Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
   4 *
   5 * Copyright (C) 2008-2012 ST-Ericsson AB
   6 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
   7 *
   8 * Author: Linus Walleij <linus.walleij@stericsson.com>
   9 *
  10 * Initial version inspired by:
  11 *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
  12 * Initial adoption to PL022 by:
  13 *      Sachin Verma <sachin.verma@st.com>
  14 */
  15
  16#include <linux/init.h>
  17#include <linux/module.h>
  18#include <linux/device.h>
  19#include <linux/ioport.h>
  20#include <linux/errno.h>
  21#include <linux/interrupt.h>
  22#include <linux/spi/spi.h>
  23#include <linux/delay.h>
  24#include <linux/clk.h>
  25#include <linux/err.h>
  26#include <linux/amba/bus.h>
  27#include <linux/amba/pl022.h>
  28#include <linux/io.h>
  29#include <linux/slab.h>
  30#include <linux/dmaengine.h>
  31#include <linux/dma-mapping.h>
  32#include <linux/scatterlist.h>
  33#include <linux/pm_runtime.h>
  34#include <linux/gpio.h>
  35#include <linux/of_gpio.h>
  36#include <linux/pinctrl/consumer.h>
  37
  38/*
  39 * This macro is used to define some register default values.
  40 * reg is masked with mask, the OR:ed with an (again masked)
  41 * val shifted sb steps to the left.
  42 */
  43#define SSP_WRITE_BITS(reg, val, mask, sb) \
  44 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
  45
  46/*
  47 * This macro is also used to define some default values.
  48 * It will just shift val by sb steps to the left and mask
  49 * the result with mask.
  50 */
  51#define GEN_MASK_BITS(val, mask, sb) \
  52 (((val)<<(sb)) & (mask))
  53
  54#define DRIVE_TX		0
  55#define DO_NOT_DRIVE_TX		1
  56
  57#define DO_NOT_QUEUE_DMA	0
  58#define QUEUE_DMA		1
  59
  60#define RX_TRANSFER		1
  61#define TX_TRANSFER		2
  62
  63/*
  64 * Macros to access SSP Registers with their offsets
  65 */
  66#define SSP_CR0(r)	(r + 0x000)
  67#define SSP_CR1(r)	(r + 0x004)
  68#define SSP_DR(r)	(r + 0x008)
  69#define SSP_SR(r)	(r + 0x00C)
  70#define SSP_CPSR(r)	(r + 0x010)
  71#define SSP_IMSC(r)	(r + 0x014)
  72#define SSP_RIS(r)	(r + 0x018)
  73#define SSP_MIS(r)	(r + 0x01C)
  74#define SSP_ICR(r)	(r + 0x020)
  75#define SSP_DMACR(r)	(r + 0x024)
  76#define SSP_CSR(r)	(r + 0x030) /* vendor extension */
  77#define SSP_ITCR(r)	(r + 0x080)
  78#define SSP_ITIP(r)	(r + 0x084)
  79#define SSP_ITOP(r)	(r + 0x088)
  80#define SSP_TDR(r)	(r + 0x08C)
  81
  82#define SSP_PID0(r)	(r + 0xFE0)
  83#define SSP_PID1(r)	(r + 0xFE4)
  84#define SSP_PID2(r)	(r + 0xFE8)
  85#define SSP_PID3(r)	(r + 0xFEC)
  86
  87#define SSP_CID0(r)	(r + 0xFF0)
  88#define SSP_CID1(r)	(r + 0xFF4)
  89#define SSP_CID2(r)	(r + 0xFF8)
  90#define SSP_CID3(r)	(r + 0xFFC)
  91
  92/*
  93 * SSP Control Register 0  - SSP_CR0
  94 */
  95#define SSP_CR0_MASK_DSS	(0x0FUL << 0)
  96#define SSP_CR0_MASK_FRF	(0x3UL << 4)
  97#define SSP_CR0_MASK_SPO	(0x1UL << 6)
  98#define SSP_CR0_MASK_SPH	(0x1UL << 7)
  99#define SSP_CR0_MASK_SCR	(0xFFUL << 8)
 100
 101/*
 102 * The ST version of this block moves som bits
 103 * in SSP_CR0 and extends it to 32 bits
 104 */
 105#define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
 106#define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
 107#define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
 108#define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
 109
 110/*
 111 * SSP Control Register 0  - SSP_CR1
 112 */
 113#define SSP_CR1_MASK_LBM	(0x1UL << 0)
 114#define SSP_CR1_MASK_SSE	(0x1UL << 1)
 115#define SSP_CR1_MASK_MS		(0x1UL << 2)
 116#define SSP_CR1_MASK_SOD	(0x1UL << 3)
 117
 118/*
 119 * The ST version of this block adds some bits
 120 * in SSP_CR1
 121 */
 122#define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
 123#define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
 124#define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
 125#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
 126#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
 127/* This one is only in the PL023 variant */
 128#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
 129
 130/*
 131 * SSP Status Register - SSP_SR
 132 */
 133#define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
 134#define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
 135#define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
 136#define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
 137#define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
 138
 139/*
 140 * SSP Clock Prescale Register  - SSP_CPSR
 141 */
 142#define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
 143
 144/*
 145 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
 146 */
 147#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
 148#define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
 149#define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
 150#define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
 151
 152/*
 153 * SSP Raw Interrupt Status Register - SSP_RIS
 154 */
 155/* Receive Overrun Raw Interrupt status */
 156#define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
 157/* Receive Timeout Raw Interrupt status */
 158#define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
 159/* Receive FIFO Raw Interrupt status */
 160#define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
 161/* Transmit FIFO Raw Interrupt status */
 162#define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
 163
 164/*
 165 * SSP Masked Interrupt Status Register - SSP_MIS
 166 */
 167/* Receive Overrun Masked Interrupt status */
 168#define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
 169/* Receive Timeout Masked Interrupt status */
 170#define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
 171/* Receive FIFO Masked Interrupt status */
 172#define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
 173/* Transmit FIFO Masked Interrupt status */
 174#define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
 175
 176/*
 177 * SSP Interrupt Clear Register - SSP_ICR
 178 */
 179/* Receive Overrun Raw Clear Interrupt bit */
 180#define SSP_ICR_MASK_RORIC		(0x1UL << 0)
 181/* Receive Timeout Clear Interrupt bit */
 182#define SSP_ICR_MASK_RTIC		(0x1UL << 1)
 183
 184/*
 185 * SSP DMA Control Register - SSP_DMACR
 186 */
 187/* Receive DMA Enable bit */
 188#define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
 189/* Transmit DMA Enable bit */
 190#define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
 191
 192/*
 193 * SSP Chip Select Control Register - SSP_CSR
 194 * (vendor extension)
 195 */
 196#define SSP_CSR_CSVALUE_MASK		(0x1FUL << 0)
 197
 198/*
 199 * SSP Integration Test control Register - SSP_ITCR
 200 */
 201#define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
 202#define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
 203
 204/*
 205 * SSP Integration Test Input Register - SSP_ITIP
 206 */
 207#define ITIP_MASK_SSPRXD		 (0x1UL << 0)
 208#define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
 209#define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
 210#define ITIP_MASK_RXDMAC		 (0x1UL << 3)
 211#define ITIP_MASK_TXDMAC		 (0x1UL << 4)
 212#define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
 213
 214/*
 215 * SSP Integration Test output Register - SSP_ITOP
 216 */
 217#define ITOP_MASK_SSPTXD		 (0x1UL << 0)
 218#define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
 219#define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
 220#define ITOP_MASK_SSPOEn		 (0x1UL << 3)
 221#define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
 222#define ITOP_MASK_RORINTR		 (0x1UL << 5)
 223#define ITOP_MASK_RTINTR		 (0x1UL << 6)
 224#define ITOP_MASK_RXINTR		 (0x1UL << 7)
 225#define ITOP_MASK_TXINTR		 (0x1UL << 8)
 226#define ITOP_MASK_INTR			 (0x1UL << 9)
 227#define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
 228#define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
 229#define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
 230#define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
 231
 232/*
 233 * SSP Test Data Register - SSP_TDR
 234 */
 235#define TDR_MASK_TESTDATA		(0xFFFFFFFF)
 236
 237/*
 238 * Message State
 239 * we use the spi_message.state (void *) pointer to
 240 * hold a single state value, that's why all this
 241 * (void *) casting is done here.
 242 */
 243#define STATE_START			((void *) 0)
 244#define STATE_RUNNING			((void *) 1)
 245#define STATE_DONE			((void *) 2)
 246#define STATE_ERROR			((void *) -1)
 247#define STATE_TIMEOUT			((void *) -2)
 248
 249/*
 250 * SSP State - Whether Enabled or Disabled
 251 */
 252#define SSP_DISABLED			(0)
 253#define SSP_ENABLED			(1)
 254
 255/*
 256 * SSP DMA State - Whether DMA Enabled or Disabled
 257 */
 258#define SSP_DMA_DISABLED		(0)
 259#define SSP_DMA_ENABLED			(1)
 260
 261/*
 262 * SSP Clock Defaults
 263 */
 264#define SSP_DEFAULT_CLKRATE 0x2
 265#define SSP_DEFAULT_PRESCALE 0x40
 266
 267/*
 268 * SSP Clock Parameter ranges
 269 */
 270#define CPSDVR_MIN 0x02
 271#define CPSDVR_MAX 0xFE
 272#define SCR_MIN 0x00
 273#define SCR_MAX 0xFF
 274
 275/*
 276 * SSP Interrupt related Macros
 277 */
 278#define DEFAULT_SSP_REG_IMSC  0x0UL
 279#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
 280#define ENABLE_ALL_INTERRUPTS ( \
 281	SSP_IMSC_MASK_RORIM | \
 282	SSP_IMSC_MASK_RTIM | \
 283	SSP_IMSC_MASK_RXIM | \
 284	SSP_IMSC_MASK_TXIM \
 285)
 286
 287#define CLEAR_ALL_INTERRUPTS  0x3
 288
 289#define SPI_POLLING_TIMEOUT 1000
 290
 291/*
 292 * The type of reading going on on this chip
 293 */
 294enum ssp_reading {
 295	READING_NULL,
 296	READING_U8,
 297	READING_U16,
 298	READING_U32
 299};
 300
 301/*
 302 * The type of writing going on on this chip
 303 */
 304enum ssp_writing {
 305	WRITING_NULL,
 306	WRITING_U8,
 307	WRITING_U16,
 308	WRITING_U32
 309};
 310
 311/**
 312 * struct vendor_data - vendor-specific config parameters
 313 * for PL022 derivates
 314 * @fifodepth: depth of FIFOs (both)
 315 * @max_bpw: maximum number of bits per word
 316 * @unidir: supports unidirection transfers
 317 * @extended_cr: 32 bit wide control register 0 with extra
 318 * features and extra features in CR1 as found in the ST variants
 319 * @pl023: supports a subset of the ST extensions called "PL023"
 320 * @loopback: supports loopback mode
 321 * @internal_cs_ctrl: supports chip select control register
 322 */
 323struct vendor_data {
 324	int fifodepth;
 325	int max_bpw;
 326	bool unidir;
 327	bool extended_cr;
 328	bool pl023;
 329	bool loopback;
 330	bool internal_cs_ctrl;
 331};
 332
 333/**
 334 * struct pl022 - This is the private SSP driver data structure
 335 * @adev: AMBA device model hookup
 336 * @vendor: vendor data for the IP block
 337 * @phybase: the physical memory where the SSP device resides
 338 * @virtbase: the virtual memory where the SSP is mapped
 339 * @clk: outgoing clock "SPICLK" for the SPI bus
 340 * @master: SPI framework hookup
 341 * @master_info: controller-specific data from machine setup
 342 * @pump_transfers: Tasklet used in Interrupt Transfer mode
 343 * @cur_msg: Pointer to current spi_message being processed
 344 * @cur_transfer: Pointer to current spi_transfer
 345 * @cur_chip: pointer to current clients chip(assigned from controller_state)
 346 * @next_msg_cs_active: the next message in the queue has been examined
 347 *  and it was found that it uses the same chip select as the previous
 348 *  message, so we left it active after the previous transfer, and it's
 349 *  active already.
 350 * @tx: current position in TX buffer to be read
 351 * @tx_end: end position in TX buffer to be read
 352 * @rx: current position in RX buffer to be written
 353 * @rx_end: end position in RX buffer to be written
 354 * @read: the type of read currently going on
 355 * @write: the type of write currently going on
 356 * @exp_fifo_level: expected FIFO level
 357 * @rx_lev_trig: receive FIFO watermark level which triggers IRQ
 358 * @tx_lev_trig: transmit FIFO watermark level which triggers IRQ
 359 * @dma_rx_channel: optional channel for RX DMA
 360 * @dma_tx_channel: optional channel for TX DMA
 361 * @sgt_rx: scattertable for the RX transfer
 362 * @sgt_tx: scattertable for the TX transfer
 363 * @dummypage: a dummy page used for driving data on the bus with DMA
 364 * @dma_running: indicates whether DMA is in operation
 365 * @cur_cs: current chip select (gpio)
 366 * @chipselects: list of chipselects (gpios)
 367 */
 368struct pl022 {
 369	struct amba_device		*adev;
 370	struct vendor_data		*vendor;
 371	resource_size_t			phybase;
 372	void __iomem			*virtbase;
 373	struct clk			*clk;
 374	struct spi_master		*master;
 375	struct pl022_ssp_controller	*master_info;
 376	/* Message per-transfer pump */
 377	struct tasklet_struct		pump_transfers;
 378	struct spi_message		*cur_msg;
 379	struct spi_transfer		*cur_transfer;
 380	struct chip_data		*cur_chip;
 381	bool				next_msg_cs_active;
 382	void				*tx;
 383	void				*tx_end;
 384	void				*rx;
 385	void				*rx_end;
 386	enum ssp_reading		read;
 387	enum ssp_writing		write;
 388	u32				exp_fifo_level;
 389	enum ssp_rx_level_trig		rx_lev_trig;
 390	enum ssp_tx_level_trig		tx_lev_trig;
 391	/* DMA settings */
 392#ifdef CONFIG_DMA_ENGINE
 393	struct dma_chan			*dma_rx_channel;
 394	struct dma_chan			*dma_tx_channel;
 395	struct sg_table			sgt_rx;
 396	struct sg_table			sgt_tx;
 397	char				*dummypage;
 398	bool				dma_running;
 399#endif
 400	int cur_cs;
 401	int *chipselects;
 402};
 403
 404/**
 405 * struct chip_data - To maintain runtime state of SSP for each client chip
 406 * @cr0: Value of control register CR0 of SSP - on later ST variants this
 407 *       register is 32 bits wide rather than just 16
 408 * @cr1: Value of control register CR1 of SSP
 409 * @dmacr: Value of DMA control Register of SSP
 410 * @cpsr: Value of Clock prescale register
 411 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
 412 * @enable_dma: Whether to enable DMA or not
 413 * @read: function ptr to be used to read when doing xfer for this chip
 414 * @write: function ptr to be used to write when doing xfer for this chip
 415 * @cs_control: chip select callback provided by chip
 416 * @xfer_type: polling/interrupt/DMA
 417 *
 418 * Runtime state of the SSP controller, maintained per chip,
 419 * This would be set according to the current message that would be served
 420 */
 421struct chip_data {
 422	u32 cr0;
 423	u16 cr1;
 424	u16 dmacr;
 425	u16 cpsr;
 426	u8 n_bytes;
 427	bool enable_dma;
 428	enum ssp_reading read;
 429	enum ssp_writing write;
 430	void (*cs_control) (u32 command);
 431	int xfer_type;
 432};
 433
 434/**
 435 * null_cs_control - Dummy chip select function
 436 * @command: select/delect the chip
 437 *
 438 * If no chip select function is provided by client this is used as dummy
 439 * chip select
 440 */
 441static void null_cs_control(u32 command)
 442{
 443	pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
 444}
 445
 446/**
 447 * internal_cs_control - Control chip select signals via SSP_CSR.
 448 * @pl022: SSP driver private data structure
 449 * @command: select/delect the chip
 450 *
 451 * Used on controller with internal chip select control via SSP_CSR register
 452 * (vendor extension). Each of the 5 LSB in the register controls one chip
 453 * select signal.
 454 */
 455static void internal_cs_control(struct pl022 *pl022, u32 command)
 456{
 457	u32 tmp;
 458
 459	tmp = readw(SSP_CSR(pl022->virtbase));
 460	if (command == SSP_CHIP_SELECT)
 461		tmp &= ~BIT(pl022->cur_cs);
 462	else
 463		tmp |= BIT(pl022->cur_cs);
 464	writew(tmp, SSP_CSR(pl022->virtbase));
 465}
 466
 467static void pl022_cs_control(struct pl022 *pl022, u32 command)
 468{
 469	if (pl022->vendor->internal_cs_ctrl)
 470		internal_cs_control(pl022, command);
 471	else if (gpio_is_valid(pl022->cur_cs))
 472		gpio_set_value(pl022->cur_cs, command);
 473	else
 474		pl022->cur_chip->cs_control(command);
 475}
 476
 477/**
 478 * giveback - current spi_message is over, schedule next message and call
 479 * callback of this message. Assumes that caller already
 480 * set message->status; dma and pio irqs are blocked
 481 * @pl022: SSP driver private data structure
 482 */
 483static void giveback(struct pl022 *pl022)
 484{
 485	struct spi_transfer *last_transfer;
 486	pl022->next_msg_cs_active = false;
 487
 488	last_transfer = list_last_entry(&pl022->cur_msg->transfers,
 489					struct spi_transfer, transfer_list);
 490
 491	/* Delay if requested before any change in chip select */
 492	/*
 493	 * FIXME: This runs in interrupt context.
 494	 * Is this really smart?
 495	 */
 496	spi_transfer_delay_exec(last_transfer);
 
 497
 498	if (!last_transfer->cs_change) {
 499		struct spi_message *next_msg;
 500
 501		/*
 502		 * cs_change was not set. We can keep the chip select
 503		 * enabled if there is message in the queue and it is
 504		 * for the same spi device.
 505		 *
 506		 * We cannot postpone this until pump_messages, because
 507		 * after calling msg->complete (below) the driver that
 508		 * sent the current message could be unloaded, which
 509		 * could invalidate the cs_control() callback...
 510		 */
 511		/* get a pointer to the next message, if any */
 512		next_msg = spi_get_next_queued_message(pl022->master);
 513
 514		/*
 515		 * see if the next and current messages point
 516		 * to the same spi device.
 517		 */
 518		if (next_msg && next_msg->spi != pl022->cur_msg->spi)
 519			next_msg = NULL;
 520		if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
 521			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
 522		else
 523			pl022->next_msg_cs_active = true;
 524
 525	}
 526
 527	pl022->cur_msg = NULL;
 528	pl022->cur_transfer = NULL;
 529	pl022->cur_chip = NULL;
 530
 531	/* disable the SPI/SSP operation */
 532	writew((readw(SSP_CR1(pl022->virtbase)) &
 533		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
 534
 535	spi_finalize_current_message(pl022->master);
 536}
 537
 538/**
 539 * flush - flush the FIFO to reach a clean state
 540 * @pl022: SSP driver private data structure
 541 */
 542static int flush(struct pl022 *pl022)
 543{
 544	unsigned long limit = loops_per_jiffy << 1;
 545
 546	dev_dbg(&pl022->adev->dev, "flush\n");
 547	do {
 548		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 549			readw(SSP_DR(pl022->virtbase));
 550	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
 551
 552	pl022->exp_fifo_level = 0;
 553
 554	return limit;
 555}
 556
 557/**
 558 * restore_state - Load configuration of current chip
 559 * @pl022: SSP driver private data structure
 560 */
 561static void restore_state(struct pl022 *pl022)
 562{
 563	struct chip_data *chip = pl022->cur_chip;
 564
 565	if (pl022->vendor->extended_cr)
 566		writel(chip->cr0, SSP_CR0(pl022->virtbase));
 567	else
 568		writew(chip->cr0, SSP_CR0(pl022->virtbase));
 569	writew(chip->cr1, SSP_CR1(pl022->virtbase));
 570	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
 571	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
 572	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 573	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 574}
 575
 576/*
 577 * Default SSP Register Values
 578 */
 579#define DEFAULT_SSP_REG_CR0 ( \
 580	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
 581	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
 582	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 583	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 584	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 585)
 586
 587/* ST versions have slightly different bit layout */
 588#define DEFAULT_SSP_REG_CR0_ST ( \
 589	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
 590	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
 591	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 592	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 593	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
 594	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
 595	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
 596)
 597
 598/* The PL023 version is slightly different again */
 599#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
 600	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
 601	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 602	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 603	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 604)
 605
 606#define DEFAULT_SSP_REG_CR1 ( \
 607	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
 608	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 609	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 610	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
 611)
 612
 613/* ST versions extend this register to use all 16 bits */
 614#define DEFAULT_SSP_REG_CR1_ST ( \
 615	DEFAULT_SSP_REG_CR1 | \
 616	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 617	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 618	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
 619	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 620	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
 621)
 622
 623/*
 624 * The PL023 variant has further differences: no loopback mode, no microwire
 625 * support, and a new clock feedback delay setting.
 626 */
 627#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
 628	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 629	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 630	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
 631	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 632	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 633	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 634	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
 635	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
 636)
 637
 638#define DEFAULT_SSP_REG_CPSR ( \
 639	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
 640)
 641
 642#define DEFAULT_SSP_REG_DMACR (\
 643	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
 644	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
 645)
 646
 647/**
 648 * load_ssp_default_config - Load default configuration for SSP
 649 * @pl022: SSP driver private data structure
 650 */
 651static void load_ssp_default_config(struct pl022 *pl022)
 652{
 653	if (pl022->vendor->pl023) {
 654		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
 655		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
 656	} else if (pl022->vendor->extended_cr) {
 657		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
 658		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
 659	} else {
 660		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
 661		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
 662	}
 663	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
 664	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
 665	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 666	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 667}
 668
 669/*
 670 * This will write to TX and read from RX according to the parameters
 671 * set in pl022.
 672 */
 673static void readwriter(struct pl022 *pl022)
 674{
 675
 676	/*
 677	 * The FIFO depth is different between primecell variants.
 678	 * I believe filling in too much in the FIFO might cause
 679	 * errons in 8bit wide transfers on ARM variants (just 8 words
 680	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
 681	 *
 682	 * To prevent this issue, the TX FIFO is only filled to the
 683	 * unused RX FIFO fill length, regardless of what the TX
 684	 * FIFO status flag indicates.
 685	 */
 686	dev_dbg(&pl022->adev->dev,
 687		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
 688		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
 689
 690	/* Read as much as you can */
 691	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 692	       && (pl022->rx < pl022->rx_end)) {
 693		switch (pl022->read) {
 694		case READING_NULL:
 695			readw(SSP_DR(pl022->virtbase));
 696			break;
 697		case READING_U8:
 698			*(u8 *) (pl022->rx) =
 699				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 700			break;
 701		case READING_U16:
 702			*(u16 *) (pl022->rx) =
 703				(u16) readw(SSP_DR(pl022->virtbase));
 704			break;
 705		case READING_U32:
 706			*(u32 *) (pl022->rx) =
 707				readl(SSP_DR(pl022->virtbase));
 708			break;
 709		}
 710		pl022->rx += (pl022->cur_chip->n_bytes);
 711		pl022->exp_fifo_level--;
 712	}
 713	/*
 714	 * Write as much as possible up to the RX FIFO size
 715	 */
 716	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
 717	       && (pl022->tx < pl022->tx_end)) {
 718		switch (pl022->write) {
 719		case WRITING_NULL:
 720			writew(0x0, SSP_DR(pl022->virtbase));
 721			break;
 722		case WRITING_U8:
 723			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
 724			break;
 725		case WRITING_U16:
 726			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
 727			break;
 728		case WRITING_U32:
 729			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
 730			break;
 731		}
 732		pl022->tx += (pl022->cur_chip->n_bytes);
 733		pl022->exp_fifo_level++;
 734		/*
 735		 * This inner reader takes care of things appearing in the RX
 736		 * FIFO as we're transmitting. This will happen a lot since the
 737		 * clock starts running when you put things into the TX FIFO,
 738		 * and then things are continuously clocked into the RX FIFO.
 739		 */
 740		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 741		       && (pl022->rx < pl022->rx_end)) {
 742			switch (pl022->read) {
 743			case READING_NULL:
 744				readw(SSP_DR(pl022->virtbase));
 745				break;
 746			case READING_U8:
 747				*(u8 *) (pl022->rx) =
 748					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 749				break;
 750			case READING_U16:
 751				*(u16 *) (pl022->rx) =
 752					(u16) readw(SSP_DR(pl022->virtbase));
 753				break;
 754			case READING_U32:
 755				*(u32 *) (pl022->rx) =
 756					readl(SSP_DR(pl022->virtbase));
 757				break;
 758			}
 759			pl022->rx += (pl022->cur_chip->n_bytes);
 760			pl022->exp_fifo_level--;
 761		}
 762	}
 763	/*
 764	 * When we exit here the TX FIFO should be full and the RX FIFO
 765	 * should be empty
 766	 */
 767}
 768
 769/**
 770 * next_transfer - Move to the Next transfer in the current spi message
 771 * @pl022: SSP driver private data structure
 772 *
 773 * This function moves though the linked list of spi transfers in the
 774 * current spi message and returns with the state of current spi
 775 * message i.e whether its last transfer is done(STATE_DONE) or
 776 * Next transfer is ready(STATE_RUNNING)
 777 */
 778static void *next_transfer(struct pl022 *pl022)
 779{
 780	struct spi_message *msg = pl022->cur_msg;
 781	struct spi_transfer *trans = pl022->cur_transfer;
 782
 783	/* Move to next transfer */
 784	if (trans->transfer_list.next != &msg->transfers) {
 785		pl022->cur_transfer =
 786		    list_entry(trans->transfer_list.next,
 787			       struct spi_transfer, transfer_list);
 788		return STATE_RUNNING;
 789	}
 790	return STATE_DONE;
 791}
 792
 793/*
 794 * This DMA functionality is only compiled in if we have
 795 * access to the generic DMA devices/DMA engine.
 796 */
 797#ifdef CONFIG_DMA_ENGINE
 798static void unmap_free_dma_scatter(struct pl022 *pl022)
 799{
 800	/* Unmap and free the SG tables */
 801	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
 802		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
 803	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
 804		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
 805	sg_free_table(&pl022->sgt_rx);
 806	sg_free_table(&pl022->sgt_tx);
 807}
 808
 809static void dma_callback(void *data)
 810{
 811	struct pl022 *pl022 = data;
 812	struct spi_message *msg = pl022->cur_msg;
 813
 814	BUG_ON(!pl022->sgt_rx.sgl);
 815
 816#ifdef VERBOSE_DEBUG
 817	/*
 818	 * Optionally dump out buffers to inspect contents, this is
 819	 * good if you want to convince yourself that the loopback
 820	 * read/write contents are the same, when adopting to a new
 821	 * DMA engine.
 822	 */
 823	{
 824		struct scatterlist *sg;
 825		unsigned int i;
 826
 827		dma_sync_sg_for_cpu(&pl022->adev->dev,
 828				    pl022->sgt_rx.sgl,
 829				    pl022->sgt_rx.nents,
 830				    DMA_FROM_DEVICE);
 831
 832		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
 833			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
 834			print_hex_dump(KERN_ERR, "SPI RX: ",
 835				       DUMP_PREFIX_OFFSET,
 836				       16,
 837				       1,
 838				       sg_virt(sg),
 839				       sg_dma_len(sg),
 840				       1);
 841		}
 842		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
 843			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
 844			print_hex_dump(KERN_ERR, "SPI TX: ",
 845				       DUMP_PREFIX_OFFSET,
 846				       16,
 847				       1,
 848				       sg_virt(sg),
 849				       sg_dma_len(sg),
 850				       1);
 851		}
 852	}
 853#endif
 854
 855	unmap_free_dma_scatter(pl022);
 856
 857	/* Update total bytes transferred */
 858	msg->actual_length += pl022->cur_transfer->len;
 859	/* Move to next transfer */
 860	msg->state = next_transfer(pl022);
 861	if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
 862		pl022_cs_control(pl022, SSP_CHIP_DESELECT);
 863	tasklet_schedule(&pl022->pump_transfers);
 864}
 865
 866static void setup_dma_scatter(struct pl022 *pl022,
 867			      void *buffer,
 868			      unsigned int length,
 869			      struct sg_table *sgtab)
 870{
 871	struct scatterlist *sg;
 872	int bytesleft = length;
 873	void *bufp = buffer;
 874	int mapbytes;
 875	int i;
 876
 877	if (buffer) {
 878		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 879			/*
 880			 * If there are less bytes left than what fits
 881			 * in the current page (plus page alignment offset)
 882			 * we just feed in this, else we stuff in as much
 883			 * as we can.
 884			 */
 885			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
 886				mapbytes = bytesleft;
 887			else
 888				mapbytes = PAGE_SIZE - offset_in_page(bufp);
 889			sg_set_page(sg, virt_to_page(bufp),
 890				    mapbytes, offset_in_page(bufp));
 891			bufp += mapbytes;
 892			bytesleft -= mapbytes;
 893			dev_dbg(&pl022->adev->dev,
 894				"set RX/TX target page @ %p, %d bytes, %d left\n",
 895				bufp, mapbytes, bytesleft);
 896		}
 897	} else {
 898		/* Map the dummy buffer on every page */
 899		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 900			if (bytesleft < PAGE_SIZE)
 901				mapbytes = bytesleft;
 902			else
 903				mapbytes = PAGE_SIZE;
 904			sg_set_page(sg, virt_to_page(pl022->dummypage),
 905				    mapbytes, 0);
 906			bytesleft -= mapbytes;
 907			dev_dbg(&pl022->adev->dev,
 908				"set RX/TX to dummy page %d bytes, %d left\n",
 909				mapbytes, bytesleft);
 910
 911		}
 912	}
 913	BUG_ON(bytesleft);
 914}
 915
 916/**
 917 * configure_dma - configures the channels for the next transfer
 918 * @pl022: SSP driver's private data structure
 919 */
 920static int configure_dma(struct pl022 *pl022)
 921{
 922	struct dma_slave_config rx_conf = {
 923		.src_addr = SSP_DR(pl022->phybase),
 924		.direction = DMA_DEV_TO_MEM,
 925		.device_fc = false,
 926	};
 927	struct dma_slave_config tx_conf = {
 928		.dst_addr = SSP_DR(pl022->phybase),
 929		.direction = DMA_MEM_TO_DEV,
 930		.device_fc = false,
 931	};
 932	unsigned int pages;
 933	int ret;
 934	int rx_sglen, tx_sglen;
 935	struct dma_chan *rxchan = pl022->dma_rx_channel;
 936	struct dma_chan *txchan = pl022->dma_tx_channel;
 937	struct dma_async_tx_descriptor *rxdesc;
 938	struct dma_async_tx_descriptor *txdesc;
 939
 940	/* Check that the channels are available */
 941	if (!rxchan || !txchan)
 942		return -ENODEV;
 943
 944	/*
 945	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
 946	 * Notice that the DMA engine uses one-to-one mapping. Since we can
 947	 * not trigger on 2 elements this needs explicit mapping rather than
 948	 * calculation.
 949	 */
 950	switch (pl022->rx_lev_trig) {
 951	case SSP_RX_1_OR_MORE_ELEM:
 952		rx_conf.src_maxburst = 1;
 953		break;
 954	case SSP_RX_4_OR_MORE_ELEM:
 955		rx_conf.src_maxburst = 4;
 956		break;
 957	case SSP_RX_8_OR_MORE_ELEM:
 958		rx_conf.src_maxburst = 8;
 959		break;
 960	case SSP_RX_16_OR_MORE_ELEM:
 961		rx_conf.src_maxburst = 16;
 962		break;
 963	case SSP_RX_32_OR_MORE_ELEM:
 964		rx_conf.src_maxburst = 32;
 965		break;
 966	default:
 967		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
 968		break;
 969	}
 970
 971	switch (pl022->tx_lev_trig) {
 972	case SSP_TX_1_OR_MORE_EMPTY_LOC:
 973		tx_conf.dst_maxburst = 1;
 974		break;
 975	case SSP_TX_4_OR_MORE_EMPTY_LOC:
 976		tx_conf.dst_maxburst = 4;
 977		break;
 978	case SSP_TX_8_OR_MORE_EMPTY_LOC:
 979		tx_conf.dst_maxburst = 8;
 980		break;
 981	case SSP_TX_16_OR_MORE_EMPTY_LOC:
 982		tx_conf.dst_maxburst = 16;
 983		break;
 984	case SSP_TX_32_OR_MORE_EMPTY_LOC:
 985		tx_conf.dst_maxburst = 32;
 986		break;
 987	default:
 988		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
 989		break;
 990	}
 991
 992	switch (pl022->read) {
 993	case READING_NULL:
 994		/* Use the same as for writing */
 995		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
 996		break;
 997	case READING_U8:
 998		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 999		break;
1000	case READING_U16:
1001		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1002		break;
1003	case READING_U32:
1004		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1005		break;
1006	}
1007
1008	switch (pl022->write) {
1009	case WRITING_NULL:
1010		/* Use the same as for reading */
1011		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1012		break;
1013	case WRITING_U8:
1014		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1015		break;
1016	case WRITING_U16:
1017		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1018		break;
1019	case WRITING_U32:
1020		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1021		break;
1022	}
1023
1024	/* SPI pecularity: we need to read and write the same width */
1025	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1026		rx_conf.src_addr_width = tx_conf.dst_addr_width;
1027	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1028		tx_conf.dst_addr_width = rx_conf.src_addr_width;
1029	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1030
1031	dmaengine_slave_config(rxchan, &rx_conf);
1032	dmaengine_slave_config(txchan, &tx_conf);
1033
1034	/* Create sglists for the transfers */
1035	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1036	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1037
1038	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1039	if (ret)
1040		goto err_alloc_rx_sg;
1041
1042	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1043	if (ret)
1044		goto err_alloc_tx_sg;
1045
1046	/* Fill in the scatterlists for the RX+TX buffers */
1047	setup_dma_scatter(pl022, pl022->rx,
1048			  pl022->cur_transfer->len, &pl022->sgt_rx);
1049	setup_dma_scatter(pl022, pl022->tx,
1050			  pl022->cur_transfer->len, &pl022->sgt_tx);
1051
1052	/* Map DMA buffers */
1053	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1054			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1055	if (!rx_sglen)
1056		goto err_rx_sgmap;
1057
1058	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1059			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
1060	if (!tx_sglen)
1061		goto err_tx_sgmap;
1062
1063	/* Send both scatterlists */
1064	rxdesc = dmaengine_prep_slave_sg(rxchan,
1065				      pl022->sgt_rx.sgl,
1066				      rx_sglen,
1067				      DMA_DEV_TO_MEM,
1068				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1069	if (!rxdesc)
1070		goto err_rxdesc;
1071
1072	txdesc = dmaengine_prep_slave_sg(txchan,
1073				      pl022->sgt_tx.sgl,
1074				      tx_sglen,
1075				      DMA_MEM_TO_DEV,
1076				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1077	if (!txdesc)
1078		goto err_txdesc;
1079
1080	/* Put the callback on the RX transfer only, that should finish last */
1081	rxdesc->callback = dma_callback;
1082	rxdesc->callback_param = pl022;
1083
1084	/* Submit and fire RX and TX with TX last so we're ready to read! */
1085	dmaengine_submit(rxdesc);
1086	dmaengine_submit(txdesc);
1087	dma_async_issue_pending(rxchan);
1088	dma_async_issue_pending(txchan);
1089	pl022->dma_running = true;
1090
1091	return 0;
1092
1093err_txdesc:
1094	dmaengine_terminate_all(txchan);
1095err_rxdesc:
1096	dmaengine_terminate_all(rxchan);
1097	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1098		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1099err_tx_sgmap:
1100	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1101		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1102err_rx_sgmap:
1103	sg_free_table(&pl022->sgt_tx);
1104err_alloc_tx_sg:
1105	sg_free_table(&pl022->sgt_rx);
1106err_alloc_rx_sg:
1107	return -ENOMEM;
1108}
1109
1110static int pl022_dma_probe(struct pl022 *pl022)
1111{
1112	dma_cap_mask_t mask;
1113
1114	/* Try to acquire a generic DMA engine slave channel */
1115	dma_cap_zero(mask);
1116	dma_cap_set(DMA_SLAVE, mask);
1117	/*
1118	 * We need both RX and TX channels to do DMA, else do none
1119	 * of them.
1120	 */
1121	pl022->dma_rx_channel = dma_request_channel(mask,
1122					    pl022->master_info->dma_filter,
1123					    pl022->master_info->dma_rx_param);
1124	if (!pl022->dma_rx_channel) {
1125		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1126		goto err_no_rxchan;
1127	}
1128
1129	pl022->dma_tx_channel = dma_request_channel(mask,
1130					    pl022->master_info->dma_filter,
1131					    pl022->master_info->dma_tx_param);
1132	if (!pl022->dma_tx_channel) {
1133		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1134		goto err_no_txchan;
1135	}
1136
1137	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1138	if (!pl022->dummypage)
1139		goto err_no_dummypage;
1140
1141	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1142		 dma_chan_name(pl022->dma_rx_channel),
1143		 dma_chan_name(pl022->dma_tx_channel));
1144
1145	return 0;
1146
1147err_no_dummypage:
1148	dma_release_channel(pl022->dma_tx_channel);
1149err_no_txchan:
1150	dma_release_channel(pl022->dma_rx_channel);
1151	pl022->dma_rx_channel = NULL;
1152err_no_rxchan:
1153	dev_err(&pl022->adev->dev,
1154			"Failed to work in dma mode, work without dma!\n");
1155	return -ENODEV;
1156}
1157
1158static int pl022_dma_autoprobe(struct pl022 *pl022)
1159{
1160	struct device *dev = &pl022->adev->dev;
1161	struct dma_chan *chan;
1162	int err;
1163
1164	/* automatically configure DMA channels from platform, normally using DT */
1165	chan = dma_request_chan(dev, "rx");
1166	if (IS_ERR(chan)) {
1167		err = PTR_ERR(chan);
1168		goto err_no_rxchan;
1169	}
1170
1171	pl022->dma_rx_channel = chan;
1172
1173	chan = dma_request_chan(dev, "tx");
1174	if (IS_ERR(chan)) {
1175		err = PTR_ERR(chan);
1176		goto err_no_txchan;
1177	}
1178
1179	pl022->dma_tx_channel = chan;
1180
1181	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1182	if (!pl022->dummypage) {
1183		err = -ENOMEM;
1184		goto err_no_dummypage;
1185	}
1186
1187	return 0;
1188
1189err_no_dummypage:
1190	dma_release_channel(pl022->dma_tx_channel);
1191	pl022->dma_tx_channel = NULL;
1192err_no_txchan:
1193	dma_release_channel(pl022->dma_rx_channel);
1194	pl022->dma_rx_channel = NULL;
1195err_no_rxchan:
1196	return err;
1197}
1198		
1199static void terminate_dma(struct pl022 *pl022)
1200{
1201	struct dma_chan *rxchan = pl022->dma_rx_channel;
1202	struct dma_chan *txchan = pl022->dma_tx_channel;
1203
1204	dmaengine_terminate_all(rxchan);
1205	dmaengine_terminate_all(txchan);
1206	unmap_free_dma_scatter(pl022);
1207	pl022->dma_running = false;
1208}
1209
1210static void pl022_dma_remove(struct pl022 *pl022)
1211{
1212	if (pl022->dma_running)
1213		terminate_dma(pl022);
1214	if (pl022->dma_tx_channel)
1215		dma_release_channel(pl022->dma_tx_channel);
1216	if (pl022->dma_rx_channel)
1217		dma_release_channel(pl022->dma_rx_channel);
1218	kfree(pl022->dummypage);
1219}
1220
1221#else
1222static inline int configure_dma(struct pl022 *pl022)
1223{
1224	return -ENODEV;
1225}
1226
1227static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1228{
1229	return 0;
1230}
1231
1232static inline int pl022_dma_probe(struct pl022 *pl022)
1233{
1234	return 0;
1235}
1236
1237static inline void pl022_dma_remove(struct pl022 *pl022)
1238{
1239}
1240#endif
1241
1242/**
1243 * pl022_interrupt_handler - Interrupt handler for SSP controller
1244 * @irq: IRQ number
1245 * @dev_id: Local device data
1246 *
1247 * This function handles interrupts generated for an interrupt based transfer.
1248 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1249 * current message's state as STATE_ERROR and schedule the tasklet
1250 * pump_transfers which will do the postprocessing of the current message by
1251 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1252 * more data, and writes data in TX FIFO till it is not full. If we complete
1253 * the transfer we move to the next transfer and schedule the tasklet.
1254 */
1255static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1256{
1257	struct pl022 *pl022 = dev_id;
1258	struct spi_message *msg = pl022->cur_msg;
1259	u16 irq_status = 0;
1260
1261	if (unlikely(!msg)) {
1262		dev_err(&pl022->adev->dev,
1263			"bad message state in interrupt handler");
1264		/* Never fail */
1265		return IRQ_HANDLED;
1266	}
1267
1268	/* Read the Interrupt Status Register */
1269	irq_status = readw(SSP_MIS(pl022->virtbase));
1270
1271	if (unlikely(!irq_status))
1272		return IRQ_NONE;
1273
1274	/*
1275	 * This handles the FIFO interrupts, the timeout
1276	 * interrupts are flatly ignored, they cannot be
1277	 * trusted.
1278	 */
1279	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1280		/*
1281		 * Overrun interrupt - bail out since our Data has been
1282		 * corrupted
1283		 */
1284		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1285		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1286			dev_err(&pl022->adev->dev,
1287				"RXFIFO is full\n");
1288
1289		/*
1290		 * Disable and clear interrupts, disable SSP,
1291		 * mark message with bad status so it can be
1292		 * retried.
1293		 */
1294		writew(DISABLE_ALL_INTERRUPTS,
1295		       SSP_IMSC(pl022->virtbase));
1296		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1297		writew((readw(SSP_CR1(pl022->virtbase)) &
1298			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1299		msg->state = STATE_ERROR;
1300
1301		/* Schedule message queue handler */
1302		tasklet_schedule(&pl022->pump_transfers);
1303		return IRQ_HANDLED;
1304	}
1305
1306	readwriter(pl022);
1307
1308	if (pl022->tx == pl022->tx_end) {
1309		/* Disable Transmit interrupt, enable receive interrupt */
1310		writew((readw(SSP_IMSC(pl022->virtbase)) &
1311		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1312		       SSP_IMSC(pl022->virtbase));
1313	}
1314
1315	/*
1316	 * Since all transactions must write as much as shall be read,
1317	 * we can conclude the entire transaction once RX is complete.
1318	 * At this point, all TX will always be finished.
1319	 */
1320	if (pl022->rx >= pl022->rx_end) {
1321		writew(DISABLE_ALL_INTERRUPTS,
1322		       SSP_IMSC(pl022->virtbase));
1323		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1324		if (unlikely(pl022->rx > pl022->rx_end)) {
1325			dev_warn(&pl022->adev->dev, "read %u surplus "
1326				 "bytes (did you request an odd "
1327				 "number of bytes on a 16bit bus?)\n",
1328				 (u32) (pl022->rx - pl022->rx_end));
1329		}
1330		/* Update total bytes transferred */
1331		msg->actual_length += pl022->cur_transfer->len;
1332		/* Move to next transfer */
1333		msg->state = next_transfer(pl022);
1334		if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
1335			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1336		tasklet_schedule(&pl022->pump_transfers);
1337		return IRQ_HANDLED;
1338	}
1339
1340	return IRQ_HANDLED;
1341}
1342
1343/*
1344 * This sets up the pointers to memory for the next message to
1345 * send out on the SPI bus.
1346 */
1347static int set_up_next_transfer(struct pl022 *pl022,
1348				struct spi_transfer *transfer)
1349{
1350	int residue;
1351
1352	/* Sanity check the message for this bus width */
1353	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1354	if (unlikely(residue != 0)) {
1355		dev_err(&pl022->adev->dev,
1356			"message of %u bytes to transmit but the current "
1357			"chip bus has a data width of %u bytes!\n",
1358			pl022->cur_transfer->len,
1359			pl022->cur_chip->n_bytes);
1360		dev_err(&pl022->adev->dev, "skipping this message\n");
1361		return -EIO;
1362	}
1363	pl022->tx = (void *)transfer->tx_buf;
1364	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1365	pl022->rx = (void *)transfer->rx_buf;
1366	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1367	pl022->write =
1368	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1369	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1370	return 0;
1371}
1372
1373/**
1374 * pump_transfers - Tasklet function which schedules next transfer
1375 * when running in interrupt or DMA transfer mode.
1376 * @data: SSP driver private data structure
1377 *
1378 */
1379static void pump_transfers(unsigned long data)
1380{
1381	struct pl022 *pl022 = (struct pl022 *) data;
1382	struct spi_message *message = NULL;
1383	struct spi_transfer *transfer = NULL;
1384	struct spi_transfer *previous = NULL;
1385
1386	/* Get current state information */
1387	message = pl022->cur_msg;
1388	transfer = pl022->cur_transfer;
1389
1390	/* Handle for abort */
1391	if (message->state == STATE_ERROR) {
1392		message->status = -EIO;
1393		giveback(pl022);
1394		return;
1395	}
1396
1397	/* Handle end of message */
1398	if (message->state == STATE_DONE) {
1399		message->status = 0;
1400		giveback(pl022);
1401		return;
1402	}
1403
1404	/* Delay if requested at end of transfer before CS change */
1405	if (message->state == STATE_RUNNING) {
1406		previous = list_entry(transfer->transfer_list.prev,
1407					struct spi_transfer,
1408					transfer_list);
1409		/*
1410		 * FIXME: This runs in interrupt context.
1411		 * Is this really smart?
1412		 */
1413		spi_transfer_delay_exec(previous);
 
1414
1415		/* Reselect chip select only if cs_change was requested */
1416		if (previous->cs_change)
1417			pl022_cs_control(pl022, SSP_CHIP_SELECT);
1418	} else {
1419		/* STATE_START */
1420		message->state = STATE_RUNNING;
1421	}
1422
1423	if (set_up_next_transfer(pl022, transfer)) {
1424		message->state = STATE_ERROR;
1425		message->status = -EIO;
1426		giveback(pl022);
1427		return;
1428	}
1429	/* Flush the FIFOs and let's go! */
1430	flush(pl022);
1431
1432	if (pl022->cur_chip->enable_dma) {
1433		if (configure_dma(pl022)) {
1434			dev_dbg(&pl022->adev->dev,
1435				"configuration of DMA failed, fall back to interrupt mode\n");
1436			goto err_config_dma;
1437		}
1438		return;
1439	}
1440
1441err_config_dma:
1442	/* enable all interrupts except RX */
1443	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1444}
1445
1446static void do_interrupt_dma_transfer(struct pl022 *pl022)
1447{
1448	/*
1449	 * Default is to enable all interrupts except RX -
1450	 * this will be enabled once TX is complete
1451	 */
1452	u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1453
1454	/* Enable target chip, if not already active */
1455	if (!pl022->next_msg_cs_active)
1456		pl022_cs_control(pl022, SSP_CHIP_SELECT);
1457
1458	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1459		/* Error path */
1460		pl022->cur_msg->state = STATE_ERROR;
1461		pl022->cur_msg->status = -EIO;
1462		giveback(pl022);
1463		return;
1464	}
1465	/* If we're using DMA, set up DMA here */
1466	if (pl022->cur_chip->enable_dma) {
1467		/* Configure DMA transfer */
1468		if (configure_dma(pl022)) {
1469			dev_dbg(&pl022->adev->dev,
1470				"configuration of DMA failed, fall back to interrupt mode\n");
1471			goto err_config_dma;
1472		}
1473		/* Disable interrupts in DMA mode, IRQ from DMA controller */
1474		irqflags = DISABLE_ALL_INTERRUPTS;
1475	}
1476err_config_dma:
1477	/* Enable SSP, turn on interrupts */
1478	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1479	       SSP_CR1(pl022->virtbase));
1480	writew(irqflags, SSP_IMSC(pl022->virtbase));
1481}
1482
1483static void print_current_status(struct pl022 *pl022)
1484{
1485	u32 read_cr0;
1486	u16 read_cr1, read_dmacr, read_sr;
1487
1488	if (pl022->vendor->extended_cr)
1489		read_cr0 = readl(SSP_CR0(pl022->virtbase));
1490	else
1491		read_cr0 = readw(SSP_CR0(pl022->virtbase));
1492	read_cr1 = readw(SSP_CR1(pl022->virtbase));
1493	read_dmacr = readw(SSP_DMACR(pl022->virtbase));
1494	read_sr = readw(SSP_SR(pl022->virtbase));
1495
1496	dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0);
1497	dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1);
1498	dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr);
1499	dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr);
1500	dev_warn(&pl022->adev->dev,
1501			"spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
1502			pl022->exp_fifo_level,
1503			pl022->vendor->fifodepth);
1504
1505}
1506
1507static void do_polling_transfer(struct pl022 *pl022)
1508{
1509	struct spi_message *message = NULL;
1510	struct spi_transfer *transfer = NULL;
1511	struct spi_transfer *previous = NULL;
1512	unsigned long time, timeout;
1513
1514	message = pl022->cur_msg;
1515
1516	while (message->state != STATE_DONE) {
1517		/* Handle for abort */
1518		if (message->state == STATE_ERROR)
1519			break;
1520		transfer = pl022->cur_transfer;
1521
1522		/* Delay if requested at end of transfer */
1523		if (message->state == STATE_RUNNING) {
1524			previous =
1525			    list_entry(transfer->transfer_list.prev,
1526				       struct spi_transfer, transfer_list);
1527			spi_transfer_delay_exec(previous);
 
1528			if (previous->cs_change)
1529				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1530		} else {
1531			/* STATE_START */
1532			message->state = STATE_RUNNING;
1533			if (!pl022->next_msg_cs_active)
1534				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1535		}
1536
1537		/* Configuration Changing Per Transfer */
1538		if (set_up_next_transfer(pl022, transfer)) {
1539			/* Error path */
1540			message->state = STATE_ERROR;
1541			break;
1542		}
1543		/* Flush FIFOs and enable SSP */
1544		flush(pl022);
1545		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1546		       SSP_CR1(pl022->virtbase));
1547
1548		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1549
1550		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1551		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1552			time = jiffies;
1553			readwriter(pl022);
1554			if (time_after(time, timeout)) {
1555				dev_warn(&pl022->adev->dev,
1556				"%s: timeout!\n", __func__);
1557				message->state = STATE_TIMEOUT;
1558				print_current_status(pl022);
1559				goto out;
1560			}
1561			cpu_relax();
1562		}
1563
1564		/* Update total byte transferred */
1565		message->actual_length += pl022->cur_transfer->len;
1566		/* Move to next transfer */
1567		message->state = next_transfer(pl022);
1568		if (message->state != STATE_DONE
1569		    && pl022->cur_transfer->cs_change)
1570			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1571	}
1572out:
1573	/* Handle end of message */
1574	if (message->state == STATE_DONE)
1575		message->status = 0;
1576	else if (message->state == STATE_TIMEOUT)
1577		message->status = -EAGAIN;
1578	else
1579		message->status = -EIO;
1580
1581	giveback(pl022);
1582	return;
1583}
1584
1585static int pl022_transfer_one_message(struct spi_master *master,
1586				      struct spi_message *msg)
1587{
1588	struct pl022 *pl022 = spi_master_get_devdata(master);
1589
1590	/* Initial message state */
1591	pl022->cur_msg = msg;
1592	msg->state = STATE_START;
1593
1594	pl022->cur_transfer = list_entry(msg->transfers.next,
1595					 struct spi_transfer, transfer_list);
1596
1597	/* Setup the SPI using the per chip configuration */
1598	pl022->cur_chip = spi_get_ctldata(msg->spi);
1599	pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1600
1601	restore_state(pl022);
1602	flush(pl022);
1603
1604	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1605		do_polling_transfer(pl022);
1606	else
1607		do_interrupt_dma_transfer(pl022);
1608
1609	return 0;
1610}
1611
1612static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1613{
1614	struct pl022 *pl022 = spi_master_get_devdata(master);
1615
1616	/* nothing more to do - disable spi/ssp and power off */
1617	writew((readw(SSP_CR1(pl022->virtbase)) &
1618		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1619
1620	return 0;
1621}
1622
1623static int verify_controller_parameters(struct pl022 *pl022,
1624				struct pl022_config_chip const *chip_info)
1625{
1626	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1627	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1628		dev_err(&pl022->adev->dev,
1629			"interface is configured incorrectly\n");
1630		return -EINVAL;
1631	}
1632	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1633	    (!pl022->vendor->unidir)) {
1634		dev_err(&pl022->adev->dev,
1635			"unidirectional mode not supported in this "
1636			"hardware version\n");
1637		return -EINVAL;
1638	}
1639	if ((chip_info->hierarchy != SSP_MASTER)
1640	    && (chip_info->hierarchy != SSP_SLAVE)) {
1641		dev_err(&pl022->adev->dev,
1642			"hierarchy is configured incorrectly\n");
1643		return -EINVAL;
1644	}
1645	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1646	    && (chip_info->com_mode != DMA_TRANSFER)
1647	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1648		dev_err(&pl022->adev->dev,
1649			"Communication mode is configured incorrectly\n");
1650		return -EINVAL;
1651	}
1652	switch (chip_info->rx_lev_trig) {
1653	case SSP_RX_1_OR_MORE_ELEM:
1654	case SSP_RX_4_OR_MORE_ELEM:
1655	case SSP_RX_8_OR_MORE_ELEM:
1656		/* These are always OK, all variants can handle this */
1657		break;
1658	case SSP_RX_16_OR_MORE_ELEM:
1659		if (pl022->vendor->fifodepth < 16) {
1660			dev_err(&pl022->adev->dev,
1661			"RX FIFO Trigger Level is configured incorrectly\n");
1662			return -EINVAL;
1663		}
1664		break;
1665	case SSP_RX_32_OR_MORE_ELEM:
1666		if (pl022->vendor->fifodepth < 32) {
1667			dev_err(&pl022->adev->dev,
1668			"RX FIFO Trigger Level is configured incorrectly\n");
1669			return -EINVAL;
1670		}
1671		break;
1672	default:
1673		dev_err(&pl022->adev->dev,
1674			"RX FIFO Trigger Level is configured incorrectly\n");
1675		return -EINVAL;
1676	}
1677	switch (chip_info->tx_lev_trig) {
1678	case SSP_TX_1_OR_MORE_EMPTY_LOC:
1679	case SSP_TX_4_OR_MORE_EMPTY_LOC:
1680	case SSP_TX_8_OR_MORE_EMPTY_LOC:
1681		/* These are always OK, all variants can handle this */
1682		break;
1683	case SSP_TX_16_OR_MORE_EMPTY_LOC:
1684		if (pl022->vendor->fifodepth < 16) {
1685			dev_err(&pl022->adev->dev,
1686			"TX FIFO Trigger Level is configured incorrectly\n");
1687			return -EINVAL;
1688		}
1689		break;
1690	case SSP_TX_32_OR_MORE_EMPTY_LOC:
1691		if (pl022->vendor->fifodepth < 32) {
1692			dev_err(&pl022->adev->dev,
1693			"TX FIFO Trigger Level is configured incorrectly\n");
1694			return -EINVAL;
1695		}
1696		break;
1697	default:
1698		dev_err(&pl022->adev->dev,
1699			"TX FIFO Trigger Level is configured incorrectly\n");
1700		return -EINVAL;
1701	}
1702	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1703		if ((chip_info->ctrl_len < SSP_BITS_4)
1704		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1705			dev_err(&pl022->adev->dev,
1706				"CTRL LEN is configured incorrectly\n");
1707			return -EINVAL;
1708		}
1709		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1710		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1711			dev_err(&pl022->adev->dev,
1712				"Wait State is configured incorrectly\n");
1713			return -EINVAL;
1714		}
1715		/* Half duplex is only available in the ST Micro version */
1716		if (pl022->vendor->extended_cr) {
1717			if ((chip_info->duplex !=
1718			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1719			    && (chip_info->duplex !=
1720				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1721				dev_err(&pl022->adev->dev,
1722					"Microwire duplex mode is configured incorrectly\n");
1723				return -EINVAL;
1724			}
1725		} else {
1726			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1727				dev_err(&pl022->adev->dev,
1728					"Microwire half duplex mode requested,"
1729					" but this is only available in the"
1730					" ST version of PL022\n");
1731			return -EINVAL;
1732		}
1733	}
1734	return 0;
1735}
1736
1737static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1738{
1739	return rate / (cpsdvsr * (1 + scr));
1740}
1741
1742static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1743				    ssp_clock_params * clk_freq)
1744{
1745	/* Lets calculate the frequency parameters */
1746	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1747	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1748		best_scr = 0, tmp, found = 0;
1749
1750	rate = clk_get_rate(pl022->clk);
1751	/* cpsdvscr = 2 & scr 0 */
1752	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1753	/* cpsdvsr = 254 & scr = 255 */
1754	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1755
1756	if (freq > max_tclk)
1757		dev_warn(&pl022->adev->dev,
1758			"Max speed that can be programmed is %d Hz, you requested %d\n",
1759			max_tclk, freq);
1760
1761	if (freq < min_tclk) {
1762		dev_err(&pl022->adev->dev,
1763			"Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1764			freq, min_tclk);
1765		return -EINVAL;
1766	}
1767
1768	/*
1769	 * best_freq will give closest possible available rate (<= requested
1770	 * freq) for all values of scr & cpsdvsr.
1771	 */
1772	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1773		while (scr <= SCR_MAX) {
1774			tmp = spi_rate(rate, cpsdvsr, scr);
1775
1776			if (tmp > freq) {
1777				/* we need lower freq */
1778				scr++;
1779				continue;
1780			}
1781
1782			/*
1783			 * If found exact value, mark found and break.
1784			 * If found more closer value, update and break.
1785			 */
1786			if (tmp > best_freq) {
1787				best_freq = tmp;
1788				best_cpsdvsr = cpsdvsr;
1789				best_scr = scr;
1790
1791				if (tmp == freq)
1792					found = 1;
1793			}
1794			/*
1795			 * increased scr will give lower rates, which are not
1796			 * required
1797			 */
1798			break;
1799		}
1800		cpsdvsr += 2;
1801		scr = SCR_MIN;
1802	}
1803
1804	WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1805			freq);
1806
1807	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1808	clk_freq->scr = (u8) (best_scr & 0xFF);
1809	dev_dbg(&pl022->adev->dev,
1810		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
1811		freq, best_freq);
1812	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1813		clk_freq->cpsdvsr, clk_freq->scr);
1814
1815	return 0;
1816}
1817
1818/*
1819 * A piece of default chip info unless the platform
1820 * supplies it.
1821 */
1822static const struct pl022_config_chip pl022_default_chip_info = {
1823	.com_mode = POLLING_TRANSFER,
1824	.iface = SSP_INTERFACE_MOTOROLA_SPI,
1825	.hierarchy = SSP_SLAVE,
1826	.slave_tx_disable = DO_NOT_DRIVE_TX,
1827	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1828	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1829	.ctrl_len = SSP_BITS_8,
1830	.wait_state = SSP_MWIRE_WAIT_ZERO,
1831	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1832	.cs_control = null_cs_control,
1833};
1834
1835/**
1836 * pl022_setup - setup function registered to SPI master framework
1837 * @spi: spi device which is requesting setup
1838 *
1839 * This function is registered to the SPI framework for this SPI master
1840 * controller. If it is the first time when setup is called by this device,
1841 * this function will initialize the runtime state for this chip and save
1842 * the same in the device structure. Else it will update the runtime info
1843 * with the updated chip info. Nothing is really being written to the
1844 * controller hardware here, that is not done until the actual transfer
1845 * commence.
1846 */
1847static int pl022_setup(struct spi_device *spi)
1848{
1849	struct pl022_config_chip const *chip_info;
1850	struct pl022_config_chip chip_info_dt;
1851	struct chip_data *chip;
1852	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1853	int status = 0;
1854	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1855	unsigned int bits = spi->bits_per_word;
1856	u32 tmp;
1857	struct device_node *np = spi->dev.of_node;
1858
1859	if (!spi->max_speed_hz)
1860		return -EINVAL;
1861
1862	/* Get controller_state if one is supplied */
1863	chip = spi_get_ctldata(spi);
1864
1865	if (chip == NULL) {
1866		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1867		if (!chip)
1868			return -ENOMEM;
1869		dev_dbg(&spi->dev,
1870			"allocated memory for controller's runtime state\n");
1871	}
1872
1873	/* Get controller data if one is supplied */
1874	chip_info = spi->controller_data;
1875
1876	if (chip_info == NULL) {
1877		if (np) {
1878			chip_info_dt = pl022_default_chip_info;
1879
1880			chip_info_dt.hierarchy = SSP_MASTER;
1881			of_property_read_u32(np, "pl022,interface",
1882				&chip_info_dt.iface);
1883			of_property_read_u32(np, "pl022,com-mode",
1884				&chip_info_dt.com_mode);
1885			of_property_read_u32(np, "pl022,rx-level-trig",
1886				&chip_info_dt.rx_lev_trig);
1887			of_property_read_u32(np, "pl022,tx-level-trig",
1888				&chip_info_dt.tx_lev_trig);
1889			of_property_read_u32(np, "pl022,ctrl-len",
1890				&chip_info_dt.ctrl_len);
1891			of_property_read_u32(np, "pl022,wait-state",
1892				&chip_info_dt.wait_state);
1893			of_property_read_u32(np, "pl022,duplex",
1894				&chip_info_dt.duplex);
1895
1896			chip_info = &chip_info_dt;
1897		} else {
1898			chip_info = &pl022_default_chip_info;
1899			/* spi_board_info.controller_data not is supplied */
1900			dev_dbg(&spi->dev,
1901				"using default controller_data settings\n");
1902		}
1903	} else
1904		dev_dbg(&spi->dev,
1905			"using user supplied controller_data settings\n");
1906
1907	/*
1908	 * We can override with custom divisors, else we use the board
1909	 * frequency setting
1910	 */
1911	if ((0 == chip_info->clk_freq.cpsdvsr)
1912	    && (0 == chip_info->clk_freq.scr)) {
1913		status = calculate_effective_freq(pl022,
1914						  spi->max_speed_hz,
1915						  &clk_freq);
1916		if (status < 0)
1917			goto err_config_params;
1918	} else {
1919		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1920		if ((clk_freq.cpsdvsr % 2) != 0)
1921			clk_freq.cpsdvsr =
1922				clk_freq.cpsdvsr - 1;
1923	}
1924	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1925	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1926		status = -EINVAL;
1927		dev_err(&spi->dev,
1928			"cpsdvsr is configured incorrectly\n");
1929		goto err_config_params;
1930	}
1931
1932	status = verify_controller_parameters(pl022, chip_info);
1933	if (status) {
1934		dev_err(&spi->dev, "controller data is incorrect");
1935		goto err_config_params;
1936	}
1937
1938	pl022->rx_lev_trig = chip_info->rx_lev_trig;
1939	pl022->tx_lev_trig = chip_info->tx_lev_trig;
1940
1941	/* Now set controller state based on controller data */
1942	chip->xfer_type = chip_info->com_mode;
1943	if (!chip_info->cs_control) {
1944		chip->cs_control = null_cs_control;
1945		if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1946			dev_warn(&spi->dev,
1947				 "invalid chip select\n");
1948	} else
1949		chip->cs_control = chip_info->cs_control;
1950
1951	/* Check bits per word with vendor specific range */
1952	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1953		status = -ENOTSUPP;
1954		dev_err(&spi->dev, "illegal data size for this controller!\n");
1955		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1956				pl022->vendor->max_bpw);
1957		goto err_config_params;
1958	} else if (bits <= 8) {
1959		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1960		chip->n_bytes = 1;
1961		chip->read = READING_U8;
1962		chip->write = WRITING_U8;
1963	} else if (bits <= 16) {
1964		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1965		chip->n_bytes = 2;
1966		chip->read = READING_U16;
1967		chip->write = WRITING_U16;
1968	} else {
1969		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1970		chip->n_bytes = 4;
1971		chip->read = READING_U32;
1972		chip->write = WRITING_U32;
1973	}
1974
1975	/* Now Initialize all register settings required for this chip */
1976	chip->cr0 = 0;
1977	chip->cr1 = 0;
1978	chip->dmacr = 0;
1979	chip->cpsr = 0;
1980	if ((chip_info->com_mode == DMA_TRANSFER)
1981	    && ((pl022->master_info)->enable_dma)) {
1982		chip->enable_dma = true;
1983		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1984		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1985			       SSP_DMACR_MASK_RXDMAE, 0);
1986		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1987			       SSP_DMACR_MASK_TXDMAE, 1);
1988	} else {
1989		chip->enable_dma = false;
1990		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1991		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1992			       SSP_DMACR_MASK_RXDMAE, 0);
1993		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1994			       SSP_DMACR_MASK_TXDMAE, 1);
1995	}
1996
1997	chip->cpsr = clk_freq.cpsdvsr;
1998
1999	/* Special setup for the ST micro extended control registers */
2000	if (pl022->vendor->extended_cr) {
2001		u32 etx;
2002
2003		if (pl022->vendor->pl023) {
2004			/* These bits are only in the PL023 */
2005			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
2006				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
2007		} else {
2008			/* These bits are in the PL022 but not PL023 */
2009			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
2010				       SSP_CR0_MASK_HALFDUP_ST, 5);
2011			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
2012				       SSP_CR0_MASK_CSS_ST, 16);
2013			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2014				       SSP_CR0_MASK_FRF_ST, 21);
2015			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2016				       SSP_CR1_MASK_MWAIT_ST, 6);
2017		}
2018		SSP_WRITE_BITS(chip->cr0, bits - 1,
2019			       SSP_CR0_MASK_DSS_ST, 0);
2020
2021		if (spi->mode & SPI_LSB_FIRST) {
2022			tmp = SSP_RX_LSB;
2023			etx = SSP_TX_LSB;
2024		} else {
2025			tmp = SSP_RX_MSB;
2026			etx = SSP_TX_MSB;
2027		}
2028		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2029		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2030		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2031			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
2032		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2033			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
2034	} else {
2035		SSP_WRITE_BITS(chip->cr0, bits - 1,
2036			       SSP_CR0_MASK_DSS, 0);
2037		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2038			       SSP_CR0_MASK_FRF, 4);
2039	}
2040
2041	/* Stuff that is common for all versions */
2042	if (spi->mode & SPI_CPOL)
2043		tmp = SSP_CLK_POL_IDLE_HIGH;
2044	else
2045		tmp = SSP_CLK_POL_IDLE_LOW;
2046	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2047
2048	if (spi->mode & SPI_CPHA)
2049		tmp = SSP_CLK_SECOND_EDGE;
2050	else
2051		tmp = SSP_CLK_FIRST_EDGE;
2052	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2053
2054	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2055	/* Loopback is available on all versions except PL023 */
2056	if (pl022->vendor->loopback) {
2057		if (spi->mode & SPI_LOOP)
2058			tmp = LOOPBACK_ENABLED;
2059		else
2060			tmp = LOOPBACK_DISABLED;
2061		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2062	}
2063	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2064	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2065	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2066		3);
2067
2068	/* Save controller_state */
2069	spi_set_ctldata(spi, chip);
2070	return status;
2071 err_config_params:
2072	spi_set_ctldata(spi, NULL);
2073	kfree(chip);
2074	return status;
2075}
2076
2077/**
2078 * pl022_cleanup - cleanup function registered to SPI master framework
2079 * @spi: spi device which is requesting cleanup
2080 *
2081 * This function is registered to the SPI framework for this SPI master
2082 * controller. It will free the runtime state of chip.
2083 */
2084static void pl022_cleanup(struct spi_device *spi)
2085{
2086	struct chip_data *chip = spi_get_ctldata(spi);
2087
2088	spi_set_ctldata(spi, NULL);
2089	kfree(chip);
2090}
2091
2092static struct pl022_ssp_controller *
2093pl022_platform_data_dt_get(struct device *dev)
2094{
2095	struct device_node *np = dev->of_node;
2096	struct pl022_ssp_controller *pd;
2097	u32 tmp = 0;
2098
2099	if (!np) {
2100		dev_err(dev, "no dt node defined\n");
2101		return NULL;
2102	}
2103
2104	pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2105	if (!pd)
2106		return NULL;
2107
2108	pd->bus_id = -1;
2109	pd->enable_dma = 1;
2110	of_property_read_u32(np, "num-cs", &tmp);
2111	pd->num_chipselect = tmp;
2112	of_property_read_u32(np, "pl022,autosuspend-delay",
2113			     &pd->autosuspend_delay);
2114	pd->rt = of_property_read_bool(np, "pl022,rt");
2115
2116	return pd;
2117}
2118
2119static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2120{
2121	struct device *dev = &adev->dev;
2122	struct pl022_ssp_controller *platform_info =
2123			dev_get_platdata(&adev->dev);
2124	struct spi_master *master;
2125	struct pl022 *pl022 = NULL;	/*Data for this driver */
2126	struct device_node *np = adev->dev.of_node;
2127	int status = 0, i, num_cs;
2128
2129	dev_info(&adev->dev,
2130		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2131	if (!platform_info && IS_ENABLED(CONFIG_OF))
2132		platform_info = pl022_platform_data_dt_get(dev);
2133
2134	if (!platform_info) {
2135		dev_err(dev, "probe: no platform data defined\n");
2136		return -ENODEV;
2137	}
2138
2139	if (platform_info->num_chipselect) {
2140		num_cs = platform_info->num_chipselect;
2141	} else {
2142		dev_err(dev, "probe: no chip select defined\n");
2143		return -ENODEV;
2144	}
2145
2146	/* Allocate master with space for data */
2147	master = spi_alloc_master(dev, sizeof(struct pl022));
2148	if (master == NULL) {
2149		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2150		return -ENOMEM;
2151	}
2152
2153	pl022 = spi_master_get_devdata(master);
2154	pl022->master = master;
2155	pl022->master_info = platform_info;
2156	pl022->adev = adev;
2157	pl022->vendor = id->data;
2158	pl022->chipselects = devm_kcalloc(dev, num_cs, sizeof(int),
2159					  GFP_KERNEL);
2160	if (!pl022->chipselects) {
2161		status = -ENOMEM;
2162		goto err_no_mem;
2163	}
2164
2165	/*
2166	 * Bus Number Which has been Assigned to this SSP controller
2167	 * on this board
2168	 */
2169	master->bus_num = platform_info->bus_id;
2170	master->num_chipselect = num_cs;
2171	master->cleanup = pl022_cleanup;
2172	master->setup = pl022_setup;
2173	master->auto_runtime_pm = true;
2174	master->transfer_one_message = pl022_transfer_one_message;
2175	master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2176	master->rt = platform_info->rt;
2177	master->dev.of_node = dev->of_node;
2178
2179	if (platform_info->num_chipselect && platform_info->chipselects) {
2180		for (i = 0; i < num_cs; i++)
2181			pl022->chipselects[i] = platform_info->chipselects[i];
2182	} else if (pl022->vendor->internal_cs_ctrl) {
2183		for (i = 0; i < num_cs; i++)
2184			pl022->chipselects[i] = i;
2185	} else if (IS_ENABLED(CONFIG_OF)) {
2186		for (i = 0; i < num_cs; i++) {
2187			int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2188
2189			if (cs_gpio == -EPROBE_DEFER) {
2190				status = -EPROBE_DEFER;
2191				goto err_no_gpio;
2192			}
2193
2194			pl022->chipselects[i] = cs_gpio;
2195
2196			if (gpio_is_valid(cs_gpio)) {
2197				if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2198					dev_err(&adev->dev,
2199						"could not request %d gpio\n",
2200						cs_gpio);
2201				else if (gpio_direction_output(cs_gpio, 1))
2202					dev_err(&adev->dev,
2203						"could not set gpio %d as output\n",
2204						cs_gpio);
2205			}
2206		}
2207	}
2208
2209	/*
2210	 * Supports mode 0-3, loopback, and active low CS. Transfers are
2211	 * always MS bit first on the original pl022.
2212	 */
2213	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2214	if (pl022->vendor->extended_cr)
2215		master->mode_bits |= SPI_LSB_FIRST;
2216
2217	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2218
2219	status = amba_request_regions(adev, NULL);
2220	if (status)
2221		goto err_no_ioregion;
2222
2223	pl022->phybase = adev->res.start;
2224	pl022->virtbase = devm_ioremap(dev, adev->res.start,
2225				       resource_size(&adev->res));
2226	if (pl022->virtbase == NULL) {
2227		status = -ENOMEM;
2228		goto err_no_ioremap;
2229	}
2230	dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2231		&adev->res.start, pl022->virtbase);
2232
2233	pl022->clk = devm_clk_get(&adev->dev, NULL);
2234	if (IS_ERR(pl022->clk)) {
2235		status = PTR_ERR(pl022->clk);
2236		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2237		goto err_no_clk;
2238	}
2239
2240	status = clk_prepare_enable(pl022->clk);
2241	if (status) {
2242		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2243		goto err_no_clk_en;
2244	}
2245
2246	/* Initialize transfer pump */
2247	tasklet_init(&pl022->pump_transfers, pump_transfers,
2248		     (unsigned long)pl022);
2249
2250	/* Disable SSP */
2251	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2252	       SSP_CR1(pl022->virtbase));
2253	load_ssp_default_config(pl022);
2254
2255	status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2256				  0, "pl022", pl022);
2257	if (status < 0) {
2258		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2259		goto err_no_irq;
2260	}
2261
2262	/* Get DMA channels, try autoconfiguration first */
2263	status = pl022_dma_autoprobe(pl022);
2264	if (status == -EPROBE_DEFER) {
2265		dev_dbg(dev, "deferring probe to get DMA channel\n");
2266		goto err_no_irq;
2267	}
2268
2269	/* If that failed, use channels from platform_info */
2270	if (status == 0)
2271		platform_info->enable_dma = 1;
2272	else if (platform_info->enable_dma) {
2273		status = pl022_dma_probe(pl022);
2274		if (status != 0)
2275			platform_info->enable_dma = 0;
2276	}
2277
2278	/* Register with the SPI framework */
2279	amba_set_drvdata(adev, pl022);
2280	status = devm_spi_register_master(&adev->dev, master);
2281	if (status != 0) {
2282		dev_err(&adev->dev,
2283			"probe - problem registering spi master\n");
2284		goto err_spi_register;
2285	}
2286	dev_dbg(dev, "probe succeeded\n");
2287
2288	/* let runtime pm put suspend */
2289	if (platform_info->autosuspend_delay > 0) {
2290		dev_info(&adev->dev,
2291			"will use autosuspend for runtime pm, delay %dms\n",
2292			platform_info->autosuspend_delay);
2293		pm_runtime_set_autosuspend_delay(dev,
2294			platform_info->autosuspend_delay);
2295		pm_runtime_use_autosuspend(dev);
2296	}
2297	pm_runtime_put(dev);
2298
2299	return 0;
2300
2301 err_spi_register:
2302	if (platform_info->enable_dma)
2303		pl022_dma_remove(pl022);
2304 err_no_irq:
2305	clk_disable_unprepare(pl022->clk);
2306 err_no_clk_en:
2307 err_no_clk:
2308 err_no_ioremap:
2309	amba_release_regions(adev);
2310 err_no_ioregion:
2311 err_no_gpio:
2312 err_no_mem:
2313	spi_master_put(master);
2314	return status;
2315}
2316
2317static int
2318pl022_remove(struct amba_device *adev)
2319{
2320	struct pl022 *pl022 = amba_get_drvdata(adev);
2321
2322	if (!pl022)
2323		return 0;
2324
2325	/*
2326	 * undo pm_runtime_put() in probe.  I assume that we're not
2327	 * accessing the primecell here.
2328	 */
2329	pm_runtime_get_noresume(&adev->dev);
2330
2331	load_ssp_default_config(pl022);
2332	if (pl022->master_info->enable_dma)
2333		pl022_dma_remove(pl022);
2334
2335	clk_disable_unprepare(pl022->clk);
2336	amba_release_regions(adev);
2337	tasklet_disable(&pl022->pump_transfers);
2338	return 0;
2339}
2340
2341#ifdef CONFIG_PM_SLEEP
2342static int pl022_suspend(struct device *dev)
2343{
2344	struct pl022 *pl022 = dev_get_drvdata(dev);
2345	int ret;
2346
2347	ret = spi_master_suspend(pl022->master);
2348	if (ret)
2349		return ret;
2350
2351	ret = pm_runtime_force_suspend(dev);
2352	if (ret) {
2353		spi_master_resume(pl022->master);
2354		return ret;
2355	}
2356
2357	pinctrl_pm_select_sleep_state(dev);
2358
2359	dev_dbg(dev, "suspended\n");
2360	return 0;
2361}
2362
2363static int pl022_resume(struct device *dev)
2364{
2365	struct pl022 *pl022 = dev_get_drvdata(dev);
2366	int ret;
2367
2368	ret = pm_runtime_force_resume(dev);
2369	if (ret)
2370		dev_err(dev, "problem resuming\n");
2371
2372	/* Start the queue running */
2373	ret = spi_master_resume(pl022->master);
2374	if (!ret)
2375		dev_dbg(dev, "resumed\n");
2376
2377	return ret;
2378}
2379#endif
2380
2381#ifdef CONFIG_PM
2382static int pl022_runtime_suspend(struct device *dev)
2383{
2384	struct pl022 *pl022 = dev_get_drvdata(dev);
2385
2386	clk_disable_unprepare(pl022->clk);
2387	pinctrl_pm_select_idle_state(dev);
2388
2389	return 0;
2390}
2391
2392static int pl022_runtime_resume(struct device *dev)
2393{
2394	struct pl022 *pl022 = dev_get_drvdata(dev);
2395
2396	pinctrl_pm_select_default_state(dev);
2397	clk_prepare_enable(pl022->clk);
2398
2399	return 0;
2400}
2401#endif
2402
2403static const struct dev_pm_ops pl022_dev_pm_ops = {
2404	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2405	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2406};
2407
2408static struct vendor_data vendor_arm = {
2409	.fifodepth = 8,
2410	.max_bpw = 16,
2411	.unidir = false,
2412	.extended_cr = false,
2413	.pl023 = false,
2414	.loopback = true,
2415	.internal_cs_ctrl = false,
2416};
2417
2418static struct vendor_data vendor_st = {
2419	.fifodepth = 32,
2420	.max_bpw = 32,
2421	.unidir = false,
2422	.extended_cr = true,
2423	.pl023 = false,
2424	.loopback = true,
2425	.internal_cs_ctrl = false,
2426};
2427
2428static struct vendor_data vendor_st_pl023 = {
2429	.fifodepth = 32,
2430	.max_bpw = 32,
2431	.unidir = false,
2432	.extended_cr = true,
2433	.pl023 = true,
2434	.loopback = false,
2435	.internal_cs_ctrl = false,
2436};
2437
2438static struct vendor_data vendor_lsi = {
2439	.fifodepth = 8,
2440	.max_bpw = 16,
2441	.unidir = false,
2442	.extended_cr = false,
2443	.pl023 = false,
2444	.loopback = true,
2445	.internal_cs_ctrl = true,
2446};
2447
2448static const struct amba_id pl022_ids[] = {
2449	{
2450		/*
2451		 * ARM PL022 variant, this has a 16bit wide
2452		 * and 8 locations deep TX/RX FIFO
2453		 */
2454		.id	= 0x00041022,
2455		.mask	= 0x000fffff,
2456		.data	= &vendor_arm,
2457	},
2458	{
2459		/*
2460		 * ST Micro derivative, this has 32bit wide
2461		 * and 32 locations deep TX/RX FIFO
2462		 */
2463		.id	= 0x01080022,
2464		.mask	= 0xffffffff,
2465		.data	= &vendor_st,
2466	},
2467	{
2468		/*
2469		 * ST-Ericsson derivative "PL023" (this is not
2470		 * an official ARM number), this is a PL022 SSP block
2471		 * stripped to SPI mode only, it has 32bit wide
2472		 * and 32 locations deep TX/RX FIFO but no extended
2473		 * CR0/CR1 register
2474		 */
2475		.id	= 0x00080023,
2476		.mask	= 0xffffffff,
2477		.data	= &vendor_st_pl023,
2478	},
2479	{
2480		/*
2481		 * PL022 variant that has a chip select control register whih
2482		 * allows control of 5 output signals nCS[0:4].
2483		 */
2484		.id	= 0x000b6022,
2485		.mask	= 0x000fffff,
2486		.data	= &vendor_lsi,
2487	},
2488	{ 0, 0 },
2489};
2490
2491MODULE_DEVICE_TABLE(amba, pl022_ids);
2492
2493static struct amba_driver pl022_driver = {
2494	.drv = {
2495		.name	= "ssp-pl022",
2496		.pm	= &pl022_dev_pm_ops,
2497	},
2498	.id_table	= pl022_ids,
2499	.probe		= pl022_probe,
2500	.remove		= pl022_remove,
2501};
2502
2503static int __init pl022_init(void)
2504{
2505	return amba_driver_register(&pl022_driver);
2506}
2507subsys_initcall(pl022_init);
2508
2509static void __exit pl022_exit(void)
2510{
2511	amba_driver_unregister(&pl022_driver);
2512}
2513module_exit(pl022_exit);
2514
2515MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2516MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2517MODULE_LICENSE("GPL");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
   4 *
   5 * Copyright (C) 2008-2012 ST-Ericsson AB
   6 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
   7 *
   8 * Author: Linus Walleij <linus.walleij@stericsson.com>
   9 *
  10 * Initial version inspired by:
  11 *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
  12 * Initial adoption to PL022 by:
  13 *      Sachin Verma <sachin.verma@st.com>
  14 */
  15
  16#include <linux/init.h>
  17#include <linux/module.h>
  18#include <linux/device.h>
  19#include <linux/ioport.h>
  20#include <linux/errno.h>
  21#include <linux/interrupt.h>
  22#include <linux/spi/spi.h>
  23#include <linux/delay.h>
  24#include <linux/clk.h>
  25#include <linux/err.h>
  26#include <linux/amba/bus.h>
  27#include <linux/amba/pl022.h>
  28#include <linux/io.h>
  29#include <linux/slab.h>
  30#include <linux/dmaengine.h>
  31#include <linux/dma-mapping.h>
  32#include <linux/scatterlist.h>
  33#include <linux/pm_runtime.h>
  34#include <linux/gpio.h>
  35#include <linux/of_gpio.h>
  36#include <linux/pinctrl/consumer.h>
  37
  38/*
  39 * This macro is used to define some register default values.
  40 * reg is masked with mask, the OR:ed with an (again masked)
  41 * val shifted sb steps to the left.
  42 */
  43#define SSP_WRITE_BITS(reg, val, mask, sb) \
  44 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
  45
  46/*
  47 * This macro is also used to define some default values.
  48 * It will just shift val by sb steps to the left and mask
  49 * the result with mask.
  50 */
  51#define GEN_MASK_BITS(val, mask, sb) \
  52 (((val)<<(sb)) & (mask))
  53
  54#define DRIVE_TX		0
  55#define DO_NOT_DRIVE_TX		1
  56
  57#define DO_NOT_QUEUE_DMA	0
  58#define QUEUE_DMA		1
  59
  60#define RX_TRANSFER		1
  61#define TX_TRANSFER		2
  62
  63/*
  64 * Macros to access SSP Registers with their offsets
  65 */
  66#define SSP_CR0(r)	(r + 0x000)
  67#define SSP_CR1(r)	(r + 0x004)
  68#define SSP_DR(r)	(r + 0x008)
  69#define SSP_SR(r)	(r + 0x00C)
  70#define SSP_CPSR(r)	(r + 0x010)
  71#define SSP_IMSC(r)	(r + 0x014)
  72#define SSP_RIS(r)	(r + 0x018)
  73#define SSP_MIS(r)	(r + 0x01C)
  74#define SSP_ICR(r)	(r + 0x020)
  75#define SSP_DMACR(r)	(r + 0x024)
  76#define SSP_CSR(r)	(r + 0x030) /* vendor extension */
  77#define SSP_ITCR(r)	(r + 0x080)
  78#define SSP_ITIP(r)	(r + 0x084)
  79#define SSP_ITOP(r)	(r + 0x088)
  80#define SSP_TDR(r)	(r + 0x08C)
  81
  82#define SSP_PID0(r)	(r + 0xFE0)
  83#define SSP_PID1(r)	(r + 0xFE4)
  84#define SSP_PID2(r)	(r + 0xFE8)
  85#define SSP_PID3(r)	(r + 0xFEC)
  86
  87#define SSP_CID0(r)	(r + 0xFF0)
  88#define SSP_CID1(r)	(r + 0xFF4)
  89#define SSP_CID2(r)	(r + 0xFF8)
  90#define SSP_CID3(r)	(r + 0xFFC)
  91
  92/*
  93 * SSP Control Register 0  - SSP_CR0
  94 */
  95#define SSP_CR0_MASK_DSS	(0x0FUL << 0)
  96#define SSP_CR0_MASK_FRF	(0x3UL << 4)
  97#define SSP_CR0_MASK_SPO	(0x1UL << 6)
  98#define SSP_CR0_MASK_SPH	(0x1UL << 7)
  99#define SSP_CR0_MASK_SCR	(0xFFUL << 8)
 100
 101/*
 102 * The ST version of this block moves som bits
 103 * in SSP_CR0 and extends it to 32 bits
 104 */
 105#define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
 106#define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
 107#define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
 108#define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
 109
 110/*
 111 * SSP Control Register 0  - SSP_CR1
 112 */
 113#define SSP_CR1_MASK_LBM	(0x1UL << 0)
 114#define SSP_CR1_MASK_SSE	(0x1UL << 1)
 115#define SSP_CR1_MASK_MS		(0x1UL << 2)
 116#define SSP_CR1_MASK_SOD	(0x1UL << 3)
 117
 118/*
 119 * The ST version of this block adds some bits
 120 * in SSP_CR1
 121 */
 122#define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
 123#define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
 124#define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
 125#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
 126#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
 127/* This one is only in the PL023 variant */
 128#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
 129
 130/*
 131 * SSP Status Register - SSP_SR
 132 */
 133#define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
 134#define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
 135#define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
 136#define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
 137#define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
 138
 139/*
 140 * SSP Clock Prescale Register  - SSP_CPSR
 141 */
 142#define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
 143
 144/*
 145 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
 146 */
 147#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
 148#define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
 149#define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
 150#define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
 151
 152/*
 153 * SSP Raw Interrupt Status Register - SSP_RIS
 154 */
 155/* Receive Overrun Raw Interrupt status */
 156#define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
 157/* Receive Timeout Raw Interrupt status */
 158#define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
 159/* Receive FIFO Raw Interrupt status */
 160#define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
 161/* Transmit FIFO Raw Interrupt status */
 162#define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
 163
 164/*
 165 * SSP Masked Interrupt Status Register - SSP_MIS
 166 */
 167/* Receive Overrun Masked Interrupt status */
 168#define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
 169/* Receive Timeout Masked Interrupt status */
 170#define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
 171/* Receive FIFO Masked Interrupt status */
 172#define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
 173/* Transmit FIFO Masked Interrupt status */
 174#define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
 175
 176/*
 177 * SSP Interrupt Clear Register - SSP_ICR
 178 */
 179/* Receive Overrun Raw Clear Interrupt bit */
 180#define SSP_ICR_MASK_RORIC		(0x1UL << 0)
 181/* Receive Timeout Clear Interrupt bit */
 182#define SSP_ICR_MASK_RTIC		(0x1UL << 1)
 183
 184/*
 185 * SSP DMA Control Register - SSP_DMACR
 186 */
 187/* Receive DMA Enable bit */
 188#define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
 189/* Transmit DMA Enable bit */
 190#define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
 191
 192/*
 193 * SSP Chip Select Control Register - SSP_CSR
 194 * (vendor extension)
 195 */
 196#define SSP_CSR_CSVALUE_MASK		(0x1FUL << 0)
 197
 198/*
 199 * SSP Integration Test control Register - SSP_ITCR
 200 */
 201#define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
 202#define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
 203
 204/*
 205 * SSP Integration Test Input Register - SSP_ITIP
 206 */
 207#define ITIP_MASK_SSPRXD		 (0x1UL << 0)
 208#define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
 209#define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
 210#define ITIP_MASK_RXDMAC		 (0x1UL << 3)
 211#define ITIP_MASK_TXDMAC		 (0x1UL << 4)
 212#define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
 213
 214/*
 215 * SSP Integration Test output Register - SSP_ITOP
 216 */
 217#define ITOP_MASK_SSPTXD		 (0x1UL << 0)
 218#define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
 219#define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
 220#define ITOP_MASK_SSPOEn		 (0x1UL << 3)
 221#define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
 222#define ITOP_MASK_RORINTR		 (0x1UL << 5)
 223#define ITOP_MASK_RTINTR		 (0x1UL << 6)
 224#define ITOP_MASK_RXINTR		 (0x1UL << 7)
 225#define ITOP_MASK_TXINTR		 (0x1UL << 8)
 226#define ITOP_MASK_INTR			 (0x1UL << 9)
 227#define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
 228#define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
 229#define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
 230#define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
 231
 232/*
 233 * SSP Test Data Register - SSP_TDR
 234 */
 235#define TDR_MASK_TESTDATA		(0xFFFFFFFF)
 236
 237/*
 238 * Message State
 239 * we use the spi_message.state (void *) pointer to
 240 * hold a single state value, that's why all this
 241 * (void *) casting is done here.
 242 */
 243#define STATE_START			((void *) 0)
 244#define STATE_RUNNING			((void *) 1)
 245#define STATE_DONE			((void *) 2)
 246#define STATE_ERROR			((void *) -1)
 247#define STATE_TIMEOUT			((void *) -2)
 248
 249/*
 250 * SSP State - Whether Enabled or Disabled
 251 */
 252#define SSP_DISABLED			(0)
 253#define SSP_ENABLED			(1)
 254
 255/*
 256 * SSP DMA State - Whether DMA Enabled or Disabled
 257 */
 258#define SSP_DMA_DISABLED		(0)
 259#define SSP_DMA_ENABLED			(1)
 260
 261/*
 262 * SSP Clock Defaults
 263 */
 264#define SSP_DEFAULT_CLKRATE 0x2
 265#define SSP_DEFAULT_PRESCALE 0x40
 266
 267/*
 268 * SSP Clock Parameter ranges
 269 */
 270#define CPSDVR_MIN 0x02
 271#define CPSDVR_MAX 0xFE
 272#define SCR_MIN 0x00
 273#define SCR_MAX 0xFF
 274
 275/*
 276 * SSP Interrupt related Macros
 277 */
 278#define DEFAULT_SSP_REG_IMSC  0x0UL
 279#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
 280#define ENABLE_ALL_INTERRUPTS ( \
 281	SSP_IMSC_MASK_RORIM | \
 282	SSP_IMSC_MASK_RTIM | \
 283	SSP_IMSC_MASK_RXIM | \
 284	SSP_IMSC_MASK_TXIM \
 285)
 286
 287#define CLEAR_ALL_INTERRUPTS  0x3
 288
 289#define SPI_POLLING_TIMEOUT 1000
 290
 291/*
 292 * The type of reading going on on this chip
 293 */
 294enum ssp_reading {
 295	READING_NULL,
 296	READING_U8,
 297	READING_U16,
 298	READING_U32
 299};
 300
 301/**
 302 * The type of writing going on on this chip
 303 */
 304enum ssp_writing {
 305	WRITING_NULL,
 306	WRITING_U8,
 307	WRITING_U16,
 308	WRITING_U32
 309};
 310
 311/**
 312 * struct vendor_data - vendor-specific config parameters
 313 * for PL022 derivates
 314 * @fifodepth: depth of FIFOs (both)
 315 * @max_bpw: maximum number of bits per word
 316 * @unidir: supports unidirection transfers
 317 * @extended_cr: 32 bit wide control register 0 with extra
 318 * features and extra features in CR1 as found in the ST variants
 319 * @pl023: supports a subset of the ST extensions called "PL023"
 
 320 * @internal_cs_ctrl: supports chip select control register
 321 */
 322struct vendor_data {
 323	int fifodepth;
 324	int max_bpw;
 325	bool unidir;
 326	bool extended_cr;
 327	bool pl023;
 328	bool loopback;
 329	bool internal_cs_ctrl;
 330};
 331
 332/**
 333 * struct pl022 - This is the private SSP driver data structure
 334 * @adev: AMBA device model hookup
 335 * @vendor: vendor data for the IP block
 336 * @phybase: the physical memory where the SSP device resides
 337 * @virtbase: the virtual memory where the SSP is mapped
 338 * @clk: outgoing clock "SPICLK" for the SPI bus
 339 * @master: SPI framework hookup
 340 * @master_info: controller-specific data from machine setup
 341 * @pump_transfers: Tasklet used in Interrupt Transfer mode
 342 * @cur_msg: Pointer to current spi_message being processed
 343 * @cur_transfer: Pointer to current spi_transfer
 344 * @cur_chip: pointer to current clients chip(assigned from controller_state)
 345 * @next_msg_cs_active: the next message in the queue has been examined
 346 *  and it was found that it uses the same chip select as the previous
 347 *  message, so we left it active after the previous transfer, and it's
 348 *  active already.
 349 * @tx: current position in TX buffer to be read
 350 * @tx_end: end position in TX buffer to be read
 351 * @rx: current position in RX buffer to be written
 352 * @rx_end: end position in RX buffer to be written
 353 * @read: the type of read currently going on
 354 * @write: the type of write currently going on
 355 * @exp_fifo_level: expected FIFO level
 
 
 356 * @dma_rx_channel: optional channel for RX DMA
 357 * @dma_tx_channel: optional channel for TX DMA
 358 * @sgt_rx: scattertable for the RX transfer
 359 * @sgt_tx: scattertable for the TX transfer
 360 * @dummypage: a dummy page used for driving data on the bus with DMA
 
 361 * @cur_cs: current chip select (gpio)
 362 * @chipselects: list of chipselects (gpios)
 363 */
 364struct pl022 {
 365	struct amba_device		*adev;
 366	struct vendor_data		*vendor;
 367	resource_size_t			phybase;
 368	void __iomem			*virtbase;
 369	struct clk			*clk;
 370	struct spi_master		*master;
 371	struct pl022_ssp_controller	*master_info;
 372	/* Message per-transfer pump */
 373	struct tasklet_struct		pump_transfers;
 374	struct spi_message		*cur_msg;
 375	struct spi_transfer		*cur_transfer;
 376	struct chip_data		*cur_chip;
 377	bool				next_msg_cs_active;
 378	void				*tx;
 379	void				*tx_end;
 380	void				*rx;
 381	void				*rx_end;
 382	enum ssp_reading		read;
 383	enum ssp_writing		write;
 384	u32				exp_fifo_level;
 385	enum ssp_rx_level_trig		rx_lev_trig;
 386	enum ssp_tx_level_trig		tx_lev_trig;
 387	/* DMA settings */
 388#ifdef CONFIG_DMA_ENGINE
 389	struct dma_chan			*dma_rx_channel;
 390	struct dma_chan			*dma_tx_channel;
 391	struct sg_table			sgt_rx;
 392	struct sg_table			sgt_tx;
 393	char				*dummypage;
 394	bool				dma_running;
 395#endif
 396	int cur_cs;
 397	int *chipselects;
 398};
 399
 400/**
 401 * struct chip_data - To maintain runtime state of SSP for each client chip
 402 * @cr0: Value of control register CR0 of SSP - on later ST variants this
 403 *       register is 32 bits wide rather than just 16
 404 * @cr1: Value of control register CR1 of SSP
 405 * @dmacr: Value of DMA control Register of SSP
 406 * @cpsr: Value of Clock prescale register
 407 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
 408 * @enable_dma: Whether to enable DMA or not
 409 * @read: function ptr to be used to read when doing xfer for this chip
 410 * @write: function ptr to be used to write when doing xfer for this chip
 411 * @cs_control: chip select callback provided by chip
 412 * @xfer_type: polling/interrupt/DMA
 413 *
 414 * Runtime state of the SSP controller, maintained per chip,
 415 * This would be set according to the current message that would be served
 416 */
 417struct chip_data {
 418	u32 cr0;
 419	u16 cr1;
 420	u16 dmacr;
 421	u16 cpsr;
 422	u8 n_bytes;
 423	bool enable_dma;
 424	enum ssp_reading read;
 425	enum ssp_writing write;
 426	void (*cs_control) (u32 command);
 427	int xfer_type;
 428};
 429
 430/**
 431 * null_cs_control - Dummy chip select function
 432 * @command: select/delect the chip
 433 *
 434 * If no chip select function is provided by client this is used as dummy
 435 * chip select
 436 */
 437static void null_cs_control(u32 command)
 438{
 439	pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
 440}
 441
 442/**
 443 * internal_cs_control - Control chip select signals via SSP_CSR.
 444 * @pl022: SSP driver private data structure
 445 * @command: select/delect the chip
 446 *
 447 * Used on controller with internal chip select control via SSP_CSR register
 448 * (vendor extension). Each of the 5 LSB in the register controls one chip
 449 * select signal.
 450 */
 451static void internal_cs_control(struct pl022 *pl022, u32 command)
 452{
 453	u32 tmp;
 454
 455	tmp = readw(SSP_CSR(pl022->virtbase));
 456	if (command == SSP_CHIP_SELECT)
 457		tmp &= ~BIT(pl022->cur_cs);
 458	else
 459		tmp |= BIT(pl022->cur_cs);
 460	writew(tmp, SSP_CSR(pl022->virtbase));
 461}
 462
 463static void pl022_cs_control(struct pl022 *pl022, u32 command)
 464{
 465	if (pl022->vendor->internal_cs_ctrl)
 466		internal_cs_control(pl022, command);
 467	else if (gpio_is_valid(pl022->cur_cs))
 468		gpio_set_value(pl022->cur_cs, command);
 469	else
 470		pl022->cur_chip->cs_control(command);
 471}
 472
 473/**
 474 * giveback - current spi_message is over, schedule next message and call
 475 * callback of this message. Assumes that caller already
 476 * set message->status; dma and pio irqs are blocked
 477 * @pl022: SSP driver private data structure
 478 */
 479static void giveback(struct pl022 *pl022)
 480{
 481	struct spi_transfer *last_transfer;
 482	pl022->next_msg_cs_active = false;
 483
 484	last_transfer = list_last_entry(&pl022->cur_msg->transfers,
 485					struct spi_transfer, transfer_list);
 486
 487	/* Delay if requested before any change in chip select */
 488	if (last_transfer->delay_usecs)
 489		/*
 490		 * FIXME: This runs in interrupt context.
 491		 * Is this really smart?
 492		 */
 493		udelay(last_transfer->delay_usecs);
 494
 495	if (!last_transfer->cs_change) {
 496		struct spi_message *next_msg;
 497
 498		/*
 499		 * cs_change was not set. We can keep the chip select
 500		 * enabled if there is message in the queue and it is
 501		 * for the same spi device.
 502		 *
 503		 * We cannot postpone this until pump_messages, because
 504		 * after calling msg->complete (below) the driver that
 505		 * sent the current message could be unloaded, which
 506		 * could invalidate the cs_control() callback...
 507		 */
 508		/* get a pointer to the next message, if any */
 509		next_msg = spi_get_next_queued_message(pl022->master);
 510
 511		/*
 512		 * see if the next and current messages point
 513		 * to the same spi device.
 514		 */
 515		if (next_msg && next_msg->spi != pl022->cur_msg->spi)
 516			next_msg = NULL;
 517		if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
 518			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
 519		else
 520			pl022->next_msg_cs_active = true;
 521
 522	}
 523
 524	pl022->cur_msg = NULL;
 525	pl022->cur_transfer = NULL;
 526	pl022->cur_chip = NULL;
 527
 528	/* disable the SPI/SSP operation */
 529	writew((readw(SSP_CR1(pl022->virtbase)) &
 530		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
 531
 532	spi_finalize_current_message(pl022->master);
 533}
 534
 535/**
 536 * flush - flush the FIFO to reach a clean state
 537 * @pl022: SSP driver private data structure
 538 */
 539static int flush(struct pl022 *pl022)
 540{
 541	unsigned long limit = loops_per_jiffy << 1;
 542
 543	dev_dbg(&pl022->adev->dev, "flush\n");
 544	do {
 545		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 546			readw(SSP_DR(pl022->virtbase));
 547	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
 548
 549	pl022->exp_fifo_level = 0;
 550
 551	return limit;
 552}
 553
 554/**
 555 * restore_state - Load configuration of current chip
 556 * @pl022: SSP driver private data structure
 557 */
 558static void restore_state(struct pl022 *pl022)
 559{
 560	struct chip_data *chip = pl022->cur_chip;
 561
 562	if (pl022->vendor->extended_cr)
 563		writel(chip->cr0, SSP_CR0(pl022->virtbase));
 564	else
 565		writew(chip->cr0, SSP_CR0(pl022->virtbase));
 566	writew(chip->cr1, SSP_CR1(pl022->virtbase));
 567	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
 568	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
 569	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 570	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 571}
 572
 573/*
 574 * Default SSP Register Values
 575 */
 576#define DEFAULT_SSP_REG_CR0 ( \
 577	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
 578	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
 579	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 580	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 581	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 582)
 583
 584/* ST versions have slightly different bit layout */
 585#define DEFAULT_SSP_REG_CR0_ST ( \
 586	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
 587	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
 588	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 589	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 590	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
 591	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
 592	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
 593)
 594
 595/* The PL023 version is slightly different again */
 596#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
 597	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
 598	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 599	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 600	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 601)
 602
 603#define DEFAULT_SSP_REG_CR1 ( \
 604	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
 605	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 606	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 607	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
 608)
 609
 610/* ST versions extend this register to use all 16 bits */
 611#define DEFAULT_SSP_REG_CR1_ST ( \
 612	DEFAULT_SSP_REG_CR1 | \
 613	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 614	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 615	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
 616	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 617	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
 618)
 619
 620/*
 621 * The PL023 variant has further differences: no loopback mode, no microwire
 622 * support, and a new clock feedback delay setting.
 623 */
 624#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
 625	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 626	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 627	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
 628	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 629	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 630	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 631	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
 632	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
 633)
 634
 635#define DEFAULT_SSP_REG_CPSR ( \
 636	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
 637)
 638
 639#define DEFAULT_SSP_REG_DMACR (\
 640	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
 641	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
 642)
 643
 644/**
 645 * load_ssp_default_config - Load default configuration for SSP
 646 * @pl022: SSP driver private data structure
 647 */
 648static void load_ssp_default_config(struct pl022 *pl022)
 649{
 650	if (pl022->vendor->pl023) {
 651		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
 652		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
 653	} else if (pl022->vendor->extended_cr) {
 654		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
 655		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
 656	} else {
 657		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
 658		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
 659	}
 660	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
 661	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
 662	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 663	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 664}
 665
 666/**
 667 * This will write to TX and read from RX according to the parameters
 668 * set in pl022.
 669 */
 670static void readwriter(struct pl022 *pl022)
 671{
 672
 673	/*
 674	 * The FIFO depth is different between primecell variants.
 675	 * I believe filling in too much in the FIFO might cause
 676	 * errons in 8bit wide transfers on ARM variants (just 8 words
 677	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
 678	 *
 679	 * To prevent this issue, the TX FIFO is only filled to the
 680	 * unused RX FIFO fill length, regardless of what the TX
 681	 * FIFO status flag indicates.
 682	 */
 683	dev_dbg(&pl022->adev->dev,
 684		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
 685		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
 686
 687	/* Read as much as you can */
 688	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 689	       && (pl022->rx < pl022->rx_end)) {
 690		switch (pl022->read) {
 691		case READING_NULL:
 692			readw(SSP_DR(pl022->virtbase));
 693			break;
 694		case READING_U8:
 695			*(u8 *) (pl022->rx) =
 696				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 697			break;
 698		case READING_U16:
 699			*(u16 *) (pl022->rx) =
 700				(u16) readw(SSP_DR(pl022->virtbase));
 701			break;
 702		case READING_U32:
 703			*(u32 *) (pl022->rx) =
 704				readl(SSP_DR(pl022->virtbase));
 705			break;
 706		}
 707		pl022->rx += (pl022->cur_chip->n_bytes);
 708		pl022->exp_fifo_level--;
 709	}
 710	/*
 711	 * Write as much as possible up to the RX FIFO size
 712	 */
 713	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
 714	       && (pl022->tx < pl022->tx_end)) {
 715		switch (pl022->write) {
 716		case WRITING_NULL:
 717			writew(0x0, SSP_DR(pl022->virtbase));
 718			break;
 719		case WRITING_U8:
 720			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
 721			break;
 722		case WRITING_U16:
 723			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
 724			break;
 725		case WRITING_U32:
 726			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
 727			break;
 728		}
 729		pl022->tx += (pl022->cur_chip->n_bytes);
 730		pl022->exp_fifo_level++;
 731		/*
 732		 * This inner reader takes care of things appearing in the RX
 733		 * FIFO as we're transmitting. This will happen a lot since the
 734		 * clock starts running when you put things into the TX FIFO,
 735		 * and then things are continuously clocked into the RX FIFO.
 736		 */
 737		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 738		       && (pl022->rx < pl022->rx_end)) {
 739			switch (pl022->read) {
 740			case READING_NULL:
 741				readw(SSP_DR(pl022->virtbase));
 742				break;
 743			case READING_U8:
 744				*(u8 *) (pl022->rx) =
 745					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 746				break;
 747			case READING_U16:
 748				*(u16 *) (pl022->rx) =
 749					(u16) readw(SSP_DR(pl022->virtbase));
 750				break;
 751			case READING_U32:
 752				*(u32 *) (pl022->rx) =
 753					readl(SSP_DR(pl022->virtbase));
 754				break;
 755			}
 756			pl022->rx += (pl022->cur_chip->n_bytes);
 757			pl022->exp_fifo_level--;
 758		}
 759	}
 760	/*
 761	 * When we exit here the TX FIFO should be full and the RX FIFO
 762	 * should be empty
 763	 */
 764}
 765
 766/**
 767 * next_transfer - Move to the Next transfer in the current spi message
 768 * @pl022: SSP driver private data structure
 769 *
 770 * This function moves though the linked list of spi transfers in the
 771 * current spi message and returns with the state of current spi
 772 * message i.e whether its last transfer is done(STATE_DONE) or
 773 * Next transfer is ready(STATE_RUNNING)
 774 */
 775static void *next_transfer(struct pl022 *pl022)
 776{
 777	struct spi_message *msg = pl022->cur_msg;
 778	struct spi_transfer *trans = pl022->cur_transfer;
 779
 780	/* Move to next transfer */
 781	if (trans->transfer_list.next != &msg->transfers) {
 782		pl022->cur_transfer =
 783		    list_entry(trans->transfer_list.next,
 784			       struct spi_transfer, transfer_list);
 785		return STATE_RUNNING;
 786	}
 787	return STATE_DONE;
 788}
 789
 790/*
 791 * This DMA functionality is only compiled in if we have
 792 * access to the generic DMA devices/DMA engine.
 793 */
 794#ifdef CONFIG_DMA_ENGINE
 795static void unmap_free_dma_scatter(struct pl022 *pl022)
 796{
 797	/* Unmap and free the SG tables */
 798	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
 799		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
 800	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
 801		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
 802	sg_free_table(&pl022->sgt_rx);
 803	sg_free_table(&pl022->sgt_tx);
 804}
 805
 806static void dma_callback(void *data)
 807{
 808	struct pl022 *pl022 = data;
 809	struct spi_message *msg = pl022->cur_msg;
 810
 811	BUG_ON(!pl022->sgt_rx.sgl);
 812
 813#ifdef VERBOSE_DEBUG
 814	/*
 815	 * Optionally dump out buffers to inspect contents, this is
 816	 * good if you want to convince yourself that the loopback
 817	 * read/write contents are the same, when adopting to a new
 818	 * DMA engine.
 819	 */
 820	{
 821		struct scatterlist *sg;
 822		unsigned int i;
 823
 824		dma_sync_sg_for_cpu(&pl022->adev->dev,
 825				    pl022->sgt_rx.sgl,
 826				    pl022->sgt_rx.nents,
 827				    DMA_FROM_DEVICE);
 828
 829		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
 830			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
 831			print_hex_dump(KERN_ERR, "SPI RX: ",
 832				       DUMP_PREFIX_OFFSET,
 833				       16,
 834				       1,
 835				       sg_virt(sg),
 836				       sg_dma_len(sg),
 837				       1);
 838		}
 839		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
 840			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
 841			print_hex_dump(KERN_ERR, "SPI TX: ",
 842				       DUMP_PREFIX_OFFSET,
 843				       16,
 844				       1,
 845				       sg_virt(sg),
 846				       sg_dma_len(sg),
 847				       1);
 848		}
 849	}
 850#endif
 851
 852	unmap_free_dma_scatter(pl022);
 853
 854	/* Update total bytes transferred */
 855	msg->actual_length += pl022->cur_transfer->len;
 856	/* Move to next transfer */
 857	msg->state = next_transfer(pl022);
 858	if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
 859		pl022_cs_control(pl022, SSP_CHIP_DESELECT);
 860	tasklet_schedule(&pl022->pump_transfers);
 861}
 862
 863static void setup_dma_scatter(struct pl022 *pl022,
 864			      void *buffer,
 865			      unsigned int length,
 866			      struct sg_table *sgtab)
 867{
 868	struct scatterlist *sg;
 869	int bytesleft = length;
 870	void *bufp = buffer;
 871	int mapbytes;
 872	int i;
 873
 874	if (buffer) {
 875		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 876			/*
 877			 * If there are less bytes left than what fits
 878			 * in the current page (plus page alignment offset)
 879			 * we just feed in this, else we stuff in as much
 880			 * as we can.
 881			 */
 882			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
 883				mapbytes = bytesleft;
 884			else
 885				mapbytes = PAGE_SIZE - offset_in_page(bufp);
 886			sg_set_page(sg, virt_to_page(bufp),
 887				    mapbytes, offset_in_page(bufp));
 888			bufp += mapbytes;
 889			bytesleft -= mapbytes;
 890			dev_dbg(&pl022->adev->dev,
 891				"set RX/TX target page @ %p, %d bytes, %d left\n",
 892				bufp, mapbytes, bytesleft);
 893		}
 894	} else {
 895		/* Map the dummy buffer on every page */
 896		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 897			if (bytesleft < PAGE_SIZE)
 898				mapbytes = bytesleft;
 899			else
 900				mapbytes = PAGE_SIZE;
 901			sg_set_page(sg, virt_to_page(pl022->dummypage),
 902				    mapbytes, 0);
 903			bytesleft -= mapbytes;
 904			dev_dbg(&pl022->adev->dev,
 905				"set RX/TX to dummy page %d bytes, %d left\n",
 906				mapbytes, bytesleft);
 907
 908		}
 909	}
 910	BUG_ON(bytesleft);
 911}
 912
 913/**
 914 * configure_dma - configures the channels for the next transfer
 915 * @pl022: SSP driver's private data structure
 916 */
 917static int configure_dma(struct pl022 *pl022)
 918{
 919	struct dma_slave_config rx_conf = {
 920		.src_addr = SSP_DR(pl022->phybase),
 921		.direction = DMA_DEV_TO_MEM,
 922		.device_fc = false,
 923	};
 924	struct dma_slave_config tx_conf = {
 925		.dst_addr = SSP_DR(pl022->phybase),
 926		.direction = DMA_MEM_TO_DEV,
 927		.device_fc = false,
 928	};
 929	unsigned int pages;
 930	int ret;
 931	int rx_sglen, tx_sglen;
 932	struct dma_chan *rxchan = pl022->dma_rx_channel;
 933	struct dma_chan *txchan = pl022->dma_tx_channel;
 934	struct dma_async_tx_descriptor *rxdesc;
 935	struct dma_async_tx_descriptor *txdesc;
 936
 937	/* Check that the channels are available */
 938	if (!rxchan || !txchan)
 939		return -ENODEV;
 940
 941	/*
 942	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
 943	 * Notice that the DMA engine uses one-to-one mapping. Since we can
 944	 * not trigger on 2 elements this needs explicit mapping rather than
 945	 * calculation.
 946	 */
 947	switch (pl022->rx_lev_trig) {
 948	case SSP_RX_1_OR_MORE_ELEM:
 949		rx_conf.src_maxburst = 1;
 950		break;
 951	case SSP_RX_4_OR_MORE_ELEM:
 952		rx_conf.src_maxburst = 4;
 953		break;
 954	case SSP_RX_8_OR_MORE_ELEM:
 955		rx_conf.src_maxburst = 8;
 956		break;
 957	case SSP_RX_16_OR_MORE_ELEM:
 958		rx_conf.src_maxburst = 16;
 959		break;
 960	case SSP_RX_32_OR_MORE_ELEM:
 961		rx_conf.src_maxburst = 32;
 962		break;
 963	default:
 964		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
 965		break;
 966	}
 967
 968	switch (pl022->tx_lev_trig) {
 969	case SSP_TX_1_OR_MORE_EMPTY_LOC:
 970		tx_conf.dst_maxburst = 1;
 971		break;
 972	case SSP_TX_4_OR_MORE_EMPTY_LOC:
 973		tx_conf.dst_maxburst = 4;
 974		break;
 975	case SSP_TX_8_OR_MORE_EMPTY_LOC:
 976		tx_conf.dst_maxburst = 8;
 977		break;
 978	case SSP_TX_16_OR_MORE_EMPTY_LOC:
 979		tx_conf.dst_maxburst = 16;
 980		break;
 981	case SSP_TX_32_OR_MORE_EMPTY_LOC:
 982		tx_conf.dst_maxburst = 32;
 983		break;
 984	default:
 985		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
 986		break;
 987	}
 988
 989	switch (pl022->read) {
 990	case READING_NULL:
 991		/* Use the same as for writing */
 992		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
 993		break;
 994	case READING_U8:
 995		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 996		break;
 997	case READING_U16:
 998		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 999		break;
1000	case READING_U32:
1001		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1002		break;
1003	}
1004
1005	switch (pl022->write) {
1006	case WRITING_NULL:
1007		/* Use the same as for reading */
1008		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1009		break;
1010	case WRITING_U8:
1011		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1012		break;
1013	case WRITING_U16:
1014		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1015		break;
1016	case WRITING_U32:
1017		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1018		break;
1019	}
1020
1021	/* SPI pecularity: we need to read and write the same width */
1022	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1023		rx_conf.src_addr_width = tx_conf.dst_addr_width;
1024	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1025		tx_conf.dst_addr_width = rx_conf.src_addr_width;
1026	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1027
1028	dmaengine_slave_config(rxchan, &rx_conf);
1029	dmaengine_slave_config(txchan, &tx_conf);
1030
1031	/* Create sglists for the transfers */
1032	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1033	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1034
1035	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1036	if (ret)
1037		goto err_alloc_rx_sg;
1038
1039	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1040	if (ret)
1041		goto err_alloc_tx_sg;
1042
1043	/* Fill in the scatterlists for the RX+TX buffers */
1044	setup_dma_scatter(pl022, pl022->rx,
1045			  pl022->cur_transfer->len, &pl022->sgt_rx);
1046	setup_dma_scatter(pl022, pl022->tx,
1047			  pl022->cur_transfer->len, &pl022->sgt_tx);
1048
1049	/* Map DMA buffers */
1050	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1051			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1052	if (!rx_sglen)
1053		goto err_rx_sgmap;
1054
1055	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1056			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
1057	if (!tx_sglen)
1058		goto err_tx_sgmap;
1059
1060	/* Send both scatterlists */
1061	rxdesc = dmaengine_prep_slave_sg(rxchan,
1062				      pl022->sgt_rx.sgl,
1063				      rx_sglen,
1064				      DMA_DEV_TO_MEM,
1065				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1066	if (!rxdesc)
1067		goto err_rxdesc;
1068
1069	txdesc = dmaengine_prep_slave_sg(txchan,
1070				      pl022->sgt_tx.sgl,
1071				      tx_sglen,
1072				      DMA_MEM_TO_DEV,
1073				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1074	if (!txdesc)
1075		goto err_txdesc;
1076
1077	/* Put the callback on the RX transfer only, that should finish last */
1078	rxdesc->callback = dma_callback;
1079	rxdesc->callback_param = pl022;
1080
1081	/* Submit and fire RX and TX with TX last so we're ready to read! */
1082	dmaengine_submit(rxdesc);
1083	dmaengine_submit(txdesc);
1084	dma_async_issue_pending(rxchan);
1085	dma_async_issue_pending(txchan);
1086	pl022->dma_running = true;
1087
1088	return 0;
1089
1090err_txdesc:
1091	dmaengine_terminate_all(txchan);
1092err_rxdesc:
1093	dmaengine_terminate_all(rxchan);
1094	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1095		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1096err_tx_sgmap:
1097	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1098		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1099err_rx_sgmap:
1100	sg_free_table(&pl022->sgt_tx);
1101err_alloc_tx_sg:
1102	sg_free_table(&pl022->sgt_rx);
1103err_alloc_rx_sg:
1104	return -ENOMEM;
1105}
1106
1107static int pl022_dma_probe(struct pl022 *pl022)
1108{
1109	dma_cap_mask_t mask;
1110
1111	/* Try to acquire a generic DMA engine slave channel */
1112	dma_cap_zero(mask);
1113	dma_cap_set(DMA_SLAVE, mask);
1114	/*
1115	 * We need both RX and TX channels to do DMA, else do none
1116	 * of them.
1117	 */
1118	pl022->dma_rx_channel = dma_request_channel(mask,
1119					    pl022->master_info->dma_filter,
1120					    pl022->master_info->dma_rx_param);
1121	if (!pl022->dma_rx_channel) {
1122		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1123		goto err_no_rxchan;
1124	}
1125
1126	pl022->dma_tx_channel = dma_request_channel(mask,
1127					    pl022->master_info->dma_filter,
1128					    pl022->master_info->dma_tx_param);
1129	if (!pl022->dma_tx_channel) {
1130		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1131		goto err_no_txchan;
1132	}
1133
1134	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1135	if (!pl022->dummypage)
1136		goto err_no_dummypage;
1137
1138	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1139		 dma_chan_name(pl022->dma_rx_channel),
1140		 dma_chan_name(pl022->dma_tx_channel));
1141
1142	return 0;
1143
1144err_no_dummypage:
1145	dma_release_channel(pl022->dma_tx_channel);
1146err_no_txchan:
1147	dma_release_channel(pl022->dma_rx_channel);
1148	pl022->dma_rx_channel = NULL;
1149err_no_rxchan:
1150	dev_err(&pl022->adev->dev,
1151			"Failed to work in dma mode, work without dma!\n");
1152	return -ENODEV;
1153}
1154
1155static int pl022_dma_autoprobe(struct pl022 *pl022)
1156{
1157	struct device *dev = &pl022->adev->dev;
1158	struct dma_chan *chan;
1159	int err;
1160
1161	/* automatically configure DMA channels from platform, normally using DT */
1162	chan = dma_request_slave_channel_reason(dev, "rx");
1163	if (IS_ERR(chan)) {
1164		err = PTR_ERR(chan);
1165		goto err_no_rxchan;
1166	}
1167
1168	pl022->dma_rx_channel = chan;
1169
1170	chan = dma_request_slave_channel_reason(dev, "tx");
1171	if (IS_ERR(chan)) {
1172		err = PTR_ERR(chan);
1173		goto err_no_txchan;
1174	}
1175
1176	pl022->dma_tx_channel = chan;
1177
1178	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1179	if (!pl022->dummypage) {
1180		err = -ENOMEM;
1181		goto err_no_dummypage;
1182	}
1183
1184	return 0;
1185
1186err_no_dummypage:
1187	dma_release_channel(pl022->dma_tx_channel);
1188	pl022->dma_tx_channel = NULL;
1189err_no_txchan:
1190	dma_release_channel(pl022->dma_rx_channel);
1191	pl022->dma_rx_channel = NULL;
1192err_no_rxchan:
1193	return err;
1194}
1195		
1196static void terminate_dma(struct pl022 *pl022)
1197{
1198	struct dma_chan *rxchan = pl022->dma_rx_channel;
1199	struct dma_chan *txchan = pl022->dma_tx_channel;
1200
1201	dmaengine_terminate_all(rxchan);
1202	dmaengine_terminate_all(txchan);
1203	unmap_free_dma_scatter(pl022);
1204	pl022->dma_running = false;
1205}
1206
1207static void pl022_dma_remove(struct pl022 *pl022)
1208{
1209	if (pl022->dma_running)
1210		terminate_dma(pl022);
1211	if (pl022->dma_tx_channel)
1212		dma_release_channel(pl022->dma_tx_channel);
1213	if (pl022->dma_rx_channel)
1214		dma_release_channel(pl022->dma_rx_channel);
1215	kfree(pl022->dummypage);
1216}
1217
1218#else
1219static inline int configure_dma(struct pl022 *pl022)
1220{
1221	return -ENODEV;
1222}
1223
1224static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1225{
1226	return 0;
1227}
1228
1229static inline int pl022_dma_probe(struct pl022 *pl022)
1230{
1231	return 0;
1232}
1233
1234static inline void pl022_dma_remove(struct pl022 *pl022)
1235{
1236}
1237#endif
1238
1239/**
1240 * pl022_interrupt_handler - Interrupt handler for SSP controller
 
 
1241 *
1242 * This function handles interrupts generated for an interrupt based transfer.
1243 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1244 * current message's state as STATE_ERROR and schedule the tasklet
1245 * pump_transfers which will do the postprocessing of the current message by
1246 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1247 * more data, and writes data in TX FIFO till it is not full. If we complete
1248 * the transfer we move to the next transfer and schedule the tasklet.
1249 */
1250static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1251{
1252	struct pl022 *pl022 = dev_id;
1253	struct spi_message *msg = pl022->cur_msg;
1254	u16 irq_status = 0;
1255
1256	if (unlikely(!msg)) {
1257		dev_err(&pl022->adev->dev,
1258			"bad message state in interrupt handler");
1259		/* Never fail */
1260		return IRQ_HANDLED;
1261	}
1262
1263	/* Read the Interrupt Status Register */
1264	irq_status = readw(SSP_MIS(pl022->virtbase));
1265
1266	if (unlikely(!irq_status))
1267		return IRQ_NONE;
1268
1269	/*
1270	 * This handles the FIFO interrupts, the timeout
1271	 * interrupts are flatly ignored, they cannot be
1272	 * trusted.
1273	 */
1274	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1275		/*
1276		 * Overrun interrupt - bail out since our Data has been
1277		 * corrupted
1278		 */
1279		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1280		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1281			dev_err(&pl022->adev->dev,
1282				"RXFIFO is full\n");
1283
1284		/*
1285		 * Disable and clear interrupts, disable SSP,
1286		 * mark message with bad status so it can be
1287		 * retried.
1288		 */
1289		writew(DISABLE_ALL_INTERRUPTS,
1290		       SSP_IMSC(pl022->virtbase));
1291		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1292		writew((readw(SSP_CR1(pl022->virtbase)) &
1293			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1294		msg->state = STATE_ERROR;
1295
1296		/* Schedule message queue handler */
1297		tasklet_schedule(&pl022->pump_transfers);
1298		return IRQ_HANDLED;
1299	}
1300
1301	readwriter(pl022);
1302
1303	if (pl022->tx == pl022->tx_end) {
1304		/* Disable Transmit interrupt, enable receive interrupt */
1305		writew((readw(SSP_IMSC(pl022->virtbase)) &
1306		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1307		       SSP_IMSC(pl022->virtbase));
1308	}
1309
1310	/*
1311	 * Since all transactions must write as much as shall be read,
1312	 * we can conclude the entire transaction once RX is complete.
1313	 * At this point, all TX will always be finished.
1314	 */
1315	if (pl022->rx >= pl022->rx_end) {
1316		writew(DISABLE_ALL_INTERRUPTS,
1317		       SSP_IMSC(pl022->virtbase));
1318		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1319		if (unlikely(pl022->rx > pl022->rx_end)) {
1320			dev_warn(&pl022->adev->dev, "read %u surplus "
1321				 "bytes (did you request an odd "
1322				 "number of bytes on a 16bit bus?)\n",
1323				 (u32) (pl022->rx - pl022->rx_end));
1324		}
1325		/* Update total bytes transferred */
1326		msg->actual_length += pl022->cur_transfer->len;
1327		/* Move to next transfer */
1328		msg->state = next_transfer(pl022);
1329		if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
1330			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1331		tasklet_schedule(&pl022->pump_transfers);
1332		return IRQ_HANDLED;
1333	}
1334
1335	return IRQ_HANDLED;
1336}
1337
1338/**
1339 * This sets up the pointers to memory for the next message to
1340 * send out on the SPI bus.
1341 */
1342static int set_up_next_transfer(struct pl022 *pl022,
1343				struct spi_transfer *transfer)
1344{
1345	int residue;
1346
1347	/* Sanity check the message for this bus width */
1348	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1349	if (unlikely(residue != 0)) {
1350		dev_err(&pl022->adev->dev,
1351			"message of %u bytes to transmit but the current "
1352			"chip bus has a data width of %u bytes!\n",
1353			pl022->cur_transfer->len,
1354			pl022->cur_chip->n_bytes);
1355		dev_err(&pl022->adev->dev, "skipping this message\n");
1356		return -EIO;
1357	}
1358	pl022->tx = (void *)transfer->tx_buf;
1359	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1360	pl022->rx = (void *)transfer->rx_buf;
1361	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1362	pl022->write =
1363	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1364	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1365	return 0;
1366}
1367
1368/**
1369 * pump_transfers - Tasklet function which schedules next transfer
1370 * when running in interrupt or DMA transfer mode.
1371 * @data: SSP driver private data structure
1372 *
1373 */
1374static void pump_transfers(unsigned long data)
1375{
1376	struct pl022 *pl022 = (struct pl022 *) data;
1377	struct spi_message *message = NULL;
1378	struct spi_transfer *transfer = NULL;
1379	struct spi_transfer *previous = NULL;
1380
1381	/* Get current state information */
1382	message = pl022->cur_msg;
1383	transfer = pl022->cur_transfer;
1384
1385	/* Handle for abort */
1386	if (message->state == STATE_ERROR) {
1387		message->status = -EIO;
1388		giveback(pl022);
1389		return;
1390	}
1391
1392	/* Handle end of message */
1393	if (message->state == STATE_DONE) {
1394		message->status = 0;
1395		giveback(pl022);
1396		return;
1397	}
1398
1399	/* Delay if requested at end of transfer before CS change */
1400	if (message->state == STATE_RUNNING) {
1401		previous = list_entry(transfer->transfer_list.prev,
1402					struct spi_transfer,
1403					transfer_list);
1404		if (previous->delay_usecs)
1405			/*
1406			 * FIXME: This runs in interrupt context.
1407			 * Is this really smart?
1408			 */
1409			udelay(previous->delay_usecs);
1410
1411		/* Reselect chip select only if cs_change was requested */
1412		if (previous->cs_change)
1413			pl022_cs_control(pl022, SSP_CHIP_SELECT);
1414	} else {
1415		/* STATE_START */
1416		message->state = STATE_RUNNING;
1417	}
1418
1419	if (set_up_next_transfer(pl022, transfer)) {
1420		message->state = STATE_ERROR;
1421		message->status = -EIO;
1422		giveback(pl022);
1423		return;
1424	}
1425	/* Flush the FIFOs and let's go! */
1426	flush(pl022);
1427
1428	if (pl022->cur_chip->enable_dma) {
1429		if (configure_dma(pl022)) {
1430			dev_dbg(&pl022->adev->dev,
1431				"configuration of DMA failed, fall back to interrupt mode\n");
1432			goto err_config_dma;
1433		}
1434		return;
1435	}
1436
1437err_config_dma:
1438	/* enable all interrupts except RX */
1439	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1440}
1441
1442static void do_interrupt_dma_transfer(struct pl022 *pl022)
1443{
1444	/*
1445	 * Default is to enable all interrupts except RX -
1446	 * this will be enabled once TX is complete
1447	 */
1448	u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1449
1450	/* Enable target chip, if not already active */
1451	if (!pl022->next_msg_cs_active)
1452		pl022_cs_control(pl022, SSP_CHIP_SELECT);
1453
1454	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1455		/* Error path */
1456		pl022->cur_msg->state = STATE_ERROR;
1457		pl022->cur_msg->status = -EIO;
1458		giveback(pl022);
1459		return;
1460	}
1461	/* If we're using DMA, set up DMA here */
1462	if (pl022->cur_chip->enable_dma) {
1463		/* Configure DMA transfer */
1464		if (configure_dma(pl022)) {
1465			dev_dbg(&pl022->adev->dev,
1466				"configuration of DMA failed, fall back to interrupt mode\n");
1467			goto err_config_dma;
1468		}
1469		/* Disable interrupts in DMA mode, IRQ from DMA controller */
1470		irqflags = DISABLE_ALL_INTERRUPTS;
1471	}
1472err_config_dma:
1473	/* Enable SSP, turn on interrupts */
1474	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1475	       SSP_CR1(pl022->virtbase));
1476	writew(irqflags, SSP_IMSC(pl022->virtbase));
1477}
1478
1479static void print_current_status(struct pl022 *pl022)
1480{
1481	u32 read_cr0;
1482	u16 read_cr1, read_dmacr, read_sr;
1483
1484	if (pl022->vendor->extended_cr)
1485		read_cr0 = readl(SSP_CR0(pl022->virtbase));
1486	else
1487		read_cr0 = readw(SSP_CR0(pl022->virtbase));
1488	read_cr1 = readw(SSP_CR1(pl022->virtbase));
1489	read_dmacr = readw(SSP_DMACR(pl022->virtbase));
1490	read_sr = readw(SSP_SR(pl022->virtbase));
1491
1492	dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0);
1493	dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1);
1494	dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr);
1495	dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr);
1496	dev_warn(&pl022->adev->dev,
1497			"spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
1498			pl022->exp_fifo_level,
1499			pl022->vendor->fifodepth);
1500
1501}
1502
1503static void do_polling_transfer(struct pl022 *pl022)
1504{
1505	struct spi_message *message = NULL;
1506	struct spi_transfer *transfer = NULL;
1507	struct spi_transfer *previous = NULL;
1508	unsigned long time, timeout;
1509
1510	message = pl022->cur_msg;
1511
1512	while (message->state != STATE_DONE) {
1513		/* Handle for abort */
1514		if (message->state == STATE_ERROR)
1515			break;
1516		transfer = pl022->cur_transfer;
1517
1518		/* Delay if requested at end of transfer */
1519		if (message->state == STATE_RUNNING) {
1520			previous =
1521			    list_entry(transfer->transfer_list.prev,
1522				       struct spi_transfer, transfer_list);
1523			if (previous->delay_usecs)
1524				udelay(previous->delay_usecs);
1525			if (previous->cs_change)
1526				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1527		} else {
1528			/* STATE_START */
1529			message->state = STATE_RUNNING;
1530			if (!pl022->next_msg_cs_active)
1531				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1532		}
1533
1534		/* Configuration Changing Per Transfer */
1535		if (set_up_next_transfer(pl022, transfer)) {
1536			/* Error path */
1537			message->state = STATE_ERROR;
1538			break;
1539		}
1540		/* Flush FIFOs and enable SSP */
1541		flush(pl022);
1542		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1543		       SSP_CR1(pl022->virtbase));
1544
1545		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1546
1547		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1548		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1549			time = jiffies;
1550			readwriter(pl022);
1551			if (time_after(time, timeout)) {
1552				dev_warn(&pl022->adev->dev,
1553				"%s: timeout!\n", __func__);
1554				message->state = STATE_TIMEOUT;
1555				print_current_status(pl022);
1556				goto out;
1557			}
1558			cpu_relax();
1559		}
1560
1561		/* Update total byte transferred */
1562		message->actual_length += pl022->cur_transfer->len;
1563		/* Move to next transfer */
1564		message->state = next_transfer(pl022);
1565		if (message->state != STATE_DONE
1566		    && pl022->cur_transfer->cs_change)
1567			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1568	}
1569out:
1570	/* Handle end of message */
1571	if (message->state == STATE_DONE)
1572		message->status = 0;
1573	else if (message->state == STATE_TIMEOUT)
1574		message->status = -EAGAIN;
1575	else
1576		message->status = -EIO;
1577
1578	giveback(pl022);
1579	return;
1580}
1581
1582static int pl022_transfer_one_message(struct spi_master *master,
1583				      struct spi_message *msg)
1584{
1585	struct pl022 *pl022 = spi_master_get_devdata(master);
1586
1587	/* Initial message state */
1588	pl022->cur_msg = msg;
1589	msg->state = STATE_START;
1590
1591	pl022->cur_transfer = list_entry(msg->transfers.next,
1592					 struct spi_transfer, transfer_list);
1593
1594	/* Setup the SPI using the per chip configuration */
1595	pl022->cur_chip = spi_get_ctldata(msg->spi);
1596	pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1597
1598	restore_state(pl022);
1599	flush(pl022);
1600
1601	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1602		do_polling_transfer(pl022);
1603	else
1604		do_interrupt_dma_transfer(pl022);
1605
1606	return 0;
1607}
1608
1609static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1610{
1611	struct pl022 *pl022 = spi_master_get_devdata(master);
1612
1613	/* nothing more to do - disable spi/ssp and power off */
1614	writew((readw(SSP_CR1(pl022->virtbase)) &
1615		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1616
1617	return 0;
1618}
1619
1620static int verify_controller_parameters(struct pl022 *pl022,
1621				struct pl022_config_chip const *chip_info)
1622{
1623	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1624	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1625		dev_err(&pl022->adev->dev,
1626			"interface is configured incorrectly\n");
1627		return -EINVAL;
1628	}
1629	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1630	    (!pl022->vendor->unidir)) {
1631		dev_err(&pl022->adev->dev,
1632			"unidirectional mode not supported in this "
1633			"hardware version\n");
1634		return -EINVAL;
1635	}
1636	if ((chip_info->hierarchy != SSP_MASTER)
1637	    && (chip_info->hierarchy != SSP_SLAVE)) {
1638		dev_err(&pl022->adev->dev,
1639			"hierarchy is configured incorrectly\n");
1640		return -EINVAL;
1641	}
1642	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1643	    && (chip_info->com_mode != DMA_TRANSFER)
1644	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1645		dev_err(&pl022->adev->dev,
1646			"Communication mode is configured incorrectly\n");
1647		return -EINVAL;
1648	}
1649	switch (chip_info->rx_lev_trig) {
1650	case SSP_RX_1_OR_MORE_ELEM:
1651	case SSP_RX_4_OR_MORE_ELEM:
1652	case SSP_RX_8_OR_MORE_ELEM:
1653		/* These are always OK, all variants can handle this */
1654		break;
1655	case SSP_RX_16_OR_MORE_ELEM:
1656		if (pl022->vendor->fifodepth < 16) {
1657			dev_err(&pl022->adev->dev,
1658			"RX FIFO Trigger Level is configured incorrectly\n");
1659			return -EINVAL;
1660		}
1661		break;
1662	case SSP_RX_32_OR_MORE_ELEM:
1663		if (pl022->vendor->fifodepth < 32) {
1664			dev_err(&pl022->adev->dev,
1665			"RX FIFO Trigger Level is configured incorrectly\n");
1666			return -EINVAL;
1667		}
1668		break;
1669	default:
1670		dev_err(&pl022->adev->dev,
1671			"RX FIFO Trigger Level is configured incorrectly\n");
1672		return -EINVAL;
1673	}
1674	switch (chip_info->tx_lev_trig) {
1675	case SSP_TX_1_OR_MORE_EMPTY_LOC:
1676	case SSP_TX_4_OR_MORE_EMPTY_LOC:
1677	case SSP_TX_8_OR_MORE_EMPTY_LOC:
1678		/* These are always OK, all variants can handle this */
1679		break;
1680	case SSP_TX_16_OR_MORE_EMPTY_LOC:
1681		if (pl022->vendor->fifodepth < 16) {
1682			dev_err(&pl022->adev->dev,
1683			"TX FIFO Trigger Level is configured incorrectly\n");
1684			return -EINVAL;
1685		}
1686		break;
1687	case SSP_TX_32_OR_MORE_EMPTY_LOC:
1688		if (pl022->vendor->fifodepth < 32) {
1689			dev_err(&pl022->adev->dev,
1690			"TX FIFO Trigger Level is configured incorrectly\n");
1691			return -EINVAL;
1692		}
1693		break;
1694	default:
1695		dev_err(&pl022->adev->dev,
1696			"TX FIFO Trigger Level is configured incorrectly\n");
1697		return -EINVAL;
1698	}
1699	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1700		if ((chip_info->ctrl_len < SSP_BITS_4)
1701		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1702			dev_err(&pl022->adev->dev,
1703				"CTRL LEN is configured incorrectly\n");
1704			return -EINVAL;
1705		}
1706		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1707		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1708			dev_err(&pl022->adev->dev,
1709				"Wait State is configured incorrectly\n");
1710			return -EINVAL;
1711		}
1712		/* Half duplex is only available in the ST Micro version */
1713		if (pl022->vendor->extended_cr) {
1714			if ((chip_info->duplex !=
1715			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1716			    && (chip_info->duplex !=
1717				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1718				dev_err(&pl022->adev->dev,
1719					"Microwire duplex mode is configured incorrectly\n");
1720				return -EINVAL;
1721			}
1722		} else {
1723			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1724				dev_err(&pl022->adev->dev,
1725					"Microwire half duplex mode requested,"
1726					" but this is only available in the"
1727					" ST version of PL022\n");
1728			return -EINVAL;
1729		}
1730	}
1731	return 0;
1732}
1733
1734static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1735{
1736	return rate / (cpsdvsr * (1 + scr));
1737}
1738
1739static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1740				    ssp_clock_params * clk_freq)
1741{
1742	/* Lets calculate the frequency parameters */
1743	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1744	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1745		best_scr = 0, tmp, found = 0;
1746
1747	rate = clk_get_rate(pl022->clk);
1748	/* cpsdvscr = 2 & scr 0 */
1749	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1750	/* cpsdvsr = 254 & scr = 255 */
1751	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1752
1753	if (freq > max_tclk)
1754		dev_warn(&pl022->adev->dev,
1755			"Max speed that can be programmed is %d Hz, you requested %d\n",
1756			max_tclk, freq);
1757
1758	if (freq < min_tclk) {
1759		dev_err(&pl022->adev->dev,
1760			"Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1761			freq, min_tclk);
1762		return -EINVAL;
1763	}
1764
1765	/*
1766	 * best_freq will give closest possible available rate (<= requested
1767	 * freq) for all values of scr & cpsdvsr.
1768	 */
1769	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1770		while (scr <= SCR_MAX) {
1771			tmp = spi_rate(rate, cpsdvsr, scr);
1772
1773			if (tmp > freq) {
1774				/* we need lower freq */
1775				scr++;
1776				continue;
1777			}
1778
1779			/*
1780			 * If found exact value, mark found and break.
1781			 * If found more closer value, update and break.
1782			 */
1783			if (tmp > best_freq) {
1784				best_freq = tmp;
1785				best_cpsdvsr = cpsdvsr;
1786				best_scr = scr;
1787
1788				if (tmp == freq)
1789					found = 1;
1790			}
1791			/*
1792			 * increased scr will give lower rates, which are not
1793			 * required
1794			 */
1795			break;
1796		}
1797		cpsdvsr += 2;
1798		scr = SCR_MIN;
1799	}
1800
1801	WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1802			freq);
1803
1804	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1805	clk_freq->scr = (u8) (best_scr & 0xFF);
1806	dev_dbg(&pl022->adev->dev,
1807		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
1808		freq, best_freq);
1809	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1810		clk_freq->cpsdvsr, clk_freq->scr);
1811
1812	return 0;
1813}
1814
1815/*
1816 * A piece of default chip info unless the platform
1817 * supplies it.
1818 */
1819static const struct pl022_config_chip pl022_default_chip_info = {
1820	.com_mode = POLLING_TRANSFER,
1821	.iface = SSP_INTERFACE_MOTOROLA_SPI,
1822	.hierarchy = SSP_SLAVE,
1823	.slave_tx_disable = DO_NOT_DRIVE_TX,
1824	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1825	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1826	.ctrl_len = SSP_BITS_8,
1827	.wait_state = SSP_MWIRE_WAIT_ZERO,
1828	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1829	.cs_control = null_cs_control,
1830};
1831
1832/**
1833 * pl022_setup - setup function registered to SPI master framework
1834 * @spi: spi device which is requesting setup
1835 *
1836 * This function is registered to the SPI framework for this SPI master
1837 * controller. If it is the first time when setup is called by this device,
1838 * this function will initialize the runtime state for this chip and save
1839 * the same in the device structure. Else it will update the runtime info
1840 * with the updated chip info. Nothing is really being written to the
1841 * controller hardware here, that is not done until the actual transfer
1842 * commence.
1843 */
1844static int pl022_setup(struct spi_device *spi)
1845{
1846	struct pl022_config_chip const *chip_info;
1847	struct pl022_config_chip chip_info_dt;
1848	struct chip_data *chip;
1849	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1850	int status = 0;
1851	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1852	unsigned int bits = spi->bits_per_word;
1853	u32 tmp;
1854	struct device_node *np = spi->dev.of_node;
1855
1856	if (!spi->max_speed_hz)
1857		return -EINVAL;
1858
1859	/* Get controller_state if one is supplied */
1860	chip = spi_get_ctldata(spi);
1861
1862	if (chip == NULL) {
1863		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1864		if (!chip)
1865			return -ENOMEM;
1866		dev_dbg(&spi->dev,
1867			"allocated memory for controller's runtime state\n");
1868	}
1869
1870	/* Get controller data if one is supplied */
1871	chip_info = spi->controller_data;
1872
1873	if (chip_info == NULL) {
1874		if (np) {
1875			chip_info_dt = pl022_default_chip_info;
1876
1877			chip_info_dt.hierarchy = SSP_MASTER;
1878			of_property_read_u32(np, "pl022,interface",
1879				&chip_info_dt.iface);
1880			of_property_read_u32(np, "pl022,com-mode",
1881				&chip_info_dt.com_mode);
1882			of_property_read_u32(np, "pl022,rx-level-trig",
1883				&chip_info_dt.rx_lev_trig);
1884			of_property_read_u32(np, "pl022,tx-level-trig",
1885				&chip_info_dt.tx_lev_trig);
1886			of_property_read_u32(np, "pl022,ctrl-len",
1887				&chip_info_dt.ctrl_len);
1888			of_property_read_u32(np, "pl022,wait-state",
1889				&chip_info_dt.wait_state);
1890			of_property_read_u32(np, "pl022,duplex",
1891				&chip_info_dt.duplex);
1892
1893			chip_info = &chip_info_dt;
1894		} else {
1895			chip_info = &pl022_default_chip_info;
1896			/* spi_board_info.controller_data not is supplied */
1897			dev_dbg(&spi->dev,
1898				"using default controller_data settings\n");
1899		}
1900	} else
1901		dev_dbg(&spi->dev,
1902			"using user supplied controller_data settings\n");
1903
1904	/*
1905	 * We can override with custom divisors, else we use the board
1906	 * frequency setting
1907	 */
1908	if ((0 == chip_info->clk_freq.cpsdvsr)
1909	    && (0 == chip_info->clk_freq.scr)) {
1910		status = calculate_effective_freq(pl022,
1911						  spi->max_speed_hz,
1912						  &clk_freq);
1913		if (status < 0)
1914			goto err_config_params;
1915	} else {
1916		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1917		if ((clk_freq.cpsdvsr % 2) != 0)
1918			clk_freq.cpsdvsr =
1919				clk_freq.cpsdvsr - 1;
1920	}
1921	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1922	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1923		status = -EINVAL;
1924		dev_err(&spi->dev,
1925			"cpsdvsr is configured incorrectly\n");
1926		goto err_config_params;
1927	}
1928
1929	status = verify_controller_parameters(pl022, chip_info);
1930	if (status) {
1931		dev_err(&spi->dev, "controller data is incorrect");
1932		goto err_config_params;
1933	}
1934
1935	pl022->rx_lev_trig = chip_info->rx_lev_trig;
1936	pl022->tx_lev_trig = chip_info->tx_lev_trig;
1937
1938	/* Now set controller state based on controller data */
1939	chip->xfer_type = chip_info->com_mode;
1940	if (!chip_info->cs_control) {
1941		chip->cs_control = null_cs_control;
1942		if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1943			dev_warn(&spi->dev,
1944				 "invalid chip select\n");
1945	} else
1946		chip->cs_control = chip_info->cs_control;
1947
1948	/* Check bits per word with vendor specific range */
1949	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1950		status = -ENOTSUPP;
1951		dev_err(&spi->dev, "illegal data size for this controller!\n");
1952		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1953				pl022->vendor->max_bpw);
1954		goto err_config_params;
1955	} else if (bits <= 8) {
1956		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1957		chip->n_bytes = 1;
1958		chip->read = READING_U8;
1959		chip->write = WRITING_U8;
1960	} else if (bits <= 16) {
1961		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1962		chip->n_bytes = 2;
1963		chip->read = READING_U16;
1964		chip->write = WRITING_U16;
1965	} else {
1966		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1967		chip->n_bytes = 4;
1968		chip->read = READING_U32;
1969		chip->write = WRITING_U32;
1970	}
1971
1972	/* Now Initialize all register settings required for this chip */
1973	chip->cr0 = 0;
1974	chip->cr1 = 0;
1975	chip->dmacr = 0;
1976	chip->cpsr = 0;
1977	if ((chip_info->com_mode == DMA_TRANSFER)
1978	    && ((pl022->master_info)->enable_dma)) {
1979		chip->enable_dma = true;
1980		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1981		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1982			       SSP_DMACR_MASK_RXDMAE, 0);
1983		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1984			       SSP_DMACR_MASK_TXDMAE, 1);
1985	} else {
1986		chip->enable_dma = false;
1987		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1988		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1989			       SSP_DMACR_MASK_RXDMAE, 0);
1990		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1991			       SSP_DMACR_MASK_TXDMAE, 1);
1992	}
1993
1994	chip->cpsr = clk_freq.cpsdvsr;
1995
1996	/* Special setup for the ST micro extended control registers */
1997	if (pl022->vendor->extended_cr) {
1998		u32 etx;
1999
2000		if (pl022->vendor->pl023) {
2001			/* These bits are only in the PL023 */
2002			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
2003				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
2004		} else {
2005			/* These bits are in the PL022 but not PL023 */
2006			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
2007				       SSP_CR0_MASK_HALFDUP_ST, 5);
2008			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
2009				       SSP_CR0_MASK_CSS_ST, 16);
2010			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2011				       SSP_CR0_MASK_FRF_ST, 21);
2012			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2013				       SSP_CR1_MASK_MWAIT_ST, 6);
2014		}
2015		SSP_WRITE_BITS(chip->cr0, bits - 1,
2016			       SSP_CR0_MASK_DSS_ST, 0);
2017
2018		if (spi->mode & SPI_LSB_FIRST) {
2019			tmp = SSP_RX_LSB;
2020			etx = SSP_TX_LSB;
2021		} else {
2022			tmp = SSP_RX_MSB;
2023			etx = SSP_TX_MSB;
2024		}
2025		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2026		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2027		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2028			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
2029		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2030			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
2031	} else {
2032		SSP_WRITE_BITS(chip->cr0, bits - 1,
2033			       SSP_CR0_MASK_DSS, 0);
2034		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2035			       SSP_CR0_MASK_FRF, 4);
2036	}
2037
2038	/* Stuff that is common for all versions */
2039	if (spi->mode & SPI_CPOL)
2040		tmp = SSP_CLK_POL_IDLE_HIGH;
2041	else
2042		tmp = SSP_CLK_POL_IDLE_LOW;
2043	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2044
2045	if (spi->mode & SPI_CPHA)
2046		tmp = SSP_CLK_SECOND_EDGE;
2047	else
2048		tmp = SSP_CLK_FIRST_EDGE;
2049	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2050
2051	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2052	/* Loopback is available on all versions except PL023 */
2053	if (pl022->vendor->loopback) {
2054		if (spi->mode & SPI_LOOP)
2055			tmp = LOOPBACK_ENABLED;
2056		else
2057			tmp = LOOPBACK_DISABLED;
2058		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2059	}
2060	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2061	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2062	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2063		3);
2064
2065	/* Save controller_state */
2066	spi_set_ctldata(spi, chip);
2067	return status;
2068 err_config_params:
2069	spi_set_ctldata(spi, NULL);
2070	kfree(chip);
2071	return status;
2072}
2073
2074/**
2075 * pl022_cleanup - cleanup function registered to SPI master framework
2076 * @spi: spi device which is requesting cleanup
2077 *
2078 * This function is registered to the SPI framework for this SPI master
2079 * controller. It will free the runtime state of chip.
2080 */
2081static void pl022_cleanup(struct spi_device *spi)
2082{
2083	struct chip_data *chip = spi_get_ctldata(spi);
2084
2085	spi_set_ctldata(spi, NULL);
2086	kfree(chip);
2087}
2088
2089static struct pl022_ssp_controller *
2090pl022_platform_data_dt_get(struct device *dev)
2091{
2092	struct device_node *np = dev->of_node;
2093	struct pl022_ssp_controller *pd;
2094	u32 tmp = 0;
2095
2096	if (!np) {
2097		dev_err(dev, "no dt node defined\n");
2098		return NULL;
2099	}
2100
2101	pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2102	if (!pd)
2103		return NULL;
2104
2105	pd->bus_id = -1;
2106	pd->enable_dma = 1;
2107	of_property_read_u32(np, "num-cs", &tmp);
2108	pd->num_chipselect = tmp;
2109	of_property_read_u32(np, "pl022,autosuspend-delay",
2110			     &pd->autosuspend_delay);
2111	pd->rt = of_property_read_bool(np, "pl022,rt");
2112
2113	return pd;
2114}
2115
2116static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2117{
2118	struct device *dev = &adev->dev;
2119	struct pl022_ssp_controller *platform_info =
2120			dev_get_platdata(&adev->dev);
2121	struct spi_master *master;
2122	struct pl022 *pl022 = NULL;	/*Data for this driver */
2123	struct device_node *np = adev->dev.of_node;
2124	int status = 0, i, num_cs;
2125
2126	dev_info(&adev->dev,
2127		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2128	if (!platform_info && IS_ENABLED(CONFIG_OF))
2129		platform_info = pl022_platform_data_dt_get(dev);
2130
2131	if (!platform_info) {
2132		dev_err(dev, "probe: no platform data defined\n");
2133		return -ENODEV;
2134	}
2135
2136	if (platform_info->num_chipselect) {
2137		num_cs = platform_info->num_chipselect;
2138	} else {
2139		dev_err(dev, "probe: no chip select defined\n");
2140		return -ENODEV;
2141	}
2142
2143	/* Allocate master with space for data */
2144	master = spi_alloc_master(dev, sizeof(struct pl022));
2145	if (master == NULL) {
2146		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2147		return -ENOMEM;
2148	}
2149
2150	pl022 = spi_master_get_devdata(master);
2151	pl022->master = master;
2152	pl022->master_info = platform_info;
2153	pl022->adev = adev;
2154	pl022->vendor = id->data;
2155	pl022->chipselects = devm_kcalloc(dev, num_cs, sizeof(int),
2156					  GFP_KERNEL);
2157	if (!pl022->chipselects) {
2158		status = -ENOMEM;
2159		goto err_no_mem;
2160	}
2161
2162	/*
2163	 * Bus Number Which has been Assigned to this SSP controller
2164	 * on this board
2165	 */
2166	master->bus_num = platform_info->bus_id;
2167	master->num_chipselect = num_cs;
2168	master->cleanup = pl022_cleanup;
2169	master->setup = pl022_setup;
2170	master->auto_runtime_pm = true;
2171	master->transfer_one_message = pl022_transfer_one_message;
2172	master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2173	master->rt = platform_info->rt;
2174	master->dev.of_node = dev->of_node;
2175
2176	if (platform_info->num_chipselect && platform_info->chipselects) {
2177		for (i = 0; i < num_cs; i++)
2178			pl022->chipselects[i] = platform_info->chipselects[i];
2179	} else if (pl022->vendor->internal_cs_ctrl) {
2180		for (i = 0; i < num_cs; i++)
2181			pl022->chipselects[i] = i;
2182	} else if (IS_ENABLED(CONFIG_OF)) {
2183		for (i = 0; i < num_cs; i++) {
2184			int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2185
2186			if (cs_gpio == -EPROBE_DEFER) {
2187				status = -EPROBE_DEFER;
2188				goto err_no_gpio;
2189			}
2190
2191			pl022->chipselects[i] = cs_gpio;
2192
2193			if (gpio_is_valid(cs_gpio)) {
2194				if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2195					dev_err(&adev->dev,
2196						"could not request %d gpio\n",
2197						cs_gpio);
2198				else if (gpio_direction_output(cs_gpio, 1))
2199					dev_err(&adev->dev,
2200						"could not set gpio %d as output\n",
2201						cs_gpio);
2202			}
2203		}
2204	}
2205
2206	/*
2207	 * Supports mode 0-3, loopback, and active low CS. Transfers are
2208	 * always MS bit first on the original pl022.
2209	 */
2210	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2211	if (pl022->vendor->extended_cr)
2212		master->mode_bits |= SPI_LSB_FIRST;
2213
2214	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2215
2216	status = amba_request_regions(adev, NULL);
2217	if (status)
2218		goto err_no_ioregion;
2219
2220	pl022->phybase = adev->res.start;
2221	pl022->virtbase = devm_ioremap(dev, adev->res.start,
2222				       resource_size(&adev->res));
2223	if (pl022->virtbase == NULL) {
2224		status = -ENOMEM;
2225		goto err_no_ioremap;
2226	}
2227	dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2228		&adev->res.start, pl022->virtbase);
2229
2230	pl022->clk = devm_clk_get(&adev->dev, NULL);
2231	if (IS_ERR(pl022->clk)) {
2232		status = PTR_ERR(pl022->clk);
2233		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2234		goto err_no_clk;
2235	}
2236
2237	status = clk_prepare_enable(pl022->clk);
2238	if (status) {
2239		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2240		goto err_no_clk_en;
2241	}
2242
2243	/* Initialize transfer pump */
2244	tasklet_init(&pl022->pump_transfers, pump_transfers,
2245		     (unsigned long)pl022);
2246
2247	/* Disable SSP */
2248	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2249	       SSP_CR1(pl022->virtbase));
2250	load_ssp_default_config(pl022);
2251
2252	status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2253				  0, "pl022", pl022);
2254	if (status < 0) {
2255		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2256		goto err_no_irq;
2257	}
2258
2259	/* Get DMA channels, try autoconfiguration first */
2260	status = pl022_dma_autoprobe(pl022);
2261	if (status == -EPROBE_DEFER) {
2262		dev_dbg(dev, "deferring probe to get DMA channel\n");
2263		goto err_no_irq;
2264	}
2265
2266	/* If that failed, use channels from platform_info */
2267	if (status == 0)
2268		platform_info->enable_dma = 1;
2269	else if (platform_info->enable_dma) {
2270		status = pl022_dma_probe(pl022);
2271		if (status != 0)
2272			platform_info->enable_dma = 0;
2273	}
2274
2275	/* Register with the SPI framework */
2276	amba_set_drvdata(adev, pl022);
2277	status = devm_spi_register_master(&adev->dev, master);
2278	if (status != 0) {
2279		dev_err(&adev->dev,
2280			"probe - problem registering spi master\n");
2281		goto err_spi_register;
2282	}
2283	dev_dbg(dev, "probe succeeded\n");
2284
2285	/* let runtime pm put suspend */
2286	if (platform_info->autosuspend_delay > 0) {
2287		dev_info(&adev->dev,
2288			"will use autosuspend for runtime pm, delay %dms\n",
2289			platform_info->autosuspend_delay);
2290		pm_runtime_set_autosuspend_delay(dev,
2291			platform_info->autosuspend_delay);
2292		pm_runtime_use_autosuspend(dev);
2293	}
2294	pm_runtime_put(dev);
2295
2296	return 0;
2297
2298 err_spi_register:
2299	if (platform_info->enable_dma)
2300		pl022_dma_remove(pl022);
2301 err_no_irq:
2302	clk_disable_unprepare(pl022->clk);
2303 err_no_clk_en:
2304 err_no_clk:
2305 err_no_ioremap:
2306	amba_release_regions(adev);
2307 err_no_ioregion:
2308 err_no_gpio:
2309 err_no_mem:
2310	spi_master_put(master);
2311	return status;
2312}
2313
2314static int
2315pl022_remove(struct amba_device *adev)
2316{
2317	struct pl022 *pl022 = amba_get_drvdata(adev);
2318
2319	if (!pl022)
2320		return 0;
2321
2322	/*
2323	 * undo pm_runtime_put() in probe.  I assume that we're not
2324	 * accessing the primecell here.
2325	 */
2326	pm_runtime_get_noresume(&adev->dev);
2327
2328	load_ssp_default_config(pl022);
2329	if (pl022->master_info->enable_dma)
2330		pl022_dma_remove(pl022);
2331
2332	clk_disable_unprepare(pl022->clk);
2333	amba_release_regions(adev);
2334	tasklet_disable(&pl022->pump_transfers);
2335	return 0;
2336}
2337
2338#ifdef CONFIG_PM_SLEEP
2339static int pl022_suspend(struct device *dev)
2340{
2341	struct pl022 *pl022 = dev_get_drvdata(dev);
2342	int ret;
2343
2344	ret = spi_master_suspend(pl022->master);
2345	if (ret)
2346		return ret;
2347
2348	ret = pm_runtime_force_suspend(dev);
2349	if (ret) {
2350		spi_master_resume(pl022->master);
2351		return ret;
2352	}
2353
2354	pinctrl_pm_select_sleep_state(dev);
2355
2356	dev_dbg(dev, "suspended\n");
2357	return 0;
2358}
2359
2360static int pl022_resume(struct device *dev)
2361{
2362	struct pl022 *pl022 = dev_get_drvdata(dev);
2363	int ret;
2364
2365	ret = pm_runtime_force_resume(dev);
2366	if (ret)
2367		dev_err(dev, "problem resuming\n");
2368
2369	/* Start the queue running */
2370	ret = spi_master_resume(pl022->master);
2371	if (!ret)
2372		dev_dbg(dev, "resumed\n");
2373
2374	return ret;
2375}
2376#endif
2377
2378#ifdef CONFIG_PM
2379static int pl022_runtime_suspend(struct device *dev)
2380{
2381	struct pl022 *pl022 = dev_get_drvdata(dev);
2382
2383	clk_disable_unprepare(pl022->clk);
2384	pinctrl_pm_select_idle_state(dev);
2385
2386	return 0;
2387}
2388
2389static int pl022_runtime_resume(struct device *dev)
2390{
2391	struct pl022 *pl022 = dev_get_drvdata(dev);
2392
2393	pinctrl_pm_select_default_state(dev);
2394	clk_prepare_enable(pl022->clk);
2395
2396	return 0;
2397}
2398#endif
2399
2400static const struct dev_pm_ops pl022_dev_pm_ops = {
2401	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2402	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2403};
2404
2405static struct vendor_data vendor_arm = {
2406	.fifodepth = 8,
2407	.max_bpw = 16,
2408	.unidir = false,
2409	.extended_cr = false,
2410	.pl023 = false,
2411	.loopback = true,
2412	.internal_cs_ctrl = false,
2413};
2414
2415static struct vendor_data vendor_st = {
2416	.fifodepth = 32,
2417	.max_bpw = 32,
2418	.unidir = false,
2419	.extended_cr = true,
2420	.pl023 = false,
2421	.loopback = true,
2422	.internal_cs_ctrl = false,
2423};
2424
2425static struct vendor_data vendor_st_pl023 = {
2426	.fifodepth = 32,
2427	.max_bpw = 32,
2428	.unidir = false,
2429	.extended_cr = true,
2430	.pl023 = true,
2431	.loopback = false,
2432	.internal_cs_ctrl = false,
2433};
2434
2435static struct vendor_data vendor_lsi = {
2436	.fifodepth = 8,
2437	.max_bpw = 16,
2438	.unidir = false,
2439	.extended_cr = false,
2440	.pl023 = false,
2441	.loopback = true,
2442	.internal_cs_ctrl = true,
2443};
2444
2445static const struct amba_id pl022_ids[] = {
2446	{
2447		/*
2448		 * ARM PL022 variant, this has a 16bit wide
2449		 * and 8 locations deep TX/RX FIFO
2450		 */
2451		.id	= 0x00041022,
2452		.mask	= 0x000fffff,
2453		.data	= &vendor_arm,
2454	},
2455	{
2456		/*
2457		 * ST Micro derivative, this has 32bit wide
2458		 * and 32 locations deep TX/RX FIFO
2459		 */
2460		.id	= 0x01080022,
2461		.mask	= 0xffffffff,
2462		.data	= &vendor_st,
2463	},
2464	{
2465		/*
2466		 * ST-Ericsson derivative "PL023" (this is not
2467		 * an official ARM number), this is a PL022 SSP block
2468		 * stripped to SPI mode only, it has 32bit wide
2469		 * and 32 locations deep TX/RX FIFO but no extended
2470		 * CR0/CR1 register
2471		 */
2472		.id	= 0x00080023,
2473		.mask	= 0xffffffff,
2474		.data	= &vendor_st_pl023,
2475	},
2476	{
2477		/*
2478		 * PL022 variant that has a chip select control register whih
2479		 * allows control of 5 output signals nCS[0:4].
2480		 */
2481		.id	= 0x000b6022,
2482		.mask	= 0x000fffff,
2483		.data	= &vendor_lsi,
2484	},
2485	{ 0, 0 },
2486};
2487
2488MODULE_DEVICE_TABLE(amba, pl022_ids);
2489
2490static struct amba_driver pl022_driver = {
2491	.drv = {
2492		.name	= "ssp-pl022",
2493		.pm	= &pl022_dev_pm_ops,
2494	},
2495	.id_table	= pl022_ids,
2496	.probe		= pl022_probe,
2497	.remove		= pl022_remove,
2498};
2499
2500static int __init pl022_init(void)
2501{
2502	return amba_driver_register(&pl022_driver);
2503}
2504subsys_initcall(pl022_init);
2505
2506static void __exit pl022_exit(void)
2507{
2508	amba_driver_unregister(&pl022_driver);
2509}
2510module_exit(pl022_exit);
2511
2512MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2513MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2514MODULE_LICENSE("GPL");