Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
   4 */
   5#include <linux/scatterlist.h>
   6#include <linux/memregion.h>
   7#include <linux/highmem.h>
   8#include <linux/sched.h>
   9#include <linux/slab.h>
  10#include <linux/hash.h>
  11#include <linux/sort.h>
  12#include <linux/io.h>
  13#include <linux/nd.h>
  14#include "nd-core.h"
  15#include "nd.h"
  16
  17/*
  18 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
  19 * irrelevant.
  20 */
  21#include <linux/io-64-nonatomic-hi-lo.h>
  22
 
  23static DEFINE_PER_CPU(int, flush_idx);
  24
  25static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
  26		struct nd_region_data *ndrd)
  27{
  28	int i, j;
  29
  30	dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
  31			nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
  32	for (i = 0; i < (1 << ndrd->hints_shift); i++) {
  33		struct resource *res = &nvdimm->flush_wpq[i];
  34		unsigned long pfn = PHYS_PFN(res->start);
  35		void __iomem *flush_page;
  36
  37		/* check if flush hints share a page */
  38		for (j = 0; j < i; j++) {
  39			struct resource *res_j = &nvdimm->flush_wpq[j];
  40			unsigned long pfn_j = PHYS_PFN(res_j->start);
  41
  42			if (pfn == pfn_j)
  43				break;
  44		}
  45
  46		if (j < i)
  47			flush_page = (void __iomem *) ((unsigned long)
  48					ndrd_get_flush_wpq(ndrd, dimm, j)
  49					& PAGE_MASK);
  50		else
  51			flush_page = devm_nvdimm_ioremap(dev,
  52					PFN_PHYS(pfn), PAGE_SIZE);
  53		if (!flush_page)
  54			return -ENXIO;
  55		ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
  56				+ (res->start & ~PAGE_MASK));
  57	}
  58
  59	return 0;
  60}
  61
  62int nd_region_activate(struct nd_region *nd_region)
  63{
  64	int i, j, num_flush = 0;
  65	struct nd_region_data *ndrd;
  66	struct device *dev = &nd_region->dev;
  67	size_t flush_data_size = sizeof(void *);
  68
  69	nvdimm_bus_lock(&nd_region->dev);
  70	for (i = 0; i < nd_region->ndr_mappings; i++) {
  71		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
  72		struct nvdimm *nvdimm = nd_mapping->nvdimm;
  73
  74		if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
  75			nvdimm_bus_unlock(&nd_region->dev);
  76			return -EBUSY;
  77		}
  78
  79		/* at least one null hint slot per-dimm for the "no-hint" case */
  80		flush_data_size += sizeof(void *);
  81		num_flush = min_not_zero(num_flush, nvdimm->num_flush);
  82		if (!nvdimm->num_flush)
  83			continue;
  84		flush_data_size += nvdimm->num_flush * sizeof(void *);
  85	}
  86	nvdimm_bus_unlock(&nd_region->dev);
  87
  88	ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
  89	if (!ndrd)
  90		return -ENOMEM;
  91	dev_set_drvdata(dev, ndrd);
  92
  93	if (!num_flush)
  94		return 0;
  95
  96	ndrd->hints_shift = ilog2(num_flush);
  97	for (i = 0; i < nd_region->ndr_mappings; i++) {
  98		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
  99		struct nvdimm *nvdimm = nd_mapping->nvdimm;
 100		int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
 101
 102		if (rc)
 103			return rc;
 104	}
 105
 106	/*
 107	 * Clear out entries that are duplicates. This should prevent the
 108	 * extra flushings.
 109	 */
 110	for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
 111		/* ignore if NULL already */
 112		if (!ndrd_get_flush_wpq(ndrd, i, 0))
 113			continue;
 114
 115		for (j = i + 1; j < nd_region->ndr_mappings; j++)
 116			if (ndrd_get_flush_wpq(ndrd, i, 0) ==
 117			    ndrd_get_flush_wpq(ndrd, j, 0))
 118				ndrd_set_flush_wpq(ndrd, j, 0, NULL);
 119	}
 120
 121	return 0;
 122}
 123
 124static void nd_region_release(struct device *dev)
 125{
 126	struct nd_region *nd_region = to_nd_region(dev);
 127	u16 i;
 128
 129	for (i = 0; i < nd_region->ndr_mappings; i++) {
 130		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
 131		struct nvdimm *nvdimm = nd_mapping->nvdimm;
 132
 133		put_device(&nvdimm->dev);
 134	}
 135	free_percpu(nd_region->lane);
 136	memregion_free(nd_region->id);
 137	if (is_nd_blk(dev))
 138		kfree(to_nd_blk_region(dev));
 139	else
 140		kfree(nd_region);
 141}
 142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 143struct nd_region *to_nd_region(struct device *dev)
 144{
 145	struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
 146
 147	WARN_ON(dev->type->release != nd_region_release);
 148	return nd_region;
 149}
 150EXPORT_SYMBOL_GPL(to_nd_region);
 151
 152struct device *nd_region_dev(struct nd_region *nd_region)
 153{
 154	if (!nd_region)
 155		return NULL;
 156	return &nd_region->dev;
 157}
 158EXPORT_SYMBOL_GPL(nd_region_dev);
 159
 160struct nd_blk_region *to_nd_blk_region(struct device *dev)
 161{
 162	struct nd_region *nd_region = to_nd_region(dev);
 163
 164	WARN_ON(!is_nd_blk(dev));
 165	return container_of(nd_region, struct nd_blk_region, nd_region);
 166}
 167EXPORT_SYMBOL_GPL(to_nd_blk_region);
 168
 169void *nd_region_provider_data(struct nd_region *nd_region)
 170{
 171	return nd_region->provider_data;
 172}
 173EXPORT_SYMBOL_GPL(nd_region_provider_data);
 174
 175void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
 176{
 177	return ndbr->blk_provider_data;
 178}
 179EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
 180
 181void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
 182{
 183	ndbr->blk_provider_data = data;
 184}
 185EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
 186
 187/**
 188 * nd_region_to_nstype() - region to an integer namespace type
 189 * @nd_region: region-device to interrogate
 190 *
 191 * This is the 'nstype' attribute of a region as well, an input to the
 192 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
 193 * namespace devices with namespace drivers.
 194 */
 195int nd_region_to_nstype(struct nd_region *nd_region)
 196{
 197	if (is_memory(&nd_region->dev)) {
 198		u16 i, label;
 199
 200		for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) {
 201			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
 202			struct nvdimm *nvdimm = nd_mapping->nvdimm;
 203
 204			if (test_bit(NDD_LABELING, &nvdimm->flags))
 205				label++;
 206		}
 207		if (label)
 208			return ND_DEVICE_NAMESPACE_PMEM;
 209		else
 210			return ND_DEVICE_NAMESPACE_IO;
 211	} else if (is_nd_blk(&nd_region->dev)) {
 212		return ND_DEVICE_NAMESPACE_BLK;
 213	}
 214
 215	return 0;
 216}
 217EXPORT_SYMBOL(nd_region_to_nstype);
 218
 219static unsigned long long region_size(struct nd_region *nd_region)
 
 220{
 221	if (is_memory(&nd_region->dev)) {
 222		return nd_region->ndr_size;
 
 
 
 223	} else if (nd_region->ndr_mappings == 1) {
 224		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
 225
 226		return nd_mapping->size;
 227	}
 228
 229	return 0;
 230}
 231
 232static ssize_t size_show(struct device *dev,
 233		struct device_attribute *attr, char *buf)
 234{
 235	struct nd_region *nd_region = to_nd_region(dev);
 236
 237	return sprintf(buf, "%llu\n", region_size(nd_region));
 238}
 239static DEVICE_ATTR_RO(size);
 240
 241static ssize_t deep_flush_show(struct device *dev,
 242		struct device_attribute *attr, char *buf)
 243{
 244	struct nd_region *nd_region = to_nd_region(dev);
 245
 246	/*
 247	 * NOTE: in the nvdimm_has_flush() error case this attribute is
 248	 * not visible.
 249	 */
 250	return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
 251}
 252
 253static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
 254		const char *buf, size_t len)
 255{
 256	bool flush;
 257	int rc = strtobool(buf, &flush);
 258	struct nd_region *nd_region = to_nd_region(dev);
 259
 260	if (rc)
 261		return rc;
 262	if (!flush)
 263		return -EINVAL;
 264	rc = nvdimm_flush(nd_region, NULL);
 265	if (rc)
 266		return rc;
 267
 268	return len;
 269}
 270static DEVICE_ATTR_RW(deep_flush);
 271
 272static ssize_t mappings_show(struct device *dev,
 273		struct device_attribute *attr, char *buf)
 274{
 275	struct nd_region *nd_region = to_nd_region(dev);
 276
 277	return sprintf(buf, "%d\n", nd_region->ndr_mappings);
 278}
 279static DEVICE_ATTR_RO(mappings);
 280
 281static ssize_t nstype_show(struct device *dev,
 282		struct device_attribute *attr, char *buf)
 283{
 284	struct nd_region *nd_region = to_nd_region(dev);
 285
 286	return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
 287}
 288static DEVICE_ATTR_RO(nstype);
 289
 290static ssize_t set_cookie_show(struct device *dev,
 291		struct device_attribute *attr, char *buf)
 292{
 293	struct nd_region *nd_region = to_nd_region(dev);
 294	struct nd_interleave_set *nd_set = nd_region->nd_set;
 295	ssize_t rc = 0;
 296
 297	if (is_memory(dev) && nd_set)
 298		/* pass, should be precluded by region_visible */;
 299	else
 300		return -ENXIO;
 301
 302	/*
 303	 * The cookie to show depends on which specification of the
 304	 * labels we are using. If there are not labels then default to
 305	 * the v1.1 namespace label cookie definition. To read all this
 306	 * data we need to wait for probing to settle.
 307	 */
 308	nd_device_lock(dev);
 309	nvdimm_bus_lock(dev);
 310	wait_nvdimm_bus_probe_idle(dev);
 311	if (nd_region->ndr_mappings) {
 312		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
 313		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
 314
 315		if (ndd) {
 316			struct nd_namespace_index *nsindex;
 317
 318			nsindex = to_namespace_index(ndd, ndd->ns_current);
 319			rc = sprintf(buf, "%#llx\n",
 320					nd_region_interleave_set_cookie(nd_region,
 321						nsindex));
 322		}
 323	}
 324	nvdimm_bus_unlock(dev);
 325	nd_device_unlock(dev);
 326
 327	if (rc)
 328		return rc;
 329	return sprintf(buf, "%#llx\n", nd_set->cookie1);
 330}
 331static DEVICE_ATTR_RO(set_cookie);
 332
 333resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
 334{
 335	resource_size_t blk_max_overlap = 0, available, overlap;
 336	int i;
 337
 338	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
 339
 340 retry:
 341	available = 0;
 342	overlap = blk_max_overlap;
 343	for (i = 0; i < nd_region->ndr_mappings; i++) {
 344		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
 345		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
 346
 347		/* if a dimm is disabled the available capacity is zero */
 348		if (!ndd)
 349			return 0;
 350
 351		if (is_memory(&nd_region->dev)) {
 352			available += nd_pmem_available_dpa(nd_region,
 353					nd_mapping, &overlap);
 354			if (overlap > blk_max_overlap) {
 355				blk_max_overlap = overlap;
 356				goto retry;
 357			}
 358		} else if (is_nd_blk(&nd_region->dev))
 359			available += nd_blk_available_dpa(nd_region);
 360	}
 361
 362	return available;
 363}
 364
 365resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
 366{
 367	resource_size_t available = 0;
 368	int i;
 369
 370	if (is_memory(&nd_region->dev))
 371		available = PHYS_ADDR_MAX;
 372
 373	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
 374	for (i = 0; i < nd_region->ndr_mappings; i++) {
 375		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
 376
 377		if (is_memory(&nd_region->dev))
 378			available = min(available,
 379					nd_pmem_max_contiguous_dpa(nd_region,
 380								   nd_mapping));
 381		else if (is_nd_blk(&nd_region->dev))
 382			available += nd_blk_available_dpa(nd_region);
 383	}
 384	if (is_memory(&nd_region->dev))
 385		return available * nd_region->ndr_mappings;
 386	return available;
 387}
 388
 389static ssize_t available_size_show(struct device *dev,
 390		struct device_attribute *attr, char *buf)
 391{
 392	struct nd_region *nd_region = to_nd_region(dev);
 393	unsigned long long available = 0;
 394
 395	/*
 396	 * Flush in-flight updates and grab a snapshot of the available
 397	 * size.  Of course, this value is potentially invalidated the
 398	 * memory nvdimm_bus_lock() is dropped, but that's userspace's
 399	 * problem to not race itself.
 400	 */
 401	nd_device_lock(dev);
 402	nvdimm_bus_lock(dev);
 403	wait_nvdimm_bus_probe_idle(dev);
 404	available = nd_region_available_dpa(nd_region);
 405	nvdimm_bus_unlock(dev);
 406	nd_device_unlock(dev);
 407
 408	return sprintf(buf, "%llu\n", available);
 409}
 410static DEVICE_ATTR_RO(available_size);
 411
 412static ssize_t max_available_extent_show(struct device *dev,
 413		struct device_attribute *attr, char *buf)
 414{
 415	struct nd_region *nd_region = to_nd_region(dev);
 416	unsigned long long available = 0;
 417
 418	nd_device_lock(dev);
 419	nvdimm_bus_lock(dev);
 420	wait_nvdimm_bus_probe_idle(dev);
 421	available = nd_region_allocatable_dpa(nd_region);
 422	nvdimm_bus_unlock(dev);
 423	nd_device_unlock(dev);
 424
 425	return sprintf(buf, "%llu\n", available);
 426}
 427static DEVICE_ATTR_RO(max_available_extent);
 428
 429static ssize_t init_namespaces_show(struct device *dev,
 430		struct device_attribute *attr, char *buf)
 431{
 432	struct nd_region_data *ndrd = dev_get_drvdata(dev);
 433	ssize_t rc;
 434
 435	nvdimm_bus_lock(dev);
 436	if (ndrd)
 437		rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
 438	else
 439		rc = -ENXIO;
 440	nvdimm_bus_unlock(dev);
 441
 442	return rc;
 443}
 444static DEVICE_ATTR_RO(init_namespaces);
 445
 446static ssize_t namespace_seed_show(struct device *dev,
 447		struct device_attribute *attr, char *buf)
 448{
 449	struct nd_region *nd_region = to_nd_region(dev);
 450	ssize_t rc;
 451
 452	nvdimm_bus_lock(dev);
 453	if (nd_region->ns_seed)
 454		rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
 455	else
 456		rc = sprintf(buf, "\n");
 457	nvdimm_bus_unlock(dev);
 458	return rc;
 459}
 460static DEVICE_ATTR_RO(namespace_seed);
 461
 462static ssize_t btt_seed_show(struct device *dev,
 463		struct device_attribute *attr, char *buf)
 464{
 465	struct nd_region *nd_region = to_nd_region(dev);
 466	ssize_t rc;
 467
 468	nvdimm_bus_lock(dev);
 469	if (nd_region->btt_seed)
 470		rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
 471	else
 472		rc = sprintf(buf, "\n");
 473	nvdimm_bus_unlock(dev);
 474
 475	return rc;
 476}
 477static DEVICE_ATTR_RO(btt_seed);
 478
 479static ssize_t pfn_seed_show(struct device *dev,
 480		struct device_attribute *attr, char *buf)
 481{
 482	struct nd_region *nd_region = to_nd_region(dev);
 483	ssize_t rc;
 484
 485	nvdimm_bus_lock(dev);
 486	if (nd_region->pfn_seed)
 487		rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
 488	else
 489		rc = sprintf(buf, "\n");
 490	nvdimm_bus_unlock(dev);
 491
 492	return rc;
 493}
 494static DEVICE_ATTR_RO(pfn_seed);
 495
 496static ssize_t dax_seed_show(struct device *dev,
 497		struct device_attribute *attr, char *buf)
 498{
 499	struct nd_region *nd_region = to_nd_region(dev);
 500	ssize_t rc;
 501
 502	nvdimm_bus_lock(dev);
 503	if (nd_region->dax_seed)
 504		rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
 505	else
 506		rc = sprintf(buf, "\n");
 507	nvdimm_bus_unlock(dev);
 508
 509	return rc;
 510}
 511static DEVICE_ATTR_RO(dax_seed);
 512
 513static ssize_t read_only_show(struct device *dev,
 514		struct device_attribute *attr, char *buf)
 515{
 516	struct nd_region *nd_region = to_nd_region(dev);
 517
 518	return sprintf(buf, "%d\n", nd_region->ro);
 519}
 520
 521static ssize_t read_only_store(struct device *dev,
 522		struct device_attribute *attr, const char *buf, size_t len)
 523{
 524	bool ro;
 525	int rc = strtobool(buf, &ro);
 526	struct nd_region *nd_region = to_nd_region(dev);
 527
 528	if (rc)
 529		return rc;
 530
 531	nd_region->ro = ro;
 532	return len;
 533}
 534static DEVICE_ATTR_RW(read_only);
 535
 536static ssize_t align_show(struct device *dev,
 537		struct device_attribute *attr, char *buf)
 538{
 539	struct nd_region *nd_region = to_nd_region(dev);
 540
 541	return sprintf(buf, "%#lx\n", nd_region->align);
 542}
 543
 544static ssize_t align_store(struct device *dev,
 545		struct device_attribute *attr, const char *buf, size_t len)
 546{
 547	struct nd_region *nd_region = to_nd_region(dev);
 548	unsigned long val, dpa;
 549	u32 remainder;
 550	int rc;
 551
 552	rc = kstrtoul(buf, 0, &val);
 553	if (rc)
 554		return rc;
 555
 556	if (!nd_region->ndr_mappings)
 557		return -ENXIO;
 558
 559	/*
 560	 * Ensure space-align is evenly divisible by the region
 561	 * interleave-width because the kernel typically has no facility
 562	 * to determine which DIMM(s), dimm-physical-addresses, would
 563	 * contribute to the tail capacity in system-physical-address
 564	 * space for the namespace.
 565	 */
 566	dpa = div_u64_rem(val, nd_region->ndr_mappings, &remainder);
 567	if (!is_power_of_2(dpa) || dpa < PAGE_SIZE
 568			|| val > region_size(nd_region) || remainder)
 569		return -EINVAL;
 570
 571	/*
 572	 * Given that space allocation consults this value multiple
 573	 * times ensure it does not change for the duration of the
 574	 * allocation.
 575	 */
 576	nvdimm_bus_lock(dev);
 577	nd_region->align = val;
 578	nvdimm_bus_unlock(dev);
 579
 580	return len;
 581}
 582static DEVICE_ATTR_RW(align);
 583
 584static ssize_t region_badblocks_show(struct device *dev,
 585		struct device_attribute *attr, char *buf)
 586{
 587	struct nd_region *nd_region = to_nd_region(dev);
 588	ssize_t rc;
 589
 590	nd_device_lock(dev);
 591	if (dev->driver)
 592		rc = badblocks_show(&nd_region->bb, buf, 0);
 593	else
 594		rc = -ENXIO;
 595	nd_device_unlock(dev);
 596
 597	return rc;
 598}
 599static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
 600
 601static ssize_t resource_show(struct device *dev,
 602		struct device_attribute *attr, char *buf)
 603{
 604	struct nd_region *nd_region = to_nd_region(dev);
 605
 606	return sprintf(buf, "%#llx\n", nd_region->ndr_start);
 607}
 608static DEVICE_ATTR_ADMIN_RO(resource);
 609
 610static ssize_t persistence_domain_show(struct device *dev,
 611		struct device_attribute *attr, char *buf)
 612{
 613	struct nd_region *nd_region = to_nd_region(dev);
 614
 615	if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
 616		return sprintf(buf, "cpu_cache\n");
 617	else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
 618		return sprintf(buf, "memory_controller\n");
 619	else
 620		return sprintf(buf, "\n");
 621}
 622static DEVICE_ATTR_RO(persistence_domain);
 623
 624static struct attribute *nd_region_attributes[] = {
 625	&dev_attr_size.attr,
 626	&dev_attr_align.attr,
 627	&dev_attr_nstype.attr,
 628	&dev_attr_mappings.attr,
 629	&dev_attr_btt_seed.attr,
 630	&dev_attr_pfn_seed.attr,
 631	&dev_attr_dax_seed.attr,
 632	&dev_attr_deep_flush.attr,
 633	&dev_attr_read_only.attr,
 634	&dev_attr_set_cookie.attr,
 635	&dev_attr_available_size.attr,
 636	&dev_attr_max_available_extent.attr,
 637	&dev_attr_namespace_seed.attr,
 638	&dev_attr_init_namespaces.attr,
 639	&dev_attr_badblocks.attr,
 640	&dev_attr_resource.attr,
 641	&dev_attr_persistence_domain.attr,
 642	NULL,
 643};
 644
 645static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
 646{
 647	struct device *dev = container_of(kobj, typeof(*dev), kobj);
 648	struct nd_region *nd_region = to_nd_region(dev);
 649	struct nd_interleave_set *nd_set = nd_region->nd_set;
 650	int type = nd_region_to_nstype(nd_region);
 651
 652	if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
 653		return 0;
 654
 655	if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
 656		return 0;
 657
 658	if (!is_memory(dev) && a == &dev_attr_badblocks.attr)
 659		return 0;
 660
 661	if (a == &dev_attr_resource.attr && !is_memory(dev))
 662		return 0;
 
 
 
 
 663
 664	if (a == &dev_attr_deep_flush.attr) {
 665		int has_flush = nvdimm_has_flush(nd_region);
 666
 667		if (has_flush == 1)
 668			return a->mode;
 669		else if (has_flush == 0)
 670			return 0444;
 671		else
 672			return 0;
 673	}
 674
 675	if (a == &dev_attr_persistence_domain.attr) {
 676		if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
 677					| BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
 678			return 0;
 679		return a->mode;
 680	}
 681
 682	if (a == &dev_attr_align.attr)
 683		return a->mode;
 684
 685	if (a != &dev_attr_set_cookie.attr
 686			&& a != &dev_attr_available_size.attr)
 687		return a->mode;
 688
 689	if ((type == ND_DEVICE_NAMESPACE_PMEM
 690				|| type == ND_DEVICE_NAMESPACE_BLK)
 691			&& a == &dev_attr_available_size.attr)
 692		return a->mode;
 693	else if (is_memory(dev) && nd_set)
 694		return a->mode;
 695
 696	return 0;
 697}
 698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 699static ssize_t mappingN(struct device *dev, char *buf, int n)
 700{
 701	struct nd_region *nd_region = to_nd_region(dev);
 702	struct nd_mapping *nd_mapping;
 703	struct nvdimm *nvdimm;
 704
 705	if (n >= nd_region->ndr_mappings)
 706		return -ENXIO;
 707	nd_mapping = &nd_region->mapping[n];
 708	nvdimm = nd_mapping->nvdimm;
 709
 710	return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
 711			nd_mapping->start, nd_mapping->size,
 712			nd_mapping->position);
 713}
 714
 715#define REGION_MAPPING(idx) \
 716static ssize_t mapping##idx##_show(struct device *dev,		\
 717		struct device_attribute *attr, char *buf)	\
 718{								\
 719	return mappingN(dev, buf, idx);				\
 720}								\
 721static DEVICE_ATTR_RO(mapping##idx)
 722
 723/*
 724 * 32 should be enough for a while, even in the presence of socket
 725 * interleave a 32-way interleave set is a degenerate case.
 726 */
 727REGION_MAPPING(0);
 728REGION_MAPPING(1);
 729REGION_MAPPING(2);
 730REGION_MAPPING(3);
 731REGION_MAPPING(4);
 732REGION_MAPPING(5);
 733REGION_MAPPING(6);
 734REGION_MAPPING(7);
 735REGION_MAPPING(8);
 736REGION_MAPPING(9);
 737REGION_MAPPING(10);
 738REGION_MAPPING(11);
 739REGION_MAPPING(12);
 740REGION_MAPPING(13);
 741REGION_MAPPING(14);
 742REGION_MAPPING(15);
 743REGION_MAPPING(16);
 744REGION_MAPPING(17);
 745REGION_MAPPING(18);
 746REGION_MAPPING(19);
 747REGION_MAPPING(20);
 748REGION_MAPPING(21);
 749REGION_MAPPING(22);
 750REGION_MAPPING(23);
 751REGION_MAPPING(24);
 752REGION_MAPPING(25);
 753REGION_MAPPING(26);
 754REGION_MAPPING(27);
 755REGION_MAPPING(28);
 756REGION_MAPPING(29);
 757REGION_MAPPING(30);
 758REGION_MAPPING(31);
 759
 760static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
 761{
 762	struct device *dev = container_of(kobj, struct device, kobj);
 763	struct nd_region *nd_region = to_nd_region(dev);
 764
 765	if (n < nd_region->ndr_mappings)
 766		return a->mode;
 767	return 0;
 768}
 769
 770static struct attribute *mapping_attributes[] = {
 771	&dev_attr_mapping0.attr,
 772	&dev_attr_mapping1.attr,
 773	&dev_attr_mapping2.attr,
 774	&dev_attr_mapping3.attr,
 775	&dev_attr_mapping4.attr,
 776	&dev_attr_mapping5.attr,
 777	&dev_attr_mapping6.attr,
 778	&dev_attr_mapping7.attr,
 779	&dev_attr_mapping8.attr,
 780	&dev_attr_mapping9.attr,
 781	&dev_attr_mapping10.attr,
 782	&dev_attr_mapping11.attr,
 783	&dev_attr_mapping12.attr,
 784	&dev_attr_mapping13.attr,
 785	&dev_attr_mapping14.attr,
 786	&dev_attr_mapping15.attr,
 787	&dev_attr_mapping16.attr,
 788	&dev_attr_mapping17.attr,
 789	&dev_attr_mapping18.attr,
 790	&dev_attr_mapping19.attr,
 791	&dev_attr_mapping20.attr,
 792	&dev_attr_mapping21.attr,
 793	&dev_attr_mapping22.attr,
 794	&dev_attr_mapping23.attr,
 795	&dev_attr_mapping24.attr,
 796	&dev_attr_mapping25.attr,
 797	&dev_attr_mapping26.attr,
 798	&dev_attr_mapping27.attr,
 799	&dev_attr_mapping28.attr,
 800	&dev_attr_mapping29.attr,
 801	&dev_attr_mapping30.attr,
 802	&dev_attr_mapping31.attr,
 803	NULL,
 804};
 805
 806static const struct attribute_group nd_mapping_attribute_group = {
 807	.is_visible = mapping_visible,
 808	.attrs = mapping_attributes,
 809};
 810
 811static const struct attribute_group nd_region_attribute_group = {
 812	.attrs = nd_region_attributes,
 813	.is_visible = region_visible,
 814};
 815
 816static const struct attribute_group *nd_region_attribute_groups[] = {
 817	&nd_device_attribute_group,
 818	&nd_region_attribute_group,
 819	&nd_numa_attribute_group,
 820	&nd_mapping_attribute_group,
 821	NULL,
 822};
 823
 824static const struct device_type nd_blk_device_type = {
 825	.name = "nd_blk",
 826	.release = nd_region_release,
 827	.groups = nd_region_attribute_groups,
 828};
 829
 830static const struct device_type nd_pmem_device_type = {
 831	.name = "nd_pmem",
 832	.release = nd_region_release,
 833	.groups = nd_region_attribute_groups,
 834};
 835
 836static const struct device_type nd_volatile_device_type = {
 837	.name = "nd_volatile",
 838	.release = nd_region_release,
 839	.groups = nd_region_attribute_groups,
 840};
 841
 842bool is_nd_pmem(struct device *dev)
 843{
 844	return dev ? dev->type == &nd_pmem_device_type : false;
 845}
 846
 847bool is_nd_blk(struct device *dev)
 848{
 849	return dev ? dev->type == &nd_blk_device_type : false;
 850}
 851
 852bool is_nd_volatile(struct device *dev)
 853{
 854	return dev ? dev->type == &nd_volatile_device_type : false;
 855}
 856
 857u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
 858		struct nd_namespace_index *nsindex)
 859{
 860	struct nd_interleave_set *nd_set = nd_region->nd_set;
 861
 862	if (!nd_set)
 863		return 0;
 864
 865	if (nsindex && __le16_to_cpu(nsindex->major) == 1
 866			&& __le16_to_cpu(nsindex->minor) == 1)
 867		return nd_set->cookie1;
 868	return nd_set->cookie2;
 869}
 870
 871u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
 872{
 873	struct nd_interleave_set *nd_set = nd_region->nd_set;
 874
 875	if (nd_set)
 876		return nd_set->altcookie;
 877	return 0;
 878}
 879
 880void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
 881{
 882	struct nd_label_ent *label_ent, *e;
 883
 884	lockdep_assert_held(&nd_mapping->lock);
 885	list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
 886		list_del(&label_ent->list);
 887		kfree(label_ent);
 888	}
 889}
 890
 891/*
 892 * When a namespace is activated create new seeds for the next
 893 * namespace, or namespace-personality to be configured.
 894 */
 895void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev)
 896{
 897	nvdimm_bus_lock(dev);
 898	if (nd_region->ns_seed == dev) {
 899		nd_region_create_ns_seed(nd_region);
 900	} else if (is_nd_btt(dev)) {
 901		struct nd_btt *nd_btt = to_nd_btt(dev);
 902
 903		if (nd_region->btt_seed == dev)
 904			nd_region_create_btt_seed(nd_region);
 905		if (nd_region->ns_seed == &nd_btt->ndns->dev)
 906			nd_region_create_ns_seed(nd_region);
 907	} else if (is_nd_pfn(dev)) {
 908		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
 909
 910		if (nd_region->pfn_seed == dev)
 911			nd_region_create_pfn_seed(nd_region);
 912		if (nd_region->ns_seed == &nd_pfn->ndns->dev)
 913			nd_region_create_ns_seed(nd_region);
 914	} else if (is_nd_dax(dev)) {
 915		struct nd_dax *nd_dax = to_nd_dax(dev);
 916
 917		if (nd_region->dax_seed == dev)
 918			nd_region_create_dax_seed(nd_region);
 919		if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
 920			nd_region_create_ns_seed(nd_region);
 921	}
 922	nvdimm_bus_unlock(dev);
 923}
 924
 925int nd_blk_region_init(struct nd_region *nd_region)
 926{
 927	struct device *dev = &nd_region->dev;
 928	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
 929
 930	if (!is_nd_blk(dev))
 931		return 0;
 932
 933	if (nd_region->ndr_mappings < 1) {
 934		dev_dbg(dev, "invalid BLK region\n");
 935		return -ENXIO;
 936	}
 937
 938	return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
 939}
 940
 941/**
 942 * nd_region_acquire_lane - allocate and lock a lane
 943 * @nd_region: region id and number of lanes possible
 944 *
 945 * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
 946 * We optimize for the common case where there are 256 lanes, one
 947 * per-cpu.  For larger systems we need to lock to share lanes.  For now
 948 * this implementation assumes the cost of maintaining an allocator for
 949 * free lanes is on the order of the lock hold time, so it implements a
 950 * static lane = cpu % num_lanes mapping.
 951 *
 952 * In the case of a BTT instance on top of a BLK namespace a lane may be
 953 * acquired recursively.  We lock on the first instance.
 954 *
 955 * In the case of a BTT instance on top of PMEM, we only acquire a lane
 956 * for the BTT metadata updates.
 957 */
 958unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
 959{
 960	unsigned int cpu, lane;
 961
 962	cpu = get_cpu();
 963	if (nd_region->num_lanes < nr_cpu_ids) {
 964		struct nd_percpu_lane *ndl_lock, *ndl_count;
 965
 966		lane = cpu % nd_region->num_lanes;
 967		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
 968		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
 969		if (ndl_count->count++ == 0)
 970			spin_lock(&ndl_lock->lock);
 971	} else
 972		lane = cpu;
 973
 974	return lane;
 975}
 976EXPORT_SYMBOL(nd_region_acquire_lane);
 977
 978void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
 979{
 980	if (nd_region->num_lanes < nr_cpu_ids) {
 981		unsigned int cpu = get_cpu();
 982		struct nd_percpu_lane *ndl_lock, *ndl_count;
 983
 984		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
 985		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
 986		if (--ndl_count->count == 0)
 987			spin_unlock(&ndl_lock->lock);
 988		put_cpu();
 989	}
 990	put_cpu();
 991}
 992EXPORT_SYMBOL(nd_region_release_lane);
 993
 994/*
 995 * PowerPC requires this alignment for memremap_pages(). All other archs
 996 * should be ok with SUBSECTION_SIZE (see memremap_compat_align()).
 997 */
 998#define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M
 999
1000static unsigned long default_align(struct nd_region *nd_region)
1001{
1002	unsigned long align;
1003	int i, mappings;
1004	u32 remainder;
1005
1006	if (is_nd_blk(&nd_region->dev))
1007		align = PAGE_SIZE;
1008	else
1009		align = MEMREMAP_COMPAT_ALIGN_MAX;
1010
1011	for (i = 0; i < nd_region->ndr_mappings; i++) {
1012		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1013		struct nvdimm *nvdimm = nd_mapping->nvdimm;
1014
1015		if (test_bit(NDD_ALIASING, &nvdimm->flags)) {
1016			align = MEMREMAP_COMPAT_ALIGN_MAX;
1017			break;
1018		}
1019	}
1020
1021	mappings = max_t(u16, 1, nd_region->ndr_mappings);
1022	div_u64_rem(align, mappings, &remainder);
1023	if (remainder)
1024		align *= mappings;
1025
1026	return align;
1027}
1028
1029static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
1030		struct nd_region_desc *ndr_desc,
1031		const struct device_type *dev_type, const char *caller)
1032{
1033	struct nd_region *nd_region;
1034	struct device *dev;
1035	void *region_buf;
1036	unsigned int i;
1037	int ro = 0;
1038
1039	for (i = 0; i < ndr_desc->num_mappings; i++) {
1040		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1041		struct nvdimm *nvdimm = mapping->nvdimm;
1042
1043		if ((mapping->start | mapping->size) % PAGE_SIZE) {
1044			dev_err(&nvdimm_bus->dev,
1045				"%s: %s mapping%d is not %ld aligned\n",
1046				caller, dev_name(&nvdimm->dev), i, PAGE_SIZE);
1047			return NULL;
1048		}
1049
1050		if (test_bit(NDD_UNARMED, &nvdimm->flags))
1051			ro = 1;
1052
1053		if (test_bit(NDD_NOBLK, &nvdimm->flags)
1054				&& dev_type == &nd_blk_device_type) {
1055			dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not BLK capable\n",
1056					caller, dev_name(&nvdimm->dev), i);
1057			return NULL;
1058		}
1059	}
1060
1061	if (dev_type == &nd_blk_device_type) {
1062		struct nd_blk_region_desc *ndbr_desc;
1063		struct nd_blk_region *ndbr;
1064
1065		ndbr_desc = to_blk_region_desc(ndr_desc);
1066		ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
1067				* ndr_desc->num_mappings,
1068				GFP_KERNEL);
1069		if (ndbr) {
1070			nd_region = &ndbr->nd_region;
1071			ndbr->enable = ndbr_desc->enable;
1072			ndbr->do_io = ndbr_desc->do_io;
1073		}
1074		region_buf = ndbr;
1075	} else {
1076		nd_region = kzalloc(struct_size(nd_region, mapping,
1077						ndr_desc->num_mappings),
1078				    GFP_KERNEL);
1079		region_buf = nd_region;
1080	}
1081
1082	if (!region_buf)
1083		return NULL;
1084	nd_region->id = memregion_alloc(GFP_KERNEL);
1085	if (nd_region->id < 0)
1086		goto err_id;
1087
1088	nd_region->lane = alloc_percpu(struct nd_percpu_lane);
1089	if (!nd_region->lane)
1090		goto err_percpu;
1091
1092        for (i = 0; i < nr_cpu_ids; i++) {
1093		struct nd_percpu_lane *ndl;
1094
1095		ndl = per_cpu_ptr(nd_region->lane, i);
1096		spin_lock_init(&ndl->lock);
1097		ndl->count = 0;
1098	}
1099
1100	for (i = 0; i < ndr_desc->num_mappings; i++) {
1101		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1102		struct nvdimm *nvdimm = mapping->nvdimm;
1103
1104		nd_region->mapping[i].nvdimm = nvdimm;
1105		nd_region->mapping[i].start = mapping->start;
1106		nd_region->mapping[i].size = mapping->size;
1107		nd_region->mapping[i].position = mapping->position;
1108		INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1109		mutex_init(&nd_region->mapping[i].lock);
1110
1111		get_device(&nvdimm->dev);
1112	}
1113	nd_region->ndr_mappings = ndr_desc->num_mappings;
1114	nd_region->provider_data = ndr_desc->provider_data;
1115	nd_region->nd_set = ndr_desc->nd_set;
1116	nd_region->num_lanes = ndr_desc->num_lanes;
1117	nd_region->flags = ndr_desc->flags;
1118	nd_region->ro = ro;
1119	nd_region->numa_node = ndr_desc->numa_node;
1120	nd_region->target_node = ndr_desc->target_node;
1121	ida_init(&nd_region->ns_ida);
1122	ida_init(&nd_region->btt_ida);
1123	ida_init(&nd_region->pfn_ida);
1124	ida_init(&nd_region->dax_ida);
1125	dev = &nd_region->dev;
1126	dev_set_name(dev, "region%d", nd_region->id);
1127	dev->parent = &nvdimm_bus->dev;
1128	dev->type = dev_type;
1129	dev->groups = ndr_desc->attr_groups;
1130	dev->of_node = ndr_desc->of_node;
1131	nd_region->ndr_size = resource_size(ndr_desc->res);
1132	nd_region->ndr_start = ndr_desc->res->start;
1133	nd_region->align = default_align(nd_region);
1134	if (ndr_desc->flush)
1135		nd_region->flush = ndr_desc->flush;
1136	else
1137		nd_region->flush = NULL;
1138
1139	nd_device_register(dev);
1140
1141	return nd_region;
1142
1143 err_percpu:
1144	memregion_free(nd_region->id);
1145 err_id:
1146	kfree(region_buf);
1147	return NULL;
1148}
1149
1150struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1151		struct nd_region_desc *ndr_desc)
1152{
1153	ndr_desc->num_lanes = ND_MAX_LANES;
1154	return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1155			__func__);
1156}
1157EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1158
1159struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
1160		struct nd_region_desc *ndr_desc)
1161{
1162	if (ndr_desc->num_mappings > 1)
1163		return NULL;
1164	ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
1165	return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
1166			__func__);
1167}
1168EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
1169
1170struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1171		struct nd_region_desc *ndr_desc)
1172{
1173	ndr_desc->num_lanes = ND_MAX_LANES;
1174	return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1175			__func__);
1176}
1177EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1178
1179int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
1180{
1181	int rc = 0;
1182
1183	if (!nd_region->flush)
1184		rc = generic_nvdimm_flush(nd_region);
1185	else {
1186		if (nd_region->flush(nd_region, bio))
1187			rc = -EIO;
1188	}
1189
1190	return rc;
1191}
1192/**
1193 * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1194 * @nd_region: blk or interleaved pmem region
1195 */
1196int generic_nvdimm_flush(struct nd_region *nd_region)
1197{
1198	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1199	int i, idx;
1200
1201	/*
1202	 * Try to encourage some diversity in flush hint addresses
1203	 * across cpus assuming a limited number of flush hints.
1204	 */
1205	idx = this_cpu_read(flush_idx);
1206	idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1207
1208	/*
1209	 * The pmem_wmb() is needed to 'sfence' all
1210	 * previous writes such that they are architecturally visible for
1211	 * the platform buffer flush. Note that we've already arranged for pmem
1212	 * writes to avoid the cache via memcpy_flushcache().  The final
1213	 * wmb() ensures ordering for the NVDIMM flush write.
1214	 */
1215	pmem_wmb();
1216	for (i = 0; i < nd_region->ndr_mappings; i++)
1217		if (ndrd_get_flush_wpq(ndrd, i, 0))
1218			writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1219	wmb();
1220
1221	return 0;
1222}
1223EXPORT_SYMBOL_GPL(nvdimm_flush);
1224
1225/**
1226 * nvdimm_has_flush - determine write flushing requirements
1227 * @nd_region: blk or interleaved pmem region
1228 *
1229 * Returns 1 if writes require flushing
1230 * Returns 0 if writes do not require flushing
1231 * Returns -ENXIO if flushing capability can not be determined
1232 */
1233int nvdimm_has_flush(struct nd_region *nd_region)
1234{
1235	int i;
1236
1237	/* no nvdimm or pmem api == flushing capability unknown */
1238	if (nd_region->ndr_mappings == 0
1239			|| !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1240		return -ENXIO;
1241
1242	for (i = 0; i < nd_region->ndr_mappings; i++) {
1243		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1244		struct nvdimm *nvdimm = nd_mapping->nvdimm;
1245
1246		/* flush hints present / available */
1247		if (nvdimm->num_flush)
1248			return 1;
1249	}
1250
1251	/*
1252	 * The platform defines dimm devices without hints, assume
1253	 * platform persistence mechanism like ADR
1254	 */
1255	return 0;
1256}
1257EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1258
1259int nvdimm_has_cache(struct nd_region *nd_region)
1260{
1261	return is_nd_pmem(&nd_region->dev) &&
1262		!test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1263}
1264EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1265
1266bool is_nvdimm_sync(struct nd_region *nd_region)
1267{
1268	if (is_nd_volatile(&nd_region->dev))
1269		return true;
1270
1271	return is_nd_pmem(&nd_region->dev) &&
1272		!test_bit(ND_REGION_ASYNC, &nd_region->flags);
1273}
1274EXPORT_SYMBOL_GPL(is_nvdimm_sync);
1275
1276struct conflict_context {
1277	struct nd_region *nd_region;
1278	resource_size_t start, size;
1279};
1280
1281static int region_conflict(struct device *dev, void *data)
1282{
1283	struct nd_region *nd_region;
1284	struct conflict_context *ctx = data;
1285	resource_size_t res_end, region_end, region_start;
1286
1287	if (!is_memory(dev))
1288		return 0;
1289
1290	nd_region = to_nd_region(dev);
1291	if (nd_region == ctx->nd_region)
1292		return 0;
1293
1294	res_end = ctx->start + ctx->size;
1295	region_start = nd_region->ndr_start;
1296	region_end = region_start + nd_region->ndr_size;
1297	if (ctx->start >= region_start && ctx->start < region_end)
1298		return -EBUSY;
1299	if (res_end > region_start && res_end <= region_end)
1300		return -EBUSY;
1301	return 0;
1302}
1303
1304int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1305		resource_size_t size)
1306{
1307	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1308	struct conflict_context ctx = {
1309		.nd_region = nd_region,
1310		.start = start,
1311		.size = size,
1312	};
1313
1314	return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
 
 
 
 
 
1315}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
   4 */
   5#include <linux/scatterlist.h>
 
   6#include <linux/highmem.h>
   7#include <linux/sched.h>
   8#include <linux/slab.h>
   9#include <linux/hash.h>
  10#include <linux/sort.h>
  11#include <linux/io.h>
  12#include <linux/nd.h>
  13#include "nd-core.h"
  14#include "nd.h"
  15
  16/*
  17 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
  18 * irrelevant.
  19 */
  20#include <linux/io-64-nonatomic-hi-lo.h>
  21
  22static DEFINE_IDA(region_ida);
  23static DEFINE_PER_CPU(int, flush_idx);
  24
  25static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
  26		struct nd_region_data *ndrd)
  27{
  28	int i, j;
  29
  30	dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
  31			nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
  32	for (i = 0; i < (1 << ndrd->hints_shift); i++) {
  33		struct resource *res = &nvdimm->flush_wpq[i];
  34		unsigned long pfn = PHYS_PFN(res->start);
  35		void __iomem *flush_page;
  36
  37		/* check if flush hints share a page */
  38		for (j = 0; j < i; j++) {
  39			struct resource *res_j = &nvdimm->flush_wpq[j];
  40			unsigned long pfn_j = PHYS_PFN(res_j->start);
  41
  42			if (pfn == pfn_j)
  43				break;
  44		}
  45
  46		if (j < i)
  47			flush_page = (void __iomem *) ((unsigned long)
  48					ndrd_get_flush_wpq(ndrd, dimm, j)
  49					& PAGE_MASK);
  50		else
  51			flush_page = devm_nvdimm_ioremap(dev,
  52					PFN_PHYS(pfn), PAGE_SIZE);
  53		if (!flush_page)
  54			return -ENXIO;
  55		ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
  56				+ (res->start & ~PAGE_MASK));
  57	}
  58
  59	return 0;
  60}
  61
  62int nd_region_activate(struct nd_region *nd_region)
  63{
  64	int i, j, num_flush = 0;
  65	struct nd_region_data *ndrd;
  66	struct device *dev = &nd_region->dev;
  67	size_t flush_data_size = sizeof(void *);
  68
  69	nvdimm_bus_lock(&nd_region->dev);
  70	for (i = 0; i < nd_region->ndr_mappings; i++) {
  71		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
  72		struct nvdimm *nvdimm = nd_mapping->nvdimm;
  73
  74		if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
  75			nvdimm_bus_unlock(&nd_region->dev);
  76			return -EBUSY;
  77		}
  78
  79		/* at least one null hint slot per-dimm for the "no-hint" case */
  80		flush_data_size += sizeof(void *);
  81		num_flush = min_not_zero(num_flush, nvdimm->num_flush);
  82		if (!nvdimm->num_flush)
  83			continue;
  84		flush_data_size += nvdimm->num_flush * sizeof(void *);
  85	}
  86	nvdimm_bus_unlock(&nd_region->dev);
  87
  88	ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
  89	if (!ndrd)
  90		return -ENOMEM;
  91	dev_set_drvdata(dev, ndrd);
  92
  93	if (!num_flush)
  94		return 0;
  95
  96	ndrd->hints_shift = ilog2(num_flush);
  97	for (i = 0; i < nd_region->ndr_mappings; i++) {
  98		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
  99		struct nvdimm *nvdimm = nd_mapping->nvdimm;
 100		int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
 101
 102		if (rc)
 103			return rc;
 104	}
 105
 106	/*
 107	 * Clear out entries that are duplicates. This should prevent the
 108	 * extra flushings.
 109	 */
 110	for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
 111		/* ignore if NULL already */
 112		if (!ndrd_get_flush_wpq(ndrd, i, 0))
 113			continue;
 114
 115		for (j = i + 1; j < nd_region->ndr_mappings; j++)
 116			if (ndrd_get_flush_wpq(ndrd, i, 0) ==
 117			    ndrd_get_flush_wpq(ndrd, j, 0))
 118				ndrd_set_flush_wpq(ndrd, j, 0, NULL);
 119	}
 120
 121	return 0;
 122}
 123
 124static void nd_region_release(struct device *dev)
 125{
 126	struct nd_region *nd_region = to_nd_region(dev);
 127	u16 i;
 128
 129	for (i = 0; i < nd_region->ndr_mappings; i++) {
 130		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
 131		struct nvdimm *nvdimm = nd_mapping->nvdimm;
 132
 133		put_device(&nvdimm->dev);
 134	}
 135	free_percpu(nd_region->lane);
 136	ida_simple_remove(&region_ida, nd_region->id);
 137	if (is_nd_blk(dev))
 138		kfree(to_nd_blk_region(dev));
 139	else
 140		kfree(nd_region);
 141}
 142
 143static struct device_type nd_blk_device_type = {
 144	.name = "nd_blk",
 145	.release = nd_region_release,
 146};
 147
 148static struct device_type nd_pmem_device_type = {
 149	.name = "nd_pmem",
 150	.release = nd_region_release,
 151};
 152
 153static struct device_type nd_volatile_device_type = {
 154	.name = "nd_volatile",
 155	.release = nd_region_release,
 156};
 157
 158bool is_nd_pmem(struct device *dev)
 159{
 160	return dev ? dev->type == &nd_pmem_device_type : false;
 161}
 162
 163bool is_nd_blk(struct device *dev)
 164{
 165	return dev ? dev->type == &nd_blk_device_type : false;
 166}
 167
 168bool is_nd_volatile(struct device *dev)
 169{
 170	return dev ? dev->type == &nd_volatile_device_type : false;
 171}
 172
 173struct nd_region *to_nd_region(struct device *dev)
 174{
 175	struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
 176
 177	WARN_ON(dev->type->release != nd_region_release);
 178	return nd_region;
 179}
 180EXPORT_SYMBOL_GPL(to_nd_region);
 181
 182struct device *nd_region_dev(struct nd_region *nd_region)
 183{
 184	if (!nd_region)
 185		return NULL;
 186	return &nd_region->dev;
 187}
 188EXPORT_SYMBOL_GPL(nd_region_dev);
 189
 190struct nd_blk_region *to_nd_blk_region(struct device *dev)
 191{
 192	struct nd_region *nd_region = to_nd_region(dev);
 193
 194	WARN_ON(!is_nd_blk(dev));
 195	return container_of(nd_region, struct nd_blk_region, nd_region);
 196}
 197EXPORT_SYMBOL_GPL(to_nd_blk_region);
 198
 199void *nd_region_provider_data(struct nd_region *nd_region)
 200{
 201	return nd_region->provider_data;
 202}
 203EXPORT_SYMBOL_GPL(nd_region_provider_data);
 204
 205void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
 206{
 207	return ndbr->blk_provider_data;
 208}
 209EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
 210
 211void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
 212{
 213	ndbr->blk_provider_data = data;
 214}
 215EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
 216
 217/**
 218 * nd_region_to_nstype() - region to an integer namespace type
 219 * @nd_region: region-device to interrogate
 220 *
 221 * This is the 'nstype' attribute of a region as well, an input to the
 222 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
 223 * namespace devices with namespace drivers.
 224 */
 225int nd_region_to_nstype(struct nd_region *nd_region)
 226{
 227	if (is_memory(&nd_region->dev)) {
 228		u16 i, alias;
 229
 230		for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
 231			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
 232			struct nvdimm *nvdimm = nd_mapping->nvdimm;
 233
 234			if (test_bit(NDD_ALIASING, &nvdimm->flags))
 235				alias++;
 236		}
 237		if (alias)
 238			return ND_DEVICE_NAMESPACE_PMEM;
 239		else
 240			return ND_DEVICE_NAMESPACE_IO;
 241	} else if (is_nd_blk(&nd_region->dev)) {
 242		return ND_DEVICE_NAMESPACE_BLK;
 243	}
 244
 245	return 0;
 246}
 247EXPORT_SYMBOL(nd_region_to_nstype);
 248
 249static ssize_t size_show(struct device *dev,
 250		struct device_attribute *attr, char *buf)
 251{
 252	struct nd_region *nd_region = to_nd_region(dev);
 253	unsigned long long size = 0;
 254
 255	if (is_memory(dev)) {
 256		size = nd_region->ndr_size;
 257	} else if (nd_region->ndr_mappings == 1) {
 258		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
 259
 260		size = nd_mapping->size;
 261	}
 262
 263	return sprintf(buf, "%llu\n", size);
 
 
 
 
 
 
 
 
 264}
 265static DEVICE_ATTR_RO(size);
 266
 267static ssize_t deep_flush_show(struct device *dev,
 268		struct device_attribute *attr, char *buf)
 269{
 270	struct nd_region *nd_region = to_nd_region(dev);
 271
 272	/*
 273	 * NOTE: in the nvdimm_has_flush() error case this attribute is
 274	 * not visible.
 275	 */
 276	return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
 277}
 278
 279static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
 280		const char *buf, size_t len)
 281{
 282	bool flush;
 283	int rc = strtobool(buf, &flush);
 284	struct nd_region *nd_region = to_nd_region(dev);
 285
 286	if (rc)
 287		return rc;
 288	if (!flush)
 289		return -EINVAL;
 290	rc = nvdimm_flush(nd_region, NULL);
 291	if (rc)
 292		return rc;
 293
 294	return len;
 295}
 296static DEVICE_ATTR_RW(deep_flush);
 297
 298static ssize_t mappings_show(struct device *dev,
 299		struct device_attribute *attr, char *buf)
 300{
 301	struct nd_region *nd_region = to_nd_region(dev);
 302
 303	return sprintf(buf, "%d\n", nd_region->ndr_mappings);
 304}
 305static DEVICE_ATTR_RO(mappings);
 306
 307static ssize_t nstype_show(struct device *dev,
 308		struct device_attribute *attr, char *buf)
 309{
 310	struct nd_region *nd_region = to_nd_region(dev);
 311
 312	return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
 313}
 314static DEVICE_ATTR_RO(nstype);
 315
 316static ssize_t set_cookie_show(struct device *dev,
 317		struct device_attribute *attr, char *buf)
 318{
 319	struct nd_region *nd_region = to_nd_region(dev);
 320	struct nd_interleave_set *nd_set = nd_region->nd_set;
 321	ssize_t rc = 0;
 322
 323	if (is_memory(dev) && nd_set)
 324		/* pass, should be precluded by region_visible */;
 325	else
 326		return -ENXIO;
 327
 328	/*
 329	 * The cookie to show depends on which specification of the
 330	 * labels we are using. If there are not labels then default to
 331	 * the v1.1 namespace label cookie definition. To read all this
 332	 * data we need to wait for probing to settle.
 333	 */
 334	nd_device_lock(dev);
 335	nvdimm_bus_lock(dev);
 336	wait_nvdimm_bus_probe_idle(dev);
 337	if (nd_region->ndr_mappings) {
 338		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
 339		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
 340
 341		if (ndd) {
 342			struct nd_namespace_index *nsindex;
 343
 344			nsindex = to_namespace_index(ndd, ndd->ns_current);
 345			rc = sprintf(buf, "%#llx\n",
 346					nd_region_interleave_set_cookie(nd_region,
 347						nsindex));
 348		}
 349	}
 350	nvdimm_bus_unlock(dev);
 351	nd_device_unlock(dev);
 352
 353	if (rc)
 354		return rc;
 355	return sprintf(buf, "%#llx\n", nd_set->cookie1);
 356}
 357static DEVICE_ATTR_RO(set_cookie);
 358
 359resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
 360{
 361	resource_size_t blk_max_overlap = 0, available, overlap;
 362	int i;
 363
 364	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
 365
 366 retry:
 367	available = 0;
 368	overlap = blk_max_overlap;
 369	for (i = 0; i < nd_region->ndr_mappings; i++) {
 370		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
 371		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
 372
 373		/* if a dimm is disabled the available capacity is zero */
 374		if (!ndd)
 375			return 0;
 376
 377		if (is_memory(&nd_region->dev)) {
 378			available += nd_pmem_available_dpa(nd_region,
 379					nd_mapping, &overlap);
 380			if (overlap > blk_max_overlap) {
 381				blk_max_overlap = overlap;
 382				goto retry;
 383			}
 384		} else if (is_nd_blk(&nd_region->dev))
 385			available += nd_blk_available_dpa(nd_region);
 386	}
 387
 388	return available;
 389}
 390
 391resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
 392{
 393	resource_size_t available = 0;
 394	int i;
 395
 396	if (is_memory(&nd_region->dev))
 397		available = PHYS_ADDR_MAX;
 398
 399	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
 400	for (i = 0; i < nd_region->ndr_mappings; i++) {
 401		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
 402
 403		if (is_memory(&nd_region->dev))
 404			available = min(available,
 405					nd_pmem_max_contiguous_dpa(nd_region,
 406								   nd_mapping));
 407		else if (is_nd_blk(&nd_region->dev))
 408			available += nd_blk_available_dpa(nd_region);
 409	}
 410	if (is_memory(&nd_region->dev))
 411		return available * nd_region->ndr_mappings;
 412	return available;
 413}
 414
 415static ssize_t available_size_show(struct device *dev,
 416		struct device_attribute *attr, char *buf)
 417{
 418	struct nd_region *nd_region = to_nd_region(dev);
 419	unsigned long long available = 0;
 420
 421	/*
 422	 * Flush in-flight updates and grab a snapshot of the available
 423	 * size.  Of course, this value is potentially invalidated the
 424	 * memory nvdimm_bus_lock() is dropped, but that's userspace's
 425	 * problem to not race itself.
 426	 */
 427	nd_device_lock(dev);
 428	nvdimm_bus_lock(dev);
 429	wait_nvdimm_bus_probe_idle(dev);
 430	available = nd_region_available_dpa(nd_region);
 431	nvdimm_bus_unlock(dev);
 432	nd_device_unlock(dev);
 433
 434	return sprintf(buf, "%llu\n", available);
 435}
 436static DEVICE_ATTR_RO(available_size);
 437
 438static ssize_t max_available_extent_show(struct device *dev,
 439		struct device_attribute *attr, char *buf)
 440{
 441	struct nd_region *nd_region = to_nd_region(dev);
 442	unsigned long long available = 0;
 443
 444	nd_device_lock(dev);
 445	nvdimm_bus_lock(dev);
 446	wait_nvdimm_bus_probe_idle(dev);
 447	available = nd_region_allocatable_dpa(nd_region);
 448	nvdimm_bus_unlock(dev);
 449	nd_device_unlock(dev);
 450
 451	return sprintf(buf, "%llu\n", available);
 452}
 453static DEVICE_ATTR_RO(max_available_extent);
 454
 455static ssize_t init_namespaces_show(struct device *dev,
 456		struct device_attribute *attr, char *buf)
 457{
 458	struct nd_region_data *ndrd = dev_get_drvdata(dev);
 459	ssize_t rc;
 460
 461	nvdimm_bus_lock(dev);
 462	if (ndrd)
 463		rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
 464	else
 465		rc = -ENXIO;
 466	nvdimm_bus_unlock(dev);
 467
 468	return rc;
 469}
 470static DEVICE_ATTR_RO(init_namespaces);
 471
 472static ssize_t namespace_seed_show(struct device *dev,
 473		struct device_attribute *attr, char *buf)
 474{
 475	struct nd_region *nd_region = to_nd_region(dev);
 476	ssize_t rc;
 477
 478	nvdimm_bus_lock(dev);
 479	if (nd_region->ns_seed)
 480		rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
 481	else
 482		rc = sprintf(buf, "\n");
 483	nvdimm_bus_unlock(dev);
 484	return rc;
 485}
 486static DEVICE_ATTR_RO(namespace_seed);
 487
 488static ssize_t btt_seed_show(struct device *dev,
 489		struct device_attribute *attr, char *buf)
 490{
 491	struct nd_region *nd_region = to_nd_region(dev);
 492	ssize_t rc;
 493
 494	nvdimm_bus_lock(dev);
 495	if (nd_region->btt_seed)
 496		rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
 497	else
 498		rc = sprintf(buf, "\n");
 499	nvdimm_bus_unlock(dev);
 500
 501	return rc;
 502}
 503static DEVICE_ATTR_RO(btt_seed);
 504
 505static ssize_t pfn_seed_show(struct device *dev,
 506		struct device_attribute *attr, char *buf)
 507{
 508	struct nd_region *nd_region = to_nd_region(dev);
 509	ssize_t rc;
 510
 511	nvdimm_bus_lock(dev);
 512	if (nd_region->pfn_seed)
 513		rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
 514	else
 515		rc = sprintf(buf, "\n");
 516	nvdimm_bus_unlock(dev);
 517
 518	return rc;
 519}
 520static DEVICE_ATTR_RO(pfn_seed);
 521
 522static ssize_t dax_seed_show(struct device *dev,
 523		struct device_attribute *attr, char *buf)
 524{
 525	struct nd_region *nd_region = to_nd_region(dev);
 526	ssize_t rc;
 527
 528	nvdimm_bus_lock(dev);
 529	if (nd_region->dax_seed)
 530		rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
 531	else
 532		rc = sprintf(buf, "\n");
 533	nvdimm_bus_unlock(dev);
 534
 535	return rc;
 536}
 537static DEVICE_ATTR_RO(dax_seed);
 538
 539static ssize_t read_only_show(struct device *dev,
 540		struct device_attribute *attr, char *buf)
 541{
 542	struct nd_region *nd_region = to_nd_region(dev);
 543
 544	return sprintf(buf, "%d\n", nd_region->ro);
 545}
 546
 547static ssize_t read_only_store(struct device *dev,
 548		struct device_attribute *attr, const char *buf, size_t len)
 549{
 550	bool ro;
 551	int rc = strtobool(buf, &ro);
 552	struct nd_region *nd_region = to_nd_region(dev);
 553
 554	if (rc)
 555		return rc;
 556
 557	nd_region->ro = ro;
 558	return len;
 559}
 560static DEVICE_ATTR_RW(read_only);
 561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 562static ssize_t region_badblocks_show(struct device *dev,
 563		struct device_attribute *attr, char *buf)
 564{
 565	struct nd_region *nd_region = to_nd_region(dev);
 566	ssize_t rc;
 567
 568	nd_device_lock(dev);
 569	if (dev->driver)
 570		rc = badblocks_show(&nd_region->bb, buf, 0);
 571	else
 572		rc = -ENXIO;
 573	nd_device_unlock(dev);
 574
 575	return rc;
 576}
 577static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
 578
 579static ssize_t resource_show(struct device *dev,
 580		struct device_attribute *attr, char *buf)
 581{
 582	struct nd_region *nd_region = to_nd_region(dev);
 583
 584	return sprintf(buf, "%#llx\n", nd_region->ndr_start);
 585}
 586static DEVICE_ATTR_RO(resource);
 587
 588static ssize_t persistence_domain_show(struct device *dev,
 589		struct device_attribute *attr, char *buf)
 590{
 591	struct nd_region *nd_region = to_nd_region(dev);
 592
 593	if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
 594		return sprintf(buf, "cpu_cache\n");
 595	else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
 596		return sprintf(buf, "memory_controller\n");
 597	else
 598		return sprintf(buf, "\n");
 599}
 600static DEVICE_ATTR_RO(persistence_domain);
 601
 602static struct attribute *nd_region_attributes[] = {
 603	&dev_attr_size.attr,
 
 604	&dev_attr_nstype.attr,
 605	&dev_attr_mappings.attr,
 606	&dev_attr_btt_seed.attr,
 607	&dev_attr_pfn_seed.attr,
 608	&dev_attr_dax_seed.attr,
 609	&dev_attr_deep_flush.attr,
 610	&dev_attr_read_only.attr,
 611	&dev_attr_set_cookie.attr,
 612	&dev_attr_available_size.attr,
 613	&dev_attr_max_available_extent.attr,
 614	&dev_attr_namespace_seed.attr,
 615	&dev_attr_init_namespaces.attr,
 616	&dev_attr_badblocks.attr,
 617	&dev_attr_resource.attr,
 618	&dev_attr_persistence_domain.attr,
 619	NULL,
 620};
 621
 622static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
 623{
 624	struct device *dev = container_of(kobj, typeof(*dev), kobj);
 625	struct nd_region *nd_region = to_nd_region(dev);
 626	struct nd_interleave_set *nd_set = nd_region->nd_set;
 627	int type = nd_region_to_nstype(nd_region);
 628
 629	if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
 630		return 0;
 631
 632	if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
 633		return 0;
 634
 635	if (!is_memory(dev) && a == &dev_attr_badblocks.attr)
 636		return 0;
 637
 638	if (a == &dev_attr_resource.attr) {
 639		if (is_memory(dev))
 640			return 0400;
 641		else
 642			return 0;
 643	}
 644
 645	if (a == &dev_attr_deep_flush.attr) {
 646		int has_flush = nvdimm_has_flush(nd_region);
 647
 648		if (has_flush == 1)
 649			return a->mode;
 650		else if (has_flush == 0)
 651			return 0444;
 652		else
 653			return 0;
 654	}
 655
 656	if (a == &dev_attr_persistence_domain.attr) {
 657		if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
 658					| BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
 659			return 0;
 660		return a->mode;
 661	}
 662
 
 
 
 663	if (a != &dev_attr_set_cookie.attr
 664			&& a != &dev_attr_available_size.attr)
 665		return a->mode;
 666
 667	if ((type == ND_DEVICE_NAMESPACE_PMEM
 668				|| type == ND_DEVICE_NAMESPACE_BLK)
 669			&& a == &dev_attr_available_size.attr)
 670		return a->mode;
 671	else if (is_memory(dev) && nd_set)
 672		return a->mode;
 673
 674	return 0;
 675}
 676
 677struct attribute_group nd_region_attribute_group = {
 678	.attrs = nd_region_attributes,
 679	.is_visible = region_visible,
 680};
 681EXPORT_SYMBOL_GPL(nd_region_attribute_group);
 682
 683u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
 684		struct nd_namespace_index *nsindex)
 685{
 686	struct nd_interleave_set *nd_set = nd_region->nd_set;
 687
 688	if (!nd_set)
 689		return 0;
 690
 691	if (nsindex && __le16_to_cpu(nsindex->major) == 1
 692			&& __le16_to_cpu(nsindex->minor) == 1)
 693		return nd_set->cookie1;
 694	return nd_set->cookie2;
 695}
 696
 697u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
 698{
 699	struct nd_interleave_set *nd_set = nd_region->nd_set;
 700
 701	if (nd_set)
 702		return nd_set->altcookie;
 703	return 0;
 704}
 705
 706void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
 707{
 708	struct nd_label_ent *label_ent, *e;
 709
 710	lockdep_assert_held(&nd_mapping->lock);
 711	list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
 712		list_del(&label_ent->list);
 713		kfree(label_ent);
 714	}
 715}
 716
 717/*
 718 * When a namespace is activated create new seeds for the next
 719 * namespace, or namespace-personality to be configured.
 720 */
 721void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev)
 722{
 723	nvdimm_bus_lock(dev);
 724	if (nd_region->ns_seed == dev) {
 725		nd_region_create_ns_seed(nd_region);
 726	} else if (is_nd_btt(dev)) {
 727		struct nd_btt *nd_btt = to_nd_btt(dev);
 728
 729		if (nd_region->btt_seed == dev)
 730			nd_region_create_btt_seed(nd_region);
 731		if (nd_region->ns_seed == &nd_btt->ndns->dev)
 732			nd_region_create_ns_seed(nd_region);
 733	} else if (is_nd_pfn(dev)) {
 734		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
 735
 736		if (nd_region->pfn_seed == dev)
 737			nd_region_create_pfn_seed(nd_region);
 738		if (nd_region->ns_seed == &nd_pfn->ndns->dev)
 739			nd_region_create_ns_seed(nd_region);
 740	} else if (is_nd_dax(dev)) {
 741		struct nd_dax *nd_dax = to_nd_dax(dev);
 742
 743		if (nd_region->dax_seed == dev)
 744			nd_region_create_dax_seed(nd_region);
 745		if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
 746			nd_region_create_ns_seed(nd_region);
 747	}
 748	nvdimm_bus_unlock(dev);
 749}
 750
 751static ssize_t mappingN(struct device *dev, char *buf, int n)
 752{
 753	struct nd_region *nd_region = to_nd_region(dev);
 754	struct nd_mapping *nd_mapping;
 755	struct nvdimm *nvdimm;
 756
 757	if (n >= nd_region->ndr_mappings)
 758		return -ENXIO;
 759	nd_mapping = &nd_region->mapping[n];
 760	nvdimm = nd_mapping->nvdimm;
 761
 762	return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
 763			nd_mapping->start, nd_mapping->size,
 764			nd_mapping->position);
 765}
 766
 767#define REGION_MAPPING(idx) \
 768static ssize_t mapping##idx##_show(struct device *dev,		\
 769		struct device_attribute *attr, char *buf)	\
 770{								\
 771	return mappingN(dev, buf, idx);				\
 772}								\
 773static DEVICE_ATTR_RO(mapping##idx)
 774
 775/*
 776 * 32 should be enough for a while, even in the presence of socket
 777 * interleave a 32-way interleave set is a degenerate case.
 778 */
 779REGION_MAPPING(0);
 780REGION_MAPPING(1);
 781REGION_MAPPING(2);
 782REGION_MAPPING(3);
 783REGION_MAPPING(4);
 784REGION_MAPPING(5);
 785REGION_MAPPING(6);
 786REGION_MAPPING(7);
 787REGION_MAPPING(8);
 788REGION_MAPPING(9);
 789REGION_MAPPING(10);
 790REGION_MAPPING(11);
 791REGION_MAPPING(12);
 792REGION_MAPPING(13);
 793REGION_MAPPING(14);
 794REGION_MAPPING(15);
 795REGION_MAPPING(16);
 796REGION_MAPPING(17);
 797REGION_MAPPING(18);
 798REGION_MAPPING(19);
 799REGION_MAPPING(20);
 800REGION_MAPPING(21);
 801REGION_MAPPING(22);
 802REGION_MAPPING(23);
 803REGION_MAPPING(24);
 804REGION_MAPPING(25);
 805REGION_MAPPING(26);
 806REGION_MAPPING(27);
 807REGION_MAPPING(28);
 808REGION_MAPPING(29);
 809REGION_MAPPING(30);
 810REGION_MAPPING(31);
 811
 812static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
 813{
 814	struct device *dev = container_of(kobj, struct device, kobj);
 815	struct nd_region *nd_region = to_nd_region(dev);
 816
 817	if (n < nd_region->ndr_mappings)
 818		return a->mode;
 819	return 0;
 820}
 821
 822static struct attribute *mapping_attributes[] = {
 823	&dev_attr_mapping0.attr,
 824	&dev_attr_mapping1.attr,
 825	&dev_attr_mapping2.attr,
 826	&dev_attr_mapping3.attr,
 827	&dev_attr_mapping4.attr,
 828	&dev_attr_mapping5.attr,
 829	&dev_attr_mapping6.attr,
 830	&dev_attr_mapping7.attr,
 831	&dev_attr_mapping8.attr,
 832	&dev_attr_mapping9.attr,
 833	&dev_attr_mapping10.attr,
 834	&dev_attr_mapping11.attr,
 835	&dev_attr_mapping12.attr,
 836	&dev_attr_mapping13.attr,
 837	&dev_attr_mapping14.attr,
 838	&dev_attr_mapping15.attr,
 839	&dev_attr_mapping16.attr,
 840	&dev_attr_mapping17.attr,
 841	&dev_attr_mapping18.attr,
 842	&dev_attr_mapping19.attr,
 843	&dev_attr_mapping20.attr,
 844	&dev_attr_mapping21.attr,
 845	&dev_attr_mapping22.attr,
 846	&dev_attr_mapping23.attr,
 847	&dev_attr_mapping24.attr,
 848	&dev_attr_mapping25.attr,
 849	&dev_attr_mapping26.attr,
 850	&dev_attr_mapping27.attr,
 851	&dev_attr_mapping28.attr,
 852	&dev_attr_mapping29.attr,
 853	&dev_attr_mapping30.attr,
 854	&dev_attr_mapping31.attr,
 855	NULL,
 856};
 857
 858struct attribute_group nd_mapping_attribute_group = {
 859	.is_visible = mapping_visible,
 860	.attrs = mapping_attributes,
 861};
 862EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 863
 864int nd_blk_region_init(struct nd_region *nd_region)
 865{
 866	struct device *dev = &nd_region->dev;
 867	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
 868
 869	if (!is_nd_blk(dev))
 870		return 0;
 871
 872	if (nd_region->ndr_mappings < 1) {
 873		dev_dbg(dev, "invalid BLK region\n");
 874		return -ENXIO;
 875	}
 876
 877	return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
 878}
 879
 880/**
 881 * nd_region_acquire_lane - allocate and lock a lane
 882 * @nd_region: region id and number of lanes possible
 883 *
 884 * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
 885 * We optimize for the common case where there are 256 lanes, one
 886 * per-cpu.  For larger systems we need to lock to share lanes.  For now
 887 * this implementation assumes the cost of maintaining an allocator for
 888 * free lanes is on the order of the lock hold time, so it implements a
 889 * static lane = cpu % num_lanes mapping.
 890 *
 891 * In the case of a BTT instance on top of a BLK namespace a lane may be
 892 * acquired recursively.  We lock on the first instance.
 893 *
 894 * In the case of a BTT instance on top of PMEM, we only acquire a lane
 895 * for the BTT metadata updates.
 896 */
 897unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
 898{
 899	unsigned int cpu, lane;
 900
 901	cpu = get_cpu();
 902	if (nd_region->num_lanes < nr_cpu_ids) {
 903		struct nd_percpu_lane *ndl_lock, *ndl_count;
 904
 905		lane = cpu % nd_region->num_lanes;
 906		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
 907		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
 908		if (ndl_count->count++ == 0)
 909			spin_lock(&ndl_lock->lock);
 910	} else
 911		lane = cpu;
 912
 913	return lane;
 914}
 915EXPORT_SYMBOL(nd_region_acquire_lane);
 916
 917void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
 918{
 919	if (nd_region->num_lanes < nr_cpu_ids) {
 920		unsigned int cpu = get_cpu();
 921		struct nd_percpu_lane *ndl_lock, *ndl_count;
 922
 923		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
 924		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
 925		if (--ndl_count->count == 0)
 926			spin_unlock(&ndl_lock->lock);
 927		put_cpu();
 928	}
 929	put_cpu();
 930}
 931EXPORT_SYMBOL(nd_region_release_lane);
 932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 933static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
 934		struct nd_region_desc *ndr_desc, struct device_type *dev_type,
 935		const char *caller)
 936{
 937	struct nd_region *nd_region;
 938	struct device *dev;
 939	void *region_buf;
 940	unsigned int i;
 941	int ro = 0;
 942
 943	for (i = 0; i < ndr_desc->num_mappings; i++) {
 944		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
 945		struct nvdimm *nvdimm = mapping->nvdimm;
 946
 947		if ((mapping->start | mapping->size) % PAGE_SIZE) {
 948			dev_err(&nvdimm_bus->dev,
 949				"%s: %s mapping%d is not %ld aligned\n",
 950				caller, dev_name(&nvdimm->dev), i, PAGE_SIZE);
 951			return NULL;
 952		}
 953
 954		if (test_bit(NDD_UNARMED, &nvdimm->flags))
 955			ro = 1;
 956
 957		if (test_bit(NDD_NOBLK, &nvdimm->flags)
 958				&& dev_type == &nd_blk_device_type) {
 959			dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not BLK capable\n",
 960					caller, dev_name(&nvdimm->dev), i);
 961			return NULL;
 962		}
 963	}
 964
 965	if (dev_type == &nd_blk_device_type) {
 966		struct nd_blk_region_desc *ndbr_desc;
 967		struct nd_blk_region *ndbr;
 968
 969		ndbr_desc = to_blk_region_desc(ndr_desc);
 970		ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
 971				* ndr_desc->num_mappings,
 972				GFP_KERNEL);
 973		if (ndbr) {
 974			nd_region = &ndbr->nd_region;
 975			ndbr->enable = ndbr_desc->enable;
 976			ndbr->do_io = ndbr_desc->do_io;
 977		}
 978		region_buf = ndbr;
 979	} else {
 980		nd_region = kzalloc(struct_size(nd_region, mapping,
 981						ndr_desc->num_mappings),
 982				    GFP_KERNEL);
 983		region_buf = nd_region;
 984	}
 985
 986	if (!region_buf)
 987		return NULL;
 988	nd_region->id = ida_simple_get(&region_ida, 0, 0, GFP_KERNEL);
 989	if (nd_region->id < 0)
 990		goto err_id;
 991
 992	nd_region->lane = alloc_percpu(struct nd_percpu_lane);
 993	if (!nd_region->lane)
 994		goto err_percpu;
 995
 996        for (i = 0; i < nr_cpu_ids; i++) {
 997		struct nd_percpu_lane *ndl;
 998
 999		ndl = per_cpu_ptr(nd_region->lane, i);
1000		spin_lock_init(&ndl->lock);
1001		ndl->count = 0;
1002	}
1003
1004	for (i = 0; i < ndr_desc->num_mappings; i++) {
1005		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1006		struct nvdimm *nvdimm = mapping->nvdimm;
1007
1008		nd_region->mapping[i].nvdimm = nvdimm;
1009		nd_region->mapping[i].start = mapping->start;
1010		nd_region->mapping[i].size = mapping->size;
1011		nd_region->mapping[i].position = mapping->position;
1012		INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1013		mutex_init(&nd_region->mapping[i].lock);
1014
1015		get_device(&nvdimm->dev);
1016	}
1017	nd_region->ndr_mappings = ndr_desc->num_mappings;
1018	nd_region->provider_data = ndr_desc->provider_data;
1019	nd_region->nd_set = ndr_desc->nd_set;
1020	nd_region->num_lanes = ndr_desc->num_lanes;
1021	nd_region->flags = ndr_desc->flags;
1022	nd_region->ro = ro;
1023	nd_region->numa_node = ndr_desc->numa_node;
1024	nd_region->target_node = ndr_desc->target_node;
1025	ida_init(&nd_region->ns_ida);
1026	ida_init(&nd_region->btt_ida);
1027	ida_init(&nd_region->pfn_ida);
1028	ida_init(&nd_region->dax_ida);
1029	dev = &nd_region->dev;
1030	dev_set_name(dev, "region%d", nd_region->id);
1031	dev->parent = &nvdimm_bus->dev;
1032	dev->type = dev_type;
1033	dev->groups = ndr_desc->attr_groups;
1034	dev->of_node = ndr_desc->of_node;
1035	nd_region->ndr_size = resource_size(ndr_desc->res);
1036	nd_region->ndr_start = ndr_desc->res->start;
 
1037	if (ndr_desc->flush)
1038		nd_region->flush = ndr_desc->flush;
1039	else
1040		nd_region->flush = NULL;
1041
1042	nd_device_register(dev);
1043
1044	return nd_region;
1045
1046 err_percpu:
1047	ida_simple_remove(&region_ida, nd_region->id);
1048 err_id:
1049	kfree(region_buf);
1050	return NULL;
1051}
1052
1053struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1054		struct nd_region_desc *ndr_desc)
1055{
1056	ndr_desc->num_lanes = ND_MAX_LANES;
1057	return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1058			__func__);
1059}
1060EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1061
1062struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
1063		struct nd_region_desc *ndr_desc)
1064{
1065	if (ndr_desc->num_mappings > 1)
1066		return NULL;
1067	ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
1068	return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
1069			__func__);
1070}
1071EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
1072
1073struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1074		struct nd_region_desc *ndr_desc)
1075{
1076	ndr_desc->num_lanes = ND_MAX_LANES;
1077	return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1078			__func__);
1079}
1080EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1081
1082int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
1083{
1084	int rc = 0;
1085
1086	if (!nd_region->flush)
1087		rc = generic_nvdimm_flush(nd_region);
1088	else {
1089		if (nd_region->flush(nd_region, bio))
1090			rc = -EIO;
1091	}
1092
1093	return rc;
1094}
1095/**
1096 * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1097 * @nd_region: blk or interleaved pmem region
1098 */
1099int generic_nvdimm_flush(struct nd_region *nd_region)
1100{
1101	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1102	int i, idx;
1103
1104	/*
1105	 * Try to encourage some diversity in flush hint addresses
1106	 * across cpus assuming a limited number of flush hints.
1107	 */
1108	idx = this_cpu_read(flush_idx);
1109	idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1110
1111	/*
1112	 * The first wmb() is needed to 'sfence' all previous writes
1113	 * such that they are architecturally visible for the platform
1114	 * buffer flush.  Note that we've already arranged for pmem
1115	 * writes to avoid the cache via memcpy_flushcache().  The final
1116	 * wmb() ensures ordering for the NVDIMM flush write.
1117	 */
1118	wmb();
1119	for (i = 0; i < nd_region->ndr_mappings; i++)
1120		if (ndrd_get_flush_wpq(ndrd, i, 0))
1121			writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1122	wmb();
1123
1124	return 0;
1125}
1126EXPORT_SYMBOL_GPL(nvdimm_flush);
1127
1128/**
1129 * nvdimm_has_flush - determine write flushing requirements
1130 * @nd_region: blk or interleaved pmem region
1131 *
1132 * Returns 1 if writes require flushing
1133 * Returns 0 if writes do not require flushing
1134 * Returns -ENXIO if flushing capability can not be determined
1135 */
1136int nvdimm_has_flush(struct nd_region *nd_region)
1137{
1138	int i;
1139
1140	/* no nvdimm or pmem api == flushing capability unknown */
1141	if (nd_region->ndr_mappings == 0
1142			|| !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1143		return -ENXIO;
1144
1145	for (i = 0; i < nd_region->ndr_mappings; i++) {
1146		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1147		struct nvdimm *nvdimm = nd_mapping->nvdimm;
1148
1149		/* flush hints present / available */
1150		if (nvdimm->num_flush)
1151			return 1;
1152	}
1153
1154	/*
1155	 * The platform defines dimm devices without hints, assume
1156	 * platform persistence mechanism like ADR
1157	 */
1158	return 0;
1159}
1160EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1161
1162int nvdimm_has_cache(struct nd_region *nd_region)
1163{
1164	return is_nd_pmem(&nd_region->dev) &&
1165		!test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1166}
1167EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1168
1169bool is_nvdimm_sync(struct nd_region *nd_region)
1170{
1171	if (is_nd_volatile(&nd_region->dev))
1172		return true;
1173
1174	return is_nd_pmem(&nd_region->dev) &&
1175		!test_bit(ND_REGION_ASYNC, &nd_region->flags);
1176}
1177EXPORT_SYMBOL_GPL(is_nvdimm_sync);
1178
1179struct conflict_context {
1180	struct nd_region *nd_region;
1181	resource_size_t start, size;
1182};
1183
1184static int region_conflict(struct device *dev, void *data)
1185{
1186	struct nd_region *nd_region;
1187	struct conflict_context *ctx = data;
1188	resource_size_t res_end, region_end, region_start;
1189
1190	if (!is_memory(dev))
1191		return 0;
1192
1193	nd_region = to_nd_region(dev);
1194	if (nd_region == ctx->nd_region)
1195		return 0;
1196
1197	res_end = ctx->start + ctx->size;
1198	region_start = nd_region->ndr_start;
1199	region_end = region_start + nd_region->ndr_size;
1200	if (ctx->start >= region_start && ctx->start < region_end)
1201		return -EBUSY;
1202	if (res_end > region_start && res_end <= region_end)
1203		return -EBUSY;
1204	return 0;
1205}
1206
1207int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1208		resource_size_t size)
1209{
1210	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1211	struct conflict_context ctx = {
1212		.nd_region = nd_region,
1213		.start = start,
1214		.size = size,
1215	};
1216
1217	return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1218}
1219
1220void __exit nd_region_devs_exit(void)
1221{
1222	ida_destroy(&region_ida);
1223}