Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* bpf/cpumap.c
  3 *
  4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
  5 */
  6
  7/* The 'cpumap' is primarily used as a backend map for XDP BPF helper
  8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
  9 *
 10 * Unlike devmap which redirects XDP frames out another NIC device,
 11 * this map type redirects raw XDP frames to another CPU.  The remote
 12 * CPU will do SKB-allocation and call the normal network stack.
 13 *
 14 * This is a scalability and isolation mechanism, that allow
 15 * separating the early driver network XDP layer, from the rest of the
 16 * netstack, and assigning dedicated CPUs for this stage.  This
 17 * basically allows for 10G wirespeed pre-filtering via bpf.
 18 */
 19#include <linux/bpf.h>
 20#include <linux/filter.h>
 21#include <linux/ptr_ring.h>
 22#include <net/xdp.h>
 23
 24#include <linux/sched.h>
 25#include <linux/workqueue.h>
 26#include <linux/kthread.h>
 27#include <linux/capability.h>
 28#include <trace/events/xdp.h>
 29
 30#include <linux/netdevice.h>   /* netif_receive_skb_core */
 31#include <linux/etherdevice.h> /* eth_type_trans */
 32
 33/* General idea: XDP packets getting XDP redirected to another CPU,
 34 * will maximum be stored/queued for one driver ->poll() call.  It is
 35 * guaranteed that queueing the frame and the flush operation happen on
 36 * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
 37 * which queue in bpf_cpu_map_entry contains packets.
 38 */
 39
 40#define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
 41struct bpf_cpu_map_entry;
 42struct bpf_cpu_map;
 43
 44struct xdp_bulk_queue {
 45	void *q[CPU_MAP_BULK_SIZE];
 46	struct list_head flush_node;
 47	struct bpf_cpu_map_entry *obj;
 48	unsigned int count;
 49};
 50
 51/* Struct for every remote "destination" CPU in map */
 52struct bpf_cpu_map_entry {
 53	u32 cpu;    /* kthread CPU and map index */
 54	int map_id; /* Back reference to map */
 
 55
 56	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
 57	struct xdp_bulk_queue __percpu *bulkq;
 58
 59	struct bpf_cpu_map *cmap;
 60
 61	/* Queue with potential multi-producers, and single-consumer kthread */
 62	struct ptr_ring *queue;
 63	struct task_struct *kthread;
 64
 65	struct bpf_cpumap_val value;
 66	struct bpf_prog *prog;
 67
 68	atomic_t refcnt; /* Control when this struct can be free'ed */
 69	struct rcu_head rcu;
 70
 71	struct work_struct kthread_stop_wq;
 72};
 73
 74struct bpf_cpu_map {
 75	struct bpf_map map;
 76	/* Below members specific for map type */
 77	struct bpf_cpu_map_entry **cpu_map;
 
 78};
 79
 80static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
 81
 82static int bq_flush_to_queue(struct xdp_bulk_queue *bq);
 83
 84static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
 85{
 86	u32 value_size = attr->value_size;
 87	struct bpf_cpu_map *cmap;
 88	int err = -ENOMEM;
 
 89	u64 cost;
 90	int ret;
 91
 92	if (!bpf_capable())
 93		return ERR_PTR(-EPERM);
 94
 95	/* check sanity of attributes */
 96	if (attr->max_entries == 0 || attr->key_size != 4 ||
 97	    (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
 98	     value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
 99	    attr->map_flags & ~BPF_F_NUMA_NODE)
100		return ERR_PTR(-EINVAL);
101
102	cmap = kzalloc(sizeof(*cmap), GFP_USER);
103	if (!cmap)
104		return ERR_PTR(-ENOMEM);
105
106	bpf_map_init_from_attr(&cmap->map, attr);
107
108	/* Pre-limit array size based on NR_CPUS, not final CPU check */
109	if (cmap->map.max_entries > NR_CPUS) {
110		err = -E2BIG;
111		goto free_cmap;
112	}
113
114	/* make sure page count doesn't overflow */
115	cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
 
116
117	/* Notice returns -EPERM on if map size is larger than memlock limit */
118	ret = bpf_map_charge_init(&cmap->map.memory, cost);
119	if (ret) {
120		err = ret;
121		goto free_cmap;
122	}
123
 
 
 
 
 
 
 
124	/* Alloc array for possible remote "destination" CPUs */
125	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
126					   sizeof(struct bpf_cpu_map_entry *),
127					   cmap->map.numa_node);
128	if (!cmap->cpu_map)
129		goto free_charge;
130
131	return &cmap->map;
 
 
132free_charge:
133	bpf_map_charge_finish(&cmap->map.memory);
134free_cmap:
135	kfree(cmap);
136	return ERR_PTR(err);
137}
138
139static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
140{
141	atomic_inc(&rcpu->refcnt);
142}
143
144/* called from workqueue, to workaround syscall using preempt_disable */
145static void cpu_map_kthread_stop(struct work_struct *work)
146{
147	struct bpf_cpu_map_entry *rcpu;
148
149	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
150
151	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
152	 * as it waits until all in-flight call_rcu() callbacks complete.
153	 */
154	rcu_barrier();
155
156	/* kthread_stop will wake_up_process and wait for it to complete */
157	kthread_stop(rcpu->kthread);
158}
159
160static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
161					 struct xdp_frame *xdpf,
162					 struct sk_buff *skb)
163{
164	unsigned int hard_start_headroom;
165	unsigned int frame_size;
166	void *pkt_data_start;
167
168	/* Part of headroom was reserved to xdpf */
169	hard_start_headroom = sizeof(struct xdp_frame) +  xdpf->headroom;
170
171	/* Memory size backing xdp_frame data already have reserved
172	 * room for build_skb to place skb_shared_info in tailroom.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173	 */
174	frame_size = xdpf->frame_sz;
 
175
176	pkt_data_start = xdpf->data - hard_start_headroom;
177	skb = build_skb_around(skb, pkt_data_start, frame_size);
178	if (unlikely(!skb))
179		return NULL;
180
181	skb_reserve(skb, hard_start_headroom);
182	__skb_put(skb, xdpf->len);
183	if (xdpf->metasize)
184		skb_metadata_set(skb, xdpf->metasize);
185
186	/* Essential SKB info: protocol and skb->dev */
187	skb->protocol = eth_type_trans(skb, xdpf->dev_rx);
188
189	/* Optional SKB info, currently missing:
190	 * - HW checksum info		(skb->ip_summed)
191	 * - HW RX hash			(skb_set_hash)
192	 * - RX ring dev queue index	(skb_record_rx_queue)
193	 */
194
195	/* Until page_pool get SKB return path, release DMA here */
196	xdp_release_frame(xdpf);
197
198	/* Allow SKB to reuse area used by xdp_frame */
199	xdp_scrub_frame(xdpf);
200
201	return skb;
202}
203
204static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
205{
206	/* The tear-down procedure should have made sure that queue is
207	 * empty.  See __cpu_map_entry_replace() and work-queue
208	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
209	 * gracefully and warn once.
210	 */
211	struct xdp_frame *xdpf;
212
213	while ((xdpf = ptr_ring_consume(ring)))
214		if (WARN_ON_ONCE(xdpf))
215			xdp_return_frame(xdpf);
216}
217
218static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
219{
220	if (atomic_dec_and_test(&rcpu->refcnt)) {
221		if (rcpu->prog)
222			bpf_prog_put(rcpu->prog);
223		/* The queue should be empty at this point */
224		__cpu_map_ring_cleanup(rcpu->queue);
225		ptr_ring_cleanup(rcpu->queue, NULL);
226		kfree(rcpu->queue);
227		kfree(rcpu);
228	}
229}
230
231static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
232				    void **frames, int n,
233				    struct xdp_cpumap_stats *stats)
234{
235	struct xdp_rxq_info rxq;
236	struct xdp_buff xdp;
237	int i, nframes = 0;
238
239	if (!rcpu->prog)
240		return n;
241
242	rcu_read_lock_bh();
243
244	xdp_set_return_frame_no_direct();
245	xdp.rxq = &rxq;
246
247	for (i = 0; i < n; i++) {
248		struct xdp_frame *xdpf = frames[i];
249		u32 act;
250		int err;
251
252		rxq.dev = xdpf->dev_rx;
253		rxq.mem = xdpf->mem;
254		/* TODO: report queue_index to xdp_rxq_info */
255
256		xdp_convert_frame_to_buff(xdpf, &xdp);
257
258		act = bpf_prog_run_xdp(rcpu->prog, &xdp);
259		switch (act) {
260		case XDP_PASS:
261			err = xdp_update_frame_from_buff(&xdp, xdpf);
262			if (err < 0) {
263				xdp_return_frame(xdpf);
264				stats->drop++;
265			} else {
266				frames[nframes++] = xdpf;
267				stats->pass++;
268			}
269			break;
270		case XDP_REDIRECT:
271			err = xdp_do_redirect(xdpf->dev_rx, &xdp,
272					      rcpu->prog);
273			if (unlikely(err)) {
274				xdp_return_frame(xdpf);
275				stats->drop++;
276			} else {
277				stats->redirect++;
278			}
279			break;
280		default:
281			bpf_warn_invalid_xdp_action(act);
282			fallthrough;
283		case XDP_DROP:
284			xdp_return_frame(xdpf);
285			stats->drop++;
286			break;
287		}
288	}
289
290	if (stats->redirect)
291		xdp_do_flush_map();
292
293	xdp_clear_return_frame_no_direct();
294
295	rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
296
297	return nframes;
298}
299
300#define CPUMAP_BATCH 8
301
302static int cpu_map_kthread_run(void *data)
303{
304	struct bpf_cpu_map_entry *rcpu = data;
305
306	set_current_state(TASK_INTERRUPTIBLE);
307
308	/* When kthread gives stop order, then rcpu have been disconnected
309	 * from map, thus no new packets can enter. Remaining in-flight
310	 * per CPU stored packets are flushed to this queue.  Wait honoring
311	 * kthread_stop signal until queue is empty.
312	 */
313	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
314		struct xdp_cpumap_stats stats = {}; /* zero stats */
315		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
316		unsigned int drops = 0, sched = 0;
317		void *frames[CPUMAP_BATCH];
318		void *skbs[CPUMAP_BATCH];
319		int i, n, m, nframes;
 
320
321		/* Release CPU reschedule checks */
322		if (__ptr_ring_empty(rcpu->queue)) {
323			set_current_state(TASK_INTERRUPTIBLE);
324			/* Recheck to avoid lost wake-up */
325			if (__ptr_ring_empty(rcpu->queue)) {
326				schedule();
327				sched = 1;
328			} else {
329				__set_current_state(TASK_RUNNING);
330			}
331		} else {
332			sched = cond_resched();
333		}
334
335		/*
336		 * The bpf_cpu_map_entry is single consumer, with this
337		 * kthread CPU pinned. Lockless access to ptr_ring
338		 * consume side valid as no-resize allowed of queue.
339		 */
340		n = __ptr_ring_consume_batched(rcpu->queue, frames,
341					       CPUMAP_BATCH);
342		for (i = 0; i < n; i++) {
343			void *f = frames[i];
344			struct page *page = virt_to_page(f);
345
346			/* Bring struct page memory area to curr CPU. Read by
347			 * build_skb_around via page_is_pfmemalloc(), and when
348			 * freed written by page_frag_free call.
349			 */
350			prefetchw(page);
351		}
352
353		/* Support running another XDP prog on this CPU */
354		nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, n, &stats);
355		if (nframes) {
356			m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs);
357			if (unlikely(m == 0)) {
358				for (i = 0; i < nframes; i++)
359					skbs[i] = NULL; /* effect: xdp_return_frame */
360				drops += nframes;
361			}
362		}
363
364		local_bh_disable();
365		for (i = 0; i < nframes; i++) {
366			struct xdp_frame *xdpf = frames[i];
367			struct sk_buff *skb = skbs[i];
368			int ret;
369
370			skb = cpu_map_build_skb(rcpu, xdpf, skb);
371			if (!skb) {
372				xdp_return_frame(xdpf);
373				continue;
374			}
375
376			/* Inject into network stack */
377			ret = netif_receive_skb_core(skb);
378			if (ret == NET_RX_DROP)
379				drops++;
380		}
381		/* Feedback loop via tracepoint */
382		trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched, &stats);
383
384		local_bh_enable(); /* resched point, may call do_softirq() */
385	}
386	__set_current_state(TASK_RUNNING);
387
388	put_cpu_map_entry(rcpu);
389	return 0;
390}
391
392bool cpu_map_prog_allowed(struct bpf_map *map)
 
393{
394	return map->map_type == BPF_MAP_TYPE_CPUMAP &&
395	       map->value_size != offsetofend(struct bpf_cpumap_val, qsize);
396}
397
398static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, int fd)
399{
400	struct bpf_prog *prog;
401
402	prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
403	if (IS_ERR(prog))
404		return PTR_ERR(prog);
405
406	if (prog->expected_attach_type != BPF_XDP_CPUMAP) {
407		bpf_prog_put(prog);
408		return -EINVAL;
409	}
410
411	rcpu->value.bpf_prog.id = prog->aux->id;
412	rcpu->prog = prog;
413
414	return 0;
415}
416
417static struct bpf_cpu_map_entry *
418__cpu_map_entry_alloc(struct bpf_cpumap_val *value, u32 cpu, int map_id)
419{
420	int numa, err, i, fd = value->bpf_prog.fd;
421	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
422	struct bpf_cpu_map_entry *rcpu;
423	struct xdp_bulk_queue *bq;
 
424
425	/* Have map->numa_node, but choose node of redirect target CPU */
426	numa = cpu_to_node(cpu);
427
428	rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
429	if (!rcpu)
430		return NULL;
431
432	/* Alloc percpu bulkq */
433	rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
434					 sizeof(void *), gfp);
435	if (!rcpu->bulkq)
436		goto free_rcu;
437
438	for_each_possible_cpu(i) {
439		bq = per_cpu_ptr(rcpu->bulkq, i);
440		bq->obj = rcpu;
441	}
442
443	/* Alloc queue */
444	rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
445	if (!rcpu->queue)
446		goto free_bulkq;
447
448	err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
449	if (err)
450		goto free_queue;
451
452	rcpu->cpu    = cpu;
453	rcpu->map_id = map_id;
454	rcpu->value.qsize  = value->qsize;
455
456	if (fd > 0 && __cpu_map_load_bpf_program(rcpu, fd))
457		goto free_ptr_ring;
458
459	/* Setup kthread */
460	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
461					       "cpumap/%d/map:%d", cpu, map_id);
462	if (IS_ERR(rcpu->kthread))
463		goto free_prog;
464
465	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
466	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
467
468	/* Make sure kthread runs on a single CPU */
469	kthread_bind(rcpu->kthread, cpu);
470	wake_up_process(rcpu->kthread);
471
472	return rcpu;
473
474free_prog:
475	if (rcpu->prog)
476		bpf_prog_put(rcpu->prog);
477free_ptr_ring:
478	ptr_ring_cleanup(rcpu->queue, NULL);
479free_queue:
480	kfree(rcpu->queue);
481free_bulkq:
482	free_percpu(rcpu->bulkq);
483free_rcu:
484	kfree(rcpu);
485	return NULL;
486}
487
488static void __cpu_map_entry_free(struct rcu_head *rcu)
489{
490	struct bpf_cpu_map_entry *rcpu;
 
491
492	/* This cpu_map_entry have been disconnected from map and one
493	 * RCU grace-period have elapsed.  Thus, XDP cannot queue any
494	 * new packets and cannot change/set flush_needed that can
495	 * find this entry.
496	 */
497	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
498
 
 
 
 
 
 
 
499	free_percpu(rcpu->bulkq);
500	/* Cannot kthread_stop() here, last put free rcpu resources */
501	put_cpu_map_entry(rcpu);
502}
503
504/* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
505 * ensure any driver rcu critical sections have completed, but this
506 * does not guarantee a flush has happened yet. Because driver side
507 * rcu_read_lock/unlock only protects the running XDP program.  The
508 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
509 * pending flush op doesn't fail.
510 *
511 * The bpf_cpu_map_entry is still used by the kthread, and there can
512 * still be pending packets (in queue and percpu bulkq).  A refcnt
513 * makes sure to last user (kthread_stop vs. call_rcu) free memory
514 * resources.
515 *
516 * The rcu callback __cpu_map_entry_free flush remaining packets in
517 * percpu bulkq to queue.  Due to caller map_delete_elem() disable
518 * preemption, cannot call kthread_stop() to make sure queue is empty.
519 * Instead a work_queue is started for stopping kthread,
520 * cpu_map_kthread_stop, which waits for an RCU grace period before
521 * stopping kthread, emptying the queue.
522 */
523static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
524				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
525{
526	struct bpf_cpu_map_entry *old_rcpu;
527
528	old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
529	if (old_rcpu) {
530		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
531		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
532		schedule_work(&old_rcpu->kthread_stop_wq);
533	}
534}
535
536static int cpu_map_delete_elem(struct bpf_map *map, void *key)
537{
538	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
539	u32 key_cpu = *(u32 *)key;
540
541	if (key_cpu >= map->max_entries)
542		return -EINVAL;
543
544	/* notice caller map_delete_elem() use preempt_disable() */
545	__cpu_map_entry_replace(cmap, key_cpu, NULL);
546	return 0;
547}
548
549static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
550			       u64 map_flags)
551{
552	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
553	struct bpf_cpumap_val cpumap_value = {};
554	struct bpf_cpu_map_entry *rcpu;
 
555	/* Array index key correspond to CPU number */
556	u32 key_cpu = *(u32 *)key;
557
558	memcpy(&cpumap_value, value, map->value_size);
559
560	if (unlikely(map_flags > BPF_EXIST))
561		return -EINVAL;
562	if (unlikely(key_cpu >= cmap->map.max_entries))
563		return -E2BIG;
564	if (unlikely(map_flags == BPF_NOEXIST))
565		return -EEXIST;
566	if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
567		return -EOVERFLOW;
568
569	/* Make sure CPU is a valid possible cpu */
570	if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
571		return -ENODEV;
572
573	if (cpumap_value.qsize == 0) {
574		rcpu = NULL; /* Same as deleting */
575	} else {
576		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
577		rcpu = __cpu_map_entry_alloc(&cpumap_value, key_cpu, map->id);
578		if (!rcpu)
579			return -ENOMEM;
580		rcpu->cmap = cmap;
581	}
582	rcu_read_lock();
583	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
584	rcu_read_unlock();
585	return 0;
586}
587
588static void cpu_map_free(struct bpf_map *map)
589{
590	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 
591	u32 i;
592
593	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
594	 * so the bpf programs (can be more than one that used this map) were
595	 * disconnected from events. Wait for outstanding critical sections in
596	 * these programs to complete. The rcu critical section only guarantees
597	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
598	 * It does __not__ ensure pending flush operations (if any) are
599	 * complete.
600	 */
601
602	bpf_clear_redirect_map(map);
603	synchronize_rcu();
604
 
 
 
 
 
 
 
 
 
 
 
 
605	/* For cpu_map the remote CPUs can still be using the entries
606	 * (struct bpf_cpu_map_entry).
607	 */
608	for (i = 0; i < cmap->map.max_entries; i++) {
609		struct bpf_cpu_map_entry *rcpu;
610
611		rcpu = READ_ONCE(cmap->cpu_map[i]);
612		if (!rcpu)
613			continue;
614
615		/* bq flush and cleanup happens after RCU grace-period */
616		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
617	}
 
618	bpf_map_area_free(cmap->cpu_map);
619	kfree(cmap);
620}
621
622struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
623{
624	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
625	struct bpf_cpu_map_entry *rcpu;
626
627	if (key >= map->max_entries)
628		return NULL;
629
630	rcpu = READ_ONCE(cmap->cpu_map[key]);
631	return rcpu;
632}
633
634static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
635{
636	struct bpf_cpu_map_entry *rcpu =
637		__cpu_map_lookup_elem(map, *(u32 *)key);
638
639	return rcpu ? &rcpu->value : NULL;
640}
641
642static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
643{
644	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
645	u32 index = key ? *(u32 *)key : U32_MAX;
646	u32 *next = next_key;
647
648	if (index >= cmap->map.max_entries) {
649		*next = 0;
650		return 0;
651	}
652
653	if (index == cmap->map.max_entries - 1)
654		return -ENOENT;
655	*next = index + 1;
656	return 0;
657}
658
659static int cpu_map_btf_id;
660const struct bpf_map_ops cpu_map_ops = {
661	.map_alloc		= cpu_map_alloc,
662	.map_free		= cpu_map_free,
663	.map_delete_elem	= cpu_map_delete_elem,
664	.map_update_elem	= cpu_map_update_elem,
665	.map_lookup_elem	= cpu_map_lookup_elem,
666	.map_get_next_key	= cpu_map_get_next_key,
667	.map_check_btf		= map_check_no_btf,
668	.map_btf_name		= "bpf_cpu_map",
669	.map_btf_id		= &cpu_map_btf_id,
670};
671
672static int bq_flush_to_queue(struct xdp_bulk_queue *bq)
673{
674	struct bpf_cpu_map_entry *rcpu = bq->obj;
675	unsigned int processed = 0, drops = 0;
676	const int to_cpu = rcpu->cpu;
677	struct ptr_ring *q;
678	int i;
679
680	if (unlikely(!bq->count))
681		return 0;
682
683	q = rcpu->queue;
684	spin_lock(&q->producer_lock);
685
686	for (i = 0; i < bq->count; i++) {
687		struct xdp_frame *xdpf = bq->q[i];
688		int err;
689
690		err = __ptr_ring_produce(q, xdpf);
691		if (err) {
692			drops++;
693			xdp_return_frame_rx_napi(xdpf);
 
 
 
694		}
695		processed++;
696	}
697	bq->count = 0;
698	spin_unlock(&q->producer_lock);
699
700	__list_del_clearprev(&bq->flush_node);
701
702	/* Feedback loop via tracepoints */
703	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
704	return 0;
705}
706
707/* Runs under RCU-read-side, plus in softirq under NAPI protection.
708 * Thus, safe percpu variable access.
709 */
710static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
711{
712	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
713	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
714
715	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
716		bq_flush_to_queue(bq);
717
718	/* Notice, xdp_buff/page MUST be queued here, long enough for
719	 * driver to code invoking us to finished, due to driver
720	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
721	 *
722	 * Thus, incoming xdp_frame is always queued here (else we race
723	 * with another CPU on page-refcnt and remaining driver code).
724	 * Queue time is very short, as driver will invoke flush
725	 * operation, when completing napi->poll call.
726	 */
727	bq->q[bq->count++] = xdpf;
728
729	if (!bq->flush_node.prev)
730		list_add(&bq->flush_node, flush_list);
731
732	return 0;
733}
734
735int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
736		    struct net_device *dev_rx)
737{
738	struct xdp_frame *xdpf;
739
740	xdpf = xdp_convert_buff_to_frame(xdp);
741	if (unlikely(!xdpf))
742		return -EOVERFLOW;
743
744	/* Info needed when constructing SKB on remote CPU */
745	xdpf->dev_rx = dev_rx;
746
747	bq_enqueue(rcpu, xdpf);
748	return 0;
749}
750
751void __cpu_map_flush(void)
752{
753	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
 
754	struct xdp_bulk_queue *bq, *tmp;
755
756	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
757		bq_flush_to_queue(bq);
758
759		/* If already running, costs spin_lock_irqsave + smb_mb */
760		wake_up_process(bq->obj->kthread);
761	}
762}
763
764static int __init cpu_map_init(void)
765{
766	int cpu;
767
768	for_each_possible_cpu(cpu)
769		INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
770	return 0;
771}
772
773subsys_initcall(cpu_map_init);
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* bpf/cpumap.c
  3 *
  4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
  5 */
  6
  7/* The 'cpumap' is primarily used as a backend map for XDP BPF helper
  8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
  9 *
 10 * Unlike devmap which redirects XDP frames out another NIC device,
 11 * this map type redirects raw XDP frames to another CPU.  The remote
 12 * CPU will do SKB-allocation and call the normal network stack.
 13 *
 14 * This is a scalability and isolation mechanism, that allow
 15 * separating the early driver network XDP layer, from the rest of the
 16 * netstack, and assigning dedicated CPUs for this stage.  This
 17 * basically allows for 10G wirespeed pre-filtering via bpf.
 18 */
 19#include <linux/bpf.h>
 20#include <linux/filter.h>
 21#include <linux/ptr_ring.h>
 22#include <net/xdp.h>
 23
 24#include <linux/sched.h>
 25#include <linux/workqueue.h>
 26#include <linux/kthread.h>
 27#include <linux/capability.h>
 28#include <trace/events/xdp.h>
 29
 30#include <linux/netdevice.h>   /* netif_receive_skb_core */
 31#include <linux/etherdevice.h> /* eth_type_trans */
 32
 33/* General idea: XDP packets getting XDP redirected to another CPU,
 34 * will maximum be stored/queued for one driver ->poll() call.  It is
 35 * guaranteed that queueing the frame and the flush operation happen on
 36 * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
 37 * which queue in bpf_cpu_map_entry contains packets.
 38 */
 39
 40#define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
 41struct bpf_cpu_map_entry;
 42struct bpf_cpu_map;
 43
 44struct xdp_bulk_queue {
 45	void *q[CPU_MAP_BULK_SIZE];
 46	struct list_head flush_node;
 47	struct bpf_cpu_map_entry *obj;
 48	unsigned int count;
 49};
 50
 51/* Struct for every remote "destination" CPU in map */
 52struct bpf_cpu_map_entry {
 53	u32 cpu;    /* kthread CPU and map index */
 54	int map_id; /* Back reference to map */
 55	u32 qsize;  /* Queue size placeholder for map lookup */
 56
 57	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
 58	struct xdp_bulk_queue __percpu *bulkq;
 59
 60	struct bpf_cpu_map *cmap;
 61
 62	/* Queue with potential multi-producers, and single-consumer kthread */
 63	struct ptr_ring *queue;
 64	struct task_struct *kthread;
 65	struct work_struct kthread_stop_wq;
 
 
 66
 67	atomic_t refcnt; /* Control when this struct can be free'ed */
 68	struct rcu_head rcu;
 
 
 69};
 70
 71struct bpf_cpu_map {
 72	struct bpf_map map;
 73	/* Below members specific for map type */
 74	struct bpf_cpu_map_entry **cpu_map;
 75	struct list_head __percpu *flush_list;
 76};
 77
 78static int bq_flush_to_queue(struct xdp_bulk_queue *bq, bool in_napi_ctx);
 
 
 79
 80static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
 81{
 
 82	struct bpf_cpu_map *cmap;
 83	int err = -ENOMEM;
 84	int ret, cpu;
 85	u64 cost;
 
 86
 87	if (!capable(CAP_SYS_ADMIN))
 88		return ERR_PTR(-EPERM);
 89
 90	/* check sanity of attributes */
 91	if (attr->max_entries == 0 || attr->key_size != 4 ||
 92	    attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
 
 
 93		return ERR_PTR(-EINVAL);
 94
 95	cmap = kzalloc(sizeof(*cmap), GFP_USER);
 96	if (!cmap)
 97		return ERR_PTR(-ENOMEM);
 98
 99	bpf_map_init_from_attr(&cmap->map, attr);
100
101	/* Pre-limit array size based on NR_CPUS, not final CPU check */
102	if (cmap->map.max_entries > NR_CPUS) {
103		err = -E2BIG;
104		goto free_cmap;
105	}
106
107	/* make sure page count doesn't overflow */
108	cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
109	cost += sizeof(struct list_head) * num_possible_cpus();
110
111	/* Notice returns -EPERM on if map size is larger than memlock limit */
112	ret = bpf_map_charge_init(&cmap->map.memory, cost);
113	if (ret) {
114		err = ret;
115		goto free_cmap;
116	}
117
118	cmap->flush_list = alloc_percpu(struct list_head);
119	if (!cmap->flush_list)
120		goto free_charge;
121
122	for_each_possible_cpu(cpu)
123		INIT_LIST_HEAD(per_cpu_ptr(cmap->flush_list, cpu));
124
125	/* Alloc array for possible remote "destination" CPUs */
126	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
127					   sizeof(struct bpf_cpu_map_entry *),
128					   cmap->map.numa_node);
129	if (!cmap->cpu_map)
130		goto free_percpu;
131
132	return &cmap->map;
133free_percpu:
134	free_percpu(cmap->flush_list);
135free_charge:
136	bpf_map_charge_finish(&cmap->map.memory);
137free_cmap:
138	kfree(cmap);
139	return ERR_PTR(err);
140}
141
142static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
143{
144	atomic_inc(&rcpu->refcnt);
145}
146
147/* called from workqueue, to workaround syscall using preempt_disable */
148static void cpu_map_kthread_stop(struct work_struct *work)
149{
150	struct bpf_cpu_map_entry *rcpu;
151
152	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
153
154	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
155	 * as it waits until all in-flight call_rcu() callbacks complete.
156	 */
157	rcu_barrier();
158
159	/* kthread_stop will wake_up_process and wait for it to complete */
160	kthread_stop(rcpu->kthread);
161}
162
163static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
164					 struct xdp_frame *xdpf,
165					 struct sk_buff *skb)
166{
167	unsigned int hard_start_headroom;
168	unsigned int frame_size;
169	void *pkt_data_start;
170
171	/* Part of headroom was reserved to xdpf */
172	hard_start_headroom = sizeof(struct xdp_frame) +  xdpf->headroom;
173
174	/* build_skb need to place skb_shared_info after SKB end, and
175	 * also want to know the memory "truesize".  Thus, need to
176	 * know the memory frame size backing xdp_buff.
177	 *
178	 * XDP was designed to have PAGE_SIZE frames, but this
179	 * assumption is not longer true with ixgbe and i40e.  It
180	 * would be preferred to set frame_size to 2048 or 4096
181	 * depending on the driver.
182	 *   frame_size = 2048;
183	 *   frame_len  = frame_size - sizeof(*xdp_frame);
184	 *
185	 * Instead, with info avail, skb_shared_info in placed after
186	 * packet len.  This, unfortunately fakes the truesize.
187	 * Another disadvantage of this approach, the skb_shared_info
188	 * is not at a fixed memory location, with mixed length
189	 * packets, which is bad for cache-line hotness.
190	 */
191	frame_size = SKB_DATA_ALIGN(xdpf->len + hard_start_headroom) +
192		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
193
194	pkt_data_start = xdpf->data - hard_start_headroom;
195	skb = build_skb_around(skb, pkt_data_start, frame_size);
196	if (unlikely(!skb))
197		return NULL;
198
199	skb_reserve(skb, hard_start_headroom);
200	__skb_put(skb, xdpf->len);
201	if (xdpf->metasize)
202		skb_metadata_set(skb, xdpf->metasize);
203
204	/* Essential SKB info: protocol and skb->dev */
205	skb->protocol = eth_type_trans(skb, xdpf->dev_rx);
206
207	/* Optional SKB info, currently missing:
208	 * - HW checksum info		(skb->ip_summed)
209	 * - HW RX hash			(skb_set_hash)
210	 * - RX ring dev queue index	(skb_record_rx_queue)
211	 */
212
213	/* Until page_pool get SKB return path, release DMA here */
214	xdp_release_frame(xdpf);
215
216	/* Allow SKB to reuse area used by xdp_frame */
217	xdp_scrub_frame(xdpf);
218
219	return skb;
220}
221
222static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
223{
224	/* The tear-down procedure should have made sure that queue is
225	 * empty.  See __cpu_map_entry_replace() and work-queue
226	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
227	 * gracefully and warn once.
228	 */
229	struct xdp_frame *xdpf;
230
231	while ((xdpf = ptr_ring_consume(ring)))
232		if (WARN_ON_ONCE(xdpf))
233			xdp_return_frame(xdpf);
234}
235
236static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
237{
238	if (atomic_dec_and_test(&rcpu->refcnt)) {
 
 
239		/* The queue should be empty at this point */
240		__cpu_map_ring_cleanup(rcpu->queue);
241		ptr_ring_cleanup(rcpu->queue, NULL);
242		kfree(rcpu->queue);
243		kfree(rcpu);
244	}
245}
246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
247#define CPUMAP_BATCH 8
248
249static int cpu_map_kthread_run(void *data)
250{
251	struct bpf_cpu_map_entry *rcpu = data;
252
253	set_current_state(TASK_INTERRUPTIBLE);
254
255	/* When kthread gives stop order, then rcpu have been disconnected
256	 * from map, thus no new packets can enter. Remaining in-flight
257	 * per CPU stored packets are flushed to this queue.  Wait honoring
258	 * kthread_stop signal until queue is empty.
259	 */
260	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
 
 
261		unsigned int drops = 0, sched = 0;
262		void *frames[CPUMAP_BATCH];
263		void *skbs[CPUMAP_BATCH];
264		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
265		int i, n, m;
266
267		/* Release CPU reschedule checks */
268		if (__ptr_ring_empty(rcpu->queue)) {
269			set_current_state(TASK_INTERRUPTIBLE);
270			/* Recheck to avoid lost wake-up */
271			if (__ptr_ring_empty(rcpu->queue)) {
272				schedule();
273				sched = 1;
274			} else {
275				__set_current_state(TASK_RUNNING);
276			}
277		} else {
278			sched = cond_resched();
279		}
280
281		/*
282		 * The bpf_cpu_map_entry is single consumer, with this
283		 * kthread CPU pinned. Lockless access to ptr_ring
284		 * consume side valid as no-resize allowed of queue.
285		 */
286		n = ptr_ring_consume_batched(rcpu->queue, frames, CPUMAP_BATCH);
287
288		for (i = 0; i < n; i++) {
289			void *f = frames[i];
290			struct page *page = virt_to_page(f);
291
292			/* Bring struct page memory area to curr CPU. Read by
293			 * build_skb_around via page_is_pfmemalloc(), and when
294			 * freed written by page_frag_free call.
295			 */
296			prefetchw(page);
297		}
298
299		m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, n, skbs);
300		if (unlikely(m == 0)) {
301			for (i = 0; i < n; i++)
302				skbs[i] = NULL; /* effect: xdp_return_frame */
303			drops = n;
 
 
 
 
304		}
305
306		local_bh_disable();
307		for (i = 0; i < n; i++) {
308			struct xdp_frame *xdpf = frames[i];
309			struct sk_buff *skb = skbs[i];
310			int ret;
311
312			skb = cpu_map_build_skb(rcpu, xdpf, skb);
313			if (!skb) {
314				xdp_return_frame(xdpf);
315				continue;
316			}
317
318			/* Inject into network stack */
319			ret = netif_receive_skb_core(skb);
320			if (ret == NET_RX_DROP)
321				drops++;
322		}
323		/* Feedback loop via tracepoint */
324		trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched);
325
326		local_bh_enable(); /* resched point, may call do_softirq() */
327	}
328	__set_current_state(TASK_RUNNING);
329
330	put_cpu_map_entry(rcpu);
331	return 0;
332}
333
334static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu,
335						       int map_id)
336{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
337	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
338	struct bpf_cpu_map_entry *rcpu;
339	struct xdp_bulk_queue *bq;
340	int numa, err, i;
341
342	/* Have map->numa_node, but choose node of redirect target CPU */
343	numa = cpu_to_node(cpu);
344
345	rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
346	if (!rcpu)
347		return NULL;
348
349	/* Alloc percpu bulkq */
350	rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
351					 sizeof(void *), gfp);
352	if (!rcpu->bulkq)
353		goto free_rcu;
354
355	for_each_possible_cpu(i) {
356		bq = per_cpu_ptr(rcpu->bulkq, i);
357		bq->obj = rcpu;
358	}
359
360	/* Alloc queue */
361	rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
362	if (!rcpu->queue)
363		goto free_bulkq;
364
365	err = ptr_ring_init(rcpu->queue, qsize, gfp);
366	if (err)
367		goto free_queue;
368
369	rcpu->cpu    = cpu;
370	rcpu->map_id = map_id;
371	rcpu->qsize  = qsize;
 
 
 
372
373	/* Setup kthread */
374	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
375					       "cpumap/%d/map:%d", cpu, map_id);
376	if (IS_ERR(rcpu->kthread))
377		goto free_ptr_ring;
378
379	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
380	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
381
382	/* Make sure kthread runs on a single CPU */
383	kthread_bind(rcpu->kthread, cpu);
384	wake_up_process(rcpu->kthread);
385
386	return rcpu;
387
 
 
 
388free_ptr_ring:
389	ptr_ring_cleanup(rcpu->queue, NULL);
390free_queue:
391	kfree(rcpu->queue);
392free_bulkq:
393	free_percpu(rcpu->bulkq);
394free_rcu:
395	kfree(rcpu);
396	return NULL;
397}
398
399static void __cpu_map_entry_free(struct rcu_head *rcu)
400{
401	struct bpf_cpu_map_entry *rcpu;
402	int cpu;
403
404	/* This cpu_map_entry have been disconnected from map and one
405	 * RCU graze-period have elapsed.  Thus, XDP cannot queue any
406	 * new packets and cannot change/set flush_needed that can
407	 * find this entry.
408	 */
409	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
410
411	/* Flush remaining packets in percpu bulkq */
412	for_each_online_cpu(cpu) {
413		struct xdp_bulk_queue *bq = per_cpu_ptr(rcpu->bulkq, cpu);
414
415		/* No concurrent bq_enqueue can run at this point */
416		bq_flush_to_queue(bq, false);
417	}
418	free_percpu(rcpu->bulkq);
419	/* Cannot kthread_stop() here, last put free rcpu resources */
420	put_cpu_map_entry(rcpu);
421}
422
423/* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
424 * ensure any driver rcu critical sections have completed, but this
425 * does not guarantee a flush has happened yet. Because driver side
426 * rcu_read_lock/unlock only protects the running XDP program.  The
427 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
428 * pending flush op doesn't fail.
429 *
430 * The bpf_cpu_map_entry is still used by the kthread, and there can
431 * still be pending packets (in queue and percpu bulkq).  A refcnt
432 * makes sure to last user (kthread_stop vs. call_rcu) free memory
433 * resources.
434 *
435 * The rcu callback __cpu_map_entry_free flush remaining packets in
436 * percpu bulkq to queue.  Due to caller map_delete_elem() disable
437 * preemption, cannot call kthread_stop() to make sure queue is empty.
438 * Instead a work_queue is started for stopping kthread,
439 * cpu_map_kthread_stop, which waits for an RCU graze period before
440 * stopping kthread, emptying the queue.
441 */
442static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
443				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
444{
445	struct bpf_cpu_map_entry *old_rcpu;
446
447	old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
448	if (old_rcpu) {
449		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
450		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
451		schedule_work(&old_rcpu->kthread_stop_wq);
452	}
453}
454
455static int cpu_map_delete_elem(struct bpf_map *map, void *key)
456{
457	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
458	u32 key_cpu = *(u32 *)key;
459
460	if (key_cpu >= map->max_entries)
461		return -EINVAL;
462
463	/* notice caller map_delete_elem() use preempt_disable() */
464	__cpu_map_entry_replace(cmap, key_cpu, NULL);
465	return 0;
466}
467
468static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
469			       u64 map_flags)
470{
471	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 
472	struct bpf_cpu_map_entry *rcpu;
473
474	/* Array index key correspond to CPU number */
475	u32 key_cpu = *(u32 *)key;
476	/* Value is the queue size */
477	u32 qsize = *(u32 *)value;
478
479	if (unlikely(map_flags > BPF_EXIST))
480		return -EINVAL;
481	if (unlikely(key_cpu >= cmap->map.max_entries))
482		return -E2BIG;
483	if (unlikely(map_flags == BPF_NOEXIST))
484		return -EEXIST;
485	if (unlikely(qsize > 16384)) /* sanity limit on qsize */
486		return -EOVERFLOW;
487
488	/* Make sure CPU is a valid possible cpu */
489	if (!cpu_possible(key_cpu))
490		return -ENODEV;
491
492	if (qsize == 0) {
493		rcpu = NULL; /* Same as deleting */
494	} else {
495		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
496		rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id);
497		if (!rcpu)
498			return -ENOMEM;
499		rcpu->cmap = cmap;
500	}
501	rcu_read_lock();
502	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
503	rcu_read_unlock();
504	return 0;
505}
506
507static void cpu_map_free(struct bpf_map *map)
508{
509	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
510	int cpu;
511	u32 i;
512
513	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
514	 * so the bpf programs (can be more than one that used this map) were
515	 * disconnected from events. Wait for outstanding critical sections in
516	 * these programs to complete. The rcu critical section only guarantees
517	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
518	 * It does __not__ ensure pending flush operations (if any) are
519	 * complete.
520	 */
521
522	bpf_clear_redirect_map(map);
523	synchronize_rcu();
524
525	/* To ensure all pending flush operations have completed wait for flush
526	 * list be empty on _all_ cpus. Because the above synchronize_rcu()
527	 * ensures the map is disconnected from the program we can assume no new
528	 * items will be added to the list.
529	 */
530	for_each_online_cpu(cpu) {
531		struct list_head *flush_list = per_cpu_ptr(cmap->flush_list, cpu);
532
533		while (!list_empty(flush_list))
534			cond_resched();
535	}
536
537	/* For cpu_map the remote CPUs can still be using the entries
538	 * (struct bpf_cpu_map_entry).
539	 */
540	for (i = 0; i < cmap->map.max_entries; i++) {
541		struct bpf_cpu_map_entry *rcpu;
542
543		rcpu = READ_ONCE(cmap->cpu_map[i]);
544		if (!rcpu)
545			continue;
546
547		/* bq flush and cleanup happens after RCU graze-period */
548		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
549	}
550	free_percpu(cmap->flush_list);
551	bpf_map_area_free(cmap->cpu_map);
552	kfree(cmap);
553}
554
555struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
556{
557	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
558	struct bpf_cpu_map_entry *rcpu;
559
560	if (key >= map->max_entries)
561		return NULL;
562
563	rcpu = READ_ONCE(cmap->cpu_map[key]);
564	return rcpu;
565}
566
567static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
568{
569	struct bpf_cpu_map_entry *rcpu =
570		__cpu_map_lookup_elem(map, *(u32 *)key);
571
572	return rcpu ? &rcpu->qsize : NULL;
573}
574
575static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
576{
577	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
578	u32 index = key ? *(u32 *)key : U32_MAX;
579	u32 *next = next_key;
580
581	if (index >= cmap->map.max_entries) {
582		*next = 0;
583		return 0;
584	}
585
586	if (index == cmap->map.max_entries - 1)
587		return -ENOENT;
588	*next = index + 1;
589	return 0;
590}
591
 
592const struct bpf_map_ops cpu_map_ops = {
593	.map_alloc		= cpu_map_alloc,
594	.map_free		= cpu_map_free,
595	.map_delete_elem	= cpu_map_delete_elem,
596	.map_update_elem	= cpu_map_update_elem,
597	.map_lookup_elem	= cpu_map_lookup_elem,
598	.map_get_next_key	= cpu_map_get_next_key,
599	.map_check_btf		= map_check_no_btf,
 
 
600};
601
602static int bq_flush_to_queue(struct xdp_bulk_queue *bq, bool in_napi_ctx)
603{
604	struct bpf_cpu_map_entry *rcpu = bq->obj;
605	unsigned int processed = 0, drops = 0;
606	const int to_cpu = rcpu->cpu;
607	struct ptr_ring *q;
608	int i;
609
610	if (unlikely(!bq->count))
611		return 0;
612
613	q = rcpu->queue;
614	spin_lock(&q->producer_lock);
615
616	for (i = 0; i < bq->count; i++) {
617		struct xdp_frame *xdpf = bq->q[i];
618		int err;
619
620		err = __ptr_ring_produce(q, xdpf);
621		if (err) {
622			drops++;
623			if (likely(in_napi_ctx))
624				xdp_return_frame_rx_napi(xdpf);
625			else
626				xdp_return_frame(xdpf);
627		}
628		processed++;
629	}
630	bq->count = 0;
631	spin_unlock(&q->producer_lock);
632
633	__list_del_clearprev(&bq->flush_node);
634
635	/* Feedback loop via tracepoints */
636	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
637	return 0;
638}
639
640/* Runs under RCU-read-side, plus in softirq under NAPI protection.
641 * Thus, safe percpu variable access.
642 */
643static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
644{
645	struct list_head *flush_list = this_cpu_ptr(rcpu->cmap->flush_list);
646	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
647
648	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
649		bq_flush_to_queue(bq, true);
650
651	/* Notice, xdp_buff/page MUST be queued here, long enough for
652	 * driver to code invoking us to finished, due to driver
653	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
654	 *
655	 * Thus, incoming xdp_frame is always queued here (else we race
656	 * with another CPU on page-refcnt and remaining driver code).
657	 * Queue time is very short, as driver will invoke flush
658	 * operation, when completing napi->poll call.
659	 */
660	bq->q[bq->count++] = xdpf;
661
662	if (!bq->flush_node.prev)
663		list_add(&bq->flush_node, flush_list);
664
665	return 0;
666}
667
668int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
669		    struct net_device *dev_rx)
670{
671	struct xdp_frame *xdpf;
672
673	xdpf = convert_to_xdp_frame(xdp);
674	if (unlikely(!xdpf))
675		return -EOVERFLOW;
676
677	/* Info needed when constructing SKB on remote CPU */
678	xdpf->dev_rx = dev_rx;
679
680	bq_enqueue(rcpu, xdpf);
681	return 0;
682}
683
684void __cpu_map_flush(struct bpf_map *map)
685{
686	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
687	struct list_head *flush_list = this_cpu_ptr(cmap->flush_list);
688	struct xdp_bulk_queue *bq, *tmp;
689
690	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
691		bq_flush_to_queue(bq, true);
692
693		/* If already running, costs spin_lock_irqsave + smb_mb */
694		wake_up_process(bq->obj->kthread);
695	}
696}