Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_trans.h"
14#include "xfs_buf_item.h"
15#include "xfs_trans_priv.h"
16#include "xfs_trace.h"
17
18/*
19 * Check to see if a buffer matching the given parameters is already
20 * a part of the given transaction.
21 */
22STATIC struct xfs_buf *
23xfs_trans_buf_item_match(
24 struct xfs_trans *tp,
25 struct xfs_buftarg *target,
26 struct xfs_buf_map *map,
27 int nmaps)
28{
29 struct xfs_log_item *lip;
30 struct xfs_buf_log_item *blip;
31 int len = 0;
32 int i;
33
34 for (i = 0; i < nmaps; i++)
35 len += map[i].bm_len;
36
37 list_for_each_entry(lip, &tp->t_items, li_trans) {
38 blip = (struct xfs_buf_log_item *)lip;
39 if (blip->bli_item.li_type == XFS_LI_BUF &&
40 blip->bli_buf->b_target == target &&
41 XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
42 blip->bli_buf->b_length == len) {
43 ASSERT(blip->bli_buf->b_map_count == nmaps);
44 return blip->bli_buf;
45 }
46 }
47
48 return NULL;
49}
50
51/*
52 * Add the locked buffer to the transaction.
53 *
54 * The buffer must be locked, and it cannot be associated with any
55 * transaction.
56 *
57 * If the buffer does not yet have a buf log item associated with it,
58 * then allocate one for it. Then add the buf item to the transaction.
59 */
60STATIC void
61_xfs_trans_bjoin(
62 struct xfs_trans *tp,
63 struct xfs_buf *bp,
64 int reset_recur)
65{
66 struct xfs_buf_log_item *bip;
67
68 ASSERT(bp->b_transp == NULL);
69
70 /*
71 * The xfs_buf_log_item pointer is stored in b_log_item. If
72 * it doesn't have one yet, then allocate one and initialize it.
73 * The checks to see if one is there are in xfs_buf_item_init().
74 */
75 xfs_buf_item_init(bp, tp->t_mountp);
76 bip = bp->b_log_item;
77 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
78 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
79 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
80 if (reset_recur)
81 bip->bli_recur = 0;
82
83 /*
84 * Take a reference for this transaction on the buf item.
85 */
86 atomic_inc(&bip->bli_refcount);
87
88 /*
89 * Attach the item to the transaction so we can find it in
90 * xfs_trans_get_buf() and friends.
91 */
92 xfs_trans_add_item(tp, &bip->bli_item);
93 bp->b_transp = tp;
94
95}
96
97void
98xfs_trans_bjoin(
99 struct xfs_trans *tp,
100 struct xfs_buf *bp)
101{
102 _xfs_trans_bjoin(tp, bp, 0);
103 trace_xfs_trans_bjoin(bp->b_log_item);
104}
105
106/*
107 * Get and lock the buffer for the caller if it is not already
108 * locked within the given transaction. If it is already locked
109 * within the transaction, just increment its lock recursion count
110 * and return a pointer to it.
111 *
112 * If the transaction pointer is NULL, make this just a normal
113 * get_buf() call.
114 */
115int
116xfs_trans_get_buf_map(
117 struct xfs_trans *tp,
118 struct xfs_buftarg *target,
119 struct xfs_buf_map *map,
120 int nmaps,
121 xfs_buf_flags_t flags,
122 struct xfs_buf **bpp)
123{
124 xfs_buf_t *bp;
125 struct xfs_buf_log_item *bip;
126 int error;
127
128 *bpp = NULL;
129 if (!tp)
130 return xfs_buf_get_map(target, map, nmaps, flags, bpp);
131
132 /*
133 * If we find the buffer in the cache with this transaction
134 * pointer in its b_fsprivate2 field, then we know we already
135 * have it locked. In this case we just increment the lock
136 * recursion count and return the buffer to the caller.
137 */
138 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
139 if (bp != NULL) {
140 ASSERT(xfs_buf_islocked(bp));
141 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
142 xfs_buf_stale(bp);
143 bp->b_flags |= XBF_DONE;
144 }
145
146 ASSERT(bp->b_transp == tp);
147 bip = bp->b_log_item;
148 ASSERT(bip != NULL);
149 ASSERT(atomic_read(&bip->bli_refcount) > 0);
150 bip->bli_recur++;
151 trace_xfs_trans_get_buf_recur(bip);
152 *bpp = bp;
153 return 0;
154 }
155
156 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
157 if (error)
158 return error;
159
160 ASSERT(!bp->b_error);
161
162 _xfs_trans_bjoin(tp, bp, 1);
163 trace_xfs_trans_get_buf(bp->b_log_item);
164 *bpp = bp;
165 return 0;
166}
167
168/*
169 * Get and lock the superblock buffer of this file system for the
170 * given transaction.
171 *
172 * We don't need to use incore_match() here, because the superblock
173 * buffer is a private buffer which we keep a pointer to in the
174 * mount structure.
175 */
176xfs_buf_t *
177xfs_trans_getsb(
178 xfs_trans_t *tp,
179 struct xfs_mount *mp)
180{
181 xfs_buf_t *bp;
182 struct xfs_buf_log_item *bip;
183
184 /*
185 * Default to just trying to lock the superblock buffer
186 * if tp is NULL.
187 */
188 if (tp == NULL)
189 return xfs_getsb(mp);
190
191 /*
192 * If the superblock buffer already has this transaction
193 * pointer in its b_fsprivate2 field, then we know we already
194 * have it locked. In this case we just increment the lock
195 * recursion count and return the buffer to the caller.
196 */
197 bp = mp->m_sb_bp;
198 if (bp->b_transp == tp) {
199 bip = bp->b_log_item;
200 ASSERT(bip != NULL);
201 ASSERT(atomic_read(&bip->bli_refcount) > 0);
202 bip->bli_recur++;
203 trace_xfs_trans_getsb_recur(bip);
204 return bp;
205 }
206
207 bp = xfs_getsb(mp);
208 if (bp == NULL)
209 return NULL;
210
211 _xfs_trans_bjoin(tp, bp, 1);
212 trace_xfs_trans_getsb(bp->b_log_item);
213 return bp;
214}
215
216/*
217 * Get and lock the buffer for the caller if it is not already
218 * locked within the given transaction. If it has not yet been
219 * read in, read it from disk. If it is already locked
220 * within the transaction and already read in, just increment its
221 * lock recursion count and return a pointer to it.
222 *
223 * If the transaction pointer is NULL, make this just a normal
224 * read_buf() call.
225 */
226int
227xfs_trans_read_buf_map(
228 struct xfs_mount *mp,
229 struct xfs_trans *tp,
230 struct xfs_buftarg *target,
231 struct xfs_buf_map *map,
232 int nmaps,
233 xfs_buf_flags_t flags,
234 struct xfs_buf **bpp,
235 const struct xfs_buf_ops *ops)
236{
237 struct xfs_buf *bp = NULL;
238 struct xfs_buf_log_item *bip;
239 int error;
240
241 *bpp = NULL;
242 /*
243 * If we find the buffer in the cache with this transaction
244 * pointer in its b_fsprivate2 field, then we know we already
245 * have it locked. If it is already read in we just increment
246 * the lock recursion count and return the buffer to the caller.
247 * If the buffer is not yet read in, then we read it in, increment
248 * the lock recursion count, and return it to the caller.
249 */
250 if (tp)
251 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
252 if (bp) {
253 ASSERT(xfs_buf_islocked(bp));
254 ASSERT(bp->b_transp == tp);
255 ASSERT(bp->b_log_item != NULL);
256 ASSERT(!bp->b_error);
257 ASSERT(bp->b_flags & XBF_DONE);
258
259 /*
260 * We never locked this buf ourselves, so we shouldn't
261 * brelse it either. Just get out.
262 */
263 if (XFS_FORCED_SHUTDOWN(mp)) {
264 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
265 return -EIO;
266 }
267
268 /*
269 * Check if the caller is trying to read a buffer that is
270 * already attached to the transaction yet has no buffer ops
271 * assigned. Ops are usually attached when the buffer is
272 * attached to the transaction, or by the read caller if
273 * special circumstances. That didn't happen, which is not
274 * how this is supposed to go.
275 *
276 * If the buffer passes verification we'll let this go, but if
277 * not we have to shut down. Let the transaction cleanup code
278 * release this buffer when it kills the tranaction.
279 */
280 ASSERT(bp->b_ops != NULL);
281 error = xfs_buf_reverify(bp, ops);
282 if (error) {
283 xfs_buf_ioerror_alert(bp, __return_address);
284
285 if (tp->t_flags & XFS_TRANS_DIRTY)
286 xfs_force_shutdown(tp->t_mountp,
287 SHUTDOWN_META_IO_ERROR);
288
289 /* bad CRC means corrupted metadata */
290 if (error == -EFSBADCRC)
291 error = -EFSCORRUPTED;
292 return error;
293 }
294
295 bip = bp->b_log_item;
296 bip->bli_recur++;
297
298 ASSERT(atomic_read(&bip->bli_refcount) > 0);
299 trace_xfs_trans_read_buf_recur(bip);
300 ASSERT(bp->b_ops != NULL || ops == NULL);
301 *bpp = bp;
302 return 0;
303 }
304
305 error = xfs_buf_read_map(target, map, nmaps, flags, &bp, ops,
306 __return_address);
307 switch (error) {
308 case 0:
309 break;
310 default:
311 if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
312 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
313 /* fall through */
314 case -ENOMEM:
315 case -EAGAIN:
316 return error;
317 }
318
319 if (XFS_FORCED_SHUTDOWN(mp)) {
320 xfs_buf_relse(bp);
321 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
322 return -EIO;
323 }
324
325 if (tp) {
326 _xfs_trans_bjoin(tp, bp, 1);
327 trace_xfs_trans_read_buf(bp->b_log_item);
328 }
329 ASSERT(bp->b_ops != NULL || ops == NULL);
330 *bpp = bp;
331 return 0;
332
333}
334
335/* Has this buffer been dirtied by anyone? */
336bool
337xfs_trans_buf_is_dirty(
338 struct xfs_buf *bp)
339{
340 struct xfs_buf_log_item *bip = bp->b_log_item;
341
342 if (!bip)
343 return false;
344 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
345 return test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
346}
347
348/*
349 * Release a buffer previously joined to the transaction. If the buffer is
350 * modified within this transaction, decrement the recursion count but do not
351 * release the buffer even if the count goes to 0. If the buffer is not modified
352 * within the transaction, decrement the recursion count and release the buffer
353 * if the recursion count goes to 0.
354 *
355 * If the buffer is to be released and it was not already dirty before this
356 * transaction began, then also free the buf_log_item associated with it.
357 *
358 * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call.
359 */
360void
361xfs_trans_brelse(
362 struct xfs_trans *tp,
363 struct xfs_buf *bp)
364{
365 struct xfs_buf_log_item *bip = bp->b_log_item;
366
367 ASSERT(bp->b_transp == tp);
368
369 if (!tp) {
370 xfs_buf_relse(bp);
371 return;
372 }
373
374 trace_xfs_trans_brelse(bip);
375 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
376 ASSERT(atomic_read(&bip->bli_refcount) > 0);
377
378 /*
379 * If the release is for a recursive lookup, then decrement the count
380 * and return.
381 */
382 if (bip->bli_recur > 0) {
383 bip->bli_recur--;
384 return;
385 }
386
387 /*
388 * If the buffer is invalidated or dirty in this transaction, we can't
389 * release it until we commit.
390 */
391 if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags))
392 return;
393 if (bip->bli_flags & XFS_BLI_STALE)
394 return;
395
396 /*
397 * Unlink the log item from the transaction and clear the hold flag, if
398 * set. We wouldn't want the next user of the buffer to get confused.
399 */
400 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
401 xfs_trans_del_item(&bip->bli_item);
402 bip->bli_flags &= ~XFS_BLI_HOLD;
403
404 /* drop the reference to the bli */
405 xfs_buf_item_put(bip);
406
407 bp->b_transp = NULL;
408 xfs_buf_relse(bp);
409}
410
411/*
412 * Mark the buffer as not needing to be unlocked when the buf item's
413 * iop_committing() routine is called. The buffer must already be locked
414 * and associated with the given transaction.
415 */
416/* ARGSUSED */
417void
418xfs_trans_bhold(
419 xfs_trans_t *tp,
420 xfs_buf_t *bp)
421{
422 struct xfs_buf_log_item *bip = bp->b_log_item;
423
424 ASSERT(bp->b_transp == tp);
425 ASSERT(bip != NULL);
426 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
427 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
428 ASSERT(atomic_read(&bip->bli_refcount) > 0);
429
430 bip->bli_flags |= XFS_BLI_HOLD;
431 trace_xfs_trans_bhold(bip);
432}
433
434/*
435 * Cancel the previous buffer hold request made on this buffer
436 * for this transaction.
437 */
438void
439xfs_trans_bhold_release(
440 xfs_trans_t *tp,
441 xfs_buf_t *bp)
442{
443 struct xfs_buf_log_item *bip = bp->b_log_item;
444
445 ASSERT(bp->b_transp == tp);
446 ASSERT(bip != NULL);
447 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
448 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
449 ASSERT(atomic_read(&bip->bli_refcount) > 0);
450 ASSERT(bip->bli_flags & XFS_BLI_HOLD);
451
452 bip->bli_flags &= ~XFS_BLI_HOLD;
453 trace_xfs_trans_bhold_release(bip);
454}
455
456/*
457 * Mark a buffer dirty in the transaction.
458 */
459void
460xfs_trans_dirty_buf(
461 struct xfs_trans *tp,
462 struct xfs_buf *bp)
463{
464 struct xfs_buf_log_item *bip = bp->b_log_item;
465
466 ASSERT(bp->b_transp == tp);
467 ASSERT(bip != NULL);
468
469 /*
470 * Mark the buffer as needing to be written out eventually,
471 * and set its iodone function to remove the buffer's buf log
472 * item from the AIL and free it when the buffer is flushed
473 * to disk.
474 */
475 bp->b_flags |= XBF_DONE;
476
477 ASSERT(atomic_read(&bip->bli_refcount) > 0);
478
479 /*
480 * If we invalidated the buffer within this transaction, then
481 * cancel the invalidation now that we're dirtying the buffer
482 * again. There are no races with the code in xfs_buf_item_unpin(),
483 * because we have a reference to the buffer this entire time.
484 */
485 if (bip->bli_flags & XFS_BLI_STALE) {
486 bip->bli_flags &= ~XFS_BLI_STALE;
487 ASSERT(bp->b_flags & XBF_STALE);
488 bp->b_flags &= ~XBF_STALE;
489 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
490 }
491 bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
492
493 tp->t_flags |= XFS_TRANS_DIRTY;
494 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
495}
496
497/*
498 * This is called to mark bytes first through last inclusive of the given
499 * buffer as needing to be logged when the transaction is committed.
500 * The buffer must already be associated with the given transaction.
501 *
502 * First and last are numbers relative to the beginning of this buffer,
503 * so the first byte in the buffer is numbered 0 regardless of the
504 * value of b_blkno.
505 */
506void
507xfs_trans_log_buf(
508 struct xfs_trans *tp,
509 struct xfs_buf *bp,
510 uint first,
511 uint last)
512{
513 struct xfs_buf_log_item *bip = bp->b_log_item;
514
515 ASSERT(first <= last && last < BBTOB(bp->b_length));
516 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
517
518 xfs_trans_dirty_buf(tp, bp);
519
520 trace_xfs_trans_log_buf(bip);
521 xfs_buf_item_log(bip, first, last);
522}
523
524
525/*
526 * Invalidate a buffer that is being used within a transaction.
527 *
528 * Typically this is because the blocks in the buffer are being freed, so we
529 * need to prevent it from being written out when we're done. Allowing it
530 * to be written again might overwrite data in the free blocks if they are
531 * reallocated to a file.
532 *
533 * We prevent the buffer from being written out by marking it stale. We can't
534 * get rid of the buf log item at this point because the buffer may still be
535 * pinned by another transaction. If that is the case, then we'll wait until
536 * the buffer is committed to disk for the last time (we can tell by the ref
537 * count) and free it in xfs_buf_item_unpin(). Until that happens we will
538 * keep the buffer locked so that the buffer and buf log item are not reused.
539 *
540 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
541 * the buf item. This will be used at recovery time to determine that copies
542 * of the buffer in the log before this should not be replayed.
543 *
544 * We mark the item descriptor and the transaction dirty so that we'll hold
545 * the buffer until after the commit.
546 *
547 * Since we're invalidating the buffer, we also clear the state about which
548 * parts of the buffer have been logged. We also clear the flag indicating
549 * that this is an inode buffer since the data in the buffer will no longer
550 * be valid.
551 *
552 * We set the stale bit in the buffer as well since we're getting rid of it.
553 */
554void
555xfs_trans_binval(
556 xfs_trans_t *tp,
557 xfs_buf_t *bp)
558{
559 struct xfs_buf_log_item *bip = bp->b_log_item;
560 int i;
561
562 ASSERT(bp->b_transp == tp);
563 ASSERT(bip != NULL);
564 ASSERT(atomic_read(&bip->bli_refcount) > 0);
565
566 trace_xfs_trans_binval(bip);
567
568 if (bip->bli_flags & XFS_BLI_STALE) {
569 /*
570 * If the buffer is already invalidated, then
571 * just return.
572 */
573 ASSERT(bp->b_flags & XBF_STALE);
574 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
575 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
576 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
577 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
578 ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
579 ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
580 return;
581 }
582
583 xfs_buf_stale(bp);
584
585 bip->bli_flags |= XFS_BLI_STALE;
586 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
587 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
588 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
589 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
590 for (i = 0; i < bip->bli_format_count; i++) {
591 memset(bip->bli_formats[i].blf_data_map, 0,
592 (bip->bli_formats[i].blf_map_size * sizeof(uint)));
593 }
594 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
595 tp->t_flags |= XFS_TRANS_DIRTY;
596}
597
598/*
599 * This call is used to indicate that the buffer contains on-disk inodes which
600 * must be handled specially during recovery. They require special handling
601 * because only the di_next_unlinked from the inodes in the buffer should be
602 * recovered. The rest of the data in the buffer is logged via the inodes
603 * themselves.
604 *
605 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
606 * transferred to the buffer's log format structure so that we'll know what to
607 * do at recovery time.
608 */
609void
610xfs_trans_inode_buf(
611 xfs_trans_t *tp,
612 xfs_buf_t *bp)
613{
614 struct xfs_buf_log_item *bip = bp->b_log_item;
615
616 ASSERT(bp->b_transp == tp);
617 ASSERT(bip != NULL);
618 ASSERT(atomic_read(&bip->bli_refcount) > 0);
619
620 bip->bli_flags |= XFS_BLI_INODE_BUF;
621 bp->b_flags |= _XBF_INODES;
622 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
623}
624
625/*
626 * This call is used to indicate that the buffer is going to
627 * be staled and was an inode buffer. This means it gets
628 * special processing during unpin - where any inodes
629 * associated with the buffer should be removed from ail.
630 * There is also special processing during recovery,
631 * any replay of the inodes in the buffer needs to be
632 * prevented as the buffer may have been reused.
633 */
634void
635xfs_trans_stale_inode_buf(
636 xfs_trans_t *tp,
637 xfs_buf_t *bp)
638{
639 struct xfs_buf_log_item *bip = bp->b_log_item;
640
641 ASSERT(bp->b_transp == tp);
642 ASSERT(bip != NULL);
643 ASSERT(atomic_read(&bip->bli_refcount) > 0);
644
645 bip->bli_flags |= XFS_BLI_STALE_INODE;
646 bp->b_flags |= _XBF_INODES;
647 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
648}
649
650/*
651 * Mark the buffer as being one which contains newly allocated
652 * inodes. We need to make sure that even if this buffer is
653 * relogged as an 'inode buf' we still recover all of the inode
654 * images in the face of a crash. This works in coordination with
655 * xfs_buf_item_committed() to ensure that the buffer remains in the
656 * AIL at its original location even after it has been relogged.
657 */
658/* ARGSUSED */
659void
660xfs_trans_inode_alloc_buf(
661 xfs_trans_t *tp,
662 xfs_buf_t *bp)
663{
664 struct xfs_buf_log_item *bip = bp->b_log_item;
665
666 ASSERT(bp->b_transp == tp);
667 ASSERT(bip != NULL);
668 ASSERT(atomic_read(&bip->bli_refcount) > 0);
669
670 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
671 bp->b_flags |= _XBF_INODES;
672 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
673}
674
675/*
676 * Mark the buffer as ordered for this transaction. This means that the contents
677 * of the buffer are not recorded in the transaction but it is tracked in the
678 * AIL as though it was. This allows us to record logical changes in
679 * transactions rather than the physical changes we make to the buffer without
680 * changing writeback ordering constraints of metadata buffers.
681 */
682bool
683xfs_trans_ordered_buf(
684 struct xfs_trans *tp,
685 struct xfs_buf *bp)
686{
687 struct xfs_buf_log_item *bip = bp->b_log_item;
688
689 ASSERT(bp->b_transp == tp);
690 ASSERT(bip != NULL);
691 ASSERT(atomic_read(&bip->bli_refcount) > 0);
692
693 if (xfs_buf_item_dirty_format(bip))
694 return false;
695
696 bip->bli_flags |= XFS_BLI_ORDERED;
697 trace_xfs_buf_item_ordered(bip);
698
699 /*
700 * We don't log a dirty range of an ordered buffer but it still needs
701 * to be marked dirty and that it has been logged.
702 */
703 xfs_trans_dirty_buf(tp, bp);
704 return true;
705}
706
707/*
708 * Set the type of the buffer for log recovery so that it can correctly identify
709 * and hence attach the correct buffer ops to the buffer after replay.
710 */
711void
712xfs_trans_buf_set_type(
713 struct xfs_trans *tp,
714 struct xfs_buf *bp,
715 enum xfs_blft type)
716{
717 struct xfs_buf_log_item *bip = bp->b_log_item;
718
719 if (!tp)
720 return;
721
722 ASSERT(bp->b_transp == tp);
723 ASSERT(bip != NULL);
724 ASSERT(atomic_read(&bip->bli_refcount) > 0);
725
726 xfs_blft_to_flags(&bip->__bli_format, type);
727}
728
729void
730xfs_trans_buf_copy_type(
731 struct xfs_buf *dst_bp,
732 struct xfs_buf *src_bp)
733{
734 struct xfs_buf_log_item *sbip = src_bp->b_log_item;
735 struct xfs_buf_log_item *dbip = dst_bp->b_log_item;
736 enum xfs_blft type;
737
738 type = xfs_blft_from_flags(&sbip->__bli_format);
739 xfs_blft_to_flags(&dbip->__bli_format, type);
740}
741
742/*
743 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
744 * dquots. However, unlike in inode buffer recovery, dquot buffers get
745 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
746 * The only thing that makes dquot buffers different from regular
747 * buffers is that we must not replay dquot bufs when recovering
748 * if a _corresponding_ quotaoff has happened. We also have to distinguish
749 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
750 * can be turned off independently.
751 */
752/* ARGSUSED */
753void
754xfs_trans_dquot_buf(
755 xfs_trans_t *tp,
756 xfs_buf_t *bp,
757 uint type)
758{
759 struct xfs_buf_log_item *bip = bp->b_log_item;
760
761 ASSERT(type == XFS_BLF_UDQUOT_BUF ||
762 type == XFS_BLF_PDQUOT_BUF ||
763 type == XFS_BLF_GDQUOT_BUF);
764
765 bip->__bli_format.blf_flags |= type;
766
767 switch (type) {
768 case XFS_BLF_UDQUOT_BUF:
769 type = XFS_BLFT_UDQUOT_BUF;
770 break;
771 case XFS_BLF_PDQUOT_BUF:
772 type = XFS_BLFT_PDQUOT_BUF;
773 break;
774 case XFS_BLF_GDQUOT_BUF:
775 type = XFS_BLFT_GDQUOT_BUF;
776 break;
777 default:
778 type = XFS_BLFT_UNKNOWN_BUF;
779 break;
780 }
781
782 bp->b_flags |= _XBF_DQUOTS;
783 xfs_trans_buf_set_type(tp, bp, type);
784}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_trans.h"
14#include "xfs_buf_item.h"
15#include "xfs_trans_priv.h"
16#include "xfs_trace.h"
17
18/*
19 * Check to see if a buffer matching the given parameters is already
20 * a part of the given transaction.
21 */
22STATIC struct xfs_buf *
23xfs_trans_buf_item_match(
24 struct xfs_trans *tp,
25 struct xfs_buftarg *target,
26 struct xfs_buf_map *map,
27 int nmaps)
28{
29 struct xfs_log_item *lip;
30 struct xfs_buf_log_item *blip;
31 int len = 0;
32 int i;
33
34 for (i = 0; i < nmaps; i++)
35 len += map[i].bm_len;
36
37 list_for_each_entry(lip, &tp->t_items, li_trans) {
38 blip = (struct xfs_buf_log_item *)lip;
39 if (blip->bli_item.li_type == XFS_LI_BUF &&
40 blip->bli_buf->b_target == target &&
41 XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
42 blip->bli_buf->b_length == len) {
43 ASSERT(blip->bli_buf->b_map_count == nmaps);
44 return blip->bli_buf;
45 }
46 }
47
48 return NULL;
49}
50
51/*
52 * Add the locked buffer to the transaction.
53 *
54 * The buffer must be locked, and it cannot be associated with any
55 * transaction.
56 *
57 * If the buffer does not yet have a buf log item associated with it,
58 * then allocate one for it. Then add the buf item to the transaction.
59 */
60STATIC void
61_xfs_trans_bjoin(
62 struct xfs_trans *tp,
63 struct xfs_buf *bp,
64 int reset_recur)
65{
66 struct xfs_buf_log_item *bip;
67
68 ASSERT(bp->b_transp == NULL);
69
70 /*
71 * The xfs_buf_log_item pointer is stored in b_log_item. If
72 * it doesn't have one yet, then allocate one and initialize it.
73 * The checks to see if one is there are in xfs_buf_item_init().
74 */
75 xfs_buf_item_init(bp, tp->t_mountp);
76 bip = bp->b_log_item;
77 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
78 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
79 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
80 if (reset_recur)
81 bip->bli_recur = 0;
82
83 /*
84 * Take a reference for this transaction on the buf item.
85 */
86 atomic_inc(&bip->bli_refcount);
87
88 /*
89 * Attach the item to the transaction so we can find it in
90 * xfs_trans_get_buf() and friends.
91 */
92 xfs_trans_add_item(tp, &bip->bli_item);
93 bp->b_transp = tp;
94
95}
96
97void
98xfs_trans_bjoin(
99 struct xfs_trans *tp,
100 struct xfs_buf *bp)
101{
102 _xfs_trans_bjoin(tp, bp, 0);
103 trace_xfs_trans_bjoin(bp->b_log_item);
104}
105
106/*
107 * Get and lock the buffer for the caller if it is not already
108 * locked within the given transaction. If it is already locked
109 * within the transaction, just increment its lock recursion count
110 * and return a pointer to it.
111 *
112 * If the transaction pointer is NULL, make this just a normal
113 * get_buf() call.
114 */
115struct xfs_buf *
116xfs_trans_get_buf_map(
117 struct xfs_trans *tp,
118 struct xfs_buftarg *target,
119 struct xfs_buf_map *map,
120 int nmaps,
121 xfs_buf_flags_t flags)
122{
123 xfs_buf_t *bp;
124 struct xfs_buf_log_item *bip;
125
126 if (!tp)
127 return xfs_buf_get_map(target, map, nmaps, flags);
128
129 /*
130 * If we find the buffer in the cache with this transaction
131 * pointer in its b_fsprivate2 field, then we know we already
132 * have it locked. In this case we just increment the lock
133 * recursion count and return the buffer to the caller.
134 */
135 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
136 if (bp != NULL) {
137 ASSERT(xfs_buf_islocked(bp));
138 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
139 xfs_buf_stale(bp);
140 bp->b_flags |= XBF_DONE;
141 }
142
143 ASSERT(bp->b_transp == tp);
144 bip = bp->b_log_item;
145 ASSERT(bip != NULL);
146 ASSERT(atomic_read(&bip->bli_refcount) > 0);
147 bip->bli_recur++;
148 trace_xfs_trans_get_buf_recur(bip);
149 return bp;
150 }
151
152 bp = xfs_buf_get_map(target, map, nmaps, flags);
153 if (bp == NULL) {
154 return NULL;
155 }
156
157 ASSERT(!bp->b_error);
158
159 _xfs_trans_bjoin(tp, bp, 1);
160 trace_xfs_trans_get_buf(bp->b_log_item);
161 return bp;
162}
163
164/*
165 * Get and lock the superblock buffer of this file system for the
166 * given transaction.
167 *
168 * We don't need to use incore_match() here, because the superblock
169 * buffer is a private buffer which we keep a pointer to in the
170 * mount structure.
171 */
172xfs_buf_t *
173xfs_trans_getsb(
174 xfs_trans_t *tp,
175 struct xfs_mount *mp)
176{
177 xfs_buf_t *bp;
178 struct xfs_buf_log_item *bip;
179
180 /*
181 * Default to just trying to lock the superblock buffer
182 * if tp is NULL.
183 */
184 if (tp == NULL)
185 return xfs_getsb(mp);
186
187 /*
188 * If the superblock buffer already has this transaction
189 * pointer in its b_fsprivate2 field, then we know we already
190 * have it locked. In this case we just increment the lock
191 * recursion count and return the buffer to the caller.
192 */
193 bp = mp->m_sb_bp;
194 if (bp->b_transp == tp) {
195 bip = bp->b_log_item;
196 ASSERT(bip != NULL);
197 ASSERT(atomic_read(&bip->bli_refcount) > 0);
198 bip->bli_recur++;
199 trace_xfs_trans_getsb_recur(bip);
200 return bp;
201 }
202
203 bp = xfs_getsb(mp);
204 if (bp == NULL)
205 return NULL;
206
207 _xfs_trans_bjoin(tp, bp, 1);
208 trace_xfs_trans_getsb(bp->b_log_item);
209 return bp;
210}
211
212/*
213 * Get and lock the buffer for the caller if it is not already
214 * locked within the given transaction. If it has not yet been
215 * read in, read it from disk. If it is already locked
216 * within the transaction and already read in, just increment its
217 * lock recursion count and return a pointer to it.
218 *
219 * If the transaction pointer is NULL, make this just a normal
220 * read_buf() call.
221 */
222int
223xfs_trans_read_buf_map(
224 struct xfs_mount *mp,
225 struct xfs_trans *tp,
226 struct xfs_buftarg *target,
227 struct xfs_buf_map *map,
228 int nmaps,
229 xfs_buf_flags_t flags,
230 struct xfs_buf **bpp,
231 const struct xfs_buf_ops *ops)
232{
233 struct xfs_buf *bp = NULL;
234 struct xfs_buf_log_item *bip;
235 int error;
236
237 *bpp = NULL;
238 /*
239 * If we find the buffer in the cache with this transaction
240 * pointer in its b_fsprivate2 field, then we know we already
241 * have it locked. If it is already read in we just increment
242 * the lock recursion count and return the buffer to the caller.
243 * If the buffer is not yet read in, then we read it in, increment
244 * the lock recursion count, and return it to the caller.
245 */
246 if (tp)
247 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
248 if (bp) {
249 ASSERT(xfs_buf_islocked(bp));
250 ASSERT(bp->b_transp == tp);
251 ASSERT(bp->b_log_item != NULL);
252 ASSERT(!bp->b_error);
253 ASSERT(bp->b_flags & XBF_DONE);
254
255 /*
256 * We never locked this buf ourselves, so we shouldn't
257 * brelse it either. Just get out.
258 */
259 if (XFS_FORCED_SHUTDOWN(mp)) {
260 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
261 return -EIO;
262 }
263
264 /*
265 * Check if the caller is trying to read a buffer that is
266 * already attached to the transaction yet has no buffer ops
267 * assigned. Ops are usually attached when the buffer is
268 * attached to the transaction, or by the read caller if
269 * special circumstances. That didn't happen, which is not
270 * how this is supposed to go.
271 *
272 * If the buffer passes verification we'll let this go, but if
273 * not we have to shut down. Let the transaction cleanup code
274 * release this buffer when it kills the tranaction.
275 */
276 ASSERT(bp->b_ops != NULL);
277 error = xfs_buf_reverify(bp, ops);
278 if (error) {
279 xfs_buf_ioerror_alert(bp, __func__);
280
281 if (tp->t_flags & XFS_TRANS_DIRTY)
282 xfs_force_shutdown(tp->t_mountp,
283 SHUTDOWN_META_IO_ERROR);
284
285 /* bad CRC means corrupted metadata */
286 if (error == -EFSBADCRC)
287 error = -EFSCORRUPTED;
288 return error;
289 }
290
291 bip = bp->b_log_item;
292 bip->bli_recur++;
293
294 ASSERT(atomic_read(&bip->bli_refcount) > 0);
295 trace_xfs_trans_read_buf_recur(bip);
296 ASSERT(bp->b_ops != NULL || ops == NULL);
297 *bpp = bp;
298 return 0;
299 }
300
301 bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
302 if (!bp) {
303 if (!(flags & XBF_TRYLOCK))
304 return -ENOMEM;
305 return tp ? 0 : -EAGAIN;
306 }
307
308 /*
309 * If we've had a read error, then the contents of the buffer are
310 * invalid and should not be used. To ensure that a followup read tries
311 * to pull the buffer from disk again, we clear the XBF_DONE flag and
312 * mark the buffer stale. This ensures that anyone who has a current
313 * reference to the buffer will interpret it's contents correctly and
314 * future cache lookups will also treat it as an empty, uninitialised
315 * buffer.
316 */
317 if (bp->b_error) {
318 error = bp->b_error;
319 if (!XFS_FORCED_SHUTDOWN(mp))
320 xfs_buf_ioerror_alert(bp, __func__);
321 bp->b_flags &= ~XBF_DONE;
322 xfs_buf_stale(bp);
323
324 if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
325 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
326 xfs_buf_relse(bp);
327
328 /* bad CRC means corrupted metadata */
329 if (error == -EFSBADCRC)
330 error = -EFSCORRUPTED;
331 return error;
332 }
333
334 if (XFS_FORCED_SHUTDOWN(mp)) {
335 xfs_buf_relse(bp);
336 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
337 return -EIO;
338 }
339
340 if (tp) {
341 _xfs_trans_bjoin(tp, bp, 1);
342 trace_xfs_trans_read_buf(bp->b_log_item);
343 }
344 ASSERT(bp->b_ops != NULL || ops == NULL);
345 *bpp = bp;
346 return 0;
347
348}
349
350/* Has this buffer been dirtied by anyone? */
351bool
352xfs_trans_buf_is_dirty(
353 struct xfs_buf *bp)
354{
355 struct xfs_buf_log_item *bip = bp->b_log_item;
356
357 if (!bip)
358 return false;
359 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
360 return test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
361}
362
363/*
364 * Release a buffer previously joined to the transaction. If the buffer is
365 * modified within this transaction, decrement the recursion count but do not
366 * release the buffer even if the count goes to 0. If the buffer is not modified
367 * within the transaction, decrement the recursion count and release the buffer
368 * if the recursion count goes to 0.
369 *
370 * If the buffer is to be released and it was not already dirty before this
371 * transaction began, then also free the buf_log_item associated with it.
372 *
373 * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call.
374 */
375void
376xfs_trans_brelse(
377 struct xfs_trans *tp,
378 struct xfs_buf *bp)
379{
380 struct xfs_buf_log_item *bip = bp->b_log_item;
381
382 ASSERT(bp->b_transp == tp);
383
384 if (!tp) {
385 xfs_buf_relse(bp);
386 return;
387 }
388
389 trace_xfs_trans_brelse(bip);
390 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
391 ASSERT(atomic_read(&bip->bli_refcount) > 0);
392
393 /*
394 * If the release is for a recursive lookup, then decrement the count
395 * and return.
396 */
397 if (bip->bli_recur > 0) {
398 bip->bli_recur--;
399 return;
400 }
401
402 /*
403 * If the buffer is invalidated or dirty in this transaction, we can't
404 * release it until we commit.
405 */
406 if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags))
407 return;
408 if (bip->bli_flags & XFS_BLI_STALE)
409 return;
410
411 /*
412 * Unlink the log item from the transaction and clear the hold flag, if
413 * set. We wouldn't want the next user of the buffer to get confused.
414 */
415 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
416 xfs_trans_del_item(&bip->bli_item);
417 bip->bli_flags &= ~XFS_BLI_HOLD;
418
419 /* drop the reference to the bli */
420 xfs_buf_item_put(bip);
421
422 bp->b_transp = NULL;
423 xfs_buf_relse(bp);
424}
425
426/*
427 * Mark the buffer as not needing to be unlocked when the buf item's
428 * iop_committing() routine is called. The buffer must already be locked
429 * and associated with the given transaction.
430 */
431/* ARGSUSED */
432void
433xfs_trans_bhold(
434 xfs_trans_t *tp,
435 xfs_buf_t *bp)
436{
437 struct xfs_buf_log_item *bip = bp->b_log_item;
438
439 ASSERT(bp->b_transp == tp);
440 ASSERT(bip != NULL);
441 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
442 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
443 ASSERT(atomic_read(&bip->bli_refcount) > 0);
444
445 bip->bli_flags |= XFS_BLI_HOLD;
446 trace_xfs_trans_bhold(bip);
447}
448
449/*
450 * Cancel the previous buffer hold request made on this buffer
451 * for this transaction.
452 */
453void
454xfs_trans_bhold_release(
455 xfs_trans_t *tp,
456 xfs_buf_t *bp)
457{
458 struct xfs_buf_log_item *bip = bp->b_log_item;
459
460 ASSERT(bp->b_transp == tp);
461 ASSERT(bip != NULL);
462 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
463 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
464 ASSERT(atomic_read(&bip->bli_refcount) > 0);
465 ASSERT(bip->bli_flags & XFS_BLI_HOLD);
466
467 bip->bli_flags &= ~XFS_BLI_HOLD;
468 trace_xfs_trans_bhold_release(bip);
469}
470
471/*
472 * Mark a buffer dirty in the transaction.
473 */
474void
475xfs_trans_dirty_buf(
476 struct xfs_trans *tp,
477 struct xfs_buf *bp)
478{
479 struct xfs_buf_log_item *bip = bp->b_log_item;
480
481 ASSERT(bp->b_transp == tp);
482 ASSERT(bip != NULL);
483 ASSERT(bp->b_iodone == NULL ||
484 bp->b_iodone == xfs_buf_iodone_callbacks);
485
486 /*
487 * Mark the buffer as needing to be written out eventually,
488 * and set its iodone function to remove the buffer's buf log
489 * item from the AIL and free it when the buffer is flushed
490 * to disk. See xfs_buf_attach_iodone() for more details
491 * on li_cb and xfs_buf_iodone_callbacks().
492 * If we end up aborting this transaction, we trap this buffer
493 * inside the b_bdstrat callback so that this won't get written to
494 * disk.
495 */
496 bp->b_flags |= XBF_DONE;
497
498 ASSERT(atomic_read(&bip->bli_refcount) > 0);
499 bp->b_iodone = xfs_buf_iodone_callbacks;
500 bip->bli_item.li_cb = xfs_buf_iodone;
501
502 /*
503 * If we invalidated the buffer within this transaction, then
504 * cancel the invalidation now that we're dirtying the buffer
505 * again. There are no races with the code in xfs_buf_item_unpin(),
506 * because we have a reference to the buffer this entire time.
507 */
508 if (bip->bli_flags & XFS_BLI_STALE) {
509 bip->bli_flags &= ~XFS_BLI_STALE;
510 ASSERT(bp->b_flags & XBF_STALE);
511 bp->b_flags &= ~XBF_STALE;
512 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
513 }
514 bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
515
516 tp->t_flags |= XFS_TRANS_DIRTY;
517 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
518}
519
520/*
521 * This is called to mark bytes first through last inclusive of the given
522 * buffer as needing to be logged when the transaction is committed.
523 * The buffer must already be associated with the given transaction.
524 *
525 * First and last are numbers relative to the beginning of this buffer,
526 * so the first byte in the buffer is numbered 0 regardless of the
527 * value of b_blkno.
528 */
529void
530xfs_trans_log_buf(
531 struct xfs_trans *tp,
532 struct xfs_buf *bp,
533 uint first,
534 uint last)
535{
536 struct xfs_buf_log_item *bip = bp->b_log_item;
537
538 ASSERT(first <= last && last < BBTOB(bp->b_length));
539 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
540
541 xfs_trans_dirty_buf(tp, bp);
542
543 trace_xfs_trans_log_buf(bip);
544 xfs_buf_item_log(bip, first, last);
545}
546
547
548/*
549 * Invalidate a buffer that is being used within a transaction.
550 *
551 * Typically this is because the blocks in the buffer are being freed, so we
552 * need to prevent it from being written out when we're done. Allowing it
553 * to be written again might overwrite data in the free blocks if they are
554 * reallocated to a file.
555 *
556 * We prevent the buffer from being written out by marking it stale. We can't
557 * get rid of the buf log item at this point because the buffer may still be
558 * pinned by another transaction. If that is the case, then we'll wait until
559 * the buffer is committed to disk for the last time (we can tell by the ref
560 * count) and free it in xfs_buf_item_unpin(). Until that happens we will
561 * keep the buffer locked so that the buffer and buf log item are not reused.
562 *
563 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
564 * the buf item. This will be used at recovery time to determine that copies
565 * of the buffer in the log before this should not be replayed.
566 *
567 * We mark the item descriptor and the transaction dirty so that we'll hold
568 * the buffer until after the commit.
569 *
570 * Since we're invalidating the buffer, we also clear the state about which
571 * parts of the buffer have been logged. We also clear the flag indicating
572 * that this is an inode buffer since the data in the buffer will no longer
573 * be valid.
574 *
575 * We set the stale bit in the buffer as well since we're getting rid of it.
576 */
577void
578xfs_trans_binval(
579 xfs_trans_t *tp,
580 xfs_buf_t *bp)
581{
582 struct xfs_buf_log_item *bip = bp->b_log_item;
583 int i;
584
585 ASSERT(bp->b_transp == tp);
586 ASSERT(bip != NULL);
587 ASSERT(atomic_read(&bip->bli_refcount) > 0);
588
589 trace_xfs_trans_binval(bip);
590
591 if (bip->bli_flags & XFS_BLI_STALE) {
592 /*
593 * If the buffer is already invalidated, then
594 * just return.
595 */
596 ASSERT(bp->b_flags & XBF_STALE);
597 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
598 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
599 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
600 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
601 ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
602 ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
603 return;
604 }
605
606 xfs_buf_stale(bp);
607
608 bip->bli_flags |= XFS_BLI_STALE;
609 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
610 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
611 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
612 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
613 for (i = 0; i < bip->bli_format_count; i++) {
614 memset(bip->bli_formats[i].blf_data_map, 0,
615 (bip->bli_formats[i].blf_map_size * sizeof(uint)));
616 }
617 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
618 tp->t_flags |= XFS_TRANS_DIRTY;
619}
620
621/*
622 * This call is used to indicate that the buffer contains on-disk inodes which
623 * must be handled specially during recovery. They require special handling
624 * because only the di_next_unlinked from the inodes in the buffer should be
625 * recovered. The rest of the data in the buffer is logged via the inodes
626 * themselves.
627 *
628 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
629 * transferred to the buffer's log format structure so that we'll know what to
630 * do at recovery time.
631 */
632void
633xfs_trans_inode_buf(
634 xfs_trans_t *tp,
635 xfs_buf_t *bp)
636{
637 struct xfs_buf_log_item *bip = bp->b_log_item;
638
639 ASSERT(bp->b_transp == tp);
640 ASSERT(bip != NULL);
641 ASSERT(atomic_read(&bip->bli_refcount) > 0);
642
643 bip->bli_flags |= XFS_BLI_INODE_BUF;
644 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
645}
646
647/*
648 * This call is used to indicate that the buffer is going to
649 * be staled and was an inode buffer. This means it gets
650 * special processing during unpin - where any inodes
651 * associated with the buffer should be removed from ail.
652 * There is also special processing during recovery,
653 * any replay of the inodes in the buffer needs to be
654 * prevented as the buffer may have been reused.
655 */
656void
657xfs_trans_stale_inode_buf(
658 xfs_trans_t *tp,
659 xfs_buf_t *bp)
660{
661 struct xfs_buf_log_item *bip = bp->b_log_item;
662
663 ASSERT(bp->b_transp == tp);
664 ASSERT(bip != NULL);
665 ASSERT(atomic_read(&bip->bli_refcount) > 0);
666
667 bip->bli_flags |= XFS_BLI_STALE_INODE;
668 bip->bli_item.li_cb = xfs_buf_iodone;
669 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
670}
671
672/*
673 * Mark the buffer as being one which contains newly allocated
674 * inodes. We need to make sure that even if this buffer is
675 * relogged as an 'inode buf' we still recover all of the inode
676 * images in the face of a crash. This works in coordination with
677 * xfs_buf_item_committed() to ensure that the buffer remains in the
678 * AIL at its original location even after it has been relogged.
679 */
680/* ARGSUSED */
681void
682xfs_trans_inode_alloc_buf(
683 xfs_trans_t *tp,
684 xfs_buf_t *bp)
685{
686 struct xfs_buf_log_item *bip = bp->b_log_item;
687
688 ASSERT(bp->b_transp == tp);
689 ASSERT(bip != NULL);
690 ASSERT(atomic_read(&bip->bli_refcount) > 0);
691
692 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
693 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
694}
695
696/*
697 * Mark the buffer as ordered for this transaction. This means that the contents
698 * of the buffer are not recorded in the transaction but it is tracked in the
699 * AIL as though it was. This allows us to record logical changes in
700 * transactions rather than the physical changes we make to the buffer without
701 * changing writeback ordering constraints of metadata buffers.
702 */
703bool
704xfs_trans_ordered_buf(
705 struct xfs_trans *tp,
706 struct xfs_buf *bp)
707{
708 struct xfs_buf_log_item *bip = bp->b_log_item;
709
710 ASSERT(bp->b_transp == tp);
711 ASSERT(bip != NULL);
712 ASSERT(atomic_read(&bip->bli_refcount) > 0);
713
714 if (xfs_buf_item_dirty_format(bip))
715 return false;
716
717 bip->bli_flags |= XFS_BLI_ORDERED;
718 trace_xfs_buf_item_ordered(bip);
719
720 /*
721 * We don't log a dirty range of an ordered buffer but it still needs
722 * to be marked dirty and that it has been logged.
723 */
724 xfs_trans_dirty_buf(tp, bp);
725 return true;
726}
727
728/*
729 * Set the type of the buffer for log recovery so that it can correctly identify
730 * and hence attach the correct buffer ops to the buffer after replay.
731 */
732void
733xfs_trans_buf_set_type(
734 struct xfs_trans *tp,
735 struct xfs_buf *bp,
736 enum xfs_blft type)
737{
738 struct xfs_buf_log_item *bip = bp->b_log_item;
739
740 if (!tp)
741 return;
742
743 ASSERT(bp->b_transp == tp);
744 ASSERT(bip != NULL);
745 ASSERT(atomic_read(&bip->bli_refcount) > 0);
746
747 xfs_blft_to_flags(&bip->__bli_format, type);
748}
749
750void
751xfs_trans_buf_copy_type(
752 struct xfs_buf *dst_bp,
753 struct xfs_buf *src_bp)
754{
755 struct xfs_buf_log_item *sbip = src_bp->b_log_item;
756 struct xfs_buf_log_item *dbip = dst_bp->b_log_item;
757 enum xfs_blft type;
758
759 type = xfs_blft_from_flags(&sbip->__bli_format);
760 xfs_blft_to_flags(&dbip->__bli_format, type);
761}
762
763/*
764 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
765 * dquots. However, unlike in inode buffer recovery, dquot buffers get
766 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
767 * The only thing that makes dquot buffers different from regular
768 * buffers is that we must not replay dquot bufs when recovering
769 * if a _corresponding_ quotaoff has happened. We also have to distinguish
770 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
771 * can be turned off independently.
772 */
773/* ARGSUSED */
774void
775xfs_trans_dquot_buf(
776 xfs_trans_t *tp,
777 xfs_buf_t *bp,
778 uint type)
779{
780 struct xfs_buf_log_item *bip = bp->b_log_item;
781
782 ASSERT(type == XFS_BLF_UDQUOT_BUF ||
783 type == XFS_BLF_PDQUOT_BUF ||
784 type == XFS_BLF_GDQUOT_BUF);
785
786 bip->__bli_format.blf_flags |= type;
787
788 switch (type) {
789 case XFS_BLF_UDQUOT_BUF:
790 type = XFS_BLFT_UDQUOT_BUF;
791 break;
792 case XFS_BLF_PDQUOT_BUF:
793 type = XFS_BLFT_PDQUOT_BUF;
794 break;
795 case XFS_BLF_GDQUOT_BUF:
796 type = XFS_BLFT_GDQUOT_BUF;
797 break;
798 default:
799 type = XFS_BLFT_UNKNOWN_BUF;
800 break;
801 }
802
803 xfs_trans_buf_set_type(tp, bp, type);
804}