Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice.h"
   5#include "ice_base.h"
   6#include "ice_flow.h"
   7#include "ice_lib.h"
   8#include "ice_fltr.h"
   9#include "ice_dcb_lib.h"
  10
  11/**
  12 * ice_vsi_type_str - maps VSI type enum to string equivalents
  13 * @vsi_type: VSI type enum
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  14 */
  15const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
 
  16{
  17	switch (vsi_type) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  18	case ICE_VSI_PF:
  19		return "ICE_VSI_PF";
 
  20	case ICE_VSI_VF:
  21		return "ICE_VSI_VF";
  22	case ICE_VSI_CTRL:
  23		return "ICE_VSI_CTRL";
  24	case ICE_VSI_LB:
  25		return "ICE_VSI_LB";
  26	default:
  27		return "unknown";
  28	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  29}
  30
  31/**
  32 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
  33 * @vsi: the VSI being configured
  34 * @ena: start or stop the Rx rings
  35 *
  36 * First enable/disable all of the Rx rings, flush any remaining writes, and
  37 * then verify that they have all been enabled/disabled successfully. This will
  38 * let all of the register writes complete when enabling/disabling the Rx rings
  39 * before waiting for the change in hardware to complete.
  40 */
  41static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
 
 
 
  42{
 
 
 
  43	int ret = 0;
  44	u16 i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  45
  46	for (i = 0; i < vsi->num_rxq; i++)
  47		ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
  48
  49	ice_flush(&vsi->back->hw);
 
 
 
 
 
 
 
  50
  51	for (i = 0; i < vsi->num_rxq; i++) {
  52		ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
  53		if (ret)
  54			break;
  55	}
  56
  57	return ret;
  58}
  59
  60/**
  61 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
  62 * @vsi: VSI pointer
  63 *
  64 * On error: returns error code (negative)
  65 * On success: returns 0
  66 */
  67static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
  68{
  69	struct ice_pf *pf = vsi->back;
  70	struct device *dev;
  71
  72	dev = ice_pf_to_dev(pf);
  73
  74	/* allocate memory for both Tx and Rx ring pointers */
  75	vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
  76				     sizeof(*vsi->tx_rings), GFP_KERNEL);
  77	if (!vsi->tx_rings)
  78		return -ENOMEM;
  79
  80	vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
  81				     sizeof(*vsi->rx_rings), GFP_KERNEL);
  82	if (!vsi->rx_rings)
  83		goto err_rings;
  84
  85	/* XDP will have vsi->alloc_txq Tx queues as well, so double the size */
  86	vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq),
  87				    sizeof(*vsi->txq_map), GFP_KERNEL);
  88
  89	if (!vsi->txq_map)
  90		goto err_txq_map;
  91
  92	vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
  93				    sizeof(*vsi->rxq_map), GFP_KERNEL);
  94	if (!vsi->rxq_map)
  95		goto err_rxq_map;
  96
 
  97	/* There is no need to allocate q_vectors for a loopback VSI. */
  98	if (vsi->type == ICE_VSI_LB)
  99		return 0;
 100
 101	/* allocate memory for q_vector pointers */
 102	vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
 103				      sizeof(*vsi->q_vectors), GFP_KERNEL);
 104	if (!vsi->q_vectors)
 105		goto err_vectors;
 106
 107	return 0;
 108
 109err_vectors:
 110	devm_kfree(dev, vsi->rxq_map);
 111err_rxq_map:
 112	devm_kfree(dev, vsi->txq_map);
 113err_txq_map:
 114	devm_kfree(dev, vsi->rx_rings);
 115err_rings:
 116	devm_kfree(dev, vsi->tx_rings);
 117	return -ENOMEM;
 118}
 119
 120/**
 121 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
 122 * @vsi: the VSI being configured
 123 */
 124static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
 125{
 126	switch (vsi->type) {
 127	case ICE_VSI_PF:
 128	case ICE_VSI_CTRL:
 129	case ICE_VSI_LB:
 130		/* a user could change the values of num_[tr]x_desc using
 131		 * ethtool -G so we should keep those values instead of
 132		 * overwriting them with the defaults.
 133		 */
 134		if (!vsi->num_rx_desc)
 135			vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
 136		if (!vsi->num_tx_desc)
 137			vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
 138		break;
 139	default:
 140		dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
 
 141			vsi->type);
 142		break;
 143	}
 144}
 145
 146/**
 147 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
 148 * @vsi: the VSI being configured
 149 * @vf_id: ID of the VF being configured
 150 *
 151 * Return 0 on success and a negative value on error
 152 */
 153static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id)
 154{
 155	struct ice_pf *pf = vsi->back;
 156	struct ice_vf *vf = NULL;
 157
 158	if (vsi->type == ICE_VSI_VF)
 159		vsi->vf_id = vf_id;
 160
 161	switch (vsi->type) {
 162	case ICE_VSI_PF:
 163		vsi->alloc_txq = min_t(int, ice_get_avail_txq_count(pf),
 164				       num_online_cpus());
 165		if (vsi->req_txq) {
 166			vsi->alloc_txq = vsi->req_txq;
 167			vsi->num_txq = vsi->req_txq;
 168		}
 169
 170		pf->num_lan_tx = vsi->alloc_txq;
 171
 172		/* only 1 Rx queue unless RSS is enabled */
 173		if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
 174			vsi->alloc_rxq = 1;
 175		} else {
 176			vsi->alloc_rxq = min_t(int, ice_get_avail_rxq_count(pf),
 177					       num_online_cpus());
 178			if (vsi->req_rxq) {
 179				vsi->alloc_rxq = vsi->req_rxq;
 180				vsi->num_rxq = vsi->req_rxq;
 181			}
 182		}
 183
 184		pf->num_lan_rx = vsi->alloc_rxq;
 185
 186		vsi->num_q_vectors = max_t(int, vsi->alloc_rxq, vsi->alloc_txq);
 187		break;
 188	case ICE_VSI_VF:
 189		vf = &pf->vf[vsi->vf_id];
 190		vsi->alloc_txq = vf->num_vf_qs;
 191		vsi->alloc_rxq = vf->num_vf_qs;
 192		/* pf->num_msix_per_vf includes (VF miscellaneous vector +
 193		 * data queue interrupts). Since vsi->num_q_vectors is number
 194		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
 195		 * original vector count
 196		 */
 197		vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF;
 198		break;
 199	case ICE_VSI_CTRL:
 200		vsi->alloc_txq = 1;
 201		vsi->alloc_rxq = 1;
 202		vsi->num_q_vectors = 1;
 203		break;
 204	case ICE_VSI_LB:
 205		vsi->alloc_txq = 1;
 206		vsi->alloc_rxq = 1;
 207		break;
 208	default:
 209		dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type);
 210		break;
 211	}
 212
 213	ice_vsi_set_num_desc(vsi);
 214}
 215
 216/**
 217 * ice_get_free_slot - get the next non-NULL location index in array
 218 * @array: array to search
 219 * @size: size of the array
 220 * @curr: last known occupied index to be used as a search hint
 221 *
 222 * void * is being used to keep the functionality generic. This lets us use this
 223 * function on any array of pointers.
 224 */
 225static int ice_get_free_slot(void *array, int size, int curr)
 226{
 227	int **tmp_array = (int **)array;
 228	int next;
 229
 230	if (curr < (size - 1) && !tmp_array[curr + 1]) {
 231		next = curr + 1;
 232	} else {
 233		int i = 0;
 234
 235		while ((i < size) && (tmp_array[i]))
 236			i++;
 237		if (i == size)
 238			next = ICE_NO_VSI;
 239		else
 240			next = i;
 241	}
 242	return next;
 243}
 244
 245/**
 246 * ice_vsi_delete - delete a VSI from the switch
 247 * @vsi: pointer to VSI being removed
 248 */
 249static void ice_vsi_delete(struct ice_vsi *vsi)
 250{
 251	struct ice_pf *pf = vsi->back;
 252	struct ice_vsi_ctx *ctxt;
 253	enum ice_status status;
 254
 255	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
 256	if (!ctxt)
 257		return;
 258
 259	if (vsi->type == ICE_VSI_VF)
 260		ctxt->vf_num = vsi->vf_id;
 261	ctxt->vsi_num = vsi->vsi_num;
 262
 263	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
 264
 265	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
 266	if (status)
 267		dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n",
 268			vsi->vsi_num, ice_stat_str(status));
 269
 270	kfree(ctxt);
 271}
 272
 273/**
 274 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
 275 * @vsi: pointer to VSI being cleared
 276 */
 277static void ice_vsi_free_arrays(struct ice_vsi *vsi)
 278{
 279	struct ice_pf *pf = vsi->back;
 280	struct device *dev;
 281
 282	dev = ice_pf_to_dev(pf);
 283
 284	/* free the ring and vector containers */
 285	if (vsi->q_vectors) {
 286		devm_kfree(dev, vsi->q_vectors);
 287		vsi->q_vectors = NULL;
 288	}
 289	if (vsi->tx_rings) {
 290		devm_kfree(dev, vsi->tx_rings);
 291		vsi->tx_rings = NULL;
 292	}
 293	if (vsi->rx_rings) {
 294		devm_kfree(dev, vsi->rx_rings);
 295		vsi->rx_rings = NULL;
 296	}
 297	if (vsi->txq_map) {
 298		devm_kfree(dev, vsi->txq_map);
 299		vsi->txq_map = NULL;
 300	}
 301	if (vsi->rxq_map) {
 302		devm_kfree(dev, vsi->rxq_map);
 303		vsi->rxq_map = NULL;
 304	}
 305}
 306
 307/**
 308 * ice_vsi_clear - clean up and deallocate the provided VSI
 309 * @vsi: pointer to VSI being cleared
 310 *
 311 * This deallocates the VSI's queue resources, removes it from the PF's
 312 * VSI array if necessary, and deallocates the VSI
 313 *
 314 * Returns 0 on success, negative on failure
 315 */
 316static int ice_vsi_clear(struct ice_vsi *vsi)
 317{
 318	struct ice_pf *pf = NULL;
 319	struct device *dev;
 320
 321	if (!vsi)
 322		return 0;
 323
 324	if (!vsi->back)
 325		return -EINVAL;
 326
 327	pf = vsi->back;
 328	dev = ice_pf_to_dev(pf);
 329
 330	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
 331		dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
 
 332		return -EINVAL;
 333	}
 334
 335	mutex_lock(&pf->sw_mutex);
 336	/* updates the PF for this cleared VSI */
 337
 338	pf->vsi[vsi->idx] = NULL;
 339	if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL)
 340		pf->next_vsi = vsi->idx;
 341
 342	ice_vsi_free_arrays(vsi);
 343	mutex_unlock(&pf->sw_mutex);
 344	devm_kfree(dev, vsi);
 345
 346	return 0;
 347}
 348
 349/**
 350 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
 351 * @irq: interrupt number
 352 * @data: pointer to a q_vector
 353 */
 354static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
 355{
 356	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
 357
 358	if (!q_vector->tx.ring)
 359		return IRQ_HANDLED;
 360
 361#define FDIR_RX_DESC_CLEAN_BUDGET 64
 362	ice_clean_rx_irq(q_vector->rx.ring, FDIR_RX_DESC_CLEAN_BUDGET);
 363	ice_clean_ctrl_tx_irq(q_vector->tx.ring);
 364
 365	return IRQ_HANDLED;
 366}
 367
 368/**
 369 * ice_msix_clean_rings - MSIX mode Interrupt Handler
 370 * @irq: interrupt number
 371 * @data: pointer to a q_vector
 372 */
 373static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
 374{
 375	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
 376
 377	if (!q_vector->tx.ring && !q_vector->rx.ring)
 378		return IRQ_HANDLED;
 379
 380	napi_schedule(&q_vector->napi);
 381
 382	return IRQ_HANDLED;
 383}
 384
 385/**
 386 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
 387 * @pf: board private structure
 388 * @vsi_type: type of VSI
 389 * @vf_id: ID of the VF being configured
 390 *
 391 * returns a pointer to a VSI on success, NULL on failure.
 392 */
 393static struct ice_vsi *
 394ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, u16 vf_id)
 395{
 396	struct device *dev = ice_pf_to_dev(pf);
 397	struct ice_vsi *vsi = NULL;
 398
 399	/* Need to protect the allocation of the VSIs at the PF level */
 400	mutex_lock(&pf->sw_mutex);
 401
 402	/* If we have already allocated our maximum number of VSIs,
 403	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
 404	 * is available to be populated
 405	 */
 406	if (pf->next_vsi == ICE_NO_VSI) {
 407		dev_dbg(dev, "out of VSI slots!\n");
 408		goto unlock_pf;
 409	}
 410
 411	vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
 412	if (!vsi)
 413		goto unlock_pf;
 414
 415	vsi->type = vsi_type;
 416	vsi->back = pf;
 417	set_bit(__ICE_DOWN, vsi->state);
 418
 419	if (vsi_type == ICE_VSI_VF)
 
 
 420		ice_vsi_set_num_qs(vsi, vf_id);
 421	else
 422		ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
 423
 424	switch (vsi->type) {
 425	case ICE_VSI_PF:
 426		if (ice_vsi_alloc_arrays(vsi))
 427			goto err_rings;
 428
 429		/* Setup default MSIX irq handler for VSI */
 430		vsi->irq_handler = ice_msix_clean_rings;
 431		break;
 432	case ICE_VSI_CTRL:
 433		if (ice_vsi_alloc_arrays(vsi))
 434			goto err_rings;
 435
 436		/* Setup ctrl VSI MSIX irq handler */
 437		vsi->irq_handler = ice_msix_clean_ctrl_vsi;
 438		break;
 439	case ICE_VSI_VF:
 440		if (ice_vsi_alloc_arrays(vsi))
 441			goto err_rings;
 442		break;
 443	case ICE_VSI_LB:
 444		if (ice_vsi_alloc_arrays(vsi))
 445			goto err_rings;
 446		break;
 447	default:
 448		dev_warn(dev, "Unknown VSI type %d\n", vsi->type);
 449		goto unlock_pf;
 450	}
 451
 452	if (vsi->type == ICE_VSI_CTRL) {
 453		/* Use the last VSI slot as the index for the control VSI */
 454		vsi->idx = pf->num_alloc_vsi - 1;
 455		pf->ctrl_vsi_idx = vsi->idx;
 456		pf->vsi[vsi->idx] = vsi;
 457	} else {
 458		/* fill slot and make note of the index */
 459		vsi->idx = pf->next_vsi;
 460		pf->vsi[pf->next_vsi] = vsi;
 461
 462		/* prepare pf->next_vsi for next use */
 463		pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
 464						 pf->next_vsi);
 465	}
 466	goto unlock_pf;
 467
 468err_rings:
 469	devm_kfree(dev, vsi);
 470	vsi = NULL;
 471unlock_pf:
 472	mutex_unlock(&pf->sw_mutex);
 473	return vsi;
 474}
 475
 476/**
 477 * ice_alloc_fd_res - Allocate FD resource for a VSI
 478 * @vsi: pointer to the ice_vsi
 479 *
 480 * This allocates the FD resources
 481 *
 482 * Returns 0 on success, -EPERM on no-op or -EIO on failure
 483 */
 484static int ice_alloc_fd_res(struct ice_vsi *vsi)
 485{
 486	struct ice_pf *pf = vsi->back;
 487	u32 g_val, b_val;
 488
 489	/* Flow Director filters are only allocated/assigned to the PF VSI which
 490	 * passes the traffic. The CTRL VSI is only used to add/delete filters
 491	 * so we don't allocate resources to it
 492	 */
 
 
 
 493
 494	/* FD filters from guaranteed pool per VSI */
 495	g_val = pf->hw.func_caps.fd_fltr_guar;
 496	if (!g_val)
 497		return -EPERM;
 498
 499	/* FD filters from best effort pool */
 500	b_val = pf->hw.func_caps.fd_fltr_best_effort;
 501	if (!b_val)
 502		return -EPERM;
 503
 504	if (vsi->type != ICE_VSI_PF)
 505		return -EPERM;
 
 
 
 
 
 
 
 506
 507	if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
 508		return -EPERM;
 
 
 
 
 
 
 
 
 509
 510	vsi->num_gfltr = g_val / pf->num_alloc_vsi;
 
 
 
 
 
 
 511
 512	/* each VSI gets same "best_effort" quota */
 513	vsi->num_bfltr = b_val;
 514
 515	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 516}
 517
 518/**
 519 * ice_vsi_get_qs - Assign queues from PF to VSI
 520 * @vsi: the VSI to assign queues to
 521 *
 522 * Returns 0 on success and a negative value on error
 523 */
 524static int ice_vsi_get_qs(struct ice_vsi *vsi)
 525{
 526	struct ice_pf *pf = vsi->back;
 527	struct ice_qs_cfg tx_qs_cfg = {
 528		.qs_mutex = &pf->avail_q_mutex,
 529		.pf_map = pf->avail_txqs,
 530		.pf_map_size = pf->max_pf_txqs,
 531		.q_count = vsi->alloc_txq,
 532		.scatter_count = ICE_MAX_SCATTER_TXQS,
 533		.vsi_map = vsi->txq_map,
 534		.vsi_map_offset = 0,
 535		.mapping_mode = ICE_VSI_MAP_CONTIG
 536	};
 537	struct ice_qs_cfg rx_qs_cfg = {
 538		.qs_mutex = &pf->avail_q_mutex,
 539		.pf_map = pf->avail_rxqs,
 540		.pf_map_size = pf->max_pf_rxqs,
 541		.q_count = vsi->alloc_rxq,
 542		.scatter_count = ICE_MAX_SCATTER_RXQS,
 543		.vsi_map = vsi->rxq_map,
 544		.vsi_map_offset = 0,
 545		.mapping_mode = ICE_VSI_MAP_CONTIG
 546	};
 547	int ret;
 548
 549	ret = __ice_vsi_get_qs(&tx_qs_cfg);
 550	if (ret)
 551		return ret;
 552	vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
 553
 554	ret = __ice_vsi_get_qs(&rx_qs_cfg);
 555	if (ret)
 556		return ret;
 557	vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
 558
 559	return 0;
 560}
 561
 562/**
 563 * ice_vsi_put_qs - Release queues from VSI to PF
 564 * @vsi: the VSI that is going to release queues
 565 */
 566static void ice_vsi_put_qs(struct ice_vsi *vsi)
 567{
 568	struct ice_pf *pf = vsi->back;
 569	int i;
 570
 571	mutex_lock(&pf->avail_q_mutex);
 572
 573	for (i = 0; i < vsi->alloc_txq; i++) {
 574		clear_bit(vsi->txq_map[i], pf->avail_txqs);
 575		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
 576	}
 577
 578	for (i = 0; i < vsi->alloc_rxq; i++) {
 579		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
 580		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
 581	}
 582
 583	mutex_unlock(&pf->avail_q_mutex);
 584}
 585
 586/**
 587 * ice_is_safe_mode
 588 * @pf: pointer to the PF struct
 589 *
 590 * returns true if driver is in safe mode, false otherwise
 591 */
 592bool ice_is_safe_mode(struct ice_pf *pf)
 593{
 594	return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
 595}
 596
 597/**
 598 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
 599 * @vsi: the VSI being cleaned up
 600 *
 601 * This function deletes RSS input set for all flows that were configured
 602 * for this VSI
 603 */
 604static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
 605{
 606	struct ice_pf *pf = vsi->back;
 607	enum ice_status status;
 608
 609	if (ice_is_safe_mode(pf))
 610		return;
 611
 612	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
 613	if (status)
 614		dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n",
 615			vsi->vsi_num, ice_stat_str(status));
 616}
 617
 618/**
 619 * ice_rss_clean - Delete RSS related VSI structures and configuration
 620 * @vsi: the VSI being removed
 621 */
 622static void ice_rss_clean(struct ice_vsi *vsi)
 623{
 624	struct ice_pf *pf = vsi->back;
 625	struct device *dev;
 626
 627	dev = ice_pf_to_dev(pf);
 628
 629	if (vsi->rss_hkey_user)
 630		devm_kfree(dev, vsi->rss_hkey_user);
 631	if (vsi->rss_lut_user)
 632		devm_kfree(dev, vsi->rss_lut_user);
 633
 634	ice_vsi_clean_rss_flow_fld(vsi);
 635	/* remove RSS replay list */
 636	if (!ice_is_safe_mode(pf))
 637		ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
 638}
 639
 640/**
 641 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
 642 * @vsi: the VSI being configured
 643 */
 644static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
 645{
 646	struct ice_hw_common_caps *cap;
 647	struct ice_pf *pf = vsi->back;
 648
 649	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
 650		vsi->rss_size = 1;
 651		return;
 652	}
 653
 654	cap = &pf->hw.func_caps.common_cap;
 655	switch (vsi->type) {
 656	case ICE_VSI_PF:
 657		/* PF VSI will inherit RSS instance of PF */
 658		vsi->rss_table_size = (u16)cap->rss_table_size;
 659		vsi->rss_size = min_t(u16, num_online_cpus(),
 660				      BIT(cap->rss_table_entry_width));
 661		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
 662		break;
 663	case ICE_VSI_VF:
 664		/* VF VSI will get a small RSS table.
 665		 * For VSI_LUT, LUT size should be set to 64 bytes.
 666		 */
 667		vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
 668		vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
 
 669		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
 670		break;
 671	case ICE_VSI_LB:
 672		break;
 673	default:
 674		dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
 675			ice_vsi_type_str(vsi->type));
 676		break;
 677	}
 678}
 679
 680/**
 681 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
 682 * @ctxt: the VSI context being set
 683 *
 684 * This initializes a default VSI context for all sections except the Queues.
 685 */
 686static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
 687{
 688	u32 table = 0;
 689
 690	memset(&ctxt->info, 0, sizeof(ctxt->info));
 691	/* VSI's should be allocated from shared pool */
 692	ctxt->alloc_from_pool = true;
 693	/* Src pruning enabled by default */
 694	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
 695	/* Traffic from VSI can be sent to LAN */
 696	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
 697	/* By default bits 3 and 4 in vlan_flags are 0's which results in legacy
 698	 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all
 699	 * packets untagged/tagged.
 700	 */
 701	ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL &
 702				  ICE_AQ_VSI_VLAN_MODE_M) >>
 703				 ICE_AQ_VSI_VLAN_MODE_S);
 704	/* Have 1:1 UP mapping for both ingress/egress tables */
 705	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
 706	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
 707	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
 708	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
 709	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
 710	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
 711	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
 712	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
 713	ctxt->info.ingress_table = cpu_to_le32(table);
 714	ctxt->info.egress_table = cpu_to_le32(table);
 715	/* Have 1:1 UP mapping for outer to inner UP table */
 716	ctxt->info.outer_up_table = cpu_to_le32(table);
 717	/* No Outer tag support outer_tag_flags remains to zero */
 718}
 719
 720/**
 721 * ice_vsi_setup_q_map - Setup a VSI queue map
 722 * @vsi: the VSI being configured
 723 * @ctxt: VSI context structure
 724 */
 725static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
 726{
 727	u16 offset = 0, qmap = 0, tx_count = 0;
 728	u16 qcount_tx = vsi->alloc_txq;
 729	u16 qcount_rx = vsi->alloc_rxq;
 730	u16 tx_numq_tc, rx_numq_tc;
 731	u16 pow = 0, max_rss = 0;
 732	bool ena_tc0 = false;
 733	u8 netdev_tc = 0;
 734	int i;
 735
 736	/* at least TC0 should be enabled by default */
 737	if (vsi->tc_cfg.numtc) {
 738		if (!(vsi->tc_cfg.ena_tc & BIT(0)))
 739			ena_tc0 = true;
 740	} else {
 741		ena_tc0 = true;
 742	}
 743
 744	if (ena_tc0) {
 745		vsi->tc_cfg.numtc++;
 746		vsi->tc_cfg.ena_tc |= 1;
 747	}
 748
 749	rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc;
 750	if (!rx_numq_tc)
 751		rx_numq_tc = 1;
 752	tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc;
 753	if (!tx_numq_tc)
 754		tx_numq_tc = 1;
 755
 756	/* TC mapping is a function of the number of Rx queues assigned to the
 757	 * VSI for each traffic class and the offset of these queues.
 758	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
 759	 * queues allocated to TC0. No:of queues is a power-of-2.
 760	 *
 761	 * If TC is not enabled, the queue offset is set to 0, and allocate one
 762	 * queue, this way, traffic for the given TC will be sent to the default
 763	 * queue.
 764	 *
 765	 * Setup number and offset of Rx queues for all TCs for the VSI
 766	 */
 767
 768	qcount_rx = rx_numq_tc;
 769
 770	/* qcount will change if RSS is enabled */
 771	if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) {
 772		if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) {
 773			if (vsi->type == ICE_VSI_PF)
 774				max_rss = ICE_MAX_LG_RSS_QS;
 775			else
 776				max_rss = ICE_MAX_RSS_QS_PER_VF;
 777			qcount_rx = min_t(u16, rx_numq_tc, max_rss);
 778			if (!vsi->req_rxq)
 779				qcount_rx = min_t(u16, qcount_rx,
 780						  vsi->rss_size);
 781		}
 782	}
 783
 784	/* find the (rounded up) power-of-2 of qcount */
 785	pow = (u16)order_base_2(qcount_rx);
 786
 787	ice_for_each_traffic_class(i) {
 788		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
 789			/* TC is not enabled */
 790			vsi->tc_cfg.tc_info[i].qoffset = 0;
 791			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
 792			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
 793			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
 794			ctxt->info.tc_mapping[i] = 0;
 795			continue;
 796		}
 797
 798		/* TC is enabled */
 799		vsi->tc_cfg.tc_info[i].qoffset = offset;
 800		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
 801		vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc;
 802		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
 803
 804		qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
 805			ICE_AQ_VSI_TC_Q_OFFSET_M) |
 806			((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
 807			 ICE_AQ_VSI_TC_Q_NUM_M);
 808		offset += qcount_rx;
 809		tx_count += tx_numq_tc;
 810		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
 811	}
 812
 813	/* if offset is non-zero, means it is calculated correctly based on
 814	 * enabled TCs for a given VSI otherwise qcount_rx will always
 815	 * be correct and non-zero because it is based off - VSI's
 816	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
 817	 * at least 1)
 818	 */
 819	if (offset)
 820		vsi->num_rxq = offset;
 821	else
 822		vsi->num_rxq = qcount_rx;
 823
 824	vsi->num_txq = tx_count;
 825
 826	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
 827		dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
 828		/* since there is a chance that num_rxq could have been changed
 829		 * in the above for loop, make num_txq equal to num_rxq.
 830		 */
 831		vsi->num_txq = vsi->num_rxq;
 832	}
 833
 834	/* Rx queue mapping */
 835	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
 836	/* q_mapping buffer holds the info for the first queue allocated for
 837	 * this VSI in the PF space and also the number of queues associated
 838	 * with this VSI.
 839	 */
 840	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
 841	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
 842}
 843
 844/**
 845 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
 846 * @ctxt: the VSI context being set
 847 * @vsi: the VSI being configured
 848 */
 849static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
 850{
 851	u8 dflt_q_group, dflt_q_prio;
 852	u16 dflt_q, report_q, val;
 853
 854	if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL)
 855		return;
 856
 857	val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
 858	ctxt->info.valid_sections |= cpu_to_le16(val);
 859	dflt_q = 0;
 860	dflt_q_group = 0;
 861	report_q = 0;
 862	dflt_q_prio = 0;
 863
 864	/* enable flow director filtering/programming */
 865	val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
 866	ctxt->info.fd_options = cpu_to_le16(val);
 867	/* max of allocated flow director filters */
 868	ctxt->info.max_fd_fltr_dedicated =
 869			cpu_to_le16(vsi->num_gfltr);
 870	/* max of shared flow director filters any VSI may program */
 871	ctxt->info.max_fd_fltr_shared =
 872			cpu_to_le16(vsi->num_bfltr);
 873	/* default queue index within the VSI of the default FD */
 874	val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
 875	       ICE_AQ_VSI_FD_DEF_Q_M);
 876	/* target queue or queue group to the FD filter */
 877	val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
 878		ICE_AQ_VSI_FD_DEF_GRP_M);
 879	ctxt->info.fd_def_q = cpu_to_le16(val);
 880	/* queue index on which FD filter completion is reported */
 881	val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
 882	       ICE_AQ_VSI_FD_REPORT_Q_M);
 883	/* priority of the default qindex action */
 884	val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
 885		ICE_AQ_VSI_FD_DEF_PRIORITY_M);
 886	ctxt->info.fd_report_opt = cpu_to_le16(val);
 887}
 888
 889/**
 890 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
 891 * @ctxt: the VSI context being set
 892 * @vsi: the VSI being configured
 893 */
 894static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
 895{
 896	u8 lut_type, hash_type;
 897	struct device *dev;
 898	struct ice_pf *pf;
 899
 900	pf = vsi->back;
 901	dev = ice_pf_to_dev(pf);
 902
 903	switch (vsi->type) {
 904	case ICE_VSI_PF:
 905		/* PF VSI will inherit RSS instance of PF */
 906		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
 907		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
 908		break;
 909	case ICE_VSI_VF:
 910		/* VF VSI will gets a small RSS table which is a VSI LUT type */
 911		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
 912		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
 913		break;
 
 
 
 914	default:
 915		dev_dbg(dev, "Unsupported VSI type %s\n",
 916			ice_vsi_type_str(vsi->type));
 917		return;
 918	}
 919
 920	ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
 921				ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
 922				((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
 923				 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
 924}
 925
 926/**
 927 * ice_vsi_init - Create and initialize a VSI
 928 * @vsi: the VSI being configured
 929 * @init_vsi: is this call creating a VSI
 930 *
 931 * This initializes a VSI context depending on the VSI type to be added and
 932 * passes it down to the add_vsi aq command to create a new VSI.
 933 */
 934static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi)
 935{
 936	struct ice_pf *pf = vsi->back;
 937	struct ice_hw *hw = &pf->hw;
 938	struct ice_vsi_ctx *ctxt;
 939	struct device *dev;
 940	int ret = 0;
 941
 942	dev = ice_pf_to_dev(pf);
 943	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
 944	if (!ctxt)
 945		return -ENOMEM;
 946
 
 947	switch (vsi->type) {
 948	case ICE_VSI_CTRL:
 949	case ICE_VSI_LB:
 
 950	case ICE_VSI_PF:
 951		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
 952		break;
 953	case ICE_VSI_VF:
 954		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
 955		/* VF number here is the absolute VF number (0-255) */
 956		ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
 957		break;
 958	default:
 959		ret = -ENODEV;
 960		goto out;
 961	}
 962
 963	ice_set_dflt_vsi_ctx(ctxt);
 964	if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
 965		ice_set_fd_vsi_ctx(ctxt, vsi);
 966	/* if the switch is in VEB mode, allow VSI loopback */
 967	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
 968		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
 969
 970	/* Set LUT type and HASH type if RSS is enabled */
 971	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
 972	    vsi->type != ICE_VSI_CTRL) {
 973		ice_set_rss_vsi_ctx(ctxt, vsi);
 974		/* if updating VSI context, make sure to set valid_section:
 975		 * to indicate which section of VSI context being updated
 976		 */
 977		if (!init_vsi)
 978			ctxt->info.valid_sections |=
 979				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
 980	}
 981
 982	ctxt->info.sw_id = vsi->port_info->sw_id;
 983	ice_vsi_setup_q_map(vsi, ctxt);
 984	if (!init_vsi) /* means VSI being updated */
 985		/* must to indicate which section of VSI context are
 986		 * being modified
 987		 */
 988		ctxt->info.valid_sections |=
 989			cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
 990
 991	/* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off
 992	 * respectively
 993	 */
 994	if (vsi->type == ICE_VSI_VF) {
 995		ctxt->info.valid_sections |=
 996			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
 997		if (pf->vf[vsi->vf_id].spoofchk) {
 998			ctxt->info.sec_flags |=
 999				ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
1000				(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
1001				 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
1002		} else {
1003			ctxt->info.sec_flags &=
1004				~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
1005				  (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
1006				   ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S));
1007		}
1008	}
1009
1010	/* Allow control frames out of main VSI */
1011	if (vsi->type == ICE_VSI_PF) {
1012		ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1013		ctxt->info.valid_sections |=
1014			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1015	}
1016
1017	if (init_vsi) {
1018		ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1019		if (ret) {
1020			dev_err(dev, "Add VSI failed, err %d\n", ret);
1021			ret = -EIO;
1022			goto out;
1023		}
1024	} else {
1025		ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1026		if (ret) {
1027			dev_err(dev, "Update VSI failed, err %d\n", ret);
1028			ret = -EIO;
1029			goto out;
1030		}
1031	}
1032
1033	/* keep context for update VSI operations */
1034	vsi->info = ctxt->info;
1035
1036	/* record VSI number returned */
1037	vsi->vsi_num = ctxt->vsi_num;
1038
1039out:
1040	kfree(ctxt);
1041	return ret;
1042}
1043
1044/**
1045 * ice_free_res - free a block of resources
1046 * @res: pointer to the resource
1047 * @index: starting index previously returned by ice_get_res
1048 * @id: identifier to track owner
1049 *
1050 * Returns number of resources freed
1051 */
1052int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
1053{
1054	int count = 0;
1055	int i;
1056
1057	if (!res || index >= res->end)
1058		return -EINVAL;
1059
1060	id |= ICE_RES_VALID_BIT;
1061	for (i = index; i < res->end && res->list[i] == id; i++) {
1062		res->list[i] = 0;
1063		count++;
1064	}
 
1065
1066	return count;
 
 
 
 
 
 
 
 
 
 
1067}
1068
1069/**
1070 * ice_search_res - Search the tracker for a block of resources
1071 * @res: pointer to the resource
1072 * @needed: size of the block needed
1073 * @id: identifier to track owner
1074 *
1075 * Returns the base item index of the block, or -ENOMEM for error
1076 */
1077static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
1078{
1079	u16 start = 0, end = 0;
1080
1081	if (needed > res->end)
1082		return -ENOMEM;
1083
1084	id |= ICE_RES_VALID_BIT;
1085
1086	do {
1087		/* skip already allocated entries */
1088		if (res->list[end++] & ICE_RES_VALID_BIT) {
1089			start = end;
1090			if ((start + needed) > res->end)
1091				break;
1092		}
1093
1094		if (end == (start + needed)) {
1095			int i = start;
1096
1097			/* there was enough, so assign it to the requestor */
1098			while (i != end)
1099				res->list[i++] = id;
1100
1101			return start;
1102		}
1103	} while (end < res->end);
1104
1105	return -ENOMEM;
 
1106}
1107
1108/**
1109 * ice_get_free_res_count - Get free count from a resource tracker
1110 * @res: Resource tracker instance
 
 
 
1111 */
1112static u16 ice_get_free_res_count(struct ice_res_tracker *res)
1113{
1114	u16 i, count = 0;
 
1115
1116	for (i = 0; i < res->end; i++)
1117		if (!(res->list[i] & ICE_RES_VALID_BIT))
1118			count++;
 
1119
1120	return count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1121}
1122
1123/**
1124 * ice_get_res - get a block of resources
1125 * @pf: board private structure
1126 * @res: pointer to the resource
1127 * @needed: size of the block needed
1128 * @id: identifier to track owner
1129 *
1130 * Returns the base item index of the block, or negative for error
 
1131 */
1132int
1133ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
1134{
1135	if (!res || !pf)
1136		return -EINVAL;
 
1137
1138	if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
1139		dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n",
1140			needed, res->num_entries, id);
1141		return -EINVAL;
1142	}
1143
1144	return ice_search_res(res, needed, id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1145}
1146
1147/**
1148 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1149 * @vsi: ptr to the VSI
1150 *
1151 * This should only be called after ice_vsi_alloc() which allocates the
1152 * corresponding SW VSI structure and initializes num_queue_pairs for the
1153 * newly allocated VSI.
1154 *
1155 * Returns 0 on success or negative on failure
1156 */
1157static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1158{
1159	struct ice_pf *pf = vsi->back;
1160	struct device *dev;
1161	u16 num_q_vectors;
1162	int base;
1163
1164	dev = ice_pf_to_dev(pf);
1165	/* SRIOV doesn't grab irq_tracker entries for each VSI */
1166	if (vsi->type == ICE_VSI_VF)
1167		return 0;
1168
1169	if (vsi->base_vector) {
1170		dev_dbg(dev, "VSI %d has non-zero base vector %d\n",
1171			vsi->vsi_num, vsi->base_vector);
1172		return -EEXIST;
1173	}
1174
1175	num_q_vectors = vsi->num_q_vectors;
1176	/* reserve slots from OS requested IRQs */
1177	base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, vsi->idx);
1178
1179	if (base < 0) {
1180		dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n",
1181			ice_get_free_res_count(pf->irq_tracker),
1182			ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors);
1183		return -ENOENT;
1184	}
1185	vsi->base_vector = (u16)base;
1186	pf->num_avail_sw_msix -= num_q_vectors;
1187
1188	return 0;
1189}
1190
1191/**
1192 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1193 * @vsi: the VSI having rings deallocated
1194 */
1195static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1196{
1197	int i;
1198
1199	/* Avoid stale references by clearing map from vector to ring */
1200	if (vsi->q_vectors) {
1201		ice_for_each_q_vector(vsi, i) {
1202			struct ice_q_vector *q_vector = vsi->q_vectors[i];
1203
1204			if (q_vector) {
1205				q_vector->tx.ring = NULL;
1206				q_vector->rx.ring = NULL;
1207			}
1208		}
1209	}
1210
1211	if (vsi->tx_rings) {
1212		for (i = 0; i < vsi->alloc_txq; i++) {
1213			if (vsi->tx_rings[i]) {
1214				kfree_rcu(vsi->tx_rings[i], rcu);
1215				WRITE_ONCE(vsi->tx_rings[i], NULL);
1216			}
1217		}
1218	}
1219	if (vsi->rx_rings) {
1220		for (i = 0; i < vsi->alloc_rxq; i++) {
1221			if (vsi->rx_rings[i]) {
1222				kfree_rcu(vsi->rx_rings[i], rcu);
1223				WRITE_ONCE(vsi->rx_rings[i], NULL);
1224			}
1225		}
1226	}
1227}
1228
1229/**
1230 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1231 * @vsi: VSI which is having rings allocated
1232 */
1233static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1234{
1235	struct ice_pf *pf = vsi->back;
1236	struct device *dev;
1237	u16 i;
1238
1239	dev = ice_pf_to_dev(pf);
1240	/* Allocate Tx rings */
1241	for (i = 0; i < vsi->alloc_txq; i++) {
1242		struct ice_ring *ring;
1243
1244		/* allocate with kzalloc(), free with kfree_rcu() */
1245		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1246
1247		if (!ring)
1248			goto err_out;
1249
1250		ring->q_index = i;
1251		ring->reg_idx = vsi->txq_map[i];
1252		ring->ring_active = false;
1253		ring->vsi = vsi;
1254		ring->dev = dev;
1255		ring->count = vsi->num_tx_desc;
1256		WRITE_ONCE(vsi->tx_rings[i], ring);
1257	}
1258
1259	/* Allocate Rx rings */
1260	for (i = 0; i < vsi->alloc_rxq; i++) {
1261		struct ice_ring *ring;
1262
1263		/* allocate with kzalloc(), free with kfree_rcu() */
1264		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1265		if (!ring)
1266			goto err_out;
1267
1268		ring->q_index = i;
1269		ring->reg_idx = vsi->rxq_map[i];
1270		ring->ring_active = false;
1271		ring->vsi = vsi;
1272		ring->netdev = vsi->netdev;
1273		ring->dev = dev;
1274		ring->count = vsi->num_rx_desc;
1275		WRITE_ONCE(vsi->rx_rings[i], ring);
1276	}
1277
1278	return 0;
1279
1280err_out:
1281	ice_vsi_clear_rings(vsi);
1282	return -ENOMEM;
1283}
1284
1285/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1286 * ice_vsi_manage_rss_lut - disable/enable RSS
1287 * @vsi: the VSI being changed
1288 * @ena: boolean value indicating if this is an enable or disable request
1289 *
1290 * In the event of disable request for RSS, this function will zero out RSS
1291 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1292 * LUT.
1293 */
1294int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1295{
1296	int err = 0;
1297	u8 *lut;
1298
1299	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
 
1300	if (!lut)
1301		return -ENOMEM;
1302
1303	if (ena) {
1304		if (vsi->rss_lut_user)
1305			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1306		else
1307			ice_fill_rss_lut(lut, vsi->rss_table_size,
1308					 vsi->rss_size);
1309	}
1310
1311	err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size);
1312	kfree(lut);
1313	return err;
1314}
1315
1316/**
1317 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1318 * @vsi: VSI to be configured
1319 */
1320static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1321{
1322	struct ice_aqc_get_set_rss_keys *key;
1323	struct ice_pf *pf = vsi->back;
1324	enum ice_status status;
1325	struct device *dev;
1326	int err = 0;
1327	u8 *lut;
1328
1329	dev = ice_pf_to_dev(pf);
1330	vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1331
1332	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1333	if (!lut)
1334		return -ENOMEM;
1335
1336	if (vsi->rss_lut_user)
1337		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1338	else
1339		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1340
1341	status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut,
1342				    vsi->rss_table_size);
1343
1344	if (status) {
1345		dev_err(dev, "set_rss_lut failed, error %s\n",
1346			ice_stat_str(status));
1347		err = -EIO;
1348		goto ice_vsi_cfg_rss_exit;
1349	}
1350
1351	key = kzalloc(sizeof(*key), GFP_KERNEL);
1352	if (!key) {
1353		err = -ENOMEM;
1354		goto ice_vsi_cfg_rss_exit;
1355	}
1356
1357	if (vsi->rss_hkey_user)
1358		memcpy(key,
1359		       (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user,
1360		       ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1361	else
1362		netdev_rss_key_fill((void *)key,
1363				    ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1364
1365	status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key);
1366
1367	if (status) {
1368		dev_err(dev, "set_rss_key failed, error %s\n",
1369			ice_stat_str(status));
1370		err = -EIO;
1371	}
1372
1373	kfree(key);
1374ice_vsi_cfg_rss_exit:
1375	kfree(lut);
1376	return err;
1377}
1378
1379/**
1380 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1381 * @vsi: VSI to be configured
 
 
1382 *
1383 * This function will only be called during the VF VSI setup. Upon successful
1384 * completion of package download, this function will configure default RSS
1385 * input sets for VF VSI.
1386 */
1387static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1388{
1389	struct ice_pf *pf = vsi->back;
1390	enum ice_status status;
1391	struct device *dev;
1392
1393	dev = ice_pf_to_dev(pf);
1394	if (ice_is_safe_mode(pf)) {
1395		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1396			vsi->vsi_num);
1397		return;
1398	}
1399
1400	status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
1401	if (status)
1402		dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n",
1403			vsi->vsi_num, ice_stat_str(status));
1404}
1405
1406/**
1407 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1408 * @vsi: VSI to be configured
1409 *
1410 * This function will only be called after successful download package call
1411 * during initialization of PF. Since the downloaded package will erase the
1412 * RSS section, this function will configure RSS input sets for different
1413 * flow types. The last profile added has the highest priority, therefore 2
1414 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1415 * (i.e. IPv4 src/dst TCP src/dst port).
1416 */
1417static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
 
1418{
1419	u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
1420	struct ice_pf *pf = vsi->back;
1421	struct ice_hw *hw = &pf->hw;
1422	enum ice_status status;
1423	struct device *dev;
1424
1425	dev = ice_pf_to_dev(pf);
1426	if (ice_is_safe_mode(pf)) {
1427		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1428			vsi_num);
1429		return;
1430	}
1431	/* configure RSS for IPv4 with input set IP src/dst */
1432	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1433				 ICE_FLOW_SEG_HDR_IPV4);
1434	if (status)
1435		dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n",
1436			vsi_num, ice_stat_str(status));
1437
1438	/* configure RSS for IPv6 with input set IPv6 src/dst */
1439	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1440				 ICE_FLOW_SEG_HDR_IPV6);
1441	if (status)
1442		dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n",
1443			vsi_num, ice_stat_str(status));
1444
1445	/* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1446	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
1447				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
1448	if (status)
1449		dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n",
1450			vsi_num, ice_stat_str(status));
1451
1452	/* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1453	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
1454				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
1455	if (status)
1456		dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n",
1457			vsi_num, ice_stat_str(status));
1458
1459	/* configure RSS for sctp4 with input set IP src/dst */
1460	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1461				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
1462	if (status)
1463		dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n",
1464			vsi_num, ice_stat_str(status));
1465
1466	/* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1467	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
1468				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
1469	if (status)
1470		dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n",
1471			vsi_num, ice_stat_str(status));
1472
1473	/* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1474	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
1475				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
1476	if (status)
1477		dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n",
1478			vsi_num, ice_stat_str(status));
1479
1480	/* configure RSS for sctp6 with input set IPv6 src/dst */
1481	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1482				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
1483	if (status)
1484		dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n",
1485			vsi_num, ice_stat_str(status));
1486}
1487
1488/**
1489 * ice_pf_state_is_nominal - checks the PF for nominal state
1490 * @pf: pointer to PF to check
1491 *
1492 * Check the PF's state for a collection of bits that would indicate
1493 * the PF is in a state that would inhibit normal operation for
1494 * driver functionality.
1495 *
1496 * Returns true if PF is in a nominal state, false otherwise
1497 */
1498bool ice_pf_state_is_nominal(struct ice_pf *pf)
1499{
1500	DECLARE_BITMAP(check_bits, __ICE_STATE_NBITS) = { 0 };
1501
1502	if (!pf)
1503		return false;
 
 
 
 
1504
1505	bitmap_set(check_bits, 0, __ICE_STATE_NOMINAL_CHECK_BITS);
1506	if (bitmap_intersects(pf->state, check_bits, __ICE_STATE_NBITS))
1507		return false;
1508
1509	return true;
1510}
1511
1512/**
1513 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1514 * @vsi: the VSI to be updated
1515 */
1516void ice_update_eth_stats(struct ice_vsi *vsi)
1517{
1518	struct ice_eth_stats *prev_es, *cur_es;
1519	struct ice_hw *hw = &vsi->back->hw;
1520	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1521
1522	prev_es = &vsi->eth_stats_prev;
1523	cur_es = &vsi->eth_stats;
1524
1525	ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1526			  &prev_es->rx_bytes, &cur_es->rx_bytes);
1527
1528	ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1529			  &prev_es->rx_unicast, &cur_es->rx_unicast);
1530
1531	ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1532			  &prev_es->rx_multicast, &cur_es->rx_multicast);
1533
1534	ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1535			  &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1536
1537	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1538			  &prev_es->rx_discards, &cur_es->rx_discards);
1539
1540	ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1541			  &prev_es->tx_bytes, &cur_es->tx_bytes);
1542
1543	ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1544			  &prev_es->tx_unicast, &cur_es->tx_unicast);
1545
1546	ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1547			  &prev_es->tx_multicast, &cur_es->tx_multicast);
1548
1549	ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1550			  &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1551
1552	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1553			  &prev_es->tx_errors, &cur_es->tx_errors);
1554
1555	vsi->stat_offsets_loaded = true;
1556}
1557
1558/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1559 * ice_vsi_add_vlan - Add VSI membership for given VLAN
1560 * @vsi: the VSI being configured
1561 * @vid: VLAN ID to be added
1562 * @action: filter action to be performed on match
1563 */
1564int
1565ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action)
1566{
 
1567	struct ice_pf *pf = vsi->back;
1568	struct device *dev;
 
1569	int err = 0;
1570
1571	dev = ice_pf_to_dev(pf);
 
 
1572
1573	if (!ice_fltr_add_vlan(vsi, vid, action)) {
1574		vsi->num_vlan++;
1575	} else {
 
 
 
 
 
 
 
 
 
1576		err = -ENODEV;
1577		dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid,
1578			vsi->vsi_num);
1579	}
1580
 
1581	return err;
1582}
1583
1584/**
1585 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
1586 * @vsi: the VSI being configured
1587 * @vid: VLAN ID to be removed
1588 *
1589 * Returns 0 on success and negative on failure
1590 */
1591int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
1592{
 
1593	struct ice_pf *pf = vsi->back;
 
1594	enum ice_status status;
1595	struct device *dev;
1596	int err = 0;
1597
1598	dev = ice_pf_to_dev(pf);
 
 
1599
1600	status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI);
1601	if (!status) {
1602		vsi->num_vlan--;
1603	} else if (status == ICE_ERR_DOES_NOT_EXIST) {
1604		dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n",
1605			vid, vsi->vsi_num, ice_stat_str(status));
1606	} else {
1607		dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n",
1608			vid, vsi->vsi_num, ice_stat_str(status));
 
 
 
 
 
 
 
 
 
 
1609		err = -EIO;
1610	}
1611
 
1612	return err;
1613}
1614
1615/**
1616 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1617 * @vsi: VSI
1618 */
1619void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1620{
1621	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1622		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1623		vsi->rx_buf_len = ICE_RXBUF_2048;
1624#if (PAGE_SIZE < 8192)
1625	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1626		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
1627		vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
1628		vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
1629#endif
1630	} else {
1631		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1632#if (PAGE_SIZE < 8192)
1633		vsi->rx_buf_len = ICE_RXBUF_3072;
1634#else
1635		vsi->rx_buf_len = ICE_RXBUF_2048;
1636#endif
1637	}
1638}
1639
1640/**
1641 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1642 * @hw: HW pointer
1643 * @pf_q: index of the Rx queue in the PF's queue space
1644 * @rxdid: flexible descriptor RXDID
1645 * @prio: priority for the RXDID for this queue
1646 */
1647void
1648ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio)
1649{
1650	int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1651
1652	/* clear any previous values */
1653	regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1654		    QRXFLXP_CNTXT_RXDID_PRIO_M |
1655		    QRXFLXP_CNTXT_TS_M);
1656
1657	regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
1658		QRXFLXP_CNTXT_RXDID_IDX_M;
1659
1660	regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
1661		QRXFLXP_CNTXT_RXDID_PRIO_M;
1662
1663	wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1664}
1665
1666/**
1667 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1668 * @vsi: the VSI being configured
1669 *
1670 * Return 0 on success and a negative value on error
1671 * Configure the Rx VSI for operation.
1672 */
1673int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1674{
1675	u16 i;
1676
1677	if (vsi->type == ICE_VSI_VF)
1678		goto setup_rings;
1679
1680	ice_vsi_cfg_frame_size(vsi);
 
 
 
 
 
 
1681setup_rings:
1682	/* set up individual rings */
1683	for (i = 0; i < vsi->num_rxq; i++) {
1684		int err;
1685
1686		err = ice_setup_rx_ctx(vsi->rx_rings[i]);
1687		if (err) {
1688			dev_err(ice_pf_to_dev(vsi->back), "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
 
1689				i, err);
1690			return err;
1691		}
1692	}
1693
1694	return 0;
1695}
1696
1697/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1698 * ice_vsi_cfg_txqs - Configure the VSI for Tx
1699 * @vsi: the VSI being configured
1700 * @rings: Tx ring array to be configured
 
1701 *
1702 * Return 0 on success and a negative value on error
1703 * Configure the Tx VSI for operation.
1704 */
1705static int
1706ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings)
1707{
1708	struct ice_aqc_add_tx_qgrp *qg_buf;
1709	u16 q_idx = 0;
 
1710	int err = 0;
 
1711
1712	qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1713	if (!qg_buf)
1714		return -ENOMEM;
1715
1716	qg_buf->num_txqs = 1;
1717
1718	for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) {
1719		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
1720		if (err)
1721			goto err_cfg_txqs;
1722	}
1723
 
 
 
 
 
 
 
 
 
1724err_cfg_txqs:
1725	kfree(qg_buf);
1726	return err;
1727}
1728
1729/**
1730 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1731 * @vsi: the VSI being configured
1732 *
1733 * Return 0 on success and a negative value on error
1734 * Configure the Tx VSI for operation.
1735 */
1736int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1737{
1738	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings);
1739}
1740
1741/**
1742 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1743 * @vsi: the VSI being configured
1744 *
1745 * Return 0 on success and a negative value on error
1746 * Configure the Tx queues dedicated for XDP in given VSI for operation.
1747 */
1748int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1749{
1750	int ret;
1751	int i;
1752
1753	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings);
1754	if (ret)
1755		return ret;
1756
1757	for (i = 0; i < vsi->num_xdp_txq; i++)
1758		vsi->xdp_rings[i]->xsk_umem = ice_xsk_umem(vsi->xdp_rings[i]);
1759
1760	return ret;
1761}
1762
1763/**
1764 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1765 * @intrl: interrupt rate limit in usecs
1766 * @gran: interrupt rate limit granularity in usecs
1767 *
1768 * This function converts a decimal interrupt rate limit in usecs to the format
1769 * expected by firmware.
1770 */
1771u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1772{
1773	u32 val = intrl / gran;
1774
1775	if (val)
1776		return val | GLINT_RATE_INTRL_ENA_M;
1777	return 0;
1778}
1779
1780/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1781 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1782 * @vsi: the VSI being configured
1783 *
1784 * This configures MSIX mode interrupts for the PF VSI, and should not be used
1785 * for the VF VSI.
1786 */
1787void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1788{
1789	struct ice_pf *pf = vsi->back;
1790	struct ice_hw *hw = &pf->hw;
1791	u16 txq = 0, rxq = 0;
1792	int i, q;
1793
1794	for (i = 0; i < vsi->num_q_vectors; i++) {
1795		struct ice_q_vector *q_vector = vsi->q_vectors[i];
1796		u16 reg_idx = q_vector->reg_idx;
1797
1798		ice_cfg_itr(hw, q_vector);
1799
1800		wr32(hw, GLINT_RATE(reg_idx),
1801		     ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
1802
1803		/* Both Transmit Queue Interrupt Cause Control register
1804		 * and Receive Queue Interrupt Cause control register
1805		 * expects MSIX_INDX field to be the vector index
1806		 * within the function space and not the absolute
1807		 * vector index across PF or across device.
1808		 * For SR-IOV VF VSIs queue vector index always starts
1809		 * with 1 since first vector index(0) is used for OICR
1810		 * in VF space. Since VMDq and other PF VSIs are within
1811		 * the PF function space, use the vector index that is
1812		 * tracked for this PF.
1813		 */
1814		for (q = 0; q < q_vector->num_ring_tx; q++) {
1815			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
1816					      q_vector->tx.itr_idx);
1817			txq++;
1818		}
1819
1820		for (q = 0; q < q_vector->num_ring_rx; q++) {
1821			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
1822					      q_vector->rx.itr_idx);
1823			rxq++;
1824		}
1825	}
1826}
1827
1828/**
1829 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
1830 * @vsi: the VSI being changed
1831 */
1832int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
1833{
 
1834	struct ice_hw *hw = &vsi->back->hw;
1835	struct ice_vsi_ctx *ctxt;
1836	enum ice_status status;
1837	int ret = 0;
1838
1839	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1840	if (!ctxt)
1841		return -ENOMEM;
1842
1843	/* Here we are configuring the VSI to let the driver add VLAN tags by
1844	 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag
1845	 * insertion happens in the Tx hot path, in ice_tx_map.
1846	 */
1847	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL;
1848
1849	/* Preserve existing VLAN strip setting */
1850	ctxt->info.vlan_flags |= (vsi->info.vlan_flags &
1851				  ICE_AQ_VSI_VLAN_EMOD_M);
1852
1853	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
1854
1855	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1856	if (status) {
1857		dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n",
1858			ice_stat_str(status),
1859			ice_aq_str(hw->adminq.sq_last_status));
1860		ret = -EIO;
1861		goto out;
1862	}
1863
1864	vsi->info.vlan_flags = ctxt->info.vlan_flags;
1865out:
1866	kfree(ctxt);
1867	return ret;
1868}
1869
1870/**
1871 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
1872 * @vsi: the VSI being changed
1873 * @ena: boolean value indicating if this is a enable or disable request
1874 */
1875int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
1876{
 
1877	struct ice_hw *hw = &vsi->back->hw;
1878	struct ice_vsi_ctx *ctxt;
1879	enum ice_status status;
1880	int ret = 0;
1881
1882	/* do not allow modifying VLAN stripping when a port VLAN is configured
1883	 * on this VSI
1884	 */
1885	if (vsi->info.pvid)
1886		return 0;
1887
1888	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1889	if (!ctxt)
1890		return -ENOMEM;
1891
1892	/* Here we are configuring what the VSI should do with the VLAN tag in
1893	 * the Rx packet. We can either leave the tag in the packet or put it in
1894	 * the Rx descriptor.
1895	 */
1896	if (ena)
1897		/* Strip VLAN tag from Rx packet and put it in the desc */
1898		ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH;
1899	else
1900		/* Disable stripping. Leave tag in packet */
1901		ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING;
1902
1903	/* Allow all packets untagged/tagged */
1904	ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL;
1905
1906	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
1907
1908	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1909	if (status) {
1910		dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n",
1911			ena, ice_stat_str(status),
1912			ice_aq_str(hw->adminq.sq_last_status));
1913		ret = -EIO;
1914		goto out;
1915	}
1916
1917	vsi->info.vlan_flags = ctxt->info.vlan_flags;
1918out:
1919	kfree(ctxt);
1920	return ret;
1921}
1922
1923/**
1924 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
1925 * @vsi: the VSI whose rings are to be enabled
1926 *
1927 * Returns 0 on success and a negative value on error
1928 */
1929int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
1930{
1931	return ice_vsi_ctrl_all_rx_rings(vsi, true);
1932}
1933
1934/**
1935 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
1936 * @vsi: the VSI whose rings are to be disabled
1937 *
1938 * Returns 0 on success and a negative value on error
1939 */
1940int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1941{
1942	return ice_vsi_ctrl_all_rx_rings(vsi, false);
 
 
 
 
 
 
 
 
 
1943}
1944
1945/**
1946 * ice_vsi_stop_tx_rings - Disable Tx rings
1947 * @vsi: the VSI being configured
1948 * @rst_src: reset source
1949 * @rel_vmvf_num: Relative ID of VF/VM
1950 * @rings: Tx ring array to be stopped
1951 */
1952static int
1953ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1954		      u16 rel_vmvf_num, struct ice_ring **rings)
1955{
1956	u16 q_idx;
 
 
1957
1958	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
1959		return -EINVAL;
1960
1961	for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) {
1962		struct ice_txq_meta txq_meta = { };
1963		int status;
1964
1965		if (!rings || !rings[q_idx])
1966			return -EINVAL;
1967
1968		ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
1969		status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
1970					      rings[q_idx], &txq_meta);
1971
1972		if (status)
1973			return status;
 
 
 
 
 
 
 
 
1974	}
1975
1976	return 0;
1977}
1978
1979/**
1980 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
1981 * @vsi: the VSI being configured
1982 * @rst_src: reset source
1983 * @rel_vmvf_num: Relative ID of VF/VM
1984 */
1985int
1986ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1987			  u16 rel_vmvf_num)
1988{
1989	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings);
1990}
1991
1992/**
1993 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
1994 * @vsi: the VSI being configured
1995 */
1996int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
1997{
1998	return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings);
1999}
2000
2001/**
2002 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
2003 * @vsi: VSI to check whether or not VLAN pruning is enabled.
2004 *
2005 * returns true if Rx VLAN pruning is enabled and false otherwise.
2006 */
2007bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
2008{
2009	if (!vsi)
2010		return false;
2011
2012	return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA);
2013}
2014
2015/**
2016 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI
2017 * @vsi: VSI to enable or disable VLAN pruning on
2018 * @ena: set to true to enable VLAN pruning and false to disable it
2019 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode
2020 *
2021 * returns 0 if VSI is updated, negative otherwise
2022 */
2023int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc)
2024{
2025	struct ice_vsi_ctx *ctxt;
 
2026	struct ice_pf *pf;
2027	int status;
2028
2029	if (!vsi)
2030		return -EINVAL;
2031
2032	/* Don't enable VLAN pruning if the netdev is currently in promiscuous
2033	 * mode. VLAN pruning will be enabled when the interface exits
2034	 * promiscuous mode if any VLAN filters are active.
2035	 */
2036	if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena)
2037		return 0;
2038
2039	pf = vsi->back;
2040	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
 
2041	if (!ctxt)
2042		return -ENOMEM;
2043
2044	ctxt->info = vsi->info;
2045
2046	if (ena)
 
 
 
2047		ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2048	else
 
 
 
2049		ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
 
2050
2051	if (!vlan_promisc)
2052		ctxt->info.valid_sections =
2053			cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
 
2054
2055	status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL);
2056	if (status) {
2057		netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n",
2058			   ena ? "En" : "Dis", vsi->idx, vsi->vsi_num,
2059			   ice_stat_str(status),
2060			   ice_aq_str(pf->hw.adminq.sq_last_status));
2061		goto err_out;
2062	}
2063
 
2064	vsi->info.sw_flags2 = ctxt->info.sw_flags2;
2065
2066	kfree(ctxt);
2067	return 0;
2068
2069err_out:
2070	kfree(ctxt);
2071	return -EIO;
2072}
2073
2074static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2075{
2076	struct ice_dcbx_cfg *cfg = &vsi->port_info->local_dcbx_cfg;
2077
2078	vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg);
2079	vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg);
2080}
2081
2082/**
2083 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2084 * @vsi: VSI to set the q_vectors register index on
2085 */
2086static int
2087ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2088{
2089	u16 i;
2090
2091	if (!vsi || !vsi->q_vectors)
2092		return -EINVAL;
2093
2094	ice_for_each_q_vector(vsi, i) {
2095		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2096
2097		if (!q_vector) {
2098			dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n",
 
2099				i, vsi->vsi_num);
2100			goto clear_reg_idx;
2101		}
2102
2103		if (vsi->type == ICE_VSI_VF) {
2104			struct ice_vf *vf = &vsi->back->vf[vsi->vf_id];
2105
2106			q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
2107		} else {
2108			q_vector->reg_idx =
2109				q_vector->v_idx + vsi->base_vector;
2110		}
2111	}
2112
2113	return 0;
2114
2115clear_reg_idx:
2116	ice_for_each_q_vector(vsi, i) {
2117		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2118
2119		if (q_vector)
2120			q_vector->reg_idx = 0;
2121	}
2122
2123	return -EINVAL;
2124}
2125
2126/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2127 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2128 * @vsi: the VSI being configured
2129 * @tx: bool to determine Tx or Rx rule
2130 * @create: bool to determine create or remove Rule
2131 */
2132void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2133{
2134	enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2135				    enum ice_sw_fwd_act_type act);
2136	struct ice_pf *pf = vsi->back;
 
2137	enum ice_status status;
2138	struct device *dev;
2139
2140	dev = ice_pf_to_dev(pf);
2141	eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2142
2143	if (tx)
2144		status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2145				  ICE_DROP_PACKET);
 
 
2146	else
2147		status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, ICE_FWD_TO_VSI);
2148
2149	if (status)
2150		dev_err(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n",
 
2151			create ? "adding" : "removing", tx ? "TX" : "RX",
2152			vsi->vsi_num, ice_stat_str(status));
 
 
2153}
2154
2155/**
2156 * ice_vsi_setup - Set up a VSI by a given type
2157 * @pf: board private structure
2158 * @pi: pointer to the port_info instance
2159 * @vsi_type: VSI type
2160 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be
2161 *         used only for ICE_VSI_VF VSI type. For other VSI types, should
2162 *         fill-in ICE_INVAL_VFID as input.
2163 *
2164 * This allocates the sw VSI structure and its queue resources.
2165 *
2166 * Returns pointer to the successfully allocated and configured VSI sw struct on
2167 * success, NULL on failure.
2168 */
2169struct ice_vsi *
2170ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2171	      enum ice_vsi_type vsi_type, u16 vf_id)
2172{
2173	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2174	struct device *dev = ice_pf_to_dev(pf);
2175	enum ice_status status;
2176	struct ice_vsi *vsi;
2177	int ret, i;
2178
2179	if (vsi_type == ICE_VSI_VF)
2180		vsi = ice_vsi_alloc(pf, vsi_type, vf_id);
2181	else
2182		vsi = ice_vsi_alloc(pf, vsi_type, ICE_INVAL_VFID);
2183
2184	if (!vsi) {
2185		dev_err(dev, "could not allocate VSI\n");
2186		return NULL;
2187	}
2188
2189	vsi->port_info = pi;
2190	vsi->vsw = pf->first_sw;
2191	if (vsi->type == ICE_VSI_PF)
2192		vsi->ethtype = ETH_P_PAUSE;
2193
2194	if (vsi->type == ICE_VSI_VF)
2195		vsi->vf_id = vf_id;
2196
2197	ice_alloc_fd_res(vsi);
2198
2199	if (ice_vsi_get_qs(vsi)) {
2200		dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2201			vsi->idx);
2202		goto unroll_vsi_alloc;
2203	}
2204
2205	/* set RSS capabilities */
2206	ice_vsi_set_rss_params(vsi);
2207
2208	/* set TC configuration */
2209	ice_vsi_set_tc_cfg(vsi);
2210
2211	/* create the VSI */
2212	ret = ice_vsi_init(vsi, true);
2213	if (ret)
2214		goto unroll_get_qs;
2215
2216	switch (vsi->type) {
2217	case ICE_VSI_CTRL:
2218	case ICE_VSI_PF:
2219		ret = ice_vsi_alloc_q_vectors(vsi);
2220		if (ret)
2221			goto unroll_vsi_init;
2222
2223		ret = ice_vsi_setup_vector_base(vsi);
2224		if (ret)
2225			goto unroll_alloc_q_vector;
2226
2227		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2228		if (ret)
2229			goto unroll_vector_base;
2230
2231		ret = ice_vsi_alloc_rings(vsi);
2232		if (ret)
2233			goto unroll_vector_base;
2234
2235		/* Always add VLAN ID 0 switch rule by default. This is needed
2236		 * in order to allow all untagged and 0 tagged priority traffic
2237		 * if Rx VLAN pruning is enabled. Also there are cases where we
2238		 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid()
2239		 * so this handles those cases (i.e. adding the PF to a bridge
2240		 * without the 8021q module loaded).
2241		 */
2242		ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI);
2243		if (ret)
2244			goto unroll_clear_rings;
2245
2246		ice_vsi_map_rings_to_vectors(vsi);
2247
2248		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2249		if (vsi->type != ICE_VSI_CTRL)
2250			/* Do not exit if configuring RSS had an issue, at
2251			 * least receive traffic on first queue. Hence no
2252			 * need to capture return value
2253			 */
2254			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2255				ice_vsi_cfg_rss_lut_key(vsi);
2256				ice_vsi_set_rss_flow_fld(vsi);
2257			}
2258		ice_init_arfs(vsi);
2259		break;
2260	case ICE_VSI_VF:
2261		/* VF driver will take care of creating netdev for this type and
2262		 * map queues to vectors through Virtchnl, PF driver only
2263		 * creates a VSI and corresponding structures for bookkeeping
2264		 * purpose
2265		 */
2266		ret = ice_vsi_alloc_q_vectors(vsi);
2267		if (ret)
2268			goto unroll_vsi_init;
2269
2270		ret = ice_vsi_alloc_rings(vsi);
2271		if (ret)
2272			goto unroll_alloc_q_vector;
2273
2274		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2275		if (ret)
2276			goto unroll_vector_base;
2277
2278		/* Do not exit if configuring RSS had an issue, at least
2279		 * receive traffic on first queue. Hence no need to capture
2280		 * return value
2281		 */
2282		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2283			ice_vsi_cfg_rss_lut_key(vsi);
2284			ice_vsi_set_vf_rss_flow_fld(vsi);
2285		}
2286		break;
2287	case ICE_VSI_LB:
2288		ret = ice_vsi_alloc_rings(vsi);
2289		if (ret)
2290			goto unroll_vsi_init;
2291		break;
2292	default:
2293		/* clean up the resources and exit */
2294		goto unroll_vsi_init;
2295	}
2296
2297	/* configure VSI nodes based on number of queues and TC's */
2298	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2299		max_txqs[i] = vsi->alloc_txq;
2300
2301	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2302				 max_txqs);
2303	if (status) {
2304		dev_err(dev, "VSI %d failed lan queue config, error %s\n",
2305			vsi->vsi_num, ice_stat_str(status));
2306		goto unroll_clear_rings;
 
2307	}
2308
2309	/* Add switch rule to drop all Tx Flow Control Frames, of look up
2310	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2311	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2312	 * The rule is added once for PF VSI in order to create appropriate
2313	 * recipe, since VSI/VSI list is ignored with drop action...
2314	 * Also add rules to handle LLDP Tx packets.  Tx LLDP packets need to
2315	 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2316	 * settings in the HW.
 
2317	 */
2318	if (!ice_is_safe_mode(pf))
2319		if (vsi->type == ICE_VSI_PF) {
2320			ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2321					 ICE_DROP_PACKET);
 
2322			ice_cfg_sw_lldp(vsi, true, true);
 
 
 
 
2323		}
 
2324
2325	return vsi;
2326
2327unroll_clear_rings:
2328	ice_vsi_clear_rings(vsi);
2329unroll_vector_base:
2330	/* reclaim SW interrupts back to the common pool */
2331	ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2332	pf->num_avail_sw_msix += vsi->num_q_vectors;
2333unroll_alloc_q_vector:
2334	ice_vsi_free_q_vectors(vsi);
2335unroll_vsi_init:
2336	ice_vsi_delete(vsi);
2337unroll_get_qs:
2338	ice_vsi_put_qs(vsi);
2339unroll_vsi_alloc:
2340	ice_vsi_clear(vsi);
2341
2342	return NULL;
2343}
2344
2345/**
2346 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2347 * @vsi: the VSI being cleaned up
2348 */
2349static void ice_vsi_release_msix(struct ice_vsi *vsi)
2350{
2351	struct ice_pf *pf = vsi->back;
2352	struct ice_hw *hw = &pf->hw;
2353	u32 txq = 0;
2354	u32 rxq = 0;
2355	int i, q;
2356
2357	for (i = 0; i < vsi->num_q_vectors; i++) {
2358		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2359		u16 reg_idx = q_vector->reg_idx;
2360
2361		wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0);
2362		wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0);
2363		for (q = 0; q < q_vector->num_ring_tx; q++) {
2364			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2365			if (ice_is_xdp_ena_vsi(vsi)) {
2366				u32 xdp_txq = txq + vsi->num_xdp_txq;
2367
2368				wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2369			}
2370			txq++;
2371		}
2372
2373		for (q = 0; q < q_vector->num_ring_rx; q++) {
2374			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2375			rxq++;
2376		}
2377	}
2378
2379	ice_flush(hw);
2380}
2381
2382/**
2383 * ice_vsi_free_irq - Free the IRQ association with the OS
2384 * @vsi: the VSI being configured
2385 */
2386void ice_vsi_free_irq(struct ice_vsi *vsi)
2387{
2388	struct ice_pf *pf = vsi->back;
2389	int base = vsi->base_vector;
2390	int i;
2391
2392	if (!vsi->q_vectors || !vsi->irqs_ready)
2393		return;
2394
2395	ice_vsi_release_msix(vsi);
2396	if (vsi->type == ICE_VSI_VF)
2397		return;
2398
2399	vsi->irqs_ready = false;
2400	ice_for_each_q_vector(vsi, i) {
2401		u16 vector = i + base;
2402		int irq_num;
2403
2404		irq_num = pf->msix_entries[vector].vector;
2405
2406		/* free only the irqs that were actually requested */
2407		if (!vsi->q_vectors[i] ||
2408		    !(vsi->q_vectors[i]->num_ring_tx ||
2409		      vsi->q_vectors[i]->num_ring_rx))
2410			continue;
2411
2412		/* clear the affinity notifier in the IRQ descriptor */
2413		irq_set_affinity_notifier(irq_num, NULL);
2414
2415		/* clear the affinity_mask in the IRQ descriptor */
2416		irq_set_affinity_hint(irq_num, NULL);
2417		synchronize_irq(irq_num);
2418		devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
 
2419	}
2420}
2421
2422/**
2423 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2424 * @vsi: the VSI having resources freed
2425 */
2426void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2427{
2428	int i;
2429
2430	if (!vsi->tx_rings)
2431		return;
2432
2433	ice_for_each_txq(vsi, i)
2434		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2435			ice_free_tx_ring(vsi->tx_rings[i]);
2436}
2437
2438/**
2439 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2440 * @vsi: the VSI having resources freed
2441 */
2442void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2443{
2444	int i;
2445
2446	if (!vsi->rx_rings)
2447		return;
2448
2449	ice_for_each_rxq(vsi, i)
2450		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2451			ice_free_rx_ring(vsi->rx_rings[i]);
2452}
2453
2454/**
2455 * ice_vsi_close - Shut down a VSI
2456 * @vsi: the VSI being shut down
2457 */
2458void ice_vsi_close(struct ice_vsi *vsi)
2459{
2460	if (!test_and_set_bit(__ICE_DOWN, vsi->state))
2461		ice_down(vsi);
2462
2463	ice_vsi_free_irq(vsi);
2464	ice_vsi_free_tx_rings(vsi);
2465	ice_vsi_free_rx_rings(vsi);
2466}
2467
2468/**
2469 * ice_ena_vsi - resume a VSI
2470 * @vsi: the VSI being resume
2471 * @locked: is the rtnl_lock already held
 
 
 
2472 */
2473int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2474{
2475	int err = 0;
2476
2477	if (!test_bit(__ICE_NEEDS_RESTART, vsi->state))
2478		return 0;
2479
2480	clear_bit(__ICE_NEEDS_RESTART, vsi->state);
2481
2482	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2483		if (netif_running(vsi->netdev)) {
2484			if (!locked)
2485				rtnl_lock();
2486
2487			err = ice_open(vsi->netdev);
 
2488
2489			if (!locked)
2490				rtnl_unlock();
2491		}
2492	} else if (vsi->type == ICE_VSI_CTRL) {
2493		err = ice_vsi_open_ctrl(vsi);
2494	}
2495
2496	return err;
2497}
2498
2499/**
2500 * ice_dis_vsi - pause a VSI
2501 * @vsi: the VSI being paused
2502 * @locked: is the rtnl_lock already held
 
 
 
2503 */
2504void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2505{
2506	if (test_bit(__ICE_DOWN, vsi->state))
2507		return;
 
 
2508
2509	set_bit(__ICE_NEEDS_RESTART, vsi->state);
2510
2511	if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2512		if (netif_running(vsi->netdev)) {
2513			if (!locked)
2514				rtnl_lock();
 
 
 
2515
2516			ice_stop(vsi->netdev);
 
2517
2518			if (!locked)
2519				rtnl_unlock();
2520		} else {
2521			ice_vsi_close(vsi);
 
2522		}
2523	} else if (vsi->type == ICE_VSI_CTRL) {
2524		ice_vsi_close(vsi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2525	}
 
 
2526}
2527
2528/**
2529 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2530 * @vsi: the VSI being un-configured
2531 */
2532void ice_vsi_dis_irq(struct ice_vsi *vsi)
2533{
2534	int base = vsi->base_vector;
2535	struct ice_pf *pf = vsi->back;
2536	struct ice_hw *hw = &pf->hw;
2537	u32 val;
2538	int i;
2539
2540	/* disable interrupt causation from each queue */
2541	if (vsi->tx_rings) {
2542		ice_for_each_txq(vsi, i) {
2543			if (vsi->tx_rings[i]) {
2544				u16 reg;
2545
2546				reg = vsi->tx_rings[i]->reg_idx;
2547				val = rd32(hw, QINT_TQCTL(reg));
2548				val &= ~QINT_TQCTL_CAUSE_ENA_M;
2549				wr32(hw, QINT_TQCTL(reg), val);
2550			}
2551		}
2552	}
2553
2554	if (vsi->rx_rings) {
2555		ice_for_each_rxq(vsi, i) {
2556			if (vsi->rx_rings[i]) {
2557				u16 reg;
2558
2559				reg = vsi->rx_rings[i]->reg_idx;
2560				val = rd32(hw, QINT_RQCTL(reg));
2561				val &= ~QINT_RQCTL_CAUSE_ENA_M;
2562				wr32(hw, QINT_RQCTL(reg), val);
2563			}
2564		}
2565	}
2566
2567	/* disable each interrupt */
2568	ice_for_each_q_vector(vsi, i) {
2569		if (!vsi->q_vectors[i])
2570			continue;
2571		wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2572	}
2573
2574	ice_flush(hw);
2575
2576	/* don't call synchronize_irq() for VF's from the host */
2577	if (vsi->type == ICE_VSI_VF)
2578		return;
2579
2580	ice_for_each_q_vector(vsi, i)
2581		synchronize_irq(pf->msix_entries[i + base].vector);
2582}
2583
2584/**
2585 * ice_napi_del - Remove NAPI handler for the VSI
2586 * @vsi: VSI for which NAPI handler is to be removed
2587 */
2588void ice_napi_del(struct ice_vsi *vsi)
2589{
2590	int v_idx;
2591
2592	if (!vsi->netdev)
2593		return;
2594
2595	ice_for_each_q_vector(vsi, v_idx)
2596		netif_napi_del(&vsi->q_vectors[v_idx]->napi);
2597}
2598
2599/**
2600 * ice_vsi_release - Delete a VSI and free its resources
2601 * @vsi: the VSI being removed
2602 *
2603 * Returns 0 on success or < 0 on error
2604 */
2605int ice_vsi_release(struct ice_vsi *vsi)
2606{
2607	struct ice_pf *pf;
2608
2609	if (!vsi->back)
2610		return -ENODEV;
2611	pf = vsi->back;
2612
2613	/* do not unregister while driver is in the reset recovery pending
2614	 * state. Since reset/rebuild happens through PF service task workqueue,
2615	 * it's not a good idea to unregister netdev that is associated to the
2616	 * PF that is running the work queue items currently. This is done to
2617	 * avoid check_flush_dependency() warning on this wq
2618	 */
2619	if (vsi->netdev && !ice_is_reset_in_progress(pf->state))
2620		unregister_netdev(vsi->netdev);
2621
2622	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2623		ice_rss_clean(vsi);
2624
2625	/* Disable VSI and free resources */
2626	if (vsi->type != ICE_VSI_LB)
2627		ice_vsi_dis_irq(vsi);
2628	ice_vsi_close(vsi);
2629
2630	/* SR-IOV determines needed MSIX resources all at once instead of per
2631	 * VSI since when VFs are spawned we know how many VFs there are and how
2632	 * many interrupts each VF needs. SR-IOV MSIX resources are also
2633	 * cleared in the same manner.
2634	 */
2635	if (vsi->type != ICE_VSI_VF) {
2636		/* reclaim SW interrupts back to the common pool */
2637		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2638		pf->num_avail_sw_msix += vsi->num_q_vectors;
2639	}
2640
2641	if (!ice_is_safe_mode(pf)) {
2642		if (vsi->type == ICE_VSI_PF) {
2643			ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2644					    ICE_DROP_PACKET);
2645			ice_cfg_sw_lldp(vsi, true, false);
2646			/* The Rx rule will only exist to remove if the LLDP FW
2647			 * engine is currently stopped
2648			 */
2649			if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2650				ice_cfg_sw_lldp(vsi, false, false);
2651		}
2652	}
2653
2654	ice_fltr_remove_all(vsi);
2655	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2656	ice_vsi_delete(vsi);
2657	ice_vsi_free_q_vectors(vsi);
2658
2659	/* make sure unregister_netdev() was called by checking __ICE_DOWN */
2660	if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) {
2661		free_netdev(vsi->netdev);
2662		vsi->netdev = NULL;
2663	}
2664
2665	ice_vsi_clear_rings(vsi);
2666
2667	ice_vsi_put_qs(vsi);
2668
2669	/* retain SW VSI data structure since it is needed to unregister and
2670	 * free VSI netdev when PF is not in reset recovery pending state,\
2671	 * for ex: during rmmod.
2672	 */
2673	if (!ice_is_reset_in_progress(pf->state))
2674		ice_vsi_clear(vsi);
2675
2676	return 0;
2677}
2678
2679/**
2680 * ice_vsi_rebuild_update_coalesce - set coalesce for a q_vector
2681 * @q_vector: pointer to q_vector which is being updated
2682 * @coalesce: pointer to array of struct with stored coalesce
2683 *
2684 * Set coalesce param in q_vector and update these parameters in HW.
2685 */
2686static void
2687ice_vsi_rebuild_update_coalesce(struct ice_q_vector *q_vector,
2688				struct ice_coalesce_stored *coalesce)
2689{
2690	struct ice_ring_container *rx_rc = &q_vector->rx;
2691	struct ice_ring_container *tx_rc = &q_vector->tx;
2692	struct ice_hw *hw = &q_vector->vsi->back->hw;
2693
2694	tx_rc->itr_setting = coalesce->itr_tx;
2695	rx_rc->itr_setting = coalesce->itr_rx;
2696
2697	/* dynamic ITR values will be updated during Tx/Rx */
2698	if (!ITR_IS_DYNAMIC(tx_rc->itr_setting))
2699		wr32(hw, GLINT_ITR(tx_rc->itr_idx, q_vector->reg_idx),
2700		     ITR_REG_ALIGN(tx_rc->itr_setting) >>
2701		     ICE_ITR_GRAN_S);
2702	if (!ITR_IS_DYNAMIC(rx_rc->itr_setting))
2703		wr32(hw, GLINT_ITR(rx_rc->itr_idx, q_vector->reg_idx),
2704		     ITR_REG_ALIGN(rx_rc->itr_setting) >>
2705		     ICE_ITR_GRAN_S);
2706
2707	q_vector->intrl = coalesce->intrl;
2708	wr32(hw, GLINT_RATE(q_vector->reg_idx),
2709	     ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
2710}
2711
2712/**
2713 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2714 * @vsi: VSI connected with q_vectors
2715 * @coalesce: array of struct with stored coalesce
2716 *
2717 * Returns array size.
2718 */
2719static int
2720ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2721			     struct ice_coalesce_stored *coalesce)
2722{
2723	int i;
2724
2725	ice_for_each_q_vector(vsi, i) {
2726		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2727
2728		coalesce[i].itr_tx = q_vector->tx.itr_setting;
2729		coalesce[i].itr_rx = q_vector->rx.itr_setting;
2730		coalesce[i].intrl = q_vector->intrl;
2731	}
2732
2733	return vsi->num_q_vectors;
2734}
2735
2736/**
2737 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
2738 * @vsi: VSI connected with q_vectors
2739 * @coalesce: pointer to array of struct with stored coalesce
2740 * @size: size of coalesce array
2741 *
2742 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
2743 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
2744 * to default value.
2745 */
2746static void
2747ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
2748			     struct ice_coalesce_stored *coalesce, int size)
2749{
2750	int i;
2751
2752	if ((size && !coalesce) || !vsi)
2753		return;
2754
2755	for (i = 0; i < size && i < vsi->num_q_vectors; i++)
2756		ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i],
2757						&coalesce[i]);
2758
2759	/* number of q_vectors increased, so assume coalesce settings were
2760	 * changed globally (i.e. ethtool -C eth0 instead of per-queue) and use
2761	 * the previous settings from q_vector 0 for all of the new q_vectors
2762	 */
2763	for (; i < vsi->num_q_vectors; i++)
2764		ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i],
2765						&coalesce[0]);
2766}
2767
2768/**
2769 * ice_vsi_rebuild - Rebuild VSI after reset
2770 * @vsi: VSI to be rebuild
2771 * @init_vsi: is this an initialization or a reconfigure of the VSI
2772 *
2773 * Returns 0 on success and negative value on failure
2774 */
2775int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi)
2776{
2777	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2778	struct ice_coalesce_stored *coalesce;
2779	int prev_num_q_vectors = 0;
2780	struct ice_vf *vf = NULL;
2781	enum ice_status status;
2782	struct ice_pf *pf;
2783	int ret, i;
2784
2785	if (!vsi)
2786		return -EINVAL;
2787
2788	pf = vsi->back;
2789	if (vsi->type == ICE_VSI_VF)
2790		vf = &pf->vf[vsi->vf_id];
2791
2792	coalesce = kcalloc(vsi->num_q_vectors,
2793			   sizeof(struct ice_coalesce_stored), GFP_KERNEL);
2794	if (coalesce)
2795		prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi,
2796								  coalesce);
2797	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2798	ice_vsi_free_q_vectors(vsi);
2799
2800	/* SR-IOV determines needed MSIX resources all at once instead of per
2801	 * VSI since when VFs are spawned we know how many VFs there are and how
2802	 * many interrupts each VF needs. SR-IOV MSIX resources are also
2803	 * cleared in the same manner.
2804	 */
2805	if (vsi->type != ICE_VSI_VF) {
2806		/* reclaim SW interrupts back to the common pool */
2807		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2808		pf->num_avail_sw_msix += vsi->num_q_vectors;
2809		vsi->base_vector = 0;
2810	}
2811
2812	if (ice_is_xdp_ena_vsi(vsi))
2813		/* return value check can be skipped here, it always returns
2814		 * 0 if reset is in progress
2815		 */
2816		ice_destroy_xdp_rings(vsi);
2817	ice_vsi_put_qs(vsi);
2818	ice_vsi_clear_rings(vsi);
2819	ice_vsi_free_arrays(vsi);
 
2820	if (vsi->type == ICE_VSI_VF)
2821		ice_vsi_set_num_qs(vsi, vf->vf_id);
2822	else
2823		ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
2824
2825	ret = ice_vsi_alloc_arrays(vsi);
2826	if (ret < 0)
2827		goto err_vsi;
2828
2829	ice_vsi_get_qs(vsi);
2830
2831	ice_alloc_fd_res(vsi);
2832	ice_vsi_set_tc_cfg(vsi);
2833
2834	/* Initialize VSI struct elements and create VSI in FW */
2835	ret = ice_vsi_init(vsi, init_vsi);
2836	if (ret < 0)
2837		goto err_vsi;
2838
 
2839	switch (vsi->type) {
2840	case ICE_VSI_CTRL:
2841	case ICE_VSI_PF:
2842		ret = ice_vsi_alloc_q_vectors(vsi);
2843		if (ret)
2844			goto err_rings;
2845
2846		ret = ice_vsi_setup_vector_base(vsi);
2847		if (ret)
2848			goto err_vectors;
2849
2850		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2851		if (ret)
2852			goto err_vectors;
2853
2854		ret = ice_vsi_alloc_rings(vsi);
2855		if (ret)
2856			goto err_vectors;
2857
2858		ice_vsi_map_rings_to_vectors(vsi);
2859		if (ice_is_xdp_ena_vsi(vsi)) {
2860			vsi->num_xdp_txq = vsi->alloc_rxq;
2861			ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
2862			if (ret)
2863				goto err_vectors;
2864		}
2865		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2866		if (vsi->type != ICE_VSI_CTRL)
2867			/* Do not exit if configuring RSS had an issue, at
2868			 * least receive traffic on first queue. Hence no
2869			 * need to capture return value
2870			 */
2871			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2872				ice_vsi_cfg_rss_lut_key(vsi);
2873		break;
2874	case ICE_VSI_VF:
2875		ret = ice_vsi_alloc_q_vectors(vsi);
2876		if (ret)
2877			goto err_rings;
2878
2879		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2880		if (ret)
2881			goto err_vectors;
2882
2883		ret = ice_vsi_alloc_rings(vsi);
2884		if (ret)
2885			goto err_vectors;
2886
2887		break;
2888	default:
2889		break;
2890	}
2891
2892	/* configure VSI nodes based on number of queues and TC's */
2893	for (i = 0; i < vsi->tc_cfg.numtc; i++) {
2894		max_txqs[i] = vsi->alloc_txq;
2895
2896		if (ice_is_xdp_ena_vsi(vsi))
2897			max_txqs[i] += vsi->num_xdp_txq;
2898	}
2899
2900	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2901				 max_txqs);
2902	if (status) {
2903		dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n",
2904			vsi->vsi_num, ice_stat_str(status));
2905		if (init_vsi) {
2906			ret = -EIO;
2907			goto err_vectors;
2908		} else {
2909			return ice_schedule_reset(pf, ICE_RESET_PFR);
2910		}
2911	}
2912	ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
2913	kfree(coalesce);
2914
2915	return 0;
2916
2917err_vectors:
2918	ice_vsi_free_q_vectors(vsi);
2919err_rings:
2920	if (vsi->netdev) {
2921		vsi->current_netdev_flags = 0;
2922		unregister_netdev(vsi->netdev);
2923		free_netdev(vsi->netdev);
2924		vsi->netdev = NULL;
2925	}
2926err_vsi:
2927	ice_vsi_clear(vsi);
2928	set_bit(__ICE_RESET_FAILED, pf->state);
2929	kfree(coalesce);
2930	return ret;
2931}
2932
2933/**
2934 * ice_is_reset_in_progress - check for a reset in progress
2935 * @state: PF state field
2936 */
2937bool ice_is_reset_in_progress(unsigned long *state)
2938{
2939	return test_bit(__ICE_RESET_OICR_RECV, state) ||
2940	       test_bit(__ICE_DCBNL_DEVRESET, state) ||
2941	       test_bit(__ICE_PFR_REQ, state) ||
2942	       test_bit(__ICE_CORER_REQ, state) ||
2943	       test_bit(__ICE_GLOBR_REQ, state);
2944}
2945
2946#ifdef CONFIG_DCB
2947/**
2948 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
2949 * @vsi: VSI being configured
2950 * @ctx: the context buffer returned from AQ VSI update command
2951 */
2952static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
2953{
2954	vsi->info.mapping_flags = ctx->info.mapping_flags;
2955	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
2956	       sizeof(vsi->info.q_mapping));
2957	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
2958	       sizeof(vsi->info.tc_mapping));
2959}
2960
2961/**
2962 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
2963 * @vsi: VSI to be configured
2964 * @ena_tc: TC bitmap
2965 *
2966 * VSI queues expected to be quiesced before calling this function
2967 */
2968int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
2969{
2970	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2971	struct ice_pf *pf = vsi->back;
2972	struct ice_vsi_ctx *ctx;
 
2973	enum ice_status status;
2974	struct device *dev;
2975	int i, ret = 0;
2976	u8 num_tc = 0;
2977
2978	dev = ice_pf_to_dev(pf);
2979
2980	ice_for_each_traffic_class(i) {
2981		/* build bitmap of enabled TCs */
2982		if (ena_tc & BIT(i))
2983			num_tc++;
2984		/* populate max_txqs per TC */
2985		max_txqs[i] = vsi->alloc_txq;
2986	}
2987
2988	vsi->tc_cfg.ena_tc = ena_tc;
2989	vsi->tc_cfg.numtc = num_tc;
2990
2991	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2992	if (!ctx)
2993		return -ENOMEM;
2994
2995	ctx->vf_num = 0;
2996	ctx->info = vsi->info;
2997
2998	ice_vsi_setup_q_map(vsi, ctx);
2999
3000	/* must to indicate which section of VSI context are being modified */
3001	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3002	status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3003	if (status) {
3004		dev_info(dev, "Failed VSI Update\n");
3005		ret = -EIO;
3006		goto out;
3007	}
3008
3009	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3010				 max_txqs);
3011
3012	if (status) {
3013		dev_err(dev, "VSI %d failed TC config, error %s\n",
3014			vsi->vsi_num, ice_stat_str(status));
 
3015		ret = -EIO;
3016		goto out;
3017	}
3018	ice_vsi_update_q_map(vsi, ctx);
3019	vsi->info.valid_sections = 0;
3020
3021	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3022out:
3023	kfree(ctx);
3024	return ret;
3025}
3026#endif /* CONFIG_DCB */
3027
3028/**
3029 * ice_update_ring_stats - Update ring statistics
3030 * @ring: ring to update
3031 * @cont: used to increment per-vector counters
3032 * @pkts: number of processed packets
3033 * @bytes: number of processed bytes
3034 *
3035 * This function assumes that caller has acquired a u64_stats_sync lock.
3036 */
3037static void
3038ice_update_ring_stats(struct ice_ring *ring, struct ice_ring_container *cont,
3039		      u64 pkts, u64 bytes)
3040{
3041	ring->stats.bytes += bytes;
3042	ring->stats.pkts += pkts;
3043	cont->total_bytes += bytes;
3044	cont->total_pkts += pkts;
3045}
3046
3047/**
3048 * ice_update_tx_ring_stats - Update Tx ring specific counters
3049 * @tx_ring: ring to update
3050 * @pkts: number of processed packets
3051 * @bytes: number of processed bytes
3052 */
3053void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes)
3054{
3055	u64_stats_update_begin(&tx_ring->syncp);
3056	ice_update_ring_stats(tx_ring, &tx_ring->q_vector->tx, pkts, bytes);
3057	u64_stats_update_end(&tx_ring->syncp);
3058}
3059
3060/**
3061 * ice_update_rx_ring_stats - Update Rx ring specific counters
3062 * @rx_ring: ring to update
3063 * @pkts: number of processed packets
3064 * @bytes: number of processed bytes
3065 */
3066void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes)
3067{
3068	u64_stats_update_begin(&rx_ring->syncp);
3069	ice_update_ring_stats(rx_ring, &rx_ring->q_vector->rx, pkts, bytes);
3070	u64_stats_update_end(&rx_ring->syncp);
3071}
3072
3073/**
3074 * ice_status_to_errno - convert from enum ice_status to Linux errno
3075 * @err: ice_status value to convert
3076 */
3077int ice_status_to_errno(enum ice_status err)
3078{
3079	switch (err) {
3080	case ICE_SUCCESS:
3081		return 0;
3082	case ICE_ERR_DOES_NOT_EXIST:
3083		return -ENOENT;
3084	case ICE_ERR_OUT_OF_RANGE:
3085		return -ENOTTY;
3086	case ICE_ERR_PARAM:
3087		return -EINVAL;
3088	case ICE_ERR_NO_MEMORY:
3089		return -ENOMEM;
3090	case ICE_ERR_MAX_LIMIT:
3091		return -EAGAIN;
3092	default:
3093		return -EINVAL;
3094	}
3095}
3096
3097/**
3098 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3099 * @sw: switch to check if its default forwarding VSI is free
 
 
3100 *
3101 * Return true if the default forwarding VSI is already being used, else returns
3102 * false signalling that it's available to use.
3103 */
3104bool ice_is_dflt_vsi_in_use(struct ice_sw *sw)
3105{
3106	return (sw->dflt_vsi && sw->dflt_vsi_ena);
3107}
3108
3109/**
3110 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3111 * @sw: switch for the default forwarding VSI to compare against
3112 * @vsi: VSI to compare against default forwarding VSI
3113 *
3114 * If this VSI passed in is the default forwarding VSI then return true, else
3115 * return false
3116 */
3117bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
3118{
3119	return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena);
3120}
3121
3122/**
3123 * ice_set_dflt_vsi - set the default forwarding VSI
3124 * @sw: switch used to assign the default forwarding VSI
3125 * @vsi: VSI getting set as the default forwarding VSI on the switch
3126 *
3127 * If the VSI passed in is already the default VSI and it's enabled just return
3128 * success.
3129 *
3130 * If there is already a default VSI on the switch and it's enabled then return
3131 * -EEXIST since there can only be one default VSI per switch.
3132 *
3133 *  Otherwise try to set the VSI passed in as the switch's default VSI and
3134 *  return the result.
3135 */
3136int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
3137{
 
3138	enum ice_status status;
3139	struct device *dev;
3140
3141	if (!sw || !vsi)
3142		return -EINVAL;
3143
3144	dev = ice_pf_to_dev(vsi->back);
3145
3146	/* the VSI passed in is already the default VSI */
3147	if (ice_is_vsi_dflt_vsi(sw, vsi)) {
3148		dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3149			vsi->vsi_num);
3150		return 0;
3151	}
3152
3153	/* another VSI is already the default VSI for this switch */
3154	if (ice_is_dflt_vsi_in_use(sw)) {
3155		dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n",
3156			sw->dflt_vsi->vsi_num);
3157		return -EEXIST;
3158	}
3159
3160	status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX);
3161	if (status) {
3162		dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n",
3163			vsi->vsi_num, ice_stat_str(status));
3164		return -EIO;
3165	}
3166
3167	sw->dflt_vsi = vsi;
3168	sw->dflt_vsi_ena = true;
3169
3170	return 0;
3171}
3172
3173/**
3174 * ice_clear_dflt_vsi - clear the default forwarding VSI
3175 * @sw: switch used to clear the default VSI
3176 *
3177 * If the switch has no default VSI or it's not enabled then return error.
3178 *
3179 * Otherwise try to clear the default VSI and return the result.
3180 */
3181int ice_clear_dflt_vsi(struct ice_sw *sw)
3182{
3183	struct ice_vsi *dflt_vsi;
3184	enum ice_status status;
3185	struct device *dev;
3186
3187	if (!sw)
3188		return -EINVAL;
3189
3190	dev = ice_pf_to_dev(sw->pf);
3191
3192	dflt_vsi = sw->dflt_vsi;
3193
3194	/* there is no default VSI configured */
3195	if (!ice_is_dflt_vsi_in_use(sw))
3196		return -ENODEV;
3197
3198	status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false,
3199				  ICE_FLTR_RX);
3200	if (status) {
3201		dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n",
3202			dflt_vsi->vsi_num, ice_stat_str(status));
3203		return -EIO;
3204	}
3205
3206	sw->dflt_vsi = NULL;
3207	sw->dflt_vsi_ena = false;
3208
3209	return 0;
 
 
3210}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice.h"
 
 
   5#include "ice_lib.h"
 
   6#include "ice_dcb_lib.h"
   7
   8/**
   9 * ice_setup_rx_ctx - Configure a receive ring context
  10 * @ring: The Rx ring to configure
  11 *
  12 * Configure the Rx descriptor ring in RLAN context.
  13 */
  14static int ice_setup_rx_ctx(struct ice_ring *ring)
  15{
  16	struct ice_vsi *vsi = ring->vsi;
  17	struct ice_hw *hw = &vsi->back->hw;
  18	u32 rxdid = ICE_RXDID_FLEX_NIC;
  19	struct ice_rlan_ctx rlan_ctx;
  20	u32 regval;
  21	u16 pf_q;
  22	int err;
  23
  24	/* what is Rx queue number in global space of 2K Rx queues */
  25	pf_q = vsi->rxq_map[ring->q_index];
  26
  27	/* clear the context structure first */
  28	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
  29
  30	rlan_ctx.base = ring->dma >> 7;
  31
  32	rlan_ctx.qlen = ring->count;
  33
  34	/* Receive Packet Data Buffer Size.
  35	 * The Packet Data Buffer Size is defined in 128 byte units.
  36	 */
  37	rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
  38
  39	/* use 32 byte descriptors */
  40	rlan_ctx.dsize = 1;
  41
  42	/* Strip the Ethernet CRC bytes before the packet is posted to host
  43	 * memory.
  44	 */
  45	rlan_ctx.crcstrip = 1;
  46
  47	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
  48	rlan_ctx.l2tsel = 1;
  49
  50	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
  51	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
  52	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
  53
  54	/* This controls whether VLAN is stripped from inner headers
  55	 * The VLAN in the inner L2 header is stripped to the receive
  56	 * descriptor if enabled by this flag.
  57	 */
  58	rlan_ctx.showiv = 0;
  59
  60	/* Max packet size for this queue - must not be set to a larger value
  61	 * than 5 x DBUF
  62	 */
  63	rlan_ctx.rxmax = min_t(u16, vsi->max_frame,
  64			       ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len);
  65
  66	/* Rx queue threshold in units of 64 */
  67	rlan_ctx.lrxqthresh = 1;
  68
  69	 /* Enable Flexible Descriptors in the queue context which
  70	  * allows this driver to select a specific receive descriptor format
  71	  */
  72	if (vsi->type != ICE_VSI_VF) {
  73		regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
  74		regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
  75			QRXFLXP_CNTXT_RXDID_IDX_M;
  76
  77		/* increasing context priority to pick up profile ID;
  78		 * default is 0x01; setting to 0x03 to ensure profile
  79		 * is programming if prev context is of same priority
  80		 */
  81		regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
  82			QRXFLXP_CNTXT_RXDID_PRIO_M;
  83
  84		wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
  85	}
  86
  87	/* Absolute queue number out of 2K needs to be passed */
  88	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
  89	if (err) {
  90		dev_err(&vsi->back->pdev->dev,
  91			"Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
  92			pf_q, err);
  93		return -EIO;
  94	}
  95
  96	if (vsi->type == ICE_VSI_VF)
  97		return 0;
  98
  99	/* init queue specific tail register */
 100	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
 101	writel(0, ring->tail);
 102	ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring));
 103
 104	return 0;
 105}
 106
 107/**
 108 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
 109 * @ring: The Tx ring to configure
 110 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
 111 * @pf_q: queue index in the PF space
 112 *
 113 * Configure the Tx descriptor ring in TLAN context.
 114 */
 115static void
 116ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
 117{
 118	struct ice_vsi *vsi = ring->vsi;
 119	struct ice_hw *hw = &vsi->back->hw;
 120
 121	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
 122
 123	tlan_ctx->port_num = vsi->port_info->lport;
 124
 125	/* Transmit Queue Length */
 126	tlan_ctx->qlen = ring->count;
 127
 128	ice_set_cgd_num(tlan_ctx, ring);
 129
 130	/* PF number */
 131	tlan_ctx->pf_num = hw->pf_id;
 132
 133	/* queue belongs to a specific VSI type
 134	 * VF / VM index should be programmed per vmvf_type setting:
 135	 * for vmvf_type = VF, it is VF number between 0-256
 136	 * for vmvf_type = VM, it is VM number between 0-767
 137	 * for PF or EMP this field should be set to zero
 138	 */
 139	switch (vsi->type) {
 140	case ICE_VSI_LB:
 141		/* fall through */
 142	case ICE_VSI_PF:
 143		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
 144		break;
 145	case ICE_VSI_VF:
 146		/* Firmware expects vmvf_num to be absolute VF ID */
 147		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
 148		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
 149		break;
 
 150	default:
 151		return;
 152	}
 153
 154	/* make sure the context is associated with the right VSI */
 155	tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
 156
 157	tlan_ctx->tso_ena = ICE_TX_LEGACY;
 158	tlan_ctx->tso_qnum = pf_q;
 159
 160	/* Legacy or Advanced Host Interface:
 161	 * 0: Advanced Host Interface
 162	 * 1: Legacy Host Interface
 163	 */
 164	tlan_ctx->legacy_int = ICE_TX_LEGACY;
 165}
 166
 167/**
 168 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
 169 * @pf: the PF being configured
 170 * @pf_q: the PF queue
 171 * @ena: enable or disable state of the queue
 172 *
 173 * This routine will wait for the given Rx queue of the PF to reach the
 174 * enabled or disabled state.
 175 * Returns -ETIMEDOUT in case of failing to reach the requested state after
 176 * multiple retries; else will return 0 in case of success.
 177 */
 178static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
 179{
 180	int i;
 181
 182	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
 183		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
 184			      QRX_CTRL_QENA_STAT_M))
 185			return 0;
 186
 187		usleep_range(20, 40);
 188	}
 189
 190	return -ETIMEDOUT;
 191}
 192
 193/**
 194 * ice_vsi_ctrl_rx_ring - Start or stop a VSI's Rx ring
 195 * @vsi: the VSI being configured
 196 * @ena: start or stop the Rx rings
 197 * @rxq_idx: Rx queue index
 
 
 
 
 198 */
 199#ifndef CONFIG_PCI_IOV
 200static
 201#endif /* !CONFIG_PCI_IOV */
 202int ice_vsi_ctrl_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
 203{
 204	int pf_q = vsi->rxq_map[rxq_idx];
 205	struct ice_pf *pf = vsi->back;
 206	struct ice_hw *hw = &pf->hw;
 207	int ret = 0;
 208	u32 rx_reg;
 209
 210	rx_reg = rd32(hw, QRX_CTRL(pf_q));
 211
 212	/* Skip if the queue is already in the requested state */
 213	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
 214		return 0;
 215
 216	/* turn on/off the queue */
 217	if (ena)
 218		rx_reg |= QRX_CTRL_QENA_REQ_M;
 219	else
 220		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
 221	wr32(hw, QRX_CTRL(pf_q), rx_reg);
 222
 223	/* wait for the change to finish */
 224	ret = ice_pf_rxq_wait(pf, pf_q, ena);
 225	if (ret)
 226		dev_err(&pf->pdev->dev,
 227			"VSI idx %d Rx ring %d %sable timeout\n",
 228			vsi->idx, pf_q, (ena ? "en" : "dis"));
 229
 230	return ret;
 231}
 232
 233/**
 234 * ice_vsi_ctrl_rx_rings - Start or stop a VSI's Rx rings
 235 * @vsi: the VSI being configured
 236 * @ena: start or stop the Rx rings
 237 */
 238static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena)
 239{
 240	int i, ret = 0;
 241
 242	for (i = 0; i < vsi->num_rxq; i++) {
 243		ret = ice_vsi_ctrl_rx_ring(vsi, ena, i);
 244		if (ret)
 245			break;
 246	}
 247
 248	return ret;
 249}
 250
 251/**
 252 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
 253 * @vsi: VSI pointer
 254 *
 255 * On error: returns error code (negative)
 256 * On success: returns 0
 257 */
 258static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
 259{
 260	struct ice_pf *pf = vsi->back;
 
 
 
 261
 262	/* allocate memory for both Tx and Rx ring pointers */
 263	vsi->tx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq,
 264				     sizeof(*vsi->tx_rings), GFP_KERNEL);
 265	if (!vsi->tx_rings)
 266		return -ENOMEM;
 267
 268	vsi->rx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq,
 269				     sizeof(*vsi->rx_rings), GFP_KERNEL);
 270	if (!vsi->rx_rings)
 271		goto err_rings;
 272
 273	vsi->txq_map = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq,
 
 274				    sizeof(*vsi->txq_map), GFP_KERNEL);
 275
 276	if (!vsi->txq_map)
 277		goto err_txq_map;
 278
 279	vsi->rxq_map = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq,
 280				    sizeof(*vsi->rxq_map), GFP_KERNEL);
 281	if (!vsi->rxq_map)
 282		goto err_rxq_map;
 283
 284
 285	/* There is no need to allocate q_vectors for a loopback VSI. */
 286	if (vsi->type == ICE_VSI_LB)
 287		return 0;
 288
 289	/* allocate memory for q_vector pointers */
 290	vsi->q_vectors = devm_kcalloc(&pf->pdev->dev, vsi->num_q_vectors,
 291				      sizeof(*vsi->q_vectors), GFP_KERNEL);
 292	if (!vsi->q_vectors)
 293		goto err_vectors;
 294
 295	return 0;
 296
 297err_vectors:
 298	devm_kfree(&pf->pdev->dev, vsi->rxq_map);
 299err_rxq_map:
 300	devm_kfree(&pf->pdev->dev, vsi->txq_map);
 301err_txq_map:
 302	devm_kfree(&pf->pdev->dev, vsi->rx_rings);
 303err_rings:
 304	devm_kfree(&pf->pdev->dev, vsi->tx_rings);
 305	return -ENOMEM;
 306}
 307
 308/**
 309 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
 310 * @vsi: the VSI being configured
 311 */
 312static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
 313{
 314	switch (vsi->type) {
 315	case ICE_VSI_PF:
 316		/* fall through */
 317	case ICE_VSI_LB:
 318		vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
 319		vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
 
 
 
 
 
 
 320		break;
 321	default:
 322		dev_dbg(&vsi->back->pdev->dev,
 323			"Not setting number of Tx/Rx descriptors for VSI type %d\n",
 324			vsi->type);
 325		break;
 326	}
 327}
 328
 329/**
 330 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
 331 * @vsi: the VSI being configured
 332 * @vf_id: ID of the VF being configured
 333 *
 334 * Return 0 on success and a negative value on error
 335 */
 336static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id)
 337{
 338	struct ice_pf *pf = vsi->back;
 339	struct ice_vf *vf = NULL;
 340
 341	if (vsi->type == ICE_VSI_VF)
 342		vsi->vf_id = vf_id;
 343
 344	switch (vsi->type) {
 345	case ICE_VSI_PF:
 346		vsi->alloc_txq = min_t(int, ice_get_avail_txq_count(pf),
 347				       num_online_cpus());
 
 
 
 
 348
 349		pf->num_lan_tx = vsi->alloc_txq;
 350
 351		/* only 1 Rx queue unless RSS is enabled */
 352		if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags))
 353			vsi->alloc_rxq = 1;
 354		else
 355			vsi->alloc_rxq = min_t(int, ice_get_avail_rxq_count(pf),
 356					       num_online_cpus());
 
 
 
 
 
 357
 358		pf->num_lan_rx = vsi->alloc_rxq;
 359
 360		vsi->num_q_vectors = max_t(int, vsi->alloc_rxq, vsi->alloc_txq);
 361		break;
 362	case ICE_VSI_VF:
 363		vf = &pf->vf[vsi->vf_id];
 364		vsi->alloc_txq = vf->num_vf_qs;
 365		vsi->alloc_rxq = vf->num_vf_qs;
 366		/* pf->num_vf_msix includes (VF miscellaneous vector +
 367		 * data queue interrupts). Since vsi->num_q_vectors is number
 368		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
 369		 * original vector count
 370		 */
 371		vsi->num_q_vectors = pf->num_vf_msix - ICE_NONQ_VECS_VF;
 
 
 
 
 
 372		break;
 373	case ICE_VSI_LB:
 374		vsi->alloc_txq = 1;
 375		vsi->alloc_rxq = 1;
 376		break;
 377	default:
 378		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
 379		break;
 380	}
 381
 382	ice_vsi_set_num_desc(vsi);
 383}
 384
 385/**
 386 * ice_get_free_slot - get the next non-NULL location index in array
 387 * @array: array to search
 388 * @size: size of the array
 389 * @curr: last known occupied index to be used as a search hint
 390 *
 391 * void * is being used to keep the functionality generic. This lets us use this
 392 * function on any array of pointers.
 393 */
 394static int ice_get_free_slot(void *array, int size, int curr)
 395{
 396	int **tmp_array = (int **)array;
 397	int next;
 398
 399	if (curr < (size - 1) && !tmp_array[curr + 1]) {
 400		next = curr + 1;
 401	} else {
 402		int i = 0;
 403
 404		while ((i < size) && (tmp_array[i]))
 405			i++;
 406		if (i == size)
 407			next = ICE_NO_VSI;
 408		else
 409			next = i;
 410	}
 411	return next;
 412}
 413
 414/**
 415 * ice_vsi_delete - delete a VSI from the switch
 416 * @vsi: pointer to VSI being removed
 417 */
 418void ice_vsi_delete(struct ice_vsi *vsi)
 419{
 420	struct ice_pf *pf = vsi->back;
 421	struct ice_vsi_ctx *ctxt;
 422	enum ice_status status;
 423
 424	ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL);
 425	if (!ctxt)
 426		return;
 427
 428	if (vsi->type == ICE_VSI_VF)
 429		ctxt->vf_num = vsi->vf_id;
 430	ctxt->vsi_num = vsi->vsi_num;
 431
 432	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
 433
 434	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
 435	if (status)
 436		dev_err(&pf->pdev->dev, "Failed to delete VSI %i in FW\n",
 437			vsi->vsi_num);
 438
 439	devm_kfree(&pf->pdev->dev, ctxt);
 440}
 441
 442/**
 443 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
 444 * @vsi: pointer to VSI being cleared
 445 */
 446static void ice_vsi_free_arrays(struct ice_vsi *vsi)
 447{
 448	struct ice_pf *pf = vsi->back;
 
 
 
 449
 450	/* free the ring and vector containers */
 451	if (vsi->q_vectors) {
 452		devm_kfree(&pf->pdev->dev, vsi->q_vectors);
 453		vsi->q_vectors = NULL;
 454	}
 455	if (vsi->tx_rings) {
 456		devm_kfree(&pf->pdev->dev, vsi->tx_rings);
 457		vsi->tx_rings = NULL;
 458	}
 459	if (vsi->rx_rings) {
 460		devm_kfree(&pf->pdev->dev, vsi->rx_rings);
 461		vsi->rx_rings = NULL;
 462	}
 463	if (vsi->txq_map) {
 464		devm_kfree(&pf->pdev->dev, vsi->txq_map);
 465		vsi->txq_map = NULL;
 466	}
 467	if (vsi->rxq_map) {
 468		devm_kfree(&pf->pdev->dev, vsi->rxq_map);
 469		vsi->rxq_map = NULL;
 470	}
 471}
 472
 473/**
 474 * ice_vsi_clear - clean up and deallocate the provided VSI
 475 * @vsi: pointer to VSI being cleared
 476 *
 477 * This deallocates the VSI's queue resources, removes it from the PF's
 478 * VSI array if necessary, and deallocates the VSI
 479 *
 480 * Returns 0 on success, negative on failure
 481 */
 482int ice_vsi_clear(struct ice_vsi *vsi)
 483{
 484	struct ice_pf *pf = NULL;
 
 485
 486	if (!vsi)
 487		return 0;
 488
 489	if (!vsi->back)
 490		return -EINVAL;
 491
 492	pf = vsi->back;
 
 493
 494	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
 495		dev_dbg(&pf->pdev->dev, "vsi does not exist at pf->vsi[%d]\n",
 496			vsi->idx);
 497		return -EINVAL;
 498	}
 499
 500	mutex_lock(&pf->sw_mutex);
 501	/* updates the PF for this cleared VSI */
 502
 503	pf->vsi[vsi->idx] = NULL;
 504	if (vsi->idx < pf->next_vsi)
 505		pf->next_vsi = vsi->idx;
 506
 507	ice_vsi_free_arrays(vsi);
 508	mutex_unlock(&pf->sw_mutex);
 509	devm_kfree(&pf->pdev->dev, vsi);
 510
 511	return 0;
 512}
 513
 514/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 515 * ice_msix_clean_rings - MSIX mode Interrupt Handler
 516 * @irq: interrupt number
 517 * @data: pointer to a q_vector
 518 */
 519static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
 520{
 521	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
 522
 523	if (!q_vector->tx.ring && !q_vector->rx.ring)
 524		return IRQ_HANDLED;
 525
 526	napi_schedule(&q_vector->napi);
 527
 528	return IRQ_HANDLED;
 529}
 530
 531/**
 532 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
 533 * @pf: board private structure
 534 * @type: type of VSI
 535 * @vf_id: ID of the VF being configured
 536 *
 537 * returns a pointer to a VSI on success, NULL on failure.
 538 */
 539static struct ice_vsi *
 540ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type, u16 vf_id)
 541{
 
 542	struct ice_vsi *vsi = NULL;
 543
 544	/* Need to protect the allocation of the VSIs at the PF level */
 545	mutex_lock(&pf->sw_mutex);
 546
 547	/* If we have already allocated our maximum number of VSIs,
 548	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
 549	 * is available to be populated
 550	 */
 551	if (pf->next_vsi == ICE_NO_VSI) {
 552		dev_dbg(&pf->pdev->dev, "out of VSI slots!\n");
 553		goto unlock_pf;
 554	}
 555
 556	vsi = devm_kzalloc(&pf->pdev->dev, sizeof(*vsi), GFP_KERNEL);
 557	if (!vsi)
 558		goto unlock_pf;
 559
 560	vsi->type = type;
 561	vsi->back = pf;
 562	set_bit(__ICE_DOWN, vsi->state);
 563
 564	vsi->idx = pf->next_vsi;
 565
 566	if (type == ICE_VSI_VF)
 567		ice_vsi_set_num_qs(vsi, vf_id);
 568	else
 569		ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
 570
 571	switch (vsi->type) {
 572	case ICE_VSI_PF:
 573		if (ice_vsi_alloc_arrays(vsi))
 574			goto err_rings;
 575
 576		/* Setup default MSIX irq handler for VSI */
 577		vsi->irq_handler = ice_msix_clean_rings;
 578		break;
 
 
 
 
 
 
 
 579	case ICE_VSI_VF:
 580		if (ice_vsi_alloc_arrays(vsi))
 581			goto err_rings;
 582		break;
 583	case ICE_VSI_LB:
 584		if (ice_vsi_alloc_arrays(vsi))
 585			goto err_rings;
 586		break;
 587	default:
 588		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
 589		goto unlock_pf;
 590	}
 591
 592	/* fill VSI slot in the PF struct */
 593	pf->vsi[pf->next_vsi] = vsi;
 594
 595	/* prepare pf->next_vsi for next use */
 596	pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
 597					 pf->next_vsi);
 
 
 
 
 
 
 
 
 598	goto unlock_pf;
 599
 600err_rings:
 601	devm_kfree(&pf->pdev->dev, vsi);
 602	vsi = NULL;
 603unlock_pf:
 604	mutex_unlock(&pf->sw_mutex);
 605	return vsi;
 606}
 607
 608/**
 609 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
 610 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
 
 
 611 *
 612 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 613 */
 614static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
 615{
 616	int offset, i;
 
 617
 618	mutex_lock(qs_cfg->qs_mutex);
 619	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
 620					    0, qs_cfg->q_count, 0);
 621	if (offset >= qs_cfg->pf_map_size) {
 622		mutex_unlock(qs_cfg->qs_mutex);
 623		return -ENOMEM;
 624	}
 625
 626	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
 627	for (i = 0; i < qs_cfg->q_count; i++)
 628		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = i + offset;
 629	mutex_unlock(qs_cfg->qs_mutex);
 630
 631	return 0;
 632}
 
 
 633
 634/**
 635 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
 636 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
 637 *
 638 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 639 */
 640static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
 641{
 642	int i, index = 0;
 643
 644	mutex_lock(qs_cfg->qs_mutex);
 645	for (i = 0; i < qs_cfg->q_count; i++) {
 646		index = find_next_zero_bit(qs_cfg->pf_map,
 647					   qs_cfg->pf_map_size, index);
 648		if (index >= qs_cfg->pf_map_size)
 649			goto err_scatter;
 650		set_bit(index, qs_cfg->pf_map);
 651		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = index;
 652	}
 653	mutex_unlock(qs_cfg->qs_mutex);
 654
 655	return 0;
 656err_scatter:
 657	for (index = 0; index < i; index++) {
 658		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
 659		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
 660	}
 661	mutex_unlock(qs_cfg->qs_mutex);
 662
 663	return -ENOMEM;
 664}
 665
 666/**
 667 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
 668 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
 669 *
 670 * This function first tries to find contiguous space. If it is not successful,
 671 * it tries with the scatter approach.
 672 *
 673 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 674 */
 675static int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
 676{
 677	int ret = 0;
 678
 679	ret = __ice_vsi_get_qs_contig(qs_cfg);
 680	if (ret) {
 681		/* contig failed, so try with scatter approach */
 682		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
 683		qs_cfg->q_count = min_t(u16, qs_cfg->q_count,
 684					qs_cfg->scatter_count);
 685		ret = __ice_vsi_get_qs_sc(qs_cfg);
 686	}
 687	return ret;
 688}
 689
 690/**
 691 * ice_vsi_get_qs - Assign queues from PF to VSI
 692 * @vsi: the VSI to assign queues to
 693 *
 694 * Returns 0 on success and a negative value on error
 695 */
 696static int ice_vsi_get_qs(struct ice_vsi *vsi)
 697{
 698	struct ice_pf *pf = vsi->back;
 699	struct ice_qs_cfg tx_qs_cfg = {
 700		.qs_mutex = &pf->avail_q_mutex,
 701		.pf_map = pf->avail_txqs,
 702		.pf_map_size = pf->max_pf_txqs,
 703		.q_count = vsi->alloc_txq,
 704		.scatter_count = ICE_MAX_SCATTER_TXQS,
 705		.vsi_map = vsi->txq_map,
 706		.vsi_map_offset = 0,
 707		.mapping_mode = vsi->tx_mapping_mode
 708	};
 709	struct ice_qs_cfg rx_qs_cfg = {
 710		.qs_mutex = &pf->avail_q_mutex,
 711		.pf_map = pf->avail_rxqs,
 712		.pf_map_size = pf->max_pf_rxqs,
 713		.q_count = vsi->alloc_rxq,
 714		.scatter_count = ICE_MAX_SCATTER_RXQS,
 715		.vsi_map = vsi->rxq_map,
 716		.vsi_map_offset = 0,
 717		.mapping_mode = vsi->rx_mapping_mode
 718	};
 719	int ret = 0;
 720
 721	vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG;
 722	vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG;
 
 
 723
 724	ret = __ice_vsi_get_qs(&tx_qs_cfg);
 725	if (!ret)
 726		ret = __ice_vsi_get_qs(&rx_qs_cfg);
 
 727
 728	return ret;
 729}
 730
 731/**
 732 * ice_vsi_put_qs - Release queues from VSI to PF
 733 * @vsi: the VSI that is going to release queues
 734 */
 735void ice_vsi_put_qs(struct ice_vsi *vsi)
 736{
 737	struct ice_pf *pf = vsi->back;
 738	int i;
 739
 740	mutex_lock(&pf->avail_q_mutex);
 741
 742	for (i = 0; i < vsi->alloc_txq; i++) {
 743		clear_bit(vsi->txq_map[i], pf->avail_txqs);
 744		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
 745	}
 746
 747	for (i = 0; i < vsi->alloc_rxq; i++) {
 748		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
 749		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
 750	}
 751
 752	mutex_unlock(&pf->avail_q_mutex);
 753}
 754
 755/**
 756 * ice_is_safe_mode
 757 * @pf: pointer to the PF struct
 758 *
 759 * returns true if driver is in safe mode, false otherwise
 760 */
 761bool ice_is_safe_mode(struct ice_pf *pf)
 762{
 763	return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
 764}
 765
 766/**
 767 * ice_rss_clean - Delete RSS related VSI structures that hold user inputs
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 768 * @vsi: the VSI being removed
 769 */
 770static void ice_rss_clean(struct ice_vsi *vsi)
 771{
 772	struct ice_pf *pf;
 
 773
 774	pf = vsi->back;
 775
 776	if (vsi->rss_hkey_user)
 777		devm_kfree(&pf->pdev->dev, vsi->rss_hkey_user);
 778	if (vsi->rss_lut_user)
 779		devm_kfree(&pf->pdev->dev, vsi->rss_lut_user);
 
 
 
 
 
 780}
 781
 782/**
 783 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
 784 * @vsi: the VSI being configured
 785 */
 786static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
 787{
 788	struct ice_hw_common_caps *cap;
 789	struct ice_pf *pf = vsi->back;
 790
 791	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
 792		vsi->rss_size = 1;
 793		return;
 794	}
 795
 796	cap = &pf->hw.func_caps.common_cap;
 797	switch (vsi->type) {
 798	case ICE_VSI_PF:
 799		/* PF VSI will inherit RSS instance of PF */
 800		vsi->rss_table_size = cap->rss_table_size;
 801		vsi->rss_size = min_t(int, num_online_cpus(),
 802				      BIT(cap->rss_table_entry_width));
 803		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
 804		break;
 805	case ICE_VSI_VF:
 806		/* VF VSI will gets a small RSS table
 807		 * For VSI_LUT, LUT size should be set to 64 bytes
 808		 */
 809		vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
 810		vsi->rss_size = min_t(int, num_online_cpus(),
 811				      BIT(cap->rss_table_entry_width));
 812		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
 813		break;
 814	case ICE_VSI_LB:
 815		break;
 816	default:
 817		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n",
 818			 vsi->type);
 819		break;
 820	}
 821}
 822
 823/**
 824 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
 825 * @ctxt: the VSI context being set
 826 *
 827 * This initializes a default VSI context for all sections except the Queues.
 828 */
 829static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
 830{
 831	u32 table = 0;
 832
 833	memset(&ctxt->info, 0, sizeof(ctxt->info));
 834	/* VSI's should be allocated from shared pool */
 835	ctxt->alloc_from_pool = true;
 836	/* Src pruning enabled by default */
 837	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
 838	/* Traffic from VSI can be sent to LAN */
 839	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
 840	/* By default bits 3 and 4 in vlan_flags are 0's which results in legacy
 841	 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all
 842	 * packets untagged/tagged.
 843	 */
 844	ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL &
 845				  ICE_AQ_VSI_VLAN_MODE_M) >>
 846				 ICE_AQ_VSI_VLAN_MODE_S);
 847	/* Have 1:1 UP mapping for both ingress/egress tables */
 848	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
 849	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
 850	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
 851	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
 852	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
 853	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
 854	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
 855	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
 856	ctxt->info.ingress_table = cpu_to_le32(table);
 857	ctxt->info.egress_table = cpu_to_le32(table);
 858	/* Have 1:1 UP mapping for outer to inner UP table */
 859	ctxt->info.outer_up_table = cpu_to_le32(table);
 860	/* No Outer tag support outer_tag_flags remains to zero */
 861}
 862
 863/**
 864 * ice_vsi_setup_q_map - Setup a VSI queue map
 865 * @vsi: the VSI being configured
 866 * @ctxt: VSI context structure
 867 */
 868static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
 869{
 870	u16 offset = 0, qmap = 0, tx_count = 0;
 871	u16 qcount_tx = vsi->alloc_txq;
 872	u16 qcount_rx = vsi->alloc_rxq;
 873	u16 tx_numq_tc, rx_numq_tc;
 874	u16 pow = 0, max_rss = 0;
 875	bool ena_tc0 = false;
 876	u8 netdev_tc = 0;
 877	int i;
 878
 879	/* at least TC0 should be enabled by default */
 880	if (vsi->tc_cfg.numtc) {
 881		if (!(vsi->tc_cfg.ena_tc & BIT(0)))
 882			ena_tc0 = true;
 883	} else {
 884		ena_tc0 = true;
 885	}
 886
 887	if (ena_tc0) {
 888		vsi->tc_cfg.numtc++;
 889		vsi->tc_cfg.ena_tc |= 1;
 890	}
 891
 892	rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc;
 893	if (!rx_numq_tc)
 894		rx_numq_tc = 1;
 895	tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc;
 896	if (!tx_numq_tc)
 897		tx_numq_tc = 1;
 898
 899	/* TC mapping is a function of the number of Rx queues assigned to the
 900	 * VSI for each traffic class and the offset of these queues.
 901	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
 902	 * queues allocated to TC0. No:of queues is a power-of-2.
 903	 *
 904	 * If TC is not enabled, the queue offset is set to 0, and allocate one
 905	 * queue, this way, traffic for the given TC will be sent to the default
 906	 * queue.
 907	 *
 908	 * Setup number and offset of Rx queues for all TCs for the VSI
 909	 */
 910
 911	qcount_rx = rx_numq_tc;
 912
 913	/* qcount will change if RSS is enabled */
 914	if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) {
 915		if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) {
 916			if (vsi->type == ICE_VSI_PF)
 917				max_rss = ICE_MAX_LG_RSS_QS;
 918			else
 919				max_rss = ICE_MAX_SMALL_RSS_QS;
 920			qcount_rx = min_t(int, rx_numq_tc, max_rss);
 921			qcount_rx = min_t(int, qcount_rx, vsi->rss_size);
 
 
 922		}
 923	}
 924
 925	/* find the (rounded up) power-of-2 of qcount */
 926	pow = order_base_2(qcount_rx);
 927
 928	ice_for_each_traffic_class(i) {
 929		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
 930			/* TC is not enabled */
 931			vsi->tc_cfg.tc_info[i].qoffset = 0;
 932			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
 933			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
 934			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
 935			ctxt->info.tc_mapping[i] = 0;
 936			continue;
 937		}
 938
 939		/* TC is enabled */
 940		vsi->tc_cfg.tc_info[i].qoffset = offset;
 941		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
 942		vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc;
 943		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
 944
 945		qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
 946			ICE_AQ_VSI_TC_Q_OFFSET_M) |
 947			((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
 948			 ICE_AQ_VSI_TC_Q_NUM_M);
 949		offset += qcount_rx;
 950		tx_count += tx_numq_tc;
 951		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
 952	}
 953
 954	/* if offset is non-zero, means it is calculated correctly based on
 955	 * enabled TCs for a given VSI otherwise qcount_rx will always
 956	 * be correct and non-zero because it is based off - VSI's
 957	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
 958	 * at least 1)
 959	 */
 960	if (offset)
 961		vsi->num_rxq = offset;
 962	else
 963		vsi->num_rxq = qcount_rx;
 964
 965	vsi->num_txq = tx_count;
 966
 967	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
 968		dev_dbg(&vsi->back->pdev->dev, "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
 969		/* since there is a chance that num_rxq could have been changed
 970		 * in the above for loop, make num_txq equal to num_rxq.
 971		 */
 972		vsi->num_txq = vsi->num_rxq;
 973	}
 974
 975	/* Rx queue mapping */
 976	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
 977	/* q_mapping buffer holds the info for the first queue allocated for
 978	 * this VSI in the PF space and also the number of queues associated
 979	 * with this VSI.
 980	 */
 981	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
 982	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
 983}
 984
 985/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
 987 * @ctxt: the VSI context being set
 988 * @vsi: the VSI being configured
 989 */
 990static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
 991{
 992	u8 lut_type, hash_type;
 
 993	struct ice_pf *pf;
 994
 995	pf = vsi->back;
 
 996
 997	switch (vsi->type) {
 998	case ICE_VSI_PF:
 999		/* PF VSI will inherit RSS instance of PF */
1000		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1001		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1002		break;
1003	case ICE_VSI_VF:
1004		/* VF VSI will gets a small RSS table which is a VSI LUT type */
1005		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1006		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1007		break;
1008	case ICE_VSI_LB:
1009		dev_dbg(&pf->pdev->dev, "Unsupported VSI type %d\n", vsi->type);
1010		return;
1011	default:
1012		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
 
1013		return;
1014	}
1015
1016	ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1017				ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1018				((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
1019				 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
1020}
1021
1022/**
1023 * ice_vsi_init - Create and initialize a VSI
1024 * @vsi: the VSI being configured
 
1025 *
1026 * This initializes a VSI context depending on the VSI type to be added and
1027 * passes it down to the add_vsi aq command to create a new VSI.
1028 */
1029static int ice_vsi_init(struct ice_vsi *vsi)
1030{
1031	struct ice_pf *pf = vsi->back;
1032	struct ice_hw *hw = &pf->hw;
1033	struct ice_vsi_ctx *ctxt;
 
1034	int ret = 0;
1035
1036	ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL);
 
1037	if (!ctxt)
1038		return -ENOMEM;
1039
1040	ctxt->info = vsi->info;
1041	switch (vsi->type) {
 
1042	case ICE_VSI_LB:
1043		/* fall through */
1044	case ICE_VSI_PF:
1045		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1046		break;
1047	case ICE_VSI_VF:
1048		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1049		/* VF number here is the absolute VF number (0-255) */
1050		ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
1051		break;
1052	default:
1053		return -ENODEV;
 
1054	}
1055
1056	ice_set_dflt_vsi_ctx(ctxt);
 
 
1057	/* if the switch is in VEB mode, allow VSI loopback */
1058	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1059		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1060
1061	/* Set LUT type and HASH type if RSS is enabled */
1062	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
 
1063		ice_set_rss_vsi_ctx(ctxt, vsi);
 
 
 
 
 
 
 
1064
1065	ctxt->info.sw_id = vsi->port_info->sw_id;
1066	ice_vsi_setup_q_map(vsi, ctxt);
 
 
 
 
 
 
1067
1068	/* Enable MAC Antispoof with new VSI being initialized or updated */
1069	if (vsi->type == ICE_VSI_VF && pf->vf[vsi->vf_id].spoofchk) {
 
 
1070		ctxt->info.valid_sections |=
1071			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1072		ctxt->info.sec_flags |=
1073			ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF;
 
 
 
 
 
 
 
 
 
1074	}
1075
1076	/* Allow control frames out of main VSI */
1077	if (vsi->type == ICE_VSI_PF) {
1078		ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1079		ctxt->info.valid_sections |=
1080			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1081	}
1082
1083	ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1084	if (ret) {
1085		dev_err(&pf->pdev->dev,
1086			"Add VSI failed, err %d\n", ret);
1087		return -EIO;
 
 
 
 
 
 
 
 
 
1088	}
1089
1090	/* keep context for update VSI operations */
1091	vsi->info = ctxt->info;
1092
1093	/* record VSI number returned */
1094	vsi->vsi_num = ctxt->vsi_num;
1095
1096	devm_kfree(&pf->pdev->dev, ctxt);
 
1097	return ret;
1098}
1099
1100/**
1101 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
1102 * @vsi: VSI having the memory freed
1103 * @v_idx: index of the vector to be freed
 
 
 
1104 */
1105static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
1106{
1107	struct ice_q_vector *q_vector;
1108	struct ice_pf *pf = vsi->back;
1109	struct ice_ring *ring;
 
 
1110
1111	if (!vsi->q_vectors[v_idx]) {
1112		dev_dbg(&pf->pdev->dev, "Queue vector at index %d not found\n",
1113			v_idx);
1114		return;
1115	}
1116	q_vector = vsi->q_vectors[v_idx];
1117
1118	ice_for_each_ring(ring, q_vector->tx)
1119		ring->q_vector = NULL;
1120	ice_for_each_ring(ring, q_vector->rx)
1121		ring->q_vector = NULL;
1122
1123	/* only VSI with an associated netdev is set up with NAPI */
1124	if (vsi->netdev)
1125		netif_napi_del(&q_vector->napi);
1126
1127	devm_kfree(&pf->pdev->dev, q_vector);
1128	vsi->q_vectors[v_idx] = NULL;
1129}
1130
1131/**
1132 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
1133 * @vsi: the VSI having memory freed
 
 
 
 
1134 */
1135void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
1136{
1137	int v_idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1138
1139	ice_for_each_q_vector(vsi, v_idx)
1140		ice_free_q_vector(vsi, v_idx);
1141}
1142
1143/**
1144 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
1145 * @vsi: the VSI being configured
1146 * @v_idx: index of the vector in the VSI struct
1147 *
1148 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1149 */
1150static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx)
1151{
1152	struct ice_pf *pf = vsi->back;
1153	struct ice_q_vector *q_vector;
1154
1155	/* allocate q_vector */
1156	q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL);
1157	if (!q_vector)
1158		return -ENOMEM;
1159
1160	q_vector->vsi = vsi;
1161	q_vector->v_idx = v_idx;
1162	if (vsi->type == ICE_VSI_VF)
1163		goto out;
1164	/* only set affinity_mask if the CPU is online */
1165	if (cpu_online(v_idx))
1166		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
1167
1168	/* This will not be called in the driver load path because the netdev
1169	 * will not be created yet. All other cases with register the NAPI
1170	 * handler here (i.e. resume, reset/rebuild, etc.)
1171	 */
1172	if (vsi->netdev)
1173		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
1174			       NAPI_POLL_WEIGHT);
1175
1176out:
1177	/* tie q_vector and VSI together */
1178	vsi->q_vectors[v_idx] = q_vector;
1179
1180	return 0;
1181}
1182
1183/**
1184 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
1185 * @vsi: the VSI being configured
 
 
 
1186 *
1187 * We allocate one q_vector per queue interrupt. If allocation fails we
1188 * return -ENOMEM.
1189 */
1190static int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
 
1191{
1192	struct ice_pf *pf = vsi->back;
1193	int v_idx = 0, num_q_vectors;
1194	int err;
1195
1196	if (vsi->q_vectors[0]) {
1197		dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
1198			vsi->vsi_num);
1199		return -EEXIST;
1200	}
1201
1202	num_q_vectors = vsi->num_q_vectors;
1203
1204	for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
1205		err = ice_vsi_alloc_q_vector(vsi, v_idx);
1206		if (err)
1207			goto err_out;
1208	}
1209
1210	return 0;
1211
1212err_out:
1213	while (v_idx--)
1214		ice_free_q_vector(vsi, v_idx);
1215
1216	dev_err(&pf->pdev->dev,
1217		"Failed to allocate %d q_vector for VSI %d, ret=%d\n",
1218		vsi->num_q_vectors, vsi->vsi_num, err);
1219	vsi->num_q_vectors = 0;
1220	return err;
1221}
1222
1223/**
1224 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1225 * @vsi: ptr to the VSI
1226 *
1227 * This should only be called after ice_vsi_alloc() which allocates the
1228 * corresponding SW VSI structure and initializes num_queue_pairs for the
1229 * newly allocated VSI.
1230 *
1231 * Returns 0 on success or negative on failure
1232 */
1233static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1234{
1235	struct ice_pf *pf = vsi->back;
 
1236	u16 num_q_vectors;
 
1237
 
1238	/* SRIOV doesn't grab irq_tracker entries for each VSI */
1239	if (vsi->type == ICE_VSI_VF)
1240		return 0;
1241
1242	if (vsi->base_vector) {
1243		dev_dbg(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n",
1244			vsi->vsi_num, vsi->base_vector);
1245		return -EEXIST;
1246	}
1247
1248	num_q_vectors = vsi->num_q_vectors;
1249	/* reserve slots from OS requested IRQs */
1250	vsi->base_vector = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
1251				       vsi->idx);
1252	if (vsi->base_vector < 0) {
1253		dev_err(&pf->pdev->dev,
1254			"Failed to get tracking for %d vectors for VSI %d, err=%d\n",
1255			num_q_vectors, vsi->vsi_num, vsi->base_vector);
1256		return -ENOENT;
1257	}
 
1258	pf->num_avail_sw_msix -= num_q_vectors;
1259
1260	return 0;
1261}
1262
1263/**
1264 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1265 * @vsi: the VSI having rings deallocated
1266 */
1267static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1268{
1269	int i;
1270
 
 
 
 
 
 
 
 
 
 
 
 
1271	if (vsi->tx_rings) {
1272		for (i = 0; i < vsi->alloc_txq; i++) {
1273			if (vsi->tx_rings[i]) {
1274				kfree_rcu(vsi->tx_rings[i], rcu);
1275				vsi->tx_rings[i] = NULL;
1276			}
1277		}
1278	}
1279	if (vsi->rx_rings) {
1280		for (i = 0; i < vsi->alloc_rxq; i++) {
1281			if (vsi->rx_rings[i]) {
1282				kfree_rcu(vsi->rx_rings[i], rcu);
1283				vsi->rx_rings[i] = NULL;
1284			}
1285		}
1286	}
1287}
1288
1289/**
1290 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1291 * @vsi: VSI which is having rings allocated
1292 */
1293static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1294{
1295	struct ice_pf *pf = vsi->back;
1296	int i;
 
1297
 
1298	/* Allocate Tx rings */
1299	for (i = 0; i < vsi->alloc_txq; i++) {
1300		struct ice_ring *ring;
1301
1302		/* allocate with kzalloc(), free with kfree_rcu() */
1303		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1304
1305		if (!ring)
1306			goto err_out;
1307
1308		ring->q_index = i;
1309		ring->reg_idx = vsi->txq_map[i];
1310		ring->ring_active = false;
1311		ring->vsi = vsi;
1312		ring->dev = &pf->pdev->dev;
1313		ring->count = vsi->num_tx_desc;
1314		vsi->tx_rings[i] = ring;
1315	}
1316
1317	/* Allocate Rx rings */
1318	for (i = 0; i < vsi->alloc_rxq; i++) {
1319		struct ice_ring *ring;
1320
1321		/* allocate with kzalloc(), free with kfree_rcu() */
1322		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1323		if (!ring)
1324			goto err_out;
1325
1326		ring->q_index = i;
1327		ring->reg_idx = vsi->rxq_map[i];
1328		ring->ring_active = false;
1329		ring->vsi = vsi;
1330		ring->netdev = vsi->netdev;
1331		ring->dev = &pf->pdev->dev;
1332		ring->count = vsi->num_rx_desc;
1333		vsi->rx_rings[i] = ring;
1334	}
1335
1336	return 0;
1337
1338err_out:
1339	ice_vsi_clear_rings(vsi);
1340	return -ENOMEM;
1341}
1342
1343/**
1344 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
1345 * @vsi: the VSI being configured
1346 *
1347 * This function maps descriptor rings to the queue-specific vectors allotted
1348 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
1349 * and Rx rings to the vector as "efficiently" as possible.
1350 */
1351#ifdef CONFIG_DCB
1352void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
1353#else
1354static void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
1355#endif /* CONFIG_DCB */
1356{
1357	int q_vectors = vsi->num_q_vectors;
1358	int tx_rings_rem, rx_rings_rem;
1359	int v_id;
1360
1361	/* initially assigning remaining rings count to VSIs num queue value */
1362	tx_rings_rem = vsi->num_txq;
1363	rx_rings_rem = vsi->num_rxq;
1364
1365	for (v_id = 0; v_id < q_vectors; v_id++) {
1366		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
1367		int tx_rings_per_v, rx_rings_per_v, q_id, q_base;
1368
1369		/* Tx rings mapping to vector */
1370		tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id);
1371		q_vector->num_ring_tx = tx_rings_per_v;
1372		q_vector->tx.ring = NULL;
1373		q_vector->tx.itr_idx = ICE_TX_ITR;
1374		q_base = vsi->num_txq - tx_rings_rem;
1375
1376		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
1377			struct ice_ring *tx_ring = vsi->tx_rings[q_id];
1378
1379			tx_ring->q_vector = q_vector;
1380			tx_ring->next = q_vector->tx.ring;
1381			q_vector->tx.ring = tx_ring;
1382		}
1383		tx_rings_rem -= tx_rings_per_v;
1384
1385		/* Rx rings mapping to vector */
1386		rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id);
1387		q_vector->num_ring_rx = rx_rings_per_v;
1388		q_vector->rx.ring = NULL;
1389		q_vector->rx.itr_idx = ICE_RX_ITR;
1390		q_base = vsi->num_rxq - rx_rings_rem;
1391
1392		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
1393			struct ice_ring *rx_ring = vsi->rx_rings[q_id];
1394
1395			rx_ring->q_vector = q_vector;
1396			rx_ring->next = q_vector->rx.ring;
1397			q_vector->rx.ring = rx_ring;
1398		}
1399		rx_rings_rem -= rx_rings_per_v;
1400	}
1401}
1402
1403/**
1404 * ice_vsi_manage_rss_lut - disable/enable RSS
1405 * @vsi: the VSI being changed
1406 * @ena: boolean value indicating if this is an enable or disable request
1407 *
1408 * In the event of disable request for RSS, this function will zero out RSS
1409 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1410 * LUT.
1411 */
1412int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1413{
1414	int err = 0;
1415	u8 *lut;
1416
1417	lut = devm_kzalloc(&vsi->back->pdev->dev, vsi->rss_table_size,
1418			   GFP_KERNEL);
1419	if (!lut)
1420		return -ENOMEM;
1421
1422	if (ena) {
1423		if (vsi->rss_lut_user)
1424			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1425		else
1426			ice_fill_rss_lut(lut, vsi->rss_table_size,
1427					 vsi->rss_size);
1428	}
1429
1430	err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size);
1431	devm_kfree(&vsi->back->pdev->dev, lut);
1432	return err;
1433}
1434
1435/**
1436 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1437 * @vsi: VSI to be configured
1438 */
1439static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1440{
1441	struct ice_aqc_get_set_rss_keys *key;
1442	struct ice_pf *pf = vsi->back;
1443	enum ice_status status;
 
1444	int err = 0;
1445	u8 *lut;
1446
1447	vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq);
 
1448
1449	lut = devm_kzalloc(&pf->pdev->dev, vsi->rss_table_size, GFP_KERNEL);
1450	if (!lut)
1451		return -ENOMEM;
1452
1453	if (vsi->rss_lut_user)
1454		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1455	else
1456		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1457
1458	status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut,
1459				    vsi->rss_table_size);
1460
1461	if (status) {
1462		dev_err(&pf->pdev->dev,
1463			"set_rss_lut failed, error %d\n", status);
1464		err = -EIO;
1465		goto ice_vsi_cfg_rss_exit;
1466	}
1467
1468	key = devm_kzalloc(&pf->pdev->dev, sizeof(*key), GFP_KERNEL);
1469	if (!key) {
1470		err = -ENOMEM;
1471		goto ice_vsi_cfg_rss_exit;
1472	}
1473
1474	if (vsi->rss_hkey_user)
1475		memcpy(key,
1476		       (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user,
1477		       ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1478	else
1479		netdev_rss_key_fill((void *)key,
1480				    ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1481
1482	status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key);
1483
1484	if (status) {
1485		dev_err(&pf->pdev->dev, "set_rss_key failed, error %d\n",
1486			status);
1487		err = -EIO;
1488	}
1489
1490	devm_kfree(&pf->pdev->dev, key);
1491ice_vsi_cfg_rss_exit:
1492	devm_kfree(&pf->pdev->dev, lut);
1493	return err;
1494}
1495
1496/**
1497 * ice_add_mac_to_list - Add a MAC address filter entry to the list
1498 * @vsi: the VSI to be forwarded to
1499 * @add_list: pointer to the list which contains MAC filter entries
1500 * @macaddr: the MAC address to be added.
1501 *
1502 * Adds MAC address filter entry to the temp list
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1503 *
1504 * Returns 0 on success or ENOMEM on failure.
 
 
 
 
 
1505 */
1506int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list,
1507			const u8 *macaddr)
1508{
1509	struct ice_fltr_list_entry *tmp;
1510	struct ice_pf *pf = vsi->back;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1511
1512	tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_ATOMIC);
1513	if (!tmp)
1514		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1515
1516	tmp->fltr_info.flag = ICE_FLTR_TX;
1517	tmp->fltr_info.src_id = ICE_SRC_ID_VSI;
1518	tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC;
1519	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1520	tmp->fltr_info.vsi_handle = vsi->idx;
1521	ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr);
1522
1523	INIT_LIST_HEAD(&tmp->list_entry);
1524	list_add(&tmp->list_entry, add_list);
 
1525
1526	return 0;
1527}
1528
1529/**
1530 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1531 * @vsi: the VSI to be updated
1532 */
1533void ice_update_eth_stats(struct ice_vsi *vsi)
1534{
1535	struct ice_eth_stats *prev_es, *cur_es;
1536	struct ice_hw *hw = &vsi->back->hw;
1537	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1538
1539	prev_es = &vsi->eth_stats_prev;
1540	cur_es = &vsi->eth_stats;
1541
1542	ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1543			  &prev_es->rx_bytes, &cur_es->rx_bytes);
1544
1545	ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1546			  &prev_es->rx_unicast, &cur_es->rx_unicast);
1547
1548	ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1549			  &prev_es->rx_multicast, &cur_es->rx_multicast);
1550
1551	ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1552			  &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1553
1554	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1555			  &prev_es->rx_discards, &cur_es->rx_discards);
1556
1557	ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1558			  &prev_es->tx_bytes, &cur_es->tx_bytes);
1559
1560	ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1561			  &prev_es->tx_unicast, &cur_es->tx_unicast);
1562
1563	ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1564			  &prev_es->tx_multicast, &cur_es->tx_multicast);
1565
1566	ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1567			  &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1568
1569	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1570			  &prev_es->tx_errors, &cur_es->tx_errors);
1571
1572	vsi->stat_offsets_loaded = true;
1573}
1574
1575/**
1576 * ice_free_fltr_list - free filter lists helper
1577 * @dev: pointer to the device struct
1578 * @h: pointer to the list head to be freed
1579 *
1580 * Helper function to free filter lists previously created using
1581 * ice_add_mac_to_list
1582 */
1583void ice_free_fltr_list(struct device *dev, struct list_head *h)
1584{
1585	struct ice_fltr_list_entry *e, *tmp;
1586
1587	list_for_each_entry_safe(e, tmp, h, list_entry) {
1588		list_del(&e->list_entry);
1589		devm_kfree(dev, e);
1590	}
1591}
1592
1593/**
1594 * ice_vsi_add_vlan - Add VSI membership for given VLAN
1595 * @vsi: the VSI being configured
1596 * @vid: VLAN ID to be added
 
1597 */
1598int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid)
 
1599{
1600	struct ice_fltr_list_entry *tmp;
1601	struct ice_pf *pf = vsi->back;
1602	LIST_HEAD(tmp_add_list);
1603	enum ice_status status;
1604	int err = 0;
1605
1606	tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_KERNEL);
1607	if (!tmp)
1608		return -ENOMEM;
1609
1610	tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
1611	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1612	tmp->fltr_info.flag = ICE_FLTR_TX;
1613	tmp->fltr_info.src_id = ICE_SRC_ID_VSI;
1614	tmp->fltr_info.vsi_handle = vsi->idx;
1615	tmp->fltr_info.l_data.vlan.vlan_id = vid;
1616
1617	INIT_LIST_HEAD(&tmp->list_entry);
1618	list_add(&tmp->list_entry, &tmp_add_list);
1619
1620	status = ice_add_vlan(&pf->hw, &tmp_add_list);
1621	if (status) {
1622		err = -ENODEV;
1623		dev_err(&pf->pdev->dev, "Failure Adding VLAN %d on VSI %i\n",
1624			vid, vsi->vsi_num);
1625	}
1626
1627	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
1628	return err;
1629}
1630
1631/**
1632 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
1633 * @vsi: the VSI being configured
1634 * @vid: VLAN ID to be removed
1635 *
1636 * Returns 0 on success and negative on failure
1637 */
1638int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
1639{
1640	struct ice_fltr_list_entry *list;
1641	struct ice_pf *pf = vsi->back;
1642	LIST_HEAD(tmp_add_list);
1643	enum ice_status status;
 
1644	int err = 0;
1645
1646	list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
1647	if (!list)
1648		return -ENOMEM;
1649
1650	list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
1651	list->fltr_info.vsi_handle = vsi->idx;
1652	list->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1653	list->fltr_info.l_data.vlan.vlan_id = vid;
1654	list->fltr_info.flag = ICE_FLTR_TX;
1655	list->fltr_info.src_id = ICE_SRC_ID_VSI;
1656
1657	INIT_LIST_HEAD(&list->list_entry);
1658	list_add(&list->list_entry, &tmp_add_list);
1659
1660	status = ice_remove_vlan(&pf->hw, &tmp_add_list);
1661	if (status == ICE_ERR_DOES_NOT_EXIST) {
1662		dev_dbg(&pf->pdev->dev,
1663			"Failed to remove VLAN %d on VSI %i, it does not exist, status: %d\n",
1664			vid, vsi->vsi_num, status);
1665	} else if (status) {
1666		dev_err(&pf->pdev->dev,
1667			"Error removing VLAN %d on vsi %i error: %d\n",
1668			vid, vsi->vsi_num, status);
1669		err = -EIO;
1670	}
1671
1672	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
1673	return err;
1674}
1675
1676/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1677 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1678 * @vsi: the VSI being configured
1679 *
1680 * Return 0 on success and a negative value on error
1681 * Configure the Rx VSI for operation.
1682 */
1683int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1684{
1685	u16 i;
1686
1687	if (vsi->type == ICE_VSI_VF)
1688		goto setup_rings;
1689
1690	if (vsi->netdev && vsi->netdev->mtu > ETH_DATA_LEN)
1691		vsi->max_frame = vsi->netdev->mtu +
1692			ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
1693	else
1694		vsi->max_frame = ICE_RXBUF_2048;
1695
1696	vsi->rx_buf_len = ICE_RXBUF_2048;
1697setup_rings:
1698	/* set up individual rings */
1699	for (i = 0; i < vsi->num_rxq; i++) {
1700		int err;
1701
1702		err = ice_setup_rx_ctx(vsi->rx_rings[i]);
1703		if (err) {
1704			dev_err(&vsi->back->pdev->dev,
1705				"ice_setup_rx_ctx failed for RxQ %d, err %d\n",
1706				i, err);
1707			return err;
1708		}
1709	}
1710
1711	return 0;
1712}
1713
1714/**
1715 * ice_vsi_cfg_txq - Configure single Tx queue
1716 * @vsi: the VSI that queue belongs to
1717 * @ring: Tx ring to be configured
1718 * @tc_q_idx: queue index within given TC
1719 * @qg_buf: queue group buffer
1720 * @tc: TC that Tx ring belongs to
1721 */
1722static int
1723ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring, u16 tc_q_idx,
1724		struct ice_aqc_add_tx_qgrp *qg_buf, u8 tc)
1725{
1726	struct ice_tlan_ctx tlan_ctx = { 0 };
1727	struct ice_aqc_add_txqs_perq *txq;
1728	struct ice_pf *pf = vsi->back;
1729	u8 buf_len = sizeof(*qg_buf);
1730	enum ice_status status;
1731	u16 pf_q;
1732
1733	pf_q = ring->reg_idx;
1734	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
1735	/* copy context contents into the qg_buf */
1736	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
1737	ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
1738		    ice_tlan_ctx_info);
1739
1740	/* init queue specific tail reg. It is referred as
1741	 * transmit comm scheduler queue doorbell.
1742	 */
1743	ring->tail = pf->hw.hw_addr + QTX_COMM_DBELL(pf_q);
1744
1745	/* Add unique software queue handle of the Tx queue per
1746	 * TC into the VSI Tx ring
1747	 */
1748	ring->q_handle = tc_q_idx;
1749
1750	status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle,
1751				 1, qg_buf, buf_len, NULL);
1752	if (status) {
1753		dev_err(&pf->pdev->dev,
1754			"Failed to set LAN Tx queue context, error: %d\n",
1755			status);
1756		return -ENODEV;
1757	}
1758
1759	/* Add Tx Queue TEID into the VSI Tx ring from the
1760	 * response. This will complete configuring and
1761	 * enabling the queue.
1762	 */
1763	txq = &qg_buf->txqs[0];
1764	if (pf_q == le16_to_cpu(txq->txq_id))
1765		ring->txq_teid = le32_to_cpu(txq->q_teid);
1766
1767	return 0;
1768}
1769
1770/**
1771 * ice_vsi_cfg_txqs - Configure the VSI for Tx
1772 * @vsi: the VSI being configured
1773 * @rings: Tx ring array to be configured
1774 * @offset: offset within vsi->txq_map
1775 *
1776 * Return 0 on success and a negative value on error
1777 * Configure the Tx VSI for operation.
1778 */
1779static int
1780ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings, int offset)
1781{
1782	struct ice_aqc_add_tx_qgrp *qg_buf;
1783	struct ice_pf *pf = vsi->back;
1784	u16 q_idx = 0, i;
1785	int err = 0;
1786	u8 tc;
1787
1788	qg_buf = devm_kzalloc(&pf->pdev->dev, sizeof(*qg_buf), GFP_KERNEL);
1789	if (!qg_buf)
1790		return -ENOMEM;
1791
1792	qg_buf->num_txqs = 1;
1793
1794	/* set up and configure the Tx queues for each enabled TC */
1795	ice_for_each_traffic_class(tc) {
1796		if (!(vsi->tc_cfg.ena_tc & BIT(tc)))
1797			break;
 
1798
1799		for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) {
1800			err = ice_vsi_cfg_txq(vsi, rings[q_idx], i + offset,
1801					      qg_buf, tc);
1802			if (err)
1803				goto err_cfg_txqs;
1804
1805			q_idx++;
1806		}
1807	}
1808err_cfg_txqs:
1809	devm_kfree(&pf->pdev->dev, qg_buf);
1810	return err;
1811}
1812
1813/**
1814 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1815 * @vsi: the VSI being configured
1816 *
1817 * Return 0 on success and a negative value on error
1818 * Configure the Tx VSI for operation.
1819 */
1820int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1821{
1822	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1823}
1824
1825/**
1826 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1827 * @intrl: interrupt rate limit in usecs
1828 * @gran: interrupt rate limit granularity in usecs
1829 *
1830 * This function converts a decimal interrupt rate limit in usecs to the format
1831 * expected by firmware.
1832 */
1833u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1834{
1835	u32 val = intrl / gran;
1836
1837	if (val)
1838		return val | GLINT_RATE_INTRL_ENA_M;
1839	return 0;
1840}
1841
1842/**
1843 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
1844 * @hw: board specific structure
1845 */
1846static void ice_cfg_itr_gran(struct ice_hw *hw)
1847{
1848	u32 regval = rd32(hw, GLINT_CTL);
1849
1850	/* no need to update global register if ITR gran is already set */
1851	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
1852	    (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
1853	     GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
1854	    (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
1855	     GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
1856	    (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
1857	     GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
1858	    (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
1859	      GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
1860		return;
1861
1862	regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
1863		  GLINT_CTL_ITR_GRAN_200_M) |
1864		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
1865		  GLINT_CTL_ITR_GRAN_100_M) |
1866		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
1867		  GLINT_CTL_ITR_GRAN_50_M) |
1868		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
1869		  GLINT_CTL_ITR_GRAN_25_M);
1870	wr32(hw, GLINT_CTL, regval);
1871}
1872
1873/**
1874 * ice_cfg_itr - configure the initial interrupt throttle values
1875 * @hw: pointer to the HW structure
1876 * @q_vector: interrupt vector that's being configured
1877 *
1878 * Configure interrupt throttling values for the ring containers that are
1879 * associated with the interrupt vector passed in.
1880 */
1881static void
1882ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
1883{
1884	ice_cfg_itr_gran(hw);
1885
1886	if (q_vector->num_ring_rx) {
1887		struct ice_ring_container *rc = &q_vector->rx;
1888
1889		/* if this value is set then don't overwrite with default */
1890		if (!rc->itr_setting)
1891			rc->itr_setting = ICE_DFLT_RX_ITR;
1892
1893		rc->target_itr = ITR_TO_REG(rc->itr_setting);
1894		rc->next_update = jiffies + 1;
1895		rc->current_itr = rc->target_itr;
1896		wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1897		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
1898	}
1899
1900	if (q_vector->num_ring_tx) {
1901		struct ice_ring_container *rc = &q_vector->tx;
1902
1903		/* if this value is set then don't overwrite with default */
1904		if (!rc->itr_setting)
1905			rc->itr_setting = ICE_DFLT_TX_ITR;
1906
1907		rc->target_itr = ITR_TO_REG(rc->itr_setting);
1908		rc->next_update = jiffies + 1;
1909		rc->current_itr = rc->target_itr;
1910		wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1911		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
1912	}
1913}
1914
1915/**
1916 * ice_cfg_txq_interrupt - configure interrupt on Tx queue
1917 * @vsi: the VSI being configured
1918 * @txq: Tx queue being mapped to MSI-X vector
1919 * @msix_idx: MSI-X vector index within the function
1920 * @itr_idx: ITR index of the interrupt cause
1921 *
1922 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
1923 * within the function space.
1924 */
1925#ifdef CONFIG_PCI_IOV
1926void
1927ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1928#else
1929static void
1930ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1931#endif /* CONFIG_PCI_IOV */
1932{
1933	struct ice_pf *pf = vsi->back;
1934	struct ice_hw *hw = &pf->hw;
1935	u32 val;
1936
1937	itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
1938
1939	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
1940	      ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
1941
1942	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
1943}
1944
1945/**
1946 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
1947 * @vsi: the VSI being configured
1948 * @rxq: Rx queue being mapped to MSI-X vector
1949 * @msix_idx: MSI-X vector index within the function
1950 * @itr_idx: ITR index of the interrupt cause
1951 *
1952 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
1953 * within the function space.
1954 */
1955#ifdef CONFIG_PCI_IOV
1956void
1957ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1958#else
1959static void
1960ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1961#endif /* CONFIG_PCI_IOV */
1962{
1963	struct ice_pf *pf = vsi->back;
1964	struct ice_hw *hw = &pf->hw;
1965	u32 val;
1966
1967	itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
1968
1969	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
1970	      ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
1971
1972	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
1973
1974	ice_flush(hw);
1975}
1976
1977/**
1978 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1979 * @vsi: the VSI being configured
1980 *
1981 * This configures MSIX mode interrupts for the PF VSI, and should not be used
1982 * for the VF VSI.
1983 */
1984void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1985{
1986	struct ice_pf *pf = vsi->back;
1987	struct ice_hw *hw = &pf->hw;
1988	u32 txq = 0, rxq = 0;
1989	int i, q;
1990
1991	for (i = 0; i < vsi->num_q_vectors; i++) {
1992		struct ice_q_vector *q_vector = vsi->q_vectors[i];
1993		u16 reg_idx = q_vector->reg_idx;
1994
1995		ice_cfg_itr(hw, q_vector);
1996
1997		wr32(hw, GLINT_RATE(reg_idx),
1998		     ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
1999
2000		/* Both Transmit Queue Interrupt Cause Control register
2001		 * and Receive Queue Interrupt Cause control register
2002		 * expects MSIX_INDX field to be the vector index
2003		 * within the function space and not the absolute
2004		 * vector index across PF or across device.
2005		 * For SR-IOV VF VSIs queue vector index always starts
2006		 * with 1 since first vector index(0) is used for OICR
2007		 * in VF space. Since VMDq and other PF VSIs are within
2008		 * the PF function space, use the vector index that is
2009		 * tracked for this PF.
2010		 */
2011		for (q = 0; q < q_vector->num_ring_tx; q++) {
2012			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
2013					      q_vector->tx.itr_idx);
2014			txq++;
2015		}
2016
2017		for (q = 0; q < q_vector->num_ring_rx; q++) {
2018			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
2019					      q_vector->rx.itr_idx);
2020			rxq++;
2021		}
2022	}
2023}
2024
2025/**
2026 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
2027 * @vsi: the VSI being changed
2028 */
2029int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
2030{
2031	struct device *dev = &vsi->back->pdev->dev;
2032	struct ice_hw *hw = &vsi->back->hw;
2033	struct ice_vsi_ctx *ctxt;
2034	enum ice_status status;
2035	int ret = 0;
2036
2037	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
2038	if (!ctxt)
2039		return -ENOMEM;
2040
2041	/* Here we are configuring the VSI to let the driver add VLAN tags by
2042	 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag
2043	 * insertion happens in the Tx hot path, in ice_tx_map.
2044	 */
2045	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL;
2046
2047	/* Preserve existing VLAN strip setting */
2048	ctxt->info.vlan_flags |= (vsi->info.vlan_flags &
2049				  ICE_AQ_VSI_VLAN_EMOD_M);
2050
2051	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
2052
2053	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
2054	if (status) {
2055		dev_err(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n",
2056			status, hw->adminq.sq_last_status);
 
2057		ret = -EIO;
2058		goto out;
2059	}
2060
2061	vsi->info.vlan_flags = ctxt->info.vlan_flags;
2062out:
2063	devm_kfree(dev, ctxt);
2064	return ret;
2065}
2066
2067/**
2068 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
2069 * @vsi: the VSI being changed
2070 * @ena: boolean value indicating if this is a enable or disable request
2071 */
2072int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
2073{
2074	struct device *dev = &vsi->back->pdev->dev;
2075	struct ice_hw *hw = &vsi->back->hw;
2076	struct ice_vsi_ctx *ctxt;
2077	enum ice_status status;
2078	int ret = 0;
2079
2080	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
 
 
 
 
 
 
2081	if (!ctxt)
2082		return -ENOMEM;
2083
2084	/* Here we are configuring what the VSI should do with the VLAN tag in
2085	 * the Rx packet. We can either leave the tag in the packet or put it in
2086	 * the Rx descriptor.
2087	 */
2088	if (ena)
2089		/* Strip VLAN tag from Rx packet and put it in the desc */
2090		ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH;
2091	else
2092		/* Disable stripping. Leave tag in packet */
2093		ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING;
2094
2095	/* Allow all packets untagged/tagged */
2096	ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL;
2097
2098	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
2099
2100	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
2101	if (status) {
2102		dev_err(dev, "update VSI for VLAN strip failed, ena = %d err %d aq_err %d\n",
2103			ena, status, hw->adminq.sq_last_status);
 
2104		ret = -EIO;
2105		goto out;
2106	}
2107
2108	vsi->info.vlan_flags = ctxt->info.vlan_flags;
2109out:
2110	devm_kfree(dev, ctxt);
2111	return ret;
2112}
2113
2114/**
2115 * ice_vsi_start_rx_rings - start VSI's Rx rings
2116 * @vsi: the VSI whose rings are to be started
2117 *
2118 * Returns 0 on success and a negative value on error
2119 */
2120int ice_vsi_start_rx_rings(struct ice_vsi *vsi)
2121{
2122	return ice_vsi_ctrl_rx_rings(vsi, true);
2123}
2124
2125/**
2126 * ice_vsi_stop_rx_rings - stop VSI's Rx rings
2127 * @vsi: the VSI
2128 *
2129 * Returns 0 on success and a negative value on error
2130 */
2131int ice_vsi_stop_rx_rings(struct ice_vsi *vsi)
2132{
2133	return ice_vsi_ctrl_rx_rings(vsi, false);
2134}
2135
2136/**
2137 * ice_trigger_sw_intr - trigger a software interrupt
2138 * @hw: pointer to the HW structure
2139 * @q_vector: interrupt vector to trigger the software interrupt for
2140 */
2141void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
2142{
2143	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
2144	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
2145	     GLINT_DYN_CTL_SWINT_TRIG_M |
2146	     GLINT_DYN_CTL_INTENA_M);
2147}
2148
2149/**
2150 * ice_vsi_stop_tx_ring - Disable single Tx ring
2151 * @vsi: the VSI being configured
2152 * @rst_src: reset source
2153 * @rel_vmvf_num: Relative ID of VF/VM
2154 * @ring: Tx ring to be stopped
2155 * @txq_meta: Meta data of Tx ring to be stopped
2156 */
2157#ifndef CONFIG_PCI_IOV
2158static
2159#endif /* !CONFIG_PCI_IOV */
2160int
2161ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2162		     u16 rel_vmvf_num, struct ice_ring *ring,
2163		     struct ice_txq_meta *txq_meta)
2164{
2165	struct ice_pf *pf = vsi->back;
2166	struct ice_q_vector *q_vector;
2167	struct ice_hw *hw = &pf->hw;
2168	enum ice_status status;
2169	u32 val;
2170
2171	/* clear cause_ena bit for disabled queues */
2172	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
2173	val &= ~QINT_TQCTL_CAUSE_ENA_M;
2174	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
2175
2176	/* software is expected to wait for 100 ns */
2177	ndelay(100);
2178
2179	/* trigger a software interrupt for the vector
2180	 * associated to the queue to schedule NAPI handler
2181	 */
2182	q_vector = ring->q_vector;
2183	if (q_vector)
2184		ice_trigger_sw_intr(hw, q_vector);
2185
2186	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
2187				 txq_meta->tc, 1, &txq_meta->q_handle,
2188				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
2189				 rel_vmvf_num, NULL);
2190
2191	/* if the disable queue command was exercised during an
2192	 * active reset flow, ICE_ERR_RESET_ONGOING is returned.
2193	 * This is not an error as the reset operation disables
2194	 * queues at the hardware level anyway.
2195	 */
2196	if (status == ICE_ERR_RESET_ONGOING) {
2197		dev_dbg(&vsi->back->pdev->dev,
2198			"Reset in progress. LAN Tx queues already disabled\n");
2199	} else if (status == ICE_ERR_DOES_NOT_EXIST) {
2200		dev_dbg(&vsi->back->pdev->dev,
2201			"LAN Tx queues do not exist, nothing to disable\n");
2202	} else if (status) {
2203		dev_err(&vsi->back->pdev->dev,
2204			"Failed to disable LAN Tx queues, error: %d\n", status);
2205		return -ENODEV;
2206	}
2207
2208	return 0;
2209}
2210
2211/**
2212 * ice_fill_txq_meta - Prepare the Tx queue's meta data
2213 * @vsi: VSI that ring belongs to
2214 * @ring: ring that txq_meta will be based on
2215 * @txq_meta: a helper struct that wraps Tx queue's information
2216 *
2217 * Set up a helper struct that will contain all the necessary fields that
2218 * are needed for stopping Tx queue
2219 */
2220#ifndef CONFIG_PCI_IOV
2221static
2222#endif /* !CONFIG_PCI_IOV */
2223void
2224ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring,
2225		  struct ice_txq_meta *txq_meta)
2226{
2227	u8 tc = 0;
2228
2229#ifdef CONFIG_DCB
2230	tc = ring->dcb_tc;
2231#endif /* CONFIG_DCB */
2232	txq_meta->q_id = ring->reg_idx;
2233	txq_meta->q_teid = ring->txq_teid;
2234	txq_meta->q_handle = ring->q_handle;
2235	txq_meta->vsi_idx = vsi->idx;
2236	txq_meta->tc = tc;
2237}
2238
2239/**
2240 * ice_vsi_stop_tx_rings - Disable Tx rings
2241 * @vsi: the VSI being configured
2242 * @rst_src: reset source
2243 * @rel_vmvf_num: Relative ID of VF/VM
2244 * @rings: Tx ring array to be stopped
2245 */
2246static int
2247ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2248		      u16 rel_vmvf_num, struct ice_ring **rings)
2249{
2250	u16 i, q_idx = 0;
2251	int status;
2252	u8 tc;
2253
2254	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2255		return -EINVAL;
2256
2257	/* set up the Tx queue list to be disabled for each enabled TC */
2258	ice_for_each_traffic_class(tc) {
2259		if (!(vsi->tc_cfg.ena_tc & BIT(tc)))
2260			break;
2261
2262		for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) {
2263			struct ice_txq_meta txq_meta = { };
2264
2265			if (!rings || !rings[q_idx])
2266				return -EINVAL;
2267
2268			ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2269			status = ice_vsi_stop_tx_ring(vsi, rst_src,
2270						      rel_vmvf_num,
2271						      rings[q_idx], &txq_meta);
2272
2273			if (status)
2274				return status;
2275
2276			q_idx++;
2277		}
2278	}
2279
2280	return 0;
2281}
2282
2283/**
2284 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2285 * @vsi: the VSI being configured
2286 * @rst_src: reset source
2287 * @rel_vmvf_num: Relative ID of VF/VM
2288 */
2289int
2290ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2291			  u16 rel_vmvf_num)
2292{
2293	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings);
2294}
2295
2296/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2297 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI
2298 * @vsi: VSI to enable or disable VLAN pruning on
2299 * @ena: set to true to enable VLAN pruning and false to disable it
2300 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode
2301 *
2302 * returns 0 if VSI is updated, negative otherwise
2303 */
2304int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc)
2305{
2306	struct ice_vsi_ctx *ctxt;
2307	struct device *dev;
2308	struct ice_pf *pf;
2309	int status;
2310
2311	if (!vsi)
2312		return -EINVAL;
2313
 
 
 
 
 
 
 
2314	pf = vsi->back;
2315	dev = &pf->pdev->dev;
2316	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
2317	if (!ctxt)
2318		return -ENOMEM;
2319
2320	ctxt->info = vsi->info;
2321
2322	if (ena) {
2323		ctxt->info.sec_flags |=
2324			ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
2325			ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S;
2326		ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2327	} else {
2328		ctxt->info.sec_flags &=
2329			~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
2330			  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
2331		ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2332	}
2333
2334	if (!vlan_promisc)
2335		ctxt->info.valid_sections =
2336			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID |
2337				    ICE_AQ_VSI_PROP_SW_VALID);
2338
2339	status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL);
2340	if (status) {
2341		netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %d, aq_err = %d\n",
2342			   ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, status,
2343			   pf->hw.adminq.sq_last_status);
 
2344		goto err_out;
2345	}
2346
2347	vsi->info.sec_flags = ctxt->info.sec_flags;
2348	vsi->info.sw_flags2 = ctxt->info.sw_flags2;
2349
2350	devm_kfree(dev, ctxt);
2351	return 0;
2352
2353err_out:
2354	devm_kfree(dev, ctxt);
2355	return -EIO;
2356}
2357
2358static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2359{
2360	struct ice_dcbx_cfg *cfg = &vsi->port_info->local_dcbx_cfg;
2361
2362	vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg);
2363	vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg);
2364}
2365
2366/**
2367 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2368 * @vsi: VSI to set the q_vectors register index on
2369 */
2370static int
2371ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2372{
2373	u16 i;
2374
2375	if (!vsi || !vsi->q_vectors)
2376		return -EINVAL;
2377
2378	ice_for_each_q_vector(vsi, i) {
2379		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2380
2381		if (!q_vector) {
2382			dev_err(&vsi->back->pdev->dev,
2383				"Failed to set reg_idx on q_vector %d VSI %d\n",
2384				i, vsi->vsi_num);
2385			goto clear_reg_idx;
2386		}
2387
2388		if (vsi->type == ICE_VSI_VF) {
2389			struct ice_vf *vf = &vsi->back->vf[vsi->vf_id];
2390
2391			q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
2392		} else {
2393			q_vector->reg_idx =
2394				q_vector->v_idx + vsi->base_vector;
2395		}
2396	}
2397
2398	return 0;
2399
2400clear_reg_idx:
2401	ice_for_each_q_vector(vsi, i) {
2402		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2403
2404		if (q_vector)
2405			q_vector->reg_idx = 0;
2406	}
2407
2408	return -EINVAL;
2409}
2410
2411/**
2412 * ice_vsi_add_rem_eth_mac - Program VSI ethertype based filter with rule
2413 * @vsi: the VSI being configured
2414 * @add_rule: boolean value to add or remove ethertype filter rule
2415 */
2416static void
2417ice_vsi_add_rem_eth_mac(struct ice_vsi *vsi, bool add_rule)
2418{
2419	struct ice_fltr_list_entry *list;
2420	struct ice_pf *pf = vsi->back;
2421	LIST_HEAD(tmp_add_list);
2422	enum ice_status status;
2423
2424	list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
2425	if (!list)
2426		return;
2427
2428	list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE;
2429	list->fltr_info.fltr_act = ICE_DROP_PACKET;
2430	list->fltr_info.flag = ICE_FLTR_TX;
2431	list->fltr_info.src_id = ICE_SRC_ID_VSI;
2432	list->fltr_info.vsi_handle = vsi->idx;
2433	list->fltr_info.l_data.ethertype_mac.ethertype = vsi->ethtype;
2434
2435	INIT_LIST_HEAD(&list->list_entry);
2436	list_add(&list->list_entry, &tmp_add_list);
2437
2438	if (add_rule)
2439		status = ice_add_eth_mac(&pf->hw, &tmp_add_list);
2440	else
2441		status = ice_remove_eth_mac(&pf->hw, &tmp_add_list);
2442
2443	if (status)
2444		dev_err(&pf->pdev->dev,
2445			"Failure Adding or Removing Ethertype on VSI %i error: %d\n",
2446			vsi->vsi_num, status);
2447
2448	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
2449}
2450
2451/**
2452 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2453 * @vsi: the VSI being configured
2454 * @tx: bool to determine Tx or Rx rule
2455 * @create: bool to determine create or remove Rule
2456 */
2457void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2458{
2459	struct ice_fltr_list_entry *list;
 
2460	struct ice_pf *pf = vsi->back;
2461	LIST_HEAD(tmp_add_list);
2462	enum ice_status status;
 
2463
2464	list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
2465	if (!list)
2466		return;
2467
2468	list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE;
2469	list->fltr_info.vsi_handle = vsi->idx;
2470	list->fltr_info.l_data.ethertype_mac.ethertype = ETH_P_LLDP;
2471
2472	if (tx) {
2473		list->fltr_info.fltr_act = ICE_DROP_PACKET;
2474		list->fltr_info.flag = ICE_FLTR_TX;
2475		list->fltr_info.src_id = ICE_SRC_ID_VSI;
2476	} else {
2477		list->fltr_info.fltr_act = ICE_FWD_TO_VSI;
2478		list->fltr_info.flag = ICE_FLTR_RX;
2479		list->fltr_info.src_id = ICE_SRC_ID_LPORT;
2480	}
2481
2482	INIT_LIST_HEAD(&list->list_entry);
2483	list_add(&list->list_entry, &tmp_add_list);
2484
2485	if (create)
2486		status = ice_add_eth_mac(&pf->hw, &tmp_add_list);
2487	else
2488		status = ice_remove_eth_mac(&pf->hw, &tmp_add_list);
2489
2490	if (status)
2491		dev_err(&pf->pdev->dev,
2492			"Fail %s %s LLDP rule on VSI %i error: %d\n",
2493			create ? "adding" : "removing", tx ? "TX" : "RX",
2494			vsi->vsi_num, status);
2495
2496	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
2497}
2498
2499/**
2500 * ice_vsi_setup - Set up a VSI by a given type
2501 * @pf: board private structure
2502 * @pi: pointer to the port_info instance
2503 * @type: VSI type
2504 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be
2505 *         used only for ICE_VSI_VF VSI type. For other VSI types, should
2506 *         fill-in ICE_INVAL_VFID as input.
2507 *
2508 * This allocates the sw VSI structure and its queue resources.
2509 *
2510 * Returns pointer to the successfully allocated and configured VSI sw struct on
2511 * success, NULL on failure.
2512 */
2513struct ice_vsi *
2514ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2515	      enum ice_vsi_type type, u16 vf_id)
2516{
2517	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2518	struct device *dev = &pf->pdev->dev;
2519	enum ice_status status;
2520	struct ice_vsi *vsi;
2521	int ret, i;
2522
2523	if (type == ICE_VSI_VF)
2524		vsi = ice_vsi_alloc(pf, type, vf_id);
2525	else
2526		vsi = ice_vsi_alloc(pf, type, ICE_INVAL_VFID);
2527
2528	if (!vsi) {
2529		dev_err(dev, "could not allocate VSI\n");
2530		return NULL;
2531	}
2532
2533	vsi->port_info = pi;
2534	vsi->vsw = pf->first_sw;
2535	if (vsi->type == ICE_VSI_PF)
2536		vsi->ethtype = ETH_P_PAUSE;
2537
2538	if (vsi->type == ICE_VSI_VF)
2539		vsi->vf_id = vf_id;
2540
 
 
2541	if (ice_vsi_get_qs(vsi)) {
2542		dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2543			vsi->idx);
2544		goto unroll_get_qs;
2545	}
2546
2547	/* set RSS capabilities */
2548	ice_vsi_set_rss_params(vsi);
2549
2550	/* set TC configuration */
2551	ice_vsi_set_tc_cfg(vsi);
2552
2553	/* create the VSI */
2554	ret = ice_vsi_init(vsi);
2555	if (ret)
2556		goto unroll_get_qs;
2557
2558	switch (vsi->type) {
 
2559	case ICE_VSI_PF:
2560		ret = ice_vsi_alloc_q_vectors(vsi);
2561		if (ret)
2562			goto unroll_vsi_init;
2563
2564		ret = ice_vsi_setup_vector_base(vsi);
2565		if (ret)
2566			goto unroll_alloc_q_vector;
2567
2568		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2569		if (ret)
2570			goto unroll_vector_base;
2571
2572		ret = ice_vsi_alloc_rings(vsi);
2573		if (ret)
2574			goto unroll_vector_base;
2575
 
 
 
 
 
 
 
 
 
 
 
2576		ice_vsi_map_rings_to_vectors(vsi);
2577
2578		/* Do not exit if configuring RSS had an issue, at least
2579		 * receive traffic on first queue. Hence no need to capture
2580		 * return value
2581		 */
2582		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2583			ice_vsi_cfg_rss_lut_key(vsi);
 
 
 
 
 
2584		break;
2585	case ICE_VSI_VF:
2586		/* VF driver will take care of creating netdev for this type and
2587		 * map queues to vectors through Virtchnl, PF driver only
2588		 * creates a VSI and corresponding structures for bookkeeping
2589		 * purpose
2590		 */
2591		ret = ice_vsi_alloc_q_vectors(vsi);
2592		if (ret)
2593			goto unroll_vsi_init;
2594
2595		ret = ice_vsi_alloc_rings(vsi);
2596		if (ret)
2597			goto unroll_alloc_q_vector;
2598
2599		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2600		if (ret)
2601			goto unroll_vector_base;
2602
2603		/* Do not exit if configuring RSS had an issue, at least
2604		 * receive traffic on first queue. Hence no need to capture
2605		 * return value
2606		 */
2607		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2608			ice_vsi_cfg_rss_lut_key(vsi);
 
 
2609		break;
2610	case ICE_VSI_LB:
2611		ret = ice_vsi_alloc_rings(vsi);
2612		if (ret)
2613			goto unroll_vsi_init;
2614		break;
2615	default:
2616		/* clean up the resources and exit */
2617		goto unroll_vsi_init;
2618	}
2619
2620	/* configure VSI nodes based on number of queues and TC's */
2621	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2622		max_txqs[i] = vsi->alloc_txq;
2623
2624	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2625				 max_txqs);
2626	if (status) {
2627		dev_err(&pf->pdev->dev,
2628			"VSI %d failed lan queue config, error %d\n",
2629			vsi->vsi_num, status);
2630		goto unroll_vector_base;
2631	}
2632
2633	/* Add switch rule to drop all Tx Flow Control Frames, of look up
2634	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2635	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2636	 * The rule is added once for PF VSI in order to create appropriate
2637	 * recipe, since VSI/VSI list is ignored with drop action...
2638	 * Also add rules to handle LLDP Tx and Rx packets.  Tx LLDP packets
2639	 * need to be dropped so that VFs cannot send LLDP packets to reconfig
2640	 * DCB settings in the HW.  Also, if the FW DCBX engine is not running
2641	 * then Rx LLDP packets need to be redirected up the stack.
2642	 */
2643	if (!ice_is_safe_mode(pf)) {
2644		if (vsi->type == ICE_VSI_PF) {
2645			ice_vsi_add_rem_eth_mac(vsi, true);
2646
2647			/* Tx LLDP packets */
2648			ice_cfg_sw_lldp(vsi, true, true);
2649
2650			/* Rx LLDP packets */
2651			if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2652				ice_cfg_sw_lldp(vsi, false, true);
2653		}
2654	}
2655
2656	return vsi;
2657
 
 
2658unroll_vector_base:
2659	/* reclaim SW interrupts back to the common pool */
2660	ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2661	pf->num_avail_sw_msix += vsi->num_q_vectors;
2662unroll_alloc_q_vector:
2663	ice_vsi_free_q_vectors(vsi);
2664unroll_vsi_init:
2665	ice_vsi_delete(vsi);
2666unroll_get_qs:
2667	ice_vsi_put_qs(vsi);
 
2668	ice_vsi_clear(vsi);
2669
2670	return NULL;
2671}
2672
2673/**
2674 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2675 * @vsi: the VSI being cleaned up
2676 */
2677static void ice_vsi_release_msix(struct ice_vsi *vsi)
2678{
2679	struct ice_pf *pf = vsi->back;
2680	struct ice_hw *hw = &pf->hw;
2681	u32 txq = 0;
2682	u32 rxq = 0;
2683	int i, q;
2684
2685	for (i = 0; i < vsi->num_q_vectors; i++) {
2686		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2687		u16 reg_idx = q_vector->reg_idx;
2688
2689		wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0);
2690		wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0);
2691		for (q = 0; q < q_vector->num_ring_tx; q++) {
2692			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
 
 
 
 
 
2693			txq++;
2694		}
2695
2696		for (q = 0; q < q_vector->num_ring_rx; q++) {
2697			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2698			rxq++;
2699		}
2700	}
2701
2702	ice_flush(hw);
2703}
2704
2705/**
2706 * ice_vsi_free_irq - Free the IRQ association with the OS
2707 * @vsi: the VSI being configured
2708 */
2709void ice_vsi_free_irq(struct ice_vsi *vsi)
2710{
2711	struct ice_pf *pf = vsi->back;
2712	int base = vsi->base_vector;
2713	int i;
2714
2715	if (!vsi->q_vectors || !vsi->irqs_ready)
2716		return;
2717
2718	ice_vsi_release_msix(vsi);
2719	if (vsi->type == ICE_VSI_VF)
2720		return;
2721
2722	vsi->irqs_ready = false;
2723	ice_for_each_q_vector(vsi, i) {
2724		u16 vector = i + base;
2725		int irq_num;
2726
2727		irq_num = pf->msix_entries[vector].vector;
2728
2729		/* free only the irqs that were actually requested */
2730		if (!vsi->q_vectors[i] ||
2731		    !(vsi->q_vectors[i]->num_ring_tx ||
2732		      vsi->q_vectors[i]->num_ring_rx))
2733			continue;
2734
2735		/* clear the affinity notifier in the IRQ descriptor */
2736		irq_set_affinity_notifier(irq_num, NULL);
2737
2738		/* clear the affinity_mask in the IRQ descriptor */
2739		irq_set_affinity_hint(irq_num, NULL);
2740		synchronize_irq(irq_num);
2741		devm_free_irq(&pf->pdev->dev, irq_num,
2742			      vsi->q_vectors[i]);
2743	}
2744}
2745
2746/**
2747 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2748 * @vsi: the VSI having resources freed
2749 */
2750void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2751{
2752	int i;
2753
2754	if (!vsi->tx_rings)
2755		return;
2756
2757	ice_for_each_txq(vsi, i)
2758		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2759			ice_free_tx_ring(vsi->tx_rings[i]);
2760}
2761
2762/**
2763 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2764 * @vsi: the VSI having resources freed
2765 */
2766void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2767{
2768	int i;
2769
2770	if (!vsi->rx_rings)
2771		return;
2772
2773	ice_for_each_rxq(vsi, i)
2774		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2775			ice_free_rx_ring(vsi->rx_rings[i]);
2776}
2777
2778/**
2779 * ice_vsi_close - Shut down a VSI
2780 * @vsi: the VSI being shut down
2781 */
2782void ice_vsi_close(struct ice_vsi *vsi)
2783{
2784	if (!test_and_set_bit(__ICE_DOWN, vsi->state))
2785		ice_down(vsi);
2786
2787	ice_vsi_free_irq(vsi);
2788	ice_vsi_free_tx_rings(vsi);
2789	ice_vsi_free_rx_rings(vsi);
2790}
2791
2792/**
2793 * ice_free_res - free a block of resources
2794 * @res: pointer to the resource
2795 * @index: starting index previously returned by ice_get_res
2796 * @id: identifier to track owner
2797 *
2798 * Returns number of resources freed
2799 */
2800int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
2801{
2802	int count = 0;
2803	int i;
 
 
 
 
 
 
 
 
 
2804
2805	if (!res || index >= res->end)
2806		return -EINVAL;
2807
2808	id |= ICE_RES_VALID_BIT;
2809	for (i = index; i < res->end && res->list[i] == id; i++) {
2810		res->list[i] = 0;
2811		count++;
 
2812	}
2813
2814	return count;
2815}
2816
2817/**
2818 * ice_search_res - Search the tracker for a block of resources
2819 * @res: pointer to the resource
2820 * @needed: size of the block needed
2821 * @id: identifier to track owner
2822 *
2823 * Returns the base item index of the block, or -ENOMEM for error
2824 */
2825static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
2826{
2827	int start = 0, end = 0;
2828
2829	if (needed > res->end)
2830		return -ENOMEM;
2831
2832	id |= ICE_RES_VALID_BIT;
2833
2834	do {
2835		/* skip already allocated entries */
2836		if (res->list[end++] & ICE_RES_VALID_BIT) {
2837			start = end;
2838			if ((start + needed) > res->end)
2839				break;
2840		}
2841
2842		if (end == (start + needed)) {
2843			int i = start;
2844
2845			/* there was enough, so assign it to the requestor */
2846			while (i != end)
2847				res->list[i++] = id;
2848
2849			return start;
2850		}
2851	} while (end < res->end);
2852
2853	return -ENOMEM;
2854}
2855
2856/**
2857 * ice_get_res - get a block of resources
2858 * @pf: board private structure
2859 * @res: pointer to the resource
2860 * @needed: size of the block needed
2861 * @id: identifier to track owner
2862 *
2863 * Returns the base item index of the block, or negative for error
2864 */
2865int
2866ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
2867{
2868	if (!res || !pf)
2869		return -EINVAL;
2870
2871	if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
2872		dev_err(&pf->pdev->dev,
2873			"param err: needed=%d, num_entries = %d id=0x%04x\n",
2874			needed, res->num_entries, id);
2875		return -EINVAL;
2876	}
2877
2878	return ice_search_res(res, needed, id);
2879}
2880
2881/**
2882 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2883 * @vsi: the VSI being un-configured
2884 */
2885void ice_vsi_dis_irq(struct ice_vsi *vsi)
2886{
2887	int base = vsi->base_vector;
2888	struct ice_pf *pf = vsi->back;
2889	struct ice_hw *hw = &pf->hw;
2890	u32 val;
2891	int i;
2892
2893	/* disable interrupt causation from each queue */
2894	if (vsi->tx_rings) {
2895		ice_for_each_txq(vsi, i) {
2896			if (vsi->tx_rings[i]) {
2897				u16 reg;
2898
2899				reg = vsi->tx_rings[i]->reg_idx;
2900				val = rd32(hw, QINT_TQCTL(reg));
2901				val &= ~QINT_TQCTL_CAUSE_ENA_M;
2902				wr32(hw, QINT_TQCTL(reg), val);
2903			}
2904		}
2905	}
2906
2907	if (vsi->rx_rings) {
2908		ice_for_each_rxq(vsi, i) {
2909			if (vsi->rx_rings[i]) {
2910				u16 reg;
2911
2912				reg = vsi->rx_rings[i]->reg_idx;
2913				val = rd32(hw, QINT_RQCTL(reg));
2914				val &= ~QINT_RQCTL_CAUSE_ENA_M;
2915				wr32(hw, QINT_RQCTL(reg), val);
2916			}
2917		}
2918	}
2919
2920	/* disable each interrupt */
2921	ice_for_each_q_vector(vsi, i) {
2922		if (!vsi->q_vectors[i])
2923			continue;
2924		wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2925	}
2926
2927	ice_flush(hw);
2928
2929	/* don't call synchronize_irq() for VF's from the host */
2930	if (vsi->type == ICE_VSI_VF)
2931		return;
2932
2933	ice_for_each_q_vector(vsi, i)
2934		synchronize_irq(pf->msix_entries[i + base].vector);
2935}
2936
2937/**
2938 * ice_napi_del - Remove NAPI handler for the VSI
2939 * @vsi: VSI for which NAPI handler is to be removed
2940 */
2941void ice_napi_del(struct ice_vsi *vsi)
2942{
2943	int v_idx;
2944
2945	if (!vsi->netdev)
2946		return;
2947
2948	ice_for_each_q_vector(vsi, v_idx)
2949		netif_napi_del(&vsi->q_vectors[v_idx]->napi);
2950}
2951
2952/**
2953 * ice_vsi_release - Delete a VSI and free its resources
2954 * @vsi: the VSI being removed
2955 *
2956 * Returns 0 on success or < 0 on error
2957 */
2958int ice_vsi_release(struct ice_vsi *vsi)
2959{
2960	struct ice_pf *pf;
2961
2962	if (!vsi->back)
2963		return -ENODEV;
2964	pf = vsi->back;
2965
2966	/* do not unregister while driver is in the reset recovery pending
2967	 * state. Since reset/rebuild happens through PF service task workqueue,
2968	 * it's not a good idea to unregister netdev that is associated to the
2969	 * PF that is running the work queue items currently. This is done to
2970	 * avoid check_flush_dependency() warning on this wq
2971	 */
2972	if (vsi->netdev && !ice_is_reset_in_progress(pf->state))
2973		unregister_netdev(vsi->netdev);
2974
2975	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2976		ice_rss_clean(vsi);
2977
2978	/* Disable VSI and free resources */
2979	if (vsi->type != ICE_VSI_LB)
2980		ice_vsi_dis_irq(vsi);
2981	ice_vsi_close(vsi);
2982
2983	/* SR-IOV determines needed MSIX resources all at once instead of per
2984	 * VSI since when VFs are spawned we know how many VFs there are and how
2985	 * many interrupts each VF needs. SR-IOV MSIX resources are also
2986	 * cleared in the same manner.
2987	 */
2988	if (vsi->type != ICE_VSI_VF) {
2989		/* reclaim SW interrupts back to the common pool */
2990		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2991		pf->num_avail_sw_msix += vsi->num_q_vectors;
2992	}
2993
2994	if (!ice_is_safe_mode(pf)) {
2995		if (vsi->type == ICE_VSI_PF) {
2996			ice_vsi_add_rem_eth_mac(vsi, false);
 
2997			ice_cfg_sw_lldp(vsi, true, false);
2998			/* The Rx rule will only exist to remove if the LLDP FW
2999			 * engine is currently stopped
3000			 */
3001			if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
3002				ice_cfg_sw_lldp(vsi, false, false);
3003		}
3004	}
3005
3006	ice_remove_vsi_fltr(&pf->hw, vsi->idx);
3007	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3008	ice_vsi_delete(vsi);
3009	ice_vsi_free_q_vectors(vsi);
3010
3011	/* make sure unregister_netdev() was called by checking __ICE_DOWN */
3012	if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) {
3013		free_netdev(vsi->netdev);
3014		vsi->netdev = NULL;
3015	}
3016
3017	ice_vsi_clear_rings(vsi);
3018
3019	ice_vsi_put_qs(vsi);
3020
3021	/* retain SW VSI data structure since it is needed to unregister and
3022	 * free VSI netdev when PF is not in reset recovery pending state,\
3023	 * for ex: during rmmod.
3024	 */
3025	if (!ice_is_reset_in_progress(pf->state))
3026		ice_vsi_clear(vsi);
3027
3028	return 0;
3029}
3030
3031/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3032 * ice_vsi_rebuild - Rebuild VSI after reset
3033 * @vsi: VSI to be rebuild
 
3034 *
3035 * Returns 0 on success and negative value on failure
3036 */
3037int ice_vsi_rebuild(struct ice_vsi *vsi)
3038{
3039	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
 
 
3040	struct ice_vf *vf = NULL;
3041	enum ice_status status;
3042	struct ice_pf *pf;
3043	int ret, i;
3044
3045	if (!vsi)
3046		return -EINVAL;
3047
3048	pf = vsi->back;
3049	if (vsi->type == ICE_VSI_VF)
3050		vf = &pf->vf[vsi->vf_id];
3051
 
 
 
 
 
3052	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3053	ice_vsi_free_q_vectors(vsi);
3054
3055	/* SR-IOV determines needed MSIX resources all at once instead of per
3056	 * VSI since when VFs are spawned we know how many VFs there are and how
3057	 * many interrupts each VF needs. SR-IOV MSIX resources are also
3058	 * cleared in the same manner.
3059	 */
3060	if (vsi->type != ICE_VSI_VF) {
3061		/* reclaim SW interrupts back to the common pool */
3062		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
3063		pf->num_avail_sw_msix += vsi->num_q_vectors;
3064		vsi->base_vector = 0;
3065	}
3066
 
 
 
 
 
3067	ice_vsi_put_qs(vsi);
3068	ice_vsi_clear_rings(vsi);
3069	ice_vsi_free_arrays(vsi);
3070	ice_dev_onetime_setup(&pf->hw);
3071	if (vsi->type == ICE_VSI_VF)
3072		ice_vsi_set_num_qs(vsi, vf->vf_id);
3073	else
3074		ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
3075
3076	ret = ice_vsi_alloc_arrays(vsi);
3077	if (ret < 0)
3078		goto err_vsi;
3079
3080	ice_vsi_get_qs(vsi);
 
 
3081	ice_vsi_set_tc_cfg(vsi);
3082
3083	/* Initialize VSI struct elements and create VSI in FW */
3084	ret = ice_vsi_init(vsi);
3085	if (ret < 0)
3086		goto err_vsi;
3087
3088
3089	switch (vsi->type) {
 
3090	case ICE_VSI_PF:
3091		ret = ice_vsi_alloc_q_vectors(vsi);
3092		if (ret)
3093			goto err_rings;
3094
3095		ret = ice_vsi_setup_vector_base(vsi);
3096		if (ret)
3097			goto err_vectors;
3098
3099		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3100		if (ret)
3101			goto err_vectors;
3102
3103		ret = ice_vsi_alloc_rings(vsi);
3104		if (ret)
3105			goto err_vectors;
3106
3107		ice_vsi_map_rings_to_vectors(vsi);
3108		/* Do not exit if configuring RSS had an issue, at least
3109		 * receive traffic on first queue. Hence no need to capture
3110		 * return value
3111		 */
3112		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3113			ice_vsi_cfg_rss_lut_key(vsi);
 
 
 
 
 
 
 
 
3114		break;
3115	case ICE_VSI_VF:
3116		ret = ice_vsi_alloc_q_vectors(vsi);
3117		if (ret)
3118			goto err_rings;
3119
3120		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3121		if (ret)
3122			goto err_vectors;
3123
3124		ret = ice_vsi_alloc_rings(vsi);
3125		if (ret)
3126			goto err_vectors;
3127
3128		break;
3129	default:
3130		break;
3131	}
3132
3133	/* configure VSI nodes based on number of queues and TC's */
3134	for (i = 0; i < vsi->tc_cfg.numtc; i++)
3135		max_txqs[i] = vsi->alloc_txq;
3136
 
 
 
 
3137	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3138				 max_txqs);
3139	if (status) {
3140		dev_err(&pf->pdev->dev,
3141			"VSI %d failed lan queue config, error %d\n",
3142			vsi->vsi_num, status);
3143		goto err_vectors;
 
 
 
 
3144	}
 
 
 
3145	return 0;
3146
3147err_vectors:
3148	ice_vsi_free_q_vectors(vsi);
3149err_rings:
3150	if (vsi->netdev) {
3151		vsi->current_netdev_flags = 0;
3152		unregister_netdev(vsi->netdev);
3153		free_netdev(vsi->netdev);
3154		vsi->netdev = NULL;
3155	}
3156err_vsi:
3157	ice_vsi_clear(vsi);
3158	set_bit(__ICE_RESET_FAILED, pf->state);
 
3159	return ret;
3160}
3161
3162/**
3163 * ice_is_reset_in_progress - check for a reset in progress
3164 * @state: PF state field
3165 */
3166bool ice_is_reset_in_progress(unsigned long *state)
3167{
3168	return test_bit(__ICE_RESET_OICR_RECV, state) ||
 
3169	       test_bit(__ICE_PFR_REQ, state) ||
3170	       test_bit(__ICE_CORER_REQ, state) ||
3171	       test_bit(__ICE_GLOBR_REQ, state);
3172}
3173
3174#ifdef CONFIG_DCB
3175/**
3176 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3177 * @vsi: VSI being configured
3178 * @ctx: the context buffer returned from AQ VSI update command
3179 */
3180static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3181{
3182	vsi->info.mapping_flags = ctx->info.mapping_flags;
3183	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3184	       sizeof(vsi->info.q_mapping));
3185	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3186	       sizeof(vsi->info.tc_mapping));
3187}
3188
3189/**
3190 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3191 * @vsi: VSI to be configured
3192 * @ena_tc: TC bitmap
3193 *
3194 * VSI queues expected to be quiesced before calling this function
3195 */
3196int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3197{
3198	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
 
3199	struct ice_vsi_ctx *ctx;
3200	struct ice_pf *pf = vsi->back;
3201	enum ice_status status;
 
3202	int i, ret = 0;
3203	u8 num_tc = 0;
3204
 
 
3205	ice_for_each_traffic_class(i) {
3206		/* build bitmap of enabled TCs */
3207		if (ena_tc & BIT(i))
3208			num_tc++;
3209		/* populate max_txqs per TC */
3210		max_txqs[i] = vsi->alloc_txq;
3211	}
3212
3213	vsi->tc_cfg.ena_tc = ena_tc;
3214	vsi->tc_cfg.numtc = num_tc;
3215
3216	ctx = devm_kzalloc(&pf->pdev->dev, sizeof(*ctx), GFP_KERNEL);
3217	if (!ctx)
3218		return -ENOMEM;
3219
3220	ctx->vf_num = 0;
3221	ctx->info = vsi->info;
3222
3223	ice_vsi_setup_q_map(vsi, ctx);
3224
3225	/* must to indicate which section of VSI context are being modified */
3226	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3227	status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3228	if (status) {
3229		dev_info(&pf->pdev->dev, "Failed VSI Update\n");
3230		ret = -EIO;
3231		goto out;
3232	}
3233
3234	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3235				 max_txqs);
3236
3237	if (status) {
3238		dev_err(&pf->pdev->dev,
3239			"VSI %d failed TC config, error %d\n",
3240			vsi->vsi_num, status);
3241		ret = -EIO;
3242		goto out;
3243	}
3244	ice_vsi_update_q_map(vsi, ctx);
3245	vsi->info.valid_sections = 0;
3246
3247	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3248out:
3249	devm_kfree(&pf->pdev->dev, ctx);
3250	return ret;
3251}
3252#endif /* CONFIG_DCB */
3253
3254/**
3255 * ice_nvm_version_str - format the NVM version strings
3256 * @hw: ptr to the hardware info
 
 
 
 
 
3257 */
3258char *ice_nvm_version_str(struct ice_hw *hw)
 
 
3259{
3260	u8 oem_ver, oem_patch, ver_hi, ver_lo;
3261	static char buf[ICE_NVM_VER_LEN];
3262	u16 oem_build;
 
 
3263
3264	ice_get_nvm_version(hw, &oem_ver, &oem_build, &oem_patch, &ver_hi,
3265			    &ver_lo);
 
 
 
 
 
 
 
 
 
 
3266
3267	snprintf(buf, sizeof(buf), "%x.%02x 0x%x %d.%d.%d", ver_hi, ver_lo,
3268		 hw->nvm.eetrack, oem_ver, oem_build, oem_patch);
 
 
 
 
 
 
 
 
 
 
3269
3270	return buf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3271}
3272
3273/**
3274 * ice_vsi_cfg_mac_fltr - Add or remove a MAC address filter for a VSI
3275 * @vsi: the VSI being configured MAC filter
3276 * @macaddr: the MAC address to be added.
3277 * @set: Add or delete a MAC filter
3278 *
3279 * Adds or removes MAC address filter entry for VF VSI
 
3280 */
3281enum ice_status
3282ice_vsi_cfg_mac_fltr(struct ice_vsi *vsi, const u8 *macaddr, bool set)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3283{
3284	LIST_HEAD(tmp_add_list);
3285	enum ice_status status;
 
 
 
 
3286
3287	 /* Update MAC filter list to be added or removed for a VSI */
3288	if (ice_add_mac_to_list(vsi, &tmp_add_list, macaddr)) {
3289		status = ICE_ERR_NO_MEMORY;
3290		goto cfg_mac_fltr_exit;
 
 
 
3291	}
3292
3293	if (set)
3294		status = ice_add_mac(&vsi->back->hw, &tmp_add_list);
3295	else
3296		status = ice_remove_mac(&vsi->back->hw, &tmp_add_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3297
3298cfg_mac_fltr_exit:
3299	ice_free_fltr_list(&vsi->back->pdev->dev, &tmp_add_list);
3300	return status;
3301}