Linux Audio

Check our new training course

Loading...
v5.9
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_MMZONE_H
   3#define _LINUX_MMZONE_H
   4
   5#ifndef __ASSEMBLY__
   6#ifndef __GENERATING_BOUNDS_H
   7
   8#include <linux/spinlock.h>
   9#include <linux/list.h>
  10#include <linux/wait.h>
  11#include <linux/bitops.h>
  12#include <linux/cache.h>
  13#include <linux/threads.h>
  14#include <linux/numa.h>
  15#include <linux/init.h>
  16#include <linux/seqlock.h>
  17#include <linux/nodemask.h>
  18#include <linux/pageblock-flags.h>
  19#include <linux/page-flags-layout.h>
  20#include <linux/atomic.h>
  21#include <linux/mm_types.h>
  22#include <linux/page-flags.h>
  23#include <asm/page.h>
  24
  25/* Free memory management - zoned buddy allocator.  */
  26#ifndef CONFIG_FORCE_MAX_ZONEORDER
  27#define MAX_ORDER 11
  28#else
  29#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  30#endif
  31#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  32
  33/*
  34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  35 * costly to service.  That is between allocation orders which should
  36 * coalesce naturally under reasonable reclaim pressure and those which
  37 * will not.
  38 */
  39#define PAGE_ALLOC_COSTLY_ORDER 3
  40
  41enum migratetype {
  42	MIGRATE_UNMOVABLE,
  43	MIGRATE_MOVABLE,
  44	MIGRATE_RECLAIMABLE,
  45	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
  46	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
  47#ifdef CONFIG_CMA
  48	/*
  49	 * MIGRATE_CMA migration type is designed to mimic the way
  50	 * ZONE_MOVABLE works.  Only movable pages can be allocated
  51	 * from MIGRATE_CMA pageblocks and page allocator never
  52	 * implicitly change migration type of MIGRATE_CMA pageblock.
  53	 *
  54	 * The way to use it is to change migratetype of a range of
  55	 * pageblocks to MIGRATE_CMA which can be done by
  56	 * __free_pageblock_cma() function.  What is important though
  57	 * is that a range of pageblocks must be aligned to
  58	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
  59	 * a single pageblock.
  60	 */
  61	MIGRATE_CMA,
  62#endif
  63#ifdef CONFIG_MEMORY_ISOLATION
  64	MIGRATE_ISOLATE,	/* can't allocate from here */
  65#endif
  66	MIGRATE_TYPES
  67};
  68
  69/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
  70extern const char * const migratetype_names[MIGRATE_TYPES];
  71
  72#ifdef CONFIG_CMA
  73#  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
  74#  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
  75#else
  76#  define is_migrate_cma(migratetype) false
  77#  define is_migrate_cma_page(_page) false
  78#endif
  79
  80static inline bool is_migrate_movable(int mt)
  81{
  82	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
  83}
  84
  85#define for_each_migratetype_order(order, type) \
  86	for (order = 0; order < MAX_ORDER; order++) \
  87		for (type = 0; type < MIGRATE_TYPES; type++)
  88
  89extern int page_group_by_mobility_disabled;
  90
  91#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
 
  92
  93#define get_pageblock_migratetype(page)					\
  94	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
 
  95
  96struct free_area {
  97	struct list_head	free_list[MIGRATE_TYPES];
  98	unsigned long		nr_free;
  99};
 100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 101static inline struct page *get_page_from_free_area(struct free_area *area,
 102					    int migratetype)
 103{
 104	return list_first_entry_or_null(&area->free_list[migratetype],
 105					struct page, lru);
 106}
 107
 
 
 
 
 
 
 
 
 
 108static inline bool free_area_empty(struct free_area *area, int migratetype)
 109{
 110	return list_empty(&area->free_list[migratetype]);
 111}
 112
 113struct pglist_data;
 114
 115/*
 116 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
 117 * So add a wild amount of padding here to ensure that they fall into separate
 118 * cachelines.  There are very few zone structures in the machine, so space
 119 * consumption is not a concern here.
 120 */
 121#if defined(CONFIG_SMP)
 122struct zone_padding {
 123	char x[0];
 124} ____cacheline_internodealigned_in_smp;
 125#define ZONE_PADDING(name)	struct zone_padding name;
 126#else
 127#define ZONE_PADDING(name)
 128#endif
 129
 130#ifdef CONFIG_NUMA
 131enum numa_stat_item {
 132	NUMA_HIT,		/* allocated in intended node */
 133	NUMA_MISS,		/* allocated in non intended node */
 134	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
 135	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
 136	NUMA_LOCAL,		/* allocation from local node */
 137	NUMA_OTHER,		/* allocation from other node */
 138	NR_VM_NUMA_STAT_ITEMS
 139};
 140#else
 141#define NR_VM_NUMA_STAT_ITEMS 0
 142#endif
 143
 144enum zone_stat_item {
 145	/* First 128 byte cacheline (assuming 64 bit words) */
 146	NR_FREE_PAGES,
 147	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
 148	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
 149	NR_ZONE_ACTIVE_ANON,
 150	NR_ZONE_INACTIVE_FILE,
 151	NR_ZONE_ACTIVE_FILE,
 152	NR_ZONE_UNEVICTABLE,
 153	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
 154	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
 155	NR_PAGETABLE,		/* used for pagetables */
 
 156	/* Second 128 byte cacheline */
 157	NR_BOUNCE,
 158#if IS_ENABLED(CONFIG_ZSMALLOC)
 159	NR_ZSPAGES,		/* allocated in zsmalloc */
 160#endif
 161	NR_FREE_CMA_PAGES,
 162	NR_VM_ZONE_STAT_ITEMS };
 163
 164enum node_stat_item {
 165	NR_LRU_BASE,
 166	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
 167	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
 168	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
 169	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
 170	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
 171	NR_SLAB_RECLAIMABLE_B,
 172	NR_SLAB_UNRECLAIMABLE_B,
 
 173	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
 174	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
 175	WORKINGSET_NODES,
 176	WORKINGSET_REFAULT_BASE,
 177	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
 178	WORKINGSET_REFAULT_FILE,
 179	WORKINGSET_ACTIVATE_BASE,
 180	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
 181	WORKINGSET_ACTIVATE_FILE,
 182	WORKINGSET_RESTORE_BASE,
 183	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
 184	WORKINGSET_RESTORE_FILE,
 185	WORKINGSET_NODERECLAIM,
 186	NR_ANON_MAPPED,	/* Mapped anonymous pages */
 187	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
 188			   only modified from process context */
 189	NR_FILE_PAGES,
 190	NR_FILE_DIRTY,
 191	NR_WRITEBACK,
 192	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
 193	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
 194	NR_SHMEM_THPS,
 195	NR_SHMEM_PMDMAPPED,
 196	NR_FILE_THPS,
 197	NR_FILE_PMDMAPPED,
 198	NR_ANON_THPS,
 
 199	NR_VMSCAN_WRITE,
 200	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
 201	NR_DIRTIED,		/* page dirtyings since bootup */
 202	NR_WRITTEN,		/* page writings since bootup */
 203	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
 204	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
 205	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
 206	NR_KERNEL_STACK_KB,	/* measured in KiB */
 207#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
 208	NR_KERNEL_SCS_KB,	/* measured in KiB */
 209#endif
 210	NR_VM_NODE_STAT_ITEMS
 211};
 212
 213/*
 214 * Returns true if the value is measured in bytes (most vmstat values are
 215 * measured in pages). This defines the API part, the internal representation
 216 * might be different.
 217 */
 218static __always_inline bool vmstat_item_in_bytes(int idx)
 219{
 220	/*
 221	 * Global and per-node slab counters track slab pages.
 222	 * It's expected that changes are multiples of PAGE_SIZE.
 223	 * Internally values are stored in pages.
 224	 *
 225	 * Per-memcg and per-lruvec counters track memory, consumed
 226	 * by individual slab objects. These counters are actually
 227	 * byte-precise.
 228	 */
 229	return (idx == NR_SLAB_RECLAIMABLE_B ||
 230		idx == NR_SLAB_UNRECLAIMABLE_B);
 231}
 232
 233/*
 234 * We do arithmetic on the LRU lists in various places in the code,
 235 * so it is important to keep the active lists LRU_ACTIVE higher in
 236 * the array than the corresponding inactive lists, and to keep
 237 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
 238 *
 239 * This has to be kept in sync with the statistics in zone_stat_item
 240 * above and the descriptions in vmstat_text in mm/vmstat.c
 241 */
 242#define LRU_BASE 0
 243#define LRU_ACTIVE 1
 244#define LRU_FILE 2
 245
 246enum lru_list {
 247	LRU_INACTIVE_ANON = LRU_BASE,
 248	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
 249	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
 250	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
 251	LRU_UNEVICTABLE,
 252	NR_LRU_LISTS
 253};
 254
 255#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
 256
 257#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
 258
 259static inline bool is_file_lru(enum lru_list lru)
 260{
 261	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
 262}
 263
 264static inline bool is_active_lru(enum lru_list lru)
 265{
 266	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
 267}
 268
 269enum lruvec_flags {
 270	LRUVEC_CONGESTED,		/* lruvec has many dirty pages
 271					 * backed by a congested BDI
 272					 */
 
 
 
 
 
 
 
 273};
 274
 275struct lruvec {
 276	struct list_head		lists[NR_LRU_LISTS];
 277	/*
 278	 * These track the cost of reclaiming one LRU - file or anon -
 279	 * over the other. As the observed cost of reclaiming one LRU
 280	 * increases, the reclaim scan balance tips toward the other.
 281	 */
 282	unsigned long			anon_cost;
 283	unsigned long			file_cost;
 284	/* Non-resident age, driven by LRU movement */
 285	atomic_long_t			nonresident_age;
 286	/* Refaults at the time of last reclaim cycle, anon=0, file=1 */
 287	unsigned long			refaults[2];
 288	/* Various lruvec state flags (enum lruvec_flags) */
 289	unsigned long			flags;
 290#ifdef CONFIG_MEMCG
 291	struct pglist_data *pgdat;
 292#endif
 293};
 294
 295/* Isolate unmapped pages */
 296#define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
 297/* Isolate for asynchronous migration */
 298#define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
 299/* Isolate unevictable pages */
 300#define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
 301
 302/* LRU Isolation modes. */
 303typedef unsigned __bitwise isolate_mode_t;
 304
 305enum zone_watermarks {
 306	WMARK_MIN,
 307	WMARK_LOW,
 308	WMARK_HIGH,
 309	NR_WMARK
 310};
 311
 312#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
 313#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
 314#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
 315#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
 316
 317struct per_cpu_pages {
 318	int count;		/* number of pages in the list */
 319	int high;		/* high watermark, emptying needed */
 320	int batch;		/* chunk size for buddy add/remove */
 321
 322	/* Lists of pages, one per migrate type stored on the pcp-lists */
 323	struct list_head lists[MIGRATE_PCPTYPES];
 324};
 325
 326struct per_cpu_pageset {
 327	struct per_cpu_pages pcp;
 328#ifdef CONFIG_NUMA
 329	s8 expire;
 330	u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
 331#endif
 332#ifdef CONFIG_SMP
 333	s8 stat_threshold;
 334	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
 335#endif
 336};
 337
 338struct per_cpu_nodestat {
 339	s8 stat_threshold;
 340	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
 341};
 342
 343#endif /* !__GENERATING_BOUNDS.H */
 344
 345enum zone_type {
 
 346	/*
 347	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
 348	 * to DMA to all of the addressable memory (ZONE_NORMAL).
 349	 * On architectures where this area covers the whole 32 bit address
 350	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
 351	 * DMA addressing constraints. This distinction is important as a 32bit
 352	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
 353	 * platforms may need both zones as they support peripherals with
 354	 * different DMA addressing limitations.
 355	 *
 356	 * Some examples:
 357	 *
 358	 *  - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the
 359	 *    rest of the lower 4G.
 360	 *
 361	 *  - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on
 362	 *    the specific device.
 363	 *
 364	 *  - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the
 365	 *    lower 4G.
 366	 *
 367	 *  - powerpc only uses ZONE_DMA, the size, up to 2G, may vary
 368	 *    depending on the specific device.
 369	 *
 370	 *  - s390 uses ZONE_DMA fixed to the lower 2G.
 371	 *
 372	 *  - ia64 and riscv only use ZONE_DMA32.
 373	 *
 374	 *  - parisc uses neither.
 
 375	 */
 376#ifdef CONFIG_ZONE_DMA
 377	ZONE_DMA,
 378#endif
 379#ifdef CONFIG_ZONE_DMA32
 
 
 
 
 
 380	ZONE_DMA32,
 381#endif
 382	/*
 383	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
 384	 * performed on pages in ZONE_NORMAL if the DMA devices support
 385	 * transfers to all addressable memory.
 386	 */
 387	ZONE_NORMAL,
 388#ifdef CONFIG_HIGHMEM
 389	/*
 390	 * A memory area that is only addressable by the kernel through
 391	 * mapping portions into its own address space. This is for example
 392	 * used by i386 to allow the kernel to address the memory beyond
 393	 * 900MB. The kernel will set up special mappings (page
 394	 * table entries on i386) for each page that the kernel needs to
 395	 * access.
 396	 */
 397	ZONE_HIGHMEM,
 398#endif
 399	ZONE_MOVABLE,
 400#ifdef CONFIG_ZONE_DEVICE
 401	ZONE_DEVICE,
 402#endif
 403	__MAX_NR_ZONES
 404
 405};
 406
 407#ifndef __GENERATING_BOUNDS_H
 408
 409struct zone {
 410	/* Read-mostly fields */
 411
 412	/* zone watermarks, access with *_wmark_pages(zone) macros */
 413	unsigned long _watermark[NR_WMARK];
 414	unsigned long watermark_boost;
 415
 416	unsigned long nr_reserved_highatomic;
 417
 418	/*
 419	 * We don't know if the memory that we're going to allocate will be
 420	 * freeable or/and it will be released eventually, so to avoid totally
 421	 * wasting several GB of ram we must reserve some of the lower zone
 422	 * memory (otherwise we risk to run OOM on the lower zones despite
 423	 * there being tons of freeable ram on the higher zones).  This array is
 424	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
 425	 * changes.
 426	 */
 427	long lowmem_reserve[MAX_NR_ZONES];
 428
 429#ifdef CONFIG_NUMA
 430	int node;
 431#endif
 432	struct pglist_data	*zone_pgdat;
 433	struct per_cpu_pageset __percpu *pageset;
 434
 435#ifndef CONFIG_SPARSEMEM
 436	/*
 437	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
 438	 * In SPARSEMEM, this map is stored in struct mem_section
 439	 */
 440	unsigned long		*pageblock_flags;
 441#endif /* CONFIG_SPARSEMEM */
 442
 443	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
 444	unsigned long		zone_start_pfn;
 445
 446	/*
 447	 * spanned_pages is the total pages spanned by the zone, including
 448	 * holes, which is calculated as:
 449	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
 450	 *
 451	 * present_pages is physical pages existing within the zone, which
 452	 * is calculated as:
 453	 *	present_pages = spanned_pages - absent_pages(pages in holes);
 454	 *
 455	 * managed_pages is present pages managed by the buddy system, which
 456	 * is calculated as (reserved_pages includes pages allocated by the
 457	 * bootmem allocator):
 458	 *	managed_pages = present_pages - reserved_pages;
 459	 *
 460	 * So present_pages may be used by memory hotplug or memory power
 461	 * management logic to figure out unmanaged pages by checking
 462	 * (present_pages - managed_pages). And managed_pages should be used
 463	 * by page allocator and vm scanner to calculate all kinds of watermarks
 464	 * and thresholds.
 465	 *
 466	 * Locking rules:
 467	 *
 468	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
 469	 * It is a seqlock because it has to be read outside of zone->lock,
 470	 * and it is done in the main allocator path.  But, it is written
 471	 * quite infrequently.
 472	 *
 473	 * The span_seq lock is declared along with zone->lock because it is
 474	 * frequently read in proximity to zone->lock.  It's good to
 475	 * give them a chance of being in the same cacheline.
 476	 *
 477	 * Write access to present_pages at runtime should be protected by
 478	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
 479	 * present_pages should get_online_mems() to get a stable value.
 480	 */
 481	atomic_long_t		managed_pages;
 482	unsigned long		spanned_pages;
 483	unsigned long		present_pages;
 484
 485	const char		*name;
 486
 487#ifdef CONFIG_MEMORY_ISOLATION
 488	/*
 489	 * Number of isolated pageblock. It is used to solve incorrect
 490	 * freepage counting problem due to racy retrieving migratetype
 491	 * of pageblock. Protected by zone->lock.
 492	 */
 493	unsigned long		nr_isolate_pageblock;
 494#endif
 495
 496#ifdef CONFIG_MEMORY_HOTPLUG
 497	/* see spanned/present_pages for more description */
 498	seqlock_t		span_seqlock;
 499#endif
 500
 501	int initialized;
 502
 503	/* Write-intensive fields used from the page allocator */
 504	ZONE_PADDING(_pad1_)
 505
 506	/* free areas of different sizes */
 507	struct free_area	free_area[MAX_ORDER];
 508
 509	/* zone flags, see below */
 510	unsigned long		flags;
 511
 512	/* Primarily protects free_area */
 513	spinlock_t		lock;
 514
 515	/* Write-intensive fields used by compaction and vmstats. */
 516	ZONE_PADDING(_pad2_)
 517
 518	/*
 519	 * When free pages are below this point, additional steps are taken
 520	 * when reading the number of free pages to avoid per-cpu counter
 521	 * drift allowing watermarks to be breached
 522	 */
 523	unsigned long percpu_drift_mark;
 524
 525#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 526	/* pfn where compaction free scanner should start */
 527	unsigned long		compact_cached_free_pfn;
 528	/* pfn where async and sync compaction migration scanner should start */
 529	unsigned long		compact_cached_migrate_pfn[2];
 530	unsigned long		compact_init_migrate_pfn;
 531	unsigned long		compact_init_free_pfn;
 532#endif
 533
 534#ifdef CONFIG_COMPACTION
 535	/*
 536	 * On compaction failure, 1<<compact_defer_shift compactions
 537	 * are skipped before trying again. The number attempted since
 538	 * last failure is tracked with compact_considered.
 539	 * compact_order_failed is the minimum compaction failed order.
 540	 */
 541	unsigned int		compact_considered;
 542	unsigned int		compact_defer_shift;
 543	int			compact_order_failed;
 544#endif
 545
 546#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 547	/* Set to true when the PG_migrate_skip bits should be cleared */
 548	bool			compact_blockskip_flush;
 549#endif
 550
 551	bool			contiguous;
 552
 553	ZONE_PADDING(_pad3_)
 554	/* Zone statistics */
 555	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
 556	atomic_long_t		vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
 557} ____cacheline_internodealigned_in_smp;
 558
 559enum pgdat_flags {
 
 
 
 560	PGDAT_DIRTY,			/* reclaim scanning has recently found
 561					 * many dirty file pages at the tail
 562					 * of the LRU.
 563					 */
 564	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
 565					 * many pages under writeback
 566					 */
 567	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
 568};
 569
 570enum zone_flags {
 571	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
 572					 * Cleared when kswapd is woken.
 573					 */
 574};
 575
 576static inline unsigned long zone_managed_pages(struct zone *zone)
 577{
 578	return (unsigned long)atomic_long_read(&zone->managed_pages);
 579}
 580
 581static inline unsigned long zone_end_pfn(const struct zone *zone)
 582{
 583	return zone->zone_start_pfn + zone->spanned_pages;
 584}
 585
 586static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
 587{
 588	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
 589}
 590
 591static inline bool zone_is_initialized(struct zone *zone)
 592{
 593	return zone->initialized;
 594}
 595
 596static inline bool zone_is_empty(struct zone *zone)
 597{
 598	return zone->spanned_pages == 0;
 599}
 600
 601/*
 602 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
 603 * intersection with the given zone
 604 */
 605static inline bool zone_intersects(struct zone *zone,
 606		unsigned long start_pfn, unsigned long nr_pages)
 607{
 608	if (zone_is_empty(zone))
 609		return false;
 610	if (start_pfn >= zone_end_pfn(zone) ||
 611	    start_pfn + nr_pages <= zone->zone_start_pfn)
 612		return false;
 613
 614	return true;
 615}
 616
 617/*
 618 * The "priority" of VM scanning is how much of the queues we will scan in one
 619 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 620 * queues ("queue_length >> 12") during an aging round.
 621 */
 622#define DEF_PRIORITY 12
 623
 624/* Maximum number of zones on a zonelist */
 625#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
 626
 627enum {
 628	ZONELIST_FALLBACK,	/* zonelist with fallback */
 629#ifdef CONFIG_NUMA
 630	/*
 631	 * The NUMA zonelists are doubled because we need zonelists that
 632	 * restrict the allocations to a single node for __GFP_THISNODE.
 633	 */
 634	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
 635#endif
 636	MAX_ZONELISTS
 637};
 638
 639/*
 640 * This struct contains information about a zone in a zonelist. It is stored
 641 * here to avoid dereferences into large structures and lookups of tables
 642 */
 643struct zoneref {
 644	struct zone *zone;	/* Pointer to actual zone */
 645	int zone_idx;		/* zone_idx(zoneref->zone) */
 646};
 647
 648/*
 649 * One allocation request operates on a zonelist. A zonelist
 650 * is a list of zones, the first one is the 'goal' of the
 651 * allocation, the other zones are fallback zones, in decreasing
 652 * priority.
 653 *
 654 * To speed the reading of the zonelist, the zonerefs contain the zone index
 655 * of the entry being read. Helper functions to access information given
 656 * a struct zoneref are
 657 *
 658 * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
 659 * zonelist_zone_idx()	- Return the index of the zone for an entry
 660 * zonelist_node_idx()	- Return the index of the node for an entry
 661 */
 662struct zonelist {
 663	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
 664};
 665
 666#ifndef CONFIG_DISCONTIGMEM
 667/* The array of struct pages - for discontigmem use pgdat->lmem_map */
 668extern struct page *mem_map;
 669#endif
 670
 671#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 672struct deferred_split {
 673	spinlock_t split_queue_lock;
 674	struct list_head split_queue;
 675	unsigned long split_queue_len;
 676};
 677#endif
 678
 679/*
 680 * On NUMA machines, each NUMA node would have a pg_data_t to describe
 681 * it's memory layout. On UMA machines there is a single pglist_data which
 682 * describes the whole memory.
 683 *
 684 * Memory statistics and page replacement data structures are maintained on a
 685 * per-zone basis.
 686 */
 
 687typedef struct pglist_data {
 688	/*
 689	 * node_zones contains just the zones for THIS node. Not all of the
 690	 * zones may be populated, but it is the full list. It is referenced by
 691	 * this node's node_zonelists as well as other node's node_zonelists.
 692	 */
 693	struct zone node_zones[MAX_NR_ZONES];
 694
 695	/*
 696	 * node_zonelists contains references to all zones in all nodes.
 697	 * Generally the first zones will be references to this node's
 698	 * node_zones.
 699	 */
 700	struct zonelist node_zonelists[MAX_ZONELISTS];
 701
 702	int nr_zones; /* number of populated zones in this node */
 703#ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
 704	struct page *node_mem_map;
 705#ifdef CONFIG_PAGE_EXTENSION
 706	struct page_ext *node_page_ext;
 707#endif
 708#endif
 709#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
 710	/*
 711	 * Must be held any time you expect node_start_pfn,
 712	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
 713	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
 714	 * init.
 715	 *
 716	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
 717	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
 718	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
 719	 *
 720	 * Nests above zone->lock and zone->span_seqlock
 721	 */
 722	spinlock_t node_size_lock;
 723#endif
 724	unsigned long node_start_pfn;
 725	unsigned long node_present_pages; /* total number of physical pages */
 726	unsigned long node_spanned_pages; /* total size of physical page
 727					     range, including holes */
 728	int node_id;
 729	wait_queue_head_t kswapd_wait;
 730	wait_queue_head_t pfmemalloc_wait;
 731	struct task_struct *kswapd;	/* Protected by
 732					   mem_hotplug_begin/end() */
 733	int kswapd_order;
 734	enum zone_type kswapd_highest_zoneidx;
 735
 736	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
 737
 738#ifdef CONFIG_COMPACTION
 739	int kcompactd_max_order;
 740	enum zone_type kcompactd_highest_zoneidx;
 741	wait_queue_head_t kcompactd_wait;
 742	struct task_struct *kcompactd;
 743#endif
 744	/*
 745	 * This is a per-node reserve of pages that are not available
 746	 * to userspace allocations.
 747	 */
 748	unsigned long		totalreserve_pages;
 749
 750#ifdef CONFIG_NUMA
 751	/*
 752	 * node reclaim becomes active if more unmapped pages exist.
 753	 */
 754	unsigned long		min_unmapped_pages;
 755	unsigned long		min_slab_pages;
 756#endif /* CONFIG_NUMA */
 757
 758	/* Write-intensive fields used by page reclaim */
 759	ZONE_PADDING(_pad1_)
 760	spinlock_t		lru_lock;
 761
 762#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 763	/*
 764	 * If memory initialisation on large machines is deferred then this
 765	 * is the first PFN that needs to be initialised.
 766	 */
 767	unsigned long first_deferred_pfn;
 768#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 769
 770#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 771	struct deferred_split deferred_split_queue;
 772#endif
 773
 774	/* Fields commonly accessed by the page reclaim scanner */
 775
 776	/*
 777	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
 778	 *
 779	 * Use mem_cgroup_lruvec() to look up lruvecs.
 780	 */
 781	struct lruvec		__lruvec;
 782
 783	unsigned long		flags;
 784
 785	ZONE_PADDING(_pad2_)
 786
 787	/* Per-node vmstats */
 788	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
 789	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
 790} pg_data_t;
 791
 792#define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
 793#define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
 794#ifdef CONFIG_FLAT_NODE_MEM_MAP
 795#define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
 796#else
 797#define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
 798#endif
 799#define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
 800
 801#define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
 802#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
 803
 
 
 
 
 
 804static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
 805{
 806	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
 807}
 808
 809static inline bool pgdat_is_empty(pg_data_t *pgdat)
 810{
 811	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
 812}
 813
 814#include <linux/memory_hotplug.h>
 815
 816void build_all_zonelists(pg_data_t *pgdat);
 817void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
 818		   enum zone_type highest_zoneidx);
 819bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
 820			 int highest_zoneidx, unsigned int alloc_flags,
 821			 long free_pages);
 822bool zone_watermark_ok(struct zone *z, unsigned int order,
 823		unsigned long mark, int highest_zoneidx,
 824		unsigned int alloc_flags);
 825bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
 826		unsigned long mark, int highest_zoneidx);
 827/*
 828 * Memory initialization context, use to differentiate memory added by
 829 * the platform statically or via memory hotplug interface.
 830 */
 831enum meminit_context {
 832	MEMINIT_EARLY,
 833	MEMINIT_HOTPLUG,
 834};
 835
 836extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
 837				     unsigned long size);
 838
 839extern void lruvec_init(struct lruvec *lruvec);
 840
 841static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
 842{
 843#ifdef CONFIG_MEMCG
 844	return lruvec->pgdat;
 845#else
 846	return container_of(lruvec, struct pglist_data, __lruvec);
 847#endif
 848}
 849
 850extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
 851
 
 
 
 
 
 
 
 
 
 
 
 
 852#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 853int local_memory_node(int node_id);
 854#else
 855static inline int local_memory_node(int node_id) { return node_id; };
 856#endif
 857
 858/*
 859 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 860 */
 861#define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
 862
 863/*
 864 * Returns true if a zone has pages managed by the buddy allocator.
 865 * All the reclaim decisions have to use this function rather than
 866 * populated_zone(). If the whole zone is reserved then we can easily
 867 * end up with populated_zone() && !managed_zone().
 868 */
 869static inline bool managed_zone(struct zone *zone)
 870{
 871	return zone_managed_pages(zone);
 872}
 873
 874/* Returns true if a zone has memory */
 875static inline bool populated_zone(struct zone *zone)
 876{
 877	return zone->present_pages;
 878}
 879
 880#ifdef CONFIG_NUMA
 881static inline int zone_to_nid(struct zone *zone)
 882{
 883	return zone->node;
 884}
 885
 886static inline void zone_set_nid(struct zone *zone, int nid)
 887{
 888	zone->node = nid;
 889}
 890#else
 891static inline int zone_to_nid(struct zone *zone)
 892{
 893	return 0;
 894}
 895
 896static inline void zone_set_nid(struct zone *zone, int nid) {}
 897#endif
 898
 899extern int movable_zone;
 900
 901#ifdef CONFIG_HIGHMEM
 902static inline int zone_movable_is_highmem(void)
 903{
 904#ifdef CONFIG_NEED_MULTIPLE_NODES
 905	return movable_zone == ZONE_HIGHMEM;
 906#else
 907	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
 908#endif
 909}
 910#endif
 911
 912static inline int is_highmem_idx(enum zone_type idx)
 913{
 914#ifdef CONFIG_HIGHMEM
 915	return (idx == ZONE_HIGHMEM ||
 916		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
 917#else
 918	return 0;
 919#endif
 920}
 921
 922/**
 923 * is_highmem - helper function to quickly check if a struct zone is a
 924 *              highmem zone or not.  This is an attempt to keep references
 925 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
 926 * @zone - pointer to struct zone variable
 927 */
 928static inline int is_highmem(struct zone *zone)
 929{
 930#ifdef CONFIG_HIGHMEM
 931	return is_highmem_idx(zone_idx(zone));
 932#else
 933	return 0;
 934#endif
 935}
 936
 937/* These two functions are used to setup the per zone pages min values */
 938struct ctl_table;
 939
 940int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
 941		loff_t *);
 942int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
 943		size_t *, loff_t *);
 
 944extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
 945int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
 946		size_t *, loff_t *);
 947int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
 948		void *, size_t *, loff_t *);
 949int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
 950		void *, size_t *, loff_t *);
 951int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
 952		void *, size_t *, loff_t *);
 953int numa_zonelist_order_handler(struct ctl_table *, int,
 954		void *, size_t *, loff_t *);
 955extern int percpu_pagelist_fraction;
 956extern char numa_zonelist_order[];
 957#define NUMA_ZONELIST_ORDER_LEN	16
 958
 959#ifndef CONFIG_NEED_MULTIPLE_NODES
 960
 961extern struct pglist_data contig_page_data;
 962#define NODE_DATA(nid)		(&contig_page_data)
 963#define NODE_MEM_MAP(nid)	mem_map
 964
 965#else /* CONFIG_NEED_MULTIPLE_NODES */
 966
 967#include <asm/mmzone.h>
 968
 969#endif /* !CONFIG_NEED_MULTIPLE_NODES */
 970
 971extern struct pglist_data *first_online_pgdat(void);
 972extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
 973extern struct zone *next_zone(struct zone *zone);
 974
 975/**
 976 * for_each_online_pgdat - helper macro to iterate over all online nodes
 977 * @pgdat - pointer to a pg_data_t variable
 978 */
 979#define for_each_online_pgdat(pgdat)			\
 980	for (pgdat = first_online_pgdat();		\
 981	     pgdat;					\
 982	     pgdat = next_online_pgdat(pgdat))
 983/**
 984 * for_each_zone - helper macro to iterate over all memory zones
 985 * @zone - pointer to struct zone variable
 986 *
 987 * The user only needs to declare the zone variable, for_each_zone
 988 * fills it in.
 989 */
 990#define for_each_zone(zone)			        \
 991	for (zone = (first_online_pgdat())->node_zones; \
 992	     zone;					\
 993	     zone = next_zone(zone))
 994
 995#define for_each_populated_zone(zone)		        \
 996	for (zone = (first_online_pgdat())->node_zones; \
 997	     zone;					\
 998	     zone = next_zone(zone))			\
 999		if (!populated_zone(zone))		\
1000			; /* do nothing */		\
1001		else
1002
1003static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1004{
1005	return zoneref->zone;
1006}
1007
1008static inline int zonelist_zone_idx(struct zoneref *zoneref)
1009{
1010	return zoneref->zone_idx;
1011}
1012
1013static inline int zonelist_node_idx(struct zoneref *zoneref)
1014{
1015	return zone_to_nid(zoneref->zone);
1016}
1017
1018struct zoneref *__next_zones_zonelist(struct zoneref *z,
1019					enum zone_type highest_zoneidx,
1020					nodemask_t *nodes);
1021
1022/**
1023 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1024 * @z - The cursor used as a starting point for the search
1025 * @highest_zoneidx - The zone index of the highest zone to return
1026 * @nodes - An optional nodemask to filter the zonelist with
1027 *
1028 * This function returns the next zone at or below a given zone index that is
1029 * within the allowed nodemask using a cursor as the starting point for the
1030 * search. The zoneref returned is a cursor that represents the current zone
1031 * being examined. It should be advanced by one before calling
1032 * next_zones_zonelist again.
1033 */
1034static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1035					enum zone_type highest_zoneidx,
1036					nodemask_t *nodes)
1037{
1038	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1039		return z;
1040	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1041}
1042
1043/**
1044 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1045 * @zonelist - The zonelist to search for a suitable zone
1046 * @highest_zoneidx - The zone index of the highest zone to return
1047 * @nodes - An optional nodemask to filter the zonelist with
1048 * @return - Zoneref pointer for the first suitable zone found (see below)
1049 *
1050 * This function returns the first zone at or below a given zone index that is
1051 * within the allowed nodemask. The zoneref returned is a cursor that can be
1052 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1053 * one before calling.
1054 *
1055 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1056 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1057 * update due to cpuset modification.
1058 */
1059static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1060					enum zone_type highest_zoneidx,
1061					nodemask_t *nodes)
1062{
1063	return next_zones_zonelist(zonelist->_zonerefs,
1064							highest_zoneidx, nodes);
1065}
1066
1067/**
1068 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1069 * @zone - The current zone in the iterator
1070 * @z - The current pointer within zonelist->_zonerefs being iterated
1071 * @zlist - The zonelist being iterated
1072 * @highidx - The zone index of the highest zone to return
1073 * @nodemask - Nodemask allowed by the allocator
1074 *
1075 * This iterator iterates though all zones at or below a given zone index and
1076 * within a given nodemask
1077 */
1078#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1079	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1080		zone;							\
1081		z = next_zones_zonelist(++z, highidx, nodemask),	\
1082			zone = zonelist_zone(z))
1083
1084#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1085	for (zone = z->zone;	\
1086		zone;							\
1087		z = next_zones_zonelist(++z, highidx, nodemask),	\
1088			zone = zonelist_zone(z))
1089
1090
1091/**
1092 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1093 * @zone - The current zone in the iterator
1094 * @z - The current pointer within zonelist->zones being iterated
1095 * @zlist - The zonelist being iterated
1096 * @highidx - The zone index of the highest zone to return
1097 *
1098 * This iterator iterates though all zones at or below a given zone index.
1099 */
1100#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1101	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1102
1103#ifdef CONFIG_SPARSEMEM
1104#include <asm/sparsemem.h>
1105#endif
1106
 
 
 
 
 
 
 
 
 
1107#ifdef CONFIG_FLATMEM
1108#define pfn_to_nid(pfn)		(0)
1109#endif
1110
1111#ifdef CONFIG_SPARSEMEM
1112
1113/*
1114 * SECTION_SHIFT    		#bits space required to store a section #
1115 *
1116 * PA_SECTION_SHIFT		physical address to/from section number
1117 * PFN_SECTION_SHIFT		pfn to/from section number
1118 */
1119#define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1120#define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1121
1122#define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1123
1124#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1125#define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1126
1127#define SECTION_BLOCKFLAGS_BITS \
1128	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1129
1130#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1131#error Allocator MAX_ORDER exceeds SECTION_SIZE
1132#endif
1133
1134static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1135{
1136	return pfn >> PFN_SECTION_SHIFT;
1137}
1138static inline unsigned long section_nr_to_pfn(unsigned long sec)
1139{
1140	return sec << PFN_SECTION_SHIFT;
1141}
1142
1143#define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1144#define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1145
1146#define SUBSECTION_SHIFT 21
1147#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1148
1149#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1150#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1151#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1152
1153#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1154#error Subsection size exceeds section size
1155#else
1156#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1157#endif
1158
1159#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1160#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1161
1162struct mem_section_usage {
1163#ifdef CONFIG_SPARSEMEM_VMEMMAP
1164	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1165#endif
1166	/* See declaration of similar field in struct zone */
1167	unsigned long pageblock_flags[0];
1168};
1169
1170void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1171
1172struct page;
1173struct page_ext;
1174struct mem_section {
1175	/*
1176	 * This is, logically, a pointer to an array of struct
1177	 * pages.  However, it is stored with some other magic.
1178	 * (see sparse.c::sparse_init_one_section())
1179	 *
1180	 * Additionally during early boot we encode node id of
1181	 * the location of the section here to guide allocation.
1182	 * (see sparse.c::memory_present())
1183	 *
1184	 * Making it a UL at least makes someone do a cast
1185	 * before using it wrong.
1186	 */
1187	unsigned long section_mem_map;
1188
1189	struct mem_section_usage *usage;
1190#ifdef CONFIG_PAGE_EXTENSION
1191	/*
1192	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1193	 * section. (see page_ext.h about this.)
1194	 */
1195	struct page_ext *page_ext;
1196	unsigned long pad;
1197#endif
1198	/*
1199	 * WARNING: mem_section must be a power-of-2 in size for the
1200	 * calculation and use of SECTION_ROOT_MASK to make sense.
1201	 */
1202};
1203
1204#ifdef CONFIG_SPARSEMEM_EXTREME
1205#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1206#else
1207#define SECTIONS_PER_ROOT	1
1208#endif
1209
1210#define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1211#define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1212#define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1213
1214#ifdef CONFIG_SPARSEMEM_EXTREME
1215extern struct mem_section **mem_section;
1216#else
1217extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1218#endif
1219
1220static inline unsigned long *section_to_usemap(struct mem_section *ms)
1221{
1222	return ms->usage->pageblock_flags;
1223}
1224
1225static inline struct mem_section *__nr_to_section(unsigned long nr)
1226{
1227#ifdef CONFIG_SPARSEMEM_EXTREME
1228	if (!mem_section)
1229		return NULL;
1230#endif
1231	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1232		return NULL;
1233	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1234}
1235extern unsigned long __section_nr(struct mem_section *ms);
1236extern size_t mem_section_usage_size(void);
1237
1238/*
1239 * We use the lower bits of the mem_map pointer to store
1240 * a little bit of information.  The pointer is calculated
1241 * as mem_map - section_nr_to_pfn(pnum).  The result is
1242 * aligned to the minimum alignment of the two values:
1243 *   1. All mem_map arrays are page-aligned.
1244 *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1245 *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1246 *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1247 *      worst combination is powerpc with 256k pages,
1248 *      which results in PFN_SECTION_SHIFT equal 6.
1249 * To sum it up, at least 6 bits are available.
1250 */
1251#define	SECTION_MARKED_PRESENT	(1UL<<0)
1252#define SECTION_HAS_MEM_MAP	(1UL<<1)
1253#define SECTION_IS_ONLINE	(1UL<<2)
1254#define SECTION_IS_EARLY	(1UL<<3)
1255#define SECTION_MAP_LAST_BIT	(1UL<<4)
1256#define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1257#define SECTION_NID_SHIFT	3
1258
1259static inline struct page *__section_mem_map_addr(struct mem_section *section)
1260{
1261	unsigned long map = section->section_mem_map;
1262	map &= SECTION_MAP_MASK;
1263	return (struct page *)map;
1264}
1265
1266static inline int present_section(struct mem_section *section)
1267{
1268	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1269}
1270
1271static inline int present_section_nr(unsigned long nr)
1272{
1273	return present_section(__nr_to_section(nr));
1274}
1275
1276static inline int valid_section(struct mem_section *section)
1277{
1278	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1279}
1280
1281static inline int early_section(struct mem_section *section)
1282{
1283	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1284}
1285
1286static inline int valid_section_nr(unsigned long nr)
1287{
1288	return valid_section(__nr_to_section(nr));
1289}
1290
1291static inline int online_section(struct mem_section *section)
1292{
1293	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1294}
1295
1296static inline int online_section_nr(unsigned long nr)
1297{
1298	return online_section(__nr_to_section(nr));
1299}
1300
1301#ifdef CONFIG_MEMORY_HOTPLUG
1302void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1303#ifdef CONFIG_MEMORY_HOTREMOVE
1304void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1305#endif
1306#endif
1307
1308static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1309{
1310	return __nr_to_section(pfn_to_section_nr(pfn));
1311}
1312
1313extern unsigned long __highest_present_section_nr;
1314
1315static inline int subsection_map_index(unsigned long pfn)
1316{
1317	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1318}
1319
1320#ifdef CONFIG_SPARSEMEM_VMEMMAP
1321static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1322{
1323	int idx = subsection_map_index(pfn);
1324
1325	return test_bit(idx, ms->usage->subsection_map);
1326}
1327#else
1328static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1329{
1330	return 1;
1331}
1332#endif
1333
1334#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1335static inline int pfn_valid(unsigned long pfn)
1336{
1337	struct mem_section *ms;
1338
1339	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1340		return 0;
1341	ms = __nr_to_section(pfn_to_section_nr(pfn));
1342	if (!valid_section(ms))
1343		return 0;
1344	/*
1345	 * Traditionally early sections always returned pfn_valid() for
1346	 * the entire section-sized span.
1347	 */
1348	return early_section(ms) || pfn_section_valid(ms, pfn);
1349}
1350#endif
1351
1352static inline int pfn_in_present_section(unsigned long pfn)
1353{
1354	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1355		return 0;
1356	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1357}
1358
1359static inline unsigned long next_present_section_nr(unsigned long section_nr)
1360{
1361	while (++section_nr <= __highest_present_section_nr) {
1362		if (present_section_nr(section_nr))
1363			return section_nr;
1364	}
1365
1366	return -1;
1367}
1368
1369/*
1370 * These are _only_ used during initialisation, therefore they
1371 * can use __initdata ...  They could have names to indicate
1372 * this restriction.
1373 */
1374#ifdef CONFIG_NUMA
1375#define pfn_to_nid(pfn)							\
1376({									\
1377	unsigned long __pfn_to_nid_pfn = (pfn);				\
1378	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1379})
1380#else
1381#define pfn_to_nid(pfn)		(0)
1382#endif
1383
1384#define early_pfn_valid(pfn)	pfn_valid(pfn)
1385void sparse_init(void);
1386#else
1387#define sparse_init()	do {} while (0)
1388#define sparse_index_init(_sec, _nid)  do {} while (0)
1389#define pfn_in_present_section pfn_valid
1390#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1391#endif /* CONFIG_SPARSEMEM */
1392
1393/*
1394 * During memory init memblocks map pfns to nids. The search is expensive and
1395 * this caches recent lookups. The implementation of __early_pfn_to_nid
1396 * may treat start/end as pfns or sections.
1397 */
1398struct mminit_pfnnid_cache {
1399	unsigned long last_start;
1400	unsigned long last_end;
1401	int last_nid;
1402};
1403
1404#ifndef early_pfn_valid
1405#define early_pfn_valid(pfn)	(1)
1406#endif
 
 
1407
1408/*
1409 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1410 * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1411 * pfn_valid_within() should be used in this case; we optimise this away
1412 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1413 */
1414#ifdef CONFIG_HOLES_IN_ZONE
1415#define pfn_valid_within(pfn) pfn_valid(pfn)
1416#else
1417#define pfn_valid_within(pfn) (1)
1418#endif
1419
1420#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1421/*
1422 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1423 * associated with it or not. This means that a struct page exists for this
1424 * pfn. The caller cannot assume the page is fully initialized in general.
1425 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1426 * will ensure the struct page is fully online and initialized. Special pages
1427 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1428 *
1429 * In FLATMEM, it is expected that holes always have valid memmap as long as
1430 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1431 * that a valid section has a memmap for the entire section.
1432 *
1433 * However, an ARM, and maybe other embedded architectures in the future
1434 * free memmap backing holes to save memory on the assumption the memmap is
1435 * never used. The page_zone linkages are then broken even though pfn_valid()
1436 * returns true. A walker of the full memmap must then do this additional
1437 * check to ensure the memmap they are looking at is sane by making sure
1438 * the zone and PFN linkages are still valid. This is expensive, but walkers
1439 * of the full memmap are extremely rare.
1440 */
1441bool memmap_valid_within(unsigned long pfn,
1442					struct page *page, struct zone *zone);
1443#else
1444static inline bool memmap_valid_within(unsigned long pfn,
1445					struct page *page, struct zone *zone)
1446{
1447	return true;
1448}
1449#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1450
1451#endif /* !__GENERATING_BOUNDS.H */
1452#endif /* !__ASSEMBLY__ */
1453#endif /* _LINUX_MMZONE_H */
v5.4
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_MMZONE_H
   3#define _LINUX_MMZONE_H
   4
   5#ifndef __ASSEMBLY__
   6#ifndef __GENERATING_BOUNDS_H
   7
   8#include <linux/spinlock.h>
   9#include <linux/list.h>
  10#include <linux/wait.h>
  11#include <linux/bitops.h>
  12#include <linux/cache.h>
  13#include <linux/threads.h>
  14#include <linux/numa.h>
  15#include <linux/init.h>
  16#include <linux/seqlock.h>
  17#include <linux/nodemask.h>
  18#include <linux/pageblock-flags.h>
  19#include <linux/page-flags-layout.h>
  20#include <linux/atomic.h>
  21#include <linux/mm_types.h>
  22#include <linux/page-flags.h>
  23#include <asm/page.h>
  24
  25/* Free memory management - zoned buddy allocator.  */
  26#ifndef CONFIG_FORCE_MAX_ZONEORDER
  27#define MAX_ORDER 11
  28#else
  29#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  30#endif
  31#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  32
  33/*
  34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  35 * costly to service.  That is between allocation orders which should
  36 * coalesce naturally under reasonable reclaim pressure and those which
  37 * will not.
  38 */
  39#define PAGE_ALLOC_COSTLY_ORDER 3
  40
  41enum migratetype {
  42	MIGRATE_UNMOVABLE,
  43	MIGRATE_MOVABLE,
  44	MIGRATE_RECLAIMABLE,
  45	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
  46	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
  47#ifdef CONFIG_CMA
  48	/*
  49	 * MIGRATE_CMA migration type is designed to mimic the way
  50	 * ZONE_MOVABLE works.  Only movable pages can be allocated
  51	 * from MIGRATE_CMA pageblocks and page allocator never
  52	 * implicitly change migration type of MIGRATE_CMA pageblock.
  53	 *
  54	 * The way to use it is to change migratetype of a range of
  55	 * pageblocks to MIGRATE_CMA which can be done by
  56	 * __free_pageblock_cma() function.  What is important though
  57	 * is that a range of pageblocks must be aligned to
  58	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
  59	 * a single pageblock.
  60	 */
  61	MIGRATE_CMA,
  62#endif
  63#ifdef CONFIG_MEMORY_ISOLATION
  64	MIGRATE_ISOLATE,	/* can't allocate from here */
  65#endif
  66	MIGRATE_TYPES
  67};
  68
  69/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
  70extern const char * const migratetype_names[MIGRATE_TYPES];
  71
  72#ifdef CONFIG_CMA
  73#  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
  74#  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
  75#else
  76#  define is_migrate_cma(migratetype) false
  77#  define is_migrate_cma_page(_page) false
  78#endif
  79
  80static inline bool is_migrate_movable(int mt)
  81{
  82	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
  83}
  84
  85#define for_each_migratetype_order(order, type) \
  86	for (order = 0; order < MAX_ORDER; order++) \
  87		for (type = 0; type < MIGRATE_TYPES; type++)
  88
  89extern int page_group_by_mobility_disabled;
  90
  91#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
  92#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
  93
  94#define get_pageblock_migratetype(page)					\
  95	get_pfnblock_flags_mask(page, page_to_pfn(page),		\
  96			PB_migrate_end, MIGRATETYPE_MASK)
  97
  98struct free_area {
  99	struct list_head	free_list[MIGRATE_TYPES];
 100	unsigned long		nr_free;
 101};
 102
 103/* Used for pages not on another list */
 104static inline void add_to_free_area(struct page *page, struct free_area *area,
 105			     int migratetype)
 106{
 107	list_add(&page->lru, &area->free_list[migratetype]);
 108	area->nr_free++;
 109}
 110
 111/* Used for pages not on another list */
 112static inline void add_to_free_area_tail(struct page *page, struct free_area *area,
 113				  int migratetype)
 114{
 115	list_add_tail(&page->lru, &area->free_list[migratetype]);
 116	area->nr_free++;
 117}
 118
 119#ifdef CONFIG_SHUFFLE_PAGE_ALLOCATOR
 120/* Used to preserve page allocation order entropy */
 121void add_to_free_area_random(struct page *page, struct free_area *area,
 122		int migratetype);
 123#else
 124static inline void add_to_free_area_random(struct page *page,
 125		struct free_area *area, int migratetype)
 126{
 127	add_to_free_area(page, area, migratetype);
 128}
 129#endif
 130
 131/* Used for pages which are on another list */
 132static inline void move_to_free_area(struct page *page, struct free_area *area,
 133			     int migratetype)
 134{
 135	list_move(&page->lru, &area->free_list[migratetype]);
 136}
 137
 138static inline struct page *get_page_from_free_area(struct free_area *area,
 139					    int migratetype)
 140{
 141	return list_first_entry_or_null(&area->free_list[migratetype],
 142					struct page, lru);
 143}
 144
 145static inline void del_page_from_free_area(struct page *page,
 146		struct free_area *area)
 147{
 148	list_del(&page->lru);
 149	__ClearPageBuddy(page);
 150	set_page_private(page, 0);
 151	area->nr_free--;
 152}
 153
 154static inline bool free_area_empty(struct free_area *area, int migratetype)
 155{
 156	return list_empty(&area->free_list[migratetype]);
 157}
 158
 159struct pglist_data;
 160
 161/*
 162 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
 163 * So add a wild amount of padding here to ensure that they fall into separate
 164 * cachelines.  There are very few zone structures in the machine, so space
 165 * consumption is not a concern here.
 166 */
 167#if defined(CONFIG_SMP)
 168struct zone_padding {
 169	char x[0];
 170} ____cacheline_internodealigned_in_smp;
 171#define ZONE_PADDING(name)	struct zone_padding name;
 172#else
 173#define ZONE_PADDING(name)
 174#endif
 175
 176#ifdef CONFIG_NUMA
 177enum numa_stat_item {
 178	NUMA_HIT,		/* allocated in intended node */
 179	NUMA_MISS,		/* allocated in non intended node */
 180	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
 181	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
 182	NUMA_LOCAL,		/* allocation from local node */
 183	NUMA_OTHER,		/* allocation from other node */
 184	NR_VM_NUMA_STAT_ITEMS
 185};
 186#else
 187#define NR_VM_NUMA_STAT_ITEMS 0
 188#endif
 189
 190enum zone_stat_item {
 191	/* First 128 byte cacheline (assuming 64 bit words) */
 192	NR_FREE_PAGES,
 193	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
 194	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
 195	NR_ZONE_ACTIVE_ANON,
 196	NR_ZONE_INACTIVE_FILE,
 197	NR_ZONE_ACTIVE_FILE,
 198	NR_ZONE_UNEVICTABLE,
 199	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
 200	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
 201	NR_PAGETABLE,		/* used for pagetables */
 202	NR_KERNEL_STACK_KB,	/* measured in KiB */
 203	/* Second 128 byte cacheline */
 204	NR_BOUNCE,
 205#if IS_ENABLED(CONFIG_ZSMALLOC)
 206	NR_ZSPAGES,		/* allocated in zsmalloc */
 207#endif
 208	NR_FREE_CMA_PAGES,
 209	NR_VM_ZONE_STAT_ITEMS };
 210
 211enum node_stat_item {
 212	NR_LRU_BASE,
 213	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
 214	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
 215	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
 216	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
 217	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
 218	NR_SLAB_RECLAIMABLE,	/* Please do not reorder this item */
 219	NR_SLAB_UNRECLAIMABLE,	/* and this one without looking at
 220				 * memcg_flush_percpu_vmstats() first. */
 221	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
 222	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
 223	WORKINGSET_NODES,
 224	WORKINGSET_REFAULT,
 225	WORKINGSET_ACTIVATE,
 226	WORKINGSET_RESTORE,
 
 
 
 
 
 
 227	WORKINGSET_NODERECLAIM,
 228	NR_ANON_MAPPED,	/* Mapped anonymous pages */
 229	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
 230			   only modified from process context */
 231	NR_FILE_PAGES,
 232	NR_FILE_DIRTY,
 233	NR_WRITEBACK,
 234	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
 235	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
 236	NR_SHMEM_THPS,
 237	NR_SHMEM_PMDMAPPED,
 238	NR_FILE_THPS,
 239	NR_FILE_PMDMAPPED,
 240	NR_ANON_THPS,
 241	NR_UNSTABLE_NFS,	/* NFS unstable pages */
 242	NR_VMSCAN_WRITE,
 243	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
 244	NR_DIRTIED,		/* page dirtyings since bootup */
 245	NR_WRITTEN,		/* page writings since bootup */
 246	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
 
 
 
 
 
 
 247	NR_VM_NODE_STAT_ITEMS
 248};
 249
 250/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 251 * We do arithmetic on the LRU lists in various places in the code,
 252 * so it is important to keep the active lists LRU_ACTIVE higher in
 253 * the array than the corresponding inactive lists, and to keep
 254 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
 255 *
 256 * This has to be kept in sync with the statistics in zone_stat_item
 257 * above and the descriptions in vmstat_text in mm/vmstat.c
 258 */
 259#define LRU_BASE 0
 260#define LRU_ACTIVE 1
 261#define LRU_FILE 2
 262
 263enum lru_list {
 264	LRU_INACTIVE_ANON = LRU_BASE,
 265	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
 266	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
 267	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
 268	LRU_UNEVICTABLE,
 269	NR_LRU_LISTS
 270};
 271
 272#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
 273
 274#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
 275
 276static inline int is_file_lru(enum lru_list lru)
 277{
 278	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
 279}
 280
 281static inline int is_active_lru(enum lru_list lru)
 282{
 283	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
 284}
 285
 286struct zone_reclaim_stat {
 287	/*
 288	 * The pageout code in vmscan.c keeps track of how many of the
 289	 * mem/swap backed and file backed pages are referenced.
 290	 * The higher the rotated/scanned ratio, the more valuable
 291	 * that cache is.
 292	 *
 293	 * The anon LRU stats live in [0], file LRU stats in [1]
 294	 */
 295	unsigned long		recent_rotated[2];
 296	unsigned long		recent_scanned[2];
 297};
 298
 299struct lruvec {
 300	struct list_head		lists[NR_LRU_LISTS];
 301	struct zone_reclaim_stat	reclaim_stat;
 302	/* Evictions & activations on the inactive file list */
 303	atomic_long_t			inactive_age;
 304	/* Refaults at the time of last reclaim cycle */
 305	unsigned long			refaults;
 
 
 
 
 
 
 
 
 306#ifdef CONFIG_MEMCG
 307	struct pglist_data *pgdat;
 308#endif
 309};
 310
 311/* Isolate unmapped file */
 312#define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
 313/* Isolate for asynchronous migration */
 314#define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
 315/* Isolate unevictable pages */
 316#define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
 317
 318/* LRU Isolation modes. */
 319typedef unsigned __bitwise isolate_mode_t;
 320
 321enum zone_watermarks {
 322	WMARK_MIN,
 323	WMARK_LOW,
 324	WMARK_HIGH,
 325	NR_WMARK
 326};
 327
 328#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
 329#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
 330#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
 331#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
 332
 333struct per_cpu_pages {
 334	int count;		/* number of pages in the list */
 335	int high;		/* high watermark, emptying needed */
 336	int batch;		/* chunk size for buddy add/remove */
 337
 338	/* Lists of pages, one per migrate type stored on the pcp-lists */
 339	struct list_head lists[MIGRATE_PCPTYPES];
 340};
 341
 342struct per_cpu_pageset {
 343	struct per_cpu_pages pcp;
 344#ifdef CONFIG_NUMA
 345	s8 expire;
 346	u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
 347#endif
 348#ifdef CONFIG_SMP
 349	s8 stat_threshold;
 350	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
 351#endif
 352};
 353
 354struct per_cpu_nodestat {
 355	s8 stat_threshold;
 356	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
 357};
 358
 359#endif /* !__GENERATING_BOUNDS.H */
 360
 361enum zone_type {
 362#ifdef CONFIG_ZONE_DMA
 363	/*
 364	 * ZONE_DMA is used when there are devices that are not able
 365	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
 366	 * carve out the portion of memory that is needed for these devices.
 367	 * The range is arch specific.
 368	 *
 369	 * Some examples
 370	 *
 371	 * Architecture		Limit
 372	 * ---------------------------
 373	 * parisc, ia64, sparc	<4G
 374	 * s390, powerpc	<2G
 375	 * arm			Various
 376	 * alpha		Unlimited or 0-16MB.
 
 
 
 
 
 
 
 
 
 
 
 
 
 377	 *
 378	 * i386, x86_64 and multiple other arches
 379	 * 			<16M.
 380	 */
 
 381	ZONE_DMA,
 382#endif
 383#ifdef CONFIG_ZONE_DMA32
 384	/*
 385	 * x86_64 needs two ZONE_DMAs because it supports devices that are
 386	 * only able to do DMA to the lower 16M but also 32 bit devices that
 387	 * can only do DMA areas below 4G.
 388	 */
 389	ZONE_DMA32,
 390#endif
 391	/*
 392	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
 393	 * performed on pages in ZONE_NORMAL if the DMA devices support
 394	 * transfers to all addressable memory.
 395	 */
 396	ZONE_NORMAL,
 397#ifdef CONFIG_HIGHMEM
 398	/*
 399	 * A memory area that is only addressable by the kernel through
 400	 * mapping portions into its own address space. This is for example
 401	 * used by i386 to allow the kernel to address the memory beyond
 402	 * 900MB. The kernel will set up special mappings (page
 403	 * table entries on i386) for each page that the kernel needs to
 404	 * access.
 405	 */
 406	ZONE_HIGHMEM,
 407#endif
 408	ZONE_MOVABLE,
 409#ifdef CONFIG_ZONE_DEVICE
 410	ZONE_DEVICE,
 411#endif
 412	__MAX_NR_ZONES
 413
 414};
 415
 416#ifndef __GENERATING_BOUNDS_H
 417
 418struct zone {
 419	/* Read-mostly fields */
 420
 421	/* zone watermarks, access with *_wmark_pages(zone) macros */
 422	unsigned long _watermark[NR_WMARK];
 423	unsigned long watermark_boost;
 424
 425	unsigned long nr_reserved_highatomic;
 426
 427	/*
 428	 * We don't know if the memory that we're going to allocate will be
 429	 * freeable or/and it will be released eventually, so to avoid totally
 430	 * wasting several GB of ram we must reserve some of the lower zone
 431	 * memory (otherwise we risk to run OOM on the lower zones despite
 432	 * there being tons of freeable ram on the higher zones).  This array is
 433	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
 434	 * changes.
 435	 */
 436	long lowmem_reserve[MAX_NR_ZONES];
 437
 438#ifdef CONFIG_NUMA
 439	int node;
 440#endif
 441	struct pglist_data	*zone_pgdat;
 442	struct per_cpu_pageset __percpu *pageset;
 443
 444#ifndef CONFIG_SPARSEMEM
 445	/*
 446	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
 447	 * In SPARSEMEM, this map is stored in struct mem_section
 448	 */
 449	unsigned long		*pageblock_flags;
 450#endif /* CONFIG_SPARSEMEM */
 451
 452	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
 453	unsigned long		zone_start_pfn;
 454
 455	/*
 456	 * spanned_pages is the total pages spanned by the zone, including
 457	 * holes, which is calculated as:
 458	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
 459	 *
 460	 * present_pages is physical pages existing within the zone, which
 461	 * is calculated as:
 462	 *	present_pages = spanned_pages - absent_pages(pages in holes);
 463	 *
 464	 * managed_pages is present pages managed by the buddy system, which
 465	 * is calculated as (reserved_pages includes pages allocated by the
 466	 * bootmem allocator):
 467	 *	managed_pages = present_pages - reserved_pages;
 468	 *
 469	 * So present_pages may be used by memory hotplug or memory power
 470	 * management logic to figure out unmanaged pages by checking
 471	 * (present_pages - managed_pages). And managed_pages should be used
 472	 * by page allocator and vm scanner to calculate all kinds of watermarks
 473	 * and thresholds.
 474	 *
 475	 * Locking rules:
 476	 *
 477	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
 478	 * It is a seqlock because it has to be read outside of zone->lock,
 479	 * and it is done in the main allocator path.  But, it is written
 480	 * quite infrequently.
 481	 *
 482	 * The span_seq lock is declared along with zone->lock because it is
 483	 * frequently read in proximity to zone->lock.  It's good to
 484	 * give them a chance of being in the same cacheline.
 485	 *
 486	 * Write access to present_pages at runtime should be protected by
 487	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
 488	 * present_pages should get_online_mems() to get a stable value.
 489	 */
 490	atomic_long_t		managed_pages;
 491	unsigned long		spanned_pages;
 492	unsigned long		present_pages;
 493
 494	const char		*name;
 495
 496#ifdef CONFIG_MEMORY_ISOLATION
 497	/*
 498	 * Number of isolated pageblock. It is used to solve incorrect
 499	 * freepage counting problem due to racy retrieving migratetype
 500	 * of pageblock. Protected by zone->lock.
 501	 */
 502	unsigned long		nr_isolate_pageblock;
 503#endif
 504
 505#ifdef CONFIG_MEMORY_HOTPLUG
 506	/* see spanned/present_pages for more description */
 507	seqlock_t		span_seqlock;
 508#endif
 509
 510	int initialized;
 511
 512	/* Write-intensive fields used from the page allocator */
 513	ZONE_PADDING(_pad1_)
 514
 515	/* free areas of different sizes */
 516	struct free_area	free_area[MAX_ORDER];
 517
 518	/* zone flags, see below */
 519	unsigned long		flags;
 520
 521	/* Primarily protects free_area */
 522	spinlock_t		lock;
 523
 524	/* Write-intensive fields used by compaction and vmstats. */
 525	ZONE_PADDING(_pad2_)
 526
 527	/*
 528	 * When free pages are below this point, additional steps are taken
 529	 * when reading the number of free pages to avoid per-cpu counter
 530	 * drift allowing watermarks to be breached
 531	 */
 532	unsigned long percpu_drift_mark;
 533
 534#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 535	/* pfn where compaction free scanner should start */
 536	unsigned long		compact_cached_free_pfn;
 537	/* pfn where async and sync compaction migration scanner should start */
 538	unsigned long		compact_cached_migrate_pfn[2];
 539	unsigned long		compact_init_migrate_pfn;
 540	unsigned long		compact_init_free_pfn;
 541#endif
 542
 543#ifdef CONFIG_COMPACTION
 544	/*
 545	 * On compaction failure, 1<<compact_defer_shift compactions
 546	 * are skipped before trying again. The number attempted since
 547	 * last failure is tracked with compact_considered.
 
 548	 */
 549	unsigned int		compact_considered;
 550	unsigned int		compact_defer_shift;
 551	int			compact_order_failed;
 552#endif
 553
 554#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 555	/* Set to true when the PG_migrate_skip bits should be cleared */
 556	bool			compact_blockskip_flush;
 557#endif
 558
 559	bool			contiguous;
 560
 561	ZONE_PADDING(_pad3_)
 562	/* Zone statistics */
 563	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
 564	atomic_long_t		vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
 565} ____cacheline_internodealigned_in_smp;
 566
 567enum pgdat_flags {
 568	PGDAT_CONGESTED,		/* pgdat has many dirty pages backed by
 569					 * a congested BDI
 570					 */
 571	PGDAT_DIRTY,			/* reclaim scanning has recently found
 572					 * many dirty file pages at the tail
 573					 * of the LRU.
 574					 */
 575	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
 576					 * many pages under writeback
 577					 */
 578	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
 579};
 580
 581enum zone_flags {
 582	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
 583					 * Cleared when kswapd is woken.
 584					 */
 585};
 586
 587static inline unsigned long zone_managed_pages(struct zone *zone)
 588{
 589	return (unsigned long)atomic_long_read(&zone->managed_pages);
 590}
 591
 592static inline unsigned long zone_end_pfn(const struct zone *zone)
 593{
 594	return zone->zone_start_pfn + zone->spanned_pages;
 595}
 596
 597static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
 598{
 599	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
 600}
 601
 602static inline bool zone_is_initialized(struct zone *zone)
 603{
 604	return zone->initialized;
 605}
 606
 607static inline bool zone_is_empty(struct zone *zone)
 608{
 609	return zone->spanned_pages == 0;
 610}
 611
 612/*
 613 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
 614 * intersection with the given zone
 615 */
 616static inline bool zone_intersects(struct zone *zone,
 617		unsigned long start_pfn, unsigned long nr_pages)
 618{
 619	if (zone_is_empty(zone))
 620		return false;
 621	if (start_pfn >= zone_end_pfn(zone) ||
 622	    start_pfn + nr_pages <= zone->zone_start_pfn)
 623		return false;
 624
 625	return true;
 626}
 627
 628/*
 629 * The "priority" of VM scanning is how much of the queues we will scan in one
 630 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 631 * queues ("queue_length >> 12") during an aging round.
 632 */
 633#define DEF_PRIORITY 12
 634
 635/* Maximum number of zones on a zonelist */
 636#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
 637
 638enum {
 639	ZONELIST_FALLBACK,	/* zonelist with fallback */
 640#ifdef CONFIG_NUMA
 641	/*
 642	 * The NUMA zonelists are doubled because we need zonelists that
 643	 * restrict the allocations to a single node for __GFP_THISNODE.
 644	 */
 645	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
 646#endif
 647	MAX_ZONELISTS
 648};
 649
 650/*
 651 * This struct contains information about a zone in a zonelist. It is stored
 652 * here to avoid dereferences into large structures and lookups of tables
 653 */
 654struct zoneref {
 655	struct zone *zone;	/* Pointer to actual zone */
 656	int zone_idx;		/* zone_idx(zoneref->zone) */
 657};
 658
 659/*
 660 * One allocation request operates on a zonelist. A zonelist
 661 * is a list of zones, the first one is the 'goal' of the
 662 * allocation, the other zones are fallback zones, in decreasing
 663 * priority.
 664 *
 665 * To speed the reading of the zonelist, the zonerefs contain the zone index
 666 * of the entry being read. Helper functions to access information given
 667 * a struct zoneref are
 668 *
 669 * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
 670 * zonelist_zone_idx()	- Return the index of the zone for an entry
 671 * zonelist_node_idx()	- Return the index of the node for an entry
 672 */
 673struct zonelist {
 674	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
 675};
 676
 677#ifndef CONFIG_DISCONTIGMEM
 678/* The array of struct pages - for discontigmem use pgdat->lmem_map */
 679extern struct page *mem_map;
 680#endif
 681
 682#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 683struct deferred_split {
 684	spinlock_t split_queue_lock;
 685	struct list_head split_queue;
 686	unsigned long split_queue_len;
 687};
 688#endif
 689
 690/*
 691 * On NUMA machines, each NUMA node would have a pg_data_t to describe
 692 * it's memory layout. On UMA machines there is a single pglist_data which
 693 * describes the whole memory.
 694 *
 695 * Memory statistics and page replacement data structures are maintained on a
 696 * per-zone basis.
 697 */
 698struct bootmem_data;
 699typedef struct pglist_data {
 
 
 
 
 
 700	struct zone node_zones[MAX_NR_ZONES];
 
 
 
 
 
 
 701	struct zonelist node_zonelists[MAX_ZONELISTS];
 702	int nr_zones;
 
 703#ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
 704	struct page *node_mem_map;
 705#ifdef CONFIG_PAGE_EXTENSION
 706	struct page_ext *node_page_ext;
 707#endif
 708#endif
 709#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
 710	/*
 711	 * Must be held any time you expect node_start_pfn,
 712	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
 
 
 713	 *
 714	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
 715	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
 716	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
 717	 *
 718	 * Nests above zone->lock and zone->span_seqlock
 719	 */
 720	spinlock_t node_size_lock;
 721#endif
 722	unsigned long node_start_pfn;
 723	unsigned long node_present_pages; /* total number of physical pages */
 724	unsigned long node_spanned_pages; /* total size of physical page
 725					     range, including holes */
 726	int node_id;
 727	wait_queue_head_t kswapd_wait;
 728	wait_queue_head_t pfmemalloc_wait;
 729	struct task_struct *kswapd;	/* Protected by
 730					   mem_hotplug_begin/end() */
 731	int kswapd_order;
 732	enum zone_type kswapd_classzone_idx;
 733
 734	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
 735
 736#ifdef CONFIG_COMPACTION
 737	int kcompactd_max_order;
 738	enum zone_type kcompactd_classzone_idx;
 739	wait_queue_head_t kcompactd_wait;
 740	struct task_struct *kcompactd;
 741#endif
 742	/*
 743	 * This is a per-node reserve of pages that are not available
 744	 * to userspace allocations.
 745	 */
 746	unsigned long		totalreserve_pages;
 747
 748#ifdef CONFIG_NUMA
 749	/*
 750	 * zone reclaim becomes active if more unmapped pages exist.
 751	 */
 752	unsigned long		min_unmapped_pages;
 753	unsigned long		min_slab_pages;
 754#endif /* CONFIG_NUMA */
 755
 756	/* Write-intensive fields used by page reclaim */
 757	ZONE_PADDING(_pad1_)
 758	spinlock_t		lru_lock;
 759
 760#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 761	/*
 762	 * If memory initialisation on large machines is deferred then this
 763	 * is the first PFN that needs to be initialised.
 764	 */
 765	unsigned long first_deferred_pfn;
 766#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 767
 768#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 769	struct deferred_split deferred_split_queue;
 770#endif
 771
 772	/* Fields commonly accessed by the page reclaim scanner */
 773	struct lruvec		lruvec;
 
 
 
 
 
 
 774
 775	unsigned long		flags;
 776
 777	ZONE_PADDING(_pad2_)
 778
 779	/* Per-node vmstats */
 780	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
 781	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
 782} pg_data_t;
 783
 784#define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
 785#define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
 786#ifdef CONFIG_FLAT_NODE_MEM_MAP
 787#define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
 788#else
 789#define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
 790#endif
 791#define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
 792
 793#define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
 794#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
 795
 796static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
 797{
 798	return &pgdat->lruvec;
 799}
 800
 801static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
 802{
 803	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
 804}
 805
 806static inline bool pgdat_is_empty(pg_data_t *pgdat)
 807{
 808	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
 809}
 810
 811#include <linux/memory_hotplug.h>
 812
 813void build_all_zonelists(pg_data_t *pgdat);
 814void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
 815		   enum zone_type classzone_idx);
 816bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
 817			 int classzone_idx, unsigned int alloc_flags,
 818			 long free_pages);
 819bool zone_watermark_ok(struct zone *z, unsigned int order,
 820		unsigned long mark, int classzone_idx,
 821		unsigned int alloc_flags);
 822bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
 823		unsigned long mark, int classzone_idx);
 824enum memmap_context {
 825	MEMMAP_EARLY,
 826	MEMMAP_HOTPLUG,
 
 
 
 
 827};
 
 828extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
 829				     unsigned long size);
 830
 831extern void lruvec_init(struct lruvec *lruvec);
 832
 833static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
 834{
 835#ifdef CONFIG_MEMCG
 836	return lruvec->pgdat;
 837#else
 838	return container_of(lruvec, struct pglist_data, lruvec);
 839#endif
 840}
 841
 842extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
 843
 844#ifdef CONFIG_HAVE_MEMORY_PRESENT
 845void memory_present(int nid, unsigned long start, unsigned long end);
 846#else
 847static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
 848#endif
 849
 850#if defined(CONFIG_SPARSEMEM)
 851void memblocks_present(void);
 852#else
 853static inline void memblocks_present(void) {}
 854#endif
 855
 856#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 857int local_memory_node(int node_id);
 858#else
 859static inline int local_memory_node(int node_id) { return node_id; };
 860#endif
 861
 862/*
 863 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 864 */
 865#define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
 866
 867/*
 868 * Returns true if a zone has pages managed by the buddy allocator.
 869 * All the reclaim decisions have to use this function rather than
 870 * populated_zone(). If the whole zone is reserved then we can easily
 871 * end up with populated_zone() && !managed_zone().
 872 */
 873static inline bool managed_zone(struct zone *zone)
 874{
 875	return zone_managed_pages(zone);
 876}
 877
 878/* Returns true if a zone has memory */
 879static inline bool populated_zone(struct zone *zone)
 880{
 881	return zone->present_pages;
 882}
 883
 884#ifdef CONFIG_NUMA
 885static inline int zone_to_nid(struct zone *zone)
 886{
 887	return zone->node;
 888}
 889
 890static inline void zone_set_nid(struct zone *zone, int nid)
 891{
 892	zone->node = nid;
 893}
 894#else
 895static inline int zone_to_nid(struct zone *zone)
 896{
 897	return 0;
 898}
 899
 900static inline void zone_set_nid(struct zone *zone, int nid) {}
 901#endif
 902
 903extern int movable_zone;
 904
 905#ifdef CONFIG_HIGHMEM
 906static inline int zone_movable_is_highmem(void)
 907{
 908#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 909	return movable_zone == ZONE_HIGHMEM;
 910#else
 911	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
 912#endif
 913}
 914#endif
 915
 916static inline int is_highmem_idx(enum zone_type idx)
 917{
 918#ifdef CONFIG_HIGHMEM
 919	return (idx == ZONE_HIGHMEM ||
 920		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
 921#else
 922	return 0;
 923#endif
 924}
 925
 926/**
 927 * is_highmem - helper function to quickly check if a struct zone is a
 928 *              highmem zone or not.  This is an attempt to keep references
 929 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
 930 * @zone - pointer to struct zone variable
 931 */
 932static inline int is_highmem(struct zone *zone)
 933{
 934#ifdef CONFIG_HIGHMEM
 935	return is_highmem_idx(zone_idx(zone));
 936#else
 937	return 0;
 938#endif
 939}
 940
 941/* These two functions are used to setup the per zone pages min values */
 942struct ctl_table;
 943int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
 944					void __user *, size_t *, loff_t *);
 945int watermark_boost_factor_sysctl_handler(struct ctl_table *, int,
 946					void __user *, size_t *, loff_t *);
 947int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
 948					void __user *, size_t *, loff_t *);
 949extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
 950int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
 951					void __user *, size_t *, loff_t *);
 952int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
 953					void __user *, size_t *, loff_t *);
 954int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
 955			void __user *, size_t *, loff_t *);
 956int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
 957			void __user *, size_t *, loff_t *);
 958
 959extern int numa_zonelist_order_handler(struct ctl_table *, int,
 960			void __user *, size_t *, loff_t *);
 961extern char numa_zonelist_order[];
 962#define NUMA_ZONELIST_ORDER_LEN	16
 963
 964#ifndef CONFIG_NEED_MULTIPLE_NODES
 965
 966extern struct pglist_data contig_page_data;
 967#define NODE_DATA(nid)		(&contig_page_data)
 968#define NODE_MEM_MAP(nid)	mem_map
 969
 970#else /* CONFIG_NEED_MULTIPLE_NODES */
 971
 972#include <asm/mmzone.h>
 973
 974#endif /* !CONFIG_NEED_MULTIPLE_NODES */
 975
 976extern struct pglist_data *first_online_pgdat(void);
 977extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
 978extern struct zone *next_zone(struct zone *zone);
 979
 980/**
 981 * for_each_online_pgdat - helper macro to iterate over all online nodes
 982 * @pgdat - pointer to a pg_data_t variable
 983 */
 984#define for_each_online_pgdat(pgdat)			\
 985	for (pgdat = first_online_pgdat();		\
 986	     pgdat;					\
 987	     pgdat = next_online_pgdat(pgdat))
 988/**
 989 * for_each_zone - helper macro to iterate over all memory zones
 990 * @zone - pointer to struct zone variable
 991 *
 992 * The user only needs to declare the zone variable, for_each_zone
 993 * fills it in.
 994 */
 995#define for_each_zone(zone)			        \
 996	for (zone = (first_online_pgdat())->node_zones; \
 997	     zone;					\
 998	     zone = next_zone(zone))
 999
1000#define for_each_populated_zone(zone)		        \
1001	for (zone = (first_online_pgdat())->node_zones; \
1002	     zone;					\
1003	     zone = next_zone(zone))			\
1004		if (!populated_zone(zone))		\
1005			; /* do nothing */		\
1006		else
1007
1008static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1009{
1010	return zoneref->zone;
1011}
1012
1013static inline int zonelist_zone_idx(struct zoneref *zoneref)
1014{
1015	return zoneref->zone_idx;
1016}
1017
1018static inline int zonelist_node_idx(struct zoneref *zoneref)
1019{
1020	return zone_to_nid(zoneref->zone);
1021}
1022
1023struct zoneref *__next_zones_zonelist(struct zoneref *z,
1024					enum zone_type highest_zoneidx,
1025					nodemask_t *nodes);
1026
1027/**
1028 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1029 * @z - The cursor used as a starting point for the search
1030 * @highest_zoneidx - The zone index of the highest zone to return
1031 * @nodes - An optional nodemask to filter the zonelist with
1032 *
1033 * This function returns the next zone at or below a given zone index that is
1034 * within the allowed nodemask using a cursor as the starting point for the
1035 * search. The zoneref returned is a cursor that represents the current zone
1036 * being examined. It should be advanced by one before calling
1037 * next_zones_zonelist again.
1038 */
1039static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1040					enum zone_type highest_zoneidx,
1041					nodemask_t *nodes)
1042{
1043	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1044		return z;
1045	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1046}
1047
1048/**
1049 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1050 * @zonelist - The zonelist to search for a suitable zone
1051 * @highest_zoneidx - The zone index of the highest zone to return
1052 * @nodes - An optional nodemask to filter the zonelist with
1053 * @return - Zoneref pointer for the first suitable zone found (see below)
1054 *
1055 * This function returns the first zone at or below a given zone index that is
1056 * within the allowed nodemask. The zoneref returned is a cursor that can be
1057 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1058 * one before calling.
1059 *
1060 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1061 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1062 * update due to cpuset modification.
1063 */
1064static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1065					enum zone_type highest_zoneidx,
1066					nodemask_t *nodes)
1067{
1068	return next_zones_zonelist(zonelist->_zonerefs,
1069							highest_zoneidx, nodes);
1070}
1071
1072/**
1073 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1074 * @zone - The current zone in the iterator
1075 * @z - The current pointer within zonelist->zones being iterated
1076 * @zlist - The zonelist being iterated
1077 * @highidx - The zone index of the highest zone to return
1078 * @nodemask - Nodemask allowed by the allocator
1079 *
1080 * This iterator iterates though all zones at or below a given zone index and
1081 * within a given nodemask
1082 */
1083#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1084	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1085		zone;							\
1086		z = next_zones_zonelist(++z, highidx, nodemask),	\
1087			zone = zonelist_zone(z))
1088
1089#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1090	for (zone = z->zone;	\
1091		zone;							\
1092		z = next_zones_zonelist(++z, highidx, nodemask),	\
1093			zone = zonelist_zone(z))
1094
1095
1096/**
1097 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1098 * @zone - The current zone in the iterator
1099 * @z - The current pointer within zonelist->zones being iterated
1100 * @zlist - The zonelist being iterated
1101 * @highidx - The zone index of the highest zone to return
1102 *
1103 * This iterator iterates though all zones at or below a given zone index.
1104 */
1105#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1106	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1107
1108#ifdef CONFIG_SPARSEMEM
1109#include <asm/sparsemem.h>
1110#endif
1111
1112#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1113	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1114static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1115{
1116	BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1117	return 0;
1118}
1119#endif
1120
1121#ifdef CONFIG_FLATMEM
1122#define pfn_to_nid(pfn)		(0)
1123#endif
1124
1125#ifdef CONFIG_SPARSEMEM
1126
1127/*
1128 * SECTION_SHIFT    		#bits space required to store a section #
1129 *
1130 * PA_SECTION_SHIFT		physical address to/from section number
1131 * PFN_SECTION_SHIFT		pfn to/from section number
1132 */
1133#define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1134#define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1135
1136#define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1137
1138#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1139#define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1140
1141#define SECTION_BLOCKFLAGS_BITS \
1142	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1143
1144#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1145#error Allocator MAX_ORDER exceeds SECTION_SIZE
1146#endif
1147
1148static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1149{
1150	return pfn >> PFN_SECTION_SHIFT;
1151}
1152static inline unsigned long section_nr_to_pfn(unsigned long sec)
1153{
1154	return sec << PFN_SECTION_SHIFT;
1155}
1156
1157#define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1158#define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1159
1160#define SUBSECTION_SHIFT 21
 
1161
1162#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1163#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1164#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1165
1166#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1167#error Subsection size exceeds section size
1168#else
1169#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1170#endif
1171
1172#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1173#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1174
1175struct mem_section_usage {
 
1176	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
 
1177	/* See declaration of similar field in struct zone */
1178	unsigned long pageblock_flags[0];
1179};
1180
1181void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1182
1183struct page;
1184struct page_ext;
1185struct mem_section {
1186	/*
1187	 * This is, logically, a pointer to an array of struct
1188	 * pages.  However, it is stored with some other magic.
1189	 * (see sparse.c::sparse_init_one_section())
1190	 *
1191	 * Additionally during early boot we encode node id of
1192	 * the location of the section here to guide allocation.
1193	 * (see sparse.c::memory_present())
1194	 *
1195	 * Making it a UL at least makes someone do a cast
1196	 * before using it wrong.
1197	 */
1198	unsigned long section_mem_map;
1199
1200	struct mem_section_usage *usage;
1201#ifdef CONFIG_PAGE_EXTENSION
1202	/*
1203	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1204	 * section. (see page_ext.h about this.)
1205	 */
1206	struct page_ext *page_ext;
1207	unsigned long pad;
1208#endif
1209	/*
1210	 * WARNING: mem_section must be a power-of-2 in size for the
1211	 * calculation and use of SECTION_ROOT_MASK to make sense.
1212	 */
1213};
1214
1215#ifdef CONFIG_SPARSEMEM_EXTREME
1216#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1217#else
1218#define SECTIONS_PER_ROOT	1
1219#endif
1220
1221#define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1222#define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1223#define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1224
1225#ifdef CONFIG_SPARSEMEM_EXTREME
1226extern struct mem_section **mem_section;
1227#else
1228extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1229#endif
1230
1231static inline unsigned long *section_to_usemap(struct mem_section *ms)
1232{
1233	return ms->usage->pageblock_flags;
1234}
1235
1236static inline struct mem_section *__nr_to_section(unsigned long nr)
1237{
1238#ifdef CONFIG_SPARSEMEM_EXTREME
1239	if (!mem_section)
1240		return NULL;
1241#endif
1242	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1243		return NULL;
1244	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1245}
1246extern unsigned long __section_nr(struct mem_section *ms);
1247extern size_t mem_section_usage_size(void);
1248
1249/*
1250 * We use the lower bits of the mem_map pointer to store
1251 * a little bit of information.  The pointer is calculated
1252 * as mem_map - section_nr_to_pfn(pnum).  The result is
1253 * aligned to the minimum alignment of the two values:
1254 *   1. All mem_map arrays are page-aligned.
1255 *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1256 *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1257 *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1258 *      worst combination is powerpc with 256k pages,
1259 *      which results in PFN_SECTION_SHIFT equal 6.
1260 * To sum it up, at least 6 bits are available.
1261 */
1262#define	SECTION_MARKED_PRESENT	(1UL<<0)
1263#define SECTION_HAS_MEM_MAP	(1UL<<1)
1264#define SECTION_IS_ONLINE	(1UL<<2)
1265#define SECTION_IS_EARLY	(1UL<<3)
1266#define SECTION_MAP_LAST_BIT	(1UL<<4)
1267#define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1268#define SECTION_NID_SHIFT	3
1269
1270static inline struct page *__section_mem_map_addr(struct mem_section *section)
1271{
1272	unsigned long map = section->section_mem_map;
1273	map &= SECTION_MAP_MASK;
1274	return (struct page *)map;
1275}
1276
1277static inline int present_section(struct mem_section *section)
1278{
1279	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1280}
1281
1282static inline int present_section_nr(unsigned long nr)
1283{
1284	return present_section(__nr_to_section(nr));
1285}
1286
1287static inline int valid_section(struct mem_section *section)
1288{
1289	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1290}
1291
1292static inline int early_section(struct mem_section *section)
1293{
1294	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1295}
1296
1297static inline int valid_section_nr(unsigned long nr)
1298{
1299	return valid_section(__nr_to_section(nr));
1300}
1301
1302static inline int online_section(struct mem_section *section)
1303{
1304	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1305}
1306
1307static inline int online_section_nr(unsigned long nr)
1308{
1309	return online_section(__nr_to_section(nr));
1310}
1311
1312#ifdef CONFIG_MEMORY_HOTPLUG
1313void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1314#ifdef CONFIG_MEMORY_HOTREMOVE
1315void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1316#endif
1317#endif
1318
1319static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1320{
1321	return __nr_to_section(pfn_to_section_nr(pfn));
1322}
1323
1324extern unsigned long __highest_present_section_nr;
1325
1326static inline int subsection_map_index(unsigned long pfn)
1327{
1328	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1329}
1330
1331#ifdef CONFIG_SPARSEMEM_VMEMMAP
1332static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1333{
1334	int idx = subsection_map_index(pfn);
1335
1336	return test_bit(idx, ms->usage->subsection_map);
1337}
1338#else
1339static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1340{
1341	return 1;
1342}
1343#endif
1344
1345#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1346static inline int pfn_valid(unsigned long pfn)
1347{
1348	struct mem_section *ms;
1349
1350	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1351		return 0;
1352	ms = __nr_to_section(pfn_to_section_nr(pfn));
1353	if (!valid_section(ms))
1354		return 0;
1355	/*
1356	 * Traditionally early sections always returned pfn_valid() for
1357	 * the entire section-sized span.
1358	 */
1359	return early_section(ms) || pfn_section_valid(ms, pfn);
1360}
1361#endif
1362
1363static inline int pfn_present(unsigned long pfn)
1364{
1365	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1366		return 0;
1367	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1368}
1369
 
 
 
 
 
 
 
 
 
 
1370/*
1371 * These are _only_ used during initialisation, therefore they
1372 * can use __initdata ...  They could have names to indicate
1373 * this restriction.
1374 */
1375#ifdef CONFIG_NUMA
1376#define pfn_to_nid(pfn)							\
1377({									\
1378	unsigned long __pfn_to_nid_pfn = (pfn);				\
1379	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1380})
1381#else
1382#define pfn_to_nid(pfn)		(0)
1383#endif
1384
1385#define early_pfn_valid(pfn)	pfn_valid(pfn)
1386void sparse_init(void);
1387#else
1388#define sparse_init()	do {} while (0)
1389#define sparse_index_init(_sec, _nid)  do {} while (0)
1390#define pfn_present pfn_valid
1391#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1392#endif /* CONFIG_SPARSEMEM */
1393
1394/*
1395 * During memory init memblocks map pfns to nids. The search is expensive and
1396 * this caches recent lookups. The implementation of __early_pfn_to_nid
1397 * may treat start/end as pfns or sections.
1398 */
1399struct mminit_pfnnid_cache {
1400	unsigned long last_start;
1401	unsigned long last_end;
1402	int last_nid;
1403};
1404
1405#ifndef early_pfn_valid
1406#define early_pfn_valid(pfn)	(1)
1407#endif
1408
1409void memory_present(int nid, unsigned long start, unsigned long end);
1410
1411/*
1412 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1413 * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1414 * pfn_valid_within() should be used in this case; we optimise this away
1415 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1416 */
1417#ifdef CONFIG_HOLES_IN_ZONE
1418#define pfn_valid_within(pfn) pfn_valid(pfn)
1419#else
1420#define pfn_valid_within(pfn) (1)
1421#endif
1422
1423#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1424/*
1425 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1426 * associated with it or not. This means that a struct page exists for this
1427 * pfn. The caller cannot assume the page is fully initialized in general.
1428 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1429 * will ensure the struct page is fully online and initialized. Special pages
1430 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1431 *
1432 * In FLATMEM, it is expected that holes always have valid memmap as long as
1433 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1434 * that a valid section has a memmap for the entire section.
1435 *
1436 * However, an ARM, and maybe other embedded architectures in the future
1437 * free memmap backing holes to save memory on the assumption the memmap is
1438 * never used. The page_zone linkages are then broken even though pfn_valid()
1439 * returns true. A walker of the full memmap must then do this additional
1440 * check to ensure the memmap they are looking at is sane by making sure
1441 * the zone and PFN linkages are still valid. This is expensive, but walkers
1442 * of the full memmap are extremely rare.
1443 */
1444bool memmap_valid_within(unsigned long pfn,
1445					struct page *page, struct zone *zone);
1446#else
1447static inline bool memmap_valid_within(unsigned long pfn,
1448					struct page *page, struct zone *zone)
1449{
1450	return true;
1451}
1452#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1453
1454#endif /* !__GENERATING_BOUNDS.H */
1455#endif /* !__ASSEMBLY__ */
1456#endif /* _LINUX_MMZONE_H */