Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Xilinx Zynq Ultrascale+ MPSoC Real Time Clock Driver
  4 *
  5 * Copyright (C) 2015 Xilinx, Inc.
  6 *
  7 */
  8
  9#include <linux/delay.h>
 10#include <linux/init.h>
 11#include <linux/io.h>
 12#include <linux/module.h>
 13#include <linux/of.h>
 14#include <linux/platform_device.h>
 15#include <linux/rtc.h>
 16
 17/* RTC Registers */
 18#define RTC_SET_TM_WR		0x00
 19#define RTC_SET_TM_RD		0x04
 20#define RTC_CALIB_WR		0x08
 21#define RTC_CALIB_RD		0x0C
 22#define RTC_CUR_TM		0x10
 23#define RTC_CUR_TICK		0x14
 24#define RTC_ALRM		0x18
 25#define RTC_INT_STS		0x20
 26#define RTC_INT_MASK		0x24
 27#define RTC_INT_EN		0x28
 28#define RTC_INT_DIS		0x2C
 29#define RTC_CTRL		0x40
 30
 31#define RTC_FR_EN		BIT(20)
 32#define RTC_FR_DATSHIFT		16
 33#define RTC_TICK_MASK		0xFFFF
 34#define RTC_INT_SEC		BIT(0)
 35#define RTC_INT_ALRM		BIT(1)
 36#define RTC_OSC_EN		BIT(24)
 37#define RTC_BATT_EN		BIT(31)
 38
 39#define RTC_CALIB_DEF		0x198233
 40#define RTC_CALIB_MASK		0x1FFFFF
 41#define RTC_ALRM_MASK          BIT(1)
 42#define RTC_MSEC               1000
 43
 44struct xlnx_rtc_dev {
 45	struct rtc_device	*rtc;
 46	void __iomem		*reg_base;
 47	int			alarm_irq;
 48	int			sec_irq;
 49	unsigned int		calibval;
 50};
 51
 52static int xlnx_rtc_set_time(struct device *dev, struct rtc_time *tm)
 53{
 54	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
 55	unsigned long new_time;
 56
 57	/*
 58	 * The value written will be updated after 1 sec into the
 59	 * seconds read register, so we need to program time +1 sec
 60	 * to get the correct time on read.
 61	 */
 62	new_time = rtc_tm_to_time64(tm) + 1;
 63
 64	/*
 65	 * Writing into calibration register will clear the Tick Counter and
 66	 * force the next second to be signaled exactly in 1 second period
 67	 */
 68	xrtcdev->calibval &= RTC_CALIB_MASK;
 69	writel(xrtcdev->calibval, (xrtcdev->reg_base + RTC_CALIB_WR));
 70
 71	writel(new_time, xrtcdev->reg_base + RTC_SET_TM_WR);
 72
 73	/*
 74	 * Clear the rtc interrupt status register after setting the
 75	 * time. During a read_time function, the code should read the
 76	 * RTC_INT_STATUS register and if bit 0 is still 0, it means
 77	 * that one second has not elapsed yet since RTC was set and
 78	 * the current time should be read from SET_TIME_READ register;
 79	 * otherwise, CURRENT_TIME register is read to report the time
 80	 */
 81	writel(RTC_INT_SEC, xrtcdev->reg_base + RTC_INT_STS);
 82
 83	return 0;
 84}
 85
 86static int xlnx_rtc_read_time(struct device *dev, struct rtc_time *tm)
 87{
 88	u32 status;
 89	unsigned long read_time;
 90	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
 91
 92	status = readl(xrtcdev->reg_base + RTC_INT_STS);
 93
 94	if (status & RTC_INT_SEC) {
 95		/*
 96		 * RTC has updated the CURRENT_TIME with the time written into
 97		 * SET_TIME_WRITE register.
 98		 */
 99		read_time = readl(xrtcdev->reg_base + RTC_CUR_TM);
100	} else {
101		/*
102		 * Time written in SET_TIME_WRITE has not yet updated into
103		 * the seconds read register, so read the time from the
104		 * SET_TIME_WRITE instead of CURRENT_TIME register.
105		 * Since we add +1 sec while writing, we need to -1 sec while
106		 * reading.
107		 */
108		read_time = readl(xrtcdev->reg_base + RTC_SET_TM_RD) - 1;
 
109	}
110	rtc_time64_to_tm(read_time, tm);
111
112	return 0;
113}
114
115static int xlnx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
116{
117	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
118
119	rtc_time64_to_tm(readl(xrtcdev->reg_base + RTC_ALRM), &alrm->time);
120	alrm->enabled = readl(xrtcdev->reg_base + RTC_INT_MASK) & RTC_INT_ALRM;
121
122	return 0;
123}
124
125static int xlnx_rtc_alarm_irq_enable(struct device *dev, u32 enabled)
126{
127	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
128	unsigned int status;
129	ulong timeout;
130
131	timeout = jiffies + msecs_to_jiffies(RTC_MSEC);
132
133	if (enabled) {
134		while (1) {
135			status = readl(xrtcdev->reg_base + RTC_INT_STS);
136			if (!((status & RTC_ALRM_MASK) == RTC_ALRM_MASK))
137				break;
138
139			if (time_after_eq(jiffies, timeout)) {
140				dev_err(dev, "Time out occur, while clearing alarm status bit\n");
141				return -ETIMEDOUT;
142			}
143			writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_STS);
144		}
145
 
146		writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_EN);
147	} else {
148		writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_DIS);
149	}
150
151	return 0;
152}
153
154static int xlnx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
155{
156	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
157	unsigned long alarm_time;
158
159	alarm_time = rtc_tm_to_time64(&alrm->time);
160
161	writel((u32)alarm_time, (xrtcdev->reg_base + RTC_ALRM));
162
163	xlnx_rtc_alarm_irq_enable(dev, alrm->enabled);
164
165	return 0;
166}
167
168static void xlnx_init_rtc(struct xlnx_rtc_dev *xrtcdev)
169{
170	u32 rtc_ctrl;
171
172	/* Enable RTC switch to battery when VCC_PSAUX is not available */
173	rtc_ctrl = readl(xrtcdev->reg_base + RTC_CTRL);
174	rtc_ctrl |= RTC_BATT_EN;
175	writel(rtc_ctrl, xrtcdev->reg_base + RTC_CTRL);
176
177	/*
178	 * Based on crystal freq of 33.330 KHz
179	 * set the seconds counter and enable, set fractions counter
180	 * to default value suggested as per design spec
181	 * to correct RTC delay in frequency over period of time.
182	 */
183	xrtcdev->calibval &= RTC_CALIB_MASK;
184	writel(xrtcdev->calibval, (xrtcdev->reg_base + RTC_CALIB_WR));
185}
186
187static const struct rtc_class_ops xlnx_rtc_ops = {
188	.set_time	  = xlnx_rtc_set_time,
189	.read_time	  = xlnx_rtc_read_time,
190	.read_alarm	  = xlnx_rtc_read_alarm,
191	.set_alarm	  = xlnx_rtc_set_alarm,
192	.alarm_irq_enable = xlnx_rtc_alarm_irq_enable,
193};
194
195static irqreturn_t xlnx_rtc_interrupt(int irq, void *id)
196{
197	struct xlnx_rtc_dev *xrtcdev = (struct xlnx_rtc_dev *)id;
198	unsigned int status;
199
200	status = readl(xrtcdev->reg_base + RTC_INT_STS);
201	/* Check if interrupt asserted */
202	if (!(status & (RTC_INT_SEC | RTC_INT_ALRM)))
203		return IRQ_NONE;
204
205	/* Disable RTC_INT_ALRM interrupt only */
206	writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_DIS);
207
208	if (status & RTC_INT_ALRM)
209		rtc_update_irq(xrtcdev->rtc, 1, RTC_IRQF | RTC_AF);
210
211	return IRQ_HANDLED;
212}
213
214static int xlnx_rtc_probe(struct platform_device *pdev)
215{
216	struct xlnx_rtc_dev *xrtcdev;
 
217	int ret;
218
219	xrtcdev = devm_kzalloc(&pdev->dev, sizeof(*xrtcdev), GFP_KERNEL);
220	if (!xrtcdev)
221		return -ENOMEM;
222
223	platform_set_drvdata(pdev, xrtcdev);
224
225	xrtcdev->rtc = devm_rtc_allocate_device(&pdev->dev);
226	if (IS_ERR(xrtcdev->rtc))
227		return PTR_ERR(xrtcdev->rtc);
228
229	xrtcdev->rtc->ops = &xlnx_rtc_ops;
230	xrtcdev->rtc->range_max = U32_MAX;
231
232	xrtcdev->reg_base = devm_platform_ioremap_resource(pdev, 0);
 
 
233	if (IS_ERR(xrtcdev->reg_base))
234		return PTR_ERR(xrtcdev->reg_base);
235
236	xrtcdev->alarm_irq = platform_get_irq_byname(pdev, "alarm");
237	if (xrtcdev->alarm_irq < 0)
238		return xrtcdev->alarm_irq;
239	ret = devm_request_irq(&pdev->dev, xrtcdev->alarm_irq,
240			       xlnx_rtc_interrupt, 0,
241			       dev_name(&pdev->dev), xrtcdev);
242	if (ret) {
243		dev_err(&pdev->dev, "request irq failed\n");
244		return ret;
245	}
246
247	xrtcdev->sec_irq = platform_get_irq_byname(pdev, "sec");
248	if (xrtcdev->sec_irq < 0)
249		return xrtcdev->sec_irq;
250	ret = devm_request_irq(&pdev->dev, xrtcdev->sec_irq,
251			       xlnx_rtc_interrupt, 0,
252			       dev_name(&pdev->dev), xrtcdev);
253	if (ret) {
254		dev_err(&pdev->dev, "request irq failed\n");
255		return ret;
256	}
257
258	ret = of_property_read_u32(pdev->dev.of_node, "calibration",
259				   &xrtcdev->calibval);
260	if (ret)
261		xrtcdev->calibval = RTC_CALIB_DEF;
262
263	xlnx_init_rtc(xrtcdev);
264
265	device_init_wakeup(&pdev->dev, 1);
266
267	return rtc_register_device(xrtcdev->rtc);
268}
269
270static int xlnx_rtc_remove(struct platform_device *pdev)
271{
272	xlnx_rtc_alarm_irq_enable(&pdev->dev, 0);
273	device_init_wakeup(&pdev->dev, 0);
274
275	return 0;
276}
277
278static int __maybe_unused xlnx_rtc_suspend(struct device *dev)
279{
280	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
281
282	if (device_may_wakeup(dev))
283		enable_irq_wake(xrtcdev->alarm_irq);
284	else
285		xlnx_rtc_alarm_irq_enable(dev, 0);
286
287	return 0;
288}
289
290static int __maybe_unused xlnx_rtc_resume(struct device *dev)
291{
292	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
293
294	if (device_may_wakeup(dev))
295		disable_irq_wake(xrtcdev->alarm_irq);
296	else
297		xlnx_rtc_alarm_irq_enable(dev, 1);
298
299	return 0;
300}
301
302static SIMPLE_DEV_PM_OPS(xlnx_rtc_pm_ops, xlnx_rtc_suspend, xlnx_rtc_resume);
303
304static const struct of_device_id xlnx_rtc_of_match[] = {
305	{.compatible = "xlnx,zynqmp-rtc" },
306	{ }
307};
308MODULE_DEVICE_TABLE(of, xlnx_rtc_of_match);
309
310static struct platform_driver xlnx_rtc_driver = {
311	.probe		= xlnx_rtc_probe,
312	.remove		= xlnx_rtc_remove,
313	.driver		= {
314		.name	= KBUILD_MODNAME,
315		.pm	= &xlnx_rtc_pm_ops,
316		.of_match_table	= xlnx_rtc_of_match,
317	},
318};
319
320module_platform_driver(xlnx_rtc_driver);
321
322MODULE_DESCRIPTION("Xilinx Zynq MPSoC RTC driver");
323MODULE_AUTHOR("Xilinx Inc.");
324MODULE_LICENSE("GPL v2");
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Xilinx Zynq Ultrascale+ MPSoC Real Time Clock Driver
  4 *
  5 * Copyright (C) 2015 Xilinx, Inc.
  6 *
  7 */
  8
  9#include <linux/delay.h>
 10#include <linux/init.h>
 11#include <linux/io.h>
 12#include <linux/module.h>
 13#include <linux/of.h>
 14#include <linux/platform_device.h>
 15#include <linux/rtc.h>
 16
 17/* RTC Registers */
 18#define RTC_SET_TM_WR		0x00
 19#define RTC_SET_TM_RD		0x04
 20#define RTC_CALIB_WR		0x08
 21#define RTC_CALIB_RD		0x0C
 22#define RTC_CUR_TM		0x10
 23#define RTC_CUR_TICK		0x14
 24#define RTC_ALRM		0x18
 25#define RTC_INT_STS		0x20
 26#define RTC_INT_MASK		0x24
 27#define RTC_INT_EN		0x28
 28#define RTC_INT_DIS		0x2C
 29#define RTC_CTRL		0x40
 30
 31#define RTC_FR_EN		BIT(20)
 32#define RTC_FR_DATSHIFT		16
 33#define RTC_TICK_MASK		0xFFFF
 34#define RTC_INT_SEC		BIT(0)
 35#define RTC_INT_ALRM		BIT(1)
 36#define RTC_OSC_EN		BIT(24)
 37#define RTC_BATT_EN		BIT(31)
 38
 39#define RTC_CALIB_DEF		0x198233
 40#define RTC_CALIB_MASK		0x1FFFFF
 
 
 41
 42struct xlnx_rtc_dev {
 43	struct rtc_device	*rtc;
 44	void __iomem		*reg_base;
 45	int			alarm_irq;
 46	int			sec_irq;
 47	int			calibval;
 48};
 49
 50static int xlnx_rtc_set_time(struct device *dev, struct rtc_time *tm)
 51{
 52	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
 53	unsigned long new_time;
 54
 55	/*
 56	 * The value written will be updated after 1 sec into the
 57	 * seconds read register, so we need to program time +1 sec
 58	 * to get the correct time on read.
 59	 */
 60	new_time = rtc_tm_to_time64(tm) + 1;
 61
 62	/*
 63	 * Writing into calibration register will clear the Tick Counter and
 64	 * force the next second to be signaled exactly in 1 second period
 65	 */
 66	xrtcdev->calibval &= RTC_CALIB_MASK;
 67	writel(xrtcdev->calibval, (xrtcdev->reg_base + RTC_CALIB_WR));
 68
 69	writel(new_time, xrtcdev->reg_base + RTC_SET_TM_WR);
 70
 71	/*
 72	 * Clear the rtc interrupt status register after setting the
 73	 * time. During a read_time function, the code should read the
 74	 * RTC_INT_STATUS register and if bit 0 is still 0, it means
 75	 * that one second has not elapsed yet since RTC was set and
 76	 * the current time should be read from SET_TIME_READ register;
 77	 * otherwise, CURRENT_TIME register is read to report the time
 78	 */
 79	writel(RTC_INT_SEC, xrtcdev->reg_base + RTC_INT_STS);
 80
 81	return 0;
 82}
 83
 84static int xlnx_rtc_read_time(struct device *dev, struct rtc_time *tm)
 85{
 86	u32 status;
 87	unsigned long read_time;
 88	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
 89
 90	status = readl(xrtcdev->reg_base + RTC_INT_STS);
 91
 92	if (status & RTC_INT_SEC) {
 93		/*
 94		 * RTC has updated the CURRENT_TIME with the time written into
 95		 * SET_TIME_WRITE register.
 96		 */
 97		rtc_time64_to_tm(readl(xrtcdev->reg_base + RTC_CUR_TM), tm);
 98	} else {
 99		/*
100		 * Time written in SET_TIME_WRITE has not yet updated into
101		 * the seconds read register, so read the time from the
102		 * SET_TIME_WRITE instead of CURRENT_TIME register.
103		 * Since we add +1 sec while writing, we need to -1 sec while
104		 * reading.
105		 */
106		read_time = readl(xrtcdev->reg_base + RTC_SET_TM_RD) - 1;
107		rtc_time64_to_tm(read_time, tm);
108	}
 
109
110	return 0;
111}
112
113static int xlnx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
114{
115	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
116
117	rtc_time64_to_tm(readl(xrtcdev->reg_base + RTC_ALRM), &alrm->time);
118	alrm->enabled = readl(xrtcdev->reg_base + RTC_INT_MASK) & RTC_INT_ALRM;
119
120	return 0;
121}
122
123static int xlnx_rtc_alarm_irq_enable(struct device *dev, u32 enabled)
124{
125	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126
127	if (enabled)
128		writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_EN);
129	else
130		writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_DIS);
 
131
132	return 0;
133}
134
135static int xlnx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
136{
137	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
138	unsigned long alarm_time;
139
140	alarm_time = rtc_tm_to_time64(&alrm->time);
141
142	writel((u32)alarm_time, (xrtcdev->reg_base + RTC_ALRM));
143
144	xlnx_rtc_alarm_irq_enable(dev, alrm->enabled);
145
146	return 0;
147}
148
149static void xlnx_init_rtc(struct xlnx_rtc_dev *xrtcdev)
150{
151	u32 rtc_ctrl;
152
153	/* Enable RTC switch to battery when VCC_PSAUX is not available */
154	rtc_ctrl = readl(xrtcdev->reg_base + RTC_CTRL);
155	rtc_ctrl |= RTC_BATT_EN;
156	writel(rtc_ctrl, xrtcdev->reg_base + RTC_CTRL);
157
158	/*
159	 * Based on crystal freq of 33.330 KHz
160	 * set the seconds counter and enable, set fractions counter
161	 * to default value suggested as per design spec
162	 * to correct RTC delay in frequency over period of time.
163	 */
164	xrtcdev->calibval &= RTC_CALIB_MASK;
165	writel(xrtcdev->calibval, (xrtcdev->reg_base + RTC_CALIB_WR));
166}
167
168static const struct rtc_class_ops xlnx_rtc_ops = {
169	.set_time	  = xlnx_rtc_set_time,
170	.read_time	  = xlnx_rtc_read_time,
171	.read_alarm	  = xlnx_rtc_read_alarm,
172	.set_alarm	  = xlnx_rtc_set_alarm,
173	.alarm_irq_enable = xlnx_rtc_alarm_irq_enable,
174};
175
176static irqreturn_t xlnx_rtc_interrupt(int irq, void *id)
177{
178	struct xlnx_rtc_dev *xrtcdev = (struct xlnx_rtc_dev *)id;
179	unsigned int status;
180
181	status = readl(xrtcdev->reg_base + RTC_INT_STS);
182	/* Check if interrupt asserted */
183	if (!(status & (RTC_INT_SEC | RTC_INT_ALRM)))
184		return IRQ_NONE;
185
186	/* Clear RTC_INT_ALRM interrupt only */
187	writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_STS);
188
189	if (status & RTC_INT_ALRM)
190		rtc_update_irq(xrtcdev->rtc, 1, RTC_IRQF | RTC_AF);
191
192	return IRQ_HANDLED;
193}
194
195static int xlnx_rtc_probe(struct platform_device *pdev)
196{
197	struct xlnx_rtc_dev *xrtcdev;
198	struct resource *res;
199	int ret;
200
201	xrtcdev = devm_kzalloc(&pdev->dev, sizeof(*xrtcdev), GFP_KERNEL);
202	if (!xrtcdev)
203		return -ENOMEM;
204
205	platform_set_drvdata(pdev, xrtcdev);
206
207	xrtcdev->rtc = devm_rtc_allocate_device(&pdev->dev);
208	if (IS_ERR(xrtcdev->rtc))
209		return PTR_ERR(xrtcdev->rtc);
210
211	xrtcdev->rtc->ops = &xlnx_rtc_ops;
212	xrtcdev->rtc->range_max = U32_MAX;
213
214	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
215
216	xrtcdev->reg_base = devm_ioremap_resource(&pdev->dev, res);
217	if (IS_ERR(xrtcdev->reg_base))
218		return PTR_ERR(xrtcdev->reg_base);
219
220	xrtcdev->alarm_irq = platform_get_irq_byname(pdev, "alarm");
221	if (xrtcdev->alarm_irq < 0)
222		return xrtcdev->alarm_irq;
223	ret = devm_request_irq(&pdev->dev, xrtcdev->alarm_irq,
224			       xlnx_rtc_interrupt, 0,
225			       dev_name(&pdev->dev), xrtcdev);
226	if (ret) {
227		dev_err(&pdev->dev, "request irq failed\n");
228		return ret;
229	}
230
231	xrtcdev->sec_irq = platform_get_irq_byname(pdev, "sec");
232	if (xrtcdev->sec_irq < 0)
233		return xrtcdev->sec_irq;
234	ret = devm_request_irq(&pdev->dev, xrtcdev->sec_irq,
235			       xlnx_rtc_interrupt, 0,
236			       dev_name(&pdev->dev), xrtcdev);
237	if (ret) {
238		dev_err(&pdev->dev, "request irq failed\n");
239		return ret;
240	}
241
242	ret = of_property_read_u32(pdev->dev.of_node, "calibration",
243				   &xrtcdev->calibval);
244	if (ret)
245		xrtcdev->calibval = RTC_CALIB_DEF;
246
247	xlnx_init_rtc(xrtcdev);
248
249	device_init_wakeup(&pdev->dev, 1);
250
251	return rtc_register_device(xrtcdev->rtc);
252}
253
254static int xlnx_rtc_remove(struct platform_device *pdev)
255{
256	xlnx_rtc_alarm_irq_enable(&pdev->dev, 0);
257	device_init_wakeup(&pdev->dev, 0);
258
259	return 0;
260}
261
262static int __maybe_unused xlnx_rtc_suspend(struct device *dev)
263{
264	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
265
266	if (device_may_wakeup(dev))
267		enable_irq_wake(xrtcdev->alarm_irq);
268	else
269		xlnx_rtc_alarm_irq_enable(dev, 0);
270
271	return 0;
272}
273
274static int __maybe_unused xlnx_rtc_resume(struct device *dev)
275{
276	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
277
278	if (device_may_wakeup(dev))
279		disable_irq_wake(xrtcdev->alarm_irq);
280	else
281		xlnx_rtc_alarm_irq_enable(dev, 1);
282
283	return 0;
284}
285
286static SIMPLE_DEV_PM_OPS(xlnx_rtc_pm_ops, xlnx_rtc_suspend, xlnx_rtc_resume);
287
288static const struct of_device_id xlnx_rtc_of_match[] = {
289	{.compatible = "xlnx,zynqmp-rtc" },
290	{ }
291};
292MODULE_DEVICE_TABLE(of, xlnx_rtc_of_match);
293
294static struct platform_driver xlnx_rtc_driver = {
295	.probe		= xlnx_rtc_probe,
296	.remove		= xlnx_rtc_remove,
297	.driver		= {
298		.name	= KBUILD_MODNAME,
299		.pm	= &xlnx_rtc_pm_ops,
300		.of_match_table	= xlnx_rtc_of_match,
301	},
302};
303
304module_platform_driver(xlnx_rtc_driver);
305
306MODULE_DESCRIPTION("Xilinx Zynq MPSoC RTC driver");
307MODULE_AUTHOR("Xilinx Inc.");
308MODULE_LICENSE("GPL v2");