Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Adrian Hunter
8 * Artem Bityutskiy (Битюцкий Артём)
9 */
10
11/* This file implements TNC functions for committing */
12
13#include <linux/random.h>
14#include "ubifs.h"
15
16/**
17 * make_idx_node - make an index node for fill-the-gaps method of TNC commit.
18 * @c: UBIFS file-system description object
19 * @idx: buffer in which to place new index node
20 * @znode: znode from which to make new index node
21 * @lnum: LEB number where new index node will be written
22 * @offs: offset where new index node will be written
23 * @len: length of new index node
24 */
25static int make_idx_node(struct ubifs_info *c, struct ubifs_idx_node *idx,
26 struct ubifs_znode *znode, int lnum, int offs, int len)
27{
28 struct ubifs_znode *zp;
29 u8 hash[UBIFS_HASH_ARR_SZ];
30 int i, err;
31
32 /* Make index node */
33 idx->ch.node_type = UBIFS_IDX_NODE;
34 idx->child_cnt = cpu_to_le16(znode->child_cnt);
35 idx->level = cpu_to_le16(znode->level);
36 for (i = 0; i < znode->child_cnt; i++) {
37 struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
38 struct ubifs_zbranch *zbr = &znode->zbranch[i];
39
40 key_write_idx(c, &zbr->key, &br->key);
41 br->lnum = cpu_to_le32(zbr->lnum);
42 br->offs = cpu_to_le32(zbr->offs);
43 br->len = cpu_to_le32(zbr->len);
44 ubifs_copy_hash(c, zbr->hash, ubifs_branch_hash(c, br));
45 if (!zbr->lnum || !zbr->len) {
46 ubifs_err(c, "bad ref in znode");
47 ubifs_dump_znode(c, znode);
48 if (zbr->znode)
49 ubifs_dump_znode(c, zbr->znode);
50
51 return -EINVAL;
52 }
53 }
54 ubifs_prepare_node(c, idx, len, 0);
55 ubifs_node_calc_hash(c, idx, hash);
56
57 znode->lnum = lnum;
58 znode->offs = offs;
59 znode->len = len;
60
61 err = insert_old_idx_znode(c, znode);
62
63 /* Update the parent */
64 zp = znode->parent;
65 if (zp) {
66 struct ubifs_zbranch *zbr;
67
68 zbr = &zp->zbranch[znode->iip];
69 zbr->lnum = lnum;
70 zbr->offs = offs;
71 zbr->len = len;
72 ubifs_copy_hash(c, hash, zbr->hash);
73 } else {
74 c->zroot.lnum = lnum;
75 c->zroot.offs = offs;
76 c->zroot.len = len;
77 ubifs_copy_hash(c, hash, c->zroot.hash);
78 }
79 c->calc_idx_sz += ALIGN(len, 8);
80
81 atomic_long_dec(&c->dirty_zn_cnt);
82
83 ubifs_assert(c, ubifs_zn_dirty(znode));
84 ubifs_assert(c, ubifs_zn_cow(znode));
85
86 /*
87 * Note, unlike 'write_index()' we do not add memory barriers here
88 * because this function is called with @c->tnc_mutex locked.
89 */
90 __clear_bit(DIRTY_ZNODE, &znode->flags);
91 __clear_bit(COW_ZNODE, &znode->flags);
92
93 return err;
94}
95
96/**
97 * fill_gap - make index nodes in gaps in dirty index LEBs.
98 * @c: UBIFS file-system description object
99 * @lnum: LEB number that gap appears in
100 * @gap_start: offset of start of gap
101 * @gap_end: offset of end of gap
102 * @dirt: adds dirty space to this
103 *
104 * This function returns the number of index nodes written into the gap.
105 */
106static int fill_gap(struct ubifs_info *c, int lnum, int gap_start, int gap_end,
107 int *dirt)
108{
109 int len, gap_remains, gap_pos, written, pad_len;
110
111 ubifs_assert(c, (gap_start & 7) == 0);
112 ubifs_assert(c, (gap_end & 7) == 0);
113 ubifs_assert(c, gap_end >= gap_start);
114
115 gap_remains = gap_end - gap_start;
116 if (!gap_remains)
117 return 0;
118 gap_pos = gap_start;
119 written = 0;
120 while (c->enext) {
121 len = ubifs_idx_node_sz(c, c->enext->child_cnt);
122 if (len < gap_remains) {
123 struct ubifs_znode *znode = c->enext;
124 const int alen = ALIGN(len, 8);
125 int err;
126
127 ubifs_assert(c, alen <= gap_remains);
128 err = make_idx_node(c, c->ileb_buf + gap_pos, znode,
129 lnum, gap_pos, len);
130 if (err)
131 return err;
132 gap_remains -= alen;
133 gap_pos += alen;
134 c->enext = znode->cnext;
135 if (c->enext == c->cnext)
136 c->enext = NULL;
137 written += 1;
138 } else
139 break;
140 }
141 if (gap_end == c->leb_size) {
142 c->ileb_len = ALIGN(gap_pos, c->min_io_size);
143 /* Pad to end of min_io_size */
144 pad_len = c->ileb_len - gap_pos;
145 } else
146 /* Pad to end of gap */
147 pad_len = gap_remains;
148 dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d",
149 lnum, gap_start, gap_end, gap_end - gap_start, written, pad_len);
150 ubifs_pad(c, c->ileb_buf + gap_pos, pad_len);
151 *dirt += pad_len;
152 return written;
153}
154
155/**
156 * find_old_idx - find an index node obsoleted since the last commit start.
157 * @c: UBIFS file-system description object
158 * @lnum: LEB number of obsoleted index node
159 * @offs: offset of obsoleted index node
160 *
161 * Returns %1 if found and %0 otherwise.
162 */
163static int find_old_idx(struct ubifs_info *c, int lnum, int offs)
164{
165 struct ubifs_old_idx *o;
166 struct rb_node *p;
167
168 p = c->old_idx.rb_node;
169 while (p) {
170 o = rb_entry(p, struct ubifs_old_idx, rb);
171 if (lnum < o->lnum)
172 p = p->rb_left;
173 else if (lnum > o->lnum)
174 p = p->rb_right;
175 else if (offs < o->offs)
176 p = p->rb_left;
177 else if (offs > o->offs)
178 p = p->rb_right;
179 else
180 return 1;
181 }
182 return 0;
183}
184
185/**
186 * is_idx_node_in_use - determine if an index node can be overwritten.
187 * @c: UBIFS file-system description object
188 * @key: key of index node
189 * @level: index node level
190 * @lnum: LEB number of index node
191 * @offs: offset of index node
192 *
193 * If @key / @lnum / @offs identify an index node that was not part of the old
194 * index, then this function returns %0 (obsolete). Else if the index node was
195 * part of the old index but is now dirty %1 is returned, else if it is clean %2
196 * is returned. A negative error code is returned on failure.
197 */
198static int is_idx_node_in_use(struct ubifs_info *c, union ubifs_key *key,
199 int level, int lnum, int offs)
200{
201 int ret;
202
203 ret = is_idx_node_in_tnc(c, key, level, lnum, offs);
204 if (ret < 0)
205 return ret; /* Error code */
206 if (ret == 0)
207 if (find_old_idx(c, lnum, offs))
208 return 1;
209 return ret;
210}
211
212/**
213 * layout_leb_in_gaps - layout index nodes using in-the-gaps method.
214 * @c: UBIFS file-system description object
215 * @p: return LEB number in @c->gap_lebs[p]
216 *
217 * This function lays out new index nodes for dirty znodes using in-the-gaps
218 * method of TNC commit.
219 * This function merely puts the next znode into the next gap, making no attempt
220 * to try to maximise the number of znodes that fit.
221 * This function returns the number of index nodes written into the gaps, or a
222 * negative error code on failure.
223 */
224static int layout_leb_in_gaps(struct ubifs_info *c, int p)
225{
226 struct ubifs_scan_leb *sleb;
227 struct ubifs_scan_node *snod;
228 int lnum, dirt = 0, gap_start, gap_end, err, written, tot_written;
229
230 tot_written = 0;
231 /* Get an index LEB with lots of obsolete index nodes */
232 lnum = ubifs_find_dirty_idx_leb(c);
233 if (lnum < 0)
234 /*
235 * There also may be dirt in the index head that could be
236 * filled, however we do not check there at present.
237 */
238 return lnum; /* Error code */
239 c->gap_lebs[p] = lnum;
240 dbg_gc("LEB %d", lnum);
241 /*
242 * Scan the index LEB. We use the generic scan for this even though
243 * it is more comprehensive and less efficient than is needed for this
244 * purpose.
245 */
246 sleb = ubifs_scan(c, lnum, 0, c->ileb_buf, 0);
247 c->ileb_len = 0;
248 if (IS_ERR(sleb))
249 return PTR_ERR(sleb);
250 gap_start = 0;
251 list_for_each_entry(snod, &sleb->nodes, list) {
252 struct ubifs_idx_node *idx;
253 int in_use, level;
254
255 ubifs_assert(c, snod->type == UBIFS_IDX_NODE);
256 idx = snod->node;
257 key_read(c, ubifs_idx_key(c, idx), &snod->key);
258 level = le16_to_cpu(idx->level);
259 /* Determine if the index node is in use (not obsolete) */
260 in_use = is_idx_node_in_use(c, &snod->key, level, lnum,
261 snod->offs);
262 if (in_use < 0) {
263 ubifs_scan_destroy(sleb);
264 return in_use; /* Error code */
265 }
266 if (in_use) {
267 if (in_use == 1)
268 dirt += ALIGN(snod->len, 8);
269 /*
270 * The obsolete index nodes form gaps that can be
271 * overwritten. This gap has ended because we have
272 * found an index node that is still in use
273 * i.e. not obsolete
274 */
275 gap_end = snod->offs;
276 /* Try to fill gap */
277 written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
278 if (written < 0) {
279 ubifs_scan_destroy(sleb);
280 return written; /* Error code */
281 }
282 tot_written += written;
283 gap_start = ALIGN(snod->offs + snod->len, 8);
284 }
285 }
286 ubifs_scan_destroy(sleb);
287 c->ileb_len = c->leb_size;
288 gap_end = c->leb_size;
289 /* Try to fill gap */
290 written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
291 if (written < 0)
292 return written; /* Error code */
293 tot_written += written;
294 if (tot_written == 0) {
295 struct ubifs_lprops lp;
296
297 dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
298 err = ubifs_read_one_lp(c, lnum, &lp);
299 if (err)
300 return err;
301 if (lp.free == c->leb_size) {
302 /*
303 * We must have snatched this LEB from the idx_gc list
304 * so we need to correct the free and dirty space.
305 */
306 err = ubifs_change_one_lp(c, lnum,
307 c->leb_size - c->ileb_len,
308 dirt, 0, 0, 0);
309 if (err)
310 return err;
311 }
312 return 0;
313 }
314 err = ubifs_change_one_lp(c, lnum, c->leb_size - c->ileb_len, dirt,
315 0, 0, 0);
316 if (err)
317 return err;
318 err = ubifs_leb_change(c, lnum, c->ileb_buf, c->ileb_len);
319 if (err)
320 return err;
321 dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
322 return tot_written;
323}
324
325/**
326 * get_leb_cnt - calculate the number of empty LEBs needed to commit.
327 * @c: UBIFS file-system description object
328 * @cnt: number of znodes to commit
329 *
330 * This function returns the number of empty LEBs needed to commit @cnt znodes
331 * to the current index head. The number is not exact and may be more than
332 * needed.
333 */
334static int get_leb_cnt(struct ubifs_info *c, int cnt)
335{
336 int d;
337
338 /* Assume maximum index node size (i.e. overestimate space needed) */
339 cnt -= (c->leb_size - c->ihead_offs) / c->max_idx_node_sz;
340 if (cnt < 0)
341 cnt = 0;
342 d = c->leb_size / c->max_idx_node_sz;
343 return DIV_ROUND_UP(cnt, d);
344}
345
346/**
347 * layout_in_gaps - in-the-gaps method of committing TNC.
348 * @c: UBIFS file-system description object
349 * @cnt: number of dirty znodes to commit.
350 *
351 * This function lays out new index nodes for dirty znodes using in-the-gaps
352 * method of TNC commit.
353 *
354 * This function returns %0 on success and a negative error code on failure.
355 */
356static int layout_in_gaps(struct ubifs_info *c, int cnt)
357{
358 int err, leb_needed_cnt, written, p = 0, old_idx_lebs, *gap_lebs;
359
360 dbg_gc("%d znodes to write", cnt);
361
362 c->gap_lebs = kmalloc_array(c->lst.idx_lebs + 1, sizeof(int),
363 GFP_NOFS);
364 if (!c->gap_lebs)
365 return -ENOMEM;
366
367 old_idx_lebs = c->lst.idx_lebs;
368 do {
369 ubifs_assert(c, p < c->lst.idx_lebs);
370 written = layout_leb_in_gaps(c, p);
371 if (written < 0) {
372 err = written;
373 if (err != -ENOSPC) {
374 kfree(c->gap_lebs);
375 c->gap_lebs = NULL;
376 return err;
377 }
378 if (!dbg_is_chk_index(c)) {
379 /*
380 * Do not print scary warnings if the debugging
381 * option which forces in-the-gaps is enabled.
382 */
383 ubifs_warn(c, "out of space");
384 ubifs_dump_budg(c, &c->bi);
385 ubifs_dump_lprops(c);
386 }
387 /* Try to commit anyway */
388 break;
389 }
390 p++;
391 cnt -= written;
392 leb_needed_cnt = get_leb_cnt(c, cnt);
393 dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt,
394 leb_needed_cnt, c->ileb_cnt);
395 /*
396 * Dynamically change the size of @c->gap_lebs to prevent
397 * oob, because @c->lst.idx_lebs could be increased by
398 * function @get_idx_gc_leb (called by layout_leb_in_gaps->
399 * ubifs_find_dirty_idx_leb) during loop. Only enlarge
400 * @c->gap_lebs when needed.
401 *
402 */
403 if (leb_needed_cnt > c->ileb_cnt && p >= old_idx_lebs &&
404 old_idx_lebs < c->lst.idx_lebs) {
405 old_idx_lebs = c->lst.idx_lebs;
406 gap_lebs = krealloc(c->gap_lebs, sizeof(int) *
407 (old_idx_lebs + 1), GFP_NOFS);
408 if (!gap_lebs) {
409 kfree(c->gap_lebs);
410 c->gap_lebs = NULL;
411 return -ENOMEM;
412 }
413 c->gap_lebs = gap_lebs;
414 }
415 } while (leb_needed_cnt > c->ileb_cnt);
416
417 c->gap_lebs[p] = -1;
418 return 0;
419}
420
421/**
422 * layout_in_empty_space - layout index nodes in empty space.
423 * @c: UBIFS file-system description object
424 *
425 * This function lays out new index nodes for dirty znodes using empty LEBs.
426 *
427 * This function returns %0 on success and a negative error code on failure.
428 */
429static int layout_in_empty_space(struct ubifs_info *c)
430{
431 struct ubifs_znode *znode, *cnext, *zp;
432 int lnum, offs, len, next_len, buf_len, buf_offs, used, avail;
433 int wlen, blen, err;
434
435 cnext = c->enext;
436 if (!cnext)
437 return 0;
438
439 lnum = c->ihead_lnum;
440 buf_offs = c->ihead_offs;
441
442 buf_len = ubifs_idx_node_sz(c, c->fanout);
443 buf_len = ALIGN(buf_len, c->min_io_size);
444 used = 0;
445 avail = buf_len;
446
447 /* Ensure there is enough room for first write */
448 next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
449 if (buf_offs + next_len > c->leb_size)
450 lnum = -1;
451
452 while (1) {
453 znode = cnext;
454
455 len = ubifs_idx_node_sz(c, znode->child_cnt);
456
457 /* Determine the index node position */
458 if (lnum == -1) {
459 if (c->ileb_nxt >= c->ileb_cnt) {
460 ubifs_err(c, "out of space");
461 return -ENOSPC;
462 }
463 lnum = c->ilebs[c->ileb_nxt++];
464 buf_offs = 0;
465 used = 0;
466 avail = buf_len;
467 }
468
469 offs = buf_offs + used;
470
471 znode->lnum = lnum;
472 znode->offs = offs;
473 znode->len = len;
474
475 /* Update the parent */
476 zp = znode->parent;
477 if (zp) {
478 struct ubifs_zbranch *zbr;
479 int i;
480
481 i = znode->iip;
482 zbr = &zp->zbranch[i];
483 zbr->lnum = lnum;
484 zbr->offs = offs;
485 zbr->len = len;
486 } else {
487 c->zroot.lnum = lnum;
488 c->zroot.offs = offs;
489 c->zroot.len = len;
490 }
491 c->calc_idx_sz += ALIGN(len, 8);
492
493 /*
494 * Once lprops is updated, we can decrease the dirty znode count
495 * but it is easier to just do it here.
496 */
497 atomic_long_dec(&c->dirty_zn_cnt);
498
499 /*
500 * Calculate the next index node length to see if there is
501 * enough room for it
502 */
503 cnext = znode->cnext;
504 if (cnext == c->cnext)
505 next_len = 0;
506 else
507 next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
508
509 /* Update buffer positions */
510 wlen = used + len;
511 used += ALIGN(len, 8);
512 avail -= ALIGN(len, 8);
513
514 if (next_len != 0 &&
515 buf_offs + used + next_len <= c->leb_size &&
516 avail > 0)
517 continue;
518
519 if (avail <= 0 && next_len &&
520 buf_offs + used + next_len <= c->leb_size)
521 blen = buf_len;
522 else
523 blen = ALIGN(wlen, c->min_io_size);
524
525 /* The buffer is full or there are no more znodes to do */
526 buf_offs += blen;
527 if (next_len) {
528 if (buf_offs + next_len > c->leb_size) {
529 err = ubifs_update_one_lp(c, lnum,
530 c->leb_size - buf_offs, blen - used,
531 0, 0);
532 if (err)
533 return err;
534 lnum = -1;
535 }
536 used -= blen;
537 if (used < 0)
538 used = 0;
539 avail = buf_len - used;
540 continue;
541 }
542 err = ubifs_update_one_lp(c, lnum, c->leb_size - buf_offs,
543 blen - used, 0, 0);
544 if (err)
545 return err;
546 break;
547 }
548
549 c->dbg->new_ihead_lnum = lnum;
550 c->dbg->new_ihead_offs = buf_offs;
551
552 return 0;
553}
554
555/**
556 * layout_commit - determine positions of index nodes to commit.
557 * @c: UBIFS file-system description object
558 * @no_space: indicates that insufficient empty LEBs were allocated
559 * @cnt: number of znodes to commit
560 *
561 * Calculate and update the positions of index nodes to commit. If there were
562 * an insufficient number of empty LEBs allocated, then index nodes are placed
563 * into the gaps created by obsolete index nodes in non-empty index LEBs. For
564 * this purpose, an obsolete index node is one that was not in the index as at
565 * the end of the last commit. To write "in-the-gaps" requires that those index
566 * LEBs are updated atomically in-place.
567 */
568static int layout_commit(struct ubifs_info *c, int no_space, int cnt)
569{
570 int err;
571
572 if (no_space) {
573 err = layout_in_gaps(c, cnt);
574 if (err)
575 return err;
576 }
577 err = layout_in_empty_space(c);
578 return err;
579}
580
581/**
582 * find_first_dirty - find first dirty znode.
583 * @znode: znode to begin searching from
584 */
585static struct ubifs_znode *find_first_dirty(struct ubifs_znode *znode)
586{
587 int i, cont;
588
589 if (!znode)
590 return NULL;
591
592 while (1) {
593 if (znode->level == 0) {
594 if (ubifs_zn_dirty(znode))
595 return znode;
596 return NULL;
597 }
598 cont = 0;
599 for (i = 0; i < znode->child_cnt; i++) {
600 struct ubifs_zbranch *zbr = &znode->zbranch[i];
601
602 if (zbr->znode && ubifs_zn_dirty(zbr->znode)) {
603 znode = zbr->znode;
604 cont = 1;
605 break;
606 }
607 }
608 if (!cont) {
609 if (ubifs_zn_dirty(znode))
610 return znode;
611 return NULL;
612 }
613 }
614}
615
616/**
617 * find_next_dirty - find next dirty znode.
618 * @znode: znode to begin searching from
619 */
620static struct ubifs_znode *find_next_dirty(struct ubifs_znode *znode)
621{
622 int n = znode->iip + 1;
623
624 znode = znode->parent;
625 if (!znode)
626 return NULL;
627 for (; n < znode->child_cnt; n++) {
628 struct ubifs_zbranch *zbr = &znode->zbranch[n];
629
630 if (zbr->znode && ubifs_zn_dirty(zbr->znode))
631 return find_first_dirty(zbr->znode);
632 }
633 return znode;
634}
635
636/**
637 * get_znodes_to_commit - create list of dirty znodes to commit.
638 * @c: UBIFS file-system description object
639 *
640 * This function returns the number of znodes to commit.
641 */
642static int get_znodes_to_commit(struct ubifs_info *c)
643{
644 struct ubifs_znode *znode, *cnext;
645 int cnt = 0;
646
647 c->cnext = find_first_dirty(c->zroot.znode);
648 znode = c->enext = c->cnext;
649 if (!znode) {
650 dbg_cmt("no znodes to commit");
651 return 0;
652 }
653 cnt += 1;
654 while (1) {
655 ubifs_assert(c, !ubifs_zn_cow(znode));
656 __set_bit(COW_ZNODE, &znode->flags);
657 znode->alt = 0;
658 cnext = find_next_dirty(znode);
659 if (!cnext) {
660 znode->cnext = c->cnext;
661 break;
662 }
663 znode->cparent = znode->parent;
664 znode->ciip = znode->iip;
665 znode->cnext = cnext;
666 znode = cnext;
667 cnt += 1;
668 }
669 dbg_cmt("committing %d znodes", cnt);
670 ubifs_assert(c, cnt == atomic_long_read(&c->dirty_zn_cnt));
671 return cnt;
672}
673
674/**
675 * alloc_idx_lebs - allocate empty LEBs to be used to commit.
676 * @c: UBIFS file-system description object
677 * @cnt: number of znodes to commit
678 *
679 * This function returns %-ENOSPC if it cannot allocate a sufficient number of
680 * empty LEBs. %0 is returned on success, otherwise a negative error code
681 * is returned.
682 */
683static int alloc_idx_lebs(struct ubifs_info *c, int cnt)
684{
685 int i, leb_cnt, lnum;
686
687 c->ileb_cnt = 0;
688 c->ileb_nxt = 0;
689 leb_cnt = get_leb_cnt(c, cnt);
690 dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt);
691 if (!leb_cnt)
692 return 0;
693 c->ilebs = kmalloc_array(leb_cnt, sizeof(int), GFP_NOFS);
694 if (!c->ilebs)
695 return -ENOMEM;
696 for (i = 0; i < leb_cnt; i++) {
697 lnum = ubifs_find_free_leb_for_idx(c);
698 if (lnum < 0)
699 return lnum;
700 c->ilebs[c->ileb_cnt++] = lnum;
701 dbg_cmt("LEB %d", lnum);
702 }
703 if (dbg_is_chk_index(c) && !(prandom_u32() & 7))
704 return -ENOSPC;
705 return 0;
706}
707
708/**
709 * free_unused_idx_lebs - free unused LEBs that were allocated for the commit.
710 * @c: UBIFS file-system description object
711 *
712 * It is possible that we allocate more empty LEBs for the commit than we need.
713 * This functions frees the surplus.
714 *
715 * This function returns %0 on success and a negative error code on failure.
716 */
717static int free_unused_idx_lebs(struct ubifs_info *c)
718{
719 int i, err = 0, lnum, er;
720
721 for (i = c->ileb_nxt; i < c->ileb_cnt; i++) {
722 lnum = c->ilebs[i];
723 dbg_cmt("LEB %d", lnum);
724 er = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
725 LPROPS_INDEX | LPROPS_TAKEN, 0);
726 if (!err)
727 err = er;
728 }
729 return err;
730}
731
732/**
733 * free_idx_lebs - free unused LEBs after commit end.
734 * @c: UBIFS file-system description object
735 *
736 * This function returns %0 on success and a negative error code on failure.
737 */
738static int free_idx_lebs(struct ubifs_info *c)
739{
740 int err;
741
742 err = free_unused_idx_lebs(c);
743 kfree(c->ilebs);
744 c->ilebs = NULL;
745 return err;
746}
747
748/**
749 * ubifs_tnc_start_commit - start TNC commit.
750 * @c: UBIFS file-system description object
751 * @zroot: new index root position is returned here
752 *
753 * This function prepares the list of indexing nodes to commit and lays out
754 * their positions on flash. If there is not enough free space it uses the
755 * in-gap commit method. Returns zero in case of success and a negative error
756 * code in case of failure.
757 */
758int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot)
759{
760 int err = 0, cnt;
761
762 mutex_lock(&c->tnc_mutex);
763 err = dbg_check_tnc(c, 1);
764 if (err)
765 goto out;
766 cnt = get_znodes_to_commit(c);
767 if (cnt != 0) {
768 int no_space = 0;
769
770 err = alloc_idx_lebs(c, cnt);
771 if (err == -ENOSPC)
772 no_space = 1;
773 else if (err)
774 goto out_free;
775 err = layout_commit(c, no_space, cnt);
776 if (err)
777 goto out_free;
778 ubifs_assert(c, atomic_long_read(&c->dirty_zn_cnt) == 0);
779 err = free_unused_idx_lebs(c);
780 if (err)
781 goto out;
782 }
783 destroy_old_idx(c);
784 memcpy(zroot, &c->zroot, sizeof(struct ubifs_zbranch));
785
786 err = ubifs_save_dirty_idx_lnums(c);
787 if (err)
788 goto out;
789
790 spin_lock(&c->space_lock);
791 /*
792 * Although we have not finished committing yet, update size of the
793 * committed index ('c->bi.old_idx_sz') and zero out the index growth
794 * budget. It is OK to do this now, because we've reserved all the
795 * space which is needed to commit the index, and it is save for the
796 * budgeting subsystem to assume the index is already committed,
797 * even though it is not.
798 */
799 ubifs_assert(c, c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
800 c->bi.old_idx_sz = c->calc_idx_sz;
801 c->bi.uncommitted_idx = 0;
802 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
803 spin_unlock(&c->space_lock);
804 mutex_unlock(&c->tnc_mutex);
805
806 dbg_cmt("number of index LEBs %d", c->lst.idx_lebs);
807 dbg_cmt("size of index %llu", c->calc_idx_sz);
808 return err;
809
810out_free:
811 free_idx_lebs(c);
812out:
813 mutex_unlock(&c->tnc_mutex);
814 return err;
815}
816
817/**
818 * write_index - write index nodes.
819 * @c: UBIFS file-system description object
820 *
821 * This function writes the index nodes whose positions were laid out in the
822 * layout_in_empty_space function.
823 */
824static int write_index(struct ubifs_info *c)
825{
826 struct ubifs_idx_node *idx;
827 struct ubifs_znode *znode, *cnext;
828 int i, lnum, offs, len, next_len, buf_len, buf_offs, used;
829 int avail, wlen, err, lnum_pos = 0, blen, nxt_offs;
830
831 cnext = c->enext;
832 if (!cnext)
833 return 0;
834
835 /*
836 * Always write index nodes to the index head so that index nodes and
837 * other types of nodes are never mixed in the same erase block.
838 */
839 lnum = c->ihead_lnum;
840 buf_offs = c->ihead_offs;
841
842 /* Allocate commit buffer */
843 buf_len = ALIGN(c->max_idx_node_sz, c->min_io_size);
844 used = 0;
845 avail = buf_len;
846
847 /* Ensure there is enough room for first write */
848 next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
849 if (buf_offs + next_len > c->leb_size) {
850 err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0,
851 LPROPS_TAKEN);
852 if (err)
853 return err;
854 lnum = -1;
855 }
856
857 while (1) {
858 u8 hash[UBIFS_HASH_ARR_SZ];
859
860 cond_resched();
861
862 znode = cnext;
863 idx = c->cbuf + used;
864
865 /* Make index node */
866 idx->ch.node_type = UBIFS_IDX_NODE;
867 idx->child_cnt = cpu_to_le16(znode->child_cnt);
868 idx->level = cpu_to_le16(znode->level);
869 for (i = 0; i < znode->child_cnt; i++) {
870 struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
871 struct ubifs_zbranch *zbr = &znode->zbranch[i];
872
873 key_write_idx(c, &zbr->key, &br->key);
874 br->lnum = cpu_to_le32(zbr->lnum);
875 br->offs = cpu_to_le32(zbr->offs);
876 br->len = cpu_to_le32(zbr->len);
877 ubifs_copy_hash(c, zbr->hash, ubifs_branch_hash(c, br));
878 if (!zbr->lnum || !zbr->len) {
879 ubifs_err(c, "bad ref in znode");
880 ubifs_dump_znode(c, znode);
881 if (zbr->znode)
882 ubifs_dump_znode(c, zbr->znode);
883
884 return -EINVAL;
885 }
886 }
887 len = ubifs_idx_node_sz(c, znode->child_cnt);
888 ubifs_prepare_node(c, idx, len, 0);
889 ubifs_node_calc_hash(c, idx, hash);
890
891 mutex_lock(&c->tnc_mutex);
892
893 if (znode->cparent)
894 ubifs_copy_hash(c, hash,
895 znode->cparent->zbranch[znode->ciip].hash);
896
897 if (znode->parent) {
898 if (!ubifs_zn_obsolete(znode))
899 ubifs_copy_hash(c, hash,
900 znode->parent->zbranch[znode->iip].hash);
901 } else {
902 ubifs_copy_hash(c, hash, c->zroot.hash);
903 }
904
905 mutex_unlock(&c->tnc_mutex);
906
907 /* Determine the index node position */
908 if (lnum == -1) {
909 lnum = c->ilebs[lnum_pos++];
910 buf_offs = 0;
911 used = 0;
912 avail = buf_len;
913 }
914 offs = buf_offs + used;
915
916 if (lnum != znode->lnum || offs != znode->offs ||
917 len != znode->len) {
918 ubifs_err(c, "inconsistent znode posn");
919 return -EINVAL;
920 }
921
922 /* Grab some stuff from znode while we still can */
923 cnext = znode->cnext;
924
925 ubifs_assert(c, ubifs_zn_dirty(znode));
926 ubifs_assert(c, ubifs_zn_cow(znode));
927
928 /*
929 * It is important that other threads should see %DIRTY_ZNODE
930 * flag cleared before %COW_ZNODE. Specifically, it matters in
931 * the 'dirty_cow_znode()' function. This is the reason for the
932 * first barrier. Also, we want the bit changes to be seen to
933 * other threads ASAP, to avoid unnecesarry copying, which is
934 * the reason for the second barrier.
935 */
936 clear_bit(DIRTY_ZNODE, &znode->flags);
937 smp_mb__before_atomic();
938 clear_bit(COW_ZNODE, &znode->flags);
939 smp_mb__after_atomic();
940
941 /*
942 * We have marked the znode as clean but have not updated the
943 * @c->clean_zn_cnt counter. If this znode becomes dirty again
944 * before 'free_obsolete_znodes()' is called, then
945 * @c->clean_zn_cnt will be decremented before it gets
946 * incremented (resulting in 2 decrements for the same znode).
947 * This means that @c->clean_zn_cnt may become negative for a
948 * while.
949 *
950 * Q: why we cannot increment @c->clean_zn_cnt?
951 * A: because we do not have the @c->tnc_mutex locked, and the
952 * following code would be racy and buggy:
953 *
954 * if (!ubifs_zn_obsolete(znode)) {
955 * atomic_long_inc(&c->clean_zn_cnt);
956 * atomic_long_inc(&ubifs_clean_zn_cnt);
957 * }
958 *
959 * Thus, we just delay the @c->clean_zn_cnt update until we
960 * have the mutex locked.
961 */
962
963 /* Do not access znode from this point on */
964
965 /* Update buffer positions */
966 wlen = used + len;
967 used += ALIGN(len, 8);
968 avail -= ALIGN(len, 8);
969
970 /*
971 * Calculate the next index node length to see if there is
972 * enough room for it
973 */
974 if (cnext == c->cnext)
975 next_len = 0;
976 else
977 next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
978
979 nxt_offs = buf_offs + used + next_len;
980 if (next_len && nxt_offs <= c->leb_size) {
981 if (avail > 0)
982 continue;
983 else
984 blen = buf_len;
985 } else {
986 wlen = ALIGN(wlen, 8);
987 blen = ALIGN(wlen, c->min_io_size);
988 ubifs_pad(c, c->cbuf + wlen, blen - wlen);
989 }
990
991 /* The buffer is full or there are no more znodes to do */
992 err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, blen);
993 if (err)
994 return err;
995 buf_offs += blen;
996 if (next_len) {
997 if (nxt_offs > c->leb_size) {
998 err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0,
999 0, LPROPS_TAKEN);
1000 if (err)
1001 return err;
1002 lnum = -1;
1003 }
1004 used -= blen;
1005 if (used < 0)
1006 used = 0;
1007 avail = buf_len - used;
1008 memmove(c->cbuf, c->cbuf + blen, used);
1009 continue;
1010 }
1011 break;
1012 }
1013
1014 if (lnum != c->dbg->new_ihead_lnum ||
1015 buf_offs != c->dbg->new_ihead_offs) {
1016 ubifs_err(c, "inconsistent ihead");
1017 return -EINVAL;
1018 }
1019
1020 c->ihead_lnum = lnum;
1021 c->ihead_offs = buf_offs;
1022
1023 return 0;
1024}
1025
1026/**
1027 * free_obsolete_znodes - free obsolete znodes.
1028 * @c: UBIFS file-system description object
1029 *
1030 * At the end of commit end, obsolete znodes are freed.
1031 */
1032static void free_obsolete_znodes(struct ubifs_info *c)
1033{
1034 struct ubifs_znode *znode, *cnext;
1035
1036 cnext = c->cnext;
1037 do {
1038 znode = cnext;
1039 cnext = znode->cnext;
1040 if (ubifs_zn_obsolete(znode))
1041 kfree(znode);
1042 else {
1043 znode->cnext = NULL;
1044 atomic_long_inc(&c->clean_zn_cnt);
1045 atomic_long_inc(&ubifs_clean_zn_cnt);
1046 }
1047 } while (cnext != c->cnext);
1048}
1049
1050/**
1051 * return_gap_lebs - return LEBs used by the in-gap commit method.
1052 * @c: UBIFS file-system description object
1053 *
1054 * This function clears the "taken" flag for the LEBs which were used by the
1055 * "commit in-the-gaps" method.
1056 */
1057static int return_gap_lebs(struct ubifs_info *c)
1058{
1059 int *p, err;
1060
1061 if (!c->gap_lebs)
1062 return 0;
1063
1064 dbg_cmt("");
1065 for (p = c->gap_lebs; *p != -1; p++) {
1066 err = ubifs_change_one_lp(c, *p, LPROPS_NC, LPROPS_NC, 0,
1067 LPROPS_TAKEN, 0);
1068 if (err)
1069 return err;
1070 }
1071
1072 kfree(c->gap_lebs);
1073 c->gap_lebs = NULL;
1074 return 0;
1075}
1076
1077/**
1078 * ubifs_tnc_end_commit - update the TNC for commit end.
1079 * @c: UBIFS file-system description object
1080 *
1081 * Write the dirty znodes.
1082 */
1083int ubifs_tnc_end_commit(struct ubifs_info *c)
1084{
1085 int err;
1086
1087 if (!c->cnext)
1088 return 0;
1089
1090 err = return_gap_lebs(c);
1091 if (err)
1092 return err;
1093
1094 err = write_index(c);
1095 if (err)
1096 return err;
1097
1098 mutex_lock(&c->tnc_mutex);
1099
1100 dbg_cmt("TNC height is %d", c->zroot.znode->level + 1);
1101
1102 free_obsolete_znodes(c);
1103
1104 c->cnext = NULL;
1105 kfree(c->ilebs);
1106 c->ilebs = NULL;
1107
1108 mutex_unlock(&c->tnc_mutex);
1109
1110 return 0;
1111}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Adrian Hunter
8 * Artem Bityutskiy (Битюцкий Артём)
9 */
10
11/* This file implements TNC functions for committing */
12
13#include <linux/random.h>
14#include "ubifs.h"
15
16/**
17 * make_idx_node - make an index node for fill-the-gaps method of TNC commit.
18 * @c: UBIFS file-system description object
19 * @idx: buffer in which to place new index node
20 * @znode: znode from which to make new index node
21 * @lnum: LEB number where new index node will be written
22 * @offs: offset where new index node will be written
23 * @len: length of new index node
24 */
25static int make_idx_node(struct ubifs_info *c, struct ubifs_idx_node *idx,
26 struct ubifs_znode *znode, int lnum, int offs, int len)
27{
28 struct ubifs_znode *zp;
29 u8 hash[UBIFS_HASH_ARR_SZ];
30 int i, err;
31
32 /* Make index node */
33 idx->ch.node_type = UBIFS_IDX_NODE;
34 idx->child_cnt = cpu_to_le16(znode->child_cnt);
35 idx->level = cpu_to_le16(znode->level);
36 for (i = 0; i < znode->child_cnt; i++) {
37 struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
38 struct ubifs_zbranch *zbr = &znode->zbranch[i];
39
40 key_write_idx(c, &zbr->key, &br->key);
41 br->lnum = cpu_to_le32(zbr->lnum);
42 br->offs = cpu_to_le32(zbr->offs);
43 br->len = cpu_to_le32(zbr->len);
44 ubifs_copy_hash(c, zbr->hash, ubifs_branch_hash(c, br));
45 if (!zbr->lnum || !zbr->len) {
46 ubifs_err(c, "bad ref in znode");
47 ubifs_dump_znode(c, znode);
48 if (zbr->znode)
49 ubifs_dump_znode(c, zbr->znode);
50
51 return -EINVAL;
52 }
53 }
54 ubifs_prepare_node(c, idx, len, 0);
55 ubifs_node_calc_hash(c, idx, hash);
56
57 znode->lnum = lnum;
58 znode->offs = offs;
59 znode->len = len;
60
61 err = insert_old_idx_znode(c, znode);
62
63 /* Update the parent */
64 zp = znode->parent;
65 if (zp) {
66 struct ubifs_zbranch *zbr;
67
68 zbr = &zp->zbranch[znode->iip];
69 zbr->lnum = lnum;
70 zbr->offs = offs;
71 zbr->len = len;
72 ubifs_copy_hash(c, hash, zbr->hash);
73 } else {
74 c->zroot.lnum = lnum;
75 c->zroot.offs = offs;
76 c->zroot.len = len;
77 ubifs_copy_hash(c, hash, c->zroot.hash);
78 }
79 c->calc_idx_sz += ALIGN(len, 8);
80
81 atomic_long_dec(&c->dirty_zn_cnt);
82
83 ubifs_assert(c, ubifs_zn_dirty(znode));
84 ubifs_assert(c, ubifs_zn_cow(znode));
85
86 /*
87 * Note, unlike 'write_index()' we do not add memory barriers here
88 * because this function is called with @c->tnc_mutex locked.
89 */
90 __clear_bit(DIRTY_ZNODE, &znode->flags);
91 __clear_bit(COW_ZNODE, &znode->flags);
92
93 return err;
94}
95
96/**
97 * fill_gap - make index nodes in gaps in dirty index LEBs.
98 * @c: UBIFS file-system description object
99 * @lnum: LEB number that gap appears in
100 * @gap_start: offset of start of gap
101 * @gap_end: offset of end of gap
102 * @dirt: adds dirty space to this
103 *
104 * This function returns the number of index nodes written into the gap.
105 */
106static int fill_gap(struct ubifs_info *c, int lnum, int gap_start, int gap_end,
107 int *dirt)
108{
109 int len, gap_remains, gap_pos, written, pad_len;
110
111 ubifs_assert(c, (gap_start & 7) == 0);
112 ubifs_assert(c, (gap_end & 7) == 0);
113 ubifs_assert(c, gap_end >= gap_start);
114
115 gap_remains = gap_end - gap_start;
116 if (!gap_remains)
117 return 0;
118 gap_pos = gap_start;
119 written = 0;
120 while (c->enext) {
121 len = ubifs_idx_node_sz(c, c->enext->child_cnt);
122 if (len < gap_remains) {
123 struct ubifs_znode *znode = c->enext;
124 const int alen = ALIGN(len, 8);
125 int err;
126
127 ubifs_assert(c, alen <= gap_remains);
128 err = make_idx_node(c, c->ileb_buf + gap_pos, znode,
129 lnum, gap_pos, len);
130 if (err)
131 return err;
132 gap_remains -= alen;
133 gap_pos += alen;
134 c->enext = znode->cnext;
135 if (c->enext == c->cnext)
136 c->enext = NULL;
137 written += 1;
138 } else
139 break;
140 }
141 if (gap_end == c->leb_size) {
142 c->ileb_len = ALIGN(gap_pos, c->min_io_size);
143 /* Pad to end of min_io_size */
144 pad_len = c->ileb_len - gap_pos;
145 } else
146 /* Pad to end of gap */
147 pad_len = gap_remains;
148 dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d",
149 lnum, gap_start, gap_end, gap_end - gap_start, written, pad_len);
150 ubifs_pad(c, c->ileb_buf + gap_pos, pad_len);
151 *dirt += pad_len;
152 return written;
153}
154
155/**
156 * find_old_idx - find an index node obsoleted since the last commit start.
157 * @c: UBIFS file-system description object
158 * @lnum: LEB number of obsoleted index node
159 * @offs: offset of obsoleted index node
160 *
161 * Returns %1 if found and %0 otherwise.
162 */
163static int find_old_idx(struct ubifs_info *c, int lnum, int offs)
164{
165 struct ubifs_old_idx *o;
166 struct rb_node *p;
167
168 p = c->old_idx.rb_node;
169 while (p) {
170 o = rb_entry(p, struct ubifs_old_idx, rb);
171 if (lnum < o->lnum)
172 p = p->rb_left;
173 else if (lnum > o->lnum)
174 p = p->rb_right;
175 else if (offs < o->offs)
176 p = p->rb_left;
177 else if (offs > o->offs)
178 p = p->rb_right;
179 else
180 return 1;
181 }
182 return 0;
183}
184
185/**
186 * is_idx_node_in_use - determine if an index node can be overwritten.
187 * @c: UBIFS file-system description object
188 * @key: key of index node
189 * @level: index node level
190 * @lnum: LEB number of index node
191 * @offs: offset of index node
192 *
193 * If @key / @lnum / @offs identify an index node that was not part of the old
194 * index, then this function returns %0 (obsolete). Else if the index node was
195 * part of the old index but is now dirty %1 is returned, else if it is clean %2
196 * is returned. A negative error code is returned on failure.
197 */
198static int is_idx_node_in_use(struct ubifs_info *c, union ubifs_key *key,
199 int level, int lnum, int offs)
200{
201 int ret;
202
203 ret = is_idx_node_in_tnc(c, key, level, lnum, offs);
204 if (ret < 0)
205 return ret; /* Error code */
206 if (ret == 0)
207 if (find_old_idx(c, lnum, offs))
208 return 1;
209 return ret;
210}
211
212/**
213 * layout_leb_in_gaps - layout index nodes using in-the-gaps method.
214 * @c: UBIFS file-system description object
215 * @p: return LEB number here
216 *
217 * This function lays out new index nodes for dirty znodes using in-the-gaps
218 * method of TNC commit.
219 * This function merely puts the next znode into the next gap, making no attempt
220 * to try to maximise the number of znodes that fit.
221 * This function returns the number of index nodes written into the gaps, or a
222 * negative error code on failure.
223 */
224static int layout_leb_in_gaps(struct ubifs_info *c, int *p)
225{
226 struct ubifs_scan_leb *sleb;
227 struct ubifs_scan_node *snod;
228 int lnum, dirt = 0, gap_start, gap_end, err, written, tot_written;
229
230 tot_written = 0;
231 /* Get an index LEB with lots of obsolete index nodes */
232 lnum = ubifs_find_dirty_idx_leb(c);
233 if (lnum < 0)
234 /*
235 * There also may be dirt in the index head that could be
236 * filled, however we do not check there at present.
237 */
238 return lnum; /* Error code */
239 *p = lnum;
240 dbg_gc("LEB %d", lnum);
241 /*
242 * Scan the index LEB. We use the generic scan for this even though
243 * it is more comprehensive and less efficient than is needed for this
244 * purpose.
245 */
246 sleb = ubifs_scan(c, lnum, 0, c->ileb_buf, 0);
247 c->ileb_len = 0;
248 if (IS_ERR(sleb))
249 return PTR_ERR(sleb);
250 gap_start = 0;
251 list_for_each_entry(snod, &sleb->nodes, list) {
252 struct ubifs_idx_node *idx;
253 int in_use, level;
254
255 ubifs_assert(c, snod->type == UBIFS_IDX_NODE);
256 idx = snod->node;
257 key_read(c, ubifs_idx_key(c, idx), &snod->key);
258 level = le16_to_cpu(idx->level);
259 /* Determine if the index node is in use (not obsolete) */
260 in_use = is_idx_node_in_use(c, &snod->key, level, lnum,
261 snod->offs);
262 if (in_use < 0) {
263 ubifs_scan_destroy(sleb);
264 return in_use; /* Error code */
265 }
266 if (in_use) {
267 if (in_use == 1)
268 dirt += ALIGN(snod->len, 8);
269 /*
270 * The obsolete index nodes form gaps that can be
271 * overwritten. This gap has ended because we have
272 * found an index node that is still in use
273 * i.e. not obsolete
274 */
275 gap_end = snod->offs;
276 /* Try to fill gap */
277 written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
278 if (written < 0) {
279 ubifs_scan_destroy(sleb);
280 return written; /* Error code */
281 }
282 tot_written += written;
283 gap_start = ALIGN(snod->offs + snod->len, 8);
284 }
285 }
286 ubifs_scan_destroy(sleb);
287 c->ileb_len = c->leb_size;
288 gap_end = c->leb_size;
289 /* Try to fill gap */
290 written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
291 if (written < 0)
292 return written; /* Error code */
293 tot_written += written;
294 if (tot_written == 0) {
295 struct ubifs_lprops lp;
296
297 dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
298 err = ubifs_read_one_lp(c, lnum, &lp);
299 if (err)
300 return err;
301 if (lp.free == c->leb_size) {
302 /*
303 * We must have snatched this LEB from the idx_gc list
304 * so we need to correct the free and dirty space.
305 */
306 err = ubifs_change_one_lp(c, lnum,
307 c->leb_size - c->ileb_len,
308 dirt, 0, 0, 0);
309 if (err)
310 return err;
311 }
312 return 0;
313 }
314 err = ubifs_change_one_lp(c, lnum, c->leb_size - c->ileb_len, dirt,
315 0, 0, 0);
316 if (err)
317 return err;
318 err = ubifs_leb_change(c, lnum, c->ileb_buf, c->ileb_len);
319 if (err)
320 return err;
321 dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
322 return tot_written;
323}
324
325/**
326 * get_leb_cnt - calculate the number of empty LEBs needed to commit.
327 * @c: UBIFS file-system description object
328 * @cnt: number of znodes to commit
329 *
330 * This function returns the number of empty LEBs needed to commit @cnt znodes
331 * to the current index head. The number is not exact and may be more than
332 * needed.
333 */
334static int get_leb_cnt(struct ubifs_info *c, int cnt)
335{
336 int d;
337
338 /* Assume maximum index node size (i.e. overestimate space needed) */
339 cnt -= (c->leb_size - c->ihead_offs) / c->max_idx_node_sz;
340 if (cnt < 0)
341 cnt = 0;
342 d = c->leb_size / c->max_idx_node_sz;
343 return DIV_ROUND_UP(cnt, d);
344}
345
346/**
347 * layout_in_gaps - in-the-gaps method of committing TNC.
348 * @c: UBIFS file-system description object
349 * @cnt: number of dirty znodes to commit.
350 *
351 * This function lays out new index nodes for dirty znodes using in-the-gaps
352 * method of TNC commit.
353 *
354 * This function returns %0 on success and a negative error code on failure.
355 */
356static int layout_in_gaps(struct ubifs_info *c, int cnt)
357{
358 int err, leb_needed_cnt, written, *p;
359
360 dbg_gc("%d znodes to write", cnt);
361
362 c->gap_lebs = kmalloc_array(c->lst.idx_lebs + 1, sizeof(int),
363 GFP_NOFS);
364 if (!c->gap_lebs)
365 return -ENOMEM;
366
367 p = c->gap_lebs;
368 do {
369 ubifs_assert(c, p < c->gap_lebs + c->lst.idx_lebs);
370 written = layout_leb_in_gaps(c, p);
371 if (written < 0) {
372 err = written;
373 if (err != -ENOSPC) {
374 kfree(c->gap_lebs);
375 c->gap_lebs = NULL;
376 return err;
377 }
378 if (!dbg_is_chk_index(c)) {
379 /*
380 * Do not print scary warnings if the debugging
381 * option which forces in-the-gaps is enabled.
382 */
383 ubifs_warn(c, "out of space");
384 ubifs_dump_budg(c, &c->bi);
385 ubifs_dump_lprops(c);
386 }
387 /* Try to commit anyway */
388 break;
389 }
390 p++;
391 cnt -= written;
392 leb_needed_cnt = get_leb_cnt(c, cnt);
393 dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt,
394 leb_needed_cnt, c->ileb_cnt);
395 } while (leb_needed_cnt > c->ileb_cnt);
396
397 *p = -1;
398 return 0;
399}
400
401/**
402 * layout_in_empty_space - layout index nodes in empty space.
403 * @c: UBIFS file-system description object
404 *
405 * This function lays out new index nodes for dirty znodes using empty LEBs.
406 *
407 * This function returns %0 on success and a negative error code on failure.
408 */
409static int layout_in_empty_space(struct ubifs_info *c)
410{
411 struct ubifs_znode *znode, *cnext, *zp;
412 int lnum, offs, len, next_len, buf_len, buf_offs, used, avail;
413 int wlen, blen, err;
414
415 cnext = c->enext;
416 if (!cnext)
417 return 0;
418
419 lnum = c->ihead_lnum;
420 buf_offs = c->ihead_offs;
421
422 buf_len = ubifs_idx_node_sz(c, c->fanout);
423 buf_len = ALIGN(buf_len, c->min_io_size);
424 used = 0;
425 avail = buf_len;
426
427 /* Ensure there is enough room for first write */
428 next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
429 if (buf_offs + next_len > c->leb_size)
430 lnum = -1;
431
432 while (1) {
433 znode = cnext;
434
435 len = ubifs_idx_node_sz(c, znode->child_cnt);
436
437 /* Determine the index node position */
438 if (lnum == -1) {
439 if (c->ileb_nxt >= c->ileb_cnt) {
440 ubifs_err(c, "out of space");
441 return -ENOSPC;
442 }
443 lnum = c->ilebs[c->ileb_nxt++];
444 buf_offs = 0;
445 used = 0;
446 avail = buf_len;
447 }
448
449 offs = buf_offs + used;
450
451 znode->lnum = lnum;
452 znode->offs = offs;
453 znode->len = len;
454
455 /* Update the parent */
456 zp = znode->parent;
457 if (zp) {
458 struct ubifs_zbranch *zbr;
459 int i;
460
461 i = znode->iip;
462 zbr = &zp->zbranch[i];
463 zbr->lnum = lnum;
464 zbr->offs = offs;
465 zbr->len = len;
466 } else {
467 c->zroot.lnum = lnum;
468 c->zroot.offs = offs;
469 c->zroot.len = len;
470 }
471 c->calc_idx_sz += ALIGN(len, 8);
472
473 /*
474 * Once lprops is updated, we can decrease the dirty znode count
475 * but it is easier to just do it here.
476 */
477 atomic_long_dec(&c->dirty_zn_cnt);
478
479 /*
480 * Calculate the next index node length to see if there is
481 * enough room for it
482 */
483 cnext = znode->cnext;
484 if (cnext == c->cnext)
485 next_len = 0;
486 else
487 next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
488
489 /* Update buffer positions */
490 wlen = used + len;
491 used += ALIGN(len, 8);
492 avail -= ALIGN(len, 8);
493
494 if (next_len != 0 &&
495 buf_offs + used + next_len <= c->leb_size &&
496 avail > 0)
497 continue;
498
499 if (avail <= 0 && next_len &&
500 buf_offs + used + next_len <= c->leb_size)
501 blen = buf_len;
502 else
503 blen = ALIGN(wlen, c->min_io_size);
504
505 /* The buffer is full or there are no more znodes to do */
506 buf_offs += blen;
507 if (next_len) {
508 if (buf_offs + next_len > c->leb_size) {
509 err = ubifs_update_one_lp(c, lnum,
510 c->leb_size - buf_offs, blen - used,
511 0, 0);
512 if (err)
513 return err;
514 lnum = -1;
515 }
516 used -= blen;
517 if (used < 0)
518 used = 0;
519 avail = buf_len - used;
520 continue;
521 }
522 err = ubifs_update_one_lp(c, lnum, c->leb_size - buf_offs,
523 blen - used, 0, 0);
524 if (err)
525 return err;
526 break;
527 }
528
529 c->dbg->new_ihead_lnum = lnum;
530 c->dbg->new_ihead_offs = buf_offs;
531
532 return 0;
533}
534
535/**
536 * layout_commit - determine positions of index nodes to commit.
537 * @c: UBIFS file-system description object
538 * @no_space: indicates that insufficient empty LEBs were allocated
539 * @cnt: number of znodes to commit
540 *
541 * Calculate and update the positions of index nodes to commit. If there were
542 * an insufficient number of empty LEBs allocated, then index nodes are placed
543 * into the gaps created by obsolete index nodes in non-empty index LEBs. For
544 * this purpose, an obsolete index node is one that was not in the index as at
545 * the end of the last commit. To write "in-the-gaps" requires that those index
546 * LEBs are updated atomically in-place.
547 */
548static int layout_commit(struct ubifs_info *c, int no_space, int cnt)
549{
550 int err;
551
552 if (no_space) {
553 err = layout_in_gaps(c, cnt);
554 if (err)
555 return err;
556 }
557 err = layout_in_empty_space(c);
558 return err;
559}
560
561/**
562 * find_first_dirty - find first dirty znode.
563 * @znode: znode to begin searching from
564 */
565static struct ubifs_znode *find_first_dirty(struct ubifs_znode *znode)
566{
567 int i, cont;
568
569 if (!znode)
570 return NULL;
571
572 while (1) {
573 if (znode->level == 0) {
574 if (ubifs_zn_dirty(znode))
575 return znode;
576 return NULL;
577 }
578 cont = 0;
579 for (i = 0; i < znode->child_cnt; i++) {
580 struct ubifs_zbranch *zbr = &znode->zbranch[i];
581
582 if (zbr->znode && ubifs_zn_dirty(zbr->znode)) {
583 znode = zbr->znode;
584 cont = 1;
585 break;
586 }
587 }
588 if (!cont) {
589 if (ubifs_zn_dirty(znode))
590 return znode;
591 return NULL;
592 }
593 }
594}
595
596/**
597 * find_next_dirty - find next dirty znode.
598 * @znode: znode to begin searching from
599 */
600static struct ubifs_znode *find_next_dirty(struct ubifs_znode *znode)
601{
602 int n = znode->iip + 1;
603
604 znode = znode->parent;
605 if (!znode)
606 return NULL;
607 for (; n < znode->child_cnt; n++) {
608 struct ubifs_zbranch *zbr = &znode->zbranch[n];
609
610 if (zbr->znode && ubifs_zn_dirty(zbr->znode))
611 return find_first_dirty(zbr->znode);
612 }
613 return znode;
614}
615
616/**
617 * get_znodes_to_commit - create list of dirty znodes to commit.
618 * @c: UBIFS file-system description object
619 *
620 * This function returns the number of znodes to commit.
621 */
622static int get_znodes_to_commit(struct ubifs_info *c)
623{
624 struct ubifs_znode *znode, *cnext;
625 int cnt = 0;
626
627 c->cnext = find_first_dirty(c->zroot.znode);
628 znode = c->enext = c->cnext;
629 if (!znode) {
630 dbg_cmt("no znodes to commit");
631 return 0;
632 }
633 cnt += 1;
634 while (1) {
635 ubifs_assert(c, !ubifs_zn_cow(znode));
636 __set_bit(COW_ZNODE, &znode->flags);
637 znode->alt = 0;
638 cnext = find_next_dirty(znode);
639 if (!cnext) {
640 znode->cnext = c->cnext;
641 break;
642 }
643 znode->cparent = znode->parent;
644 znode->ciip = znode->iip;
645 znode->cnext = cnext;
646 znode = cnext;
647 cnt += 1;
648 }
649 dbg_cmt("committing %d znodes", cnt);
650 ubifs_assert(c, cnt == atomic_long_read(&c->dirty_zn_cnt));
651 return cnt;
652}
653
654/**
655 * alloc_idx_lebs - allocate empty LEBs to be used to commit.
656 * @c: UBIFS file-system description object
657 * @cnt: number of znodes to commit
658 *
659 * This function returns %-ENOSPC if it cannot allocate a sufficient number of
660 * empty LEBs. %0 is returned on success, otherwise a negative error code
661 * is returned.
662 */
663static int alloc_idx_lebs(struct ubifs_info *c, int cnt)
664{
665 int i, leb_cnt, lnum;
666
667 c->ileb_cnt = 0;
668 c->ileb_nxt = 0;
669 leb_cnt = get_leb_cnt(c, cnt);
670 dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt);
671 if (!leb_cnt)
672 return 0;
673 c->ilebs = kmalloc_array(leb_cnt, sizeof(int), GFP_NOFS);
674 if (!c->ilebs)
675 return -ENOMEM;
676 for (i = 0; i < leb_cnt; i++) {
677 lnum = ubifs_find_free_leb_for_idx(c);
678 if (lnum < 0)
679 return lnum;
680 c->ilebs[c->ileb_cnt++] = lnum;
681 dbg_cmt("LEB %d", lnum);
682 }
683 if (dbg_is_chk_index(c) && !(prandom_u32() & 7))
684 return -ENOSPC;
685 return 0;
686}
687
688/**
689 * free_unused_idx_lebs - free unused LEBs that were allocated for the commit.
690 * @c: UBIFS file-system description object
691 *
692 * It is possible that we allocate more empty LEBs for the commit than we need.
693 * This functions frees the surplus.
694 *
695 * This function returns %0 on success and a negative error code on failure.
696 */
697static int free_unused_idx_lebs(struct ubifs_info *c)
698{
699 int i, err = 0, lnum, er;
700
701 for (i = c->ileb_nxt; i < c->ileb_cnt; i++) {
702 lnum = c->ilebs[i];
703 dbg_cmt("LEB %d", lnum);
704 er = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
705 LPROPS_INDEX | LPROPS_TAKEN, 0);
706 if (!err)
707 err = er;
708 }
709 return err;
710}
711
712/**
713 * free_idx_lebs - free unused LEBs after commit end.
714 * @c: UBIFS file-system description object
715 *
716 * This function returns %0 on success and a negative error code on failure.
717 */
718static int free_idx_lebs(struct ubifs_info *c)
719{
720 int err;
721
722 err = free_unused_idx_lebs(c);
723 kfree(c->ilebs);
724 c->ilebs = NULL;
725 return err;
726}
727
728/**
729 * ubifs_tnc_start_commit - start TNC commit.
730 * @c: UBIFS file-system description object
731 * @zroot: new index root position is returned here
732 *
733 * This function prepares the list of indexing nodes to commit and lays out
734 * their positions on flash. If there is not enough free space it uses the
735 * in-gap commit method. Returns zero in case of success and a negative error
736 * code in case of failure.
737 */
738int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot)
739{
740 int err = 0, cnt;
741
742 mutex_lock(&c->tnc_mutex);
743 err = dbg_check_tnc(c, 1);
744 if (err)
745 goto out;
746 cnt = get_znodes_to_commit(c);
747 if (cnt != 0) {
748 int no_space = 0;
749
750 err = alloc_idx_lebs(c, cnt);
751 if (err == -ENOSPC)
752 no_space = 1;
753 else if (err)
754 goto out_free;
755 err = layout_commit(c, no_space, cnt);
756 if (err)
757 goto out_free;
758 ubifs_assert(c, atomic_long_read(&c->dirty_zn_cnt) == 0);
759 err = free_unused_idx_lebs(c);
760 if (err)
761 goto out;
762 }
763 destroy_old_idx(c);
764 memcpy(zroot, &c->zroot, sizeof(struct ubifs_zbranch));
765
766 err = ubifs_save_dirty_idx_lnums(c);
767 if (err)
768 goto out;
769
770 spin_lock(&c->space_lock);
771 /*
772 * Although we have not finished committing yet, update size of the
773 * committed index ('c->bi.old_idx_sz') and zero out the index growth
774 * budget. It is OK to do this now, because we've reserved all the
775 * space which is needed to commit the index, and it is save for the
776 * budgeting subsystem to assume the index is already committed,
777 * even though it is not.
778 */
779 ubifs_assert(c, c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
780 c->bi.old_idx_sz = c->calc_idx_sz;
781 c->bi.uncommitted_idx = 0;
782 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
783 spin_unlock(&c->space_lock);
784 mutex_unlock(&c->tnc_mutex);
785
786 dbg_cmt("number of index LEBs %d", c->lst.idx_lebs);
787 dbg_cmt("size of index %llu", c->calc_idx_sz);
788 return err;
789
790out_free:
791 free_idx_lebs(c);
792out:
793 mutex_unlock(&c->tnc_mutex);
794 return err;
795}
796
797/**
798 * write_index - write index nodes.
799 * @c: UBIFS file-system description object
800 *
801 * This function writes the index nodes whose positions were laid out in the
802 * layout_in_empty_space function.
803 */
804static int write_index(struct ubifs_info *c)
805{
806 struct ubifs_idx_node *idx;
807 struct ubifs_znode *znode, *cnext;
808 int i, lnum, offs, len, next_len, buf_len, buf_offs, used;
809 int avail, wlen, err, lnum_pos = 0, blen, nxt_offs;
810
811 cnext = c->enext;
812 if (!cnext)
813 return 0;
814
815 /*
816 * Always write index nodes to the index head so that index nodes and
817 * other types of nodes are never mixed in the same erase block.
818 */
819 lnum = c->ihead_lnum;
820 buf_offs = c->ihead_offs;
821
822 /* Allocate commit buffer */
823 buf_len = ALIGN(c->max_idx_node_sz, c->min_io_size);
824 used = 0;
825 avail = buf_len;
826
827 /* Ensure there is enough room for first write */
828 next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
829 if (buf_offs + next_len > c->leb_size) {
830 err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0,
831 LPROPS_TAKEN);
832 if (err)
833 return err;
834 lnum = -1;
835 }
836
837 while (1) {
838 u8 hash[UBIFS_HASH_ARR_SZ];
839
840 cond_resched();
841
842 znode = cnext;
843 idx = c->cbuf + used;
844
845 /* Make index node */
846 idx->ch.node_type = UBIFS_IDX_NODE;
847 idx->child_cnt = cpu_to_le16(znode->child_cnt);
848 idx->level = cpu_to_le16(znode->level);
849 for (i = 0; i < znode->child_cnt; i++) {
850 struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
851 struct ubifs_zbranch *zbr = &znode->zbranch[i];
852
853 key_write_idx(c, &zbr->key, &br->key);
854 br->lnum = cpu_to_le32(zbr->lnum);
855 br->offs = cpu_to_le32(zbr->offs);
856 br->len = cpu_to_le32(zbr->len);
857 ubifs_copy_hash(c, zbr->hash, ubifs_branch_hash(c, br));
858 if (!zbr->lnum || !zbr->len) {
859 ubifs_err(c, "bad ref in znode");
860 ubifs_dump_znode(c, znode);
861 if (zbr->znode)
862 ubifs_dump_znode(c, zbr->znode);
863
864 return -EINVAL;
865 }
866 }
867 len = ubifs_idx_node_sz(c, znode->child_cnt);
868 ubifs_prepare_node(c, idx, len, 0);
869 ubifs_node_calc_hash(c, idx, hash);
870
871 mutex_lock(&c->tnc_mutex);
872
873 if (znode->cparent)
874 ubifs_copy_hash(c, hash,
875 znode->cparent->zbranch[znode->ciip].hash);
876
877 if (znode->parent) {
878 if (!ubifs_zn_obsolete(znode))
879 ubifs_copy_hash(c, hash,
880 znode->parent->zbranch[znode->iip].hash);
881 } else {
882 ubifs_copy_hash(c, hash, c->zroot.hash);
883 }
884
885 mutex_unlock(&c->tnc_mutex);
886
887 /* Determine the index node position */
888 if (lnum == -1) {
889 lnum = c->ilebs[lnum_pos++];
890 buf_offs = 0;
891 used = 0;
892 avail = buf_len;
893 }
894 offs = buf_offs + used;
895
896 if (lnum != znode->lnum || offs != znode->offs ||
897 len != znode->len) {
898 ubifs_err(c, "inconsistent znode posn");
899 return -EINVAL;
900 }
901
902 /* Grab some stuff from znode while we still can */
903 cnext = znode->cnext;
904
905 ubifs_assert(c, ubifs_zn_dirty(znode));
906 ubifs_assert(c, ubifs_zn_cow(znode));
907
908 /*
909 * It is important that other threads should see %DIRTY_ZNODE
910 * flag cleared before %COW_ZNODE. Specifically, it matters in
911 * the 'dirty_cow_znode()' function. This is the reason for the
912 * first barrier. Also, we want the bit changes to be seen to
913 * other threads ASAP, to avoid unnecesarry copying, which is
914 * the reason for the second barrier.
915 */
916 clear_bit(DIRTY_ZNODE, &znode->flags);
917 smp_mb__before_atomic();
918 clear_bit(COW_ZNODE, &znode->flags);
919 smp_mb__after_atomic();
920
921 /*
922 * We have marked the znode as clean but have not updated the
923 * @c->clean_zn_cnt counter. If this znode becomes dirty again
924 * before 'free_obsolete_znodes()' is called, then
925 * @c->clean_zn_cnt will be decremented before it gets
926 * incremented (resulting in 2 decrements for the same znode).
927 * This means that @c->clean_zn_cnt may become negative for a
928 * while.
929 *
930 * Q: why we cannot increment @c->clean_zn_cnt?
931 * A: because we do not have the @c->tnc_mutex locked, and the
932 * following code would be racy and buggy:
933 *
934 * if (!ubifs_zn_obsolete(znode)) {
935 * atomic_long_inc(&c->clean_zn_cnt);
936 * atomic_long_inc(&ubifs_clean_zn_cnt);
937 * }
938 *
939 * Thus, we just delay the @c->clean_zn_cnt update until we
940 * have the mutex locked.
941 */
942
943 /* Do not access znode from this point on */
944
945 /* Update buffer positions */
946 wlen = used + len;
947 used += ALIGN(len, 8);
948 avail -= ALIGN(len, 8);
949
950 /*
951 * Calculate the next index node length to see if there is
952 * enough room for it
953 */
954 if (cnext == c->cnext)
955 next_len = 0;
956 else
957 next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
958
959 nxt_offs = buf_offs + used + next_len;
960 if (next_len && nxt_offs <= c->leb_size) {
961 if (avail > 0)
962 continue;
963 else
964 blen = buf_len;
965 } else {
966 wlen = ALIGN(wlen, 8);
967 blen = ALIGN(wlen, c->min_io_size);
968 ubifs_pad(c, c->cbuf + wlen, blen - wlen);
969 }
970
971 /* The buffer is full or there are no more znodes to do */
972 err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, blen);
973 if (err)
974 return err;
975 buf_offs += blen;
976 if (next_len) {
977 if (nxt_offs > c->leb_size) {
978 err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0,
979 0, LPROPS_TAKEN);
980 if (err)
981 return err;
982 lnum = -1;
983 }
984 used -= blen;
985 if (used < 0)
986 used = 0;
987 avail = buf_len - used;
988 memmove(c->cbuf, c->cbuf + blen, used);
989 continue;
990 }
991 break;
992 }
993
994 if (lnum != c->dbg->new_ihead_lnum ||
995 buf_offs != c->dbg->new_ihead_offs) {
996 ubifs_err(c, "inconsistent ihead");
997 return -EINVAL;
998 }
999
1000 c->ihead_lnum = lnum;
1001 c->ihead_offs = buf_offs;
1002
1003 return 0;
1004}
1005
1006/**
1007 * free_obsolete_znodes - free obsolete znodes.
1008 * @c: UBIFS file-system description object
1009 *
1010 * At the end of commit end, obsolete znodes are freed.
1011 */
1012static void free_obsolete_znodes(struct ubifs_info *c)
1013{
1014 struct ubifs_znode *znode, *cnext;
1015
1016 cnext = c->cnext;
1017 do {
1018 znode = cnext;
1019 cnext = znode->cnext;
1020 if (ubifs_zn_obsolete(znode))
1021 kfree(znode);
1022 else {
1023 znode->cnext = NULL;
1024 atomic_long_inc(&c->clean_zn_cnt);
1025 atomic_long_inc(&ubifs_clean_zn_cnt);
1026 }
1027 } while (cnext != c->cnext);
1028}
1029
1030/**
1031 * return_gap_lebs - return LEBs used by the in-gap commit method.
1032 * @c: UBIFS file-system description object
1033 *
1034 * This function clears the "taken" flag for the LEBs which were used by the
1035 * "commit in-the-gaps" method.
1036 */
1037static int return_gap_lebs(struct ubifs_info *c)
1038{
1039 int *p, err;
1040
1041 if (!c->gap_lebs)
1042 return 0;
1043
1044 dbg_cmt("");
1045 for (p = c->gap_lebs; *p != -1; p++) {
1046 err = ubifs_change_one_lp(c, *p, LPROPS_NC, LPROPS_NC, 0,
1047 LPROPS_TAKEN, 0);
1048 if (err)
1049 return err;
1050 }
1051
1052 kfree(c->gap_lebs);
1053 c->gap_lebs = NULL;
1054 return 0;
1055}
1056
1057/**
1058 * ubifs_tnc_end_commit - update the TNC for commit end.
1059 * @c: UBIFS file-system description object
1060 *
1061 * Write the dirty znodes.
1062 */
1063int ubifs_tnc_end_commit(struct ubifs_info *c)
1064{
1065 int err;
1066
1067 if (!c->cnext)
1068 return 0;
1069
1070 err = return_gap_lebs(c);
1071 if (err)
1072 return err;
1073
1074 err = write_index(c);
1075 if (err)
1076 return err;
1077
1078 mutex_lock(&c->tnc_mutex);
1079
1080 dbg_cmt("TNC height is %d", c->zroot.znode->level + 1);
1081
1082 free_obsolete_znodes(c);
1083
1084 c->cnext = NULL;
1085 kfree(c->ilebs);
1086 c->ilebs = NULL;
1087
1088 mutex_unlock(&c->tnc_mutex);
1089
1090 return 0;
1091}