Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) Microsoft Corporation.
   4 *
   5 * Author:
   6 *   Jake Oshins <jakeo@microsoft.com>
   7 *
   8 * This driver acts as a paravirtual front-end for PCI Express root buses.
   9 * When a PCI Express function (either an entire device or an SR-IOV
  10 * Virtual Function) is being passed through to the VM, this driver exposes
  11 * a new bus to the guest VM.  This is modeled as a root PCI bus because
  12 * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
  13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
  14 * until a device as been exposed using this driver.
  15 *
  16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
  17 * the PCI Firmware Specifications.  Thus while each device passed through
  18 * to the VM using this front-end will appear at "device 0", the domain will
  19 * be unique.  Typically, each bus will have one PCI function on it, though
  20 * this driver does support more than one.
  21 *
  22 * In order to map the interrupts from the device through to the guest VM,
  23 * this driver also implements an IRQ Domain, which handles interrupts (either
  24 * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
  25 * set up, torn down, or reaffined, this driver communicates with the
  26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
  27 * interrupt will be delivered to the correct virtual processor at the right
  28 * vector.  This driver does not support level-triggered (line-based)
  29 * interrupts, and will report that the Interrupt Line register in the
  30 * function's configuration space is zero.
  31 *
  32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
  33 * facilities.  For instance, the configuration space of a function exposed
  34 * by Hyper-V is mapped into a single page of memory space, and the
  35 * read and write handlers for config space must be aware of this mechanism.
  36 * Similarly, device setup and teardown involves messages sent to and from
  37 * the PCI back-end driver in Hyper-V.
  38 */
  39
  40#include <linux/kernel.h>
  41#include <linux/module.h>
  42#include <linux/pci.h>
  43#include <linux/delay.h>
  44#include <linux/semaphore.h>
  45#include <linux/irqdomain.h>
  46#include <asm/irqdomain.h>
  47#include <asm/apic.h>
  48#include <linux/irq.h>
  49#include <linux/msi.h>
  50#include <linux/hyperv.h>
  51#include <linux/refcount.h>
  52#include <asm/mshyperv.h>
  53
  54/*
  55 * Protocol versions. The low word is the minor version, the high word the
  56 * major version.
  57 */
  58
  59#define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
  60#define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
  61#define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
  62
  63enum pci_protocol_version_t {
  64	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
  65	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
  66	PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3),	/* Vibranium */
  67};
  68
  69#define CPU_AFFINITY_ALL	-1ULL
  70
  71/*
  72 * Supported protocol versions in the order of probing - highest go
  73 * first.
  74 */
  75static enum pci_protocol_version_t pci_protocol_versions[] = {
  76	PCI_PROTOCOL_VERSION_1_3,
  77	PCI_PROTOCOL_VERSION_1_2,
  78	PCI_PROTOCOL_VERSION_1_1,
  79};
  80
 
 
 
 
 
  81#define PCI_CONFIG_MMIO_LENGTH	0x2000
  82#define CFG_PAGE_OFFSET 0x1000
  83#define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
  84
  85#define MAX_SUPPORTED_MSI_MESSAGES 0x400
  86
  87#define STATUS_REVISION_MISMATCH 0xC0000059
  88
  89/* space for 32bit serial number as string */
  90#define SLOT_NAME_SIZE 11
  91
  92/*
  93 * Message Types
  94 */
  95
  96enum pci_message_type {
  97	/*
  98	 * Version 1.1
  99	 */
 100	PCI_MESSAGE_BASE                = 0x42490000,
 101	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
 102	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
 103	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
 104	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
 105	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
 106	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
 107	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
 108	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
 109	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
 110	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
 111	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
 112	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
 113	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
 114	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
 115	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
 116	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
 117	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
 118	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
 119	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
 120	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
 121	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
 122	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
 123	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
 124	PCI_BUS_RELATIONS2		= PCI_MESSAGE_BASE + 0x19,
 125	PCI_MESSAGE_MAXIMUM
 126};
 127
 128/*
 129 * Structures defining the virtual PCI Express protocol.
 130 */
 131
 132union pci_version {
 133	struct {
 134		u16 minor_version;
 135		u16 major_version;
 136	} parts;
 137	u32 version;
 138} __packed;
 139
 140/*
 141 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
 142 * which is all this driver does.  This representation is the one used in
 143 * Windows, which is what is expected when sending this back and forth with
 144 * the Hyper-V parent partition.
 145 */
 146union win_slot_encoding {
 147	struct {
 148		u32	dev:5;
 149		u32	func:3;
 150		u32	reserved:24;
 151	} bits;
 152	u32 slot;
 153} __packed;
 154
 155/*
 156 * Pretty much as defined in the PCI Specifications.
 157 */
 158struct pci_function_description {
 159	u16	v_id;	/* vendor ID */
 160	u16	d_id;	/* device ID */
 161	u8	rev;
 162	u8	prog_intf;
 163	u8	subclass;
 164	u8	base_class;
 165	u32	subsystem_id;
 166	union win_slot_encoding win_slot;
 167	u32	ser;	/* serial number */
 168} __packed;
 169
 170enum pci_device_description_flags {
 171	HV_PCI_DEVICE_FLAG_NONE			= 0x0,
 172	HV_PCI_DEVICE_FLAG_NUMA_AFFINITY	= 0x1,
 173};
 174
 175struct pci_function_description2 {
 176	u16	v_id;	/* vendor ID */
 177	u16	d_id;	/* device ID */
 178	u8	rev;
 179	u8	prog_intf;
 180	u8	subclass;
 181	u8	base_class;
 182	u32	subsystem_id;
 183	union	win_slot_encoding win_slot;
 184	u32	ser;	/* serial number */
 185	u32	flags;
 186	u16	virtual_numa_node;
 187	u16	reserved;
 188} __packed;
 189
 190/**
 191 * struct hv_msi_desc
 192 * @vector:		IDT entry
 193 * @delivery_mode:	As defined in Intel's Programmer's
 194 *			Reference Manual, Volume 3, Chapter 8.
 195 * @vector_count:	Number of contiguous entries in the
 196 *			Interrupt Descriptor Table that are
 197 *			occupied by this Message-Signaled
 198 *			Interrupt. For "MSI", as first defined
 199 *			in PCI 2.2, this can be between 1 and
 200 *			32. For "MSI-X," as first defined in PCI
 201 *			3.0, this must be 1, as each MSI-X table
 202 *			entry would have its own descriptor.
 203 * @reserved:		Empty space
 204 * @cpu_mask:		All the target virtual processors.
 205 */
 206struct hv_msi_desc {
 207	u8	vector;
 208	u8	delivery_mode;
 209	u16	vector_count;
 210	u32	reserved;
 211	u64	cpu_mask;
 212} __packed;
 213
 214/**
 215 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
 216 * @vector:		IDT entry
 217 * @delivery_mode:	As defined in Intel's Programmer's
 218 *			Reference Manual, Volume 3, Chapter 8.
 219 * @vector_count:	Number of contiguous entries in the
 220 *			Interrupt Descriptor Table that are
 221 *			occupied by this Message-Signaled
 222 *			Interrupt. For "MSI", as first defined
 223 *			in PCI 2.2, this can be between 1 and
 224 *			32. For "MSI-X," as first defined in PCI
 225 *			3.0, this must be 1, as each MSI-X table
 226 *			entry would have its own descriptor.
 227 * @processor_count:	number of bits enabled in array.
 228 * @processor_array:	All the target virtual processors.
 229 */
 230struct hv_msi_desc2 {
 231	u8	vector;
 232	u8	delivery_mode;
 233	u16	vector_count;
 234	u16	processor_count;
 235	u16	processor_array[32];
 236} __packed;
 237
 238/**
 239 * struct tran_int_desc
 240 * @reserved:		unused, padding
 241 * @vector_count:	same as in hv_msi_desc
 242 * @data:		This is the "data payload" value that is
 243 *			written by the device when it generates
 244 *			a message-signaled interrupt, either MSI
 245 *			or MSI-X.
 246 * @address:		This is the address to which the data
 247 *			payload is written on interrupt
 248 *			generation.
 249 */
 250struct tran_int_desc {
 251	u16	reserved;
 252	u16	vector_count;
 253	u32	data;
 254	u64	address;
 255} __packed;
 256
 257/*
 258 * A generic message format for virtual PCI.
 259 * Specific message formats are defined later in the file.
 260 */
 261
 262struct pci_message {
 263	u32 type;
 264} __packed;
 265
 266struct pci_child_message {
 267	struct pci_message message_type;
 268	union win_slot_encoding wslot;
 269} __packed;
 270
 271struct pci_incoming_message {
 272	struct vmpacket_descriptor hdr;
 273	struct pci_message message_type;
 274} __packed;
 275
 276struct pci_response {
 277	struct vmpacket_descriptor hdr;
 278	s32 status;			/* negative values are failures */
 279} __packed;
 280
 281struct pci_packet {
 282	void (*completion_func)(void *context, struct pci_response *resp,
 283				int resp_packet_size);
 284	void *compl_ctxt;
 285
 286	struct pci_message message[];
 287};
 288
 289/*
 290 * Specific message types supporting the PCI protocol.
 291 */
 292
 293/*
 294 * Version negotiation message. Sent from the guest to the host.
 295 * The guest is free to try different versions until the host
 296 * accepts the version.
 297 *
 298 * pci_version: The protocol version requested.
 299 * is_last_attempt: If TRUE, this is the last version guest will request.
 300 * reservedz: Reserved field, set to zero.
 301 */
 302
 303struct pci_version_request {
 304	struct pci_message message_type;
 305	u32 protocol_version;
 306} __packed;
 307
 308/*
 309 * Bus D0 Entry.  This is sent from the guest to the host when the virtual
 310 * bus (PCI Express port) is ready for action.
 311 */
 312
 313struct pci_bus_d0_entry {
 314	struct pci_message message_type;
 315	u32 reserved;
 316	u64 mmio_base;
 317} __packed;
 318
 319struct pci_bus_relations {
 320	struct pci_incoming_message incoming;
 321	u32 device_count;
 322	struct pci_function_description func[];
 323} __packed;
 324
 325struct pci_bus_relations2 {
 326	struct pci_incoming_message incoming;
 327	u32 device_count;
 328	struct pci_function_description2 func[];
 329} __packed;
 330
 331struct pci_q_res_req_response {
 332	struct vmpacket_descriptor hdr;
 333	s32 status;			/* negative values are failures */
 334	u32 probed_bar[PCI_STD_NUM_BARS];
 335} __packed;
 336
 337struct pci_set_power {
 338	struct pci_message message_type;
 339	union win_slot_encoding wslot;
 340	u32 power_state;		/* In Windows terms */
 341	u32 reserved;
 342} __packed;
 343
 344struct pci_set_power_response {
 345	struct vmpacket_descriptor hdr;
 346	s32 status;			/* negative values are failures */
 347	union win_slot_encoding wslot;
 348	u32 resultant_state;		/* In Windows terms */
 349	u32 reserved;
 350} __packed;
 351
 352struct pci_resources_assigned {
 353	struct pci_message message_type;
 354	union win_slot_encoding wslot;
 355	u8 memory_range[0x14][6];	/* not used here */
 356	u32 msi_descriptors;
 357	u32 reserved[4];
 358} __packed;
 359
 360struct pci_resources_assigned2 {
 361	struct pci_message message_type;
 362	union win_slot_encoding wslot;
 363	u8 memory_range[0x14][6];	/* not used here */
 364	u32 msi_descriptor_count;
 365	u8 reserved[70];
 366} __packed;
 367
 368struct pci_create_interrupt {
 369	struct pci_message message_type;
 370	union win_slot_encoding wslot;
 371	struct hv_msi_desc int_desc;
 372} __packed;
 373
 374struct pci_create_int_response {
 375	struct pci_response response;
 376	u32 reserved;
 377	struct tran_int_desc int_desc;
 378} __packed;
 379
 380struct pci_create_interrupt2 {
 381	struct pci_message message_type;
 382	union win_slot_encoding wslot;
 383	struct hv_msi_desc2 int_desc;
 384} __packed;
 385
 386struct pci_delete_interrupt {
 387	struct pci_message message_type;
 388	union win_slot_encoding wslot;
 389	struct tran_int_desc int_desc;
 390} __packed;
 391
 392/*
 393 * Note: the VM must pass a valid block id, wslot and bytes_requested.
 394 */
 395struct pci_read_block {
 396	struct pci_message message_type;
 397	u32 block_id;
 398	union win_slot_encoding wslot;
 399	u32 bytes_requested;
 400} __packed;
 401
 402struct pci_read_block_response {
 403	struct vmpacket_descriptor hdr;
 404	u32 status;
 405	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
 406} __packed;
 407
 408/*
 409 * Note: the VM must pass a valid block id, wslot and byte_count.
 410 */
 411struct pci_write_block {
 412	struct pci_message message_type;
 413	u32 block_id;
 414	union win_slot_encoding wslot;
 415	u32 byte_count;
 416	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
 417} __packed;
 418
 419struct pci_dev_inval_block {
 420	struct pci_incoming_message incoming;
 421	union win_slot_encoding wslot;
 422	u64 block_mask;
 423} __packed;
 424
 425struct pci_dev_incoming {
 426	struct pci_incoming_message incoming;
 427	union win_slot_encoding wslot;
 428} __packed;
 429
 430struct pci_eject_response {
 431	struct pci_message message_type;
 432	union win_slot_encoding wslot;
 433	u32 status;
 434} __packed;
 435
 436static int pci_ring_size = (4 * PAGE_SIZE);
 437
 438/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 439 * Driver specific state.
 440 */
 441
 442enum hv_pcibus_state {
 443	hv_pcibus_init = 0,
 444	hv_pcibus_probed,
 445	hv_pcibus_installed,
 446	hv_pcibus_removing,
 447	hv_pcibus_removed,
 448	hv_pcibus_maximum
 449};
 450
 451struct hv_pcibus_device {
 452	struct pci_sysdata sysdata;
 453	/* Protocol version negotiated with the host */
 454	enum pci_protocol_version_t protocol_version;
 455	enum hv_pcibus_state state;
 456	refcount_t remove_lock;
 457	struct hv_device *hdev;
 458	resource_size_t low_mmio_space;
 459	resource_size_t high_mmio_space;
 460	struct resource *mem_config;
 461	struct resource *low_mmio_res;
 462	struct resource *high_mmio_res;
 463	struct completion *survey_event;
 464	struct completion remove_event;
 465	struct pci_bus *pci_bus;
 466	spinlock_t config_lock;	/* Avoid two threads writing index page */
 467	spinlock_t device_list_lock;	/* Protect lists below */
 468	void __iomem *cfg_addr;
 469
 470	struct list_head resources_for_children;
 471
 472	struct list_head children;
 473	struct list_head dr_list;
 474
 475	struct msi_domain_info msi_info;
 476	struct msi_controller msi_chip;
 477	struct irq_domain *irq_domain;
 478
 479	spinlock_t retarget_msi_interrupt_lock;
 480
 481	struct workqueue_struct *wq;
 482
 483	/* Highest slot of child device with resources allocated */
 484	int wslot_res_allocated;
 485
 486	/* hypercall arg, must not cross page boundary */
 487	struct hv_retarget_device_interrupt retarget_msi_interrupt_params;
 488
 489	/*
 490	 * Don't put anything here: retarget_msi_interrupt_params must be last
 491	 */
 492};
 493
 494/*
 495 * Tracks "Device Relations" messages from the host, which must be both
 496 * processed in order and deferred so that they don't run in the context
 497 * of the incoming packet callback.
 498 */
 499struct hv_dr_work {
 500	struct work_struct wrk;
 501	struct hv_pcibus_device *bus;
 502};
 503
 504struct hv_pcidev_description {
 505	u16	v_id;	/* vendor ID */
 506	u16	d_id;	/* device ID */
 507	u8	rev;
 508	u8	prog_intf;
 509	u8	subclass;
 510	u8	base_class;
 511	u32	subsystem_id;
 512	union	win_slot_encoding win_slot;
 513	u32	ser;	/* serial number */
 514	u32	flags;
 515	u16	virtual_numa_node;
 516};
 517
 518struct hv_dr_state {
 519	struct list_head list_entry;
 520	u32 device_count;
 521	struct hv_pcidev_description func[];
 522};
 523
 524enum hv_pcichild_state {
 525	hv_pcichild_init = 0,
 526	hv_pcichild_requirements,
 527	hv_pcichild_resourced,
 528	hv_pcichild_ejecting,
 529	hv_pcichild_maximum
 530};
 531
 532struct hv_pci_dev {
 533	/* List protected by pci_rescan_remove_lock */
 534	struct list_head list_entry;
 535	refcount_t refs;
 536	enum hv_pcichild_state state;
 537	struct pci_slot *pci_slot;
 538	struct hv_pcidev_description desc;
 539	bool reported_missing;
 540	struct hv_pcibus_device *hbus;
 541	struct work_struct wrk;
 542
 543	void (*block_invalidate)(void *context, u64 block_mask);
 544	void *invalidate_context;
 545
 546	/*
 547	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
 548	 * read it back, for each of the BAR offsets within config space.
 549	 */
 550	u32 probed_bar[PCI_STD_NUM_BARS];
 551};
 552
 553struct hv_pci_compl {
 554	struct completion host_event;
 555	s32 completion_status;
 556};
 557
 558static void hv_pci_onchannelcallback(void *context);
 559
 560/**
 561 * hv_pci_generic_compl() - Invoked for a completion packet
 562 * @context:		Set up by the sender of the packet.
 563 * @resp:		The response packet
 564 * @resp_packet_size:	Size in bytes of the packet
 565 *
 566 * This function is used to trigger an event and report status
 567 * for any message for which the completion packet contains a
 568 * status and nothing else.
 569 */
 570static void hv_pci_generic_compl(void *context, struct pci_response *resp,
 571				 int resp_packet_size)
 572{
 573	struct hv_pci_compl *comp_pkt = context;
 574
 575	if (resp_packet_size >= offsetofend(struct pci_response, status))
 576		comp_pkt->completion_status = resp->status;
 577	else
 578		comp_pkt->completion_status = -1;
 579
 580	complete(&comp_pkt->host_event);
 581}
 582
 583static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
 584						u32 wslot);
 585
 586static void get_pcichild(struct hv_pci_dev *hpdev)
 587{
 588	refcount_inc(&hpdev->refs);
 589}
 590
 591static void put_pcichild(struct hv_pci_dev *hpdev)
 592{
 593	if (refcount_dec_and_test(&hpdev->refs))
 594		kfree(hpdev);
 595}
 596
 597static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
 598static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
 599
 600/*
 601 * There is no good way to get notified from vmbus_onoffer_rescind(),
 602 * so let's use polling here, since this is not a hot path.
 603 */
 604static int wait_for_response(struct hv_device *hdev,
 605			     struct completion *comp)
 606{
 607	while (true) {
 608		if (hdev->channel->rescind) {
 609			dev_warn_once(&hdev->device, "The device is gone.\n");
 610			return -ENODEV;
 611		}
 612
 613		if (wait_for_completion_timeout(comp, HZ / 10))
 614			break;
 615	}
 616
 617	return 0;
 618}
 619
 620/**
 621 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
 622 * @devfn:	The Linux representation of PCI slot
 623 *
 624 * Windows uses a slightly different representation of PCI slot.
 625 *
 626 * Return: The Windows representation
 627 */
 628static u32 devfn_to_wslot(int devfn)
 629{
 630	union win_slot_encoding wslot;
 631
 632	wslot.slot = 0;
 633	wslot.bits.dev = PCI_SLOT(devfn);
 634	wslot.bits.func = PCI_FUNC(devfn);
 635
 636	return wslot.slot;
 637}
 638
 639/**
 640 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
 641 * @wslot:	The Windows representation of PCI slot
 642 *
 643 * Windows uses a slightly different representation of PCI slot.
 644 *
 645 * Return: The Linux representation
 646 */
 647static int wslot_to_devfn(u32 wslot)
 648{
 649	union win_slot_encoding slot_no;
 650
 651	slot_no.slot = wslot;
 652	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
 653}
 654
 655/*
 656 * PCI Configuration Space for these root PCI buses is implemented as a pair
 657 * of pages in memory-mapped I/O space.  Writing to the first page chooses
 658 * the PCI function being written or read.  Once the first page has been
 659 * written to, the following page maps in the entire configuration space of
 660 * the function.
 661 */
 662
 663/**
 664 * _hv_pcifront_read_config() - Internal PCI config read
 665 * @hpdev:	The PCI driver's representation of the device
 666 * @where:	Offset within config space
 667 * @size:	Size of the transfer
 668 * @val:	Pointer to the buffer receiving the data
 669 */
 670static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
 671				     int size, u32 *val)
 672{
 673	unsigned long flags;
 674	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
 675
 676	/*
 677	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
 678	 */
 679	if (where + size <= PCI_COMMAND) {
 680		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
 681	} else if (where >= PCI_CLASS_REVISION && where + size <=
 682		   PCI_CACHE_LINE_SIZE) {
 683		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
 684		       PCI_CLASS_REVISION, size);
 685	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
 686		   PCI_ROM_ADDRESS) {
 687		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
 688		       PCI_SUBSYSTEM_VENDOR_ID, size);
 689	} else if (where >= PCI_ROM_ADDRESS && where + size <=
 690		   PCI_CAPABILITY_LIST) {
 691		/* ROM BARs are unimplemented */
 692		*val = 0;
 693	} else if (where >= PCI_INTERRUPT_LINE && where + size <=
 694		   PCI_INTERRUPT_PIN) {
 695		/*
 696		 * Interrupt Line and Interrupt PIN are hard-wired to zero
 697		 * because this front-end only supports message-signaled
 698		 * interrupts.
 699		 */
 700		*val = 0;
 701	} else if (where + size <= CFG_PAGE_SIZE) {
 702		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 703		/* Choose the function to be read. (See comment above) */
 704		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 705		/* Make sure the function was chosen before we start reading. */
 706		mb();
 707		/* Read from that function's config space. */
 708		switch (size) {
 709		case 1:
 710			*val = readb(addr);
 711			break;
 712		case 2:
 713			*val = readw(addr);
 714			break;
 715		default:
 716			*val = readl(addr);
 717			break;
 718		}
 719		/*
 720		 * Make sure the read was done before we release the spinlock
 721		 * allowing consecutive reads/writes.
 722		 */
 723		mb();
 724		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 725	} else {
 726		dev_err(&hpdev->hbus->hdev->device,
 727			"Attempt to read beyond a function's config space.\n");
 728	}
 729}
 730
 731static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
 732{
 733	u16 ret;
 734	unsigned long flags;
 735	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
 736			     PCI_VENDOR_ID;
 737
 738	spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 739
 740	/* Choose the function to be read. (See comment above) */
 741	writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 742	/* Make sure the function was chosen before we start reading. */
 743	mb();
 744	/* Read from that function's config space. */
 745	ret = readw(addr);
 746	/*
 747	 * mb() is not required here, because the spin_unlock_irqrestore()
 748	 * is a barrier.
 749	 */
 750
 751	spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 752
 753	return ret;
 754}
 755
 756/**
 757 * _hv_pcifront_write_config() - Internal PCI config write
 758 * @hpdev:	The PCI driver's representation of the device
 759 * @where:	Offset within config space
 760 * @size:	Size of the transfer
 761 * @val:	The data being transferred
 762 */
 763static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
 764				      int size, u32 val)
 765{
 766	unsigned long flags;
 767	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
 768
 769	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
 770	    where + size <= PCI_CAPABILITY_LIST) {
 771		/* SSIDs and ROM BARs are read-only */
 772	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
 773		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 774		/* Choose the function to be written. (See comment above) */
 775		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 776		/* Make sure the function was chosen before we start writing. */
 777		wmb();
 778		/* Write to that function's config space. */
 779		switch (size) {
 780		case 1:
 781			writeb(val, addr);
 782			break;
 783		case 2:
 784			writew(val, addr);
 785			break;
 786		default:
 787			writel(val, addr);
 788			break;
 789		}
 790		/*
 791		 * Make sure the write was done before we release the spinlock
 792		 * allowing consecutive reads/writes.
 793		 */
 794		mb();
 795		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 796	} else {
 797		dev_err(&hpdev->hbus->hdev->device,
 798			"Attempt to write beyond a function's config space.\n");
 799	}
 800}
 801
 802/**
 803 * hv_pcifront_read_config() - Read configuration space
 804 * @bus: PCI Bus structure
 805 * @devfn: Device/function
 806 * @where: Offset from base
 807 * @size: Byte/word/dword
 808 * @val: Value to be read
 809 *
 810 * Return: PCIBIOS_SUCCESSFUL on success
 811 *	   PCIBIOS_DEVICE_NOT_FOUND on failure
 812 */
 813static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
 814				   int where, int size, u32 *val)
 815{
 816	struct hv_pcibus_device *hbus =
 817		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
 818	struct hv_pci_dev *hpdev;
 819
 820	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
 821	if (!hpdev)
 822		return PCIBIOS_DEVICE_NOT_FOUND;
 823
 824	_hv_pcifront_read_config(hpdev, where, size, val);
 825
 826	put_pcichild(hpdev);
 827	return PCIBIOS_SUCCESSFUL;
 828}
 829
 830/**
 831 * hv_pcifront_write_config() - Write configuration space
 832 * @bus: PCI Bus structure
 833 * @devfn: Device/function
 834 * @where: Offset from base
 835 * @size: Byte/word/dword
 836 * @val: Value to be written to device
 837 *
 838 * Return: PCIBIOS_SUCCESSFUL on success
 839 *	   PCIBIOS_DEVICE_NOT_FOUND on failure
 840 */
 841static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
 842				    int where, int size, u32 val)
 843{
 844	struct hv_pcibus_device *hbus =
 845	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
 846	struct hv_pci_dev *hpdev;
 847
 848	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
 849	if (!hpdev)
 850		return PCIBIOS_DEVICE_NOT_FOUND;
 851
 852	_hv_pcifront_write_config(hpdev, where, size, val);
 853
 854	put_pcichild(hpdev);
 855	return PCIBIOS_SUCCESSFUL;
 856}
 857
 858/* PCIe operations */
 859static struct pci_ops hv_pcifront_ops = {
 860	.read  = hv_pcifront_read_config,
 861	.write = hv_pcifront_write_config,
 862};
 863
 864/*
 865 * Paravirtual backchannel
 866 *
 867 * Hyper-V SR-IOV provides a backchannel mechanism in software for
 868 * communication between a VF driver and a PF driver.  These
 869 * "configuration blocks" are similar in concept to PCI configuration space,
 870 * but instead of doing reads and writes in 32-bit chunks through a very slow
 871 * path, packets of up to 128 bytes can be sent or received asynchronously.
 872 *
 873 * Nearly every SR-IOV device contains just such a communications channel in
 874 * hardware, so using this one in software is usually optional.  Using the
 875 * software channel, however, allows driver implementers to leverage software
 876 * tools that fuzz the communications channel looking for vulnerabilities.
 877 *
 878 * The usage model for these packets puts the responsibility for reading or
 879 * writing on the VF driver.  The VF driver sends a read or a write packet,
 880 * indicating which "block" is being referred to by number.
 881 *
 882 * If the PF driver wishes to initiate communication, it can "invalidate" one or
 883 * more of the first 64 blocks.  This invalidation is delivered via a callback
 884 * supplied by the VF driver by this driver.
 885 *
 886 * No protocol is implied, except that supplied by the PF and VF drivers.
 887 */
 888
 889struct hv_read_config_compl {
 890	struct hv_pci_compl comp_pkt;
 891	void *buf;
 892	unsigned int len;
 893	unsigned int bytes_returned;
 894};
 895
 896/**
 897 * hv_pci_read_config_compl() - Invoked when a response packet
 898 * for a read config block operation arrives.
 899 * @context:		Identifies the read config operation
 900 * @resp:		The response packet itself
 901 * @resp_packet_size:	Size in bytes of the response packet
 902 */
 903static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
 904				     int resp_packet_size)
 905{
 906	struct hv_read_config_compl *comp = context;
 907	struct pci_read_block_response *read_resp =
 908		(struct pci_read_block_response *)resp;
 909	unsigned int data_len, hdr_len;
 910
 911	hdr_len = offsetof(struct pci_read_block_response, bytes);
 912	if (resp_packet_size < hdr_len) {
 913		comp->comp_pkt.completion_status = -1;
 914		goto out;
 915	}
 916
 917	data_len = resp_packet_size - hdr_len;
 918	if (data_len > 0 && read_resp->status == 0) {
 919		comp->bytes_returned = min(comp->len, data_len);
 920		memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
 921	} else {
 922		comp->bytes_returned = 0;
 923	}
 924
 925	comp->comp_pkt.completion_status = read_resp->status;
 926out:
 927	complete(&comp->comp_pkt.host_event);
 928}
 929
 930/**
 931 * hv_read_config_block() - Sends a read config block request to
 932 * the back-end driver running in the Hyper-V parent partition.
 933 * @pdev:		The PCI driver's representation for this device.
 934 * @buf:		Buffer into which the config block will be copied.
 935 * @len:		Size in bytes of buf.
 936 * @block_id:		Identifies the config block which has been requested.
 937 * @bytes_returned:	Size which came back from the back-end driver.
 938 *
 939 * Return: 0 on success, -errno on failure
 940 */
 941static int hv_read_config_block(struct pci_dev *pdev, void *buf,
 942				unsigned int len, unsigned int block_id,
 943				unsigned int *bytes_returned)
 944{
 945	struct hv_pcibus_device *hbus =
 946		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
 947			     sysdata);
 948	struct {
 949		struct pci_packet pkt;
 950		char buf[sizeof(struct pci_read_block)];
 951	} pkt;
 952	struct hv_read_config_compl comp_pkt;
 953	struct pci_read_block *read_blk;
 954	int ret;
 955
 956	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
 957		return -EINVAL;
 958
 959	init_completion(&comp_pkt.comp_pkt.host_event);
 960	comp_pkt.buf = buf;
 961	comp_pkt.len = len;
 962
 963	memset(&pkt, 0, sizeof(pkt));
 964	pkt.pkt.completion_func = hv_pci_read_config_compl;
 965	pkt.pkt.compl_ctxt = &comp_pkt;
 966	read_blk = (struct pci_read_block *)&pkt.pkt.message;
 967	read_blk->message_type.type = PCI_READ_BLOCK;
 968	read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
 969	read_blk->block_id = block_id;
 970	read_blk->bytes_requested = len;
 971
 972	ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
 973			       sizeof(*read_blk), (unsigned long)&pkt.pkt,
 974			       VM_PKT_DATA_INBAND,
 975			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
 976	if (ret)
 977		return ret;
 978
 979	ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
 980	if (ret)
 981		return ret;
 982
 983	if (comp_pkt.comp_pkt.completion_status != 0 ||
 984	    comp_pkt.bytes_returned == 0) {
 985		dev_err(&hbus->hdev->device,
 986			"Read Config Block failed: 0x%x, bytes_returned=%d\n",
 987			comp_pkt.comp_pkt.completion_status,
 988			comp_pkt.bytes_returned);
 989		return -EIO;
 990	}
 991
 992	*bytes_returned = comp_pkt.bytes_returned;
 993	return 0;
 994}
 995
 996/**
 997 * hv_pci_write_config_compl() - Invoked when a response packet for a write
 998 * config block operation arrives.
 999 * @context:		Identifies the write config operation
1000 * @resp:		The response packet itself
1001 * @resp_packet_size:	Size in bytes of the response packet
1002 */
1003static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
1004				      int resp_packet_size)
1005{
1006	struct hv_pci_compl *comp_pkt = context;
1007
1008	comp_pkt->completion_status = resp->status;
1009	complete(&comp_pkt->host_event);
1010}
1011
1012/**
1013 * hv_write_config_block() - Sends a write config block request to the
1014 * back-end driver running in the Hyper-V parent partition.
1015 * @pdev:		The PCI driver's representation for this device.
1016 * @buf:		Buffer from which the config block will	be copied.
1017 * @len:		Size in bytes of buf.
1018 * @block_id:		Identifies the config block which is being written.
1019 *
1020 * Return: 0 on success, -errno on failure
1021 */
1022static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1023				unsigned int len, unsigned int block_id)
1024{
1025	struct hv_pcibus_device *hbus =
1026		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1027			     sysdata);
1028	struct {
1029		struct pci_packet pkt;
1030		char buf[sizeof(struct pci_write_block)];
1031		u32 reserved;
1032	} pkt;
1033	struct hv_pci_compl comp_pkt;
1034	struct pci_write_block *write_blk;
1035	u32 pkt_size;
1036	int ret;
1037
1038	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1039		return -EINVAL;
1040
1041	init_completion(&comp_pkt.host_event);
1042
1043	memset(&pkt, 0, sizeof(pkt));
1044	pkt.pkt.completion_func = hv_pci_write_config_compl;
1045	pkt.pkt.compl_ctxt = &comp_pkt;
1046	write_blk = (struct pci_write_block *)&pkt.pkt.message;
1047	write_blk->message_type.type = PCI_WRITE_BLOCK;
1048	write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1049	write_blk->block_id = block_id;
1050	write_blk->byte_count = len;
1051	memcpy(write_blk->bytes, buf, len);
1052	pkt_size = offsetof(struct pci_write_block, bytes) + len;
1053	/*
1054	 * This quirk is required on some hosts shipped around 2018, because
1055	 * these hosts don't check the pkt_size correctly (new hosts have been
1056	 * fixed since early 2019). The quirk is also safe on very old hosts
1057	 * and new hosts, because, on them, what really matters is the length
1058	 * specified in write_blk->byte_count.
1059	 */
1060	pkt_size += sizeof(pkt.reserved);
1061
1062	ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1063			       (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1064			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1065	if (ret)
1066		return ret;
1067
1068	ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1069	if (ret)
1070		return ret;
1071
1072	if (comp_pkt.completion_status != 0) {
1073		dev_err(&hbus->hdev->device,
1074			"Write Config Block failed: 0x%x\n",
1075			comp_pkt.completion_status);
1076		return -EIO;
1077	}
1078
1079	return 0;
1080}
1081
1082/**
1083 * hv_register_block_invalidate() - Invoked when a config block invalidation
1084 * arrives from the back-end driver.
1085 * @pdev:		The PCI driver's representation for this device.
1086 * @context:		Identifies the device.
1087 * @block_invalidate:	Identifies all of the blocks being invalidated.
1088 *
1089 * Return: 0 on success, -errno on failure
1090 */
1091static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1092					void (*block_invalidate)(void *context,
1093								 u64 block_mask))
1094{
1095	struct hv_pcibus_device *hbus =
1096		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1097			     sysdata);
1098	struct hv_pci_dev *hpdev;
1099
1100	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1101	if (!hpdev)
1102		return -ENODEV;
1103
1104	hpdev->block_invalidate = block_invalidate;
1105	hpdev->invalidate_context = context;
1106
1107	put_pcichild(hpdev);
1108	return 0;
1109
1110}
1111
1112/* Interrupt management hooks */
1113static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1114			     struct tran_int_desc *int_desc)
1115{
1116	struct pci_delete_interrupt *int_pkt;
1117	struct {
1118		struct pci_packet pkt;
1119		u8 buffer[sizeof(struct pci_delete_interrupt)];
1120	} ctxt;
1121
1122	memset(&ctxt, 0, sizeof(ctxt));
1123	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1124	int_pkt->message_type.type =
1125		PCI_DELETE_INTERRUPT_MESSAGE;
1126	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1127	int_pkt->int_desc = *int_desc;
1128	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1129			 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
1130	kfree(int_desc);
1131}
1132
1133/**
1134 * hv_msi_free() - Free the MSI.
1135 * @domain:	The interrupt domain pointer
1136 * @info:	Extra MSI-related context
1137 * @irq:	Identifies the IRQ.
1138 *
1139 * The Hyper-V parent partition and hypervisor are tracking the
1140 * messages that are in use, keeping the interrupt redirection
1141 * table up to date.  This callback sends a message that frees
1142 * the IRT entry and related tracking nonsense.
1143 */
1144static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1145			unsigned int irq)
1146{
1147	struct hv_pcibus_device *hbus;
1148	struct hv_pci_dev *hpdev;
1149	struct pci_dev *pdev;
1150	struct tran_int_desc *int_desc;
1151	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1152	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1153
1154	pdev = msi_desc_to_pci_dev(msi);
1155	hbus = info->data;
1156	int_desc = irq_data_get_irq_chip_data(irq_data);
1157	if (!int_desc)
1158		return;
1159
1160	irq_data->chip_data = NULL;
1161	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1162	if (!hpdev) {
1163		kfree(int_desc);
1164		return;
1165	}
1166
1167	hv_int_desc_free(hpdev, int_desc);
1168	put_pcichild(hpdev);
1169}
1170
1171static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
1172			   bool force)
1173{
1174	struct irq_data *parent = data->parent_data;
1175
1176	return parent->chip->irq_set_affinity(parent, dest, force);
1177}
1178
1179static void hv_irq_mask(struct irq_data *data)
1180{
1181	pci_msi_mask_irq(data);
1182}
1183
1184/**
1185 * hv_irq_unmask() - "Unmask" the IRQ by setting its current
1186 * affinity.
1187 * @data:	Describes the IRQ
1188 *
1189 * Build new a destination for the MSI and make a hypercall to
1190 * update the Interrupt Redirection Table. "Device Logical ID"
1191 * is built out of this PCI bus's instance GUID and the function
1192 * number of the device.
1193 */
1194static void hv_irq_unmask(struct irq_data *data)
1195{
1196	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
1197	struct irq_cfg *cfg = irqd_cfg(data);
1198	struct hv_retarget_device_interrupt *params;
1199	struct hv_pcibus_device *hbus;
1200	struct cpumask *dest;
1201	cpumask_var_t tmp;
1202	struct pci_bus *pbus;
1203	struct pci_dev *pdev;
1204	unsigned long flags;
1205	u32 var_size = 0;
1206	int cpu, nr_bank;
1207	u64 res;
1208
1209	dest = irq_data_get_effective_affinity_mask(data);
1210	pdev = msi_desc_to_pci_dev(msi_desc);
1211	pbus = pdev->bus;
1212	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1213
1214	spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
1215
1216	params = &hbus->retarget_msi_interrupt_params;
1217	memset(params, 0, sizeof(*params));
1218	params->partition_id = HV_PARTITION_ID_SELF;
1219	params->int_entry.source = 1; /* MSI(-X) */
1220	hv_set_msi_entry_from_desc(&params->int_entry.msi_entry, msi_desc);
 
1221	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
1222			   (hbus->hdev->dev_instance.b[4] << 16) |
1223			   (hbus->hdev->dev_instance.b[7] << 8) |
1224			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
1225			   PCI_FUNC(pdev->devfn);
1226	params->int_target.vector = cfg->vector;
1227
1228	/*
1229	 * Honoring apic->irq_delivery_mode set to dest_Fixed by
1230	 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
1231	 * spurious interrupt storm. Not doing so does not seem to have a
1232	 * negative effect (yet?).
1233	 */
1234
1235	if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
1236		/*
1237		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
1238		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
1239		 * with >64 VP support.
1240		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
1241		 * is not sufficient for this hypercall.
1242		 */
1243		params->int_target.flags |=
1244			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
1245
1246		if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
1247			res = 1;
1248			goto exit_unlock;
1249		}
1250
1251		cpumask_and(tmp, dest, cpu_online_mask);
1252		nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
1253		free_cpumask_var(tmp);
1254
1255		if (nr_bank <= 0) {
1256			res = 1;
1257			goto exit_unlock;
1258		}
1259
1260		/*
1261		 * var-sized hypercall, var-size starts after vp_mask (thus
1262		 * vp_set.format does not count, but vp_set.valid_bank_mask
1263		 * does).
1264		 */
1265		var_size = 1 + nr_bank;
1266	} else {
1267		for_each_cpu_and(cpu, dest, cpu_online_mask) {
1268			params->int_target.vp_mask |=
1269				(1ULL << hv_cpu_number_to_vp_number(cpu));
1270		}
1271	}
1272
1273	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
1274			      params, NULL);
1275
1276exit_unlock:
1277	spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
1278
1279	if (res) {
1280		dev_err(&hbus->hdev->device,
1281			"%s() failed: %#llx", __func__, res);
1282		return;
1283	}
1284
1285	pci_msi_unmask_irq(data);
1286}
1287
1288struct compose_comp_ctxt {
1289	struct hv_pci_compl comp_pkt;
1290	struct tran_int_desc int_desc;
1291};
1292
1293static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1294				 int resp_packet_size)
1295{
1296	struct compose_comp_ctxt *comp_pkt = context;
1297	struct pci_create_int_response *int_resp =
1298		(struct pci_create_int_response *)resp;
1299
1300	comp_pkt->comp_pkt.completion_status = resp->status;
1301	comp_pkt->int_desc = int_resp->int_desc;
1302	complete(&comp_pkt->comp_pkt.host_event);
1303}
1304
1305static u32 hv_compose_msi_req_v1(
1306	struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1307	u32 slot, u8 vector)
1308{
1309	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1310	int_pkt->wslot.slot = slot;
1311	int_pkt->int_desc.vector = vector;
1312	int_pkt->int_desc.vector_count = 1;
1313	int_pkt->int_desc.delivery_mode = dest_Fixed;
1314
1315	/*
1316	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1317	 * hv_irq_unmask().
1318	 */
1319	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1320
1321	return sizeof(*int_pkt);
1322}
1323
1324static u32 hv_compose_msi_req_v2(
1325	struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1326	u32 slot, u8 vector)
1327{
1328	int cpu;
1329
1330	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1331	int_pkt->wslot.slot = slot;
1332	int_pkt->int_desc.vector = vector;
1333	int_pkt->int_desc.vector_count = 1;
1334	int_pkt->int_desc.delivery_mode = dest_Fixed;
1335
1336	/*
1337	 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1338	 * by subsequent retarget in hv_irq_unmask().
1339	 */
1340	cpu = cpumask_first_and(affinity, cpu_online_mask);
1341	int_pkt->int_desc.processor_array[0] =
1342		hv_cpu_number_to_vp_number(cpu);
1343	int_pkt->int_desc.processor_count = 1;
1344
1345	return sizeof(*int_pkt);
1346}
1347
1348/**
1349 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1350 * @data:	Everything about this MSI
1351 * @msg:	Buffer that is filled in by this function
1352 *
1353 * This function unpacks the IRQ looking for target CPU set, IDT
1354 * vector and mode and sends a message to the parent partition
1355 * asking for a mapping for that tuple in this partition.  The
1356 * response supplies a data value and address to which that data
1357 * should be written to trigger that interrupt.
1358 */
1359static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1360{
1361	struct irq_cfg *cfg = irqd_cfg(data);
1362	struct hv_pcibus_device *hbus;
1363	struct vmbus_channel *channel;
1364	struct hv_pci_dev *hpdev;
1365	struct pci_bus *pbus;
1366	struct pci_dev *pdev;
1367	struct cpumask *dest;
 
1368	struct compose_comp_ctxt comp;
1369	struct tran_int_desc *int_desc;
1370	struct {
1371		struct pci_packet pci_pkt;
1372		union {
1373			struct pci_create_interrupt v1;
1374			struct pci_create_interrupt2 v2;
1375		} int_pkts;
1376	} __packed ctxt;
1377
1378	u32 size;
1379	int ret;
1380
1381	pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1382	dest = irq_data_get_effective_affinity_mask(data);
1383	pbus = pdev->bus;
1384	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1385	channel = hbus->hdev->channel;
1386	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1387	if (!hpdev)
1388		goto return_null_message;
1389
1390	/* Free any previous message that might have already been composed. */
1391	if (data->chip_data) {
1392		int_desc = data->chip_data;
1393		data->chip_data = NULL;
1394		hv_int_desc_free(hpdev, int_desc);
1395	}
1396
1397	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1398	if (!int_desc)
1399		goto drop_reference;
1400
1401	memset(&ctxt, 0, sizeof(ctxt));
1402	init_completion(&comp.comp_pkt.host_event);
1403	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1404	ctxt.pci_pkt.compl_ctxt = &comp;
1405
1406	switch (hbus->protocol_version) {
1407	case PCI_PROTOCOL_VERSION_1_1:
1408		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1409					dest,
1410					hpdev->desc.win_slot.slot,
1411					cfg->vector);
1412		break;
1413
1414	case PCI_PROTOCOL_VERSION_1_2:
1415	case PCI_PROTOCOL_VERSION_1_3:
1416		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1417					dest,
1418					hpdev->desc.win_slot.slot,
1419					cfg->vector);
1420		break;
1421
1422	default:
1423		/* As we only negotiate protocol versions known to this driver,
1424		 * this path should never hit. However, this is it not a hot
1425		 * path so we print a message to aid future updates.
1426		 */
1427		dev_err(&hbus->hdev->device,
1428			"Unexpected vPCI protocol, update driver.");
1429		goto free_int_desc;
1430	}
1431
1432	ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1433			       size, (unsigned long)&ctxt.pci_pkt,
1434			       VM_PKT_DATA_INBAND,
1435			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1436	if (ret) {
1437		dev_err(&hbus->hdev->device,
1438			"Sending request for interrupt failed: 0x%x",
1439			comp.comp_pkt.completion_status);
1440		goto free_int_desc;
1441	}
1442
1443	/*
1444	 * Prevents hv_pci_onchannelcallback() from running concurrently
1445	 * in the tasklet.
1446	 */
1447	tasklet_disable(&channel->callback_event);
1448
1449	/*
1450	 * Since this function is called with IRQ locks held, can't
1451	 * do normal wait for completion; instead poll.
1452	 */
1453	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1454		unsigned long flags;
1455
1456		/* 0xFFFF means an invalid PCI VENDOR ID. */
1457		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1458			dev_err_once(&hbus->hdev->device,
1459				     "the device has gone\n");
1460			goto enable_tasklet;
1461		}
1462
1463		/*
1464		 * Make sure that the ring buffer data structure doesn't get
1465		 * freed while we dereference the ring buffer pointer.  Test
1466		 * for the channel's onchannel_callback being NULL within a
1467		 * sched_lock critical section.  See also the inline comments
1468		 * in vmbus_reset_channel_cb().
 
 
1469		 */
1470		spin_lock_irqsave(&channel->sched_lock, flags);
1471		if (unlikely(channel->onchannel_callback == NULL)) {
1472			spin_unlock_irqrestore(&channel->sched_lock, flags);
1473			goto enable_tasklet;
1474		}
1475		hv_pci_onchannelcallback(hbus);
1476		spin_unlock_irqrestore(&channel->sched_lock, flags);
1477
1478		if (hpdev->state == hv_pcichild_ejecting) {
1479			dev_err_once(&hbus->hdev->device,
1480				     "the device is being ejected\n");
1481			goto enable_tasklet;
1482		}
1483
1484		udelay(100);
1485	}
1486
1487	tasklet_enable(&channel->callback_event);
1488
1489	if (comp.comp_pkt.completion_status < 0) {
1490		dev_err(&hbus->hdev->device,
1491			"Request for interrupt failed: 0x%x",
1492			comp.comp_pkt.completion_status);
1493		goto free_int_desc;
1494	}
1495
1496	/*
1497	 * Record the assignment so that this can be unwound later. Using
1498	 * irq_set_chip_data() here would be appropriate, but the lock it takes
1499	 * is already held.
1500	 */
1501	*int_desc = comp.int_desc;
1502	data->chip_data = int_desc;
1503
1504	/* Pass up the result. */
1505	msg->address_hi = comp.int_desc.address >> 32;
1506	msg->address_lo = comp.int_desc.address & 0xffffffff;
1507	msg->data = comp.int_desc.data;
1508
1509	put_pcichild(hpdev);
1510	return;
1511
1512enable_tasklet:
1513	tasklet_enable(&channel->callback_event);
1514free_int_desc:
1515	kfree(int_desc);
1516drop_reference:
1517	put_pcichild(hpdev);
1518return_null_message:
1519	msg->address_hi = 0;
1520	msg->address_lo = 0;
1521	msg->data = 0;
1522}
1523
1524/* HW Interrupt Chip Descriptor */
1525static struct irq_chip hv_msi_irq_chip = {
1526	.name			= "Hyper-V PCIe MSI",
1527	.irq_compose_msi_msg	= hv_compose_msi_msg,
1528	.irq_set_affinity	= hv_set_affinity,
1529	.irq_ack		= irq_chip_ack_parent,
1530	.irq_mask		= hv_irq_mask,
1531	.irq_unmask		= hv_irq_unmask,
1532};
1533
1534static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info,
1535						   msi_alloc_info_t *arg)
1536{
1537	return arg->msi_hwirq;
1538}
1539
1540static struct msi_domain_ops hv_msi_ops = {
1541	.get_hwirq	= hv_msi_domain_ops_get_hwirq,
1542	.msi_prepare	= pci_msi_prepare,
1543	.set_desc	= pci_msi_set_desc,
1544	.msi_free	= hv_msi_free,
1545};
1546
1547/**
1548 * hv_pcie_init_irq_domain() - Initialize IRQ domain
1549 * @hbus:	The root PCI bus
1550 *
1551 * This function creates an IRQ domain which will be used for
1552 * interrupts from devices that have been passed through.  These
1553 * devices only support MSI and MSI-X, not line-based interrupts
1554 * or simulations of line-based interrupts through PCIe's
1555 * fabric-layer messages.  Because interrupts are remapped, we
1556 * can support multi-message MSI here.
1557 *
1558 * Return: '0' on success and error value on failure
1559 */
1560static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1561{
1562	hbus->msi_info.chip = &hv_msi_irq_chip;
1563	hbus->msi_info.ops = &hv_msi_ops;
1564	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1565		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1566		MSI_FLAG_PCI_MSIX);
1567	hbus->msi_info.handler = handle_edge_irq;
1568	hbus->msi_info.handler_name = "edge";
1569	hbus->msi_info.data = hbus;
1570	hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1571						     &hbus->msi_info,
1572						     x86_vector_domain);
1573	if (!hbus->irq_domain) {
1574		dev_err(&hbus->hdev->device,
1575			"Failed to build an MSI IRQ domain\n");
1576		return -ENODEV;
1577	}
1578
1579	return 0;
1580}
1581
1582/**
1583 * get_bar_size() - Get the address space consumed by a BAR
1584 * @bar_val:	Value that a BAR returned after -1 was written
1585 *              to it.
1586 *
1587 * This function returns the size of the BAR, rounded up to 1
1588 * page.  It has to be rounded up because the hypervisor's page
1589 * table entry that maps the BAR into the VM can't specify an
1590 * offset within a page.  The invariant is that the hypervisor
1591 * must place any BARs of smaller than page length at the
1592 * beginning of a page.
1593 *
1594 * Return:	Size in bytes of the consumed MMIO space.
1595 */
1596static u64 get_bar_size(u64 bar_val)
1597{
1598	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1599			PAGE_SIZE);
1600}
1601
1602/**
1603 * survey_child_resources() - Total all MMIO requirements
1604 * @hbus:	Root PCI bus, as understood by this driver
1605 */
1606static void survey_child_resources(struct hv_pcibus_device *hbus)
1607{
1608	struct hv_pci_dev *hpdev;
1609	resource_size_t bar_size = 0;
1610	unsigned long flags;
1611	struct completion *event;
1612	u64 bar_val;
1613	int i;
1614
1615	/* If nobody is waiting on the answer, don't compute it. */
1616	event = xchg(&hbus->survey_event, NULL);
1617	if (!event)
1618		return;
1619
1620	/* If the answer has already been computed, go with it. */
1621	if (hbus->low_mmio_space || hbus->high_mmio_space) {
1622		complete(event);
1623		return;
1624	}
1625
1626	spin_lock_irqsave(&hbus->device_list_lock, flags);
1627
1628	/*
1629	 * Due to an interesting quirk of the PCI spec, all memory regions
1630	 * for a child device are a power of 2 in size and aligned in memory,
1631	 * so it's sufficient to just add them up without tracking alignment.
1632	 */
1633	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1634		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1635			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1636				dev_err(&hbus->hdev->device,
1637					"There's an I/O BAR in this list!\n");
1638
1639			if (hpdev->probed_bar[i] != 0) {
1640				/*
1641				 * A probed BAR has all the upper bits set that
1642				 * can be changed.
1643				 */
1644
1645				bar_val = hpdev->probed_bar[i];
1646				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1647					bar_val |=
1648					((u64)hpdev->probed_bar[++i] << 32);
1649				else
1650					bar_val |= 0xffffffff00000000ULL;
1651
1652				bar_size = get_bar_size(bar_val);
1653
1654				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1655					hbus->high_mmio_space += bar_size;
1656				else
1657					hbus->low_mmio_space += bar_size;
1658			}
1659		}
1660	}
1661
1662	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1663	complete(event);
1664}
1665
1666/**
1667 * prepopulate_bars() - Fill in BARs with defaults
1668 * @hbus:	Root PCI bus, as understood by this driver
1669 *
1670 * The core PCI driver code seems much, much happier if the BARs
1671 * for a device have values upon first scan. So fill them in.
1672 * The algorithm below works down from large sizes to small,
1673 * attempting to pack the assignments optimally. The assumption,
1674 * enforced in other parts of the code, is that the beginning of
1675 * the memory-mapped I/O space will be aligned on the largest
1676 * BAR size.
1677 */
1678static void prepopulate_bars(struct hv_pcibus_device *hbus)
1679{
1680	resource_size_t high_size = 0;
1681	resource_size_t low_size = 0;
1682	resource_size_t high_base = 0;
1683	resource_size_t low_base = 0;
1684	resource_size_t bar_size;
1685	struct hv_pci_dev *hpdev;
1686	unsigned long flags;
1687	u64 bar_val;
1688	u32 command;
1689	bool high;
1690	int i;
1691
1692	if (hbus->low_mmio_space) {
1693		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1694		low_base = hbus->low_mmio_res->start;
1695	}
1696
1697	if (hbus->high_mmio_space) {
1698		high_size = 1ULL <<
1699			(63 - __builtin_clzll(hbus->high_mmio_space));
1700		high_base = hbus->high_mmio_res->start;
1701	}
1702
1703	spin_lock_irqsave(&hbus->device_list_lock, flags);
1704
1705	/*
1706	 * Clear the memory enable bit, in case it's already set. This occurs
1707	 * in the suspend path of hibernation, where the device is suspended,
1708	 * resumed and suspended again: see hibernation_snapshot() and
1709	 * hibernation_platform_enter().
1710	 *
1711	 * If the memory enable bit is already set, Hyper-V sliently ignores
1712	 * the below BAR updates, and the related PCI device driver can not
1713	 * work, because reading from the device register(s) always returns
1714	 * 0xFFFFFFFF.
1715	 */
1716	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1717		_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
1718		command &= ~PCI_COMMAND_MEMORY;
1719		_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
1720	}
1721
1722	/* Pick addresses for the BARs. */
1723	do {
1724		list_for_each_entry(hpdev, &hbus->children, list_entry) {
1725			for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1726				bar_val = hpdev->probed_bar[i];
1727				if (bar_val == 0)
1728					continue;
1729				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1730				if (high) {
1731					bar_val |=
1732						((u64)hpdev->probed_bar[i + 1]
1733						 << 32);
1734				} else {
1735					bar_val |= 0xffffffffULL << 32;
1736				}
1737				bar_size = get_bar_size(bar_val);
1738				if (high) {
1739					if (high_size != bar_size) {
1740						i++;
1741						continue;
1742					}
1743					_hv_pcifront_write_config(hpdev,
1744						PCI_BASE_ADDRESS_0 + (4 * i),
1745						4,
1746						(u32)(high_base & 0xffffff00));
1747					i++;
1748					_hv_pcifront_write_config(hpdev,
1749						PCI_BASE_ADDRESS_0 + (4 * i),
1750						4, (u32)(high_base >> 32));
1751					high_base += bar_size;
1752				} else {
1753					if (low_size != bar_size)
1754						continue;
1755					_hv_pcifront_write_config(hpdev,
1756						PCI_BASE_ADDRESS_0 + (4 * i),
1757						4,
1758						(u32)(low_base & 0xffffff00));
1759					low_base += bar_size;
1760				}
1761			}
1762			if (high_size <= 1 && low_size <= 1) {
1763				/* Set the memory enable bit. */
1764				_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1765							 &command);
1766				command |= PCI_COMMAND_MEMORY;
1767				_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1768							  command);
1769				break;
1770			}
1771		}
1772
1773		high_size >>= 1;
1774		low_size >>= 1;
1775	}  while (high_size || low_size);
1776
1777	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1778}
1779
1780/*
1781 * Assign entries in sysfs pci slot directory.
1782 *
1783 * Note that this function does not need to lock the children list
1784 * because it is called from pci_devices_present_work which
1785 * is serialized with hv_eject_device_work because they are on the
1786 * same ordered workqueue. Therefore hbus->children list will not change
1787 * even when pci_create_slot sleeps.
1788 */
1789static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
1790{
1791	struct hv_pci_dev *hpdev;
1792	char name[SLOT_NAME_SIZE];
1793	int slot_nr;
1794
1795	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1796		if (hpdev->pci_slot)
1797			continue;
1798
1799		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
1800		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
1801		hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr,
1802					  name, NULL);
1803		if (IS_ERR(hpdev->pci_slot)) {
1804			pr_warn("pci_create slot %s failed\n", name);
1805			hpdev->pci_slot = NULL;
1806		}
1807	}
1808}
1809
1810/*
1811 * Remove entries in sysfs pci slot directory.
1812 */
1813static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
1814{
1815	struct hv_pci_dev *hpdev;
1816
1817	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1818		if (!hpdev->pci_slot)
1819			continue;
1820		pci_destroy_slot(hpdev->pci_slot);
1821		hpdev->pci_slot = NULL;
1822	}
1823}
1824
1825/*
1826 * Set NUMA node for the devices on the bus
1827 */
1828static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
1829{
1830	struct pci_dev *dev;
1831	struct pci_bus *bus = hbus->pci_bus;
1832	struct hv_pci_dev *hv_dev;
1833
1834	list_for_each_entry(dev, &bus->devices, bus_list) {
1835		hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
1836		if (!hv_dev)
1837			continue;
1838
1839		if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY)
1840			set_dev_node(&dev->dev, hv_dev->desc.virtual_numa_node);
1841
1842		put_pcichild(hv_dev);
1843	}
1844}
1845
1846/**
1847 * create_root_hv_pci_bus() - Expose a new root PCI bus
1848 * @hbus:	Root PCI bus, as understood by this driver
1849 *
1850 * Return: 0 on success, -errno on failure
1851 */
1852static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1853{
1854	/* Register the device */
1855	hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1856					    0, /* bus number is always zero */
1857					    &hv_pcifront_ops,
1858					    &hbus->sysdata,
1859					    &hbus->resources_for_children);
1860	if (!hbus->pci_bus)
1861		return -ENODEV;
1862
1863	hbus->pci_bus->msi = &hbus->msi_chip;
1864	hbus->pci_bus->msi->dev = &hbus->hdev->device;
1865
1866	pci_lock_rescan_remove();
1867	pci_scan_child_bus(hbus->pci_bus);
1868	hv_pci_assign_numa_node(hbus);
1869	pci_bus_assign_resources(hbus->pci_bus);
1870	hv_pci_assign_slots(hbus);
1871	pci_bus_add_devices(hbus->pci_bus);
1872	pci_unlock_rescan_remove();
1873	hbus->state = hv_pcibus_installed;
1874	return 0;
1875}
1876
1877struct q_res_req_compl {
1878	struct completion host_event;
1879	struct hv_pci_dev *hpdev;
1880};
1881
1882/**
1883 * q_resource_requirements() - Query Resource Requirements
1884 * @context:		The completion context.
1885 * @resp:		The response that came from the host.
1886 * @resp_packet_size:	The size in bytes of resp.
1887 *
1888 * This function is invoked on completion of a Query Resource
1889 * Requirements packet.
1890 */
1891static void q_resource_requirements(void *context, struct pci_response *resp,
1892				    int resp_packet_size)
1893{
1894	struct q_res_req_compl *completion = context;
1895	struct pci_q_res_req_response *q_res_req =
1896		(struct pci_q_res_req_response *)resp;
1897	int i;
1898
1899	if (resp->status < 0) {
1900		dev_err(&completion->hpdev->hbus->hdev->device,
1901			"query resource requirements failed: %x\n",
1902			resp->status);
1903	} else {
1904		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1905			completion->hpdev->probed_bar[i] =
1906				q_res_req->probed_bar[i];
1907		}
1908	}
1909
1910	complete(&completion->host_event);
1911}
1912
1913/**
1914 * new_pcichild_device() - Create a new child device
1915 * @hbus:	The internal struct tracking this root PCI bus.
1916 * @desc:	The information supplied so far from the host
1917 *              about the device.
1918 *
1919 * This function creates the tracking structure for a new child
1920 * device and kicks off the process of figuring out what it is.
1921 *
1922 * Return: Pointer to the new tracking struct
1923 */
1924static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1925		struct hv_pcidev_description *desc)
1926{
1927	struct hv_pci_dev *hpdev;
1928	struct pci_child_message *res_req;
1929	struct q_res_req_compl comp_pkt;
1930	struct {
1931		struct pci_packet init_packet;
1932		u8 buffer[sizeof(struct pci_child_message)];
1933	} pkt;
1934	unsigned long flags;
1935	int ret;
1936
1937	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
1938	if (!hpdev)
1939		return NULL;
1940
1941	hpdev->hbus = hbus;
1942
1943	memset(&pkt, 0, sizeof(pkt));
1944	init_completion(&comp_pkt.host_event);
1945	comp_pkt.hpdev = hpdev;
1946	pkt.init_packet.compl_ctxt = &comp_pkt;
1947	pkt.init_packet.completion_func = q_resource_requirements;
1948	res_req = (struct pci_child_message *)&pkt.init_packet.message;
1949	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1950	res_req->wslot.slot = desc->win_slot.slot;
1951
1952	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1953			       sizeof(struct pci_child_message),
1954			       (unsigned long)&pkt.init_packet,
1955			       VM_PKT_DATA_INBAND,
1956			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1957	if (ret)
1958		goto error;
1959
1960	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
1961		goto error;
1962
1963	hpdev->desc = *desc;
1964	refcount_set(&hpdev->refs, 1);
1965	get_pcichild(hpdev);
1966	spin_lock_irqsave(&hbus->device_list_lock, flags);
1967
1968	list_add_tail(&hpdev->list_entry, &hbus->children);
1969	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1970	return hpdev;
1971
1972error:
1973	kfree(hpdev);
1974	return NULL;
1975}
1976
1977/**
1978 * get_pcichild_wslot() - Find device from slot
1979 * @hbus:	Root PCI bus, as understood by this driver
1980 * @wslot:	Location on the bus
1981 *
1982 * This function looks up a PCI device and returns the internal
1983 * representation of it.  It acquires a reference on it, so that
1984 * the device won't be deleted while somebody is using it.  The
1985 * caller is responsible for calling put_pcichild() to release
1986 * this reference.
1987 *
1988 * Return:	Internal representation of a PCI device
1989 */
1990static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1991					     u32 wslot)
1992{
1993	unsigned long flags;
1994	struct hv_pci_dev *iter, *hpdev = NULL;
1995
1996	spin_lock_irqsave(&hbus->device_list_lock, flags);
1997	list_for_each_entry(iter, &hbus->children, list_entry) {
1998		if (iter->desc.win_slot.slot == wslot) {
1999			hpdev = iter;
2000			get_pcichild(hpdev);
2001			break;
2002		}
2003	}
2004	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2005
2006	return hpdev;
2007}
2008
2009/**
2010 * pci_devices_present_work() - Handle new list of child devices
2011 * @work:	Work struct embedded in struct hv_dr_work
2012 *
2013 * "Bus Relations" is the Windows term for "children of this
2014 * bus."  The terminology is preserved here for people trying to
2015 * debug the interaction between Hyper-V and Linux.  This
2016 * function is called when the parent partition reports a list
2017 * of functions that should be observed under this PCI Express
2018 * port (bus).
2019 *
2020 * This function updates the list, and must tolerate being
2021 * called multiple times with the same information.  The typical
2022 * number of child devices is one, with very atypical cases
2023 * involving three or four, so the algorithms used here can be
2024 * simple and inefficient.
2025 *
2026 * It must also treat the omission of a previously observed device as
2027 * notification that the device no longer exists.
2028 *
2029 * Note that this function is serialized with hv_eject_device_work(),
2030 * because both are pushed to the ordered workqueue hbus->wq.
2031 */
2032static void pci_devices_present_work(struct work_struct *work)
2033{
2034	u32 child_no;
2035	bool found;
2036	struct hv_pcidev_description *new_desc;
2037	struct hv_pci_dev *hpdev;
2038	struct hv_pcibus_device *hbus;
2039	struct list_head removed;
2040	struct hv_dr_work *dr_wrk;
2041	struct hv_dr_state *dr = NULL;
2042	unsigned long flags;
2043
2044	dr_wrk = container_of(work, struct hv_dr_work, wrk);
2045	hbus = dr_wrk->bus;
2046	kfree(dr_wrk);
2047
2048	INIT_LIST_HEAD(&removed);
2049
2050	/* Pull this off the queue and process it if it was the last one. */
2051	spin_lock_irqsave(&hbus->device_list_lock, flags);
2052	while (!list_empty(&hbus->dr_list)) {
2053		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2054				      list_entry);
2055		list_del(&dr->list_entry);
2056
2057		/* Throw this away if the list still has stuff in it. */
2058		if (!list_empty(&hbus->dr_list)) {
2059			kfree(dr);
2060			continue;
2061		}
2062	}
2063	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2064
2065	if (!dr) {
2066		put_hvpcibus(hbus);
2067		return;
2068	}
2069
2070	/* First, mark all existing children as reported missing. */
2071	spin_lock_irqsave(&hbus->device_list_lock, flags);
2072	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2073		hpdev->reported_missing = true;
2074	}
2075	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2076
2077	/* Next, add back any reported devices. */
2078	for (child_no = 0; child_no < dr->device_count; child_no++) {
2079		found = false;
2080		new_desc = &dr->func[child_no];
2081
2082		spin_lock_irqsave(&hbus->device_list_lock, flags);
2083		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2084			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2085			    (hpdev->desc.v_id == new_desc->v_id) &&
2086			    (hpdev->desc.d_id == new_desc->d_id) &&
2087			    (hpdev->desc.ser == new_desc->ser)) {
2088				hpdev->reported_missing = false;
2089				found = true;
2090			}
2091		}
2092		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2093
2094		if (!found) {
2095			hpdev = new_pcichild_device(hbus, new_desc);
2096			if (!hpdev)
2097				dev_err(&hbus->hdev->device,
2098					"couldn't record a child device.\n");
2099		}
2100	}
2101
2102	/* Move missing children to a list on the stack. */
2103	spin_lock_irqsave(&hbus->device_list_lock, flags);
2104	do {
2105		found = false;
2106		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2107			if (hpdev->reported_missing) {
2108				found = true;
2109				put_pcichild(hpdev);
2110				list_move_tail(&hpdev->list_entry, &removed);
2111				break;
2112			}
2113		}
2114	} while (found);
2115	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2116
2117	/* Delete everything that should no longer exist. */
2118	while (!list_empty(&removed)) {
2119		hpdev = list_first_entry(&removed, struct hv_pci_dev,
2120					 list_entry);
2121		list_del(&hpdev->list_entry);
2122
2123		if (hpdev->pci_slot)
2124			pci_destroy_slot(hpdev->pci_slot);
2125
2126		put_pcichild(hpdev);
2127	}
2128
2129	switch (hbus->state) {
2130	case hv_pcibus_installed:
2131		/*
2132		 * Tell the core to rescan bus
2133		 * because there may have been changes.
2134		 */
2135		pci_lock_rescan_remove();
2136		pci_scan_child_bus(hbus->pci_bus);
2137		hv_pci_assign_numa_node(hbus);
2138		hv_pci_assign_slots(hbus);
2139		pci_unlock_rescan_remove();
2140		break;
2141
2142	case hv_pcibus_init:
2143	case hv_pcibus_probed:
2144		survey_child_resources(hbus);
2145		break;
2146
2147	default:
2148		break;
2149	}
2150
2151	put_hvpcibus(hbus);
2152	kfree(dr);
2153}
2154
2155/**
2156 * hv_pci_start_relations_work() - Queue work to start device discovery
2157 * @hbus:	Root PCI bus, as understood by this driver
2158 * @dr:		The list of children returned from host
2159 *
2160 * Return:  0 on success, -errno on failure
 
2161 */
2162static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2163				       struct hv_dr_state *dr)
2164{
 
2165	struct hv_dr_work *dr_wrk;
2166	unsigned long flags;
2167	bool pending_dr;
2168
2169	if (hbus->state == hv_pcibus_removing) {
2170		dev_info(&hbus->hdev->device,
2171			 "PCI VMBus BUS_RELATIONS: ignored\n");
2172		return -ENOENT;
2173	}
2174
2175	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2176	if (!dr_wrk)
2177		return -ENOMEM;
 
 
 
 
 
 
 
 
2178
2179	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2180	dr_wrk->bus = hbus;
 
 
 
 
 
 
2181
2182	spin_lock_irqsave(&hbus->device_list_lock, flags);
2183	/*
2184	 * If pending_dr is true, we have already queued a work,
2185	 * which will see the new dr. Otherwise, we need to
2186	 * queue a new work.
2187	 */
2188	pending_dr = !list_empty(&hbus->dr_list);
2189	list_add_tail(&dr->list_entry, &hbus->dr_list);
2190	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2191
2192	if (pending_dr) {
2193		kfree(dr_wrk);
2194	} else {
2195		get_hvpcibus(hbus);
2196		queue_work(hbus->wq, &dr_wrk->wrk);
2197	}
2198
2199	return 0;
2200}
2201
2202/**
2203 * hv_pci_devices_present() - Handle list of new children
2204 * @hbus:      Root PCI bus, as understood by this driver
2205 * @relations: Packet from host listing children
2206 *
2207 * Process a new list of devices on the bus. The list of devices is
2208 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2209 * whenever a new list of devices for this bus appears.
2210 */
2211static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2212				   struct pci_bus_relations *relations)
2213{
2214	struct hv_dr_state *dr;
2215	int i;
2216
2217	dr = kzalloc(struct_size(dr, func, relations->device_count),
2218		     GFP_NOWAIT);
2219	if (!dr)
2220		return;
2221
2222	dr->device_count = relations->device_count;
2223	for (i = 0; i < dr->device_count; i++) {
2224		dr->func[i].v_id = relations->func[i].v_id;
2225		dr->func[i].d_id = relations->func[i].d_id;
2226		dr->func[i].rev = relations->func[i].rev;
2227		dr->func[i].prog_intf = relations->func[i].prog_intf;
2228		dr->func[i].subclass = relations->func[i].subclass;
2229		dr->func[i].base_class = relations->func[i].base_class;
2230		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2231		dr->func[i].win_slot = relations->func[i].win_slot;
2232		dr->func[i].ser = relations->func[i].ser;
2233	}
2234
2235	if (hv_pci_start_relations_work(hbus, dr))
2236		kfree(dr);
2237}
2238
2239/**
2240 * hv_pci_devices_present2() - Handle list of new children
2241 * @hbus:	Root PCI bus, as understood by this driver
2242 * @relations:	Packet from host listing children
2243 *
2244 * This function is the v2 version of hv_pci_devices_present()
2245 */
2246static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2247				    struct pci_bus_relations2 *relations)
2248{
2249	struct hv_dr_state *dr;
2250	int i;
2251
2252	dr = kzalloc(struct_size(dr, func, relations->device_count),
2253		     GFP_NOWAIT);
2254	if (!dr)
2255		return;
2256
2257	dr->device_count = relations->device_count;
2258	for (i = 0; i < dr->device_count; i++) {
2259		dr->func[i].v_id = relations->func[i].v_id;
2260		dr->func[i].d_id = relations->func[i].d_id;
2261		dr->func[i].rev = relations->func[i].rev;
2262		dr->func[i].prog_intf = relations->func[i].prog_intf;
2263		dr->func[i].subclass = relations->func[i].subclass;
2264		dr->func[i].base_class = relations->func[i].base_class;
2265		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2266		dr->func[i].win_slot = relations->func[i].win_slot;
2267		dr->func[i].ser = relations->func[i].ser;
2268		dr->func[i].flags = relations->func[i].flags;
2269		dr->func[i].virtual_numa_node =
2270			relations->func[i].virtual_numa_node;
2271	}
2272
2273	if (hv_pci_start_relations_work(hbus, dr))
2274		kfree(dr);
2275}
2276
2277/**
2278 * hv_eject_device_work() - Asynchronously handles ejection
2279 * @work:	Work struct embedded in internal device struct
2280 *
2281 * This function handles ejecting a device.  Windows will
2282 * attempt to gracefully eject a device, waiting 60 seconds to
2283 * hear back from the guest OS that this completed successfully.
2284 * If this timer expires, the device will be forcibly removed.
2285 */
2286static void hv_eject_device_work(struct work_struct *work)
2287{
2288	struct pci_eject_response *ejct_pkt;
2289	struct hv_pcibus_device *hbus;
2290	struct hv_pci_dev *hpdev;
2291	struct pci_dev *pdev;
2292	unsigned long flags;
2293	int wslot;
2294	struct {
2295		struct pci_packet pkt;
2296		u8 buffer[sizeof(struct pci_eject_response)];
2297	} ctxt;
2298
2299	hpdev = container_of(work, struct hv_pci_dev, wrk);
2300	hbus = hpdev->hbus;
2301
2302	WARN_ON(hpdev->state != hv_pcichild_ejecting);
2303
2304	/*
2305	 * Ejection can come before or after the PCI bus has been set up, so
2306	 * attempt to find it and tear down the bus state, if it exists.  This
2307	 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
2308	 * because hbus->pci_bus may not exist yet.
2309	 */
2310	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2311	pdev = pci_get_domain_bus_and_slot(hbus->sysdata.domain, 0, wslot);
2312	if (pdev) {
2313		pci_lock_rescan_remove();
2314		pci_stop_and_remove_bus_device(pdev);
2315		pci_dev_put(pdev);
2316		pci_unlock_rescan_remove();
2317	}
2318
2319	spin_lock_irqsave(&hbus->device_list_lock, flags);
2320	list_del(&hpdev->list_entry);
2321	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2322
2323	if (hpdev->pci_slot)
2324		pci_destroy_slot(hpdev->pci_slot);
2325
2326	memset(&ctxt, 0, sizeof(ctxt));
2327	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2328	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2329	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2330	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2331			 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
2332			 VM_PKT_DATA_INBAND, 0);
2333
2334	/* For the get_pcichild() in hv_pci_eject_device() */
2335	put_pcichild(hpdev);
2336	/* For the two refs got in new_pcichild_device() */
2337	put_pcichild(hpdev);
2338	put_pcichild(hpdev);
2339	/* hpdev has been freed. Do not use it any more. */
2340
2341	put_hvpcibus(hbus);
2342}
2343
2344/**
2345 * hv_pci_eject_device() - Handles device ejection
2346 * @hpdev:	Internal device tracking struct
2347 *
2348 * This function is invoked when an ejection packet arrives.  It
2349 * just schedules work so that we don't re-enter the packet
2350 * delivery code handling the ejection.
2351 */
2352static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2353{
2354	struct hv_pcibus_device *hbus = hpdev->hbus;
2355	struct hv_device *hdev = hbus->hdev;
2356
2357	if (hbus->state == hv_pcibus_removing) {
2358		dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2359		return;
2360	}
2361
2362	hpdev->state = hv_pcichild_ejecting;
2363	get_pcichild(hpdev);
2364	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2365	get_hvpcibus(hbus);
2366	queue_work(hbus->wq, &hpdev->wrk);
2367}
2368
2369/**
2370 * hv_pci_onchannelcallback() - Handles incoming packets
2371 * @context:	Internal bus tracking struct
2372 *
2373 * This function is invoked whenever the host sends a packet to
2374 * this channel (which is private to this root PCI bus).
2375 */
2376static void hv_pci_onchannelcallback(void *context)
2377{
2378	const int packet_size = 0x100;
2379	int ret;
2380	struct hv_pcibus_device *hbus = context;
2381	u32 bytes_recvd;
2382	u64 req_id;
2383	struct vmpacket_descriptor *desc;
2384	unsigned char *buffer;
2385	int bufferlen = packet_size;
2386	struct pci_packet *comp_packet;
2387	struct pci_response *response;
2388	struct pci_incoming_message *new_message;
2389	struct pci_bus_relations *bus_rel;
2390	struct pci_bus_relations2 *bus_rel2;
2391	struct pci_dev_inval_block *inval;
2392	struct pci_dev_incoming *dev_message;
2393	struct hv_pci_dev *hpdev;
2394
2395	buffer = kmalloc(bufferlen, GFP_ATOMIC);
2396	if (!buffer)
2397		return;
2398
2399	while (1) {
2400		ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
2401					   bufferlen, &bytes_recvd, &req_id);
2402
2403		if (ret == -ENOBUFS) {
2404			kfree(buffer);
2405			/* Handle large packet */
2406			bufferlen = bytes_recvd;
2407			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2408			if (!buffer)
2409				return;
2410			continue;
2411		}
2412
2413		/* Zero length indicates there are no more packets. */
2414		if (ret || !bytes_recvd)
2415			break;
2416
2417		/*
2418		 * All incoming packets must be at least as large as a
2419		 * response.
2420		 */
2421		if (bytes_recvd <= sizeof(struct pci_response))
2422			continue;
2423		desc = (struct vmpacket_descriptor *)buffer;
2424
2425		switch (desc->type) {
2426		case VM_PKT_COMP:
2427
2428			/*
2429			 * The host is trusted, and thus it's safe to interpret
2430			 * this transaction ID as a pointer.
2431			 */
2432			comp_packet = (struct pci_packet *)req_id;
2433			response = (struct pci_response *)buffer;
2434			comp_packet->completion_func(comp_packet->compl_ctxt,
2435						     response,
2436						     bytes_recvd);
2437			break;
2438
2439		case VM_PKT_DATA_INBAND:
2440
2441			new_message = (struct pci_incoming_message *)buffer;
2442			switch (new_message->message_type.type) {
2443			case PCI_BUS_RELATIONS:
2444
2445				bus_rel = (struct pci_bus_relations *)buffer;
2446				if (bytes_recvd <
2447					struct_size(bus_rel, func,
2448						    bus_rel->device_count)) {
 
2449					dev_err(&hbus->hdev->device,
2450						"bus relations too small\n");
2451					break;
2452				}
2453
2454				hv_pci_devices_present(hbus, bus_rel);
2455				break;
2456
2457			case PCI_BUS_RELATIONS2:
2458
2459				bus_rel2 = (struct pci_bus_relations2 *)buffer;
2460				if (bytes_recvd <
2461					struct_size(bus_rel2, func,
2462						    bus_rel2->device_count)) {
2463					dev_err(&hbus->hdev->device,
2464						"bus relations v2 too small\n");
2465					break;
2466				}
2467
2468				hv_pci_devices_present2(hbus, bus_rel2);
2469				break;
2470
2471			case PCI_EJECT:
2472
2473				dev_message = (struct pci_dev_incoming *)buffer;
2474				hpdev = get_pcichild_wslot(hbus,
2475						      dev_message->wslot.slot);
2476				if (hpdev) {
2477					hv_pci_eject_device(hpdev);
2478					put_pcichild(hpdev);
2479				}
2480				break;
2481
2482			case PCI_INVALIDATE_BLOCK:
2483
2484				inval = (struct pci_dev_inval_block *)buffer;
2485				hpdev = get_pcichild_wslot(hbus,
2486							   inval->wslot.slot);
2487				if (hpdev) {
2488					if (hpdev->block_invalidate) {
2489						hpdev->block_invalidate(
2490						    hpdev->invalidate_context,
2491						    inval->block_mask);
2492					}
2493					put_pcichild(hpdev);
2494				}
2495				break;
2496
2497			default:
2498				dev_warn(&hbus->hdev->device,
2499					"Unimplemented protocol message %x\n",
2500					new_message->message_type.type);
2501				break;
2502			}
2503			break;
2504
2505		default:
2506			dev_err(&hbus->hdev->device,
2507				"unhandled packet type %d, tid %llx len %d\n",
2508				desc->type, req_id, bytes_recvd);
2509			break;
2510		}
2511	}
2512
2513	kfree(buffer);
2514}
2515
2516/**
2517 * hv_pci_protocol_negotiation() - Set up protocol
2518 * @hdev:	VMBus's tracking struct for this root PCI bus
2519 *
2520 * This driver is intended to support running on Windows 10
2521 * (server) and later versions. It will not run on earlier
2522 * versions, as they assume that many of the operations which
2523 * Linux needs accomplished with a spinlock held were done via
2524 * asynchronous messaging via VMBus.  Windows 10 increases the
2525 * surface area of PCI emulation so that these actions can take
2526 * place by suspending a virtual processor for their duration.
2527 *
2528 * This function negotiates the channel protocol version,
2529 * failing if the host doesn't support the necessary protocol
2530 * level.
2531 */
2532static int hv_pci_protocol_negotiation(struct hv_device *hdev,
2533				       enum pci_protocol_version_t version[],
2534				       int num_version)
2535{
2536	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2537	struct pci_version_request *version_req;
2538	struct hv_pci_compl comp_pkt;
2539	struct pci_packet *pkt;
2540	int ret;
2541	int i;
2542
2543	/*
2544	 * Initiate the handshake with the host and negotiate
2545	 * a version that the host can support. We start with the
2546	 * highest version number and go down if the host cannot
2547	 * support it.
2548	 */
2549	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2550	if (!pkt)
2551		return -ENOMEM;
2552
2553	init_completion(&comp_pkt.host_event);
2554	pkt->completion_func = hv_pci_generic_compl;
2555	pkt->compl_ctxt = &comp_pkt;
2556	version_req = (struct pci_version_request *)&pkt->message;
2557	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2558
2559	for (i = 0; i < num_version; i++) {
2560		version_req->protocol_version = version[i];
2561		ret = vmbus_sendpacket(hdev->channel, version_req,
2562				sizeof(struct pci_version_request),
2563				(unsigned long)pkt, VM_PKT_DATA_INBAND,
2564				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2565		if (!ret)
2566			ret = wait_for_response(hdev, &comp_pkt.host_event);
2567
2568		if (ret) {
2569			dev_err(&hdev->device,
2570				"PCI Pass-through VSP failed to request version: %d",
2571				ret);
2572			goto exit;
2573		}
2574
2575		if (comp_pkt.completion_status >= 0) {
2576			hbus->protocol_version = version[i];
2577			dev_info(&hdev->device,
2578				"PCI VMBus probing: Using version %#x\n",
2579				hbus->protocol_version);
2580			goto exit;
2581		}
2582
2583		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2584			dev_err(&hdev->device,
2585				"PCI Pass-through VSP failed version request: %#x",
2586				comp_pkt.completion_status);
2587			ret = -EPROTO;
2588			goto exit;
2589		}
2590
2591		reinit_completion(&comp_pkt.host_event);
2592	}
2593
2594	dev_err(&hdev->device,
2595		"PCI pass-through VSP failed to find supported version");
2596	ret = -EPROTO;
2597
2598exit:
2599	kfree(pkt);
2600	return ret;
2601}
2602
2603/**
2604 * hv_pci_free_bridge_windows() - Release memory regions for the
2605 * bus
2606 * @hbus:	Root PCI bus, as understood by this driver
2607 */
2608static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2609{
2610	/*
2611	 * Set the resources back to the way they looked when they
2612	 * were allocated by setting IORESOURCE_BUSY again.
2613	 */
2614
2615	if (hbus->low_mmio_space && hbus->low_mmio_res) {
2616		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2617		vmbus_free_mmio(hbus->low_mmio_res->start,
2618				resource_size(hbus->low_mmio_res));
2619	}
2620
2621	if (hbus->high_mmio_space && hbus->high_mmio_res) {
2622		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2623		vmbus_free_mmio(hbus->high_mmio_res->start,
2624				resource_size(hbus->high_mmio_res));
2625	}
2626}
2627
2628/**
2629 * hv_pci_allocate_bridge_windows() - Allocate memory regions
2630 * for the bus
2631 * @hbus:	Root PCI bus, as understood by this driver
2632 *
2633 * This function calls vmbus_allocate_mmio(), which is itself a
2634 * bit of a compromise.  Ideally, we might change the pnp layer
2635 * in the kernel such that it comprehends either PCI devices
2636 * which are "grandchildren of ACPI," with some intermediate bus
2637 * node (in this case, VMBus) or change it such that it
2638 * understands VMBus.  The pnp layer, however, has been declared
2639 * deprecated, and not subject to change.
2640 *
2641 * The workaround, implemented here, is to ask VMBus to allocate
2642 * MMIO space for this bus.  VMBus itself knows which ranges are
2643 * appropriate by looking at its own ACPI objects.  Then, after
2644 * these ranges are claimed, they're modified to look like they
2645 * would have looked if the ACPI and pnp code had allocated
2646 * bridge windows.  These descriptors have to exist in this form
2647 * in order to satisfy the code which will get invoked when the
2648 * endpoint PCI function driver calls request_mem_region() or
2649 * request_mem_region_exclusive().
2650 *
2651 * Return: 0 on success, -errno on failure
2652 */
2653static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2654{
2655	resource_size_t align;
2656	int ret;
2657
2658	if (hbus->low_mmio_space) {
2659		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2660		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2661					  (u64)(u32)0xffffffff,
2662					  hbus->low_mmio_space,
2663					  align, false);
2664		if (ret) {
2665			dev_err(&hbus->hdev->device,
2666				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2667				hbus->low_mmio_space);
2668			return ret;
2669		}
2670
2671		/* Modify this resource to become a bridge window. */
2672		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2673		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2674		pci_add_resource(&hbus->resources_for_children,
2675				 hbus->low_mmio_res);
2676	}
2677
2678	if (hbus->high_mmio_space) {
2679		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2680		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2681					  0x100000000, -1,
2682					  hbus->high_mmio_space, align,
2683					  false);
2684		if (ret) {
2685			dev_err(&hbus->hdev->device,
2686				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2687				hbus->high_mmio_space);
2688			goto release_low_mmio;
2689		}
2690
2691		/* Modify this resource to become a bridge window. */
2692		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2693		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2694		pci_add_resource(&hbus->resources_for_children,
2695				 hbus->high_mmio_res);
2696	}
2697
2698	return 0;
2699
2700release_low_mmio:
2701	if (hbus->low_mmio_res) {
2702		vmbus_free_mmio(hbus->low_mmio_res->start,
2703				resource_size(hbus->low_mmio_res));
2704	}
2705
2706	return ret;
2707}
2708
2709/**
2710 * hv_allocate_config_window() - Find MMIO space for PCI Config
2711 * @hbus:	Root PCI bus, as understood by this driver
2712 *
2713 * This function claims memory-mapped I/O space for accessing
2714 * configuration space for the functions on this bus.
2715 *
2716 * Return: 0 on success, -errno on failure
2717 */
2718static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2719{
2720	int ret;
2721
2722	/*
2723	 * Set up a region of MMIO space to use for accessing configuration
2724	 * space.
2725	 */
2726	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2727				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2728	if (ret)
2729		return ret;
2730
2731	/*
2732	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2733	 * resource claims (those which cannot be overlapped) and the ranges
2734	 * which are valid for the children of this bus, which are intended
2735	 * to be overlapped by those children.  Set the flag on this claim
2736	 * meaning that this region can't be overlapped.
2737	 */
2738
2739	hbus->mem_config->flags |= IORESOURCE_BUSY;
2740
2741	return 0;
2742}
2743
2744static void hv_free_config_window(struct hv_pcibus_device *hbus)
2745{
2746	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2747}
2748
2749static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
2750
2751/**
2752 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2753 * @hdev:	VMBus's tracking struct for this root PCI bus
2754 *
2755 * Return: 0 on success, -errno on failure
2756 */
2757static int hv_pci_enter_d0(struct hv_device *hdev)
2758{
2759	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2760	struct pci_bus_d0_entry *d0_entry;
2761	struct hv_pci_compl comp_pkt;
2762	struct pci_packet *pkt;
2763	int ret;
2764
2765	/*
2766	 * Tell the host that the bus is ready to use, and moved into the
2767	 * powered-on state.  This includes telling the host which region
2768	 * of memory-mapped I/O space has been chosen for configuration space
2769	 * access.
2770	 */
2771	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2772	if (!pkt)
2773		return -ENOMEM;
2774
2775	init_completion(&comp_pkt.host_event);
2776	pkt->completion_func = hv_pci_generic_compl;
2777	pkt->compl_ctxt = &comp_pkt;
2778	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2779	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2780	d0_entry->mmio_base = hbus->mem_config->start;
2781
2782	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2783			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
2784			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2785	if (!ret)
2786		ret = wait_for_response(hdev, &comp_pkt.host_event);
2787
2788	if (ret)
2789		goto exit;
2790
2791	if (comp_pkt.completion_status < 0) {
2792		dev_err(&hdev->device,
2793			"PCI Pass-through VSP failed D0 Entry with status %x\n",
2794			comp_pkt.completion_status);
2795		ret = -EPROTO;
2796		goto exit;
2797	}
2798
2799	ret = 0;
2800
2801exit:
2802	kfree(pkt);
2803	return ret;
2804}
2805
2806/**
2807 * hv_pci_query_relations() - Ask host to send list of child
2808 * devices
2809 * @hdev:	VMBus's tracking struct for this root PCI bus
2810 *
2811 * Return: 0 on success, -errno on failure
2812 */
2813static int hv_pci_query_relations(struct hv_device *hdev)
2814{
2815	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2816	struct pci_message message;
2817	struct completion comp;
2818	int ret;
2819
2820	/* Ask the host to send along the list of child devices */
2821	init_completion(&comp);
2822	if (cmpxchg(&hbus->survey_event, NULL, &comp))
2823		return -ENOTEMPTY;
2824
2825	memset(&message, 0, sizeof(message));
2826	message.type = PCI_QUERY_BUS_RELATIONS;
2827
2828	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2829			       0, VM_PKT_DATA_INBAND, 0);
2830	if (!ret)
2831		ret = wait_for_response(hdev, &comp);
2832
2833	return ret;
2834}
2835
2836/**
2837 * hv_send_resources_allocated() - Report local resource choices
2838 * @hdev:	VMBus's tracking struct for this root PCI bus
2839 *
2840 * The host OS is expecting to be sent a request as a message
2841 * which contains all the resources that the device will use.
2842 * The response contains those same resources, "translated"
2843 * which is to say, the values which should be used by the
2844 * hardware, when it delivers an interrupt.  (MMIO resources are
2845 * used in local terms.)  This is nice for Windows, and lines up
2846 * with the FDO/PDO split, which doesn't exist in Linux.  Linux
2847 * is deeply expecting to scan an emulated PCI configuration
2848 * space.  So this message is sent here only to drive the state
2849 * machine on the host forward.
2850 *
2851 * Return: 0 on success, -errno on failure
2852 */
2853static int hv_send_resources_allocated(struct hv_device *hdev)
2854{
2855	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2856	struct pci_resources_assigned *res_assigned;
2857	struct pci_resources_assigned2 *res_assigned2;
2858	struct hv_pci_compl comp_pkt;
2859	struct hv_pci_dev *hpdev;
2860	struct pci_packet *pkt;
2861	size_t size_res;
2862	int wslot;
2863	int ret;
2864
2865	size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
2866			? sizeof(*res_assigned) : sizeof(*res_assigned2);
2867
2868	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2869	if (!pkt)
2870		return -ENOMEM;
2871
2872	ret = 0;
2873
2874	for (wslot = 0; wslot < 256; wslot++) {
2875		hpdev = get_pcichild_wslot(hbus, wslot);
2876		if (!hpdev)
2877			continue;
2878
2879		memset(pkt, 0, sizeof(*pkt) + size_res);
2880		init_completion(&comp_pkt.host_event);
2881		pkt->completion_func = hv_pci_generic_compl;
2882		pkt->compl_ctxt = &comp_pkt;
2883
2884		if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2885			res_assigned =
2886				(struct pci_resources_assigned *)&pkt->message;
2887			res_assigned->message_type.type =
2888				PCI_RESOURCES_ASSIGNED;
2889			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2890		} else {
2891			res_assigned2 =
2892				(struct pci_resources_assigned2 *)&pkt->message;
2893			res_assigned2->message_type.type =
2894				PCI_RESOURCES_ASSIGNED2;
2895			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2896		}
2897		put_pcichild(hpdev);
2898
2899		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2900				size_res, (unsigned long)pkt,
2901				VM_PKT_DATA_INBAND,
2902				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2903		if (!ret)
2904			ret = wait_for_response(hdev, &comp_pkt.host_event);
2905		if (ret)
2906			break;
2907
2908		if (comp_pkt.completion_status < 0) {
2909			ret = -EPROTO;
2910			dev_err(&hdev->device,
2911				"resource allocated returned 0x%x",
2912				comp_pkt.completion_status);
2913			break;
2914		}
2915
2916		hbus->wslot_res_allocated = wslot;
2917	}
2918
2919	kfree(pkt);
2920	return ret;
2921}
2922
2923/**
2924 * hv_send_resources_released() - Report local resources
2925 * released
2926 * @hdev:	VMBus's tracking struct for this root PCI bus
2927 *
2928 * Return: 0 on success, -errno on failure
2929 */
2930static int hv_send_resources_released(struct hv_device *hdev)
2931{
2932	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2933	struct pci_child_message pkt;
2934	struct hv_pci_dev *hpdev;
2935	int wslot;
2936	int ret;
2937
2938	for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
2939		hpdev = get_pcichild_wslot(hbus, wslot);
2940		if (!hpdev)
2941			continue;
2942
2943		memset(&pkt, 0, sizeof(pkt));
2944		pkt.message_type.type = PCI_RESOURCES_RELEASED;
2945		pkt.wslot.slot = hpdev->desc.win_slot.slot;
2946
2947		put_pcichild(hpdev);
2948
2949		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2950				       VM_PKT_DATA_INBAND, 0);
2951		if (ret)
2952			return ret;
2953
2954		hbus->wslot_res_allocated = wslot - 1;
2955	}
2956
2957	hbus->wslot_res_allocated = -1;
2958
2959	return 0;
2960}
2961
2962static void get_hvpcibus(struct hv_pcibus_device *hbus)
2963{
2964	refcount_inc(&hbus->remove_lock);
2965}
2966
2967static void put_hvpcibus(struct hv_pcibus_device *hbus)
2968{
2969	if (refcount_dec_and_test(&hbus->remove_lock))
2970		complete(&hbus->remove_event);
2971}
2972
2973#define HVPCI_DOM_MAP_SIZE (64 * 1024)
2974static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
2975
2976/*
2977 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
2978 * as invalid for passthrough PCI devices of this driver.
2979 */
2980#define HVPCI_DOM_INVALID 0
2981
2982/**
2983 * hv_get_dom_num() - Get a valid PCI domain number
2984 * Check if the PCI domain number is in use, and return another number if
2985 * it is in use.
2986 *
2987 * @dom: Requested domain number
2988 *
2989 * return: domain number on success, HVPCI_DOM_INVALID on failure
2990 */
2991static u16 hv_get_dom_num(u16 dom)
2992{
2993	unsigned int i;
2994
2995	if (test_and_set_bit(dom, hvpci_dom_map) == 0)
2996		return dom;
2997
2998	for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
2999		if (test_and_set_bit(i, hvpci_dom_map) == 0)
3000			return i;
3001	}
3002
3003	return HVPCI_DOM_INVALID;
3004}
3005
3006/**
3007 * hv_put_dom_num() - Mark the PCI domain number as free
3008 * @dom: Domain number to be freed
3009 */
3010static void hv_put_dom_num(u16 dom)
3011{
3012	clear_bit(dom, hvpci_dom_map);
3013}
3014
3015/**
3016 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
3017 * @hdev:	VMBus's tracking struct for this root PCI bus
3018 * @dev_id:	Identifies the device itself
3019 *
3020 * Return: 0 on success, -errno on failure
3021 */
3022static int hv_pci_probe(struct hv_device *hdev,
3023			const struct hv_vmbus_device_id *dev_id)
3024{
3025	struct hv_pcibus_device *hbus;
3026	u16 dom_req, dom;
3027	char *name;
3028	bool enter_d0_retry = true;
3029	int ret;
3030
3031	/*
3032	 * hv_pcibus_device contains the hypercall arguments for retargeting in
3033	 * hv_irq_unmask(). Those must not cross a page boundary.
3034	 */
3035	BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE);
3036
3037	/*
3038	 * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural
3039	 * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate
3040	 * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and
3041	 * alignment of hbus is important because hbus's field
3042	 * retarget_msi_interrupt_params must not cross a 4KB page boundary.
3043	 *
3044	 * Here we prefer kzalloc to get_zeroed_page(), because a buffer
3045	 * allocated by the latter is not tracked and scanned by kmemleak, and
3046	 * hence kmemleak reports the pointer contained in the hbus buffer
3047	 * (i.e. the hpdev struct, which is created in new_pcichild_device() and
3048	 * is tracked by hbus->children) as memory leak (false positive).
3049	 *
3050	 * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be
3051	 * used to allocate the hbus buffer and we can avoid the kmemleak false
3052	 * positive by using kmemleak_alloc() and kmemleak_free() to ask
3053	 * kmemleak to track and scan the hbus buffer.
3054	 */
3055	hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
3056	if (!hbus)
3057		return -ENOMEM;
3058	hbus->state = hv_pcibus_init;
3059	hbus->wslot_res_allocated = -1;
3060
3061	/*
3062	 * The PCI bus "domain" is what is called "segment" in ACPI and other
3063	 * specs. Pull it from the instance ID, to get something usually
3064	 * unique. In rare cases of collision, we will find out another number
3065	 * not in use.
3066	 *
3067	 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3068	 * together with this guest driver can guarantee that (1) The only
3069	 * domain used by Gen1 VMs for something that looks like a physical
3070	 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3071	 * (2) There will be no overlap between domains (after fixing possible
3072	 * collisions) in the same VM.
3073	 */
3074	dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3075	dom = hv_get_dom_num(dom_req);
3076
3077	if (dom == HVPCI_DOM_INVALID) {
3078		dev_err(&hdev->device,
3079			"Unable to use dom# 0x%hx or other numbers", dom_req);
3080		ret = -EINVAL;
3081		goto free_bus;
3082	}
3083
3084	if (dom != dom_req)
3085		dev_info(&hdev->device,
3086			 "PCI dom# 0x%hx has collision, using 0x%hx",
3087			 dom_req, dom);
3088
3089	hbus->sysdata.domain = dom;
3090
3091	hbus->hdev = hdev;
3092	refcount_set(&hbus->remove_lock, 1);
3093	INIT_LIST_HEAD(&hbus->children);
3094	INIT_LIST_HEAD(&hbus->dr_list);
3095	INIT_LIST_HEAD(&hbus->resources_for_children);
3096	spin_lock_init(&hbus->config_lock);
3097	spin_lock_init(&hbus->device_list_lock);
3098	spin_lock_init(&hbus->retarget_msi_interrupt_lock);
3099	init_completion(&hbus->remove_event);
3100	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3101					   hbus->sysdata.domain);
3102	if (!hbus->wq) {
3103		ret = -ENOMEM;
3104		goto free_dom;
3105	}
3106
3107	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3108			 hv_pci_onchannelcallback, hbus);
3109	if (ret)
3110		goto destroy_wq;
3111
3112	hv_set_drvdata(hdev, hbus);
3113
3114	ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3115					  ARRAY_SIZE(pci_protocol_versions));
3116	if (ret)
3117		goto close;
3118
3119	ret = hv_allocate_config_window(hbus);
3120	if (ret)
3121		goto close;
3122
3123	hbus->cfg_addr = ioremap(hbus->mem_config->start,
3124				 PCI_CONFIG_MMIO_LENGTH);
3125	if (!hbus->cfg_addr) {
3126		dev_err(&hdev->device,
3127			"Unable to map a virtual address for config space\n");
3128		ret = -ENOMEM;
3129		goto free_config;
3130	}
3131
3132	name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3133	if (!name) {
3134		ret = -ENOMEM;
3135		goto unmap;
3136	}
3137
3138	hbus->sysdata.fwnode = irq_domain_alloc_named_fwnode(name);
3139	kfree(name);
3140	if (!hbus->sysdata.fwnode) {
3141		ret = -ENOMEM;
3142		goto unmap;
3143	}
3144
3145	ret = hv_pcie_init_irq_domain(hbus);
3146	if (ret)
3147		goto free_fwnode;
3148
3149retry:
3150	ret = hv_pci_query_relations(hdev);
3151	if (ret)
3152		goto free_irq_domain;
3153
3154	ret = hv_pci_enter_d0(hdev);
3155	/*
3156	 * In certain case (Kdump) the pci device of interest was
3157	 * not cleanly shut down and resource is still held on host
3158	 * side, the host could return invalid device status.
3159	 * We need to explicitly request host to release the resource
3160	 * and try to enter D0 again.
3161	 * Since the hv_pci_bus_exit() call releases structures
3162	 * of all its child devices, we need to start the retry from
3163	 * hv_pci_query_relations() call, requesting host to send
3164	 * the synchronous child device relations message before this
3165	 * information is needed in hv_send_resources_allocated()
3166	 * call later.
3167	 */
3168	if (ret == -EPROTO && enter_d0_retry) {
3169		enter_d0_retry = false;
3170
3171		dev_err(&hdev->device, "Retrying D0 Entry\n");
3172
3173		/*
3174		 * Hv_pci_bus_exit() calls hv_send_resources_released()
3175		 * to free up resources of its child devices.
3176		 * In the kdump kernel we need to set the
3177		 * wslot_res_allocated to 255 so it scans all child
3178		 * devices to release resources allocated in the
3179		 * normal kernel before panic happened.
3180		 */
3181		hbus->wslot_res_allocated = 255;
3182		ret = hv_pci_bus_exit(hdev, true);
3183
3184		if (ret == 0)
3185			goto retry;
3186
3187		dev_err(&hdev->device,
3188			"Retrying D0 failed with ret %d\n", ret);
3189	}
3190	if (ret)
3191		goto free_irq_domain;
3192
3193	ret = hv_pci_allocate_bridge_windows(hbus);
3194	if (ret)
3195		goto exit_d0;
3196
3197	ret = hv_send_resources_allocated(hdev);
3198	if (ret)
3199		goto free_windows;
3200
3201	prepopulate_bars(hbus);
3202
3203	hbus->state = hv_pcibus_probed;
3204
3205	ret = create_root_hv_pci_bus(hbus);
3206	if (ret)
3207		goto free_windows;
3208
3209	return 0;
3210
3211free_windows:
3212	hv_pci_free_bridge_windows(hbus);
3213exit_d0:
3214	(void) hv_pci_bus_exit(hdev, true);
3215free_irq_domain:
3216	irq_domain_remove(hbus->irq_domain);
3217free_fwnode:
3218	irq_domain_free_fwnode(hbus->sysdata.fwnode);
3219unmap:
3220	iounmap(hbus->cfg_addr);
3221free_config:
3222	hv_free_config_window(hbus);
3223close:
3224	vmbus_close(hdev->channel);
3225destroy_wq:
3226	destroy_workqueue(hbus->wq);
3227free_dom:
3228	hv_put_dom_num(hbus->sysdata.domain);
3229free_bus:
3230	kfree(hbus);
3231	return ret;
3232}
3233
3234static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3235{
3236	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3237	struct {
3238		struct pci_packet teardown_packet;
3239		u8 buffer[sizeof(struct pci_message)];
3240	} pkt;
3241	struct hv_dr_state *dr;
3242	struct hv_pci_compl comp_pkt;
3243	int ret;
3244
3245	/*
3246	 * After the host sends the RESCIND_CHANNEL message, it doesn't
3247	 * access the per-channel ringbuffer any longer.
3248	 */
3249	if (hdev->channel->rescind)
3250		return 0;
3251
3252	if (!keep_devs) {
3253		/* Delete any children which might still exist. */
3254		dr = kzalloc(sizeof(*dr), GFP_KERNEL);
3255		if (dr && hv_pci_start_relations_work(hbus, dr))
3256			kfree(dr);
3257	}
3258
3259	ret = hv_send_resources_released(hdev);
3260	if (ret) {
3261		dev_err(&hdev->device,
3262			"Couldn't send resources released packet(s)\n");
3263		return ret;
3264	}
3265
3266	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3267	init_completion(&comp_pkt.host_event);
3268	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3269	pkt.teardown_packet.compl_ctxt = &comp_pkt;
3270	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3271
3272	ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
3273			       sizeof(struct pci_message),
3274			       (unsigned long)&pkt.teardown_packet,
3275			       VM_PKT_DATA_INBAND,
3276			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3277	if (ret)
3278		return ret;
3279
3280	if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0)
3281		return -ETIMEDOUT;
3282
3283	return 0;
3284}
3285
3286/**
3287 * hv_pci_remove() - Remove routine for this VMBus channel
3288 * @hdev:	VMBus's tracking struct for this root PCI bus
3289 *
3290 * Return: 0 on success, -errno on failure
3291 */
3292static int hv_pci_remove(struct hv_device *hdev)
3293{
3294	struct hv_pcibus_device *hbus;
3295	int ret;
3296
3297	hbus = hv_get_drvdata(hdev);
3298	if (hbus->state == hv_pcibus_installed) {
3299		/* Remove the bus from PCI's point of view. */
3300		pci_lock_rescan_remove();
3301		pci_stop_root_bus(hbus->pci_bus);
3302		hv_pci_remove_slots(hbus);
3303		pci_remove_root_bus(hbus->pci_bus);
3304		pci_unlock_rescan_remove();
3305		hbus->state = hv_pcibus_removed;
3306	}
3307
3308	ret = hv_pci_bus_exit(hdev, false);
3309
3310	vmbus_close(hdev->channel);
3311
3312	iounmap(hbus->cfg_addr);
3313	hv_free_config_window(hbus);
3314	pci_free_resource_list(&hbus->resources_for_children);
3315	hv_pci_free_bridge_windows(hbus);
3316	irq_domain_remove(hbus->irq_domain);
3317	irq_domain_free_fwnode(hbus->sysdata.fwnode);
3318	put_hvpcibus(hbus);
3319	wait_for_completion(&hbus->remove_event);
3320	destroy_workqueue(hbus->wq);
3321
3322	hv_put_dom_num(hbus->sysdata.domain);
3323
3324	kfree(hbus);
3325	return ret;
3326}
3327
3328static int hv_pci_suspend(struct hv_device *hdev)
3329{
3330	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3331	enum hv_pcibus_state old_state;
3332	int ret;
3333
3334	/*
3335	 * hv_pci_suspend() must make sure there are no pending work items
3336	 * before calling vmbus_close(), since it runs in a process context
3337	 * as a callback in dpm_suspend().  When it starts to run, the channel
3338	 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3339	 * context, can be still running concurrently and scheduling new work
3340	 * items onto hbus->wq in hv_pci_devices_present() and
3341	 * hv_pci_eject_device(), and the work item handlers can access the
3342	 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3343	 * the work item handler pci_devices_present_work() ->
3344	 * new_pcichild_device() writes to the vmbus channel.
3345	 *
3346	 * To eliminate the race, hv_pci_suspend() disables the channel
3347	 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3348	 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3349	 * it knows that no new work item can be scheduled, and then it flushes
3350	 * hbus->wq and safely closes the vmbus channel.
3351	 */
3352	tasklet_disable(&hdev->channel->callback_event);
3353
3354	/* Change the hbus state to prevent new work items. */
3355	old_state = hbus->state;
3356	if (hbus->state == hv_pcibus_installed)
3357		hbus->state = hv_pcibus_removing;
3358
3359	tasklet_enable(&hdev->channel->callback_event);
3360
3361	if (old_state != hv_pcibus_installed)
3362		return -EINVAL;
3363
3364	flush_workqueue(hbus->wq);
3365
3366	ret = hv_pci_bus_exit(hdev, true);
3367	if (ret)
3368		return ret;
3369
3370	vmbus_close(hdev->channel);
3371
3372	return 0;
3373}
3374
3375static int hv_pci_resume(struct hv_device *hdev)
3376{
3377	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3378	enum pci_protocol_version_t version[1];
3379	int ret;
3380
3381	hbus->state = hv_pcibus_init;
3382
3383	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3384			 hv_pci_onchannelcallback, hbus);
3385	if (ret)
3386		return ret;
3387
3388	/* Only use the version that was in use before hibernation. */
3389	version[0] = hbus->protocol_version;
3390	ret = hv_pci_protocol_negotiation(hdev, version, 1);
3391	if (ret)
3392		goto out;
3393
3394	ret = hv_pci_query_relations(hdev);
3395	if (ret)
3396		goto out;
3397
3398	ret = hv_pci_enter_d0(hdev);
3399	if (ret)
3400		goto out;
3401
3402	ret = hv_send_resources_allocated(hdev);
3403	if (ret)
3404		goto out;
3405
3406	prepopulate_bars(hbus);
3407
3408	hbus->state = hv_pcibus_installed;
3409	return 0;
3410out:
3411	vmbus_close(hdev->channel);
3412	return ret;
3413}
3414
3415static const struct hv_vmbus_device_id hv_pci_id_table[] = {
3416	/* PCI Pass-through Class ID */
3417	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
3418	{ HV_PCIE_GUID, },
3419	{ },
3420};
3421
3422MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
3423
3424static struct hv_driver hv_pci_drv = {
3425	.name		= "hv_pci",
3426	.id_table	= hv_pci_id_table,
3427	.probe		= hv_pci_probe,
3428	.remove		= hv_pci_remove,
3429	.suspend	= hv_pci_suspend,
3430	.resume		= hv_pci_resume,
3431};
3432
3433static void __exit exit_hv_pci_drv(void)
3434{
3435	vmbus_driver_unregister(&hv_pci_drv);
3436
3437	hvpci_block_ops.read_block = NULL;
3438	hvpci_block_ops.write_block = NULL;
3439	hvpci_block_ops.reg_blk_invalidate = NULL;
3440}
3441
3442static int __init init_hv_pci_drv(void)
3443{
3444	/* Set the invalid domain number's bit, so it will not be used */
3445	set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
3446
3447	/* Initialize PCI block r/w interface */
3448	hvpci_block_ops.read_block = hv_read_config_block;
3449	hvpci_block_ops.write_block = hv_write_config_block;
3450	hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
3451
3452	return vmbus_driver_register(&hv_pci_drv);
3453}
3454
3455module_init(init_hv_pci_drv);
3456module_exit(exit_hv_pci_drv);
3457
3458MODULE_DESCRIPTION("Hyper-V PCI");
3459MODULE_LICENSE("GPL v2");
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) Microsoft Corporation.
   4 *
   5 * Author:
   6 *   Jake Oshins <jakeo@microsoft.com>
   7 *
   8 * This driver acts as a paravirtual front-end for PCI Express root buses.
   9 * When a PCI Express function (either an entire device or an SR-IOV
  10 * Virtual Function) is being passed through to the VM, this driver exposes
  11 * a new bus to the guest VM.  This is modeled as a root PCI bus because
  12 * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
  13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
  14 * until a device as been exposed using this driver.
  15 *
  16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
  17 * the PCI Firmware Specifications.  Thus while each device passed through
  18 * to the VM using this front-end will appear at "device 0", the domain will
  19 * be unique.  Typically, each bus will have one PCI function on it, though
  20 * this driver does support more than one.
  21 *
  22 * In order to map the interrupts from the device through to the guest VM,
  23 * this driver also implements an IRQ Domain, which handles interrupts (either
  24 * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
  25 * set up, torn down, or reaffined, this driver communicates with the
  26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
  27 * interrupt will be delivered to the correct virtual processor at the right
  28 * vector.  This driver does not support level-triggered (line-based)
  29 * interrupts, and will report that the Interrupt Line register in the
  30 * function's configuration space is zero.
  31 *
  32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
  33 * facilities.  For instance, the configuration space of a function exposed
  34 * by Hyper-V is mapped into a single page of memory space, and the
  35 * read and write handlers for config space must be aware of this mechanism.
  36 * Similarly, device setup and teardown involves messages sent to and from
  37 * the PCI back-end driver in Hyper-V.
  38 */
  39
  40#include <linux/kernel.h>
  41#include <linux/module.h>
  42#include <linux/pci.h>
  43#include <linux/delay.h>
  44#include <linux/semaphore.h>
  45#include <linux/irqdomain.h>
  46#include <asm/irqdomain.h>
  47#include <asm/apic.h>
  48#include <linux/irq.h>
  49#include <linux/msi.h>
  50#include <linux/hyperv.h>
  51#include <linux/refcount.h>
  52#include <asm/mshyperv.h>
  53
  54/*
  55 * Protocol versions. The low word is the minor version, the high word the
  56 * major version.
  57 */
  58
  59#define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
  60#define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
  61#define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
  62
  63enum pci_protocol_version_t {
  64	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
  65	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
 
  66};
  67
  68#define CPU_AFFINITY_ALL	-1ULL
  69
  70/*
  71 * Supported protocol versions in the order of probing - highest go
  72 * first.
  73 */
  74static enum pci_protocol_version_t pci_protocol_versions[] = {
 
  75	PCI_PROTOCOL_VERSION_1_2,
  76	PCI_PROTOCOL_VERSION_1_1,
  77};
  78
  79/*
  80 * Protocol version negotiated by hv_pci_protocol_negotiation().
  81 */
  82static enum pci_protocol_version_t pci_protocol_version;
  83
  84#define PCI_CONFIG_MMIO_LENGTH	0x2000
  85#define CFG_PAGE_OFFSET 0x1000
  86#define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
  87
  88#define MAX_SUPPORTED_MSI_MESSAGES 0x400
  89
  90#define STATUS_REVISION_MISMATCH 0xC0000059
  91
  92/* space for 32bit serial number as string */
  93#define SLOT_NAME_SIZE 11
  94
  95/*
  96 * Message Types
  97 */
  98
  99enum pci_message_type {
 100	/*
 101	 * Version 1.1
 102	 */
 103	PCI_MESSAGE_BASE                = 0x42490000,
 104	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
 105	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
 106	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
 107	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
 108	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
 109	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
 110	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
 111	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
 112	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
 113	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
 114	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
 115	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
 116	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
 117	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
 118	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
 119	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
 120	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
 121	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
 122	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
 123	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
 124	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
 125	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
 126	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
 
 127	PCI_MESSAGE_MAXIMUM
 128};
 129
 130/*
 131 * Structures defining the virtual PCI Express protocol.
 132 */
 133
 134union pci_version {
 135	struct {
 136		u16 minor_version;
 137		u16 major_version;
 138	} parts;
 139	u32 version;
 140} __packed;
 141
 142/*
 143 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
 144 * which is all this driver does.  This representation is the one used in
 145 * Windows, which is what is expected when sending this back and forth with
 146 * the Hyper-V parent partition.
 147 */
 148union win_slot_encoding {
 149	struct {
 150		u32	dev:5;
 151		u32	func:3;
 152		u32	reserved:24;
 153	} bits;
 154	u32 slot;
 155} __packed;
 156
 157/*
 158 * Pretty much as defined in the PCI Specifications.
 159 */
 160struct pci_function_description {
 161	u16	v_id;	/* vendor ID */
 162	u16	d_id;	/* device ID */
 163	u8	rev;
 164	u8	prog_intf;
 165	u8	subclass;
 166	u8	base_class;
 167	u32	subsystem_id;
 168	union win_slot_encoding win_slot;
 169	u32	ser;	/* serial number */
 170} __packed;
 171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172/**
 173 * struct hv_msi_desc
 174 * @vector:		IDT entry
 175 * @delivery_mode:	As defined in Intel's Programmer's
 176 *			Reference Manual, Volume 3, Chapter 8.
 177 * @vector_count:	Number of contiguous entries in the
 178 *			Interrupt Descriptor Table that are
 179 *			occupied by this Message-Signaled
 180 *			Interrupt. For "MSI", as first defined
 181 *			in PCI 2.2, this can be between 1 and
 182 *			32. For "MSI-X," as first defined in PCI
 183 *			3.0, this must be 1, as each MSI-X table
 184 *			entry would have its own descriptor.
 185 * @reserved:		Empty space
 186 * @cpu_mask:		All the target virtual processors.
 187 */
 188struct hv_msi_desc {
 189	u8	vector;
 190	u8	delivery_mode;
 191	u16	vector_count;
 192	u32	reserved;
 193	u64	cpu_mask;
 194} __packed;
 195
 196/**
 197 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
 198 * @vector:		IDT entry
 199 * @delivery_mode:	As defined in Intel's Programmer's
 200 *			Reference Manual, Volume 3, Chapter 8.
 201 * @vector_count:	Number of contiguous entries in the
 202 *			Interrupt Descriptor Table that are
 203 *			occupied by this Message-Signaled
 204 *			Interrupt. For "MSI", as first defined
 205 *			in PCI 2.2, this can be between 1 and
 206 *			32. For "MSI-X," as first defined in PCI
 207 *			3.0, this must be 1, as each MSI-X table
 208 *			entry would have its own descriptor.
 209 * @processor_count:	number of bits enabled in array.
 210 * @processor_array:	All the target virtual processors.
 211 */
 212struct hv_msi_desc2 {
 213	u8	vector;
 214	u8	delivery_mode;
 215	u16	vector_count;
 216	u16	processor_count;
 217	u16	processor_array[32];
 218} __packed;
 219
 220/**
 221 * struct tran_int_desc
 222 * @reserved:		unused, padding
 223 * @vector_count:	same as in hv_msi_desc
 224 * @data:		This is the "data payload" value that is
 225 *			written by the device when it generates
 226 *			a message-signaled interrupt, either MSI
 227 *			or MSI-X.
 228 * @address:		This is the address to which the data
 229 *			payload is written on interrupt
 230 *			generation.
 231 */
 232struct tran_int_desc {
 233	u16	reserved;
 234	u16	vector_count;
 235	u32	data;
 236	u64	address;
 237} __packed;
 238
 239/*
 240 * A generic message format for virtual PCI.
 241 * Specific message formats are defined later in the file.
 242 */
 243
 244struct pci_message {
 245	u32 type;
 246} __packed;
 247
 248struct pci_child_message {
 249	struct pci_message message_type;
 250	union win_slot_encoding wslot;
 251} __packed;
 252
 253struct pci_incoming_message {
 254	struct vmpacket_descriptor hdr;
 255	struct pci_message message_type;
 256} __packed;
 257
 258struct pci_response {
 259	struct vmpacket_descriptor hdr;
 260	s32 status;			/* negative values are failures */
 261} __packed;
 262
 263struct pci_packet {
 264	void (*completion_func)(void *context, struct pci_response *resp,
 265				int resp_packet_size);
 266	void *compl_ctxt;
 267
 268	struct pci_message message[0];
 269};
 270
 271/*
 272 * Specific message types supporting the PCI protocol.
 273 */
 274
 275/*
 276 * Version negotiation message. Sent from the guest to the host.
 277 * The guest is free to try different versions until the host
 278 * accepts the version.
 279 *
 280 * pci_version: The protocol version requested.
 281 * is_last_attempt: If TRUE, this is the last version guest will request.
 282 * reservedz: Reserved field, set to zero.
 283 */
 284
 285struct pci_version_request {
 286	struct pci_message message_type;
 287	u32 protocol_version;
 288} __packed;
 289
 290/*
 291 * Bus D0 Entry.  This is sent from the guest to the host when the virtual
 292 * bus (PCI Express port) is ready for action.
 293 */
 294
 295struct pci_bus_d0_entry {
 296	struct pci_message message_type;
 297	u32 reserved;
 298	u64 mmio_base;
 299} __packed;
 300
 301struct pci_bus_relations {
 302	struct pci_incoming_message incoming;
 303	u32 device_count;
 304	struct pci_function_description func[0];
 
 
 
 
 
 
 305} __packed;
 306
 307struct pci_q_res_req_response {
 308	struct vmpacket_descriptor hdr;
 309	s32 status;			/* negative values are failures */
 310	u32 probed_bar[6];
 311} __packed;
 312
 313struct pci_set_power {
 314	struct pci_message message_type;
 315	union win_slot_encoding wslot;
 316	u32 power_state;		/* In Windows terms */
 317	u32 reserved;
 318} __packed;
 319
 320struct pci_set_power_response {
 321	struct vmpacket_descriptor hdr;
 322	s32 status;			/* negative values are failures */
 323	union win_slot_encoding wslot;
 324	u32 resultant_state;		/* In Windows terms */
 325	u32 reserved;
 326} __packed;
 327
 328struct pci_resources_assigned {
 329	struct pci_message message_type;
 330	union win_slot_encoding wslot;
 331	u8 memory_range[0x14][6];	/* not used here */
 332	u32 msi_descriptors;
 333	u32 reserved[4];
 334} __packed;
 335
 336struct pci_resources_assigned2 {
 337	struct pci_message message_type;
 338	union win_slot_encoding wslot;
 339	u8 memory_range[0x14][6];	/* not used here */
 340	u32 msi_descriptor_count;
 341	u8 reserved[70];
 342} __packed;
 343
 344struct pci_create_interrupt {
 345	struct pci_message message_type;
 346	union win_slot_encoding wslot;
 347	struct hv_msi_desc int_desc;
 348} __packed;
 349
 350struct pci_create_int_response {
 351	struct pci_response response;
 352	u32 reserved;
 353	struct tran_int_desc int_desc;
 354} __packed;
 355
 356struct pci_create_interrupt2 {
 357	struct pci_message message_type;
 358	union win_slot_encoding wslot;
 359	struct hv_msi_desc2 int_desc;
 360} __packed;
 361
 362struct pci_delete_interrupt {
 363	struct pci_message message_type;
 364	union win_slot_encoding wslot;
 365	struct tran_int_desc int_desc;
 366} __packed;
 367
 368/*
 369 * Note: the VM must pass a valid block id, wslot and bytes_requested.
 370 */
 371struct pci_read_block {
 372	struct pci_message message_type;
 373	u32 block_id;
 374	union win_slot_encoding wslot;
 375	u32 bytes_requested;
 376} __packed;
 377
 378struct pci_read_block_response {
 379	struct vmpacket_descriptor hdr;
 380	u32 status;
 381	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
 382} __packed;
 383
 384/*
 385 * Note: the VM must pass a valid block id, wslot and byte_count.
 386 */
 387struct pci_write_block {
 388	struct pci_message message_type;
 389	u32 block_id;
 390	union win_slot_encoding wslot;
 391	u32 byte_count;
 392	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
 393} __packed;
 394
 395struct pci_dev_inval_block {
 396	struct pci_incoming_message incoming;
 397	union win_slot_encoding wslot;
 398	u64 block_mask;
 399} __packed;
 400
 401struct pci_dev_incoming {
 402	struct pci_incoming_message incoming;
 403	union win_slot_encoding wslot;
 404} __packed;
 405
 406struct pci_eject_response {
 407	struct pci_message message_type;
 408	union win_slot_encoding wslot;
 409	u32 status;
 410} __packed;
 411
 412static int pci_ring_size = (4 * PAGE_SIZE);
 413
 414/*
 415 * Definitions or interrupt steering hypercall.
 416 */
 417#define HV_PARTITION_ID_SELF		((u64)-1)
 418#define HVCALL_RETARGET_INTERRUPT	0x7e
 419
 420struct hv_interrupt_entry {
 421	u32	source;			/* 1 for MSI(-X) */
 422	u32	reserved1;
 423	u32	address;
 424	u32	data;
 425};
 426
 427/*
 428 * flags for hv_device_interrupt_target.flags
 429 */
 430#define HV_DEVICE_INTERRUPT_TARGET_MULTICAST		1
 431#define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET	2
 432
 433struct hv_device_interrupt_target {
 434	u32	vector;
 435	u32	flags;
 436	union {
 437		u64		 vp_mask;
 438		struct hv_vpset vp_set;
 439	};
 440};
 441
 442struct retarget_msi_interrupt {
 443	u64	partition_id;		/* use "self" */
 444	u64	device_id;
 445	struct hv_interrupt_entry int_entry;
 446	u64	reserved2;
 447	struct hv_device_interrupt_target int_target;
 448} __packed __aligned(8);
 449
 450/*
 451 * Driver specific state.
 452 */
 453
 454enum hv_pcibus_state {
 455	hv_pcibus_init = 0,
 456	hv_pcibus_probed,
 457	hv_pcibus_installed,
 
 458	hv_pcibus_removed,
 459	hv_pcibus_maximum
 460};
 461
 462struct hv_pcibus_device {
 463	struct pci_sysdata sysdata;
 
 
 464	enum hv_pcibus_state state;
 465	refcount_t remove_lock;
 466	struct hv_device *hdev;
 467	resource_size_t low_mmio_space;
 468	resource_size_t high_mmio_space;
 469	struct resource *mem_config;
 470	struct resource *low_mmio_res;
 471	struct resource *high_mmio_res;
 472	struct completion *survey_event;
 473	struct completion remove_event;
 474	struct pci_bus *pci_bus;
 475	spinlock_t config_lock;	/* Avoid two threads writing index page */
 476	spinlock_t device_list_lock;	/* Protect lists below */
 477	void __iomem *cfg_addr;
 478
 479	struct list_head resources_for_children;
 480
 481	struct list_head children;
 482	struct list_head dr_list;
 483
 484	struct msi_domain_info msi_info;
 485	struct msi_controller msi_chip;
 486	struct irq_domain *irq_domain;
 487
 488	spinlock_t retarget_msi_interrupt_lock;
 489
 490	struct workqueue_struct *wq;
 491
 
 
 
 492	/* hypercall arg, must not cross page boundary */
 493	struct retarget_msi_interrupt retarget_msi_interrupt_params;
 494
 495	/*
 496	 * Don't put anything here: retarget_msi_interrupt_params must be last
 497	 */
 498};
 499
 500/*
 501 * Tracks "Device Relations" messages from the host, which must be both
 502 * processed in order and deferred so that they don't run in the context
 503 * of the incoming packet callback.
 504 */
 505struct hv_dr_work {
 506	struct work_struct wrk;
 507	struct hv_pcibus_device *bus;
 508};
 509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 510struct hv_dr_state {
 511	struct list_head list_entry;
 512	u32 device_count;
 513	struct pci_function_description func[0];
 514};
 515
 516enum hv_pcichild_state {
 517	hv_pcichild_init = 0,
 518	hv_pcichild_requirements,
 519	hv_pcichild_resourced,
 520	hv_pcichild_ejecting,
 521	hv_pcichild_maximum
 522};
 523
 524struct hv_pci_dev {
 525	/* List protected by pci_rescan_remove_lock */
 526	struct list_head list_entry;
 527	refcount_t refs;
 528	enum hv_pcichild_state state;
 529	struct pci_slot *pci_slot;
 530	struct pci_function_description desc;
 531	bool reported_missing;
 532	struct hv_pcibus_device *hbus;
 533	struct work_struct wrk;
 534
 535	void (*block_invalidate)(void *context, u64 block_mask);
 536	void *invalidate_context;
 537
 538	/*
 539	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
 540	 * read it back, for each of the BAR offsets within config space.
 541	 */
 542	u32 probed_bar[6];
 543};
 544
 545struct hv_pci_compl {
 546	struct completion host_event;
 547	s32 completion_status;
 548};
 549
 550static void hv_pci_onchannelcallback(void *context);
 551
 552/**
 553 * hv_pci_generic_compl() - Invoked for a completion packet
 554 * @context:		Set up by the sender of the packet.
 555 * @resp:		The response packet
 556 * @resp_packet_size:	Size in bytes of the packet
 557 *
 558 * This function is used to trigger an event and report status
 559 * for any message for which the completion packet contains a
 560 * status and nothing else.
 561 */
 562static void hv_pci_generic_compl(void *context, struct pci_response *resp,
 563				 int resp_packet_size)
 564{
 565	struct hv_pci_compl *comp_pkt = context;
 566
 567	if (resp_packet_size >= offsetofend(struct pci_response, status))
 568		comp_pkt->completion_status = resp->status;
 569	else
 570		comp_pkt->completion_status = -1;
 571
 572	complete(&comp_pkt->host_event);
 573}
 574
 575static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
 576						u32 wslot);
 577
 578static void get_pcichild(struct hv_pci_dev *hpdev)
 579{
 580	refcount_inc(&hpdev->refs);
 581}
 582
 583static void put_pcichild(struct hv_pci_dev *hpdev)
 584{
 585	if (refcount_dec_and_test(&hpdev->refs))
 586		kfree(hpdev);
 587}
 588
 589static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
 590static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
 591
 592/*
 593 * There is no good way to get notified from vmbus_onoffer_rescind(),
 594 * so let's use polling here, since this is not a hot path.
 595 */
 596static int wait_for_response(struct hv_device *hdev,
 597			     struct completion *comp)
 598{
 599	while (true) {
 600		if (hdev->channel->rescind) {
 601			dev_warn_once(&hdev->device, "The device is gone.\n");
 602			return -ENODEV;
 603		}
 604
 605		if (wait_for_completion_timeout(comp, HZ / 10))
 606			break;
 607	}
 608
 609	return 0;
 610}
 611
 612/**
 613 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
 614 * @devfn:	The Linux representation of PCI slot
 615 *
 616 * Windows uses a slightly different representation of PCI slot.
 617 *
 618 * Return: The Windows representation
 619 */
 620static u32 devfn_to_wslot(int devfn)
 621{
 622	union win_slot_encoding wslot;
 623
 624	wslot.slot = 0;
 625	wslot.bits.dev = PCI_SLOT(devfn);
 626	wslot.bits.func = PCI_FUNC(devfn);
 627
 628	return wslot.slot;
 629}
 630
 631/**
 632 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
 633 * @wslot:	The Windows representation of PCI slot
 634 *
 635 * Windows uses a slightly different representation of PCI slot.
 636 *
 637 * Return: The Linux representation
 638 */
 639static int wslot_to_devfn(u32 wslot)
 640{
 641	union win_slot_encoding slot_no;
 642
 643	slot_no.slot = wslot;
 644	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
 645}
 646
 647/*
 648 * PCI Configuration Space for these root PCI buses is implemented as a pair
 649 * of pages in memory-mapped I/O space.  Writing to the first page chooses
 650 * the PCI function being written or read.  Once the first page has been
 651 * written to, the following page maps in the entire configuration space of
 652 * the function.
 653 */
 654
 655/**
 656 * _hv_pcifront_read_config() - Internal PCI config read
 657 * @hpdev:	The PCI driver's representation of the device
 658 * @where:	Offset within config space
 659 * @size:	Size of the transfer
 660 * @val:	Pointer to the buffer receiving the data
 661 */
 662static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
 663				     int size, u32 *val)
 664{
 665	unsigned long flags;
 666	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
 667
 668	/*
 669	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
 670	 */
 671	if (where + size <= PCI_COMMAND) {
 672		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
 673	} else if (where >= PCI_CLASS_REVISION && where + size <=
 674		   PCI_CACHE_LINE_SIZE) {
 675		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
 676		       PCI_CLASS_REVISION, size);
 677	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
 678		   PCI_ROM_ADDRESS) {
 679		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
 680		       PCI_SUBSYSTEM_VENDOR_ID, size);
 681	} else if (where >= PCI_ROM_ADDRESS && where + size <=
 682		   PCI_CAPABILITY_LIST) {
 683		/* ROM BARs are unimplemented */
 684		*val = 0;
 685	} else if (where >= PCI_INTERRUPT_LINE && where + size <=
 686		   PCI_INTERRUPT_PIN) {
 687		/*
 688		 * Interrupt Line and Interrupt PIN are hard-wired to zero
 689		 * because this front-end only supports message-signaled
 690		 * interrupts.
 691		 */
 692		*val = 0;
 693	} else if (where + size <= CFG_PAGE_SIZE) {
 694		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 695		/* Choose the function to be read. (See comment above) */
 696		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 697		/* Make sure the function was chosen before we start reading. */
 698		mb();
 699		/* Read from that function's config space. */
 700		switch (size) {
 701		case 1:
 702			*val = readb(addr);
 703			break;
 704		case 2:
 705			*val = readw(addr);
 706			break;
 707		default:
 708			*val = readl(addr);
 709			break;
 710		}
 711		/*
 712		 * Make sure the read was done before we release the spinlock
 713		 * allowing consecutive reads/writes.
 714		 */
 715		mb();
 716		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 717	} else {
 718		dev_err(&hpdev->hbus->hdev->device,
 719			"Attempt to read beyond a function's config space.\n");
 720	}
 721}
 722
 723static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
 724{
 725	u16 ret;
 726	unsigned long flags;
 727	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
 728			     PCI_VENDOR_ID;
 729
 730	spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 731
 732	/* Choose the function to be read. (See comment above) */
 733	writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 734	/* Make sure the function was chosen before we start reading. */
 735	mb();
 736	/* Read from that function's config space. */
 737	ret = readw(addr);
 738	/*
 739	 * mb() is not required here, because the spin_unlock_irqrestore()
 740	 * is a barrier.
 741	 */
 742
 743	spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 744
 745	return ret;
 746}
 747
 748/**
 749 * _hv_pcifront_write_config() - Internal PCI config write
 750 * @hpdev:	The PCI driver's representation of the device
 751 * @where:	Offset within config space
 752 * @size:	Size of the transfer
 753 * @val:	The data being transferred
 754 */
 755static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
 756				      int size, u32 val)
 757{
 758	unsigned long flags;
 759	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
 760
 761	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
 762	    where + size <= PCI_CAPABILITY_LIST) {
 763		/* SSIDs and ROM BARs are read-only */
 764	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
 765		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 766		/* Choose the function to be written. (See comment above) */
 767		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 768		/* Make sure the function was chosen before we start writing. */
 769		wmb();
 770		/* Write to that function's config space. */
 771		switch (size) {
 772		case 1:
 773			writeb(val, addr);
 774			break;
 775		case 2:
 776			writew(val, addr);
 777			break;
 778		default:
 779			writel(val, addr);
 780			break;
 781		}
 782		/*
 783		 * Make sure the write was done before we release the spinlock
 784		 * allowing consecutive reads/writes.
 785		 */
 786		mb();
 787		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 788	} else {
 789		dev_err(&hpdev->hbus->hdev->device,
 790			"Attempt to write beyond a function's config space.\n");
 791	}
 792}
 793
 794/**
 795 * hv_pcifront_read_config() - Read configuration space
 796 * @bus: PCI Bus structure
 797 * @devfn: Device/function
 798 * @where: Offset from base
 799 * @size: Byte/word/dword
 800 * @val: Value to be read
 801 *
 802 * Return: PCIBIOS_SUCCESSFUL on success
 803 *	   PCIBIOS_DEVICE_NOT_FOUND on failure
 804 */
 805static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
 806				   int where, int size, u32 *val)
 807{
 808	struct hv_pcibus_device *hbus =
 809		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
 810	struct hv_pci_dev *hpdev;
 811
 812	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
 813	if (!hpdev)
 814		return PCIBIOS_DEVICE_NOT_FOUND;
 815
 816	_hv_pcifront_read_config(hpdev, where, size, val);
 817
 818	put_pcichild(hpdev);
 819	return PCIBIOS_SUCCESSFUL;
 820}
 821
 822/**
 823 * hv_pcifront_write_config() - Write configuration space
 824 * @bus: PCI Bus structure
 825 * @devfn: Device/function
 826 * @where: Offset from base
 827 * @size: Byte/word/dword
 828 * @val: Value to be written to device
 829 *
 830 * Return: PCIBIOS_SUCCESSFUL on success
 831 *	   PCIBIOS_DEVICE_NOT_FOUND on failure
 832 */
 833static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
 834				    int where, int size, u32 val)
 835{
 836	struct hv_pcibus_device *hbus =
 837	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
 838	struct hv_pci_dev *hpdev;
 839
 840	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
 841	if (!hpdev)
 842		return PCIBIOS_DEVICE_NOT_FOUND;
 843
 844	_hv_pcifront_write_config(hpdev, where, size, val);
 845
 846	put_pcichild(hpdev);
 847	return PCIBIOS_SUCCESSFUL;
 848}
 849
 850/* PCIe operations */
 851static struct pci_ops hv_pcifront_ops = {
 852	.read  = hv_pcifront_read_config,
 853	.write = hv_pcifront_write_config,
 854};
 855
 856/*
 857 * Paravirtual backchannel
 858 *
 859 * Hyper-V SR-IOV provides a backchannel mechanism in software for
 860 * communication between a VF driver and a PF driver.  These
 861 * "configuration blocks" are similar in concept to PCI configuration space,
 862 * but instead of doing reads and writes in 32-bit chunks through a very slow
 863 * path, packets of up to 128 bytes can be sent or received asynchronously.
 864 *
 865 * Nearly every SR-IOV device contains just such a communications channel in
 866 * hardware, so using this one in software is usually optional.  Using the
 867 * software channel, however, allows driver implementers to leverage software
 868 * tools that fuzz the communications channel looking for vulnerabilities.
 869 *
 870 * The usage model for these packets puts the responsibility for reading or
 871 * writing on the VF driver.  The VF driver sends a read or a write packet,
 872 * indicating which "block" is being referred to by number.
 873 *
 874 * If the PF driver wishes to initiate communication, it can "invalidate" one or
 875 * more of the first 64 blocks.  This invalidation is delivered via a callback
 876 * supplied by the VF driver by this driver.
 877 *
 878 * No protocol is implied, except that supplied by the PF and VF drivers.
 879 */
 880
 881struct hv_read_config_compl {
 882	struct hv_pci_compl comp_pkt;
 883	void *buf;
 884	unsigned int len;
 885	unsigned int bytes_returned;
 886};
 887
 888/**
 889 * hv_pci_read_config_compl() - Invoked when a response packet
 890 * for a read config block operation arrives.
 891 * @context:		Identifies the read config operation
 892 * @resp:		The response packet itself
 893 * @resp_packet_size:	Size in bytes of the response packet
 894 */
 895static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
 896				     int resp_packet_size)
 897{
 898	struct hv_read_config_compl *comp = context;
 899	struct pci_read_block_response *read_resp =
 900		(struct pci_read_block_response *)resp;
 901	unsigned int data_len, hdr_len;
 902
 903	hdr_len = offsetof(struct pci_read_block_response, bytes);
 904	if (resp_packet_size < hdr_len) {
 905		comp->comp_pkt.completion_status = -1;
 906		goto out;
 907	}
 908
 909	data_len = resp_packet_size - hdr_len;
 910	if (data_len > 0 && read_resp->status == 0) {
 911		comp->bytes_returned = min(comp->len, data_len);
 912		memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
 913	} else {
 914		comp->bytes_returned = 0;
 915	}
 916
 917	comp->comp_pkt.completion_status = read_resp->status;
 918out:
 919	complete(&comp->comp_pkt.host_event);
 920}
 921
 922/**
 923 * hv_read_config_block() - Sends a read config block request to
 924 * the back-end driver running in the Hyper-V parent partition.
 925 * @pdev:		The PCI driver's representation for this device.
 926 * @buf:		Buffer into which the config block will be copied.
 927 * @len:		Size in bytes of buf.
 928 * @block_id:		Identifies the config block which has been requested.
 929 * @bytes_returned:	Size which came back from the back-end driver.
 930 *
 931 * Return: 0 on success, -errno on failure
 932 */
 933int hv_read_config_block(struct pci_dev *pdev, void *buf, unsigned int len,
 934			 unsigned int block_id, unsigned int *bytes_returned)
 
 935{
 936	struct hv_pcibus_device *hbus =
 937		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
 938			     sysdata);
 939	struct {
 940		struct pci_packet pkt;
 941		char buf[sizeof(struct pci_read_block)];
 942	} pkt;
 943	struct hv_read_config_compl comp_pkt;
 944	struct pci_read_block *read_blk;
 945	int ret;
 946
 947	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
 948		return -EINVAL;
 949
 950	init_completion(&comp_pkt.comp_pkt.host_event);
 951	comp_pkt.buf = buf;
 952	comp_pkt.len = len;
 953
 954	memset(&pkt, 0, sizeof(pkt));
 955	pkt.pkt.completion_func = hv_pci_read_config_compl;
 956	pkt.pkt.compl_ctxt = &comp_pkt;
 957	read_blk = (struct pci_read_block *)&pkt.pkt.message;
 958	read_blk->message_type.type = PCI_READ_BLOCK;
 959	read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
 960	read_blk->block_id = block_id;
 961	read_blk->bytes_requested = len;
 962
 963	ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
 964			       sizeof(*read_blk), (unsigned long)&pkt.pkt,
 965			       VM_PKT_DATA_INBAND,
 966			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
 967	if (ret)
 968		return ret;
 969
 970	ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
 971	if (ret)
 972		return ret;
 973
 974	if (comp_pkt.comp_pkt.completion_status != 0 ||
 975	    comp_pkt.bytes_returned == 0) {
 976		dev_err(&hbus->hdev->device,
 977			"Read Config Block failed: 0x%x, bytes_returned=%d\n",
 978			comp_pkt.comp_pkt.completion_status,
 979			comp_pkt.bytes_returned);
 980		return -EIO;
 981	}
 982
 983	*bytes_returned = comp_pkt.bytes_returned;
 984	return 0;
 985}
 986
 987/**
 988 * hv_pci_write_config_compl() - Invoked when a response packet for a write
 989 * config block operation arrives.
 990 * @context:		Identifies the write config operation
 991 * @resp:		The response packet itself
 992 * @resp_packet_size:	Size in bytes of the response packet
 993 */
 994static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
 995				      int resp_packet_size)
 996{
 997	struct hv_pci_compl *comp_pkt = context;
 998
 999	comp_pkt->completion_status = resp->status;
1000	complete(&comp_pkt->host_event);
1001}
1002
1003/**
1004 * hv_write_config_block() - Sends a write config block request to the
1005 * back-end driver running in the Hyper-V parent partition.
1006 * @pdev:		The PCI driver's representation for this device.
1007 * @buf:		Buffer from which the config block will	be copied.
1008 * @len:		Size in bytes of buf.
1009 * @block_id:		Identifies the config block which is being written.
1010 *
1011 * Return: 0 on success, -errno on failure
1012 */
1013int hv_write_config_block(struct pci_dev *pdev, void *buf, unsigned int len,
1014			  unsigned int block_id)
1015{
1016	struct hv_pcibus_device *hbus =
1017		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1018			     sysdata);
1019	struct {
1020		struct pci_packet pkt;
1021		char buf[sizeof(struct pci_write_block)];
1022		u32 reserved;
1023	} pkt;
1024	struct hv_pci_compl comp_pkt;
1025	struct pci_write_block *write_blk;
1026	u32 pkt_size;
1027	int ret;
1028
1029	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1030		return -EINVAL;
1031
1032	init_completion(&comp_pkt.host_event);
1033
1034	memset(&pkt, 0, sizeof(pkt));
1035	pkt.pkt.completion_func = hv_pci_write_config_compl;
1036	pkt.pkt.compl_ctxt = &comp_pkt;
1037	write_blk = (struct pci_write_block *)&pkt.pkt.message;
1038	write_blk->message_type.type = PCI_WRITE_BLOCK;
1039	write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1040	write_blk->block_id = block_id;
1041	write_blk->byte_count = len;
1042	memcpy(write_blk->bytes, buf, len);
1043	pkt_size = offsetof(struct pci_write_block, bytes) + len;
1044	/*
1045	 * This quirk is required on some hosts shipped around 2018, because
1046	 * these hosts don't check the pkt_size correctly (new hosts have been
1047	 * fixed since early 2019). The quirk is also safe on very old hosts
1048	 * and new hosts, because, on them, what really matters is the length
1049	 * specified in write_blk->byte_count.
1050	 */
1051	pkt_size += sizeof(pkt.reserved);
1052
1053	ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1054			       (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1055			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1056	if (ret)
1057		return ret;
1058
1059	ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1060	if (ret)
1061		return ret;
1062
1063	if (comp_pkt.completion_status != 0) {
1064		dev_err(&hbus->hdev->device,
1065			"Write Config Block failed: 0x%x\n",
1066			comp_pkt.completion_status);
1067		return -EIO;
1068	}
1069
1070	return 0;
1071}
1072
1073/**
1074 * hv_register_block_invalidate() - Invoked when a config block invalidation
1075 * arrives from the back-end driver.
1076 * @pdev:		The PCI driver's representation for this device.
1077 * @context:		Identifies the device.
1078 * @block_invalidate:	Identifies all of the blocks being invalidated.
1079 *
1080 * Return: 0 on success, -errno on failure
1081 */
1082int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1083				 void (*block_invalidate)(void *context,
1084							  u64 block_mask))
1085{
1086	struct hv_pcibus_device *hbus =
1087		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1088			     sysdata);
1089	struct hv_pci_dev *hpdev;
1090
1091	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1092	if (!hpdev)
1093		return -ENODEV;
1094
1095	hpdev->block_invalidate = block_invalidate;
1096	hpdev->invalidate_context = context;
1097
1098	put_pcichild(hpdev);
1099	return 0;
1100
1101}
1102
1103/* Interrupt management hooks */
1104static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1105			     struct tran_int_desc *int_desc)
1106{
1107	struct pci_delete_interrupt *int_pkt;
1108	struct {
1109		struct pci_packet pkt;
1110		u8 buffer[sizeof(struct pci_delete_interrupt)];
1111	} ctxt;
1112
1113	memset(&ctxt, 0, sizeof(ctxt));
1114	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1115	int_pkt->message_type.type =
1116		PCI_DELETE_INTERRUPT_MESSAGE;
1117	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1118	int_pkt->int_desc = *int_desc;
1119	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1120			 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
1121	kfree(int_desc);
1122}
1123
1124/**
1125 * hv_msi_free() - Free the MSI.
1126 * @domain:	The interrupt domain pointer
1127 * @info:	Extra MSI-related context
1128 * @irq:	Identifies the IRQ.
1129 *
1130 * The Hyper-V parent partition and hypervisor are tracking the
1131 * messages that are in use, keeping the interrupt redirection
1132 * table up to date.  This callback sends a message that frees
1133 * the IRT entry and related tracking nonsense.
1134 */
1135static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1136			unsigned int irq)
1137{
1138	struct hv_pcibus_device *hbus;
1139	struct hv_pci_dev *hpdev;
1140	struct pci_dev *pdev;
1141	struct tran_int_desc *int_desc;
1142	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1143	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1144
1145	pdev = msi_desc_to_pci_dev(msi);
1146	hbus = info->data;
1147	int_desc = irq_data_get_irq_chip_data(irq_data);
1148	if (!int_desc)
1149		return;
1150
1151	irq_data->chip_data = NULL;
1152	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1153	if (!hpdev) {
1154		kfree(int_desc);
1155		return;
1156	}
1157
1158	hv_int_desc_free(hpdev, int_desc);
1159	put_pcichild(hpdev);
1160}
1161
1162static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
1163			   bool force)
1164{
1165	struct irq_data *parent = data->parent_data;
1166
1167	return parent->chip->irq_set_affinity(parent, dest, force);
1168}
1169
1170static void hv_irq_mask(struct irq_data *data)
1171{
1172	pci_msi_mask_irq(data);
1173}
1174
1175/**
1176 * hv_irq_unmask() - "Unmask" the IRQ by setting its current
1177 * affinity.
1178 * @data:	Describes the IRQ
1179 *
1180 * Build new a destination for the MSI and make a hypercall to
1181 * update the Interrupt Redirection Table. "Device Logical ID"
1182 * is built out of this PCI bus's instance GUID and the function
1183 * number of the device.
1184 */
1185static void hv_irq_unmask(struct irq_data *data)
1186{
1187	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
1188	struct irq_cfg *cfg = irqd_cfg(data);
1189	struct retarget_msi_interrupt *params;
1190	struct hv_pcibus_device *hbus;
1191	struct cpumask *dest;
1192	cpumask_var_t tmp;
1193	struct pci_bus *pbus;
1194	struct pci_dev *pdev;
1195	unsigned long flags;
1196	u32 var_size = 0;
1197	int cpu, nr_bank;
1198	u64 res;
1199
1200	dest = irq_data_get_effective_affinity_mask(data);
1201	pdev = msi_desc_to_pci_dev(msi_desc);
1202	pbus = pdev->bus;
1203	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1204
1205	spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
1206
1207	params = &hbus->retarget_msi_interrupt_params;
1208	memset(params, 0, sizeof(*params));
1209	params->partition_id = HV_PARTITION_ID_SELF;
1210	params->int_entry.source = 1; /* MSI(-X) */
1211	params->int_entry.address = msi_desc->msg.address_lo;
1212	params->int_entry.data = msi_desc->msg.data;
1213	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
1214			   (hbus->hdev->dev_instance.b[4] << 16) |
1215			   (hbus->hdev->dev_instance.b[7] << 8) |
1216			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
1217			   PCI_FUNC(pdev->devfn);
1218	params->int_target.vector = cfg->vector;
1219
1220	/*
1221	 * Honoring apic->irq_delivery_mode set to dest_Fixed by
1222	 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
1223	 * spurious interrupt storm. Not doing so does not seem to have a
1224	 * negative effect (yet?).
1225	 */
1226
1227	if (pci_protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
1228		/*
1229		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
1230		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
1231		 * with >64 VP support.
1232		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
1233		 * is not sufficient for this hypercall.
1234		 */
1235		params->int_target.flags |=
1236			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
1237
1238		if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
1239			res = 1;
1240			goto exit_unlock;
1241		}
1242
1243		cpumask_and(tmp, dest, cpu_online_mask);
1244		nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
1245		free_cpumask_var(tmp);
1246
1247		if (nr_bank <= 0) {
1248			res = 1;
1249			goto exit_unlock;
1250		}
1251
1252		/*
1253		 * var-sized hypercall, var-size starts after vp_mask (thus
1254		 * vp_set.format does not count, but vp_set.valid_bank_mask
1255		 * does).
1256		 */
1257		var_size = 1 + nr_bank;
1258	} else {
1259		for_each_cpu_and(cpu, dest, cpu_online_mask) {
1260			params->int_target.vp_mask |=
1261				(1ULL << hv_cpu_number_to_vp_number(cpu));
1262		}
1263	}
1264
1265	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
1266			      params, NULL);
1267
1268exit_unlock:
1269	spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
1270
1271	if (res) {
1272		dev_err(&hbus->hdev->device,
1273			"%s() failed: %#llx", __func__, res);
1274		return;
1275	}
1276
1277	pci_msi_unmask_irq(data);
1278}
1279
1280struct compose_comp_ctxt {
1281	struct hv_pci_compl comp_pkt;
1282	struct tran_int_desc int_desc;
1283};
1284
1285static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1286				 int resp_packet_size)
1287{
1288	struct compose_comp_ctxt *comp_pkt = context;
1289	struct pci_create_int_response *int_resp =
1290		(struct pci_create_int_response *)resp;
1291
1292	comp_pkt->comp_pkt.completion_status = resp->status;
1293	comp_pkt->int_desc = int_resp->int_desc;
1294	complete(&comp_pkt->comp_pkt.host_event);
1295}
1296
1297static u32 hv_compose_msi_req_v1(
1298	struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1299	u32 slot, u8 vector)
1300{
1301	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1302	int_pkt->wslot.slot = slot;
1303	int_pkt->int_desc.vector = vector;
1304	int_pkt->int_desc.vector_count = 1;
1305	int_pkt->int_desc.delivery_mode = dest_Fixed;
1306
1307	/*
1308	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1309	 * hv_irq_unmask().
1310	 */
1311	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1312
1313	return sizeof(*int_pkt);
1314}
1315
1316static u32 hv_compose_msi_req_v2(
1317	struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1318	u32 slot, u8 vector)
1319{
1320	int cpu;
1321
1322	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1323	int_pkt->wslot.slot = slot;
1324	int_pkt->int_desc.vector = vector;
1325	int_pkt->int_desc.vector_count = 1;
1326	int_pkt->int_desc.delivery_mode = dest_Fixed;
1327
1328	/*
1329	 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1330	 * by subsequent retarget in hv_irq_unmask().
1331	 */
1332	cpu = cpumask_first_and(affinity, cpu_online_mask);
1333	int_pkt->int_desc.processor_array[0] =
1334		hv_cpu_number_to_vp_number(cpu);
1335	int_pkt->int_desc.processor_count = 1;
1336
1337	return sizeof(*int_pkt);
1338}
1339
1340/**
1341 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1342 * @data:	Everything about this MSI
1343 * @msg:	Buffer that is filled in by this function
1344 *
1345 * This function unpacks the IRQ looking for target CPU set, IDT
1346 * vector and mode and sends a message to the parent partition
1347 * asking for a mapping for that tuple in this partition.  The
1348 * response supplies a data value and address to which that data
1349 * should be written to trigger that interrupt.
1350 */
1351static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1352{
1353	struct irq_cfg *cfg = irqd_cfg(data);
1354	struct hv_pcibus_device *hbus;
 
1355	struct hv_pci_dev *hpdev;
1356	struct pci_bus *pbus;
1357	struct pci_dev *pdev;
1358	struct cpumask *dest;
1359	unsigned long flags;
1360	struct compose_comp_ctxt comp;
1361	struct tran_int_desc *int_desc;
1362	struct {
1363		struct pci_packet pci_pkt;
1364		union {
1365			struct pci_create_interrupt v1;
1366			struct pci_create_interrupt2 v2;
1367		} int_pkts;
1368	} __packed ctxt;
1369
1370	u32 size;
1371	int ret;
1372
1373	pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1374	dest = irq_data_get_effective_affinity_mask(data);
1375	pbus = pdev->bus;
1376	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
 
1377	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1378	if (!hpdev)
1379		goto return_null_message;
1380
1381	/* Free any previous message that might have already been composed. */
1382	if (data->chip_data) {
1383		int_desc = data->chip_data;
1384		data->chip_data = NULL;
1385		hv_int_desc_free(hpdev, int_desc);
1386	}
1387
1388	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1389	if (!int_desc)
1390		goto drop_reference;
1391
1392	memset(&ctxt, 0, sizeof(ctxt));
1393	init_completion(&comp.comp_pkt.host_event);
1394	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1395	ctxt.pci_pkt.compl_ctxt = &comp;
1396
1397	switch (pci_protocol_version) {
1398	case PCI_PROTOCOL_VERSION_1_1:
1399		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1400					dest,
1401					hpdev->desc.win_slot.slot,
1402					cfg->vector);
1403		break;
1404
1405	case PCI_PROTOCOL_VERSION_1_2:
 
1406		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1407					dest,
1408					hpdev->desc.win_slot.slot,
1409					cfg->vector);
1410		break;
1411
1412	default:
1413		/* As we only negotiate protocol versions known to this driver,
1414		 * this path should never hit. However, this is it not a hot
1415		 * path so we print a message to aid future updates.
1416		 */
1417		dev_err(&hbus->hdev->device,
1418			"Unexpected vPCI protocol, update driver.");
1419		goto free_int_desc;
1420	}
1421
1422	ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1423			       size, (unsigned long)&ctxt.pci_pkt,
1424			       VM_PKT_DATA_INBAND,
1425			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1426	if (ret) {
1427		dev_err(&hbus->hdev->device,
1428			"Sending request for interrupt failed: 0x%x",
1429			comp.comp_pkt.completion_status);
1430		goto free_int_desc;
1431	}
1432
1433	/*
 
 
 
 
 
 
1434	 * Since this function is called with IRQ locks held, can't
1435	 * do normal wait for completion; instead poll.
1436	 */
1437	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
 
 
1438		/* 0xFFFF means an invalid PCI VENDOR ID. */
1439		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1440			dev_err_once(&hbus->hdev->device,
1441				     "the device has gone\n");
1442			goto free_int_desc;
1443		}
1444
1445		/*
1446		 * When the higher level interrupt code calls us with
1447		 * interrupt disabled, we must poll the channel by calling
1448		 * the channel callback directly when channel->target_cpu is
1449		 * the current CPU. When the higher level interrupt code
1450		 * calls us with interrupt enabled, let's add the
1451		 * local_irq_save()/restore() to avoid race:
1452		 * hv_pci_onchannelcallback() can also run in tasklet.
1453		 */
1454		local_irq_save(flags);
1455
1456		if (hbus->hdev->channel->target_cpu == smp_processor_id())
1457			hv_pci_onchannelcallback(hbus);
1458
1459		local_irq_restore(flags);
 
1460
1461		if (hpdev->state == hv_pcichild_ejecting) {
1462			dev_err_once(&hbus->hdev->device,
1463				     "the device is being ejected\n");
1464			goto free_int_desc;
1465		}
1466
1467		udelay(100);
1468	}
1469
 
 
1470	if (comp.comp_pkt.completion_status < 0) {
1471		dev_err(&hbus->hdev->device,
1472			"Request for interrupt failed: 0x%x",
1473			comp.comp_pkt.completion_status);
1474		goto free_int_desc;
1475	}
1476
1477	/*
1478	 * Record the assignment so that this can be unwound later. Using
1479	 * irq_set_chip_data() here would be appropriate, but the lock it takes
1480	 * is already held.
1481	 */
1482	*int_desc = comp.int_desc;
1483	data->chip_data = int_desc;
1484
1485	/* Pass up the result. */
1486	msg->address_hi = comp.int_desc.address >> 32;
1487	msg->address_lo = comp.int_desc.address & 0xffffffff;
1488	msg->data = comp.int_desc.data;
1489
1490	put_pcichild(hpdev);
1491	return;
1492
 
 
1493free_int_desc:
1494	kfree(int_desc);
1495drop_reference:
1496	put_pcichild(hpdev);
1497return_null_message:
1498	msg->address_hi = 0;
1499	msg->address_lo = 0;
1500	msg->data = 0;
1501}
1502
1503/* HW Interrupt Chip Descriptor */
1504static struct irq_chip hv_msi_irq_chip = {
1505	.name			= "Hyper-V PCIe MSI",
1506	.irq_compose_msi_msg	= hv_compose_msi_msg,
1507	.irq_set_affinity	= hv_set_affinity,
1508	.irq_ack		= irq_chip_ack_parent,
1509	.irq_mask		= hv_irq_mask,
1510	.irq_unmask		= hv_irq_unmask,
1511};
1512
1513static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info,
1514						   msi_alloc_info_t *arg)
1515{
1516	return arg->msi_hwirq;
1517}
1518
1519static struct msi_domain_ops hv_msi_ops = {
1520	.get_hwirq	= hv_msi_domain_ops_get_hwirq,
1521	.msi_prepare	= pci_msi_prepare,
1522	.set_desc	= pci_msi_set_desc,
1523	.msi_free	= hv_msi_free,
1524};
1525
1526/**
1527 * hv_pcie_init_irq_domain() - Initialize IRQ domain
1528 * @hbus:	The root PCI bus
1529 *
1530 * This function creates an IRQ domain which will be used for
1531 * interrupts from devices that have been passed through.  These
1532 * devices only support MSI and MSI-X, not line-based interrupts
1533 * or simulations of line-based interrupts through PCIe's
1534 * fabric-layer messages.  Because interrupts are remapped, we
1535 * can support multi-message MSI here.
1536 *
1537 * Return: '0' on success and error value on failure
1538 */
1539static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1540{
1541	hbus->msi_info.chip = &hv_msi_irq_chip;
1542	hbus->msi_info.ops = &hv_msi_ops;
1543	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1544		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1545		MSI_FLAG_PCI_MSIX);
1546	hbus->msi_info.handler = handle_edge_irq;
1547	hbus->msi_info.handler_name = "edge";
1548	hbus->msi_info.data = hbus;
1549	hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1550						     &hbus->msi_info,
1551						     x86_vector_domain);
1552	if (!hbus->irq_domain) {
1553		dev_err(&hbus->hdev->device,
1554			"Failed to build an MSI IRQ domain\n");
1555		return -ENODEV;
1556	}
1557
1558	return 0;
1559}
1560
1561/**
1562 * get_bar_size() - Get the address space consumed by a BAR
1563 * @bar_val:	Value that a BAR returned after -1 was written
1564 *              to it.
1565 *
1566 * This function returns the size of the BAR, rounded up to 1
1567 * page.  It has to be rounded up because the hypervisor's page
1568 * table entry that maps the BAR into the VM can't specify an
1569 * offset within a page.  The invariant is that the hypervisor
1570 * must place any BARs of smaller than page length at the
1571 * beginning of a page.
1572 *
1573 * Return:	Size in bytes of the consumed MMIO space.
1574 */
1575static u64 get_bar_size(u64 bar_val)
1576{
1577	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1578			PAGE_SIZE);
1579}
1580
1581/**
1582 * survey_child_resources() - Total all MMIO requirements
1583 * @hbus:	Root PCI bus, as understood by this driver
1584 */
1585static void survey_child_resources(struct hv_pcibus_device *hbus)
1586{
1587	struct hv_pci_dev *hpdev;
1588	resource_size_t bar_size = 0;
1589	unsigned long flags;
1590	struct completion *event;
1591	u64 bar_val;
1592	int i;
1593
1594	/* If nobody is waiting on the answer, don't compute it. */
1595	event = xchg(&hbus->survey_event, NULL);
1596	if (!event)
1597		return;
1598
1599	/* If the answer has already been computed, go with it. */
1600	if (hbus->low_mmio_space || hbus->high_mmio_space) {
1601		complete(event);
1602		return;
1603	}
1604
1605	spin_lock_irqsave(&hbus->device_list_lock, flags);
1606
1607	/*
1608	 * Due to an interesting quirk of the PCI spec, all memory regions
1609	 * for a child device are a power of 2 in size and aligned in memory,
1610	 * so it's sufficient to just add them up without tracking alignment.
1611	 */
1612	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1613		for (i = 0; i < 6; i++) {
1614			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1615				dev_err(&hbus->hdev->device,
1616					"There's an I/O BAR in this list!\n");
1617
1618			if (hpdev->probed_bar[i] != 0) {
1619				/*
1620				 * A probed BAR has all the upper bits set that
1621				 * can be changed.
1622				 */
1623
1624				bar_val = hpdev->probed_bar[i];
1625				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1626					bar_val |=
1627					((u64)hpdev->probed_bar[++i] << 32);
1628				else
1629					bar_val |= 0xffffffff00000000ULL;
1630
1631				bar_size = get_bar_size(bar_val);
1632
1633				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1634					hbus->high_mmio_space += bar_size;
1635				else
1636					hbus->low_mmio_space += bar_size;
1637			}
1638		}
1639	}
1640
1641	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1642	complete(event);
1643}
1644
1645/**
1646 * prepopulate_bars() - Fill in BARs with defaults
1647 * @hbus:	Root PCI bus, as understood by this driver
1648 *
1649 * The core PCI driver code seems much, much happier if the BARs
1650 * for a device have values upon first scan. So fill them in.
1651 * The algorithm below works down from large sizes to small,
1652 * attempting to pack the assignments optimally. The assumption,
1653 * enforced in other parts of the code, is that the beginning of
1654 * the memory-mapped I/O space will be aligned on the largest
1655 * BAR size.
1656 */
1657static void prepopulate_bars(struct hv_pcibus_device *hbus)
1658{
1659	resource_size_t high_size = 0;
1660	resource_size_t low_size = 0;
1661	resource_size_t high_base = 0;
1662	resource_size_t low_base = 0;
1663	resource_size_t bar_size;
1664	struct hv_pci_dev *hpdev;
1665	unsigned long flags;
1666	u64 bar_val;
1667	u32 command;
1668	bool high;
1669	int i;
1670
1671	if (hbus->low_mmio_space) {
1672		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1673		low_base = hbus->low_mmio_res->start;
1674	}
1675
1676	if (hbus->high_mmio_space) {
1677		high_size = 1ULL <<
1678			(63 - __builtin_clzll(hbus->high_mmio_space));
1679		high_base = hbus->high_mmio_res->start;
1680	}
1681
1682	spin_lock_irqsave(&hbus->device_list_lock, flags);
1683
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1684	/* Pick addresses for the BARs. */
1685	do {
1686		list_for_each_entry(hpdev, &hbus->children, list_entry) {
1687			for (i = 0; i < 6; i++) {
1688				bar_val = hpdev->probed_bar[i];
1689				if (bar_val == 0)
1690					continue;
1691				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1692				if (high) {
1693					bar_val |=
1694						((u64)hpdev->probed_bar[i + 1]
1695						 << 32);
1696				} else {
1697					bar_val |= 0xffffffffULL << 32;
1698				}
1699				bar_size = get_bar_size(bar_val);
1700				if (high) {
1701					if (high_size != bar_size) {
1702						i++;
1703						continue;
1704					}
1705					_hv_pcifront_write_config(hpdev,
1706						PCI_BASE_ADDRESS_0 + (4 * i),
1707						4,
1708						(u32)(high_base & 0xffffff00));
1709					i++;
1710					_hv_pcifront_write_config(hpdev,
1711						PCI_BASE_ADDRESS_0 + (4 * i),
1712						4, (u32)(high_base >> 32));
1713					high_base += bar_size;
1714				} else {
1715					if (low_size != bar_size)
1716						continue;
1717					_hv_pcifront_write_config(hpdev,
1718						PCI_BASE_ADDRESS_0 + (4 * i),
1719						4,
1720						(u32)(low_base & 0xffffff00));
1721					low_base += bar_size;
1722				}
1723			}
1724			if (high_size <= 1 && low_size <= 1) {
1725				/* Set the memory enable bit. */
1726				_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1727							 &command);
1728				command |= PCI_COMMAND_MEMORY;
1729				_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1730							  command);
1731				break;
1732			}
1733		}
1734
1735		high_size >>= 1;
1736		low_size >>= 1;
1737	}  while (high_size || low_size);
1738
1739	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1740}
1741
1742/*
1743 * Assign entries in sysfs pci slot directory.
1744 *
1745 * Note that this function does not need to lock the children list
1746 * because it is called from pci_devices_present_work which
1747 * is serialized with hv_eject_device_work because they are on the
1748 * same ordered workqueue. Therefore hbus->children list will not change
1749 * even when pci_create_slot sleeps.
1750 */
1751static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
1752{
1753	struct hv_pci_dev *hpdev;
1754	char name[SLOT_NAME_SIZE];
1755	int slot_nr;
1756
1757	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1758		if (hpdev->pci_slot)
1759			continue;
1760
1761		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
1762		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
1763		hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr,
1764					  name, NULL);
1765		if (IS_ERR(hpdev->pci_slot)) {
1766			pr_warn("pci_create slot %s failed\n", name);
1767			hpdev->pci_slot = NULL;
1768		}
1769	}
1770}
1771
1772/*
1773 * Remove entries in sysfs pci slot directory.
1774 */
1775static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
1776{
1777	struct hv_pci_dev *hpdev;
1778
1779	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1780		if (!hpdev->pci_slot)
1781			continue;
1782		pci_destroy_slot(hpdev->pci_slot);
1783		hpdev->pci_slot = NULL;
1784	}
1785}
1786
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1787/**
1788 * create_root_hv_pci_bus() - Expose a new root PCI bus
1789 * @hbus:	Root PCI bus, as understood by this driver
1790 *
1791 * Return: 0 on success, -errno on failure
1792 */
1793static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1794{
1795	/* Register the device */
1796	hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1797					    0, /* bus number is always zero */
1798					    &hv_pcifront_ops,
1799					    &hbus->sysdata,
1800					    &hbus->resources_for_children);
1801	if (!hbus->pci_bus)
1802		return -ENODEV;
1803
1804	hbus->pci_bus->msi = &hbus->msi_chip;
1805	hbus->pci_bus->msi->dev = &hbus->hdev->device;
1806
1807	pci_lock_rescan_remove();
1808	pci_scan_child_bus(hbus->pci_bus);
 
1809	pci_bus_assign_resources(hbus->pci_bus);
1810	hv_pci_assign_slots(hbus);
1811	pci_bus_add_devices(hbus->pci_bus);
1812	pci_unlock_rescan_remove();
1813	hbus->state = hv_pcibus_installed;
1814	return 0;
1815}
1816
1817struct q_res_req_compl {
1818	struct completion host_event;
1819	struct hv_pci_dev *hpdev;
1820};
1821
1822/**
1823 * q_resource_requirements() - Query Resource Requirements
1824 * @context:		The completion context.
1825 * @resp:		The response that came from the host.
1826 * @resp_packet_size:	The size in bytes of resp.
1827 *
1828 * This function is invoked on completion of a Query Resource
1829 * Requirements packet.
1830 */
1831static void q_resource_requirements(void *context, struct pci_response *resp,
1832				    int resp_packet_size)
1833{
1834	struct q_res_req_compl *completion = context;
1835	struct pci_q_res_req_response *q_res_req =
1836		(struct pci_q_res_req_response *)resp;
1837	int i;
1838
1839	if (resp->status < 0) {
1840		dev_err(&completion->hpdev->hbus->hdev->device,
1841			"query resource requirements failed: %x\n",
1842			resp->status);
1843	} else {
1844		for (i = 0; i < 6; i++) {
1845			completion->hpdev->probed_bar[i] =
1846				q_res_req->probed_bar[i];
1847		}
1848	}
1849
1850	complete(&completion->host_event);
1851}
1852
1853/**
1854 * new_pcichild_device() - Create a new child device
1855 * @hbus:	The internal struct tracking this root PCI bus.
1856 * @desc:	The information supplied so far from the host
1857 *              about the device.
1858 *
1859 * This function creates the tracking structure for a new child
1860 * device and kicks off the process of figuring out what it is.
1861 *
1862 * Return: Pointer to the new tracking struct
1863 */
1864static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1865		struct pci_function_description *desc)
1866{
1867	struct hv_pci_dev *hpdev;
1868	struct pci_child_message *res_req;
1869	struct q_res_req_compl comp_pkt;
1870	struct {
1871		struct pci_packet init_packet;
1872		u8 buffer[sizeof(struct pci_child_message)];
1873	} pkt;
1874	unsigned long flags;
1875	int ret;
1876
1877	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
1878	if (!hpdev)
1879		return NULL;
1880
1881	hpdev->hbus = hbus;
1882
1883	memset(&pkt, 0, sizeof(pkt));
1884	init_completion(&comp_pkt.host_event);
1885	comp_pkt.hpdev = hpdev;
1886	pkt.init_packet.compl_ctxt = &comp_pkt;
1887	pkt.init_packet.completion_func = q_resource_requirements;
1888	res_req = (struct pci_child_message *)&pkt.init_packet.message;
1889	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1890	res_req->wslot.slot = desc->win_slot.slot;
1891
1892	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1893			       sizeof(struct pci_child_message),
1894			       (unsigned long)&pkt.init_packet,
1895			       VM_PKT_DATA_INBAND,
1896			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1897	if (ret)
1898		goto error;
1899
1900	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
1901		goto error;
1902
1903	hpdev->desc = *desc;
1904	refcount_set(&hpdev->refs, 1);
1905	get_pcichild(hpdev);
1906	spin_lock_irqsave(&hbus->device_list_lock, flags);
1907
1908	list_add_tail(&hpdev->list_entry, &hbus->children);
1909	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1910	return hpdev;
1911
1912error:
1913	kfree(hpdev);
1914	return NULL;
1915}
1916
1917/**
1918 * get_pcichild_wslot() - Find device from slot
1919 * @hbus:	Root PCI bus, as understood by this driver
1920 * @wslot:	Location on the bus
1921 *
1922 * This function looks up a PCI device and returns the internal
1923 * representation of it.  It acquires a reference on it, so that
1924 * the device won't be deleted while somebody is using it.  The
1925 * caller is responsible for calling put_pcichild() to release
1926 * this reference.
1927 *
1928 * Return:	Internal representation of a PCI device
1929 */
1930static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1931					     u32 wslot)
1932{
1933	unsigned long flags;
1934	struct hv_pci_dev *iter, *hpdev = NULL;
1935
1936	spin_lock_irqsave(&hbus->device_list_lock, flags);
1937	list_for_each_entry(iter, &hbus->children, list_entry) {
1938		if (iter->desc.win_slot.slot == wslot) {
1939			hpdev = iter;
1940			get_pcichild(hpdev);
1941			break;
1942		}
1943	}
1944	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1945
1946	return hpdev;
1947}
1948
1949/**
1950 * pci_devices_present_work() - Handle new list of child devices
1951 * @work:	Work struct embedded in struct hv_dr_work
1952 *
1953 * "Bus Relations" is the Windows term for "children of this
1954 * bus."  The terminology is preserved here for people trying to
1955 * debug the interaction between Hyper-V and Linux.  This
1956 * function is called when the parent partition reports a list
1957 * of functions that should be observed under this PCI Express
1958 * port (bus).
1959 *
1960 * This function updates the list, and must tolerate being
1961 * called multiple times with the same information.  The typical
1962 * number of child devices is one, with very atypical cases
1963 * involving three or four, so the algorithms used here can be
1964 * simple and inefficient.
1965 *
1966 * It must also treat the omission of a previously observed device as
1967 * notification that the device no longer exists.
1968 *
1969 * Note that this function is serialized with hv_eject_device_work(),
1970 * because both are pushed to the ordered workqueue hbus->wq.
1971 */
1972static void pci_devices_present_work(struct work_struct *work)
1973{
1974	u32 child_no;
1975	bool found;
1976	struct pci_function_description *new_desc;
1977	struct hv_pci_dev *hpdev;
1978	struct hv_pcibus_device *hbus;
1979	struct list_head removed;
1980	struct hv_dr_work *dr_wrk;
1981	struct hv_dr_state *dr = NULL;
1982	unsigned long flags;
1983
1984	dr_wrk = container_of(work, struct hv_dr_work, wrk);
1985	hbus = dr_wrk->bus;
1986	kfree(dr_wrk);
1987
1988	INIT_LIST_HEAD(&removed);
1989
1990	/* Pull this off the queue and process it if it was the last one. */
1991	spin_lock_irqsave(&hbus->device_list_lock, flags);
1992	while (!list_empty(&hbus->dr_list)) {
1993		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
1994				      list_entry);
1995		list_del(&dr->list_entry);
1996
1997		/* Throw this away if the list still has stuff in it. */
1998		if (!list_empty(&hbus->dr_list)) {
1999			kfree(dr);
2000			continue;
2001		}
2002	}
2003	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2004
2005	if (!dr) {
2006		put_hvpcibus(hbus);
2007		return;
2008	}
2009
2010	/* First, mark all existing children as reported missing. */
2011	spin_lock_irqsave(&hbus->device_list_lock, flags);
2012	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2013		hpdev->reported_missing = true;
2014	}
2015	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2016
2017	/* Next, add back any reported devices. */
2018	for (child_no = 0; child_no < dr->device_count; child_no++) {
2019		found = false;
2020		new_desc = &dr->func[child_no];
2021
2022		spin_lock_irqsave(&hbus->device_list_lock, flags);
2023		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2024			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2025			    (hpdev->desc.v_id == new_desc->v_id) &&
2026			    (hpdev->desc.d_id == new_desc->d_id) &&
2027			    (hpdev->desc.ser == new_desc->ser)) {
2028				hpdev->reported_missing = false;
2029				found = true;
2030			}
2031		}
2032		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2033
2034		if (!found) {
2035			hpdev = new_pcichild_device(hbus, new_desc);
2036			if (!hpdev)
2037				dev_err(&hbus->hdev->device,
2038					"couldn't record a child device.\n");
2039		}
2040	}
2041
2042	/* Move missing children to a list on the stack. */
2043	spin_lock_irqsave(&hbus->device_list_lock, flags);
2044	do {
2045		found = false;
2046		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2047			if (hpdev->reported_missing) {
2048				found = true;
2049				put_pcichild(hpdev);
2050				list_move_tail(&hpdev->list_entry, &removed);
2051				break;
2052			}
2053		}
2054	} while (found);
2055	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2056
2057	/* Delete everything that should no longer exist. */
2058	while (!list_empty(&removed)) {
2059		hpdev = list_first_entry(&removed, struct hv_pci_dev,
2060					 list_entry);
2061		list_del(&hpdev->list_entry);
2062
2063		if (hpdev->pci_slot)
2064			pci_destroy_slot(hpdev->pci_slot);
2065
2066		put_pcichild(hpdev);
2067	}
2068
2069	switch (hbus->state) {
2070	case hv_pcibus_installed:
2071		/*
2072		 * Tell the core to rescan bus
2073		 * because there may have been changes.
2074		 */
2075		pci_lock_rescan_remove();
2076		pci_scan_child_bus(hbus->pci_bus);
 
2077		hv_pci_assign_slots(hbus);
2078		pci_unlock_rescan_remove();
2079		break;
2080
2081	case hv_pcibus_init:
2082	case hv_pcibus_probed:
2083		survey_child_resources(hbus);
2084		break;
2085
2086	default:
2087		break;
2088	}
2089
2090	put_hvpcibus(hbus);
2091	kfree(dr);
2092}
2093
2094/**
2095 * hv_pci_devices_present() - Handles list of new children
2096 * @hbus:	Root PCI bus, as understood by this driver
2097 * @relations:	Packet from host listing children
2098 *
2099 * This function is invoked whenever a new list of devices for
2100 * this bus appears.
2101 */
2102static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2103				   struct pci_bus_relations *relations)
2104{
2105	struct hv_dr_state *dr;
2106	struct hv_dr_work *dr_wrk;
2107	unsigned long flags;
2108	bool pending_dr;
2109
 
 
 
 
 
 
2110	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2111	if (!dr_wrk)
2112		return;
2113
2114	dr = kzalloc(offsetof(struct hv_dr_state, func) +
2115		     (sizeof(struct pci_function_description) *
2116		      (relations->device_count)), GFP_NOWAIT);
2117	if (!dr)  {
2118		kfree(dr_wrk);
2119		return;
2120	}
2121
2122	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2123	dr_wrk->bus = hbus;
2124	dr->device_count = relations->device_count;
2125	if (dr->device_count != 0) {
2126		memcpy(dr->func, relations->func,
2127		       sizeof(struct pci_function_description) *
2128		       dr->device_count);
2129	}
2130
2131	spin_lock_irqsave(&hbus->device_list_lock, flags);
2132	/*
2133	 * If pending_dr is true, we have already queued a work,
2134	 * which will see the new dr. Otherwise, we need to
2135	 * queue a new work.
2136	 */
2137	pending_dr = !list_empty(&hbus->dr_list);
2138	list_add_tail(&dr->list_entry, &hbus->dr_list);
2139	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2140
2141	if (pending_dr) {
2142		kfree(dr_wrk);
2143	} else {
2144		get_hvpcibus(hbus);
2145		queue_work(hbus->wq, &dr_wrk->wrk);
2146	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2147}
2148
2149/**
2150 * hv_eject_device_work() - Asynchronously handles ejection
2151 * @work:	Work struct embedded in internal device struct
2152 *
2153 * This function handles ejecting a device.  Windows will
2154 * attempt to gracefully eject a device, waiting 60 seconds to
2155 * hear back from the guest OS that this completed successfully.
2156 * If this timer expires, the device will be forcibly removed.
2157 */
2158static void hv_eject_device_work(struct work_struct *work)
2159{
2160	struct pci_eject_response *ejct_pkt;
2161	struct hv_pcibus_device *hbus;
2162	struct hv_pci_dev *hpdev;
2163	struct pci_dev *pdev;
2164	unsigned long flags;
2165	int wslot;
2166	struct {
2167		struct pci_packet pkt;
2168		u8 buffer[sizeof(struct pci_eject_response)];
2169	} ctxt;
2170
2171	hpdev = container_of(work, struct hv_pci_dev, wrk);
2172	hbus = hpdev->hbus;
2173
2174	WARN_ON(hpdev->state != hv_pcichild_ejecting);
2175
2176	/*
2177	 * Ejection can come before or after the PCI bus has been set up, so
2178	 * attempt to find it and tear down the bus state, if it exists.  This
2179	 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
2180	 * because hbus->pci_bus may not exist yet.
2181	 */
2182	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2183	pdev = pci_get_domain_bus_and_slot(hbus->sysdata.domain, 0, wslot);
2184	if (pdev) {
2185		pci_lock_rescan_remove();
2186		pci_stop_and_remove_bus_device(pdev);
2187		pci_dev_put(pdev);
2188		pci_unlock_rescan_remove();
2189	}
2190
2191	spin_lock_irqsave(&hbus->device_list_lock, flags);
2192	list_del(&hpdev->list_entry);
2193	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2194
2195	if (hpdev->pci_slot)
2196		pci_destroy_slot(hpdev->pci_slot);
2197
2198	memset(&ctxt, 0, sizeof(ctxt));
2199	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2200	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2201	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2202	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2203			 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
2204			 VM_PKT_DATA_INBAND, 0);
2205
2206	/* For the get_pcichild() in hv_pci_eject_device() */
2207	put_pcichild(hpdev);
2208	/* For the two refs got in new_pcichild_device() */
2209	put_pcichild(hpdev);
2210	put_pcichild(hpdev);
2211	/* hpdev has been freed. Do not use it any more. */
2212
2213	put_hvpcibus(hbus);
2214}
2215
2216/**
2217 * hv_pci_eject_device() - Handles device ejection
2218 * @hpdev:	Internal device tracking struct
2219 *
2220 * This function is invoked when an ejection packet arrives.  It
2221 * just schedules work so that we don't re-enter the packet
2222 * delivery code handling the ejection.
2223 */
2224static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2225{
 
 
 
 
 
 
 
 
2226	hpdev->state = hv_pcichild_ejecting;
2227	get_pcichild(hpdev);
2228	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2229	get_hvpcibus(hpdev->hbus);
2230	queue_work(hpdev->hbus->wq, &hpdev->wrk);
2231}
2232
2233/**
2234 * hv_pci_onchannelcallback() - Handles incoming packets
2235 * @context:	Internal bus tracking struct
2236 *
2237 * This function is invoked whenever the host sends a packet to
2238 * this channel (which is private to this root PCI bus).
2239 */
2240static void hv_pci_onchannelcallback(void *context)
2241{
2242	const int packet_size = 0x100;
2243	int ret;
2244	struct hv_pcibus_device *hbus = context;
2245	u32 bytes_recvd;
2246	u64 req_id;
2247	struct vmpacket_descriptor *desc;
2248	unsigned char *buffer;
2249	int bufferlen = packet_size;
2250	struct pci_packet *comp_packet;
2251	struct pci_response *response;
2252	struct pci_incoming_message *new_message;
2253	struct pci_bus_relations *bus_rel;
 
2254	struct pci_dev_inval_block *inval;
2255	struct pci_dev_incoming *dev_message;
2256	struct hv_pci_dev *hpdev;
2257
2258	buffer = kmalloc(bufferlen, GFP_ATOMIC);
2259	if (!buffer)
2260		return;
2261
2262	while (1) {
2263		ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
2264					   bufferlen, &bytes_recvd, &req_id);
2265
2266		if (ret == -ENOBUFS) {
2267			kfree(buffer);
2268			/* Handle large packet */
2269			bufferlen = bytes_recvd;
2270			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2271			if (!buffer)
2272				return;
2273			continue;
2274		}
2275
2276		/* Zero length indicates there are no more packets. */
2277		if (ret || !bytes_recvd)
2278			break;
2279
2280		/*
2281		 * All incoming packets must be at least as large as a
2282		 * response.
2283		 */
2284		if (bytes_recvd <= sizeof(struct pci_response))
2285			continue;
2286		desc = (struct vmpacket_descriptor *)buffer;
2287
2288		switch (desc->type) {
2289		case VM_PKT_COMP:
2290
2291			/*
2292			 * The host is trusted, and thus it's safe to interpret
2293			 * this transaction ID as a pointer.
2294			 */
2295			comp_packet = (struct pci_packet *)req_id;
2296			response = (struct pci_response *)buffer;
2297			comp_packet->completion_func(comp_packet->compl_ctxt,
2298						     response,
2299						     bytes_recvd);
2300			break;
2301
2302		case VM_PKT_DATA_INBAND:
2303
2304			new_message = (struct pci_incoming_message *)buffer;
2305			switch (new_message->message_type.type) {
2306			case PCI_BUS_RELATIONS:
2307
2308				bus_rel = (struct pci_bus_relations *)buffer;
2309				if (bytes_recvd <
2310				    offsetof(struct pci_bus_relations, func) +
2311				    (sizeof(struct pci_function_description) *
2312				     (bus_rel->device_count))) {
2313					dev_err(&hbus->hdev->device,
2314						"bus relations too small\n");
2315					break;
2316				}
2317
2318				hv_pci_devices_present(hbus, bus_rel);
2319				break;
2320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2321			case PCI_EJECT:
2322
2323				dev_message = (struct pci_dev_incoming *)buffer;
2324				hpdev = get_pcichild_wslot(hbus,
2325						      dev_message->wslot.slot);
2326				if (hpdev) {
2327					hv_pci_eject_device(hpdev);
2328					put_pcichild(hpdev);
2329				}
2330				break;
2331
2332			case PCI_INVALIDATE_BLOCK:
2333
2334				inval = (struct pci_dev_inval_block *)buffer;
2335				hpdev = get_pcichild_wslot(hbus,
2336							   inval->wslot.slot);
2337				if (hpdev) {
2338					if (hpdev->block_invalidate) {
2339						hpdev->block_invalidate(
2340						    hpdev->invalidate_context,
2341						    inval->block_mask);
2342					}
2343					put_pcichild(hpdev);
2344				}
2345				break;
2346
2347			default:
2348				dev_warn(&hbus->hdev->device,
2349					"Unimplemented protocol message %x\n",
2350					new_message->message_type.type);
2351				break;
2352			}
2353			break;
2354
2355		default:
2356			dev_err(&hbus->hdev->device,
2357				"unhandled packet type %d, tid %llx len %d\n",
2358				desc->type, req_id, bytes_recvd);
2359			break;
2360		}
2361	}
2362
2363	kfree(buffer);
2364}
2365
2366/**
2367 * hv_pci_protocol_negotiation() - Set up protocol
2368 * @hdev:	VMBus's tracking struct for this root PCI bus
2369 *
2370 * This driver is intended to support running on Windows 10
2371 * (server) and later versions. It will not run on earlier
2372 * versions, as they assume that many of the operations which
2373 * Linux needs accomplished with a spinlock held were done via
2374 * asynchronous messaging via VMBus.  Windows 10 increases the
2375 * surface area of PCI emulation so that these actions can take
2376 * place by suspending a virtual processor for their duration.
2377 *
2378 * This function negotiates the channel protocol version,
2379 * failing if the host doesn't support the necessary protocol
2380 * level.
2381 */
2382static int hv_pci_protocol_negotiation(struct hv_device *hdev)
 
 
2383{
 
2384	struct pci_version_request *version_req;
2385	struct hv_pci_compl comp_pkt;
2386	struct pci_packet *pkt;
2387	int ret;
2388	int i;
2389
2390	/*
2391	 * Initiate the handshake with the host and negotiate
2392	 * a version that the host can support. We start with the
2393	 * highest version number and go down if the host cannot
2394	 * support it.
2395	 */
2396	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2397	if (!pkt)
2398		return -ENOMEM;
2399
2400	init_completion(&comp_pkt.host_event);
2401	pkt->completion_func = hv_pci_generic_compl;
2402	pkt->compl_ctxt = &comp_pkt;
2403	version_req = (struct pci_version_request *)&pkt->message;
2404	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2405
2406	for (i = 0; i < ARRAY_SIZE(pci_protocol_versions); i++) {
2407		version_req->protocol_version = pci_protocol_versions[i];
2408		ret = vmbus_sendpacket(hdev->channel, version_req,
2409				sizeof(struct pci_version_request),
2410				(unsigned long)pkt, VM_PKT_DATA_INBAND,
2411				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2412		if (!ret)
2413			ret = wait_for_response(hdev, &comp_pkt.host_event);
2414
2415		if (ret) {
2416			dev_err(&hdev->device,
2417				"PCI Pass-through VSP failed to request version: %d",
2418				ret);
2419			goto exit;
2420		}
2421
2422		if (comp_pkt.completion_status >= 0) {
2423			pci_protocol_version = pci_protocol_versions[i];
2424			dev_info(&hdev->device,
2425				"PCI VMBus probing: Using version %#x\n",
2426				pci_protocol_version);
2427			goto exit;
2428		}
2429
2430		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2431			dev_err(&hdev->device,
2432				"PCI Pass-through VSP failed version request: %#x",
2433				comp_pkt.completion_status);
2434			ret = -EPROTO;
2435			goto exit;
2436		}
2437
2438		reinit_completion(&comp_pkt.host_event);
2439	}
2440
2441	dev_err(&hdev->device,
2442		"PCI pass-through VSP failed to find supported version");
2443	ret = -EPROTO;
2444
2445exit:
2446	kfree(pkt);
2447	return ret;
2448}
2449
2450/**
2451 * hv_pci_free_bridge_windows() - Release memory regions for the
2452 * bus
2453 * @hbus:	Root PCI bus, as understood by this driver
2454 */
2455static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2456{
2457	/*
2458	 * Set the resources back to the way they looked when they
2459	 * were allocated by setting IORESOURCE_BUSY again.
2460	 */
2461
2462	if (hbus->low_mmio_space && hbus->low_mmio_res) {
2463		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2464		vmbus_free_mmio(hbus->low_mmio_res->start,
2465				resource_size(hbus->low_mmio_res));
2466	}
2467
2468	if (hbus->high_mmio_space && hbus->high_mmio_res) {
2469		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2470		vmbus_free_mmio(hbus->high_mmio_res->start,
2471				resource_size(hbus->high_mmio_res));
2472	}
2473}
2474
2475/**
2476 * hv_pci_allocate_bridge_windows() - Allocate memory regions
2477 * for the bus
2478 * @hbus:	Root PCI bus, as understood by this driver
2479 *
2480 * This function calls vmbus_allocate_mmio(), which is itself a
2481 * bit of a compromise.  Ideally, we might change the pnp layer
2482 * in the kernel such that it comprehends either PCI devices
2483 * which are "grandchildren of ACPI," with some intermediate bus
2484 * node (in this case, VMBus) or change it such that it
2485 * understands VMBus.  The pnp layer, however, has been declared
2486 * deprecated, and not subject to change.
2487 *
2488 * The workaround, implemented here, is to ask VMBus to allocate
2489 * MMIO space for this bus.  VMBus itself knows which ranges are
2490 * appropriate by looking at its own ACPI objects.  Then, after
2491 * these ranges are claimed, they're modified to look like they
2492 * would have looked if the ACPI and pnp code had allocated
2493 * bridge windows.  These descriptors have to exist in this form
2494 * in order to satisfy the code which will get invoked when the
2495 * endpoint PCI function driver calls request_mem_region() or
2496 * request_mem_region_exclusive().
2497 *
2498 * Return: 0 on success, -errno on failure
2499 */
2500static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2501{
2502	resource_size_t align;
2503	int ret;
2504
2505	if (hbus->low_mmio_space) {
2506		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2507		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2508					  (u64)(u32)0xffffffff,
2509					  hbus->low_mmio_space,
2510					  align, false);
2511		if (ret) {
2512			dev_err(&hbus->hdev->device,
2513				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2514				hbus->low_mmio_space);
2515			return ret;
2516		}
2517
2518		/* Modify this resource to become a bridge window. */
2519		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2520		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2521		pci_add_resource(&hbus->resources_for_children,
2522				 hbus->low_mmio_res);
2523	}
2524
2525	if (hbus->high_mmio_space) {
2526		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2527		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2528					  0x100000000, -1,
2529					  hbus->high_mmio_space, align,
2530					  false);
2531		if (ret) {
2532			dev_err(&hbus->hdev->device,
2533				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2534				hbus->high_mmio_space);
2535			goto release_low_mmio;
2536		}
2537
2538		/* Modify this resource to become a bridge window. */
2539		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2540		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2541		pci_add_resource(&hbus->resources_for_children,
2542				 hbus->high_mmio_res);
2543	}
2544
2545	return 0;
2546
2547release_low_mmio:
2548	if (hbus->low_mmio_res) {
2549		vmbus_free_mmio(hbus->low_mmio_res->start,
2550				resource_size(hbus->low_mmio_res));
2551	}
2552
2553	return ret;
2554}
2555
2556/**
2557 * hv_allocate_config_window() - Find MMIO space for PCI Config
2558 * @hbus:	Root PCI bus, as understood by this driver
2559 *
2560 * This function claims memory-mapped I/O space for accessing
2561 * configuration space for the functions on this bus.
2562 *
2563 * Return: 0 on success, -errno on failure
2564 */
2565static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2566{
2567	int ret;
2568
2569	/*
2570	 * Set up a region of MMIO space to use for accessing configuration
2571	 * space.
2572	 */
2573	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2574				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2575	if (ret)
2576		return ret;
2577
2578	/*
2579	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2580	 * resource claims (those which cannot be overlapped) and the ranges
2581	 * which are valid for the children of this bus, which are intended
2582	 * to be overlapped by those children.  Set the flag on this claim
2583	 * meaning that this region can't be overlapped.
2584	 */
2585
2586	hbus->mem_config->flags |= IORESOURCE_BUSY;
2587
2588	return 0;
2589}
2590
2591static void hv_free_config_window(struct hv_pcibus_device *hbus)
2592{
2593	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2594}
2595
 
 
2596/**
2597 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2598 * @hdev:	VMBus's tracking struct for this root PCI bus
2599 *
2600 * Return: 0 on success, -errno on failure
2601 */
2602static int hv_pci_enter_d0(struct hv_device *hdev)
2603{
2604	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2605	struct pci_bus_d0_entry *d0_entry;
2606	struct hv_pci_compl comp_pkt;
2607	struct pci_packet *pkt;
2608	int ret;
2609
2610	/*
2611	 * Tell the host that the bus is ready to use, and moved into the
2612	 * powered-on state.  This includes telling the host which region
2613	 * of memory-mapped I/O space has been chosen for configuration space
2614	 * access.
2615	 */
2616	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2617	if (!pkt)
2618		return -ENOMEM;
2619
2620	init_completion(&comp_pkt.host_event);
2621	pkt->completion_func = hv_pci_generic_compl;
2622	pkt->compl_ctxt = &comp_pkt;
2623	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2624	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2625	d0_entry->mmio_base = hbus->mem_config->start;
2626
2627	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2628			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
2629			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2630	if (!ret)
2631		ret = wait_for_response(hdev, &comp_pkt.host_event);
2632
2633	if (ret)
2634		goto exit;
2635
2636	if (comp_pkt.completion_status < 0) {
2637		dev_err(&hdev->device,
2638			"PCI Pass-through VSP failed D0 Entry with status %x\n",
2639			comp_pkt.completion_status);
2640		ret = -EPROTO;
2641		goto exit;
2642	}
2643
2644	ret = 0;
2645
2646exit:
2647	kfree(pkt);
2648	return ret;
2649}
2650
2651/**
2652 * hv_pci_query_relations() - Ask host to send list of child
2653 * devices
2654 * @hdev:	VMBus's tracking struct for this root PCI bus
2655 *
2656 * Return: 0 on success, -errno on failure
2657 */
2658static int hv_pci_query_relations(struct hv_device *hdev)
2659{
2660	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2661	struct pci_message message;
2662	struct completion comp;
2663	int ret;
2664
2665	/* Ask the host to send along the list of child devices */
2666	init_completion(&comp);
2667	if (cmpxchg(&hbus->survey_event, NULL, &comp))
2668		return -ENOTEMPTY;
2669
2670	memset(&message, 0, sizeof(message));
2671	message.type = PCI_QUERY_BUS_RELATIONS;
2672
2673	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2674			       0, VM_PKT_DATA_INBAND, 0);
2675	if (!ret)
2676		ret = wait_for_response(hdev, &comp);
2677
2678	return ret;
2679}
2680
2681/**
2682 * hv_send_resources_allocated() - Report local resource choices
2683 * @hdev:	VMBus's tracking struct for this root PCI bus
2684 *
2685 * The host OS is expecting to be sent a request as a message
2686 * which contains all the resources that the device will use.
2687 * The response contains those same resources, "translated"
2688 * which is to say, the values which should be used by the
2689 * hardware, when it delivers an interrupt.  (MMIO resources are
2690 * used in local terms.)  This is nice for Windows, and lines up
2691 * with the FDO/PDO split, which doesn't exist in Linux.  Linux
2692 * is deeply expecting to scan an emulated PCI configuration
2693 * space.  So this message is sent here only to drive the state
2694 * machine on the host forward.
2695 *
2696 * Return: 0 on success, -errno on failure
2697 */
2698static int hv_send_resources_allocated(struct hv_device *hdev)
2699{
2700	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2701	struct pci_resources_assigned *res_assigned;
2702	struct pci_resources_assigned2 *res_assigned2;
2703	struct hv_pci_compl comp_pkt;
2704	struct hv_pci_dev *hpdev;
2705	struct pci_packet *pkt;
2706	size_t size_res;
2707	u32 wslot;
2708	int ret;
2709
2710	size_res = (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2)
2711			? sizeof(*res_assigned) : sizeof(*res_assigned2);
2712
2713	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2714	if (!pkt)
2715		return -ENOMEM;
2716
2717	ret = 0;
2718
2719	for (wslot = 0; wslot < 256; wslot++) {
2720		hpdev = get_pcichild_wslot(hbus, wslot);
2721		if (!hpdev)
2722			continue;
2723
2724		memset(pkt, 0, sizeof(*pkt) + size_res);
2725		init_completion(&comp_pkt.host_event);
2726		pkt->completion_func = hv_pci_generic_compl;
2727		pkt->compl_ctxt = &comp_pkt;
2728
2729		if (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2730			res_assigned =
2731				(struct pci_resources_assigned *)&pkt->message;
2732			res_assigned->message_type.type =
2733				PCI_RESOURCES_ASSIGNED;
2734			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2735		} else {
2736			res_assigned2 =
2737				(struct pci_resources_assigned2 *)&pkt->message;
2738			res_assigned2->message_type.type =
2739				PCI_RESOURCES_ASSIGNED2;
2740			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2741		}
2742		put_pcichild(hpdev);
2743
2744		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2745				size_res, (unsigned long)pkt,
2746				VM_PKT_DATA_INBAND,
2747				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2748		if (!ret)
2749			ret = wait_for_response(hdev, &comp_pkt.host_event);
2750		if (ret)
2751			break;
2752
2753		if (comp_pkt.completion_status < 0) {
2754			ret = -EPROTO;
2755			dev_err(&hdev->device,
2756				"resource allocated returned 0x%x",
2757				comp_pkt.completion_status);
2758			break;
2759		}
 
 
2760	}
2761
2762	kfree(pkt);
2763	return ret;
2764}
2765
2766/**
2767 * hv_send_resources_released() - Report local resources
2768 * released
2769 * @hdev:	VMBus's tracking struct for this root PCI bus
2770 *
2771 * Return: 0 on success, -errno on failure
2772 */
2773static int hv_send_resources_released(struct hv_device *hdev)
2774{
2775	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2776	struct pci_child_message pkt;
2777	struct hv_pci_dev *hpdev;
2778	u32 wslot;
2779	int ret;
2780
2781	for (wslot = 0; wslot < 256; wslot++) {
2782		hpdev = get_pcichild_wslot(hbus, wslot);
2783		if (!hpdev)
2784			continue;
2785
2786		memset(&pkt, 0, sizeof(pkt));
2787		pkt.message_type.type = PCI_RESOURCES_RELEASED;
2788		pkt.wslot.slot = hpdev->desc.win_slot.slot;
2789
2790		put_pcichild(hpdev);
2791
2792		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2793				       VM_PKT_DATA_INBAND, 0);
2794		if (ret)
2795			return ret;
 
 
2796	}
2797
 
 
2798	return 0;
2799}
2800
2801static void get_hvpcibus(struct hv_pcibus_device *hbus)
2802{
2803	refcount_inc(&hbus->remove_lock);
2804}
2805
2806static void put_hvpcibus(struct hv_pcibus_device *hbus)
2807{
2808	if (refcount_dec_and_test(&hbus->remove_lock))
2809		complete(&hbus->remove_event);
2810}
2811
2812#define HVPCI_DOM_MAP_SIZE (64 * 1024)
2813static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
2814
2815/*
2816 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
2817 * as invalid for passthrough PCI devices of this driver.
2818 */
2819#define HVPCI_DOM_INVALID 0
2820
2821/**
2822 * hv_get_dom_num() - Get a valid PCI domain number
2823 * Check if the PCI domain number is in use, and return another number if
2824 * it is in use.
2825 *
2826 * @dom: Requested domain number
2827 *
2828 * return: domain number on success, HVPCI_DOM_INVALID on failure
2829 */
2830static u16 hv_get_dom_num(u16 dom)
2831{
2832	unsigned int i;
2833
2834	if (test_and_set_bit(dom, hvpci_dom_map) == 0)
2835		return dom;
2836
2837	for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
2838		if (test_and_set_bit(i, hvpci_dom_map) == 0)
2839			return i;
2840	}
2841
2842	return HVPCI_DOM_INVALID;
2843}
2844
2845/**
2846 * hv_put_dom_num() - Mark the PCI domain number as free
2847 * @dom: Domain number to be freed
2848 */
2849static void hv_put_dom_num(u16 dom)
2850{
2851	clear_bit(dom, hvpci_dom_map);
2852}
2853
2854/**
2855 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
2856 * @hdev:	VMBus's tracking struct for this root PCI bus
2857 * @dev_id:	Identifies the device itself
2858 *
2859 * Return: 0 on success, -errno on failure
2860 */
2861static int hv_pci_probe(struct hv_device *hdev,
2862			const struct hv_vmbus_device_id *dev_id)
2863{
2864	struct hv_pcibus_device *hbus;
2865	u16 dom_req, dom;
2866	char *name;
 
2867	int ret;
2868
2869	/*
2870	 * hv_pcibus_device contains the hypercall arguments for retargeting in
2871	 * hv_irq_unmask(). Those must not cross a page boundary.
2872	 */
2873	BUILD_BUG_ON(sizeof(*hbus) > PAGE_SIZE);
2874
2875	hbus = (struct hv_pcibus_device *)get_zeroed_page(GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2876	if (!hbus)
2877		return -ENOMEM;
2878	hbus->state = hv_pcibus_init;
 
2879
2880	/*
2881	 * The PCI bus "domain" is what is called "segment" in ACPI and other
2882	 * specs. Pull it from the instance ID, to get something usually
2883	 * unique. In rare cases of collision, we will find out another number
2884	 * not in use.
2885	 *
2886	 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
2887	 * together with this guest driver can guarantee that (1) The only
2888	 * domain used by Gen1 VMs for something that looks like a physical
2889	 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
2890	 * (2) There will be no overlap between domains (after fixing possible
2891	 * collisions) in the same VM.
2892	 */
2893	dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
2894	dom = hv_get_dom_num(dom_req);
2895
2896	if (dom == HVPCI_DOM_INVALID) {
2897		dev_err(&hdev->device,
2898			"Unable to use dom# 0x%hx or other numbers", dom_req);
2899		ret = -EINVAL;
2900		goto free_bus;
2901	}
2902
2903	if (dom != dom_req)
2904		dev_info(&hdev->device,
2905			 "PCI dom# 0x%hx has collision, using 0x%hx",
2906			 dom_req, dom);
2907
2908	hbus->sysdata.domain = dom;
2909
2910	hbus->hdev = hdev;
2911	refcount_set(&hbus->remove_lock, 1);
2912	INIT_LIST_HEAD(&hbus->children);
2913	INIT_LIST_HEAD(&hbus->dr_list);
2914	INIT_LIST_HEAD(&hbus->resources_for_children);
2915	spin_lock_init(&hbus->config_lock);
2916	spin_lock_init(&hbus->device_list_lock);
2917	spin_lock_init(&hbus->retarget_msi_interrupt_lock);
2918	init_completion(&hbus->remove_event);
2919	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
2920					   hbus->sysdata.domain);
2921	if (!hbus->wq) {
2922		ret = -ENOMEM;
2923		goto free_dom;
2924	}
2925
2926	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
2927			 hv_pci_onchannelcallback, hbus);
2928	if (ret)
2929		goto destroy_wq;
2930
2931	hv_set_drvdata(hdev, hbus);
2932
2933	ret = hv_pci_protocol_negotiation(hdev);
 
2934	if (ret)
2935		goto close;
2936
2937	ret = hv_allocate_config_window(hbus);
2938	if (ret)
2939		goto close;
2940
2941	hbus->cfg_addr = ioremap(hbus->mem_config->start,
2942				 PCI_CONFIG_MMIO_LENGTH);
2943	if (!hbus->cfg_addr) {
2944		dev_err(&hdev->device,
2945			"Unable to map a virtual address for config space\n");
2946		ret = -ENOMEM;
2947		goto free_config;
2948	}
2949
2950	name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
2951	if (!name) {
2952		ret = -ENOMEM;
2953		goto unmap;
2954	}
2955
2956	hbus->sysdata.fwnode = irq_domain_alloc_named_fwnode(name);
2957	kfree(name);
2958	if (!hbus->sysdata.fwnode) {
2959		ret = -ENOMEM;
2960		goto unmap;
2961	}
2962
2963	ret = hv_pcie_init_irq_domain(hbus);
2964	if (ret)
2965		goto free_fwnode;
2966
 
2967	ret = hv_pci_query_relations(hdev);
2968	if (ret)
2969		goto free_irq_domain;
2970
2971	ret = hv_pci_enter_d0(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2972	if (ret)
2973		goto free_irq_domain;
2974
2975	ret = hv_pci_allocate_bridge_windows(hbus);
2976	if (ret)
2977		goto free_irq_domain;
2978
2979	ret = hv_send_resources_allocated(hdev);
2980	if (ret)
2981		goto free_windows;
2982
2983	prepopulate_bars(hbus);
2984
2985	hbus->state = hv_pcibus_probed;
2986
2987	ret = create_root_hv_pci_bus(hbus);
2988	if (ret)
2989		goto free_windows;
2990
2991	return 0;
2992
2993free_windows:
2994	hv_pci_free_bridge_windows(hbus);
 
 
2995free_irq_domain:
2996	irq_domain_remove(hbus->irq_domain);
2997free_fwnode:
2998	irq_domain_free_fwnode(hbus->sysdata.fwnode);
2999unmap:
3000	iounmap(hbus->cfg_addr);
3001free_config:
3002	hv_free_config_window(hbus);
3003close:
3004	vmbus_close(hdev->channel);
3005destroy_wq:
3006	destroy_workqueue(hbus->wq);
3007free_dom:
3008	hv_put_dom_num(hbus->sysdata.domain);
3009free_bus:
3010	free_page((unsigned long)hbus);
3011	return ret;
3012}
3013
3014static void hv_pci_bus_exit(struct hv_device *hdev)
3015{
3016	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3017	struct {
3018		struct pci_packet teardown_packet;
3019		u8 buffer[sizeof(struct pci_message)];
3020	} pkt;
3021	struct pci_bus_relations relations;
3022	struct hv_pci_compl comp_pkt;
3023	int ret;
3024
3025	/*
3026	 * After the host sends the RESCIND_CHANNEL message, it doesn't
3027	 * access the per-channel ringbuffer any longer.
3028	 */
3029	if (hdev->channel->rescind)
3030		return;
3031
3032	/* Delete any children which might still exist. */
3033	memset(&relations, 0, sizeof(relations));
3034	hv_pci_devices_present(hbus, &relations);
 
 
 
3035
3036	ret = hv_send_resources_released(hdev);
3037	if (ret)
3038		dev_err(&hdev->device,
3039			"Couldn't send resources released packet(s)\n");
 
 
3040
3041	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3042	init_completion(&comp_pkt.host_event);
3043	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3044	pkt.teardown_packet.compl_ctxt = &comp_pkt;
3045	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3046
3047	ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
3048			       sizeof(struct pci_message),
3049			       (unsigned long)&pkt.teardown_packet,
3050			       VM_PKT_DATA_INBAND,
3051			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3052	if (!ret)
3053		wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ);
 
 
 
 
 
3054}
3055
3056/**
3057 * hv_pci_remove() - Remove routine for this VMBus channel
3058 * @hdev:	VMBus's tracking struct for this root PCI bus
3059 *
3060 * Return: 0 on success, -errno on failure
3061 */
3062static int hv_pci_remove(struct hv_device *hdev)
3063{
3064	struct hv_pcibus_device *hbus;
 
3065
3066	hbus = hv_get_drvdata(hdev);
3067	if (hbus->state == hv_pcibus_installed) {
3068		/* Remove the bus from PCI's point of view. */
3069		pci_lock_rescan_remove();
3070		pci_stop_root_bus(hbus->pci_bus);
3071		hv_pci_remove_slots(hbus);
3072		pci_remove_root_bus(hbus->pci_bus);
3073		pci_unlock_rescan_remove();
3074		hbus->state = hv_pcibus_removed;
3075	}
3076
3077	hv_pci_bus_exit(hdev);
3078
3079	vmbus_close(hdev->channel);
3080
3081	iounmap(hbus->cfg_addr);
3082	hv_free_config_window(hbus);
3083	pci_free_resource_list(&hbus->resources_for_children);
3084	hv_pci_free_bridge_windows(hbus);
3085	irq_domain_remove(hbus->irq_domain);
3086	irq_domain_free_fwnode(hbus->sysdata.fwnode);
3087	put_hvpcibus(hbus);
3088	wait_for_completion(&hbus->remove_event);
3089	destroy_workqueue(hbus->wq);
3090
3091	hv_put_dom_num(hbus->sysdata.domain);
3092
3093	free_page((unsigned long)hbus);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3094	return 0;
3095}
3096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3097static const struct hv_vmbus_device_id hv_pci_id_table[] = {
3098	/* PCI Pass-through Class ID */
3099	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
3100	{ HV_PCIE_GUID, },
3101	{ },
3102};
3103
3104MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
3105
3106static struct hv_driver hv_pci_drv = {
3107	.name		= "hv_pci",
3108	.id_table	= hv_pci_id_table,
3109	.probe		= hv_pci_probe,
3110	.remove		= hv_pci_remove,
 
 
3111};
3112
3113static void __exit exit_hv_pci_drv(void)
3114{
3115	vmbus_driver_unregister(&hv_pci_drv);
3116
3117	hvpci_block_ops.read_block = NULL;
3118	hvpci_block_ops.write_block = NULL;
3119	hvpci_block_ops.reg_blk_invalidate = NULL;
3120}
3121
3122static int __init init_hv_pci_drv(void)
3123{
3124	/* Set the invalid domain number's bit, so it will not be used */
3125	set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
3126
3127	/* Initialize PCI block r/w interface */
3128	hvpci_block_ops.read_block = hv_read_config_block;
3129	hvpci_block_ops.write_block = hv_write_config_block;
3130	hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
3131
3132	return vmbus_driver_register(&hv_pci_drv);
3133}
3134
3135module_init(init_hv_pci_drv);
3136module_exit(exit_hv_pci_drv);
3137
3138MODULE_DESCRIPTION("Hyper-V PCI");
3139MODULE_LICENSE("GPL v2");