Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MMZONE_H
3#define _LINUX_MMZONE_H
4
5#ifndef __ASSEMBLY__
6#ifndef __GENERATING_BOUNDS_H
7
8#include <linux/spinlock.h>
9#include <linux/list.h>
10#include <linux/wait.h>
11#include <linux/bitops.h>
12#include <linux/cache.h>
13#include <linux/threads.h>
14#include <linux/numa.h>
15#include <linux/init.h>
16#include <linux/seqlock.h>
17#include <linux/nodemask.h>
18#include <linux/pageblock-flags.h>
19#include <linux/page-flags-layout.h>
20#include <linux/atomic.h>
21#include <linux/mm_types.h>
22#include <linux/page-flags.h>
23#include <asm/page.h>
24
25/* Free memory management - zoned buddy allocator. */
26#ifndef CONFIG_FORCE_MAX_ZONEORDER
27#define MAX_ORDER 11
28#else
29#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30#endif
31#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
32
33/*
34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35 * costly to service. That is between allocation orders which should
36 * coalesce naturally under reasonable reclaim pressure and those which
37 * will not.
38 */
39#define PAGE_ALLOC_COSTLY_ORDER 3
40
41enum migratetype {
42 MIGRATE_UNMOVABLE,
43 MIGRATE_MOVABLE,
44 MIGRATE_RECLAIMABLE,
45 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
46 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47#ifdef CONFIG_CMA
48 /*
49 * MIGRATE_CMA migration type is designed to mimic the way
50 * ZONE_MOVABLE works. Only movable pages can be allocated
51 * from MIGRATE_CMA pageblocks and page allocator never
52 * implicitly change migration type of MIGRATE_CMA pageblock.
53 *
54 * The way to use it is to change migratetype of a range of
55 * pageblocks to MIGRATE_CMA which can be done by
56 * __free_pageblock_cma() function. What is important though
57 * is that a range of pageblocks must be aligned to
58 * MAX_ORDER_NR_PAGES should biggest page be bigger then
59 * a single pageblock.
60 */
61 MIGRATE_CMA,
62#endif
63#ifdef CONFIG_MEMORY_ISOLATION
64 MIGRATE_ISOLATE, /* can't allocate from here */
65#endif
66 MIGRATE_TYPES
67};
68
69/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
70extern const char * const migratetype_names[MIGRATE_TYPES];
71
72#ifdef CONFIG_CMA
73# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
74# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
75#else
76# define is_migrate_cma(migratetype) false
77# define is_migrate_cma_page(_page) false
78#endif
79
80static inline bool is_migrate_movable(int mt)
81{
82 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83}
84
85#define for_each_migratetype_order(order, type) \
86 for (order = 0; order < MAX_ORDER; order++) \
87 for (type = 0; type < MIGRATE_TYPES; type++)
88
89extern int page_group_by_mobility_disabled;
90
91#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
92
93#define get_pageblock_migratetype(page) \
94 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
95
96struct free_area {
97 struct list_head free_list[MIGRATE_TYPES];
98 unsigned long nr_free;
99};
100
101static inline struct page *get_page_from_free_area(struct free_area *area,
102 int migratetype)
103{
104 return list_first_entry_or_null(&area->free_list[migratetype],
105 struct page, lru);
106}
107
108static inline bool free_area_empty(struct free_area *area, int migratetype)
109{
110 return list_empty(&area->free_list[migratetype]);
111}
112
113struct pglist_data;
114
115/*
116 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
117 * So add a wild amount of padding here to ensure that they fall into separate
118 * cachelines. There are very few zone structures in the machine, so space
119 * consumption is not a concern here.
120 */
121#if defined(CONFIG_SMP)
122struct zone_padding {
123 char x[0];
124} ____cacheline_internodealigned_in_smp;
125#define ZONE_PADDING(name) struct zone_padding name;
126#else
127#define ZONE_PADDING(name)
128#endif
129
130#ifdef CONFIG_NUMA
131enum numa_stat_item {
132 NUMA_HIT, /* allocated in intended node */
133 NUMA_MISS, /* allocated in non intended node */
134 NUMA_FOREIGN, /* was intended here, hit elsewhere */
135 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
136 NUMA_LOCAL, /* allocation from local node */
137 NUMA_OTHER, /* allocation from other node */
138 NR_VM_NUMA_STAT_ITEMS
139};
140#else
141#define NR_VM_NUMA_STAT_ITEMS 0
142#endif
143
144enum zone_stat_item {
145 /* First 128 byte cacheline (assuming 64 bit words) */
146 NR_FREE_PAGES,
147 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
148 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
149 NR_ZONE_ACTIVE_ANON,
150 NR_ZONE_INACTIVE_FILE,
151 NR_ZONE_ACTIVE_FILE,
152 NR_ZONE_UNEVICTABLE,
153 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
154 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
155 NR_PAGETABLE, /* used for pagetables */
156 /* Second 128 byte cacheline */
157 NR_BOUNCE,
158#if IS_ENABLED(CONFIG_ZSMALLOC)
159 NR_ZSPAGES, /* allocated in zsmalloc */
160#endif
161 NR_FREE_CMA_PAGES,
162 NR_VM_ZONE_STAT_ITEMS };
163
164enum node_stat_item {
165 NR_LRU_BASE,
166 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
167 NR_ACTIVE_ANON, /* " " " " " */
168 NR_INACTIVE_FILE, /* " " " " " */
169 NR_ACTIVE_FILE, /* " " " " " */
170 NR_UNEVICTABLE, /* " " " " " */
171 NR_SLAB_RECLAIMABLE_B,
172 NR_SLAB_UNRECLAIMABLE_B,
173 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
174 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
175 WORKINGSET_NODES,
176 WORKINGSET_REFAULT_BASE,
177 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
178 WORKINGSET_REFAULT_FILE,
179 WORKINGSET_ACTIVATE_BASE,
180 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
181 WORKINGSET_ACTIVATE_FILE,
182 WORKINGSET_RESTORE_BASE,
183 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
184 WORKINGSET_RESTORE_FILE,
185 WORKINGSET_NODERECLAIM,
186 NR_ANON_MAPPED, /* Mapped anonymous pages */
187 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
188 only modified from process context */
189 NR_FILE_PAGES,
190 NR_FILE_DIRTY,
191 NR_WRITEBACK,
192 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
193 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
194 NR_SHMEM_THPS,
195 NR_SHMEM_PMDMAPPED,
196 NR_FILE_THPS,
197 NR_FILE_PMDMAPPED,
198 NR_ANON_THPS,
199 NR_VMSCAN_WRITE,
200 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
201 NR_DIRTIED, /* page dirtyings since bootup */
202 NR_WRITTEN, /* page writings since bootup */
203 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
204 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
205 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
206 NR_KERNEL_STACK_KB, /* measured in KiB */
207#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
208 NR_KERNEL_SCS_KB, /* measured in KiB */
209#endif
210 NR_VM_NODE_STAT_ITEMS
211};
212
213/*
214 * Returns true if the value is measured in bytes (most vmstat values are
215 * measured in pages). This defines the API part, the internal representation
216 * might be different.
217 */
218static __always_inline bool vmstat_item_in_bytes(int idx)
219{
220 /*
221 * Global and per-node slab counters track slab pages.
222 * It's expected that changes are multiples of PAGE_SIZE.
223 * Internally values are stored in pages.
224 *
225 * Per-memcg and per-lruvec counters track memory, consumed
226 * by individual slab objects. These counters are actually
227 * byte-precise.
228 */
229 return (idx == NR_SLAB_RECLAIMABLE_B ||
230 idx == NR_SLAB_UNRECLAIMABLE_B);
231}
232
233/*
234 * We do arithmetic on the LRU lists in various places in the code,
235 * so it is important to keep the active lists LRU_ACTIVE higher in
236 * the array than the corresponding inactive lists, and to keep
237 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
238 *
239 * This has to be kept in sync with the statistics in zone_stat_item
240 * above and the descriptions in vmstat_text in mm/vmstat.c
241 */
242#define LRU_BASE 0
243#define LRU_ACTIVE 1
244#define LRU_FILE 2
245
246enum lru_list {
247 LRU_INACTIVE_ANON = LRU_BASE,
248 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
249 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
250 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
251 LRU_UNEVICTABLE,
252 NR_LRU_LISTS
253};
254
255#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
256
257#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
258
259static inline bool is_file_lru(enum lru_list lru)
260{
261 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
262}
263
264static inline bool is_active_lru(enum lru_list lru)
265{
266 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
267}
268
269enum lruvec_flags {
270 LRUVEC_CONGESTED, /* lruvec has many dirty pages
271 * backed by a congested BDI
272 */
273};
274
275struct lruvec {
276 struct list_head lists[NR_LRU_LISTS];
277 /*
278 * These track the cost of reclaiming one LRU - file or anon -
279 * over the other. As the observed cost of reclaiming one LRU
280 * increases, the reclaim scan balance tips toward the other.
281 */
282 unsigned long anon_cost;
283 unsigned long file_cost;
284 /* Non-resident age, driven by LRU movement */
285 atomic_long_t nonresident_age;
286 /* Refaults at the time of last reclaim cycle, anon=0, file=1 */
287 unsigned long refaults[2];
288 /* Various lruvec state flags (enum lruvec_flags) */
289 unsigned long flags;
290#ifdef CONFIG_MEMCG
291 struct pglist_data *pgdat;
292#endif
293};
294
295/* Isolate unmapped pages */
296#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
297/* Isolate for asynchronous migration */
298#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
299/* Isolate unevictable pages */
300#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
301
302/* LRU Isolation modes. */
303typedef unsigned __bitwise isolate_mode_t;
304
305enum zone_watermarks {
306 WMARK_MIN,
307 WMARK_LOW,
308 WMARK_HIGH,
309 NR_WMARK
310};
311
312#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
313#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
314#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
315#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
316
317struct per_cpu_pages {
318 int count; /* number of pages in the list */
319 int high; /* high watermark, emptying needed */
320 int batch; /* chunk size for buddy add/remove */
321
322 /* Lists of pages, one per migrate type stored on the pcp-lists */
323 struct list_head lists[MIGRATE_PCPTYPES];
324};
325
326struct per_cpu_pageset {
327 struct per_cpu_pages pcp;
328#ifdef CONFIG_NUMA
329 s8 expire;
330 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
331#endif
332#ifdef CONFIG_SMP
333 s8 stat_threshold;
334 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
335#endif
336};
337
338struct per_cpu_nodestat {
339 s8 stat_threshold;
340 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
341};
342
343#endif /* !__GENERATING_BOUNDS.H */
344
345enum zone_type {
346 /*
347 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
348 * to DMA to all of the addressable memory (ZONE_NORMAL).
349 * On architectures where this area covers the whole 32 bit address
350 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
351 * DMA addressing constraints. This distinction is important as a 32bit
352 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
353 * platforms may need both zones as they support peripherals with
354 * different DMA addressing limitations.
355 *
356 * Some examples:
357 *
358 * - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the
359 * rest of the lower 4G.
360 *
361 * - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on
362 * the specific device.
363 *
364 * - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the
365 * lower 4G.
366 *
367 * - powerpc only uses ZONE_DMA, the size, up to 2G, may vary
368 * depending on the specific device.
369 *
370 * - s390 uses ZONE_DMA fixed to the lower 2G.
371 *
372 * - ia64 and riscv only use ZONE_DMA32.
373 *
374 * - parisc uses neither.
375 */
376#ifdef CONFIG_ZONE_DMA
377 ZONE_DMA,
378#endif
379#ifdef CONFIG_ZONE_DMA32
380 ZONE_DMA32,
381#endif
382 /*
383 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
384 * performed on pages in ZONE_NORMAL if the DMA devices support
385 * transfers to all addressable memory.
386 */
387 ZONE_NORMAL,
388#ifdef CONFIG_HIGHMEM
389 /*
390 * A memory area that is only addressable by the kernel through
391 * mapping portions into its own address space. This is for example
392 * used by i386 to allow the kernel to address the memory beyond
393 * 900MB. The kernel will set up special mappings (page
394 * table entries on i386) for each page that the kernel needs to
395 * access.
396 */
397 ZONE_HIGHMEM,
398#endif
399 ZONE_MOVABLE,
400#ifdef CONFIG_ZONE_DEVICE
401 ZONE_DEVICE,
402#endif
403 __MAX_NR_ZONES
404
405};
406
407#ifndef __GENERATING_BOUNDS_H
408
409struct zone {
410 /* Read-mostly fields */
411
412 /* zone watermarks, access with *_wmark_pages(zone) macros */
413 unsigned long _watermark[NR_WMARK];
414 unsigned long watermark_boost;
415
416 unsigned long nr_reserved_highatomic;
417
418 /*
419 * We don't know if the memory that we're going to allocate will be
420 * freeable or/and it will be released eventually, so to avoid totally
421 * wasting several GB of ram we must reserve some of the lower zone
422 * memory (otherwise we risk to run OOM on the lower zones despite
423 * there being tons of freeable ram on the higher zones). This array is
424 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
425 * changes.
426 */
427 long lowmem_reserve[MAX_NR_ZONES];
428
429#ifdef CONFIG_NUMA
430 int node;
431#endif
432 struct pglist_data *zone_pgdat;
433 struct per_cpu_pageset __percpu *pageset;
434
435#ifndef CONFIG_SPARSEMEM
436 /*
437 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
438 * In SPARSEMEM, this map is stored in struct mem_section
439 */
440 unsigned long *pageblock_flags;
441#endif /* CONFIG_SPARSEMEM */
442
443 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
444 unsigned long zone_start_pfn;
445
446 /*
447 * spanned_pages is the total pages spanned by the zone, including
448 * holes, which is calculated as:
449 * spanned_pages = zone_end_pfn - zone_start_pfn;
450 *
451 * present_pages is physical pages existing within the zone, which
452 * is calculated as:
453 * present_pages = spanned_pages - absent_pages(pages in holes);
454 *
455 * managed_pages is present pages managed by the buddy system, which
456 * is calculated as (reserved_pages includes pages allocated by the
457 * bootmem allocator):
458 * managed_pages = present_pages - reserved_pages;
459 *
460 * So present_pages may be used by memory hotplug or memory power
461 * management logic to figure out unmanaged pages by checking
462 * (present_pages - managed_pages). And managed_pages should be used
463 * by page allocator and vm scanner to calculate all kinds of watermarks
464 * and thresholds.
465 *
466 * Locking rules:
467 *
468 * zone_start_pfn and spanned_pages are protected by span_seqlock.
469 * It is a seqlock because it has to be read outside of zone->lock,
470 * and it is done in the main allocator path. But, it is written
471 * quite infrequently.
472 *
473 * The span_seq lock is declared along with zone->lock because it is
474 * frequently read in proximity to zone->lock. It's good to
475 * give them a chance of being in the same cacheline.
476 *
477 * Write access to present_pages at runtime should be protected by
478 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
479 * present_pages should get_online_mems() to get a stable value.
480 */
481 atomic_long_t managed_pages;
482 unsigned long spanned_pages;
483 unsigned long present_pages;
484
485 const char *name;
486
487#ifdef CONFIG_MEMORY_ISOLATION
488 /*
489 * Number of isolated pageblock. It is used to solve incorrect
490 * freepage counting problem due to racy retrieving migratetype
491 * of pageblock. Protected by zone->lock.
492 */
493 unsigned long nr_isolate_pageblock;
494#endif
495
496#ifdef CONFIG_MEMORY_HOTPLUG
497 /* see spanned/present_pages for more description */
498 seqlock_t span_seqlock;
499#endif
500
501 int initialized;
502
503 /* Write-intensive fields used from the page allocator */
504 ZONE_PADDING(_pad1_)
505
506 /* free areas of different sizes */
507 struct free_area free_area[MAX_ORDER];
508
509 /* zone flags, see below */
510 unsigned long flags;
511
512 /* Primarily protects free_area */
513 spinlock_t lock;
514
515 /* Write-intensive fields used by compaction and vmstats. */
516 ZONE_PADDING(_pad2_)
517
518 /*
519 * When free pages are below this point, additional steps are taken
520 * when reading the number of free pages to avoid per-cpu counter
521 * drift allowing watermarks to be breached
522 */
523 unsigned long percpu_drift_mark;
524
525#if defined CONFIG_COMPACTION || defined CONFIG_CMA
526 /* pfn where compaction free scanner should start */
527 unsigned long compact_cached_free_pfn;
528 /* pfn where async and sync compaction migration scanner should start */
529 unsigned long compact_cached_migrate_pfn[2];
530 unsigned long compact_init_migrate_pfn;
531 unsigned long compact_init_free_pfn;
532#endif
533
534#ifdef CONFIG_COMPACTION
535 /*
536 * On compaction failure, 1<<compact_defer_shift compactions
537 * are skipped before trying again. The number attempted since
538 * last failure is tracked with compact_considered.
539 * compact_order_failed is the minimum compaction failed order.
540 */
541 unsigned int compact_considered;
542 unsigned int compact_defer_shift;
543 int compact_order_failed;
544#endif
545
546#if defined CONFIG_COMPACTION || defined CONFIG_CMA
547 /* Set to true when the PG_migrate_skip bits should be cleared */
548 bool compact_blockskip_flush;
549#endif
550
551 bool contiguous;
552
553 ZONE_PADDING(_pad3_)
554 /* Zone statistics */
555 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
556 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
557} ____cacheline_internodealigned_in_smp;
558
559enum pgdat_flags {
560 PGDAT_DIRTY, /* reclaim scanning has recently found
561 * many dirty file pages at the tail
562 * of the LRU.
563 */
564 PGDAT_WRITEBACK, /* reclaim scanning has recently found
565 * many pages under writeback
566 */
567 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
568};
569
570enum zone_flags {
571 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
572 * Cleared when kswapd is woken.
573 */
574};
575
576static inline unsigned long zone_managed_pages(struct zone *zone)
577{
578 return (unsigned long)atomic_long_read(&zone->managed_pages);
579}
580
581static inline unsigned long zone_end_pfn(const struct zone *zone)
582{
583 return zone->zone_start_pfn + zone->spanned_pages;
584}
585
586static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
587{
588 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
589}
590
591static inline bool zone_is_initialized(struct zone *zone)
592{
593 return zone->initialized;
594}
595
596static inline bool zone_is_empty(struct zone *zone)
597{
598 return zone->spanned_pages == 0;
599}
600
601/*
602 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
603 * intersection with the given zone
604 */
605static inline bool zone_intersects(struct zone *zone,
606 unsigned long start_pfn, unsigned long nr_pages)
607{
608 if (zone_is_empty(zone))
609 return false;
610 if (start_pfn >= zone_end_pfn(zone) ||
611 start_pfn + nr_pages <= zone->zone_start_pfn)
612 return false;
613
614 return true;
615}
616
617/*
618 * The "priority" of VM scanning is how much of the queues we will scan in one
619 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
620 * queues ("queue_length >> 12") during an aging round.
621 */
622#define DEF_PRIORITY 12
623
624/* Maximum number of zones on a zonelist */
625#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
626
627enum {
628 ZONELIST_FALLBACK, /* zonelist with fallback */
629#ifdef CONFIG_NUMA
630 /*
631 * The NUMA zonelists are doubled because we need zonelists that
632 * restrict the allocations to a single node for __GFP_THISNODE.
633 */
634 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
635#endif
636 MAX_ZONELISTS
637};
638
639/*
640 * This struct contains information about a zone in a zonelist. It is stored
641 * here to avoid dereferences into large structures and lookups of tables
642 */
643struct zoneref {
644 struct zone *zone; /* Pointer to actual zone */
645 int zone_idx; /* zone_idx(zoneref->zone) */
646};
647
648/*
649 * One allocation request operates on a zonelist. A zonelist
650 * is a list of zones, the first one is the 'goal' of the
651 * allocation, the other zones are fallback zones, in decreasing
652 * priority.
653 *
654 * To speed the reading of the zonelist, the zonerefs contain the zone index
655 * of the entry being read. Helper functions to access information given
656 * a struct zoneref are
657 *
658 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
659 * zonelist_zone_idx() - Return the index of the zone for an entry
660 * zonelist_node_idx() - Return the index of the node for an entry
661 */
662struct zonelist {
663 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
664};
665
666#ifndef CONFIG_DISCONTIGMEM
667/* The array of struct pages - for discontigmem use pgdat->lmem_map */
668extern struct page *mem_map;
669#endif
670
671#ifdef CONFIG_TRANSPARENT_HUGEPAGE
672struct deferred_split {
673 spinlock_t split_queue_lock;
674 struct list_head split_queue;
675 unsigned long split_queue_len;
676};
677#endif
678
679/*
680 * On NUMA machines, each NUMA node would have a pg_data_t to describe
681 * it's memory layout. On UMA machines there is a single pglist_data which
682 * describes the whole memory.
683 *
684 * Memory statistics and page replacement data structures are maintained on a
685 * per-zone basis.
686 */
687typedef struct pglist_data {
688 /*
689 * node_zones contains just the zones for THIS node. Not all of the
690 * zones may be populated, but it is the full list. It is referenced by
691 * this node's node_zonelists as well as other node's node_zonelists.
692 */
693 struct zone node_zones[MAX_NR_ZONES];
694
695 /*
696 * node_zonelists contains references to all zones in all nodes.
697 * Generally the first zones will be references to this node's
698 * node_zones.
699 */
700 struct zonelist node_zonelists[MAX_ZONELISTS];
701
702 int nr_zones; /* number of populated zones in this node */
703#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
704 struct page *node_mem_map;
705#ifdef CONFIG_PAGE_EXTENSION
706 struct page_ext *node_page_ext;
707#endif
708#endif
709#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
710 /*
711 * Must be held any time you expect node_start_pfn,
712 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
713 * Also synchronizes pgdat->first_deferred_pfn during deferred page
714 * init.
715 *
716 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
717 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
718 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
719 *
720 * Nests above zone->lock and zone->span_seqlock
721 */
722 spinlock_t node_size_lock;
723#endif
724 unsigned long node_start_pfn;
725 unsigned long node_present_pages; /* total number of physical pages */
726 unsigned long node_spanned_pages; /* total size of physical page
727 range, including holes */
728 int node_id;
729 wait_queue_head_t kswapd_wait;
730 wait_queue_head_t pfmemalloc_wait;
731 struct task_struct *kswapd; /* Protected by
732 mem_hotplug_begin/end() */
733 int kswapd_order;
734 enum zone_type kswapd_highest_zoneidx;
735
736 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
737
738#ifdef CONFIG_COMPACTION
739 int kcompactd_max_order;
740 enum zone_type kcompactd_highest_zoneidx;
741 wait_queue_head_t kcompactd_wait;
742 struct task_struct *kcompactd;
743#endif
744 /*
745 * This is a per-node reserve of pages that are not available
746 * to userspace allocations.
747 */
748 unsigned long totalreserve_pages;
749
750#ifdef CONFIG_NUMA
751 /*
752 * node reclaim becomes active if more unmapped pages exist.
753 */
754 unsigned long min_unmapped_pages;
755 unsigned long min_slab_pages;
756#endif /* CONFIG_NUMA */
757
758 /* Write-intensive fields used by page reclaim */
759 ZONE_PADDING(_pad1_)
760 spinlock_t lru_lock;
761
762#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
763 /*
764 * If memory initialisation on large machines is deferred then this
765 * is the first PFN that needs to be initialised.
766 */
767 unsigned long first_deferred_pfn;
768#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
769
770#ifdef CONFIG_TRANSPARENT_HUGEPAGE
771 struct deferred_split deferred_split_queue;
772#endif
773
774 /* Fields commonly accessed by the page reclaim scanner */
775
776 /*
777 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
778 *
779 * Use mem_cgroup_lruvec() to look up lruvecs.
780 */
781 struct lruvec __lruvec;
782
783 unsigned long flags;
784
785 ZONE_PADDING(_pad2_)
786
787 /* Per-node vmstats */
788 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
789 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
790} pg_data_t;
791
792#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
793#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
794#ifdef CONFIG_FLAT_NODE_MEM_MAP
795#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
796#else
797#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
798#endif
799#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
800
801#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
802#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
803
804static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
805{
806 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
807}
808
809static inline bool pgdat_is_empty(pg_data_t *pgdat)
810{
811 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
812}
813
814#include <linux/memory_hotplug.h>
815
816void build_all_zonelists(pg_data_t *pgdat);
817void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
818 enum zone_type highest_zoneidx);
819bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
820 int highest_zoneidx, unsigned int alloc_flags,
821 long free_pages);
822bool zone_watermark_ok(struct zone *z, unsigned int order,
823 unsigned long mark, int highest_zoneidx,
824 unsigned int alloc_flags);
825bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
826 unsigned long mark, int highest_zoneidx);
827/*
828 * Memory initialization context, use to differentiate memory added by
829 * the platform statically or via memory hotplug interface.
830 */
831enum meminit_context {
832 MEMINIT_EARLY,
833 MEMINIT_HOTPLUG,
834};
835
836extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
837 unsigned long size);
838
839extern void lruvec_init(struct lruvec *lruvec);
840
841static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
842{
843#ifdef CONFIG_MEMCG
844 return lruvec->pgdat;
845#else
846 return container_of(lruvec, struct pglist_data, __lruvec);
847#endif
848}
849
850extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
851
852#ifdef CONFIG_HAVE_MEMORYLESS_NODES
853int local_memory_node(int node_id);
854#else
855static inline int local_memory_node(int node_id) { return node_id; };
856#endif
857
858/*
859 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
860 */
861#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
862
863/*
864 * Returns true if a zone has pages managed by the buddy allocator.
865 * All the reclaim decisions have to use this function rather than
866 * populated_zone(). If the whole zone is reserved then we can easily
867 * end up with populated_zone() && !managed_zone().
868 */
869static inline bool managed_zone(struct zone *zone)
870{
871 return zone_managed_pages(zone);
872}
873
874/* Returns true if a zone has memory */
875static inline bool populated_zone(struct zone *zone)
876{
877 return zone->present_pages;
878}
879
880#ifdef CONFIG_NUMA
881static inline int zone_to_nid(struct zone *zone)
882{
883 return zone->node;
884}
885
886static inline void zone_set_nid(struct zone *zone, int nid)
887{
888 zone->node = nid;
889}
890#else
891static inline int zone_to_nid(struct zone *zone)
892{
893 return 0;
894}
895
896static inline void zone_set_nid(struct zone *zone, int nid) {}
897#endif
898
899extern int movable_zone;
900
901#ifdef CONFIG_HIGHMEM
902static inline int zone_movable_is_highmem(void)
903{
904#ifdef CONFIG_NEED_MULTIPLE_NODES
905 return movable_zone == ZONE_HIGHMEM;
906#else
907 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
908#endif
909}
910#endif
911
912static inline int is_highmem_idx(enum zone_type idx)
913{
914#ifdef CONFIG_HIGHMEM
915 return (idx == ZONE_HIGHMEM ||
916 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
917#else
918 return 0;
919#endif
920}
921
922/**
923 * is_highmem - helper function to quickly check if a struct zone is a
924 * highmem zone or not. This is an attempt to keep references
925 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
926 * @zone - pointer to struct zone variable
927 */
928static inline int is_highmem(struct zone *zone)
929{
930#ifdef CONFIG_HIGHMEM
931 return is_highmem_idx(zone_idx(zone));
932#else
933 return 0;
934#endif
935}
936
937/* These two functions are used to setup the per zone pages min values */
938struct ctl_table;
939
940int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
941 loff_t *);
942int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
943 size_t *, loff_t *);
944extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
945int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
946 size_t *, loff_t *);
947int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
948 void *, size_t *, loff_t *);
949int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
950 void *, size_t *, loff_t *);
951int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
952 void *, size_t *, loff_t *);
953int numa_zonelist_order_handler(struct ctl_table *, int,
954 void *, size_t *, loff_t *);
955extern int percpu_pagelist_fraction;
956extern char numa_zonelist_order[];
957#define NUMA_ZONELIST_ORDER_LEN 16
958
959#ifndef CONFIG_NEED_MULTIPLE_NODES
960
961extern struct pglist_data contig_page_data;
962#define NODE_DATA(nid) (&contig_page_data)
963#define NODE_MEM_MAP(nid) mem_map
964
965#else /* CONFIG_NEED_MULTIPLE_NODES */
966
967#include <asm/mmzone.h>
968
969#endif /* !CONFIG_NEED_MULTIPLE_NODES */
970
971extern struct pglist_data *first_online_pgdat(void);
972extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
973extern struct zone *next_zone(struct zone *zone);
974
975/**
976 * for_each_online_pgdat - helper macro to iterate over all online nodes
977 * @pgdat - pointer to a pg_data_t variable
978 */
979#define for_each_online_pgdat(pgdat) \
980 for (pgdat = first_online_pgdat(); \
981 pgdat; \
982 pgdat = next_online_pgdat(pgdat))
983/**
984 * for_each_zone - helper macro to iterate over all memory zones
985 * @zone - pointer to struct zone variable
986 *
987 * The user only needs to declare the zone variable, for_each_zone
988 * fills it in.
989 */
990#define for_each_zone(zone) \
991 for (zone = (first_online_pgdat())->node_zones; \
992 zone; \
993 zone = next_zone(zone))
994
995#define for_each_populated_zone(zone) \
996 for (zone = (first_online_pgdat())->node_zones; \
997 zone; \
998 zone = next_zone(zone)) \
999 if (!populated_zone(zone)) \
1000 ; /* do nothing */ \
1001 else
1002
1003static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1004{
1005 return zoneref->zone;
1006}
1007
1008static inline int zonelist_zone_idx(struct zoneref *zoneref)
1009{
1010 return zoneref->zone_idx;
1011}
1012
1013static inline int zonelist_node_idx(struct zoneref *zoneref)
1014{
1015 return zone_to_nid(zoneref->zone);
1016}
1017
1018struct zoneref *__next_zones_zonelist(struct zoneref *z,
1019 enum zone_type highest_zoneidx,
1020 nodemask_t *nodes);
1021
1022/**
1023 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1024 * @z - The cursor used as a starting point for the search
1025 * @highest_zoneidx - The zone index of the highest zone to return
1026 * @nodes - An optional nodemask to filter the zonelist with
1027 *
1028 * This function returns the next zone at or below a given zone index that is
1029 * within the allowed nodemask using a cursor as the starting point for the
1030 * search. The zoneref returned is a cursor that represents the current zone
1031 * being examined. It should be advanced by one before calling
1032 * next_zones_zonelist again.
1033 */
1034static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1035 enum zone_type highest_zoneidx,
1036 nodemask_t *nodes)
1037{
1038 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1039 return z;
1040 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1041}
1042
1043/**
1044 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1045 * @zonelist - The zonelist to search for a suitable zone
1046 * @highest_zoneidx - The zone index of the highest zone to return
1047 * @nodes - An optional nodemask to filter the zonelist with
1048 * @return - Zoneref pointer for the first suitable zone found (see below)
1049 *
1050 * This function returns the first zone at or below a given zone index that is
1051 * within the allowed nodemask. The zoneref returned is a cursor that can be
1052 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1053 * one before calling.
1054 *
1055 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1056 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1057 * update due to cpuset modification.
1058 */
1059static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1060 enum zone_type highest_zoneidx,
1061 nodemask_t *nodes)
1062{
1063 return next_zones_zonelist(zonelist->_zonerefs,
1064 highest_zoneidx, nodes);
1065}
1066
1067/**
1068 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1069 * @zone - The current zone in the iterator
1070 * @z - The current pointer within zonelist->_zonerefs being iterated
1071 * @zlist - The zonelist being iterated
1072 * @highidx - The zone index of the highest zone to return
1073 * @nodemask - Nodemask allowed by the allocator
1074 *
1075 * This iterator iterates though all zones at or below a given zone index and
1076 * within a given nodemask
1077 */
1078#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1079 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1080 zone; \
1081 z = next_zones_zonelist(++z, highidx, nodemask), \
1082 zone = zonelist_zone(z))
1083
1084#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1085 for (zone = z->zone; \
1086 zone; \
1087 z = next_zones_zonelist(++z, highidx, nodemask), \
1088 zone = zonelist_zone(z))
1089
1090
1091/**
1092 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1093 * @zone - The current zone in the iterator
1094 * @z - The current pointer within zonelist->zones being iterated
1095 * @zlist - The zonelist being iterated
1096 * @highidx - The zone index of the highest zone to return
1097 *
1098 * This iterator iterates though all zones at or below a given zone index.
1099 */
1100#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1101 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1102
1103#ifdef CONFIG_SPARSEMEM
1104#include <asm/sparsemem.h>
1105#endif
1106
1107#ifdef CONFIG_FLATMEM
1108#define pfn_to_nid(pfn) (0)
1109#endif
1110
1111#ifdef CONFIG_SPARSEMEM
1112
1113/*
1114 * SECTION_SHIFT #bits space required to store a section #
1115 *
1116 * PA_SECTION_SHIFT physical address to/from section number
1117 * PFN_SECTION_SHIFT pfn to/from section number
1118 */
1119#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1120#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1121
1122#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1123
1124#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1125#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1126
1127#define SECTION_BLOCKFLAGS_BITS \
1128 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1129
1130#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1131#error Allocator MAX_ORDER exceeds SECTION_SIZE
1132#endif
1133
1134static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1135{
1136 return pfn >> PFN_SECTION_SHIFT;
1137}
1138static inline unsigned long section_nr_to_pfn(unsigned long sec)
1139{
1140 return sec << PFN_SECTION_SHIFT;
1141}
1142
1143#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1144#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1145
1146#define SUBSECTION_SHIFT 21
1147#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1148
1149#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1150#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1151#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1152
1153#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1154#error Subsection size exceeds section size
1155#else
1156#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1157#endif
1158
1159#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1160#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1161
1162struct mem_section_usage {
1163#ifdef CONFIG_SPARSEMEM_VMEMMAP
1164 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1165#endif
1166 /* See declaration of similar field in struct zone */
1167 unsigned long pageblock_flags[0];
1168};
1169
1170void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1171
1172struct page;
1173struct page_ext;
1174struct mem_section {
1175 /*
1176 * This is, logically, a pointer to an array of struct
1177 * pages. However, it is stored with some other magic.
1178 * (see sparse.c::sparse_init_one_section())
1179 *
1180 * Additionally during early boot we encode node id of
1181 * the location of the section here to guide allocation.
1182 * (see sparse.c::memory_present())
1183 *
1184 * Making it a UL at least makes someone do a cast
1185 * before using it wrong.
1186 */
1187 unsigned long section_mem_map;
1188
1189 struct mem_section_usage *usage;
1190#ifdef CONFIG_PAGE_EXTENSION
1191 /*
1192 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1193 * section. (see page_ext.h about this.)
1194 */
1195 struct page_ext *page_ext;
1196 unsigned long pad;
1197#endif
1198 /*
1199 * WARNING: mem_section must be a power-of-2 in size for the
1200 * calculation and use of SECTION_ROOT_MASK to make sense.
1201 */
1202};
1203
1204#ifdef CONFIG_SPARSEMEM_EXTREME
1205#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1206#else
1207#define SECTIONS_PER_ROOT 1
1208#endif
1209
1210#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1211#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1212#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1213
1214#ifdef CONFIG_SPARSEMEM_EXTREME
1215extern struct mem_section **mem_section;
1216#else
1217extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1218#endif
1219
1220static inline unsigned long *section_to_usemap(struct mem_section *ms)
1221{
1222 return ms->usage->pageblock_flags;
1223}
1224
1225static inline struct mem_section *__nr_to_section(unsigned long nr)
1226{
1227#ifdef CONFIG_SPARSEMEM_EXTREME
1228 if (!mem_section)
1229 return NULL;
1230#endif
1231 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1232 return NULL;
1233 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1234}
1235extern unsigned long __section_nr(struct mem_section *ms);
1236extern size_t mem_section_usage_size(void);
1237
1238/*
1239 * We use the lower bits of the mem_map pointer to store
1240 * a little bit of information. The pointer is calculated
1241 * as mem_map - section_nr_to_pfn(pnum). The result is
1242 * aligned to the minimum alignment of the two values:
1243 * 1. All mem_map arrays are page-aligned.
1244 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1245 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1246 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1247 * worst combination is powerpc with 256k pages,
1248 * which results in PFN_SECTION_SHIFT equal 6.
1249 * To sum it up, at least 6 bits are available.
1250 */
1251#define SECTION_MARKED_PRESENT (1UL<<0)
1252#define SECTION_HAS_MEM_MAP (1UL<<1)
1253#define SECTION_IS_ONLINE (1UL<<2)
1254#define SECTION_IS_EARLY (1UL<<3)
1255#define SECTION_MAP_LAST_BIT (1UL<<4)
1256#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1257#define SECTION_NID_SHIFT 3
1258
1259static inline struct page *__section_mem_map_addr(struct mem_section *section)
1260{
1261 unsigned long map = section->section_mem_map;
1262 map &= SECTION_MAP_MASK;
1263 return (struct page *)map;
1264}
1265
1266static inline int present_section(struct mem_section *section)
1267{
1268 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1269}
1270
1271static inline int present_section_nr(unsigned long nr)
1272{
1273 return present_section(__nr_to_section(nr));
1274}
1275
1276static inline int valid_section(struct mem_section *section)
1277{
1278 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1279}
1280
1281static inline int early_section(struct mem_section *section)
1282{
1283 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1284}
1285
1286static inline int valid_section_nr(unsigned long nr)
1287{
1288 return valid_section(__nr_to_section(nr));
1289}
1290
1291static inline int online_section(struct mem_section *section)
1292{
1293 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1294}
1295
1296static inline int online_section_nr(unsigned long nr)
1297{
1298 return online_section(__nr_to_section(nr));
1299}
1300
1301#ifdef CONFIG_MEMORY_HOTPLUG
1302void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1303#ifdef CONFIG_MEMORY_HOTREMOVE
1304void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1305#endif
1306#endif
1307
1308static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1309{
1310 return __nr_to_section(pfn_to_section_nr(pfn));
1311}
1312
1313extern unsigned long __highest_present_section_nr;
1314
1315static inline int subsection_map_index(unsigned long pfn)
1316{
1317 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1318}
1319
1320#ifdef CONFIG_SPARSEMEM_VMEMMAP
1321static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1322{
1323 int idx = subsection_map_index(pfn);
1324
1325 return test_bit(idx, ms->usage->subsection_map);
1326}
1327#else
1328static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1329{
1330 return 1;
1331}
1332#endif
1333
1334#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1335static inline int pfn_valid(unsigned long pfn)
1336{
1337 struct mem_section *ms;
1338
1339 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1340 return 0;
1341 ms = __nr_to_section(pfn_to_section_nr(pfn));
1342 if (!valid_section(ms))
1343 return 0;
1344 /*
1345 * Traditionally early sections always returned pfn_valid() for
1346 * the entire section-sized span.
1347 */
1348 return early_section(ms) || pfn_section_valid(ms, pfn);
1349}
1350#endif
1351
1352static inline int pfn_in_present_section(unsigned long pfn)
1353{
1354 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1355 return 0;
1356 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1357}
1358
1359static inline unsigned long next_present_section_nr(unsigned long section_nr)
1360{
1361 while (++section_nr <= __highest_present_section_nr) {
1362 if (present_section_nr(section_nr))
1363 return section_nr;
1364 }
1365
1366 return -1;
1367}
1368
1369/*
1370 * These are _only_ used during initialisation, therefore they
1371 * can use __initdata ... They could have names to indicate
1372 * this restriction.
1373 */
1374#ifdef CONFIG_NUMA
1375#define pfn_to_nid(pfn) \
1376({ \
1377 unsigned long __pfn_to_nid_pfn = (pfn); \
1378 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1379})
1380#else
1381#define pfn_to_nid(pfn) (0)
1382#endif
1383
1384#define early_pfn_valid(pfn) pfn_valid(pfn)
1385void sparse_init(void);
1386#else
1387#define sparse_init() do {} while (0)
1388#define sparse_index_init(_sec, _nid) do {} while (0)
1389#define pfn_in_present_section pfn_valid
1390#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1391#endif /* CONFIG_SPARSEMEM */
1392
1393/*
1394 * During memory init memblocks map pfns to nids. The search is expensive and
1395 * this caches recent lookups. The implementation of __early_pfn_to_nid
1396 * may treat start/end as pfns or sections.
1397 */
1398struct mminit_pfnnid_cache {
1399 unsigned long last_start;
1400 unsigned long last_end;
1401 int last_nid;
1402};
1403
1404#ifndef early_pfn_valid
1405#define early_pfn_valid(pfn) (1)
1406#endif
1407
1408/*
1409 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1410 * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1411 * pfn_valid_within() should be used in this case; we optimise this away
1412 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1413 */
1414#ifdef CONFIG_HOLES_IN_ZONE
1415#define pfn_valid_within(pfn) pfn_valid(pfn)
1416#else
1417#define pfn_valid_within(pfn) (1)
1418#endif
1419
1420#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1421/*
1422 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1423 * associated with it or not. This means that a struct page exists for this
1424 * pfn. The caller cannot assume the page is fully initialized in general.
1425 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1426 * will ensure the struct page is fully online and initialized. Special pages
1427 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1428 *
1429 * In FLATMEM, it is expected that holes always have valid memmap as long as
1430 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1431 * that a valid section has a memmap for the entire section.
1432 *
1433 * However, an ARM, and maybe other embedded architectures in the future
1434 * free memmap backing holes to save memory on the assumption the memmap is
1435 * never used. The page_zone linkages are then broken even though pfn_valid()
1436 * returns true. A walker of the full memmap must then do this additional
1437 * check to ensure the memmap they are looking at is sane by making sure
1438 * the zone and PFN linkages are still valid. This is expensive, but walkers
1439 * of the full memmap are extremely rare.
1440 */
1441bool memmap_valid_within(unsigned long pfn,
1442 struct page *page, struct zone *zone);
1443#else
1444static inline bool memmap_valid_within(unsigned long pfn,
1445 struct page *page, struct zone *zone)
1446{
1447 return true;
1448}
1449#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1450
1451#endif /* !__GENERATING_BOUNDS.H */
1452#endif /* !__ASSEMBLY__ */
1453#endif /* _LINUX_MMZONE_H */
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MMZONE_H
3#define _LINUX_MMZONE_H
4
5#ifndef __ASSEMBLY__
6#ifndef __GENERATING_BOUNDS_H
7
8#include <linux/spinlock.h>
9#include <linux/list.h>
10#include <linux/wait.h>
11#include <linux/bitops.h>
12#include <linux/cache.h>
13#include <linux/threads.h>
14#include <linux/numa.h>
15#include <linux/init.h>
16#include <linux/seqlock.h>
17#include <linux/nodemask.h>
18#include <linux/pageblock-flags.h>
19#include <linux/page-flags-layout.h>
20#include <linux/atomic.h>
21#include <linux/mm_types.h>
22#include <linux/page-flags.h>
23#include <asm/page.h>
24
25/* Free memory management - zoned buddy allocator. */
26#ifndef CONFIG_FORCE_MAX_ZONEORDER
27#define MAX_ORDER 11
28#else
29#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30#endif
31#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
32
33/*
34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35 * costly to service. That is between allocation orders which should
36 * coalesce naturally under reasonable reclaim pressure and those which
37 * will not.
38 */
39#define PAGE_ALLOC_COSTLY_ORDER 3
40
41enum migratetype {
42 MIGRATE_UNMOVABLE,
43 MIGRATE_MOVABLE,
44 MIGRATE_RECLAIMABLE,
45 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
46 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47#ifdef CONFIG_CMA
48 /*
49 * MIGRATE_CMA migration type is designed to mimic the way
50 * ZONE_MOVABLE works. Only movable pages can be allocated
51 * from MIGRATE_CMA pageblocks and page allocator never
52 * implicitly change migration type of MIGRATE_CMA pageblock.
53 *
54 * The way to use it is to change migratetype of a range of
55 * pageblocks to MIGRATE_CMA which can be done by
56 * __free_pageblock_cma() function. What is important though
57 * is that a range of pageblocks must be aligned to
58 * MAX_ORDER_NR_PAGES should biggest page be bigger then
59 * a single pageblock.
60 */
61 MIGRATE_CMA,
62#endif
63#ifdef CONFIG_MEMORY_ISOLATION
64 MIGRATE_ISOLATE, /* can't allocate from here */
65#endif
66 MIGRATE_TYPES
67};
68
69/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
70extern const char * const migratetype_names[MIGRATE_TYPES];
71
72#ifdef CONFIG_CMA
73# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
74# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
75#else
76# define is_migrate_cma(migratetype) false
77# define is_migrate_cma_page(_page) false
78#endif
79
80static inline bool is_migrate_movable(int mt)
81{
82 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83}
84
85#define for_each_migratetype_order(order, type) \
86 for (order = 0; order < MAX_ORDER; order++) \
87 for (type = 0; type < MIGRATE_TYPES; type++)
88
89extern int page_group_by_mobility_disabled;
90
91#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
92#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
93
94#define get_pageblock_migratetype(page) \
95 get_pfnblock_flags_mask(page, page_to_pfn(page), \
96 PB_migrate_end, MIGRATETYPE_MASK)
97
98struct free_area {
99 struct list_head free_list[MIGRATE_TYPES];
100 unsigned long nr_free;
101};
102
103/* Used for pages not on another list */
104static inline void add_to_free_area(struct page *page, struct free_area *area,
105 int migratetype)
106{
107 list_add(&page->lru, &area->free_list[migratetype]);
108 area->nr_free++;
109}
110
111/* Used for pages not on another list */
112static inline void add_to_free_area_tail(struct page *page, struct free_area *area,
113 int migratetype)
114{
115 list_add_tail(&page->lru, &area->free_list[migratetype]);
116 area->nr_free++;
117}
118
119#ifdef CONFIG_SHUFFLE_PAGE_ALLOCATOR
120/* Used to preserve page allocation order entropy */
121void add_to_free_area_random(struct page *page, struct free_area *area,
122 int migratetype);
123#else
124static inline void add_to_free_area_random(struct page *page,
125 struct free_area *area, int migratetype)
126{
127 add_to_free_area(page, area, migratetype);
128}
129#endif
130
131/* Used for pages which are on another list */
132static inline void move_to_free_area(struct page *page, struct free_area *area,
133 int migratetype)
134{
135 list_move(&page->lru, &area->free_list[migratetype]);
136}
137
138static inline struct page *get_page_from_free_area(struct free_area *area,
139 int migratetype)
140{
141 return list_first_entry_or_null(&area->free_list[migratetype],
142 struct page, lru);
143}
144
145static inline void del_page_from_free_area(struct page *page,
146 struct free_area *area)
147{
148 list_del(&page->lru);
149 __ClearPageBuddy(page);
150 set_page_private(page, 0);
151 area->nr_free--;
152}
153
154static inline bool free_area_empty(struct free_area *area, int migratetype)
155{
156 return list_empty(&area->free_list[migratetype]);
157}
158
159struct pglist_data;
160
161/*
162 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
163 * So add a wild amount of padding here to ensure that they fall into separate
164 * cachelines. There are very few zone structures in the machine, so space
165 * consumption is not a concern here.
166 */
167#if defined(CONFIG_SMP)
168struct zone_padding {
169 char x[0];
170} ____cacheline_internodealigned_in_smp;
171#define ZONE_PADDING(name) struct zone_padding name;
172#else
173#define ZONE_PADDING(name)
174#endif
175
176#ifdef CONFIG_NUMA
177enum numa_stat_item {
178 NUMA_HIT, /* allocated in intended node */
179 NUMA_MISS, /* allocated in non intended node */
180 NUMA_FOREIGN, /* was intended here, hit elsewhere */
181 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
182 NUMA_LOCAL, /* allocation from local node */
183 NUMA_OTHER, /* allocation from other node */
184 NR_VM_NUMA_STAT_ITEMS
185};
186#else
187#define NR_VM_NUMA_STAT_ITEMS 0
188#endif
189
190enum zone_stat_item {
191 /* First 128 byte cacheline (assuming 64 bit words) */
192 NR_FREE_PAGES,
193 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
194 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
195 NR_ZONE_ACTIVE_ANON,
196 NR_ZONE_INACTIVE_FILE,
197 NR_ZONE_ACTIVE_FILE,
198 NR_ZONE_UNEVICTABLE,
199 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
200 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
201 NR_PAGETABLE, /* used for pagetables */
202 NR_KERNEL_STACK_KB, /* measured in KiB */
203 /* Second 128 byte cacheline */
204 NR_BOUNCE,
205#if IS_ENABLED(CONFIG_ZSMALLOC)
206 NR_ZSPAGES, /* allocated in zsmalloc */
207#endif
208 NR_FREE_CMA_PAGES,
209 NR_VM_ZONE_STAT_ITEMS };
210
211enum node_stat_item {
212 NR_LRU_BASE,
213 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
214 NR_ACTIVE_ANON, /* " " " " " */
215 NR_INACTIVE_FILE, /* " " " " " */
216 NR_ACTIVE_FILE, /* " " " " " */
217 NR_UNEVICTABLE, /* " " " " " */
218 NR_SLAB_RECLAIMABLE, /* Please do not reorder this item */
219 NR_SLAB_UNRECLAIMABLE, /* and this one without looking at
220 * memcg_flush_percpu_vmstats() first. */
221 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
222 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
223 WORKINGSET_NODES,
224 WORKINGSET_REFAULT,
225 WORKINGSET_ACTIVATE,
226 WORKINGSET_RESTORE,
227 WORKINGSET_NODERECLAIM,
228 NR_ANON_MAPPED, /* Mapped anonymous pages */
229 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
230 only modified from process context */
231 NR_FILE_PAGES,
232 NR_FILE_DIRTY,
233 NR_WRITEBACK,
234 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
235 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
236 NR_SHMEM_THPS,
237 NR_SHMEM_PMDMAPPED,
238 NR_FILE_THPS,
239 NR_FILE_PMDMAPPED,
240 NR_ANON_THPS,
241 NR_UNSTABLE_NFS, /* NFS unstable pages */
242 NR_VMSCAN_WRITE,
243 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
244 NR_DIRTIED, /* page dirtyings since bootup */
245 NR_WRITTEN, /* page writings since bootup */
246 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
247 NR_VM_NODE_STAT_ITEMS
248};
249
250/*
251 * We do arithmetic on the LRU lists in various places in the code,
252 * so it is important to keep the active lists LRU_ACTIVE higher in
253 * the array than the corresponding inactive lists, and to keep
254 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
255 *
256 * This has to be kept in sync with the statistics in zone_stat_item
257 * above and the descriptions in vmstat_text in mm/vmstat.c
258 */
259#define LRU_BASE 0
260#define LRU_ACTIVE 1
261#define LRU_FILE 2
262
263enum lru_list {
264 LRU_INACTIVE_ANON = LRU_BASE,
265 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
266 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
267 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
268 LRU_UNEVICTABLE,
269 NR_LRU_LISTS
270};
271
272#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
273
274#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
275
276static inline int is_file_lru(enum lru_list lru)
277{
278 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
279}
280
281static inline int is_active_lru(enum lru_list lru)
282{
283 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
284}
285
286struct zone_reclaim_stat {
287 /*
288 * The pageout code in vmscan.c keeps track of how many of the
289 * mem/swap backed and file backed pages are referenced.
290 * The higher the rotated/scanned ratio, the more valuable
291 * that cache is.
292 *
293 * The anon LRU stats live in [0], file LRU stats in [1]
294 */
295 unsigned long recent_rotated[2];
296 unsigned long recent_scanned[2];
297};
298
299struct lruvec {
300 struct list_head lists[NR_LRU_LISTS];
301 struct zone_reclaim_stat reclaim_stat;
302 /* Evictions & activations on the inactive file list */
303 atomic_long_t inactive_age;
304 /* Refaults at the time of last reclaim cycle */
305 unsigned long refaults;
306#ifdef CONFIG_MEMCG
307 struct pglist_data *pgdat;
308#endif
309};
310
311/* Isolate unmapped file */
312#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
313/* Isolate for asynchronous migration */
314#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
315/* Isolate unevictable pages */
316#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
317
318/* LRU Isolation modes. */
319typedef unsigned __bitwise isolate_mode_t;
320
321enum zone_watermarks {
322 WMARK_MIN,
323 WMARK_LOW,
324 WMARK_HIGH,
325 NR_WMARK
326};
327
328#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
329#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
330#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
331#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
332
333struct per_cpu_pages {
334 int count; /* number of pages in the list */
335 int high; /* high watermark, emptying needed */
336 int batch; /* chunk size for buddy add/remove */
337
338 /* Lists of pages, one per migrate type stored on the pcp-lists */
339 struct list_head lists[MIGRATE_PCPTYPES];
340};
341
342struct per_cpu_pageset {
343 struct per_cpu_pages pcp;
344#ifdef CONFIG_NUMA
345 s8 expire;
346 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
347#endif
348#ifdef CONFIG_SMP
349 s8 stat_threshold;
350 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
351#endif
352};
353
354struct per_cpu_nodestat {
355 s8 stat_threshold;
356 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
357};
358
359#endif /* !__GENERATING_BOUNDS.H */
360
361enum zone_type {
362#ifdef CONFIG_ZONE_DMA
363 /*
364 * ZONE_DMA is used when there are devices that are not able
365 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
366 * carve out the portion of memory that is needed for these devices.
367 * The range is arch specific.
368 *
369 * Some examples
370 *
371 * Architecture Limit
372 * ---------------------------
373 * parisc, ia64, sparc <4G
374 * s390, powerpc <2G
375 * arm Various
376 * alpha Unlimited or 0-16MB.
377 *
378 * i386, x86_64 and multiple other arches
379 * <16M.
380 */
381 ZONE_DMA,
382#endif
383#ifdef CONFIG_ZONE_DMA32
384 /*
385 * x86_64 needs two ZONE_DMAs because it supports devices that are
386 * only able to do DMA to the lower 16M but also 32 bit devices that
387 * can only do DMA areas below 4G.
388 */
389 ZONE_DMA32,
390#endif
391 /*
392 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
393 * performed on pages in ZONE_NORMAL if the DMA devices support
394 * transfers to all addressable memory.
395 */
396 ZONE_NORMAL,
397#ifdef CONFIG_HIGHMEM
398 /*
399 * A memory area that is only addressable by the kernel through
400 * mapping portions into its own address space. This is for example
401 * used by i386 to allow the kernel to address the memory beyond
402 * 900MB. The kernel will set up special mappings (page
403 * table entries on i386) for each page that the kernel needs to
404 * access.
405 */
406 ZONE_HIGHMEM,
407#endif
408 ZONE_MOVABLE,
409#ifdef CONFIG_ZONE_DEVICE
410 ZONE_DEVICE,
411#endif
412 __MAX_NR_ZONES
413
414};
415
416#ifndef __GENERATING_BOUNDS_H
417
418struct zone {
419 /* Read-mostly fields */
420
421 /* zone watermarks, access with *_wmark_pages(zone) macros */
422 unsigned long _watermark[NR_WMARK];
423 unsigned long watermark_boost;
424
425 unsigned long nr_reserved_highatomic;
426
427 /*
428 * We don't know if the memory that we're going to allocate will be
429 * freeable or/and it will be released eventually, so to avoid totally
430 * wasting several GB of ram we must reserve some of the lower zone
431 * memory (otherwise we risk to run OOM on the lower zones despite
432 * there being tons of freeable ram on the higher zones). This array is
433 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
434 * changes.
435 */
436 long lowmem_reserve[MAX_NR_ZONES];
437
438#ifdef CONFIG_NUMA
439 int node;
440#endif
441 struct pglist_data *zone_pgdat;
442 struct per_cpu_pageset __percpu *pageset;
443
444#ifndef CONFIG_SPARSEMEM
445 /*
446 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
447 * In SPARSEMEM, this map is stored in struct mem_section
448 */
449 unsigned long *pageblock_flags;
450#endif /* CONFIG_SPARSEMEM */
451
452 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
453 unsigned long zone_start_pfn;
454
455 /*
456 * spanned_pages is the total pages spanned by the zone, including
457 * holes, which is calculated as:
458 * spanned_pages = zone_end_pfn - zone_start_pfn;
459 *
460 * present_pages is physical pages existing within the zone, which
461 * is calculated as:
462 * present_pages = spanned_pages - absent_pages(pages in holes);
463 *
464 * managed_pages is present pages managed by the buddy system, which
465 * is calculated as (reserved_pages includes pages allocated by the
466 * bootmem allocator):
467 * managed_pages = present_pages - reserved_pages;
468 *
469 * So present_pages may be used by memory hotplug or memory power
470 * management logic to figure out unmanaged pages by checking
471 * (present_pages - managed_pages). And managed_pages should be used
472 * by page allocator and vm scanner to calculate all kinds of watermarks
473 * and thresholds.
474 *
475 * Locking rules:
476 *
477 * zone_start_pfn and spanned_pages are protected by span_seqlock.
478 * It is a seqlock because it has to be read outside of zone->lock,
479 * and it is done in the main allocator path. But, it is written
480 * quite infrequently.
481 *
482 * The span_seq lock is declared along with zone->lock because it is
483 * frequently read in proximity to zone->lock. It's good to
484 * give them a chance of being in the same cacheline.
485 *
486 * Write access to present_pages at runtime should be protected by
487 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
488 * present_pages should get_online_mems() to get a stable value.
489 */
490 atomic_long_t managed_pages;
491 unsigned long spanned_pages;
492 unsigned long present_pages;
493
494 const char *name;
495
496#ifdef CONFIG_MEMORY_ISOLATION
497 /*
498 * Number of isolated pageblock. It is used to solve incorrect
499 * freepage counting problem due to racy retrieving migratetype
500 * of pageblock. Protected by zone->lock.
501 */
502 unsigned long nr_isolate_pageblock;
503#endif
504
505#ifdef CONFIG_MEMORY_HOTPLUG
506 /* see spanned/present_pages for more description */
507 seqlock_t span_seqlock;
508#endif
509
510 int initialized;
511
512 /* Write-intensive fields used from the page allocator */
513 ZONE_PADDING(_pad1_)
514
515 /* free areas of different sizes */
516 struct free_area free_area[MAX_ORDER];
517
518 /* zone flags, see below */
519 unsigned long flags;
520
521 /* Primarily protects free_area */
522 spinlock_t lock;
523
524 /* Write-intensive fields used by compaction and vmstats. */
525 ZONE_PADDING(_pad2_)
526
527 /*
528 * When free pages are below this point, additional steps are taken
529 * when reading the number of free pages to avoid per-cpu counter
530 * drift allowing watermarks to be breached
531 */
532 unsigned long percpu_drift_mark;
533
534#if defined CONFIG_COMPACTION || defined CONFIG_CMA
535 /* pfn where compaction free scanner should start */
536 unsigned long compact_cached_free_pfn;
537 /* pfn where async and sync compaction migration scanner should start */
538 unsigned long compact_cached_migrate_pfn[2];
539 unsigned long compact_init_migrate_pfn;
540 unsigned long compact_init_free_pfn;
541#endif
542
543#ifdef CONFIG_COMPACTION
544 /*
545 * On compaction failure, 1<<compact_defer_shift compactions
546 * are skipped before trying again. The number attempted since
547 * last failure is tracked with compact_considered.
548 */
549 unsigned int compact_considered;
550 unsigned int compact_defer_shift;
551 int compact_order_failed;
552#endif
553
554#if defined CONFIG_COMPACTION || defined CONFIG_CMA
555 /* Set to true when the PG_migrate_skip bits should be cleared */
556 bool compact_blockskip_flush;
557#endif
558
559 bool contiguous;
560
561 ZONE_PADDING(_pad3_)
562 /* Zone statistics */
563 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
564 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
565} ____cacheline_internodealigned_in_smp;
566
567enum pgdat_flags {
568 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by
569 * a congested BDI
570 */
571 PGDAT_DIRTY, /* reclaim scanning has recently found
572 * many dirty file pages at the tail
573 * of the LRU.
574 */
575 PGDAT_WRITEBACK, /* reclaim scanning has recently found
576 * many pages under writeback
577 */
578 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
579};
580
581enum zone_flags {
582 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
583 * Cleared when kswapd is woken.
584 */
585};
586
587static inline unsigned long zone_managed_pages(struct zone *zone)
588{
589 return (unsigned long)atomic_long_read(&zone->managed_pages);
590}
591
592static inline unsigned long zone_end_pfn(const struct zone *zone)
593{
594 return zone->zone_start_pfn + zone->spanned_pages;
595}
596
597static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
598{
599 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
600}
601
602static inline bool zone_is_initialized(struct zone *zone)
603{
604 return zone->initialized;
605}
606
607static inline bool zone_is_empty(struct zone *zone)
608{
609 return zone->spanned_pages == 0;
610}
611
612/*
613 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
614 * intersection with the given zone
615 */
616static inline bool zone_intersects(struct zone *zone,
617 unsigned long start_pfn, unsigned long nr_pages)
618{
619 if (zone_is_empty(zone))
620 return false;
621 if (start_pfn >= zone_end_pfn(zone) ||
622 start_pfn + nr_pages <= zone->zone_start_pfn)
623 return false;
624
625 return true;
626}
627
628/*
629 * The "priority" of VM scanning is how much of the queues we will scan in one
630 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
631 * queues ("queue_length >> 12") during an aging round.
632 */
633#define DEF_PRIORITY 12
634
635/* Maximum number of zones on a zonelist */
636#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
637
638enum {
639 ZONELIST_FALLBACK, /* zonelist with fallback */
640#ifdef CONFIG_NUMA
641 /*
642 * The NUMA zonelists are doubled because we need zonelists that
643 * restrict the allocations to a single node for __GFP_THISNODE.
644 */
645 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
646#endif
647 MAX_ZONELISTS
648};
649
650/*
651 * This struct contains information about a zone in a zonelist. It is stored
652 * here to avoid dereferences into large structures and lookups of tables
653 */
654struct zoneref {
655 struct zone *zone; /* Pointer to actual zone */
656 int zone_idx; /* zone_idx(zoneref->zone) */
657};
658
659/*
660 * One allocation request operates on a zonelist. A zonelist
661 * is a list of zones, the first one is the 'goal' of the
662 * allocation, the other zones are fallback zones, in decreasing
663 * priority.
664 *
665 * To speed the reading of the zonelist, the zonerefs contain the zone index
666 * of the entry being read. Helper functions to access information given
667 * a struct zoneref are
668 *
669 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
670 * zonelist_zone_idx() - Return the index of the zone for an entry
671 * zonelist_node_idx() - Return the index of the node for an entry
672 */
673struct zonelist {
674 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
675};
676
677#ifndef CONFIG_DISCONTIGMEM
678/* The array of struct pages - for discontigmem use pgdat->lmem_map */
679extern struct page *mem_map;
680#endif
681
682#ifdef CONFIG_TRANSPARENT_HUGEPAGE
683struct deferred_split {
684 spinlock_t split_queue_lock;
685 struct list_head split_queue;
686 unsigned long split_queue_len;
687};
688#endif
689
690/*
691 * On NUMA machines, each NUMA node would have a pg_data_t to describe
692 * it's memory layout. On UMA machines there is a single pglist_data which
693 * describes the whole memory.
694 *
695 * Memory statistics and page replacement data structures are maintained on a
696 * per-zone basis.
697 */
698struct bootmem_data;
699typedef struct pglist_data {
700 struct zone node_zones[MAX_NR_ZONES];
701 struct zonelist node_zonelists[MAX_ZONELISTS];
702 int nr_zones;
703#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
704 struct page *node_mem_map;
705#ifdef CONFIG_PAGE_EXTENSION
706 struct page_ext *node_page_ext;
707#endif
708#endif
709#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
710 /*
711 * Must be held any time you expect node_start_pfn,
712 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
713 *
714 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
715 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
716 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
717 *
718 * Nests above zone->lock and zone->span_seqlock
719 */
720 spinlock_t node_size_lock;
721#endif
722 unsigned long node_start_pfn;
723 unsigned long node_present_pages; /* total number of physical pages */
724 unsigned long node_spanned_pages; /* total size of physical page
725 range, including holes */
726 int node_id;
727 wait_queue_head_t kswapd_wait;
728 wait_queue_head_t pfmemalloc_wait;
729 struct task_struct *kswapd; /* Protected by
730 mem_hotplug_begin/end() */
731 int kswapd_order;
732 enum zone_type kswapd_classzone_idx;
733
734 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
735
736#ifdef CONFIG_COMPACTION
737 int kcompactd_max_order;
738 enum zone_type kcompactd_classzone_idx;
739 wait_queue_head_t kcompactd_wait;
740 struct task_struct *kcompactd;
741#endif
742 /*
743 * This is a per-node reserve of pages that are not available
744 * to userspace allocations.
745 */
746 unsigned long totalreserve_pages;
747
748#ifdef CONFIG_NUMA
749 /*
750 * zone reclaim becomes active if more unmapped pages exist.
751 */
752 unsigned long min_unmapped_pages;
753 unsigned long min_slab_pages;
754#endif /* CONFIG_NUMA */
755
756 /* Write-intensive fields used by page reclaim */
757 ZONE_PADDING(_pad1_)
758 spinlock_t lru_lock;
759
760#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
761 /*
762 * If memory initialisation on large machines is deferred then this
763 * is the first PFN that needs to be initialised.
764 */
765 unsigned long first_deferred_pfn;
766#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
767
768#ifdef CONFIG_TRANSPARENT_HUGEPAGE
769 struct deferred_split deferred_split_queue;
770#endif
771
772 /* Fields commonly accessed by the page reclaim scanner */
773 struct lruvec lruvec;
774
775 unsigned long flags;
776
777 ZONE_PADDING(_pad2_)
778
779 /* Per-node vmstats */
780 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
781 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
782} pg_data_t;
783
784#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
785#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
786#ifdef CONFIG_FLAT_NODE_MEM_MAP
787#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
788#else
789#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
790#endif
791#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
792
793#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
794#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
795
796static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
797{
798 return &pgdat->lruvec;
799}
800
801static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
802{
803 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
804}
805
806static inline bool pgdat_is_empty(pg_data_t *pgdat)
807{
808 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
809}
810
811#include <linux/memory_hotplug.h>
812
813void build_all_zonelists(pg_data_t *pgdat);
814void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
815 enum zone_type classzone_idx);
816bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
817 int classzone_idx, unsigned int alloc_flags,
818 long free_pages);
819bool zone_watermark_ok(struct zone *z, unsigned int order,
820 unsigned long mark, int classzone_idx,
821 unsigned int alloc_flags);
822bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
823 unsigned long mark, int classzone_idx);
824enum memmap_context {
825 MEMMAP_EARLY,
826 MEMMAP_HOTPLUG,
827};
828extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
829 unsigned long size);
830
831extern void lruvec_init(struct lruvec *lruvec);
832
833static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
834{
835#ifdef CONFIG_MEMCG
836 return lruvec->pgdat;
837#else
838 return container_of(lruvec, struct pglist_data, lruvec);
839#endif
840}
841
842extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
843
844#ifdef CONFIG_HAVE_MEMORY_PRESENT
845void memory_present(int nid, unsigned long start, unsigned long end);
846#else
847static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
848#endif
849
850#if defined(CONFIG_SPARSEMEM)
851void memblocks_present(void);
852#else
853static inline void memblocks_present(void) {}
854#endif
855
856#ifdef CONFIG_HAVE_MEMORYLESS_NODES
857int local_memory_node(int node_id);
858#else
859static inline int local_memory_node(int node_id) { return node_id; };
860#endif
861
862/*
863 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
864 */
865#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
866
867/*
868 * Returns true if a zone has pages managed by the buddy allocator.
869 * All the reclaim decisions have to use this function rather than
870 * populated_zone(). If the whole zone is reserved then we can easily
871 * end up with populated_zone() && !managed_zone().
872 */
873static inline bool managed_zone(struct zone *zone)
874{
875 return zone_managed_pages(zone);
876}
877
878/* Returns true if a zone has memory */
879static inline bool populated_zone(struct zone *zone)
880{
881 return zone->present_pages;
882}
883
884#ifdef CONFIG_NUMA
885static inline int zone_to_nid(struct zone *zone)
886{
887 return zone->node;
888}
889
890static inline void zone_set_nid(struct zone *zone, int nid)
891{
892 zone->node = nid;
893}
894#else
895static inline int zone_to_nid(struct zone *zone)
896{
897 return 0;
898}
899
900static inline void zone_set_nid(struct zone *zone, int nid) {}
901#endif
902
903extern int movable_zone;
904
905#ifdef CONFIG_HIGHMEM
906static inline int zone_movable_is_highmem(void)
907{
908#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
909 return movable_zone == ZONE_HIGHMEM;
910#else
911 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
912#endif
913}
914#endif
915
916static inline int is_highmem_idx(enum zone_type idx)
917{
918#ifdef CONFIG_HIGHMEM
919 return (idx == ZONE_HIGHMEM ||
920 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
921#else
922 return 0;
923#endif
924}
925
926/**
927 * is_highmem - helper function to quickly check if a struct zone is a
928 * highmem zone or not. This is an attempt to keep references
929 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
930 * @zone - pointer to struct zone variable
931 */
932static inline int is_highmem(struct zone *zone)
933{
934#ifdef CONFIG_HIGHMEM
935 return is_highmem_idx(zone_idx(zone));
936#else
937 return 0;
938#endif
939}
940
941/* These two functions are used to setup the per zone pages min values */
942struct ctl_table;
943int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
944 void __user *, size_t *, loff_t *);
945int watermark_boost_factor_sysctl_handler(struct ctl_table *, int,
946 void __user *, size_t *, loff_t *);
947int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
948 void __user *, size_t *, loff_t *);
949extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
950int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
951 void __user *, size_t *, loff_t *);
952int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
953 void __user *, size_t *, loff_t *);
954int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
955 void __user *, size_t *, loff_t *);
956int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
957 void __user *, size_t *, loff_t *);
958
959extern int numa_zonelist_order_handler(struct ctl_table *, int,
960 void __user *, size_t *, loff_t *);
961extern char numa_zonelist_order[];
962#define NUMA_ZONELIST_ORDER_LEN 16
963
964#ifndef CONFIG_NEED_MULTIPLE_NODES
965
966extern struct pglist_data contig_page_data;
967#define NODE_DATA(nid) (&contig_page_data)
968#define NODE_MEM_MAP(nid) mem_map
969
970#else /* CONFIG_NEED_MULTIPLE_NODES */
971
972#include <asm/mmzone.h>
973
974#endif /* !CONFIG_NEED_MULTIPLE_NODES */
975
976extern struct pglist_data *first_online_pgdat(void);
977extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
978extern struct zone *next_zone(struct zone *zone);
979
980/**
981 * for_each_online_pgdat - helper macro to iterate over all online nodes
982 * @pgdat - pointer to a pg_data_t variable
983 */
984#define for_each_online_pgdat(pgdat) \
985 for (pgdat = first_online_pgdat(); \
986 pgdat; \
987 pgdat = next_online_pgdat(pgdat))
988/**
989 * for_each_zone - helper macro to iterate over all memory zones
990 * @zone - pointer to struct zone variable
991 *
992 * The user only needs to declare the zone variable, for_each_zone
993 * fills it in.
994 */
995#define for_each_zone(zone) \
996 for (zone = (first_online_pgdat())->node_zones; \
997 zone; \
998 zone = next_zone(zone))
999
1000#define for_each_populated_zone(zone) \
1001 for (zone = (first_online_pgdat())->node_zones; \
1002 zone; \
1003 zone = next_zone(zone)) \
1004 if (!populated_zone(zone)) \
1005 ; /* do nothing */ \
1006 else
1007
1008static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1009{
1010 return zoneref->zone;
1011}
1012
1013static inline int zonelist_zone_idx(struct zoneref *zoneref)
1014{
1015 return zoneref->zone_idx;
1016}
1017
1018static inline int zonelist_node_idx(struct zoneref *zoneref)
1019{
1020 return zone_to_nid(zoneref->zone);
1021}
1022
1023struct zoneref *__next_zones_zonelist(struct zoneref *z,
1024 enum zone_type highest_zoneidx,
1025 nodemask_t *nodes);
1026
1027/**
1028 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1029 * @z - The cursor used as a starting point for the search
1030 * @highest_zoneidx - The zone index of the highest zone to return
1031 * @nodes - An optional nodemask to filter the zonelist with
1032 *
1033 * This function returns the next zone at or below a given zone index that is
1034 * within the allowed nodemask using a cursor as the starting point for the
1035 * search. The zoneref returned is a cursor that represents the current zone
1036 * being examined. It should be advanced by one before calling
1037 * next_zones_zonelist again.
1038 */
1039static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1040 enum zone_type highest_zoneidx,
1041 nodemask_t *nodes)
1042{
1043 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1044 return z;
1045 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1046}
1047
1048/**
1049 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1050 * @zonelist - The zonelist to search for a suitable zone
1051 * @highest_zoneidx - The zone index of the highest zone to return
1052 * @nodes - An optional nodemask to filter the zonelist with
1053 * @return - Zoneref pointer for the first suitable zone found (see below)
1054 *
1055 * This function returns the first zone at or below a given zone index that is
1056 * within the allowed nodemask. The zoneref returned is a cursor that can be
1057 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1058 * one before calling.
1059 *
1060 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1061 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1062 * update due to cpuset modification.
1063 */
1064static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1065 enum zone_type highest_zoneidx,
1066 nodemask_t *nodes)
1067{
1068 return next_zones_zonelist(zonelist->_zonerefs,
1069 highest_zoneidx, nodes);
1070}
1071
1072/**
1073 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1074 * @zone - The current zone in the iterator
1075 * @z - The current pointer within zonelist->zones being iterated
1076 * @zlist - The zonelist being iterated
1077 * @highidx - The zone index of the highest zone to return
1078 * @nodemask - Nodemask allowed by the allocator
1079 *
1080 * This iterator iterates though all zones at or below a given zone index and
1081 * within a given nodemask
1082 */
1083#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1084 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1085 zone; \
1086 z = next_zones_zonelist(++z, highidx, nodemask), \
1087 zone = zonelist_zone(z))
1088
1089#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1090 for (zone = z->zone; \
1091 zone; \
1092 z = next_zones_zonelist(++z, highidx, nodemask), \
1093 zone = zonelist_zone(z))
1094
1095
1096/**
1097 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1098 * @zone - The current zone in the iterator
1099 * @z - The current pointer within zonelist->zones being iterated
1100 * @zlist - The zonelist being iterated
1101 * @highidx - The zone index of the highest zone to return
1102 *
1103 * This iterator iterates though all zones at or below a given zone index.
1104 */
1105#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1106 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1107
1108#ifdef CONFIG_SPARSEMEM
1109#include <asm/sparsemem.h>
1110#endif
1111
1112#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1113 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1114static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1115{
1116 BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1117 return 0;
1118}
1119#endif
1120
1121#ifdef CONFIG_FLATMEM
1122#define pfn_to_nid(pfn) (0)
1123#endif
1124
1125#ifdef CONFIG_SPARSEMEM
1126
1127/*
1128 * SECTION_SHIFT #bits space required to store a section #
1129 *
1130 * PA_SECTION_SHIFT physical address to/from section number
1131 * PFN_SECTION_SHIFT pfn to/from section number
1132 */
1133#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1134#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1135
1136#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1137
1138#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1139#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1140
1141#define SECTION_BLOCKFLAGS_BITS \
1142 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1143
1144#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1145#error Allocator MAX_ORDER exceeds SECTION_SIZE
1146#endif
1147
1148static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1149{
1150 return pfn >> PFN_SECTION_SHIFT;
1151}
1152static inline unsigned long section_nr_to_pfn(unsigned long sec)
1153{
1154 return sec << PFN_SECTION_SHIFT;
1155}
1156
1157#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1158#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1159
1160#define SUBSECTION_SHIFT 21
1161
1162#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1163#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1164#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1165
1166#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1167#error Subsection size exceeds section size
1168#else
1169#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1170#endif
1171
1172#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1173#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1174
1175struct mem_section_usage {
1176 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1177 /* See declaration of similar field in struct zone */
1178 unsigned long pageblock_flags[0];
1179};
1180
1181void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1182
1183struct page;
1184struct page_ext;
1185struct mem_section {
1186 /*
1187 * This is, logically, a pointer to an array of struct
1188 * pages. However, it is stored with some other magic.
1189 * (see sparse.c::sparse_init_one_section())
1190 *
1191 * Additionally during early boot we encode node id of
1192 * the location of the section here to guide allocation.
1193 * (see sparse.c::memory_present())
1194 *
1195 * Making it a UL at least makes someone do a cast
1196 * before using it wrong.
1197 */
1198 unsigned long section_mem_map;
1199
1200 struct mem_section_usage *usage;
1201#ifdef CONFIG_PAGE_EXTENSION
1202 /*
1203 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1204 * section. (see page_ext.h about this.)
1205 */
1206 struct page_ext *page_ext;
1207 unsigned long pad;
1208#endif
1209 /*
1210 * WARNING: mem_section must be a power-of-2 in size for the
1211 * calculation and use of SECTION_ROOT_MASK to make sense.
1212 */
1213};
1214
1215#ifdef CONFIG_SPARSEMEM_EXTREME
1216#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1217#else
1218#define SECTIONS_PER_ROOT 1
1219#endif
1220
1221#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1222#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1223#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1224
1225#ifdef CONFIG_SPARSEMEM_EXTREME
1226extern struct mem_section **mem_section;
1227#else
1228extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1229#endif
1230
1231static inline unsigned long *section_to_usemap(struct mem_section *ms)
1232{
1233 return ms->usage->pageblock_flags;
1234}
1235
1236static inline struct mem_section *__nr_to_section(unsigned long nr)
1237{
1238#ifdef CONFIG_SPARSEMEM_EXTREME
1239 if (!mem_section)
1240 return NULL;
1241#endif
1242 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1243 return NULL;
1244 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1245}
1246extern unsigned long __section_nr(struct mem_section *ms);
1247extern size_t mem_section_usage_size(void);
1248
1249/*
1250 * We use the lower bits of the mem_map pointer to store
1251 * a little bit of information. The pointer is calculated
1252 * as mem_map - section_nr_to_pfn(pnum). The result is
1253 * aligned to the minimum alignment of the two values:
1254 * 1. All mem_map arrays are page-aligned.
1255 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1256 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1257 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1258 * worst combination is powerpc with 256k pages,
1259 * which results in PFN_SECTION_SHIFT equal 6.
1260 * To sum it up, at least 6 bits are available.
1261 */
1262#define SECTION_MARKED_PRESENT (1UL<<0)
1263#define SECTION_HAS_MEM_MAP (1UL<<1)
1264#define SECTION_IS_ONLINE (1UL<<2)
1265#define SECTION_IS_EARLY (1UL<<3)
1266#define SECTION_MAP_LAST_BIT (1UL<<4)
1267#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1268#define SECTION_NID_SHIFT 3
1269
1270static inline struct page *__section_mem_map_addr(struct mem_section *section)
1271{
1272 unsigned long map = section->section_mem_map;
1273 map &= SECTION_MAP_MASK;
1274 return (struct page *)map;
1275}
1276
1277static inline int present_section(struct mem_section *section)
1278{
1279 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1280}
1281
1282static inline int present_section_nr(unsigned long nr)
1283{
1284 return present_section(__nr_to_section(nr));
1285}
1286
1287static inline int valid_section(struct mem_section *section)
1288{
1289 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1290}
1291
1292static inline int early_section(struct mem_section *section)
1293{
1294 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1295}
1296
1297static inline int valid_section_nr(unsigned long nr)
1298{
1299 return valid_section(__nr_to_section(nr));
1300}
1301
1302static inline int online_section(struct mem_section *section)
1303{
1304 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1305}
1306
1307static inline int online_section_nr(unsigned long nr)
1308{
1309 return online_section(__nr_to_section(nr));
1310}
1311
1312#ifdef CONFIG_MEMORY_HOTPLUG
1313void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1314#ifdef CONFIG_MEMORY_HOTREMOVE
1315void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1316#endif
1317#endif
1318
1319static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1320{
1321 return __nr_to_section(pfn_to_section_nr(pfn));
1322}
1323
1324extern unsigned long __highest_present_section_nr;
1325
1326static inline int subsection_map_index(unsigned long pfn)
1327{
1328 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1329}
1330
1331#ifdef CONFIG_SPARSEMEM_VMEMMAP
1332static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1333{
1334 int idx = subsection_map_index(pfn);
1335
1336 return test_bit(idx, ms->usage->subsection_map);
1337}
1338#else
1339static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1340{
1341 return 1;
1342}
1343#endif
1344
1345#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1346static inline int pfn_valid(unsigned long pfn)
1347{
1348 struct mem_section *ms;
1349
1350 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1351 return 0;
1352 ms = __nr_to_section(pfn_to_section_nr(pfn));
1353 if (!valid_section(ms))
1354 return 0;
1355 /*
1356 * Traditionally early sections always returned pfn_valid() for
1357 * the entire section-sized span.
1358 */
1359 return early_section(ms) || pfn_section_valid(ms, pfn);
1360}
1361#endif
1362
1363static inline int pfn_present(unsigned long pfn)
1364{
1365 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1366 return 0;
1367 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1368}
1369
1370/*
1371 * These are _only_ used during initialisation, therefore they
1372 * can use __initdata ... They could have names to indicate
1373 * this restriction.
1374 */
1375#ifdef CONFIG_NUMA
1376#define pfn_to_nid(pfn) \
1377({ \
1378 unsigned long __pfn_to_nid_pfn = (pfn); \
1379 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1380})
1381#else
1382#define pfn_to_nid(pfn) (0)
1383#endif
1384
1385#define early_pfn_valid(pfn) pfn_valid(pfn)
1386void sparse_init(void);
1387#else
1388#define sparse_init() do {} while (0)
1389#define sparse_index_init(_sec, _nid) do {} while (0)
1390#define pfn_present pfn_valid
1391#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1392#endif /* CONFIG_SPARSEMEM */
1393
1394/*
1395 * During memory init memblocks map pfns to nids. The search is expensive and
1396 * this caches recent lookups. The implementation of __early_pfn_to_nid
1397 * may treat start/end as pfns or sections.
1398 */
1399struct mminit_pfnnid_cache {
1400 unsigned long last_start;
1401 unsigned long last_end;
1402 int last_nid;
1403};
1404
1405#ifndef early_pfn_valid
1406#define early_pfn_valid(pfn) (1)
1407#endif
1408
1409void memory_present(int nid, unsigned long start, unsigned long end);
1410
1411/*
1412 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1413 * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1414 * pfn_valid_within() should be used in this case; we optimise this away
1415 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1416 */
1417#ifdef CONFIG_HOLES_IN_ZONE
1418#define pfn_valid_within(pfn) pfn_valid(pfn)
1419#else
1420#define pfn_valid_within(pfn) (1)
1421#endif
1422
1423#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1424/*
1425 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1426 * associated with it or not. This means that a struct page exists for this
1427 * pfn. The caller cannot assume the page is fully initialized in general.
1428 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1429 * will ensure the struct page is fully online and initialized. Special pages
1430 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1431 *
1432 * In FLATMEM, it is expected that holes always have valid memmap as long as
1433 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1434 * that a valid section has a memmap for the entire section.
1435 *
1436 * However, an ARM, and maybe other embedded architectures in the future
1437 * free memmap backing holes to save memory on the assumption the memmap is
1438 * never used. The page_zone linkages are then broken even though pfn_valid()
1439 * returns true. A walker of the full memmap must then do this additional
1440 * check to ensure the memmap they are looking at is sane by making sure
1441 * the zone and PFN linkages are still valid. This is expensive, but walkers
1442 * of the full memmap are extremely rare.
1443 */
1444bool memmap_valid_within(unsigned long pfn,
1445 struct page *page, struct zone *zone);
1446#else
1447static inline bool memmap_valid_within(unsigned long pfn,
1448 struct page *page, struct zone *zone)
1449{
1450 return true;
1451}
1452#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1453
1454#endif /* !__GENERATING_BOUNDS.H */
1455#endif /* !__ASSEMBLY__ */
1456#endif /* _LINUX_MMZONE_H */