130				DMA_FROM_DEVICE);
 131		op->op_mapped = 0;
 132	}
 133
 134	rds_ib_send_complete(container_of(op, struct rds_message, atomic),
 135			     wc_status, rds_atomic_send_complete);
 136
 137	if (op->op_type == RDS_ATOMIC_TYPE_CSWP)
 138		rds_ib_stats_inc(s_ib_atomic_cswp);
 139	else
 140		rds_ib_stats_inc(s_ib_atomic_fadd);
 141}
 142
 143/*
 144 * Unmap the resources associated with a struct send_work.
 145 *
 146 * Returns the rm for no good reason other than it is unobtainable
 147 * other than by switching on wr.opcode, currently, and the caller,
 148 * the event handler, needs it.
 149 */
 150static struct rds_message *rds_ib_send_unmap_op(struct rds_ib_connection *ic,
 151						struct rds_ib_send_work *send,
 152						int wc_status)
 153{
 154	struct rds_message *rm = NULL;
 155
 156	/* In the error case, wc.opcode sometimes contains garbage */
 157	switch (send->s_wr.opcode) {
 158	case IB_WR_SEND:
 159		if (send->s_op) {
 160			rm = container_of(send->s_op, struct rds_message, data);
 161			rds_ib_send_unmap_data(ic, send->s_op, wc_status);
 162		}
 163		break;
 164	case IB_WR_RDMA_WRITE:
 165	case IB_WR_RDMA_READ:
 166		if (send->s_op) {
 167			rm = container_of(send->s_op, struct rds_message, rdma);
 168			rds_ib_send_unmap_rdma(ic, send->s_op, wc_status);
 169		}
 170		break;
 171	case IB_WR_ATOMIC_FETCH_AND_ADD:
 172	case IB_WR_ATOMIC_CMP_AND_SWP:
 173		if (send->s_op) {
 174			rm = container_of(send->s_op, struct rds_message, atomic);
 175			rds_ib_send_unmap_atomic(ic, send->s_op, wc_status);
 176		}
 177		break;
 178	default:
 179		printk_ratelimited(KERN_NOTICE
 180			       "RDS/IB: %s: unexpected opcode 0x%x in WR!\n",
 181			       __func__, send->s_wr.opcode);
 182		break;
 183	}
 184
 185	send->s_wr.opcode = 0xdead;
 186
 187	return rm;
 188}
 189
 190void rds_ib_send_init_ring(struct rds_ib_connection *ic)
 191{
 192	struct rds_ib_send_work *send;
 193	u32 i;
 194
 195	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
 196		struct ib_sge *sge;
 197
 198		send->s_op = NULL;
 199
 200		send->s_wr.wr_id = i;
 201		send->s_wr.sg_list = send->s_sge;
 202		send->s_wr.ex.imm_data = 0;
 203
 204		sge = &send->s_sge[0];
 205		sge->addr = ic->i_send_hdrs_dma[i];
 206
 207		sge->length = sizeof(struct rds_header);
 208		sge->lkey = ic->i_pd->local_dma_lkey;
 209
 210		send->s_sge[1].lkey = ic->i_pd->local_dma_lkey;
 211	}
 212}
 213
 214void rds_ib_send_clear_ring(struct rds_ib_connection *ic)
 215{
 216	struct rds_ib_send_work *send;
 217	u32 i;
 218
 219	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
 220		if (send->s_op && send->s_wr.opcode != 0xdead)
 221			rds_ib_send_unmap_op(ic, send, IB_WC_WR_FLUSH_ERR);
 222	}
 223}
 224
 225/*
 226 * The only fast path caller always has a non-zero nr, so we don't
 227 * bother testing nr before performing the atomic sub.
 228 */
 229static void rds_ib_sub_signaled(struct rds_ib_connection *ic, int nr)
 230{
 231	if ((atomic_sub_return(nr, &ic->i_signaled_sends) == 0) &&
 232	    waitqueue_active(&rds_ib_ring_empty_wait))
 233		wake_up(&rds_ib_ring_empty_wait);
 234	BUG_ON(atomic_read(&ic->i_signaled_sends) < 0);
 235}
 236
 237/*
 238 * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
 239 * operations performed in the send path.  As the sender allocs and potentially
 240 * unallocs the next free entry in the ring it doesn't alter which is
 241 * the next to be freed, which is what this is concerned with.
 242 */
 243void rds_ib_send_cqe_handler(struct rds_ib_connection *ic, struct ib_wc *wc)
 244{
 245	struct rds_message *rm = NULL;
 246	struct rds_connection *conn = ic->conn;
 247	struct rds_ib_send_work *send;
 248	u32 completed;
 249	u32 oldest;
 250	u32 i = 0;
 251	int nr_sig = 0;
 252
 253
 254	rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
 255		 (unsigned long long)wc->wr_id, wc->status,
 256		 ib_wc_status_msg(wc->status), wc->byte_len,
 257		 be32_to_cpu(wc->ex.imm_data));
 258	rds_ib_stats_inc(s_ib_tx_cq_event);
 259
 260	if (wc->wr_id == RDS_IB_ACK_WR_ID) {
 261		if (time_after(jiffies, ic->i_ack_queued + HZ / 2))
 262			rds_ib_stats_inc(s_ib_tx_stalled);
 263		rds_ib_ack_send_complete(ic);
 264		return;
 265	}
 266
 267	oldest = rds_ib_ring_oldest(&ic->i_send_ring);
 268
 269	completed = rds_ib_ring_completed(&ic->i_send_ring, wc->wr_id, oldest);
 270
 271	for (i = 0; i < completed; i++) {
 272		send = &ic->i_sends[oldest];
 273		if (send->s_wr.send_flags & IB_SEND_SIGNALED)
 274			nr_sig++;
 275
 276		rm = rds_ib_send_unmap_op(ic, send, wc->status);
 277
 278		if (time_after(jiffies, send->s_queued + HZ / 2))
 279			rds_ib_stats_inc(s_ib_tx_stalled);
 280
 281		if (send->s_op) {
 282			if (send->s_op == rm->m_final_op) {
 283				/* If anyone waited for this message to get
 284				 * flushed out, wake them up now
 285				 */
 286				rds_message_unmapped(rm);
 287			}
 288			rds_message_put(rm);
 289			send->s_op = NULL;
 290		}
 291
 292		oldest = (oldest + 1) % ic->i_send_ring.w_nr;
 293	}
 294
 295	rds_ib_ring_free(&ic->i_send_ring, completed);
 296	rds_ib_sub_signaled(ic, nr_sig);
 297	nr_sig = 0;
 298
 299	if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
 300	    test_bit(0, &conn->c_map_queued))
 301		queue_delayed_work(rds_wq, &conn->c_send_w, 0);
 302
 303	/* We expect errors as the qp is drained during shutdown */
 304	if (wc->status != IB_WC_SUCCESS && rds_conn_up(conn)) {
 305		rds_ib_conn_error(conn, "send completion on <%pI6c,%pI6c,%d> had status %u (%s), vendor err 0x%x, disconnecting and reconnecting\n",
 306				  &conn->c_laddr, &conn->c_faddr,
 307				  conn->c_tos, wc->status,
 308				  ib_wc_status_msg(wc->status), wc->vendor_err);
 309	}
 310}
 311
 312/*
 313 * This is the main function for allocating credits when sending
 314 * messages.
 315 *
 316 * Conceptually, we have two counters:
 317 *  -	send credits: this tells us how many WRs we're allowed
 318 *	to submit without overruning the receiver's queue. For
 319 *	each SEND WR we post, we decrement this by one.
 320 *
 321 *  -	posted credits: this tells us how many WRs we recently
 322 *	posted to the receive queue. This value is transferred
 323 *	to the peer as a "credit update" in a RDS header field.
 324 *	Every time we transmit credits to the peer, we subtract
 325 *	the amount of transferred credits from this counter.
 326 *
 327 * It is essential that we avoid situations where both sides have
 328 * exhausted their send credits, and are unable to send new credits
 329 * to the peer. We achieve this by requiring that we send at least
 330 * one credit update to the peer before exhausting our credits.
 331 * When new credits arrive, we subtract one credit that is withheld
 332 * until we've posted new buffers and are ready to transmit these
 333 * credits (see rds_ib_send_add_credits below).
 334 *
 335 * The RDS send code is essentially single-threaded; rds_send_xmit
 336 * sets RDS_IN_XMIT to ensure exclusive access to the send ring.
 337 * However, the ACK sending code is independent and can race with
 338 * message SENDs.
 339 *
 340 * In the send path, we need to update the counters for send credits
 341 * and the counter of posted buffers atomically - when we use the
 342 * last available credit, we cannot allow another thread to race us
 343 * and grab the posted credits counter.  Hence, we have to use a
 344 * spinlock to protect the credit counter, or use atomics.
 345 *
 346 * Spinlocks shared between the send and the receive path are bad,
 347 * because they create unnecessary delays. An early implementation
 348 * using a spinlock showed a 5% degradation in throughput at some
 349 * loads.
 350 *
 351 * This implementation avoids spinlocks completely, putting both
 352 * counters into a single atomic, and updating that atomic using
 353 * atomic_add (in the receive path, when receiving fresh credits),
 354 * and using atomic_cmpxchg when updating the two counters.
 355 */
 356int rds_ib_send_grab_credits(struct rds_ib_connection *ic,
 357			     u32 wanted, u32 *adv_credits, int need_posted, int max_posted)
 358{
 359	unsigned int avail, posted, got = 0, advertise;
 360	long oldval, newval;
 361
 362	*adv_credits = 0;
 363	if (!ic->i_flowctl)
 364		return wanted;
 365
 366try_again:
 367	advertise = 0;
 368	oldval = newval = atomic_read(&ic->i_credits);
 369	posted = IB_GET_POST_CREDITS(oldval);
 370	avail = IB_GET_SEND_CREDITS(oldval);
 371
 372	rdsdebug("wanted=%u credits=%u posted=%u\n",
 373			wanted, avail, posted);
 374
 375	/* The last credit must be used to send a credit update. */
 376	if (avail && !posted)
 377		avail--;
 378
 379	if (avail < wanted) {
 380		struct rds_connection *conn = ic->i_cm_id->context;
 381
 382		/* Oops, there aren't that many credits left! */
 383		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
 384		got = avail;
 385	} else {
 386		/* Sometimes you get what you want, lalala. */
 387		got = wanted;
 388	}
 389	newval -= IB_SET_SEND_CREDITS(got);
 390
 391	/*
 392	 * If need_posted is non-zero, then the caller wants
 393	 * the posted regardless of whether any send credits are
 394	 * available.
 395	 */
 396	if (posted && (got || need_posted)) {
 397		advertise = min_t(unsigned int, posted, max_posted);
 398		newval -= IB_SET_POST_CREDITS(advertise);
 399	}
 400
 401	/* Finally bill everything */
 402	if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval)
 403		goto try_again;
 404
 405	*adv_credits = advertise;
 406	return got;
 407}
 408
 409void rds_ib_send_add_credits(struct rds_connection *conn, unsigned int credits)
 410{
 411	struct rds_ib_connection *ic = conn->c_transport_data;
 412
 413	if (credits == 0)
 414		return;
 415
 416	rdsdebug("credits=%u current=%u%s\n",
 417			credits,
 418			IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)),
 419			test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : "");
 420
 421	atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits);
 422	if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags))
 423		queue_delayed_work(rds_wq, &conn->c_send_w, 0);
 424
 425	WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384);
 426
 427	rds_ib_stats_inc(s_ib_rx_credit_updates);
 428}
 429
 430void rds_ib_advertise_credits(struct rds_connection *conn, unsigned int posted)
 431{
 432	struct rds_ib_connection *ic = conn->c_transport_data;
 433
 434	if (posted == 0)
 435		return;
 436
 437	atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits);
 438
 439	/* Decide whether to send an update to the peer now.
 440	 * If we would send a credit update for every single buffer we
 441	 * post, we would end up with an ACK storm (ACK arrives,
 442	 * consumes buffer, we refill the ring, send ACK to remote
 443	 * advertising the newly posted buffer... ad inf)
 444	 *
 445	 * Performance pretty much depends on how often we send
 446	 * credit updates - too frequent updates mean lots of ACKs.
 447	 * Too infrequent updates, and the peer will run out of
 448	 * credits and has to throttle.
 449	 * For the time being, 16 seems to be a good compromise.
 450	 */
 451	if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16)
 452		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 453}
 454
 455static inline int rds_ib_set_wr_signal_state(struct rds_ib_connection *ic,
 456					     struct rds_ib_send_work *send,
 457					     bool notify)
 458{
 459	/*
 460	 * We want to delay signaling completions just enough to get
 461	 * the batching benefits but not so much that we create dead time
 462	 * on the wire.
 463	 */
 464	if (ic->i_unsignaled_wrs-- == 0 || notify) {
 465		ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs;
 466		send->s_wr.send_flags |= IB_SEND_SIGNALED;
 467		return 1;
 468	}
 469	return 0;
 470}
 471
 472/*
 473 * This can be called multiple times for a given message.  The first time
 474 * we see a message we map its scatterlist into the IB device so that
 475 * we can provide that mapped address to the IB scatter gather entries
 476 * in the IB work requests.  We translate the scatterlist into a series
 477 * of work requests that fragment the message.  These work requests complete
 478 * in order so we pass ownership of the message to the completion handler
 479 * once we send the final fragment.
 480 *
 481 * The RDS core uses the c_send_lock to only enter this function once
 482 * per connection.  This makes sure that the tx ring alloc/unalloc pairs
 483 * don't get out of sync and confuse the ring.
 484 */
 485int rds_ib_xmit(struct rds_connection *conn, struct rds_message *rm,
 486		unsigned int hdr_off, unsigned int sg, unsigned int off)
 487{
 488	struct rds_ib_connection *ic = conn->c_transport_data;
 489	struct ib_device *dev = ic->i_cm_id->device;
 490	struct rds_ib_send_work *send = NULL;
 491	struct rds_ib_send_work *first;
 492	struct rds_ib_send_work *prev;
 493	const struct ib_send_wr *failed_wr;
 494	struct scatterlist *scat;
 495	u32 pos;
 496	u32 i;
 497	u32 work_alloc;
 498	u32 credit_alloc = 0;
 499	u32 posted;
 500	u32 adv_credits = 0;
 501	int send_flags = 0;
 502	int bytes_sent = 0;
 503	int ret;
 504	int flow_controlled = 0;
 505	int nr_sig = 0;
 506
 507	BUG_ON(off % RDS_FRAG_SIZE);
 508	BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header));
 509
 510	/* Do not send cong updates to IB loopback */
 511	if (conn->c_loopback
 512	    && rm->m_inc.i_hdr.h_flags & RDS_FLAG_CONG_BITMAP) {
 513		rds_cong_map_updated(conn->c_fcong, ~(u64) 0);
 514		scat = &rm->data.op_sg[sg];
 515		ret = max_t(int, RDS_CONG_MAP_BYTES, scat->length);
 516		return sizeof(struct rds_header) + ret;
 517	}
 518
 519	/* FIXME we may overallocate here */
 520	if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0)
 521		i = 1;
 522	else
 523		i = DIV_ROUND_UP(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE);
 524
 525	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
 526	if (work_alloc == 0) {
 527		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
 528		rds_ib_stats_inc(s_ib_tx_ring_full);
 529		ret = -ENOMEM;
 530		goto out;
 531	}
 532
 533	if (ic->i_flowctl) {
 534		credit_alloc = rds_ib_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT);
 535		adv_credits += posted;
 536		if (credit_alloc < work_alloc) {
 537			rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc);
 538			work_alloc = credit_alloc;
 539			flow_controlled = 1;
 540		}
 541		if (work_alloc == 0) {
 542			set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
 543			rds_ib_stats_inc(s_ib_tx_throttle);
 544			ret = -ENOMEM;
 545			goto out;
 546		}
 547	}
 548
 549	/* map the message the first time we see it */
 550	if (!ic->i_data_op) {
 551		if (rm->data.op_nents) {
 552			rm->data.op_count = ib_dma_map_sg(dev,
 553							  rm->data.op_sg,
 554							  rm->data.op_nents,
 555							  DMA_TO_DEVICE);
 556			rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count);
 557			if (rm->data.op_count == 0) {
 558				rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
 559				rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
 560				ret = -ENOMEM; /* XXX ? */
 561				goto out;
 562			}
 563		} else {
 564			rm->data.op_count = 0;
 565		}
 566
 567		rds_message_addref(rm);
 568		rm->data.op_dmasg = 0;
 569		rm->data.op_dmaoff = 0;
 570		ic->i_data_op = &rm->data;
 571
 572		/* Finalize the header */
 573		if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags))
 574			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED;
 575		if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))
 576			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED;
 577
 578		/* If it has a RDMA op, tell the peer we did it. This is
 579		 * used by the peer to release use-once RDMA MRs. */
 580		if (rm->rdma.op_active) {
 581			struct rds_ext_header_rdma ext_hdr;
 582
 583			ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey);
 584			rds_message_add_extension(&rm->m_inc.i_hdr,
 585					RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr));
 586		}
 587		if (rm->m_rdma_cookie) {
 588			rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr,
 589					rds_rdma_cookie_key(rm->m_rdma_cookie),
 590					rds_rdma_cookie_offset(rm->m_rdma_cookie));
 591		}
 592
 593		/* Note - rds_ib_piggyb_ack clears the ACK_REQUIRED bit, so
 594		 * we should not do this unless we have a chance of at least
 595		 * sticking the header into the send ring. Which is why we
 596		 * should call rds_ib_ring_alloc first. */
 597		rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_ib_piggyb_ack(ic));
 598		rds_message_make_checksum(&rm->m_inc.i_hdr);
 599
 600		/*
 601		 * Update adv_credits since we reset the ACK_REQUIRED bit.
 602		 */
 603		if (ic->i_flowctl) {
 604			rds_ib_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits);
 605			adv_credits += posted;
 606			BUG_ON(adv_credits > 255);
 607		}
 608	}
 609
 610	/* Sometimes you want to put a fence between an RDMA
 611	 * READ and the following SEND.
 612	 * We could either do this all the time
 613	 * or when requested by the user. Right now, we let
 614	 * the application choose.
 615	 */
 616	if (rm->rdma.op_active && rm->rdma.op_fence)
 617		send_flags = IB_SEND_FENCE;
 618
 619	/* Each frag gets a header. Msgs may be 0 bytes */
 620	send = &ic->i_sends[pos];
 621	first = send;
 622	prev = NULL;
 623	scat = &ic->i_data_op->op_sg[rm->data.op_dmasg];
 624	i = 0;
 625	do {
 626		unsigned int len = 0;
 627
 628		/* Set up the header */
 629		send->s_wr.send_flags = send_flags;
 630		send->s_wr.opcode = IB_WR_SEND;
 631		send->s_wr.num_sge = 1;
 632		send->s_wr.next = NULL;
 633		send->s_queued = jiffies;
 634		send->s_op = NULL;
 635
 636		send->s_sge[0].addr = ic->i_send_hdrs_dma[pos];
 637
 638		send->s_sge[0].length = sizeof(struct rds_header);
 639		send->s_sge[0].lkey = ic->i_pd->local_dma_lkey;
 640
 641		memcpy(ic->i_send_hdrs[pos], &rm->m_inc.i_hdr,
 642		       sizeof(struct rds_header));
 643
 
 644
 645		/* Set up the data, if present */
 646		if (i < work_alloc
 647		    && scat != &rm->data.op_sg[rm->data.op_count]) {
 648			len = min(RDS_FRAG_SIZE,
 649				  sg_dma_len(scat) - rm->data.op_dmaoff);
 650			send->s_wr.num_sge = 2;
 651
 652			send->s_sge[1].addr = sg_dma_address(scat);
 653			send->s_sge[1].addr += rm->data.op_dmaoff;
 654			send->s_sge[1].length = len;
 655			send->s_sge[1].lkey = ic->i_pd->local_dma_lkey;
 656
 657			bytes_sent += len;
 658			rm->data.op_dmaoff += len;
 659			if (rm->data.op_dmaoff == sg_dma_len(scat)) {
 660				scat++;
 661				rm->data.op_dmasg++;
 662				rm->data.op_dmaoff = 0;
 663			}
 664		}
 665
 666		rds_ib_set_wr_signal_state(ic, send, false);
 667
 668		/*
 669		 * Always signal the last one if we're stopping due to flow control.
 670		 */
 671		if (ic->i_flowctl && flow_controlled && i == (work_alloc - 1)) {
 672			rds_ib_set_wr_signal_state(ic, send, true);
 673			send->s_wr.send_flags |= IB_SEND_SOLICITED;
 674		}
 675
 676		if (send->s_wr.send_flags & IB_SEND_SIGNALED)
 677			nr_sig++;
 678
 679		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
 680			 &send->s_wr, send->s_wr.num_sge, send->s_wr.next);
 681
 682		if (ic->i_flowctl && adv_credits) {
 683			struct rds_header *hdr = ic->i_send_hdrs[pos];
 684
 685			/* add credit and redo the header checksum */
 686			hdr->h_credit = adv_credits;
 687			rds_message_make_checksum(hdr);
 688			adv_credits = 0;
 689			rds_ib_stats_inc(s_ib_tx_credit_updates);
 690		}
 691
 692		if (prev)
 693			prev->s_wr.next = &send->s_wr;
 694		prev = send;
 695
 696		pos = (pos + 1) % ic->i_send_ring.w_nr;
 697		send = &ic->i_sends[pos];
 698		i++;
 699
 700	} while (i < work_alloc
 701		 && scat != &rm->data.op_sg[rm->data.op_count]);
 702
 703	/* Account the RDS header in the number of bytes we sent, but just once.
 704	 * The caller has no concept of fragmentation. */
 705	if (hdr_off == 0)
 706		bytes_sent += sizeof(struct rds_header);
 707
 708	/* if we finished the message then send completion owns it */
 709	if (scat == &rm->data.op_sg[rm->data.op_count]) {
 710		prev->s_op = ic->i_data_op;
 711		prev->s_wr.send_flags |= IB_SEND_SOLICITED;
 712		if (!(prev->s_wr.send_flags & IB_SEND_SIGNALED))
 713			nr_sig += rds_ib_set_wr_signal_state(ic, prev, true);
 714		ic->i_data_op = NULL;
 715	}
 716
 717	/* Put back wrs & credits we didn't use */
 718	if (i < work_alloc) {
 719		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
 720		work_alloc = i;
 721	}
 722	if (ic->i_flowctl && i < credit_alloc)
 723		rds_ib_send_add_credits(conn, credit_alloc - i);
 724
 725	if (nr_sig)
 726		atomic_add(nr_sig, &ic->i_signaled_sends);
 727
 728	/* XXX need to worry about failed_wr and partial sends. */
 729	failed_wr = &first->s_wr;
 730	ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
 731	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
 732		 first, &first->s_wr, ret, failed_wr);
 733	BUG_ON(failed_wr != &first->s_wr);
 734	if (ret) {
 735		printk(KERN_WARNING "RDS/IB: ib_post_send to %pI6c "
 736		       "returned %d\n", &conn->c_faddr, ret);
 737		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
 738		rds_ib_sub_signaled(ic, nr_sig);
 739		if (prev->s_op) {
 740			ic->i_data_op = prev->s_op;
 741			prev->s_op = NULL;
 742		}
 743
 744		rds_ib_conn_error(ic->conn, "ib_post_send failed\n");
 745		goto out;
 746	}
 747
 748	ret = bytes_sent;
 749out:
 750	BUG_ON(adv_credits);
 751	return ret;
 752}
 753
 754/*
 755 * Issue atomic operation.
 756 * A simplified version of the rdma case, we always map 1 SG, and
 757 * only 8 bytes, for the return value from the atomic operation.
 758 */
 759int rds_ib_xmit_atomic(struct rds_connection *conn, struct rm_atomic_op *op)
 760{
 761	struct rds_ib_connection *ic = conn->c_transport_data;
 762	struct rds_ib_send_work *send = NULL;
 763	const struct ib_send_wr *failed_wr;
 764	u32 pos;
 765	u32 work_alloc;
 766	int ret;
 767	int nr_sig = 0;
 768
 769	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, 1, &pos);
 770	if (work_alloc != 1) {
 771		rds_ib_stats_inc(s_ib_tx_ring_full);
 772		ret = -ENOMEM;
 773		goto out;
 774	}
 775
 776	/* address of send request in ring */
 777	send = &ic->i_sends[pos];
 778	send->s_queued = jiffies;
 779
 780	if (op->op_type == RDS_ATOMIC_TYPE_CSWP) {
 781		send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_CMP_AND_SWP;
 782		send->s_atomic_wr.compare_add = op->op_m_cswp.compare;
 783		send->s_atomic_wr.swap = op->op_m_cswp.swap;
 784		send->s_atomic_wr.compare_add_mask = op->op_m_cswp.compare_mask;
 785		send->s_atomic_wr.swap_mask = op->op_m_cswp.swap_mask;
 786	} else { /* FADD */
 787		send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_FETCH_AND_ADD;
 788		send->s_atomic_wr.compare_add = op->op_m_fadd.add;
 789		send->s_atomic_wr.swap = 0;
 790		send->s_atomic_wr.compare_add_mask = op->op_m_fadd.nocarry_mask;
 791		send->s_atomic_wr.swap_mask = 0;
 792	}
 793	send->s_wr.send_flags = 0;
 794	nr_sig = rds_ib_set_wr_signal_state(ic, send, op->op_notify);
 795	send->s_atomic_wr.wr.num_sge = 1;
 796	send->s_atomic_wr.wr.next = NULL;
 797	send->s_atomic_wr.remote_addr = op->op_remote_addr;
 798	send->s_atomic_wr.rkey = op->op_rkey;
 799	send->s_op = op;
 800	rds_message_addref(container_of(send->s_op, struct rds_message, atomic));
 801
 802	/* map 8 byte retval buffer to the device */
 803	ret = ib_dma_map_sg(ic->i_cm_id->device, op->op_sg, 1, DMA_FROM_DEVICE);
 804	rdsdebug("ic %p mapping atomic op %p. mapped %d pg\n", ic, op, ret);
 805	if (ret != 1) {
 806		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
 807		rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
 808		ret = -ENOMEM; /* XXX ? */
 809		goto out;
 810	}
 811
 812	/* Convert our struct scatterlist to struct ib_sge */
 813	send->s_sge[0].addr = sg_dma_address(op->op_sg);
 814	send->s_sge[0].length = sg_dma_len(op->op_sg);
 815	send->s_sge[0].lkey = ic->i_pd->local_dma_lkey;
 816
 817	rdsdebug("rva %Lx rpa %Lx len %u\n", op->op_remote_addr,
 818		 send->s_sge[0].addr, send->s_sge[0].length);
 819
 820	if (nr_sig)
 821		atomic_add(nr_sig, &ic->i_signaled_sends);
 822
 823	failed_wr = &send->s_atomic_wr.wr;
 824	ret = ib_post_send(ic->i_cm_id->qp, &send->s_atomic_wr.wr, &failed_wr);
 825	rdsdebug("ic %p send %p (wr %p) ret %d wr %p\n", ic,
 826		 send, &send->s_atomic_wr, ret, failed_wr);
 827	BUG_ON(failed_wr != &send->s_atomic_wr.wr);
 828	if (ret) {
 829		printk(KERN_WARNING "RDS/IB: atomic ib_post_send to %pI6c "
 830		       "returned %d\n", &conn->c_faddr, ret);
 831		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
 832		rds_ib_sub_signaled(ic, nr_sig);
 833		goto out;
 834	}
 835
 836	if (unlikely(failed_wr != &send->s_atomic_wr.wr)) {
 837		printk(KERN_WARNING "RDS/IB: atomic ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
 838		BUG_ON(failed_wr != &send->s_atomic_wr.wr);
 839	}
 840
 841out:
 842	return ret;
 843}
 844
 845int rds_ib_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op)
 846{
 847	struct rds_ib_connection *ic = conn->c_transport_data;
 848	struct rds_ib_send_work *send = NULL;
 849	struct rds_ib_send_work *first;
 850	struct rds_ib_send_work *prev;
 851	const struct ib_send_wr *failed_wr;
 852	struct scatterlist *scat;
 853	unsigned long len;
 854	u64 remote_addr = op->op_remote_addr;
 855	u32 max_sge = ic->rds_ibdev->max_sge;
 856	u32 pos;
 857	u32 work_alloc;
 858	u32 i;
 859	u32 j;
 860	int sent;
 861	int ret;
 862	int num_sge;
 863	int nr_sig = 0;
 864	u64 odp_addr = op->op_odp_addr;
 865	u32 odp_lkey = 0;
 866
 867	/* map the op the first time we see it */
 868	if (!op->op_odp_mr) {
 869		if (!op->op_mapped) {
 870			op->op_count =
 871				ib_dma_map_sg(ic->i_cm_id->device, op->op_sg,
 872					      op->op_nents,
 873					      (op->op_write) ? DMA_TO_DEVICE :
 874							       DMA_FROM_DEVICE);
 875			rdsdebug("ic %p mapping op %p: %d\n", ic, op,
 876				 op->op_count);
 877			if (op->op_count == 0) {
 878				rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
 879				ret = -ENOMEM; /* XXX ? */
 880				goto out;
 881			}
 882			op->op_mapped = 1;
 883		}
 884	} else {
 885		op->op_count = op->op_nents;
 886		odp_lkey = rds_ib_get_lkey(op->op_odp_mr->r_trans_private);
 887	}
 888
 889	/*
 890	 * Instead of knowing how to return a partial rdma read/write we insist that there
 891	 * be enough work requests to send the entire message.
 892	 */
 893	i = DIV_ROUND_UP(op->op_count, max_sge);
 894
 895	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
 896	if (work_alloc != i) {
 897		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
 898		rds_ib_stats_inc(s_ib_tx_ring_full);
 899		ret = -ENOMEM;
 900		goto out;
 901	}
 902
 903	send = &ic->i_sends[pos];
 904	first = send;
 905	prev = NULL;
 906	scat = &op->op_sg[0];
 907	sent = 0;
 908	num_sge = op->op_count;
 909
 910	for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) {
 911		send->s_wr.send_flags = 0;
 912		send->s_queued = jiffies;
 913		send->s_op = NULL;
 914
 915		if (!op->op_notify)
 916			nr_sig += rds_ib_set_wr_signal_state(ic, send,
 917							     op->op_notify);
 918
 919		send->s_wr.opcode = op->op_write ? IB_WR_RDMA_WRITE : IB_WR_RDMA_READ;
 920		send->s_rdma_wr.remote_addr = remote_addr;
 921		send->s_rdma_wr.rkey = op->op_rkey;
 922
 923		if (num_sge > max_sge) {
 924			send->s_rdma_wr.wr.num_sge = max_sge;
 925			num_sge -= max_sge;
 926		} else {
 927			send->s_rdma_wr.wr.num_sge = num_sge;
 928		}
 929
 930		send->s_rdma_wr.wr.next = NULL;
 931
 932		if (prev)
 933			prev->s_rdma_wr.wr.next = &send->s_rdma_wr.wr;
 934
 935		for (j = 0; j < send->s_rdma_wr.wr.num_sge &&
 936		     scat != &op->op_sg[op->op_count]; j++) {
 937			len = sg_dma_len(scat);
 938			if (!op->op_odp_mr) {
 939				send->s_sge[j].addr = sg_dma_address(scat);
 940				send->s_sge[j].lkey = ic->i_pd->local_dma_lkey;
 941			} else {
 942				send->s_sge[j].addr = odp_addr;
 943				send->s_sge[j].lkey = odp_lkey;
 944			}
 945			send->s_sge[j].length = len;
 
 946
 947			sent += len;
 948			rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr);
 949
 950			remote_addr += len;
 951			odp_addr += len;
 952			scat++;
 953		}
 954
 955		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
 956			&send->s_rdma_wr.wr,
 957			send->s_rdma_wr.wr.num_sge,
 958			send->s_rdma_wr.wr.next);
 959
 960		prev = send;
 961		if (++send == &ic->i_sends[ic->i_send_ring.w_nr])
 962			send = ic->i_sends;
 963	}
 964
 965	/* give a reference to the last op */
 966	if (scat == &op->op_sg[op->op_count]) {
 967		prev->s_op = op;
 968		rds_message_addref(container_of(op, struct rds_message, rdma));
 969	}
 970
 971	if (i < work_alloc) {
 972		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
 973		work_alloc = i;
 974	}
 975
 976	if (nr_sig)
 977		atomic_add(nr_sig, &ic->i_signaled_sends);
 978
 979	failed_wr = &first->s_rdma_wr.wr;
 980	ret = ib_post_send(ic->i_cm_id->qp, &first->s_rdma_wr.wr, &failed_wr);
 981	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
 982		 first, &first->s_rdma_wr.wr, ret, failed_wr);
 983	BUG_ON(failed_wr != &first->s_rdma_wr.wr);
 984	if (ret) {
 985		printk(KERN_WARNING "RDS/IB: rdma ib_post_send to %pI6c "
 986		       "returned %d\n", &conn->c_faddr, ret);
 987		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
 988		rds_ib_sub_signaled(ic, nr_sig);
 989		goto out;
 990	}
 991
 992	if (unlikely(failed_wr != &first->s_rdma_wr.wr)) {
 993		printk(KERN_WARNING "RDS/IB: ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
 994		BUG_ON(failed_wr != &first->s_rdma_wr.wr);
 995	}
 996
 997
 998out:
 999	return ret;
1000}
1001
1002void rds_ib_xmit_path_complete(struct rds_conn_path *cp)
1003{
1004	struct rds_connection *conn = cp->cp_conn;
1005	struct rds_ib_connection *ic = conn->c_transport_data;
1006
1007	/* We may have a pending ACK or window update we were unable
1008	 * to send previously (due to flow control). Try again. */
1009	rds_ib_attempt_ack(ic);
1010}
v5.4
  1/*
  2 * Copyright (c) 2006, 2017 Oracle and/or its affiliates. All rights reserved.
  3 *
  4 * This software is available to you under a choice of one of two
  5 * licenses.  You may choose to be licensed under the terms of the GNU
  6 * General Public License (GPL) Version 2, available from the file
  7 * COPYING in the main directory of this source tree, or the
  8 * OpenIB.org BSD license below:
  9 *
 10 *     Redistribution and use in source and binary forms, with or
 11 *     without modification, are permitted provided that the following
 12 *     conditions are met:
 13 *
 14 *      - Redistributions of source code must retain the above
 15 *        copyright notice, this list of conditions and the following
 16 *        disclaimer.
 17 *
 18 *      - Redistributions in binary form must reproduce the above
 19 *        copyright notice, this list of conditions and the following
 20 *        disclaimer in the documentation and/or other materials
 21 *        provided with the distribution.
 22 *
 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 30 * SOFTWARE.
 31 *
 32 */
 33#include <linux/kernel.h>
 34#include <linux/in.h>
 35#include <linux/device.h>
 36#include <linux/dmapool.h>
 37#include <linux/ratelimit.h>
 38
 39#include "rds_single_path.h"
 40#include "rds.h"
 41#include "ib.h"
 
 42
 43/*
 44 * Convert IB-specific error message to RDS error message and call core
 45 * completion handler.
 46 */
 47static void rds_ib_send_complete(struct rds_message *rm,
 48				 int wc_status,
 49				 void (*complete)(struct rds_message *rm, int status))
 50{
 51	int notify_status;
 52
 53	switch (wc_status) {
 54	case IB_WC_WR_FLUSH_ERR:
 55		return;
 56
 57	case IB_WC_SUCCESS:
 58		notify_status = RDS_RDMA_SUCCESS;
 59		break;
 60
 61	case IB_WC_REM_ACCESS_ERR:
 62		notify_status = RDS_RDMA_REMOTE_ERROR;
 63		break;
 64
 65	default:
 66		notify_status = RDS_RDMA_OTHER_ERROR;
 67		break;
 68	}
 69	complete(rm, notify_status);
 70}
 71
 72static void rds_ib_send_unmap_data(struct rds_ib_connection *ic,
 73				   struct rm_data_op *op,
 74				   int wc_status)
 75{
 76	if (op->op_nents)
 77		ib_dma_unmap_sg(ic->i_cm_id->device,
 78				op->op_sg, op->op_nents,
 79				DMA_TO_DEVICE);
 80}
 81
 82static void rds_ib_send_unmap_rdma(struct rds_ib_connection *ic,
 83				   struct rm_rdma_op *op,
 84				   int wc_status)
 85{
 86	if (op->op_mapped) {
 87		ib_dma_unmap_sg(ic->i_cm_id->device,
 88				op->op_sg, op->op_nents,
 89				op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
 90		op->op_mapped = 0;
 91	}
 92
 93	/* If the user asked for a completion notification on this
 94	 * message, we can implement three different semantics:
 95	 *  1.	Notify when we received the ACK on the RDS message
 96	 *	that was queued with the RDMA. This provides reliable
 97	 *	notification of RDMA status at the expense of a one-way
 98	 *	packet delay.
 99	 *  2.	Notify when the IB stack gives us the completion event for
100	 *	the RDMA operation.
101	 *  3.	Notify when the IB stack gives us the completion event for
102	 *	the accompanying RDS messages.
103	 * Here, we implement approach #3. To implement approach #2,
104	 * we would need to take an event for the rdma WR. To implement #1,
105	 * don't call rds_rdma_send_complete at all, and fall back to the notify
106	 * handling in the ACK processing code.
107	 *
108	 * Note: There's no need to explicitly sync any RDMA buffers using
109	 * ib_dma_sync_sg_for_cpu - the completion for the RDMA
110	 * operation itself unmapped the RDMA buffers, which takes care
111	 * of synching.
112	 */
113	rds_ib_send_complete(container_of(op, struct rds_message, rdma),
114			     wc_status, rds_rdma_send_complete);
115
116	if (op->op_write)
117		rds_stats_add(s_send_rdma_bytes, op->op_bytes);
118	else
119		rds_stats_add(s_recv_rdma_bytes, op->op_bytes);
120}
121
122static void rds_ib_send_unmap_atomic(struct rds_ib_connection *ic,
123				     struct rm_atomic_op *op,
124				     int wc_status)
125{
126	/* unmap atomic recvbuf */
127	if (op->op_mapped) {
128		ib_dma_unmap_sg(ic->i_cm_id->device, op->op_sg, 1,
129				DMA_FROM_DEVICE);
130		op->op_mapped = 0;
131	}
132
133	rds_ib_send_complete(container_of(op, struct rds_message, atomic),
134			     wc_status, rds_atomic_send_complete);
135
136	if (op->op_type == RDS_ATOMIC_TYPE_CSWP)
137		rds_ib_stats_inc(s_ib_atomic_cswp);
138	else
139		rds_ib_stats_inc(s_ib_atomic_fadd);
140}
141
142/*
143 * Unmap the resources associated with a struct send_work.
144 *
145 * Returns the rm for no good reason other than it is unobtainable
146 * other than by switching on wr.opcode, currently, and the caller,
147 * the event handler, needs it.
148 */
149static struct rds_message *rds_ib_send_unmap_op(struct rds_ib_connection *ic,
150						struct rds_ib_send_work *send,
151						int wc_status)
152{
153	struct rds_message *rm = NULL;
154
155	/* In the error case, wc.opcode sometimes contains garbage */
156	switch (send->s_wr.opcode) {
157	case IB_WR_SEND:
158		if (send->s_op) {
159			rm = container_of(send->s_op, struct rds_message, data);
160			rds_ib_send_unmap_data(ic, send->s_op, wc_status);
161		}
162		break;
163	case IB_WR_RDMA_WRITE:
164	case IB_WR_RDMA_READ:
165		if (send->s_op) {
166			rm = container_of(send->s_op, struct rds_message, rdma);
167			rds_ib_send_unmap_rdma(ic, send->s_op, wc_status);
168		}
169		break;
170	case IB_WR_ATOMIC_FETCH_AND_ADD:
171	case IB_WR_ATOMIC_CMP_AND_SWP:
172		if (send->s_op) {
173			rm = container_of(send->s_op, struct rds_message, atomic);
174			rds_ib_send_unmap_atomic(ic, send->s_op, wc_status);
175		}
176		break;
177	default:
178		printk_ratelimited(KERN_NOTICE
179			       "RDS/IB: %s: unexpected opcode 0x%x in WR!\n",
180			       __func__, send->s_wr.opcode);
181		break;
182	}
183
184	send->s_wr.opcode = 0xdead;
185
186	return rm;
187}
188
189void rds_ib_send_init_ring(struct rds_ib_connection *ic)
190{
191	struct rds_ib_send_work *send;
192	u32 i;
193
194	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
195		struct ib_sge *sge;
196
197		send->s_op = NULL;
198
199		send->s_wr.wr_id = i;
200		send->s_wr.sg_list = send->s_sge;
201		send->s_wr.ex.imm_data = 0;
202
203		sge = &send->s_sge[0];
204		sge->addr = ic->i_send_hdrs_dma + (i * sizeof(struct rds_header));
 
205		sge->length = sizeof(struct rds_header);
206		sge->lkey = ic->i_pd->local_dma_lkey;
207
208		send->s_sge[1].lkey = ic->i_pd->local_dma_lkey;
209	}
210}
211
212void rds_ib_send_clear_ring(struct rds_ib_connection *ic)
213{
214	struct rds_ib_send_work *send;
215	u32 i;
216
217	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
218		if (send->s_op && send->s_wr.opcode != 0xdead)
219			rds_ib_send_unmap_op(ic, send, IB_WC_WR_FLUSH_ERR);
220	}
221}
222
223/*
224 * The only fast path caller always has a non-zero nr, so we don't
225 * bother testing nr before performing the atomic sub.
226 */
227static void rds_ib_sub_signaled(struct rds_ib_connection *ic, int nr)
228{
229	if ((atomic_sub_return(nr, &ic->i_signaled_sends) == 0) &&
230	    waitqueue_active(&rds_ib_ring_empty_wait))
231		wake_up(&rds_ib_ring_empty_wait);
232	BUG_ON(atomic_read(&ic->i_signaled_sends) < 0);
233}
234
235/*
236 * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
237 * operations performed in the send path.  As the sender allocs and potentially
238 * unallocs the next free entry in the ring it doesn't alter which is
239 * the next to be freed, which is what this is concerned with.
240 */
241void rds_ib_send_cqe_handler(struct rds_ib_connection *ic, struct ib_wc *wc)
242{
243	struct rds_message *rm = NULL;
244	struct rds_connection *conn = ic->conn;
245	struct rds_ib_send_work *send;
246	u32 completed;
247	u32 oldest;
248	u32 i = 0;
249	int nr_sig = 0;
250
251
252	rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
253		 (unsigned long long)wc->wr_id, wc->status,
254		 ib_wc_status_msg(wc->status), wc->byte_len,
255		 be32_to_cpu(wc->ex.imm_data));
256	rds_ib_stats_inc(s_ib_tx_cq_event);
257
258	if (wc->wr_id == RDS_IB_ACK_WR_ID) {
259		if (time_after(jiffies, ic->i_ack_queued + HZ / 2))
260			rds_ib_stats_inc(s_ib_tx_stalled);
261		rds_ib_ack_send_complete(ic);
262		return;
263	}
264
265	oldest = rds_ib_ring_oldest(&ic->i_send_ring);
266
267	completed = rds_ib_ring_completed(&ic->i_send_ring, wc->wr_id, oldest);
268
269	for (i = 0; i < completed; i++) {
270		send = &ic->i_sends[oldest];
271		if (send->s_wr.send_flags & IB_SEND_SIGNALED)
272			nr_sig++;
273
274		rm = rds_ib_send_unmap_op(ic, send, wc->status);
275
276		if (time_after(jiffies, send->s_queued + HZ / 2))
277			rds_ib_stats_inc(s_ib_tx_stalled);
278
279		if (send->s_op) {
280			if (send->s_op == rm->m_final_op) {
281				/* If anyone waited for this message to get
282				 * flushed out, wake them up now
283				 */
284				rds_message_unmapped(rm);
285			}
286			rds_message_put(rm);
287			send->s_op = NULL;
288		}
289
290		oldest = (oldest + 1) % ic->i_send_ring.w_nr;
291	}
292
293	rds_ib_ring_free(&ic->i_send_ring, completed);
294	rds_ib_sub_signaled(ic, nr_sig);
295	nr_sig = 0;
296
297	if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
298	    test_bit(0, &conn->c_map_queued))
299		queue_delayed_work(rds_wq, &conn->c_send_w, 0);
300
301	/* We expect errors as the qp is drained during shutdown */
302	if (wc->status != IB_WC_SUCCESS && rds_conn_up(conn)) {
303		rds_ib_conn_error(conn, "send completion on <%pI6c,%pI6c,%d> had status %u (%s), disconnecting and reconnecting\n",
304				  &conn->c_laddr, &conn->c_faddr,
305				  conn->c_tos, wc->status,
306				  ib_wc_status_msg(wc->status));
307	}
308}
309
310/*
311 * This is the main function for allocating credits when sending
312 * messages.
313 *
314 * Conceptually, we have two counters:
315 *  -	send credits: this tells us how many WRs we're allowed
316 *	to submit without overruning the receiver's queue. For
317 *	each SEND WR we post, we decrement this by one.
318 *
319 *  -	posted credits: this tells us how many WRs we recently
320 *	posted to the receive queue. This value is transferred
321 *	to the peer as a "credit update" in a RDS header field.
322 *	Every time we transmit credits to the peer, we subtract
323 *	the amount of transferred credits from this counter.
324 *
325 * It is essential that we avoid situations where both sides have
326 * exhausted their send credits, and are unable to send new credits
327 * to the peer. We achieve this by requiring that we send at least
328 * one credit update to the peer before exhausting our credits.
329 * When new credits arrive, we subtract one credit that is withheld
330 * until we've posted new buffers and are ready to transmit these
331 * credits (see rds_ib_send_add_credits below).
332 *
333 * The RDS send code is essentially single-threaded; rds_send_xmit
334 * sets RDS_IN_XMIT to ensure exclusive access to the send ring.
335 * However, the ACK sending code is independent and can race with
336 * message SENDs.
337 *
338 * In the send path, we need to update the counters for send credits
339 * and the counter of posted buffers atomically - when we use the
340 * last available credit, we cannot allow another thread to race us
341 * and grab the posted credits counter.  Hence, we have to use a
342 * spinlock to protect the credit counter, or use atomics.
343 *
344 * Spinlocks shared between the send and the receive path are bad,
345 * because they create unnecessary delays. An early implementation
346 * using a spinlock showed a 5% degradation in throughput at some
347 * loads.
348 *
349 * This implementation avoids spinlocks completely, putting both
350 * counters into a single atomic, and updating that atomic using
351 * atomic_add (in the receive path, when receiving fresh credits),
352 * and using atomic_cmpxchg when updating the two counters.
353 */
354int rds_ib_send_grab_credits(struct rds_ib_connection *ic,
355			     u32 wanted, u32 *adv_credits, int need_posted, int max_posted)
356{
357	unsigned int avail, posted, got = 0, advertise;
358	long oldval, newval;
359
360	*adv_credits = 0;
361	if (!ic->i_flowctl)
362		return wanted;
363
364try_again:
365	advertise = 0;
366	oldval = newval = atomic_read(&ic->i_credits);
367	posted = IB_GET_POST_CREDITS(oldval);
368	avail = IB_GET_SEND_CREDITS(oldval);
369
370	rdsdebug("wanted=%u credits=%u posted=%u\n",
371			wanted, avail, posted);
372
373	/* The last credit must be used to send a credit update. */
374	if (avail && !posted)
375		avail--;
376
377	if (avail < wanted) {
378		struct rds_connection *conn = ic->i_cm_id->context;
379
380		/* Oops, there aren't that many credits left! */
381		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
382		got = avail;
383	} else {
384		/* Sometimes you get what you want, lalala. */
385		got = wanted;
386	}
387	newval -= IB_SET_SEND_CREDITS(got);
388
389	/*
390	 * If need_posted is non-zero, then the caller wants
391	 * the posted regardless of whether any send credits are
392	 * available.
393	 */
394	if (posted && (got || need_posted)) {
395		advertise = min_t(unsigned int, posted, max_posted);
396		newval -= IB_SET_POST_CREDITS(advertise);
397	}
398
399	/* Finally bill everything */
400	if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval)
401		goto try_again;
402
403	*adv_credits = advertise;
404	return got;
405}
406
407void rds_ib_send_add_credits(struct rds_connection *conn, unsigned int credits)
408{
409	struct rds_ib_connection *ic = conn->c_transport_data;
410
411	if (credits == 0)
412		return;
413
414	rdsdebug("credits=%u current=%u%s\n",
415			credits,
416			IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)),
417			test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : "");
418
419	atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits);
420	if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags))
421		queue_delayed_work(rds_wq, &conn->c_send_w, 0);
422
423	WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384);
424
425	rds_ib_stats_inc(s_ib_rx_credit_updates);
426}
427
428void rds_ib_advertise_credits(struct rds_connection *conn, unsigned int posted)
429{
430	struct rds_ib_connection *ic = conn->c_transport_data;
431
432	if (posted == 0)
433		return;
434
435	atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits);
436
437	/* Decide whether to send an update to the peer now.
438	 * If we would send a credit update for every single buffer we
439	 * post, we would end up with an ACK storm (ACK arrives,
440	 * consumes buffer, we refill the ring, send ACK to remote
441	 * advertising the newly posted buffer... ad inf)
442	 *
443	 * Performance pretty much depends on how often we send
444	 * credit updates - too frequent updates mean lots of ACKs.
445	 * Too infrequent updates, and the peer will run out of
446	 * credits and has to throttle.
447	 * For the time being, 16 seems to be a good compromise.
448	 */
449	if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16)
450		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
451}
452
453static inline int rds_ib_set_wr_signal_state(struct rds_ib_connection *ic,
454					     struct rds_ib_send_work *send,
455					     bool notify)
456{
457	/*
458	 * We want to delay signaling completions just enough to get
459	 * the batching benefits but not so much that we create dead time
460	 * on the wire.
461	 */
462	if (ic->i_unsignaled_wrs-- == 0 || notify) {
463		ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs;
464		send->s_wr.send_flags |= IB_SEND_SIGNALED;
465		return 1;
466	}
467	return 0;
468}
469
470/*
471 * This can be called multiple times for a given message.  The first time
472 * we see a message we map its scatterlist into the IB device so that
473 * we can provide that mapped address to the IB scatter gather entries
474 * in the IB work requests.  We translate the scatterlist into a series
475 * of work requests that fragment the message.  These work requests complete
476 * in order so we pass ownership of the message to the completion handler
477 * once we send the final fragment.
478 *
479 * The RDS core uses the c_send_lock to only enter this function once
480 * per connection.  This makes sure that the tx ring alloc/unalloc pairs
481 * don't get out of sync and confuse the ring.
482 */
483int rds_ib_xmit(struct rds_connection *conn, struct rds_message *rm,
484		unsigned int hdr_off, unsigned int sg, unsigned int off)
485{
486	struct rds_ib_connection *ic = conn->c_transport_data;
487	struct ib_device *dev = ic->i_cm_id->device;
488	struct rds_ib_send_work *send = NULL;
489	struct rds_ib_send_work *first;
490	struct rds_ib_send_work *prev;
491	const struct ib_send_wr *failed_wr;
492	struct scatterlist *scat;
493	u32 pos;
494	u32 i;
495	u32 work_alloc;
496	u32 credit_alloc = 0;
497	u32 posted;
498	u32 adv_credits = 0;
499	int send_flags = 0;
500	int bytes_sent = 0;
501	int ret;
502	int flow_controlled = 0;
503	int nr_sig = 0;
504
505	BUG_ON(off % RDS_FRAG_SIZE);
506	BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header));
507
508	/* Do not send cong updates to IB loopback */
509	if (conn->c_loopback
510	    && rm->m_inc.i_hdr.h_flags & RDS_FLAG_CONG_BITMAP) {
511		rds_cong_map_updated(conn->c_fcong, ~(u64) 0);
512		scat = &rm->data.op_sg[sg];
513		ret = max_t(int, RDS_CONG_MAP_BYTES, scat->length);
514		return sizeof(struct rds_header) + ret;
515	}
516
517	/* FIXME we may overallocate here */
518	if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0)
519		i = 1;
520	else
521		i = DIV_ROUND_UP(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE);
522
523	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
524	if (work_alloc == 0) {
525		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
526		rds_ib_stats_inc(s_ib_tx_ring_full);
527		ret = -ENOMEM;
528		goto out;
529	}
530
531	if (ic->i_flowctl) {
532		credit_alloc = rds_ib_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT);
533		adv_credits += posted;
534		if (credit_alloc < work_alloc) {
535			rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc);
536			work_alloc = credit_alloc;
537			flow_controlled = 1;
538		}
539		if (work_alloc == 0) {
540			set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
541			rds_ib_stats_inc(s_ib_tx_throttle);
542			ret = -ENOMEM;
543			goto out;
544		}
545	}
546
547	/* map the message the first time we see it */
548	if (!ic->i_data_op) {
549		if (rm->data.op_nents) {
550			rm->data.op_count = ib_dma_map_sg(dev,
551							  rm->data.op_sg,
552							  rm->data.op_nents,
553							  DMA_TO_DEVICE);
554			rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count);
555			if (rm->data.op_count == 0) {
556				rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
557				rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
558				ret = -ENOMEM; /* XXX ? */
559				goto out;
560			}
561		} else {
562			rm->data.op_count = 0;
563		}
564
565		rds_message_addref(rm);
566		rm->data.op_dmasg = 0;
567		rm->data.op_dmaoff = 0;
568		ic->i_data_op = &rm->data;
569
570		/* Finalize the header */
571		if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags))
572			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED;
573		if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))
574			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED;
575
576		/* If it has a RDMA op, tell the peer we did it. This is
577		 * used by the peer to release use-once RDMA MRs. */
578		if (rm->rdma.op_active) {
579			struct rds_ext_header_rdma ext_hdr;
580
581			ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey);
582			rds_message_add_extension(&rm->m_inc.i_hdr,
583					RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr));
584		}
585		if (rm->m_rdma_cookie) {
586			rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr,
587					rds_rdma_cookie_key(rm->m_rdma_cookie),
588					rds_rdma_cookie_offset(rm->m_rdma_cookie));
589		}
590
591		/* Note - rds_ib_piggyb_ack clears the ACK_REQUIRED bit, so
592		 * we should not do this unless we have a chance of at least
593		 * sticking the header into the send ring. Which is why we
594		 * should call rds_ib_ring_alloc first. */
595		rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_ib_piggyb_ack(ic));
596		rds_message_make_checksum(&rm->m_inc.i_hdr);
597
598		/*
599		 * Update adv_credits since we reset the ACK_REQUIRED bit.
600		 */
601		if (ic->i_flowctl) {
602			rds_ib_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits);
603			adv_credits += posted;
604			BUG_ON(adv_credits > 255);
605		}
606	}
607
608	/* Sometimes you want to put a fence between an RDMA
609	 * READ and the following SEND.
610	 * We could either do this all the time
611	 * or when requested by the user. Right now, we let
612	 * the application choose.
613	 */
614	if (rm->rdma.op_active && rm->rdma.op_fence)
615		send_flags = IB_SEND_FENCE;
616
617	/* Each frag gets a header. Msgs may be 0 bytes */
618	send = &ic->i_sends[pos];
619	first = send;
620	prev = NULL;
621	scat = &ic->i_data_op->op_sg[rm->data.op_dmasg];
622	i = 0;
623	do {
624		unsigned int len = 0;
625
626		/* Set up the header */
627		send->s_wr.send_flags = send_flags;
628		send->s_wr.opcode = IB_WR_SEND;
629		send->s_wr.num_sge = 1;
630		send->s_wr.next = NULL;
631		send->s_queued = jiffies;
632		send->s_op = NULL;
633
634		send->s_sge[0].addr = ic->i_send_hdrs_dma
635			+ (pos * sizeof(struct rds_header));
636		send->s_sge[0].length = sizeof(struct rds_header);
 
 
 
 
637
638		memcpy(&ic->i_send_hdrs[pos], &rm->m_inc.i_hdr, sizeof(struct rds_header));
639
640		/* Set up the data, if present */
641		if (i < work_alloc
642		    && scat != &rm->data.op_sg[rm->data.op_count]) {
643			len = min(RDS_FRAG_SIZE,
644				  sg_dma_len(scat) - rm->data.op_dmaoff);
645			send->s_wr.num_sge = 2;
646
647			send->s_sge[1].addr = sg_dma_address(scat);
648			send->s_sge[1].addr += rm->data.op_dmaoff;
649			send->s_sge[1].length = len;
 
650
651			bytes_sent += len;
652			rm->data.op_dmaoff += len;
653			if (rm->data.op_dmaoff == sg_dma_len(scat)) {
654				scat++;
655				rm->data.op_dmasg++;
656				rm->data.op_dmaoff = 0;
657			}
658		}
659
660		rds_ib_set_wr_signal_state(ic, send, false);
661
662		/*
663		 * Always signal the last one if we're stopping due to flow control.
664		 */
665		if (ic->i_flowctl && flow_controlled && i == (work_alloc - 1)) {
666			rds_ib_set_wr_signal_state(ic, send, true);
667			send->s_wr.send_flags |= IB_SEND_SOLICITED;
668		}
669
670		if (send->s_wr.send_flags & IB_SEND_SIGNALED)
671			nr_sig++;
672
673		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
674			 &send->s_wr, send->s_wr.num_sge, send->s_wr.next);
675
676		if (ic->i_flowctl && adv_credits) {
677			struct rds_header *hdr = &ic->i_send_hdrs[pos];
678
679			/* add credit and redo the header checksum */
680			hdr->h_credit = adv_credits;
681			rds_message_make_checksum(hdr);
682			adv_credits = 0;
683			rds_ib_stats_inc(s_ib_tx_credit_updates);
684		}
685
686		if (prev)
687			prev->s_wr.next = &send->s_wr;
688		prev = send;
689
690		pos = (pos + 1) % ic->i_send_ring.w_nr;
691		send = &ic->i_sends[pos];
692		i++;
693
694	} while (i < work_alloc
695		 && scat != &rm->data.op_sg[rm->data.op_count]);
696
697	/* Account the RDS header in the number of bytes we sent, but just once.
698	 * The caller has no concept of fragmentation. */
699	if (hdr_off == 0)
700		bytes_sent += sizeof(struct rds_header);
701
702	/* if we finished the message then send completion owns it */
703	if (scat == &rm->data.op_sg[rm->data.op_count]) {
704		prev->s_op = ic->i_data_op;
705		prev->s_wr.send_flags |= IB_SEND_SOLICITED;
706		if (!(prev->s_wr.send_flags & IB_SEND_SIGNALED))
707			nr_sig += rds_ib_set_wr_signal_state(ic, prev, true);
708		ic->i_data_op = NULL;
709	}
710
711	/* Put back wrs & credits we didn't use */
712	if (i < work_alloc) {
713		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
714		work_alloc = i;
715	}
716	if (ic->i_flowctl && i < credit_alloc)
717		rds_ib_send_add_credits(conn, credit_alloc - i);
718
719	if (nr_sig)
720		atomic_add(nr_sig, &ic->i_signaled_sends);
721
722	/* XXX need to worry about failed_wr and partial sends. */
723	failed_wr = &first->s_wr;
724	ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
725	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
726		 first, &first->s_wr, ret, failed_wr);
727	BUG_ON(failed_wr != &first->s_wr);
728	if (ret) {
729		printk(KERN_WARNING "RDS/IB: ib_post_send to %pI6c "
730		       "returned %d\n", &conn->c_faddr, ret);
731		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
732		rds_ib_sub_signaled(ic, nr_sig);
733		if (prev->s_op) {
734			ic->i_data_op = prev->s_op;
735			prev->s_op = NULL;
736		}
737
738		rds_ib_conn_error(ic->conn, "ib_post_send failed\n");
739		goto out;
740	}
741
742	ret = bytes_sent;
743out:
744	BUG_ON(adv_credits);
745	return ret;
746}
747
748/*
749 * Issue atomic operation.
750 * A simplified version of the rdma case, we always map 1 SG, and
751 * only 8 bytes, for the return value from the atomic operation.
752 */
753int rds_ib_xmit_atomic(struct rds_connection *conn, struct rm_atomic_op *op)
754{
755	struct rds_ib_connection *ic = conn->c_transport_data;
756	struct rds_ib_send_work *send = NULL;
757	const struct ib_send_wr *failed_wr;
758	u32 pos;
759	u32 work_alloc;
760	int ret;
761	int nr_sig = 0;
762
763	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, 1, &pos);
764	if (work_alloc != 1) {
765		rds_ib_stats_inc(s_ib_tx_ring_full);
766		ret = -ENOMEM;
767		goto out;
768	}
769
770	/* address of send request in ring */
771	send = &ic->i_sends[pos];
772	send->s_queued = jiffies;
773
774	if (op->op_type == RDS_ATOMIC_TYPE_CSWP) {
775		send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_CMP_AND_SWP;
776		send->s_atomic_wr.compare_add = op->op_m_cswp.compare;
777		send->s_atomic_wr.swap = op->op_m_cswp.swap;
778		send->s_atomic_wr.compare_add_mask = op->op_m_cswp.compare_mask;
779		send->s_atomic_wr.swap_mask = op->op_m_cswp.swap_mask;
780	} else { /* FADD */
781		send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_FETCH_AND_ADD;
782		send->s_atomic_wr.compare_add = op->op_m_fadd.add;
783		send->s_atomic_wr.swap = 0;
784		send->s_atomic_wr.compare_add_mask = op->op_m_fadd.nocarry_mask;
785		send->s_atomic_wr.swap_mask = 0;
786	}
787	send->s_wr.send_flags = 0;
788	nr_sig = rds_ib_set_wr_signal_state(ic, send, op->op_notify);
789	send->s_atomic_wr.wr.num_sge = 1;
790	send->s_atomic_wr.wr.next = NULL;
791	send->s_atomic_wr.remote_addr = op->op_remote_addr;
792	send->s_atomic_wr.rkey = op->op_rkey;
793	send->s_op = op;
794	rds_message_addref(container_of(send->s_op, struct rds_message, atomic));
795
796	/* map 8 byte retval buffer to the device */
797	ret = ib_dma_map_sg(ic->i_cm_id->device, op->op_sg, 1, DMA_FROM_DEVICE);
798	rdsdebug("ic %p mapping atomic op %p. mapped %d pg\n", ic, op, ret);
799	if (ret != 1) {
800		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
801		rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
802		ret = -ENOMEM; /* XXX ? */
803		goto out;
804	}
805
806	/* Convert our struct scatterlist to struct ib_sge */
807	send->s_sge[0].addr = sg_dma_address(op->op_sg);
808	send->s_sge[0].length = sg_dma_len(op->op_sg);
809	send->s_sge[0].lkey = ic->i_pd->local_dma_lkey;
810
811	rdsdebug("rva %Lx rpa %Lx len %u\n", op->op_remote_addr,
812		 send->s_sge[0].addr, send->s_sge[0].length);
813
814	if (nr_sig)
815		atomic_add(nr_sig, &ic->i_signaled_sends);
816
817	failed_wr = &send->s_atomic_wr.wr;
818	ret = ib_post_send(ic->i_cm_id->qp, &send->s_atomic_wr.wr, &failed_wr);
819	rdsdebug("ic %p send %p (wr %p) ret %d wr %p\n", ic,
820		 send, &send->s_atomic_wr, ret, failed_wr);
821	BUG_ON(failed_wr != &send->s_atomic_wr.wr);
822	if (ret) {
823		printk(KERN_WARNING "RDS/IB: atomic ib_post_send to %pI6c "
824		       "returned %d\n", &conn->c_faddr, ret);
825		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
826		rds_ib_sub_signaled(ic, nr_sig);
827		goto out;
828	}
829
830	if (unlikely(failed_wr != &send->s_atomic_wr.wr)) {
831		printk(KERN_WARNING "RDS/IB: atomic ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
832		BUG_ON(failed_wr != &send->s_atomic_wr.wr);
833	}
834
835out:
836	return ret;
837}
838
839int rds_ib_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op)
840{
841	struct rds_ib_connection *ic = conn->c_transport_data;
842	struct rds_ib_send_work *send = NULL;
843	struct rds_ib_send_work *first;
844	struct rds_ib_send_work *prev;
845	const struct ib_send_wr *failed_wr;
846	struct scatterlist *scat;
847	unsigned long len;
848	u64 remote_addr = op->op_remote_addr;
849	u32 max_sge = ic->rds_ibdev->max_sge;
850	u32 pos;
851	u32 work_alloc;
852	u32 i;
853	u32 j;
854	int sent;
855	int ret;
856	int num_sge;
857	int nr_sig = 0;
 
 
858
859	/* map the op the first time we see it */
860	if (!op->op_mapped) {
861		op->op_count = ib_dma_map_sg(ic->i_cm_id->device,
862					     op->op_sg, op->op_nents, (op->op_write) ?
863					     DMA_TO_DEVICE : DMA_FROM_DEVICE);
864		rdsdebug("ic %p mapping op %p: %d\n", ic, op, op->op_count);
865		if (op->op_count == 0) {
866			rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
867			ret = -ENOMEM; /* XXX ? */
868			goto out;
 
 
 
 
 
 
869		}
870
871		op->op_mapped = 1;
 
872	}
873
874	/*
875	 * Instead of knowing how to return a partial rdma read/write we insist that there
876	 * be enough work requests to send the entire message.
877	 */
878	i = DIV_ROUND_UP(op->op_count, max_sge);
879
880	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
881	if (work_alloc != i) {
882		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
883		rds_ib_stats_inc(s_ib_tx_ring_full);
884		ret = -ENOMEM;
885		goto out;
886	}
887
888	send = &ic->i_sends[pos];
889	first = send;
890	prev = NULL;
891	scat = &op->op_sg[0];
892	sent = 0;
893	num_sge = op->op_count;
894
895	for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) {
896		send->s_wr.send_flags = 0;
897		send->s_queued = jiffies;
898		send->s_op = NULL;
899
900		if (!op->op_notify)
901			nr_sig += rds_ib_set_wr_signal_state(ic, send,
902							     op->op_notify);
903
904		send->s_wr.opcode = op->op_write ? IB_WR_RDMA_WRITE : IB_WR_RDMA_READ;
905		send->s_rdma_wr.remote_addr = remote_addr;
906		send->s_rdma_wr.rkey = op->op_rkey;
907
908		if (num_sge > max_sge) {
909			send->s_rdma_wr.wr.num_sge = max_sge;
910			num_sge -= max_sge;
911		} else {
912			send->s_rdma_wr.wr.num_sge = num_sge;
913		}
914
915		send->s_rdma_wr.wr.next = NULL;
916
917		if (prev)
918			prev->s_rdma_wr.wr.next = &send->s_rdma_wr.wr;
919
920		for (j = 0; j < send->s_rdma_wr.wr.num_sge &&
921		     scat != &op->op_sg[op->op_count]; j++) {
922			len = sg_dma_len(scat);
923			send->s_sge[j].addr = sg_dma_address(scat);
 
 
 
 
 
 
924			send->s_sge[j].length = len;
925			send->s_sge[j].lkey = ic->i_pd->local_dma_lkey;
926
927			sent += len;
928			rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr);
929
930			remote_addr += len;
 
931			scat++;
932		}
933
934		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
935			&send->s_rdma_wr.wr,
936			send->s_rdma_wr.wr.num_sge,
937			send->s_rdma_wr.wr.next);
938
939		prev = send;
940		if (++send == &ic->i_sends[ic->i_send_ring.w_nr])
941			send = ic->i_sends;
942	}
943
944	/* give a reference to the last op */
945	if (scat == &op->op_sg[op->op_count]) {
946		prev->s_op = op;
947		rds_message_addref(container_of(op, struct rds_message, rdma));
948	}
949
950	if (i < work_alloc) {
951		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
952		work_alloc = i;
953	}
954
955	if (nr_sig)
956		atomic_add(nr_sig, &ic->i_signaled_sends);
957
958	failed_wr = &first->s_rdma_wr.wr;
959	ret = ib_post_send(ic->i_cm_id->qp, &first->s_rdma_wr.wr, &failed_wr);
960	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
961		 first, &first->s_rdma_wr.wr, ret, failed_wr);
962	BUG_ON(failed_wr != &first->s_rdma_wr.wr);
963	if (ret) {
964		printk(KERN_WARNING "RDS/IB: rdma ib_post_send to %pI6c "
965		       "returned %d\n", &conn->c_faddr, ret);
966		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
967		rds_ib_sub_signaled(ic, nr_sig);
968		goto out;
969	}
970
971	if (unlikely(failed_wr != &first->s_rdma_wr.wr)) {
972		printk(KERN_WARNING "RDS/IB: ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
973		BUG_ON(failed_wr != &first->s_rdma_wr.wr);
974	}
975
976
977out:
978	return ret;
979}
980
981void rds_ib_xmit_path_complete(struct rds_conn_path *cp)
982{
983	struct rds_connection *conn = cp->cp_conn;
984	struct rds_ib_connection *ic = conn->c_transport_data;
985
986	/* We may have a pending ACK or window update we were unable
987	 * to send previously (due to flow control). Try again. */
988	rds_ib_attempt_ack(ic);
989}