Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4#include "ice.h"
5#include "ice_base.h"
6#include "ice_flow.h"
7#include "ice_lib.h"
8#include "ice_fltr.h"
9#include "ice_dcb_lib.h"
10
11/**
12 * ice_vsi_type_str - maps VSI type enum to string equivalents
13 * @vsi_type: VSI type enum
14 */
15const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
16{
17 switch (vsi_type) {
18 case ICE_VSI_PF:
19 return "ICE_VSI_PF";
20 case ICE_VSI_VF:
21 return "ICE_VSI_VF";
22 case ICE_VSI_CTRL:
23 return "ICE_VSI_CTRL";
24 case ICE_VSI_LB:
25 return "ICE_VSI_LB";
26 default:
27 return "unknown";
28 }
29}
30
31/**
32 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
33 * @vsi: the VSI being configured
34 * @ena: start or stop the Rx rings
35 *
36 * First enable/disable all of the Rx rings, flush any remaining writes, and
37 * then verify that they have all been enabled/disabled successfully. This will
38 * let all of the register writes complete when enabling/disabling the Rx rings
39 * before waiting for the change in hardware to complete.
40 */
41static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
42{
43 int ret = 0;
44 u16 i;
45
46 for (i = 0; i < vsi->num_rxq; i++)
47 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
48
49 ice_flush(&vsi->back->hw);
50
51 for (i = 0; i < vsi->num_rxq; i++) {
52 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
53 if (ret)
54 break;
55 }
56
57 return ret;
58}
59
60/**
61 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
62 * @vsi: VSI pointer
63 *
64 * On error: returns error code (negative)
65 * On success: returns 0
66 */
67static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
68{
69 struct ice_pf *pf = vsi->back;
70 struct device *dev;
71
72 dev = ice_pf_to_dev(pf);
73
74 /* allocate memory for both Tx and Rx ring pointers */
75 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
76 sizeof(*vsi->tx_rings), GFP_KERNEL);
77 if (!vsi->tx_rings)
78 return -ENOMEM;
79
80 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
81 sizeof(*vsi->rx_rings), GFP_KERNEL);
82 if (!vsi->rx_rings)
83 goto err_rings;
84
85 /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */
86 vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq),
87 sizeof(*vsi->txq_map), GFP_KERNEL);
88
89 if (!vsi->txq_map)
90 goto err_txq_map;
91
92 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
93 sizeof(*vsi->rxq_map), GFP_KERNEL);
94 if (!vsi->rxq_map)
95 goto err_rxq_map;
96
97 /* There is no need to allocate q_vectors for a loopback VSI. */
98 if (vsi->type == ICE_VSI_LB)
99 return 0;
100
101 /* allocate memory for q_vector pointers */
102 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
103 sizeof(*vsi->q_vectors), GFP_KERNEL);
104 if (!vsi->q_vectors)
105 goto err_vectors;
106
107 return 0;
108
109err_vectors:
110 devm_kfree(dev, vsi->rxq_map);
111err_rxq_map:
112 devm_kfree(dev, vsi->txq_map);
113err_txq_map:
114 devm_kfree(dev, vsi->rx_rings);
115err_rings:
116 devm_kfree(dev, vsi->tx_rings);
117 return -ENOMEM;
118}
119
120/**
121 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
122 * @vsi: the VSI being configured
123 */
124static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
125{
126 switch (vsi->type) {
127 case ICE_VSI_PF:
128 case ICE_VSI_CTRL:
129 case ICE_VSI_LB:
130 /* a user could change the values of num_[tr]x_desc using
131 * ethtool -G so we should keep those values instead of
132 * overwriting them with the defaults.
133 */
134 if (!vsi->num_rx_desc)
135 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
136 if (!vsi->num_tx_desc)
137 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
138 break;
139 default:
140 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
141 vsi->type);
142 break;
143 }
144}
145
146/**
147 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
148 * @vsi: the VSI being configured
149 * @vf_id: ID of the VF being configured
150 *
151 * Return 0 on success and a negative value on error
152 */
153static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id)
154{
155 struct ice_pf *pf = vsi->back;
156 struct ice_vf *vf = NULL;
157
158 if (vsi->type == ICE_VSI_VF)
159 vsi->vf_id = vf_id;
160
161 switch (vsi->type) {
162 case ICE_VSI_PF:
163 vsi->alloc_txq = min_t(int, ice_get_avail_txq_count(pf),
164 num_online_cpus());
165 if (vsi->req_txq) {
166 vsi->alloc_txq = vsi->req_txq;
167 vsi->num_txq = vsi->req_txq;
168 }
169
170 pf->num_lan_tx = vsi->alloc_txq;
171
172 /* only 1 Rx queue unless RSS is enabled */
173 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
174 vsi->alloc_rxq = 1;
175 } else {
176 vsi->alloc_rxq = min_t(int, ice_get_avail_rxq_count(pf),
177 num_online_cpus());
178 if (vsi->req_rxq) {
179 vsi->alloc_rxq = vsi->req_rxq;
180 vsi->num_rxq = vsi->req_rxq;
181 }
182 }
183
184 pf->num_lan_rx = vsi->alloc_rxq;
185
186 vsi->num_q_vectors = max_t(int, vsi->alloc_rxq, vsi->alloc_txq);
187 break;
188 case ICE_VSI_VF:
189 vf = &pf->vf[vsi->vf_id];
190 vsi->alloc_txq = vf->num_vf_qs;
191 vsi->alloc_rxq = vf->num_vf_qs;
192 /* pf->num_msix_per_vf includes (VF miscellaneous vector +
193 * data queue interrupts). Since vsi->num_q_vectors is number
194 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
195 * original vector count
196 */
197 vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF;
198 break;
199 case ICE_VSI_CTRL:
200 vsi->alloc_txq = 1;
201 vsi->alloc_rxq = 1;
202 vsi->num_q_vectors = 1;
203 break;
204 case ICE_VSI_LB:
205 vsi->alloc_txq = 1;
206 vsi->alloc_rxq = 1;
207 break;
208 default:
209 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type);
210 break;
211 }
212
213 ice_vsi_set_num_desc(vsi);
214}
215
216/**
217 * ice_get_free_slot - get the next non-NULL location index in array
218 * @array: array to search
219 * @size: size of the array
220 * @curr: last known occupied index to be used as a search hint
221 *
222 * void * is being used to keep the functionality generic. This lets us use this
223 * function on any array of pointers.
224 */
225static int ice_get_free_slot(void *array, int size, int curr)
226{
227 int **tmp_array = (int **)array;
228 int next;
229
230 if (curr < (size - 1) && !tmp_array[curr + 1]) {
231 next = curr + 1;
232 } else {
233 int i = 0;
234
235 while ((i < size) && (tmp_array[i]))
236 i++;
237 if (i == size)
238 next = ICE_NO_VSI;
239 else
240 next = i;
241 }
242 return next;
243}
244
245/**
246 * ice_vsi_delete - delete a VSI from the switch
247 * @vsi: pointer to VSI being removed
248 */
249static void ice_vsi_delete(struct ice_vsi *vsi)
250{
251 struct ice_pf *pf = vsi->back;
252 struct ice_vsi_ctx *ctxt;
253 enum ice_status status;
254
255 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
256 if (!ctxt)
257 return;
258
259 if (vsi->type == ICE_VSI_VF)
260 ctxt->vf_num = vsi->vf_id;
261 ctxt->vsi_num = vsi->vsi_num;
262
263 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
264
265 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
266 if (status)
267 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n",
268 vsi->vsi_num, ice_stat_str(status));
269
270 kfree(ctxt);
271}
272
273/**
274 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
275 * @vsi: pointer to VSI being cleared
276 */
277static void ice_vsi_free_arrays(struct ice_vsi *vsi)
278{
279 struct ice_pf *pf = vsi->back;
280 struct device *dev;
281
282 dev = ice_pf_to_dev(pf);
283
284 /* free the ring and vector containers */
285 if (vsi->q_vectors) {
286 devm_kfree(dev, vsi->q_vectors);
287 vsi->q_vectors = NULL;
288 }
289 if (vsi->tx_rings) {
290 devm_kfree(dev, vsi->tx_rings);
291 vsi->tx_rings = NULL;
292 }
293 if (vsi->rx_rings) {
294 devm_kfree(dev, vsi->rx_rings);
295 vsi->rx_rings = NULL;
296 }
297 if (vsi->txq_map) {
298 devm_kfree(dev, vsi->txq_map);
299 vsi->txq_map = NULL;
300 }
301 if (vsi->rxq_map) {
302 devm_kfree(dev, vsi->rxq_map);
303 vsi->rxq_map = NULL;
304 }
305}
306
307/**
308 * ice_vsi_clear - clean up and deallocate the provided VSI
309 * @vsi: pointer to VSI being cleared
310 *
311 * This deallocates the VSI's queue resources, removes it from the PF's
312 * VSI array if necessary, and deallocates the VSI
313 *
314 * Returns 0 on success, negative on failure
315 */
316static int ice_vsi_clear(struct ice_vsi *vsi)
317{
318 struct ice_pf *pf = NULL;
319 struct device *dev;
320
321 if (!vsi)
322 return 0;
323
324 if (!vsi->back)
325 return -EINVAL;
326
327 pf = vsi->back;
328 dev = ice_pf_to_dev(pf);
329
330 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
331 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
332 return -EINVAL;
333 }
334
335 mutex_lock(&pf->sw_mutex);
336 /* updates the PF for this cleared VSI */
337
338 pf->vsi[vsi->idx] = NULL;
339 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL)
340 pf->next_vsi = vsi->idx;
341
342 ice_vsi_free_arrays(vsi);
343 mutex_unlock(&pf->sw_mutex);
344 devm_kfree(dev, vsi);
345
346 return 0;
347}
348
349/**
350 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
351 * @irq: interrupt number
352 * @data: pointer to a q_vector
353 */
354static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
355{
356 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
357
358 if (!q_vector->tx.ring)
359 return IRQ_HANDLED;
360
361#define FDIR_RX_DESC_CLEAN_BUDGET 64
362 ice_clean_rx_irq(q_vector->rx.ring, FDIR_RX_DESC_CLEAN_BUDGET);
363 ice_clean_ctrl_tx_irq(q_vector->tx.ring);
364
365 return IRQ_HANDLED;
366}
367
368/**
369 * ice_msix_clean_rings - MSIX mode Interrupt Handler
370 * @irq: interrupt number
371 * @data: pointer to a q_vector
372 */
373static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
374{
375 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
376
377 if (!q_vector->tx.ring && !q_vector->rx.ring)
378 return IRQ_HANDLED;
379
380 napi_schedule(&q_vector->napi);
381
382 return IRQ_HANDLED;
383}
384
385/**
386 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
387 * @pf: board private structure
388 * @vsi_type: type of VSI
389 * @vf_id: ID of the VF being configured
390 *
391 * returns a pointer to a VSI on success, NULL on failure.
392 */
393static struct ice_vsi *
394ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, u16 vf_id)
395{
396 struct device *dev = ice_pf_to_dev(pf);
397 struct ice_vsi *vsi = NULL;
398
399 /* Need to protect the allocation of the VSIs at the PF level */
400 mutex_lock(&pf->sw_mutex);
401
402 /* If we have already allocated our maximum number of VSIs,
403 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
404 * is available to be populated
405 */
406 if (pf->next_vsi == ICE_NO_VSI) {
407 dev_dbg(dev, "out of VSI slots!\n");
408 goto unlock_pf;
409 }
410
411 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
412 if (!vsi)
413 goto unlock_pf;
414
415 vsi->type = vsi_type;
416 vsi->back = pf;
417 set_bit(__ICE_DOWN, vsi->state);
418
419 if (vsi_type == ICE_VSI_VF)
420 ice_vsi_set_num_qs(vsi, vf_id);
421 else
422 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
423
424 switch (vsi->type) {
425 case ICE_VSI_PF:
426 if (ice_vsi_alloc_arrays(vsi))
427 goto err_rings;
428
429 /* Setup default MSIX irq handler for VSI */
430 vsi->irq_handler = ice_msix_clean_rings;
431 break;
432 case ICE_VSI_CTRL:
433 if (ice_vsi_alloc_arrays(vsi))
434 goto err_rings;
435
436 /* Setup ctrl VSI MSIX irq handler */
437 vsi->irq_handler = ice_msix_clean_ctrl_vsi;
438 break;
439 case ICE_VSI_VF:
440 if (ice_vsi_alloc_arrays(vsi))
441 goto err_rings;
442 break;
443 case ICE_VSI_LB:
444 if (ice_vsi_alloc_arrays(vsi))
445 goto err_rings;
446 break;
447 default:
448 dev_warn(dev, "Unknown VSI type %d\n", vsi->type);
449 goto unlock_pf;
450 }
451
452 if (vsi->type == ICE_VSI_CTRL) {
453 /* Use the last VSI slot as the index for the control VSI */
454 vsi->idx = pf->num_alloc_vsi - 1;
455 pf->ctrl_vsi_idx = vsi->idx;
456 pf->vsi[vsi->idx] = vsi;
457 } else {
458 /* fill slot and make note of the index */
459 vsi->idx = pf->next_vsi;
460 pf->vsi[pf->next_vsi] = vsi;
461
462 /* prepare pf->next_vsi for next use */
463 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
464 pf->next_vsi);
465 }
466 goto unlock_pf;
467
468err_rings:
469 devm_kfree(dev, vsi);
470 vsi = NULL;
471unlock_pf:
472 mutex_unlock(&pf->sw_mutex);
473 return vsi;
474}
475
476/**
477 * ice_alloc_fd_res - Allocate FD resource for a VSI
478 * @vsi: pointer to the ice_vsi
479 *
480 * This allocates the FD resources
481 *
482 * Returns 0 on success, -EPERM on no-op or -EIO on failure
483 */
484static int ice_alloc_fd_res(struct ice_vsi *vsi)
485{
486 struct ice_pf *pf = vsi->back;
487 u32 g_val, b_val;
488
489 /* Flow Director filters are only allocated/assigned to the PF VSI which
490 * passes the traffic. The CTRL VSI is only used to add/delete filters
491 * so we don't allocate resources to it
492 */
493
494 /* FD filters from guaranteed pool per VSI */
495 g_val = pf->hw.func_caps.fd_fltr_guar;
496 if (!g_val)
497 return -EPERM;
498
499 /* FD filters from best effort pool */
500 b_val = pf->hw.func_caps.fd_fltr_best_effort;
501 if (!b_val)
502 return -EPERM;
503
504 if (vsi->type != ICE_VSI_PF)
505 return -EPERM;
506
507 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
508 return -EPERM;
509
510 vsi->num_gfltr = g_val / pf->num_alloc_vsi;
511
512 /* each VSI gets same "best_effort" quota */
513 vsi->num_bfltr = b_val;
514
515 return 0;
516}
517
518/**
519 * ice_vsi_get_qs - Assign queues from PF to VSI
520 * @vsi: the VSI to assign queues to
521 *
522 * Returns 0 on success and a negative value on error
523 */
524static int ice_vsi_get_qs(struct ice_vsi *vsi)
525{
526 struct ice_pf *pf = vsi->back;
527 struct ice_qs_cfg tx_qs_cfg = {
528 .qs_mutex = &pf->avail_q_mutex,
529 .pf_map = pf->avail_txqs,
530 .pf_map_size = pf->max_pf_txqs,
531 .q_count = vsi->alloc_txq,
532 .scatter_count = ICE_MAX_SCATTER_TXQS,
533 .vsi_map = vsi->txq_map,
534 .vsi_map_offset = 0,
535 .mapping_mode = ICE_VSI_MAP_CONTIG
536 };
537 struct ice_qs_cfg rx_qs_cfg = {
538 .qs_mutex = &pf->avail_q_mutex,
539 .pf_map = pf->avail_rxqs,
540 .pf_map_size = pf->max_pf_rxqs,
541 .q_count = vsi->alloc_rxq,
542 .scatter_count = ICE_MAX_SCATTER_RXQS,
543 .vsi_map = vsi->rxq_map,
544 .vsi_map_offset = 0,
545 .mapping_mode = ICE_VSI_MAP_CONTIG
546 };
547 int ret;
548
549 ret = __ice_vsi_get_qs(&tx_qs_cfg);
550 if (ret)
551 return ret;
552 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
553
554 ret = __ice_vsi_get_qs(&rx_qs_cfg);
555 if (ret)
556 return ret;
557 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
558
559 return 0;
560}
561
562/**
563 * ice_vsi_put_qs - Release queues from VSI to PF
564 * @vsi: the VSI that is going to release queues
565 */
566static void ice_vsi_put_qs(struct ice_vsi *vsi)
567{
568 struct ice_pf *pf = vsi->back;
569 int i;
570
571 mutex_lock(&pf->avail_q_mutex);
572
573 for (i = 0; i < vsi->alloc_txq; i++) {
574 clear_bit(vsi->txq_map[i], pf->avail_txqs);
575 vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
576 }
577
578 for (i = 0; i < vsi->alloc_rxq; i++) {
579 clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
580 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
581 }
582
583 mutex_unlock(&pf->avail_q_mutex);
584}
585
586/**
587 * ice_is_safe_mode
588 * @pf: pointer to the PF struct
589 *
590 * returns true if driver is in safe mode, false otherwise
591 */
592bool ice_is_safe_mode(struct ice_pf *pf)
593{
594 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
595}
596
597/**
598 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
599 * @vsi: the VSI being cleaned up
600 *
601 * This function deletes RSS input set for all flows that were configured
602 * for this VSI
603 */
604static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
605{
606 struct ice_pf *pf = vsi->back;
607 enum ice_status status;
608
609 if (ice_is_safe_mode(pf))
610 return;
611
612 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
613 if (status)
614 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n",
615 vsi->vsi_num, ice_stat_str(status));
616}
617
618/**
619 * ice_rss_clean - Delete RSS related VSI structures and configuration
620 * @vsi: the VSI being removed
621 */
622static void ice_rss_clean(struct ice_vsi *vsi)
623{
624 struct ice_pf *pf = vsi->back;
625 struct device *dev;
626
627 dev = ice_pf_to_dev(pf);
628
629 if (vsi->rss_hkey_user)
630 devm_kfree(dev, vsi->rss_hkey_user);
631 if (vsi->rss_lut_user)
632 devm_kfree(dev, vsi->rss_lut_user);
633
634 ice_vsi_clean_rss_flow_fld(vsi);
635 /* remove RSS replay list */
636 if (!ice_is_safe_mode(pf))
637 ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
638}
639
640/**
641 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
642 * @vsi: the VSI being configured
643 */
644static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
645{
646 struct ice_hw_common_caps *cap;
647 struct ice_pf *pf = vsi->back;
648
649 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
650 vsi->rss_size = 1;
651 return;
652 }
653
654 cap = &pf->hw.func_caps.common_cap;
655 switch (vsi->type) {
656 case ICE_VSI_PF:
657 /* PF VSI will inherit RSS instance of PF */
658 vsi->rss_table_size = (u16)cap->rss_table_size;
659 vsi->rss_size = min_t(u16, num_online_cpus(),
660 BIT(cap->rss_table_entry_width));
661 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
662 break;
663 case ICE_VSI_VF:
664 /* VF VSI will get a small RSS table.
665 * For VSI_LUT, LUT size should be set to 64 bytes.
666 */
667 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
668 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
669 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
670 break;
671 case ICE_VSI_LB:
672 break;
673 default:
674 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
675 ice_vsi_type_str(vsi->type));
676 break;
677 }
678}
679
680/**
681 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
682 * @ctxt: the VSI context being set
683 *
684 * This initializes a default VSI context for all sections except the Queues.
685 */
686static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
687{
688 u32 table = 0;
689
690 memset(&ctxt->info, 0, sizeof(ctxt->info));
691 /* VSI's should be allocated from shared pool */
692 ctxt->alloc_from_pool = true;
693 /* Src pruning enabled by default */
694 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
695 /* Traffic from VSI can be sent to LAN */
696 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
697 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy
698 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all
699 * packets untagged/tagged.
700 */
701 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL &
702 ICE_AQ_VSI_VLAN_MODE_M) >>
703 ICE_AQ_VSI_VLAN_MODE_S);
704 /* Have 1:1 UP mapping for both ingress/egress tables */
705 table |= ICE_UP_TABLE_TRANSLATE(0, 0);
706 table |= ICE_UP_TABLE_TRANSLATE(1, 1);
707 table |= ICE_UP_TABLE_TRANSLATE(2, 2);
708 table |= ICE_UP_TABLE_TRANSLATE(3, 3);
709 table |= ICE_UP_TABLE_TRANSLATE(4, 4);
710 table |= ICE_UP_TABLE_TRANSLATE(5, 5);
711 table |= ICE_UP_TABLE_TRANSLATE(6, 6);
712 table |= ICE_UP_TABLE_TRANSLATE(7, 7);
713 ctxt->info.ingress_table = cpu_to_le32(table);
714 ctxt->info.egress_table = cpu_to_le32(table);
715 /* Have 1:1 UP mapping for outer to inner UP table */
716 ctxt->info.outer_up_table = cpu_to_le32(table);
717 /* No Outer tag support outer_tag_flags remains to zero */
718}
719
720/**
721 * ice_vsi_setup_q_map - Setup a VSI queue map
722 * @vsi: the VSI being configured
723 * @ctxt: VSI context structure
724 */
725static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
726{
727 u16 offset = 0, qmap = 0, tx_count = 0;
728 u16 qcount_tx = vsi->alloc_txq;
729 u16 qcount_rx = vsi->alloc_rxq;
730 u16 tx_numq_tc, rx_numq_tc;
731 u16 pow = 0, max_rss = 0;
732 bool ena_tc0 = false;
733 u8 netdev_tc = 0;
734 int i;
735
736 /* at least TC0 should be enabled by default */
737 if (vsi->tc_cfg.numtc) {
738 if (!(vsi->tc_cfg.ena_tc & BIT(0)))
739 ena_tc0 = true;
740 } else {
741 ena_tc0 = true;
742 }
743
744 if (ena_tc0) {
745 vsi->tc_cfg.numtc++;
746 vsi->tc_cfg.ena_tc |= 1;
747 }
748
749 rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc;
750 if (!rx_numq_tc)
751 rx_numq_tc = 1;
752 tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc;
753 if (!tx_numq_tc)
754 tx_numq_tc = 1;
755
756 /* TC mapping is a function of the number of Rx queues assigned to the
757 * VSI for each traffic class and the offset of these queues.
758 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
759 * queues allocated to TC0. No:of queues is a power-of-2.
760 *
761 * If TC is not enabled, the queue offset is set to 0, and allocate one
762 * queue, this way, traffic for the given TC will be sent to the default
763 * queue.
764 *
765 * Setup number and offset of Rx queues for all TCs for the VSI
766 */
767
768 qcount_rx = rx_numq_tc;
769
770 /* qcount will change if RSS is enabled */
771 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) {
772 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) {
773 if (vsi->type == ICE_VSI_PF)
774 max_rss = ICE_MAX_LG_RSS_QS;
775 else
776 max_rss = ICE_MAX_RSS_QS_PER_VF;
777 qcount_rx = min_t(u16, rx_numq_tc, max_rss);
778 if (!vsi->req_rxq)
779 qcount_rx = min_t(u16, qcount_rx,
780 vsi->rss_size);
781 }
782 }
783
784 /* find the (rounded up) power-of-2 of qcount */
785 pow = (u16)order_base_2(qcount_rx);
786
787 ice_for_each_traffic_class(i) {
788 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
789 /* TC is not enabled */
790 vsi->tc_cfg.tc_info[i].qoffset = 0;
791 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
792 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
793 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
794 ctxt->info.tc_mapping[i] = 0;
795 continue;
796 }
797
798 /* TC is enabled */
799 vsi->tc_cfg.tc_info[i].qoffset = offset;
800 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
801 vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc;
802 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
803
804 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
805 ICE_AQ_VSI_TC_Q_OFFSET_M) |
806 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
807 ICE_AQ_VSI_TC_Q_NUM_M);
808 offset += qcount_rx;
809 tx_count += tx_numq_tc;
810 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
811 }
812
813 /* if offset is non-zero, means it is calculated correctly based on
814 * enabled TCs for a given VSI otherwise qcount_rx will always
815 * be correct and non-zero because it is based off - VSI's
816 * allocated Rx queues which is at least 1 (hence qcount_tx will be
817 * at least 1)
818 */
819 if (offset)
820 vsi->num_rxq = offset;
821 else
822 vsi->num_rxq = qcount_rx;
823
824 vsi->num_txq = tx_count;
825
826 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
827 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
828 /* since there is a chance that num_rxq could have been changed
829 * in the above for loop, make num_txq equal to num_rxq.
830 */
831 vsi->num_txq = vsi->num_rxq;
832 }
833
834 /* Rx queue mapping */
835 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
836 /* q_mapping buffer holds the info for the first queue allocated for
837 * this VSI in the PF space and also the number of queues associated
838 * with this VSI.
839 */
840 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
841 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
842}
843
844/**
845 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
846 * @ctxt: the VSI context being set
847 * @vsi: the VSI being configured
848 */
849static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
850{
851 u8 dflt_q_group, dflt_q_prio;
852 u16 dflt_q, report_q, val;
853
854 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL)
855 return;
856
857 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
858 ctxt->info.valid_sections |= cpu_to_le16(val);
859 dflt_q = 0;
860 dflt_q_group = 0;
861 report_q = 0;
862 dflt_q_prio = 0;
863
864 /* enable flow director filtering/programming */
865 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
866 ctxt->info.fd_options = cpu_to_le16(val);
867 /* max of allocated flow director filters */
868 ctxt->info.max_fd_fltr_dedicated =
869 cpu_to_le16(vsi->num_gfltr);
870 /* max of shared flow director filters any VSI may program */
871 ctxt->info.max_fd_fltr_shared =
872 cpu_to_le16(vsi->num_bfltr);
873 /* default queue index within the VSI of the default FD */
874 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
875 ICE_AQ_VSI_FD_DEF_Q_M);
876 /* target queue or queue group to the FD filter */
877 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
878 ICE_AQ_VSI_FD_DEF_GRP_M);
879 ctxt->info.fd_def_q = cpu_to_le16(val);
880 /* queue index on which FD filter completion is reported */
881 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
882 ICE_AQ_VSI_FD_REPORT_Q_M);
883 /* priority of the default qindex action */
884 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
885 ICE_AQ_VSI_FD_DEF_PRIORITY_M);
886 ctxt->info.fd_report_opt = cpu_to_le16(val);
887}
888
889/**
890 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
891 * @ctxt: the VSI context being set
892 * @vsi: the VSI being configured
893 */
894static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
895{
896 u8 lut_type, hash_type;
897 struct device *dev;
898 struct ice_pf *pf;
899
900 pf = vsi->back;
901 dev = ice_pf_to_dev(pf);
902
903 switch (vsi->type) {
904 case ICE_VSI_PF:
905 /* PF VSI will inherit RSS instance of PF */
906 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
907 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
908 break;
909 case ICE_VSI_VF:
910 /* VF VSI will gets a small RSS table which is a VSI LUT type */
911 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
912 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
913 break;
914 default:
915 dev_dbg(dev, "Unsupported VSI type %s\n",
916 ice_vsi_type_str(vsi->type));
917 return;
918 }
919
920 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
921 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
922 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
923 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
924}
925
926/**
927 * ice_vsi_init - Create and initialize a VSI
928 * @vsi: the VSI being configured
929 * @init_vsi: is this call creating a VSI
930 *
931 * This initializes a VSI context depending on the VSI type to be added and
932 * passes it down to the add_vsi aq command to create a new VSI.
933 */
934static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi)
935{
936 struct ice_pf *pf = vsi->back;
937 struct ice_hw *hw = &pf->hw;
938 struct ice_vsi_ctx *ctxt;
939 struct device *dev;
940 int ret = 0;
941
942 dev = ice_pf_to_dev(pf);
943 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
944 if (!ctxt)
945 return -ENOMEM;
946
947 switch (vsi->type) {
948 case ICE_VSI_CTRL:
949 case ICE_VSI_LB:
950 case ICE_VSI_PF:
951 ctxt->flags = ICE_AQ_VSI_TYPE_PF;
952 break;
953 case ICE_VSI_VF:
954 ctxt->flags = ICE_AQ_VSI_TYPE_VF;
955 /* VF number here is the absolute VF number (0-255) */
956 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
957 break;
958 default:
959 ret = -ENODEV;
960 goto out;
961 }
962
963 ice_set_dflt_vsi_ctx(ctxt);
964 if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
965 ice_set_fd_vsi_ctx(ctxt, vsi);
966 /* if the switch is in VEB mode, allow VSI loopback */
967 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
968 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
969
970 /* Set LUT type and HASH type if RSS is enabled */
971 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
972 vsi->type != ICE_VSI_CTRL) {
973 ice_set_rss_vsi_ctx(ctxt, vsi);
974 /* if updating VSI context, make sure to set valid_section:
975 * to indicate which section of VSI context being updated
976 */
977 if (!init_vsi)
978 ctxt->info.valid_sections |=
979 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
980 }
981
982 ctxt->info.sw_id = vsi->port_info->sw_id;
983 ice_vsi_setup_q_map(vsi, ctxt);
984 if (!init_vsi) /* means VSI being updated */
985 /* must to indicate which section of VSI context are
986 * being modified
987 */
988 ctxt->info.valid_sections |=
989 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
990
991 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off
992 * respectively
993 */
994 if (vsi->type == ICE_VSI_VF) {
995 ctxt->info.valid_sections |=
996 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
997 if (pf->vf[vsi->vf_id].spoofchk) {
998 ctxt->info.sec_flags |=
999 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
1000 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
1001 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
1002 } else {
1003 ctxt->info.sec_flags &=
1004 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
1005 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
1006 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S));
1007 }
1008 }
1009
1010 /* Allow control frames out of main VSI */
1011 if (vsi->type == ICE_VSI_PF) {
1012 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1013 ctxt->info.valid_sections |=
1014 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1015 }
1016
1017 if (init_vsi) {
1018 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1019 if (ret) {
1020 dev_err(dev, "Add VSI failed, err %d\n", ret);
1021 ret = -EIO;
1022 goto out;
1023 }
1024 } else {
1025 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1026 if (ret) {
1027 dev_err(dev, "Update VSI failed, err %d\n", ret);
1028 ret = -EIO;
1029 goto out;
1030 }
1031 }
1032
1033 /* keep context for update VSI operations */
1034 vsi->info = ctxt->info;
1035
1036 /* record VSI number returned */
1037 vsi->vsi_num = ctxt->vsi_num;
1038
1039out:
1040 kfree(ctxt);
1041 return ret;
1042}
1043
1044/**
1045 * ice_free_res - free a block of resources
1046 * @res: pointer to the resource
1047 * @index: starting index previously returned by ice_get_res
1048 * @id: identifier to track owner
1049 *
1050 * Returns number of resources freed
1051 */
1052int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
1053{
1054 int count = 0;
1055 int i;
1056
1057 if (!res || index >= res->end)
1058 return -EINVAL;
1059
1060 id |= ICE_RES_VALID_BIT;
1061 for (i = index; i < res->end && res->list[i] == id; i++) {
1062 res->list[i] = 0;
1063 count++;
1064 }
1065
1066 return count;
1067}
1068
1069/**
1070 * ice_search_res - Search the tracker for a block of resources
1071 * @res: pointer to the resource
1072 * @needed: size of the block needed
1073 * @id: identifier to track owner
1074 *
1075 * Returns the base item index of the block, or -ENOMEM for error
1076 */
1077static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
1078{
1079 u16 start = 0, end = 0;
1080
1081 if (needed > res->end)
1082 return -ENOMEM;
1083
1084 id |= ICE_RES_VALID_BIT;
1085
1086 do {
1087 /* skip already allocated entries */
1088 if (res->list[end++] & ICE_RES_VALID_BIT) {
1089 start = end;
1090 if ((start + needed) > res->end)
1091 break;
1092 }
1093
1094 if (end == (start + needed)) {
1095 int i = start;
1096
1097 /* there was enough, so assign it to the requestor */
1098 while (i != end)
1099 res->list[i++] = id;
1100
1101 return start;
1102 }
1103 } while (end < res->end);
1104
1105 return -ENOMEM;
1106}
1107
1108/**
1109 * ice_get_free_res_count - Get free count from a resource tracker
1110 * @res: Resource tracker instance
1111 */
1112static u16 ice_get_free_res_count(struct ice_res_tracker *res)
1113{
1114 u16 i, count = 0;
1115
1116 for (i = 0; i < res->end; i++)
1117 if (!(res->list[i] & ICE_RES_VALID_BIT))
1118 count++;
1119
1120 return count;
1121}
1122
1123/**
1124 * ice_get_res - get a block of resources
1125 * @pf: board private structure
1126 * @res: pointer to the resource
1127 * @needed: size of the block needed
1128 * @id: identifier to track owner
1129 *
1130 * Returns the base item index of the block, or negative for error
1131 */
1132int
1133ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
1134{
1135 if (!res || !pf)
1136 return -EINVAL;
1137
1138 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
1139 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n",
1140 needed, res->num_entries, id);
1141 return -EINVAL;
1142 }
1143
1144 return ice_search_res(res, needed, id);
1145}
1146
1147/**
1148 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1149 * @vsi: ptr to the VSI
1150 *
1151 * This should only be called after ice_vsi_alloc() which allocates the
1152 * corresponding SW VSI structure and initializes num_queue_pairs for the
1153 * newly allocated VSI.
1154 *
1155 * Returns 0 on success or negative on failure
1156 */
1157static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1158{
1159 struct ice_pf *pf = vsi->back;
1160 struct device *dev;
1161 u16 num_q_vectors;
1162 int base;
1163
1164 dev = ice_pf_to_dev(pf);
1165 /* SRIOV doesn't grab irq_tracker entries for each VSI */
1166 if (vsi->type == ICE_VSI_VF)
1167 return 0;
1168
1169 if (vsi->base_vector) {
1170 dev_dbg(dev, "VSI %d has non-zero base vector %d\n",
1171 vsi->vsi_num, vsi->base_vector);
1172 return -EEXIST;
1173 }
1174
1175 num_q_vectors = vsi->num_q_vectors;
1176 /* reserve slots from OS requested IRQs */
1177 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, vsi->idx);
1178
1179 if (base < 0) {
1180 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n",
1181 ice_get_free_res_count(pf->irq_tracker),
1182 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors);
1183 return -ENOENT;
1184 }
1185 vsi->base_vector = (u16)base;
1186 pf->num_avail_sw_msix -= num_q_vectors;
1187
1188 return 0;
1189}
1190
1191/**
1192 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1193 * @vsi: the VSI having rings deallocated
1194 */
1195static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1196{
1197 int i;
1198
1199 /* Avoid stale references by clearing map from vector to ring */
1200 if (vsi->q_vectors) {
1201 ice_for_each_q_vector(vsi, i) {
1202 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1203
1204 if (q_vector) {
1205 q_vector->tx.ring = NULL;
1206 q_vector->rx.ring = NULL;
1207 }
1208 }
1209 }
1210
1211 if (vsi->tx_rings) {
1212 for (i = 0; i < vsi->alloc_txq; i++) {
1213 if (vsi->tx_rings[i]) {
1214 kfree_rcu(vsi->tx_rings[i], rcu);
1215 WRITE_ONCE(vsi->tx_rings[i], NULL);
1216 }
1217 }
1218 }
1219 if (vsi->rx_rings) {
1220 for (i = 0; i < vsi->alloc_rxq; i++) {
1221 if (vsi->rx_rings[i]) {
1222 kfree_rcu(vsi->rx_rings[i], rcu);
1223 WRITE_ONCE(vsi->rx_rings[i], NULL);
1224 }
1225 }
1226 }
1227}
1228
1229/**
1230 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1231 * @vsi: VSI which is having rings allocated
1232 */
1233static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1234{
1235 struct ice_pf *pf = vsi->back;
1236 struct device *dev;
1237 u16 i;
1238
1239 dev = ice_pf_to_dev(pf);
1240 /* Allocate Tx rings */
1241 for (i = 0; i < vsi->alloc_txq; i++) {
1242 struct ice_ring *ring;
1243
1244 /* allocate with kzalloc(), free with kfree_rcu() */
1245 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1246
1247 if (!ring)
1248 goto err_out;
1249
1250 ring->q_index = i;
1251 ring->reg_idx = vsi->txq_map[i];
1252 ring->ring_active = false;
1253 ring->vsi = vsi;
1254 ring->dev = dev;
1255 ring->count = vsi->num_tx_desc;
1256 WRITE_ONCE(vsi->tx_rings[i], ring);
1257 }
1258
1259 /* Allocate Rx rings */
1260 for (i = 0; i < vsi->alloc_rxq; i++) {
1261 struct ice_ring *ring;
1262
1263 /* allocate with kzalloc(), free with kfree_rcu() */
1264 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1265 if (!ring)
1266 goto err_out;
1267
1268 ring->q_index = i;
1269 ring->reg_idx = vsi->rxq_map[i];
1270 ring->ring_active = false;
1271 ring->vsi = vsi;
1272 ring->netdev = vsi->netdev;
1273 ring->dev = dev;
1274 ring->count = vsi->num_rx_desc;
1275 WRITE_ONCE(vsi->rx_rings[i], ring);
1276 }
1277
1278 return 0;
1279
1280err_out:
1281 ice_vsi_clear_rings(vsi);
1282 return -ENOMEM;
1283}
1284
1285/**
1286 * ice_vsi_manage_rss_lut - disable/enable RSS
1287 * @vsi: the VSI being changed
1288 * @ena: boolean value indicating if this is an enable or disable request
1289 *
1290 * In the event of disable request for RSS, this function will zero out RSS
1291 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1292 * LUT.
1293 */
1294int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1295{
1296 int err = 0;
1297 u8 *lut;
1298
1299 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1300 if (!lut)
1301 return -ENOMEM;
1302
1303 if (ena) {
1304 if (vsi->rss_lut_user)
1305 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1306 else
1307 ice_fill_rss_lut(lut, vsi->rss_table_size,
1308 vsi->rss_size);
1309 }
1310
1311 err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size);
1312 kfree(lut);
1313 return err;
1314}
1315
1316/**
1317 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1318 * @vsi: VSI to be configured
1319 */
1320static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1321{
1322 struct ice_aqc_get_set_rss_keys *key;
1323 struct ice_pf *pf = vsi->back;
1324 enum ice_status status;
1325 struct device *dev;
1326 int err = 0;
1327 u8 *lut;
1328
1329 dev = ice_pf_to_dev(pf);
1330 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1331
1332 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1333 if (!lut)
1334 return -ENOMEM;
1335
1336 if (vsi->rss_lut_user)
1337 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1338 else
1339 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1340
1341 status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut,
1342 vsi->rss_table_size);
1343
1344 if (status) {
1345 dev_err(dev, "set_rss_lut failed, error %s\n",
1346 ice_stat_str(status));
1347 err = -EIO;
1348 goto ice_vsi_cfg_rss_exit;
1349 }
1350
1351 key = kzalloc(sizeof(*key), GFP_KERNEL);
1352 if (!key) {
1353 err = -ENOMEM;
1354 goto ice_vsi_cfg_rss_exit;
1355 }
1356
1357 if (vsi->rss_hkey_user)
1358 memcpy(key,
1359 (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user,
1360 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1361 else
1362 netdev_rss_key_fill((void *)key,
1363 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1364
1365 status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key);
1366
1367 if (status) {
1368 dev_err(dev, "set_rss_key failed, error %s\n",
1369 ice_stat_str(status));
1370 err = -EIO;
1371 }
1372
1373 kfree(key);
1374ice_vsi_cfg_rss_exit:
1375 kfree(lut);
1376 return err;
1377}
1378
1379/**
1380 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1381 * @vsi: VSI to be configured
1382 *
1383 * This function will only be called during the VF VSI setup. Upon successful
1384 * completion of package download, this function will configure default RSS
1385 * input sets for VF VSI.
1386 */
1387static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1388{
1389 struct ice_pf *pf = vsi->back;
1390 enum ice_status status;
1391 struct device *dev;
1392
1393 dev = ice_pf_to_dev(pf);
1394 if (ice_is_safe_mode(pf)) {
1395 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1396 vsi->vsi_num);
1397 return;
1398 }
1399
1400 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
1401 if (status)
1402 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n",
1403 vsi->vsi_num, ice_stat_str(status));
1404}
1405
1406/**
1407 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1408 * @vsi: VSI to be configured
1409 *
1410 * This function will only be called after successful download package call
1411 * during initialization of PF. Since the downloaded package will erase the
1412 * RSS section, this function will configure RSS input sets for different
1413 * flow types. The last profile added has the highest priority, therefore 2
1414 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1415 * (i.e. IPv4 src/dst TCP src/dst port).
1416 */
1417static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1418{
1419 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
1420 struct ice_pf *pf = vsi->back;
1421 struct ice_hw *hw = &pf->hw;
1422 enum ice_status status;
1423 struct device *dev;
1424
1425 dev = ice_pf_to_dev(pf);
1426 if (ice_is_safe_mode(pf)) {
1427 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1428 vsi_num);
1429 return;
1430 }
1431 /* configure RSS for IPv4 with input set IP src/dst */
1432 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1433 ICE_FLOW_SEG_HDR_IPV4);
1434 if (status)
1435 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n",
1436 vsi_num, ice_stat_str(status));
1437
1438 /* configure RSS for IPv6 with input set IPv6 src/dst */
1439 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1440 ICE_FLOW_SEG_HDR_IPV6);
1441 if (status)
1442 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n",
1443 vsi_num, ice_stat_str(status));
1444
1445 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1446 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
1447 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
1448 if (status)
1449 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n",
1450 vsi_num, ice_stat_str(status));
1451
1452 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1453 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
1454 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
1455 if (status)
1456 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n",
1457 vsi_num, ice_stat_str(status));
1458
1459 /* configure RSS for sctp4 with input set IP src/dst */
1460 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1461 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
1462 if (status)
1463 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n",
1464 vsi_num, ice_stat_str(status));
1465
1466 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1467 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
1468 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
1469 if (status)
1470 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n",
1471 vsi_num, ice_stat_str(status));
1472
1473 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1474 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
1475 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
1476 if (status)
1477 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n",
1478 vsi_num, ice_stat_str(status));
1479
1480 /* configure RSS for sctp6 with input set IPv6 src/dst */
1481 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1482 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
1483 if (status)
1484 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n",
1485 vsi_num, ice_stat_str(status));
1486}
1487
1488/**
1489 * ice_pf_state_is_nominal - checks the PF for nominal state
1490 * @pf: pointer to PF to check
1491 *
1492 * Check the PF's state for a collection of bits that would indicate
1493 * the PF is in a state that would inhibit normal operation for
1494 * driver functionality.
1495 *
1496 * Returns true if PF is in a nominal state, false otherwise
1497 */
1498bool ice_pf_state_is_nominal(struct ice_pf *pf)
1499{
1500 DECLARE_BITMAP(check_bits, __ICE_STATE_NBITS) = { 0 };
1501
1502 if (!pf)
1503 return false;
1504
1505 bitmap_set(check_bits, 0, __ICE_STATE_NOMINAL_CHECK_BITS);
1506 if (bitmap_intersects(pf->state, check_bits, __ICE_STATE_NBITS))
1507 return false;
1508
1509 return true;
1510}
1511
1512/**
1513 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1514 * @vsi: the VSI to be updated
1515 */
1516void ice_update_eth_stats(struct ice_vsi *vsi)
1517{
1518 struct ice_eth_stats *prev_es, *cur_es;
1519 struct ice_hw *hw = &vsi->back->hw;
1520 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */
1521
1522 prev_es = &vsi->eth_stats_prev;
1523 cur_es = &vsi->eth_stats;
1524
1525 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1526 &prev_es->rx_bytes, &cur_es->rx_bytes);
1527
1528 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1529 &prev_es->rx_unicast, &cur_es->rx_unicast);
1530
1531 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1532 &prev_es->rx_multicast, &cur_es->rx_multicast);
1533
1534 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1535 &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1536
1537 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1538 &prev_es->rx_discards, &cur_es->rx_discards);
1539
1540 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1541 &prev_es->tx_bytes, &cur_es->tx_bytes);
1542
1543 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1544 &prev_es->tx_unicast, &cur_es->tx_unicast);
1545
1546 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1547 &prev_es->tx_multicast, &cur_es->tx_multicast);
1548
1549 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1550 &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1551
1552 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1553 &prev_es->tx_errors, &cur_es->tx_errors);
1554
1555 vsi->stat_offsets_loaded = true;
1556}
1557
1558/**
1559 * ice_vsi_add_vlan - Add VSI membership for given VLAN
1560 * @vsi: the VSI being configured
1561 * @vid: VLAN ID to be added
1562 * @action: filter action to be performed on match
1563 */
1564int
1565ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action)
1566{
1567 struct ice_pf *pf = vsi->back;
1568 struct device *dev;
1569 int err = 0;
1570
1571 dev = ice_pf_to_dev(pf);
1572
1573 if (!ice_fltr_add_vlan(vsi, vid, action)) {
1574 vsi->num_vlan++;
1575 } else {
1576 err = -ENODEV;
1577 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid,
1578 vsi->vsi_num);
1579 }
1580
1581 return err;
1582}
1583
1584/**
1585 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
1586 * @vsi: the VSI being configured
1587 * @vid: VLAN ID to be removed
1588 *
1589 * Returns 0 on success and negative on failure
1590 */
1591int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
1592{
1593 struct ice_pf *pf = vsi->back;
1594 enum ice_status status;
1595 struct device *dev;
1596 int err = 0;
1597
1598 dev = ice_pf_to_dev(pf);
1599
1600 status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI);
1601 if (!status) {
1602 vsi->num_vlan--;
1603 } else if (status == ICE_ERR_DOES_NOT_EXIST) {
1604 dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n",
1605 vid, vsi->vsi_num, ice_stat_str(status));
1606 } else {
1607 dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n",
1608 vid, vsi->vsi_num, ice_stat_str(status));
1609 err = -EIO;
1610 }
1611
1612 return err;
1613}
1614
1615/**
1616 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1617 * @vsi: VSI
1618 */
1619void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1620{
1621 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1622 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1623 vsi->rx_buf_len = ICE_RXBUF_2048;
1624#if (PAGE_SIZE < 8192)
1625 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1626 (vsi->netdev->mtu <= ETH_DATA_LEN)) {
1627 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
1628 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
1629#endif
1630 } else {
1631 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1632#if (PAGE_SIZE < 8192)
1633 vsi->rx_buf_len = ICE_RXBUF_3072;
1634#else
1635 vsi->rx_buf_len = ICE_RXBUF_2048;
1636#endif
1637 }
1638}
1639
1640/**
1641 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1642 * @hw: HW pointer
1643 * @pf_q: index of the Rx queue in the PF's queue space
1644 * @rxdid: flexible descriptor RXDID
1645 * @prio: priority for the RXDID for this queue
1646 */
1647void
1648ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio)
1649{
1650 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1651
1652 /* clear any previous values */
1653 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1654 QRXFLXP_CNTXT_RXDID_PRIO_M |
1655 QRXFLXP_CNTXT_TS_M);
1656
1657 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
1658 QRXFLXP_CNTXT_RXDID_IDX_M;
1659
1660 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
1661 QRXFLXP_CNTXT_RXDID_PRIO_M;
1662
1663 wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1664}
1665
1666/**
1667 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1668 * @vsi: the VSI being configured
1669 *
1670 * Return 0 on success and a negative value on error
1671 * Configure the Rx VSI for operation.
1672 */
1673int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1674{
1675 u16 i;
1676
1677 if (vsi->type == ICE_VSI_VF)
1678 goto setup_rings;
1679
1680 ice_vsi_cfg_frame_size(vsi);
1681setup_rings:
1682 /* set up individual rings */
1683 for (i = 0; i < vsi->num_rxq; i++) {
1684 int err;
1685
1686 err = ice_setup_rx_ctx(vsi->rx_rings[i]);
1687 if (err) {
1688 dev_err(ice_pf_to_dev(vsi->back), "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
1689 i, err);
1690 return err;
1691 }
1692 }
1693
1694 return 0;
1695}
1696
1697/**
1698 * ice_vsi_cfg_txqs - Configure the VSI for Tx
1699 * @vsi: the VSI being configured
1700 * @rings: Tx ring array to be configured
1701 *
1702 * Return 0 on success and a negative value on error
1703 * Configure the Tx VSI for operation.
1704 */
1705static int
1706ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings)
1707{
1708 struct ice_aqc_add_tx_qgrp *qg_buf;
1709 u16 q_idx = 0;
1710 int err = 0;
1711
1712 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1713 if (!qg_buf)
1714 return -ENOMEM;
1715
1716 qg_buf->num_txqs = 1;
1717
1718 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) {
1719 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
1720 if (err)
1721 goto err_cfg_txqs;
1722 }
1723
1724err_cfg_txqs:
1725 kfree(qg_buf);
1726 return err;
1727}
1728
1729/**
1730 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1731 * @vsi: the VSI being configured
1732 *
1733 * Return 0 on success and a negative value on error
1734 * Configure the Tx VSI for operation.
1735 */
1736int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1737{
1738 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings);
1739}
1740
1741/**
1742 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1743 * @vsi: the VSI being configured
1744 *
1745 * Return 0 on success and a negative value on error
1746 * Configure the Tx queues dedicated for XDP in given VSI for operation.
1747 */
1748int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1749{
1750 int ret;
1751 int i;
1752
1753 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings);
1754 if (ret)
1755 return ret;
1756
1757 for (i = 0; i < vsi->num_xdp_txq; i++)
1758 vsi->xdp_rings[i]->xsk_umem = ice_xsk_umem(vsi->xdp_rings[i]);
1759
1760 return ret;
1761}
1762
1763/**
1764 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1765 * @intrl: interrupt rate limit in usecs
1766 * @gran: interrupt rate limit granularity in usecs
1767 *
1768 * This function converts a decimal interrupt rate limit in usecs to the format
1769 * expected by firmware.
1770 */
1771u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1772{
1773 u32 val = intrl / gran;
1774
1775 if (val)
1776 return val | GLINT_RATE_INTRL_ENA_M;
1777 return 0;
1778}
1779
1780/**
1781 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1782 * @vsi: the VSI being configured
1783 *
1784 * This configures MSIX mode interrupts for the PF VSI, and should not be used
1785 * for the VF VSI.
1786 */
1787void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1788{
1789 struct ice_pf *pf = vsi->back;
1790 struct ice_hw *hw = &pf->hw;
1791 u16 txq = 0, rxq = 0;
1792 int i, q;
1793
1794 for (i = 0; i < vsi->num_q_vectors; i++) {
1795 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1796 u16 reg_idx = q_vector->reg_idx;
1797
1798 ice_cfg_itr(hw, q_vector);
1799
1800 wr32(hw, GLINT_RATE(reg_idx),
1801 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
1802
1803 /* Both Transmit Queue Interrupt Cause Control register
1804 * and Receive Queue Interrupt Cause control register
1805 * expects MSIX_INDX field to be the vector index
1806 * within the function space and not the absolute
1807 * vector index across PF or across device.
1808 * For SR-IOV VF VSIs queue vector index always starts
1809 * with 1 since first vector index(0) is used for OICR
1810 * in VF space. Since VMDq and other PF VSIs are within
1811 * the PF function space, use the vector index that is
1812 * tracked for this PF.
1813 */
1814 for (q = 0; q < q_vector->num_ring_tx; q++) {
1815 ice_cfg_txq_interrupt(vsi, txq, reg_idx,
1816 q_vector->tx.itr_idx);
1817 txq++;
1818 }
1819
1820 for (q = 0; q < q_vector->num_ring_rx; q++) {
1821 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
1822 q_vector->rx.itr_idx);
1823 rxq++;
1824 }
1825 }
1826}
1827
1828/**
1829 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
1830 * @vsi: the VSI being changed
1831 */
1832int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
1833{
1834 struct ice_hw *hw = &vsi->back->hw;
1835 struct ice_vsi_ctx *ctxt;
1836 enum ice_status status;
1837 int ret = 0;
1838
1839 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1840 if (!ctxt)
1841 return -ENOMEM;
1842
1843 /* Here we are configuring the VSI to let the driver add VLAN tags by
1844 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag
1845 * insertion happens in the Tx hot path, in ice_tx_map.
1846 */
1847 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL;
1848
1849 /* Preserve existing VLAN strip setting */
1850 ctxt->info.vlan_flags |= (vsi->info.vlan_flags &
1851 ICE_AQ_VSI_VLAN_EMOD_M);
1852
1853 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
1854
1855 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1856 if (status) {
1857 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n",
1858 ice_stat_str(status),
1859 ice_aq_str(hw->adminq.sq_last_status));
1860 ret = -EIO;
1861 goto out;
1862 }
1863
1864 vsi->info.vlan_flags = ctxt->info.vlan_flags;
1865out:
1866 kfree(ctxt);
1867 return ret;
1868}
1869
1870/**
1871 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
1872 * @vsi: the VSI being changed
1873 * @ena: boolean value indicating if this is a enable or disable request
1874 */
1875int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
1876{
1877 struct ice_hw *hw = &vsi->back->hw;
1878 struct ice_vsi_ctx *ctxt;
1879 enum ice_status status;
1880 int ret = 0;
1881
1882 /* do not allow modifying VLAN stripping when a port VLAN is configured
1883 * on this VSI
1884 */
1885 if (vsi->info.pvid)
1886 return 0;
1887
1888 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1889 if (!ctxt)
1890 return -ENOMEM;
1891
1892 /* Here we are configuring what the VSI should do with the VLAN tag in
1893 * the Rx packet. We can either leave the tag in the packet or put it in
1894 * the Rx descriptor.
1895 */
1896 if (ena)
1897 /* Strip VLAN tag from Rx packet and put it in the desc */
1898 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH;
1899 else
1900 /* Disable stripping. Leave tag in packet */
1901 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING;
1902
1903 /* Allow all packets untagged/tagged */
1904 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL;
1905
1906 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
1907
1908 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1909 if (status) {
1910 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n",
1911 ena, ice_stat_str(status),
1912 ice_aq_str(hw->adminq.sq_last_status));
1913 ret = -EIO;
1914 goto out;
1915 }
1916
1917 vsi->info.vlan_flags = ctxt->info.vlan_flags;
1918out:
1919 kfree(ctxt);
1920 return ret;
1921}
1922
1923/**
1924 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
1925 * @vsi: the VSI whose rings are to be enabled
1926 *
1927 * Returns 0 on success and a negative value on error
1928 */
1929int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
1930{
1931 return ice_vsi_ctrl_all_rx_rings(vsi, true);
1932}
1933
1934/**
1935 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
1936 * @vsi: the VSI whose rings are to be disabled
1937 *
1938 * Returns 0 on success and a negative value on error
1939 */
1940int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
1941{
1942 return ice_vsi_ctrl_all_rx_rings(vsi, false);
1943}
1944
1945/**
1946 * ice_vsi_stop_tx_rings - Disable Tx rings
1947 * @vsi: the VSI being configured
1948 * @rst_src: reset source
1949 * @rel_vmvf_num: Relative ID of VF/VM
1950 * @rings: Tx ring array to be stopped
1951 */
1952static int
1953ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1954 u16 rel_vmvf_num, struct ice_ring **rings)
1955{
1956 u16 q_idx;
1957
1958 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
1959 return -EINVAL;
1960
1961 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) {
1962 struct ice_txq_meta txq_meta = { };
1963 int status;
1964
1965 if (!rings || !rings[q_idx])
1966 return -EINVAL;
1967
1968 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
1969 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
1970 rings[q_idx], &txq_meta);
1971
1972 if (status)
1973 return status;
1974 }
1975
1976 return 0;
1977}
1978
1979/**
1980 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
1981 * @vsi: the VSI being configured
1982 * @rst_src: reset source
1983 * @rel_vmvf_num: Relative ID of VF/VM
1984 */
1985int
1986ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1987 u16 rel_vmvf_num)
1988{
1989 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings);
1990}
1991
1992/**
1993 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
1994 * @vsi: the VSI being configured
1995 */
1996int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
1997{
1998 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings);
1999}
2000
2001/**
2002 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
2003 * @vsi: VSI to check whether or not VLAN pruning is enabled.
2004 *
2005 * returns true if Rx VLAN pruning is enabled and false otherwise.
2006 */
2007bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
2008{
2009 if (!vsi)
2010 return false;
2011
2012 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA);
2013}
2014
2015/**
2016 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI
2017 * @vsi: VSI to enable or disable VLAN pruning on
2018 * @ena: set to true to enable VLAN pruning and false to disable it
2019 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode
2020 *
2021 * returns 0 if VSI is updated, negative otherwise
2022 */
2023int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc)
2024{
2025 struct ice_vsi_ctx *ctxt;
2026 struct ice_pf *pf;
2027 int status;
2028
2029 if (!vsi)
2030 return -EINVAL;
2031
2032 /* Don't enable VLAN pruning if the netdev is currently in promiscuous
2033 * mode. VLAN pruning will be enabled when the interface exits
2034 * promiscuous mode if any VLAN filters are active.
2035 */
2036 if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena)
2037 return 0;
2038
2039 pf = vsi->back;
2040 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
2041 if (!ctxt)
2042 return -ENOMEM;
2043
2044 ctxt->info = vsi->info;
2045
2046 if (ena)
2047 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2048 else
2049 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2050
2051 if (!vlan_promisc)
2052 ctxt->info.valid_sections =
2053 cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
2054
2055 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL);
2056 if (status) {
2057 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n",
2058 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num,
2059 ice_stat_str(status),
2060 ice_aq_str(pf->hw.adminq.sq_last_status));
2061 goto err_out;
2062 }
2063
2064 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
2065
2066 kfree(ctxt);
2067 return 0;
2068
2069err_out:
2070 kfree(ctxt);
2071 return -EIO;
2072}
2073
2074static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2075{
2076 struct ice_dcbx_cfg *cfg = &vsi->port_info->local_dcbx_cfg;
2077
2078 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg);
2079 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg);
2080}
2081
2082/**
2083 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2084 * @vsi: VSI to set the q_vectors register index on
2085 */
2086static int
2087ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2088{
2089 u16 i;
2090
2091 if (!vsi || !vsi->q_vectors)
2092 return -EINVAL;
2093
2094 ice_for_each_q_vector(vsi, i) {
2095 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2096
2097 if (!q_vector) {
2098 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n",
2099 i, vsi->vsi_num);
2100 goto clear_reg_idx;
2101 }
2102
2103 if (vsi->type == ICE_VSI_VF) {
2104 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id];
2105
2106 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
2107 } else {
2108 q_vector->reg_idx =
2109 q_vector->v_idx + vsi->base_vector;
2110 }
2111 }
2112
2113 return 0;
2114
2115clear_reg_idx:
2116 ice_for_each_q_vector(vsi, i) {
2117 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2118
2119 if (q_vector)
2120 q_vector->reg_idx = 0;
2121 }
2122
2123 return -EINVAL;
2124}
2125
2126/**
2127 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2128 * @vsi: the VSI being configured
2129 * @tx: bool to determine Tx or Rx rule
2130 * @create: bool to determine create or remove Rule
2131 */
2132void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2133{
2134 enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2135 enum ice_sw_fwd_act_type act);
2136 struct ice_pf *pf = vsi->back;
2137 enum ice_status status;
2138 struct device *dev;
2139
2140 dev = ice_pf_to_dev(pf);
2141 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2142
2143 if (tx)
2144 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2145 ICE_DROP_PACKET);
2146 else
2147 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, ICE_FWD_TO_VSI);
2148
2149 if (status)
2150 dev_err(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n",
2151 create ? "adding" : "removing", tx ? "TX" : "RX",
2152 vsi->vsi_num, ice_stat_str(status));
2153}
2154
2155/**
2156 * ice_vsi_setup - Set up a VSI by a given type
2157 * @pf: board private structure
2158 * @pi: pointer to the port_info instance
2159 * @vsi_type: VSI type
2160 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be
2161 * used only for ICE_VSI_VF VSI type. For other VSI types, should
2162 * fill-in ICE_INVAL_VFID as input.
2163 *
2164 * This allocates the sw VSI structure and its queue resources.
2165 *
2166 * Returns pointer to the successfully allocated and configured VSI sw struct on
2167 * success, NULL on failure.
2168 */
2169struct ice_vsi *
2170ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2171 enum ice_vsi_type vsi_type, u16 vf_id)
2172{
2173 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2174 struct device *dev = ice_pf_to_dev(pf);
2175 enum ice_status status;
2176 struct ice_vsi *vsi;
2177 int ret, i;
2178
2179 if (vsi_type == ICE_VSI_VF)
2180 vsi = ice_vsi_alloc(pf, vsi_type, vf_id);
2181 else
2182 vsi = ice_vsi_alloc(pf, vsi_type, ICE_INVAL_VFID);
2183
2184 if (!vsi) {
2185 dev_err(dev, "could not allocate VSI\n");
2186 return NULL;
2187 }
2188
2189 vsi->port_info = pi;
2190 vsi->vsw = pf->first_sw;
2191 if (vsi->type == ICE_VSI_PF)
2192 vsi->ethtype = ETH_P_PAUSE;
2193
2194 if (vsi->type == ICE_VSI_VF)
2195 vsi->vf_id = vf_id;
2196
2197 ice_alloc_fd_res(vsi);
2198
2199 if (ice_vsi_get_qs(vsi)) {
2200 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2201 vsi->idx);
2202 goto unroll_vsi_alloc;
2203 }
2204
2205 /* set RSS capabilities */
2206 ice_vsi_set_rss_params(vsi);
2207
2208 /* set TC configuration */
2209 ice_vsi_set_tc_cfg(vsi);
2210
2211 /* create the VSI */
2212 ret = ice_vsi_init(vsi, true);
2213 if (ret)
2214 goto unroll_get_qs;
2215
2216 switch (vsi->type) {
2217 case ICE_VSI_CTRL:
2218 case ICE_VSI_PF:
2219 ret = ice_vsi_alloc_q_vectors(vsi);
2220 if (ret)
2221 goto unroll_vsi_init;
2222
2223 ret = ice_vsi_setup_vector_base(vsi);
2224 if (ret)
2225 goto unroll_alloc_q_vector;
2226
2227 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2228 if (ret)
2229 goto unroll_vector_base;
2230
2231 ret = ice_vsi_alloc_rings(vsi);
2232 if (ret)
2233 goto unroll_vector_base;
2234
2235 /* Always add VLAN ID 0 switch rule by default. This is needed
2236 * in order to allow all untagged and 0 tagged priority traffic
2237 * if Rx VLAN pruning is enabled. Also there are cases where we
2238 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid()
2239 * so this handles those cases (i.e. adding the PF to a bridge
2240 * without the 8021q module loaded).
2241 */
2242 ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI);
2243 if (ret)
2244 goto unroll_clear_rings;
2245
2246 ice_vsi_map_rings_to_vectors(vsi);
2247
2248 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2249 if (vsi->type != ICE_VSI_CTRL)
2250 /* Do not exit if configuring RSS had an issue, at
2251 * least receive traffic on first queue. Hence no
2252 * need to capture return value
2253 */
2254 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2255 ice_vsi_cfg_rss_lut_key(vsi);
2256 ice_vsi_set_rss_flow_fld(vsi);
2257 }
2258 ice_init_arfs(vsi);
2259 break;
2260 case ICE_VSI_VF:
2261 /* VF driver will take care of creating netdev for this type and
2262 * map queues to vectors through Virtchnl, PF driver only
2263 * creates a VSI and corresponding structures for bookkeeping
2264 * purpose
2265 */
2266 ret = ice_vsi_alloc_q_vectors(vsi);
2267 if (ret)
2268 goto unroll_vsi_init;
2269
2270 ret = ice_vsi_alloc_rings(vsi);
2271 if (ret)
2272 goto unroll_alloc_q_vector;
2273
2274 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2275 if (ret)
2276 goto unroll_vector_base;
2277
2278 /* Do not exit if configuring RSS had an issue, at least
2279 * receive traffic on first queue. Hence no need to capture
2280 * return value
2281 */
2282 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2283 ice_vsi_cfg_rss_lut_key(vsi);
2284 ice_vsi_set_vf_rss_flow_fld(vsi);
2285 }
2286 break;
2287 case ICE_VSI_LB:
2288 ret = ice_vsi_alloc_rings(vsi);
2289 if (ret)
2290 goto unroll_vsi_init;
2291 break;
2292 default:
2293 /* clean up the resources and exit */
2294 goto unroll_vsi_init;
2295 }
2296
2297 /* configure VSI nodes based on number of queues and TC's */
2298 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2299 max_txqs[i] = vsi->alloc_txq;
2300
2301 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2302 max_txqs);
2303 if (status) {
2304 dev_err(dev, "VSI %d failed lan queue config, error %s\n",
2305 vsi->vsi_num, ice_stat_str(status));
2306 goto unroll_clear_rings;
2307 }
2308
2309 /* Add switch rule to drop all Tx Flow Control Frames, of look up
2310 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2311 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2312 * The rule is added once for PF VSI in order to create appropriate
2313 * recipe, since VSI/VSI list is ignored with drop action...
2314 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to
2315 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2316 * settings in the HW.
2317 */
2318 if (!ice_is_safe_mode(pf))
2319 if (vsi->type == ICE_VSI_PF) {
2320 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2321 ICE_DROP_PACKET);
2322 ice_cfg_sw_lldp(vsi, true, true);
2323 }
2324
2325 return vsi;
2326
2327unroll_clear_rings:
2328 ice_vsi_clear_rings(vsi);
2329unroll_vector_base:
2330 /* reclaim SW interrupts back to the common pool */
2331 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2332 pf->num_avail_sw_msix += vsi->num_q_vectors;
2333unroll_alloc_q_vector:
2334 ice_vsi_free_q_vectors(vsi);
2335unroll_vsi_init:
2336 ice_vsi_delete(vsi);
2337unroll_get_qs:
2338 ice_vsi_put_qs(vsi);
2339unroll_vsi_alloc:
2340 ice_vsi_clear(vsi);
2341
2342 return NULL;
2343}
2344
2345/**
2346 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2347 * @vsi: the VSI being cleaned up
2348 */
2349static void ice_vsi_release_msix(struct ice_vsi *vsi)
2350{
2351 struct ice_pf *pf = vsi->back;
2352 struct ice_hw *hw = &pf->hw;
2353 u32 txq = 0;
2354 u32 rxq = 0;
2355 int i, q;
2356
2357 for (i = 0; i < vsi->num_q_vectors; i++) {
2358 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2359 u16 reg_idx = q_vector->reg_idx;
2360
2361 wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0);
2362 wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0);
2363 for (q = 0; q < q_vector->num_ring_tx; q++) {
2364 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2365 if (ice_is_xdp_ena_vsi(vsi)) {
2366 u32 xdp_txq = txq + vsi->num_xdp_txq;
2367
2368 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2369 }
2370 txq++;
2371 }
2372
2373 for (q = 0; q < q_vector->num_ring_rx; q++) {
2374 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2375 rxq++;
2376 }
2377 }
2378
2379 ice_flush(hw);
2380}
2381
2382/**
2383 * ice_vsi_free_irq - Free the IRQ association with the OS
2384 * @vsi: the VSI being configured
2385 */
2386void ice_vsi_free_irq(struct ice_vsi *vsi)
2387{
2388 struct ice_pf *pf = vsi->back;
2389 int base = vsi->base_vector;
2390 int i;
2391
2392 if (!vsi->q_vectors || !vsi->irqs_ready)
2393 return;
2394
2395 ice_vsi_release_msix(vsi);
2396 if (vsi->type == ICE_VSI_VF)
2397 return;
2398
2399 vsi->irqs_ready = false;
2400 ice_for_each_q_vector(vsi, i) {
2401 u16 vector = i + base;
2402 int irq_num;
2403
2404 irq_num = pf->msix_entries[vector].vector;
2405
2406 /* free only the irqs that were actually requested */
2407 if (!vsi->q_vectors[i] ||
2408 !(vsi->q_vectors[i]->num_ring_tx ||
2409 vsi->q_vectors[i]->num_ring_rx))
2410 continue;
2411
2412 /* clear the affinity notifier in the IRQ descriptor */
2413 irq_set_affinity_notifier(irq_num, NULL);
2414
2415 /* clear the affinity_mask in the IRQ descriptor */
2416 irq_set_affinity_hint(irq_num, NULL);
2417 synchronize_irq(irq_num);
2418 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2419 }
2420}
2421
2422/**
2423 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2424 * @vsi: the VSI having resources freed
2425 */
2426void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2427{
2428 int i;
2429
2430 if (!vsi->tx_rings)
2431 return;
2432
2433 ice_for_each_txq(vsi, i)
2434 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2435 ice_free_tx_ring(vsi->tx_rings[i]);
2436}
2437
2438/**
2439 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2440 * @vsi: the VSI having resources freed
2441 */
2442void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2443{
2444 int i;
2445
2446 if (!vsi->rx_rings)
2447 return;
2448
2449 ice_for_each_rxq(vsi, i)
2450 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2451 ice_free_rx_ring(vsi->rx_rings[i]);
2452}
2453
2454/**
2455 * ice_vsi_close - Shut down a VSI
2456 * @vsi: the VSI being shut down
2457 */
2458void ice_vsi_close(struct ice_vsi *vsi)
2459{
2460 if (!test_and_set_bit(__ICE_DOWN, vsi->state))
2461 ice_down(vsi);
2462
2463 ice_vsi_free_irq(vsi);
2464 ice_vsi_free_tx_rings(vsi);
2465 ice_vsi_free_rx_rings(vsi);
2466}
2467
2468/**
2469 * ice_ena_vsi - resume a VSI
2470 * @vsi: the VSI being resume
2471 * @locked: is the rtnl_lock already held
2472 */
2473int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2474{
2475 int err = 0;
2476
2477 if (!test_bit(__ICE_NEEDS_RESTART, vsi->state))
2478 return 0;
2479
2480 clear_bit(__ICE_NEEDS_RESTART, vsi->state);
2481
2482 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2483 if (netif_running(vsi->netdev)) {
2484 if (!locked)
2485 rtnl_lock();
2486
2487 err = ice_open(vsi->netdev);
2488
2489 if (!locked)
2490 rtnl_unlock();
2491 }
2492 } else if (vsi->type == ICE_VSI_CTRL) {
2493 err = ice_vsi_open_ctrl(vsi);
2494 }
2495
2496 return err;
2497}
2498
2499/**
2500 * ice_dis_vsi - pause a VSI
2501 * @vsi: the VSI being paused
2502 * @locked: is the rtnl_lock already held
2503 */
2504void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2505{
2506 if (test_bit(__ICE_DOWN, vsi->state))
2507 return;
2508
2509 set_bit(__ICE_NEEDS_RESTART, vsi->state);
2510
2511 if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2512 if (netif_running(vsi->netdev)) {
2513 if (!locked)
2514 rtnl_lock();
2515
2516 ice_stop(vsi->netdev);
2517
2518 if (!locked)
2519 rtnl_unlock();
2520 } else {
2521 ice_vsi_close(vsi);
2522 }
2523 } else if (vsi->type == ICE_VSI_CTRL) {
2524 ice_vsi_close(vsi);
2525 }
2526}
2527
2528/**
2529 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2530 * @vsi: the VSI being un-configured
2531 */
2532void ice_vsi_dis_irq(struct ice_vsi *vsi)
2533{
2534 int base = vsi->base_vector;
2535 struct ice_pf *pf = vsi->back;
2536 struct ice_hw *hw = &pf->hw;
2537 u32 val;
2538 int i;
2539
2540 /* disable interrupt causation from each queue */
2541 if (vsi->tx_rings) {
2542 ice_for_each_txq(vsi, i) {
2543 if (vsi->tx_rings[i]) {
2544 u16 reg;
2545
2546 reg = vsi->tx_rings[i]->reg_idx;
2547 val = rd32(hw, QINT_TQCTL(reg));
2548 val &= ~QINT_TQCTL_CAUSE_ENA_M;
2549 wr32(hw, QINT_TQCTL(reg), val);
2550 }
2551 }
2552 }
2553
2554 if (vsi->rx_rings) {
2555 ice_for_each_rxq(vsi, i) {
2556 if (vsi->rx_rings[i]) {
2557 u16 reg;
2558
2559 reg = vsi->rx_rings[i]->reg_idx;
2560 val = rd32(hw, QINT_RQCTL(reg));
2561 val &= ~QINT_RQCTL_CAUSE_ENA_M;
2562 wr32(hw, QINT_RQCTL(reg), val);
2563 }
2564 }
2565 }
2566
2567 /* disable each interrupt */
2568 ice_for_each_q_vector(vsi, i) {
2569 if (!vsi->q_vectors[i])
2570 continue;
2571 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2572 }
2573
2574 ice_flush(hw);
2575
2576 /* don't call synchronize_irq() for VF's from the host */
2577 if (vsi->type == ICE_VSI_VF)
2578 return;
2579
2580 ice_for_each_q_vector(vsi, i)
2581 synchronize_irq(pf->msix_entries[i + base].vector);
2582}
2583
2584/**
2585 * ice_napi_del - Remove NAPI handler for the VSI
2586 * @vsi: VSI for which NAPI handler is to be removed
2587 */
2588void ice_napi_del(struct ice_vsi *vsi)
2589{
2590 int v_idx;
2591
2592 if (!vsi->netdev)
2593 return;
2594
2595 ice_for_each_q_vector(vsi, v_idx)
2596 netif_napi_del(&vsi->q_vectors[v_idx]->napi);
2597}
2598
2599/**
2600 * ice_vsi_release - Delete a VSI and free its resources
2601 * @vsi: the VSI being removed
2602 *
2603 * Returns 0 on success or < 0 on error
2604 */
2605int ice_vsi_release(struct ice_vsi *vsi)
2606{
2607 struct ice_pf *pf;
2608
2609 if (!vsi->back)
2610 return -ENODEV;
2611 pf = vsi->back;
2612
2613 /* do not unregister while driver is in the reset recovery pending
2614 * state. Since reset/rebuild happens through PF service task workqueue,
2615 * it's not a good idea to unregister netdev that is associated to the
2616 * PF that is running the work queue items currently. This is done to
2617 * avoid check_flush_dependency() warning on this wq
2618 */
2619 if (vsi->netdev && !ice_is_reset_in_progress(pf->state))
2620 unregister_netdev(vsi->netdev);
2621
2622 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2623 ice_rss_clean(vsi);
2624
2625 /* Disable VSI and free resources */
2626 if (vsi->type != ICE_VSI_LB)
2627 ice_vsi_dis_irq(vsi);
2628 ice_vsi_close(vsi);
2629
2630 /* SR-IOV determines needed MSIX resources all at once instead of per
2631 * VSI since when VFs are spawned we know how many VFs there are and how
2632 * many interrupts each VF needs. SR-IOV MSIX resources are also
2633 * cleared in the same manner.
2634 */
2635 if (vsi->type != ICE_VSI_VF) {
2636 /* reclaim SW interrupts back to the common pool */
2637 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2638 pf->num_avail_sw_msix += vsi->num_q_vectors;
2639 }
2640
2641 if (!ice_is_safe_mode(pf)) {
2642 if (vsi->type == ICE_VSI_PF) {
2643 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2644 ICE_DROP_PACKET);
2645 ice_cfg_sw_lldp(vsi, true, false);
2646 /* The Rx rule will only exist to remove if the LLDP FW
2647 * engine is currently stopped
2648 */
2649 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2650 ice_cfg_sw_lldp(vsi, false, false);
2651 }
2652 }
2653
2654 ice_fltr_remove_all(vsi);
2655 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2656 ice_vsi_delete(vsi);
2657 ice_vsi_free_q_vectors(vsi);
2658
2659 /* make sure unregister_netdev() was called by checking __ICE_DOWN */
2660 if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) {
2661 free_netdev(vsi->netdev);
2662 vsi->netdev = NULL;
2663 }
2664
2665 ice_vsi_clear_rings(vsi);
2666
2667 ice_vsi_put_qs(vsi);
2668
2669 /* retain SW VSI data structure since it is needed to unregister and
2670 * free VSI netdev when PF is not in reset recovery pending state,\
2671 * for ex: during rmmod.
2672 */
2673 if (!ice_is_reset_in_progress(pf->state))
2674 ice_vsi_clear(vsi);
2675
2676 return 0;
2677}
2678
2679/**
2680 * ice_vsi_rebuild_update_coalesce - set coalesce for a q_vector
2681 * @q_vector: pointer to q_vector which is being updated
2682 * @coalesce: pointer to array of struct with stored coalesce
2683 *
2684 * Set coalesce param in q_vector and update these parameters in HW.
2685 */
2686static void
2687ice_vsi_rebuild_update_coalesce(struct ice_q_vector *q_vector,
2688 struct ice_coalesce_stored *coalesce)
2689{
2690 struct ice_ring_container *rx_rc = &q_vector->rx;
2691 struct ice_ring_container *tx_rc = &q_vector->tx;
2692 struct ice_hw *hw = &q_vector->vsi->back->hw;
2693
2694 tx_rc->itr_setting = coalesce->itr_tx;
2695 rx_rc->itr_setting = coalesce->itr_rx;
2696
2697 /* dynamic ITR values will be updated during Tx/Rx */
2698 if (!ITR_IS_DYNAMIC(tx_rc->itr_setting))
2699 wr32(hw, GLINT_ITR(tx_rc->itr_idx, q_vector->reg_idx),
2700 ITR_REG_ALIGN(tx_rc->itr_setting) >>
2701 ICE_ITR_GRAN_S);
2702 if (!ITR_IS_DYNAMIC(rx_rc->itr_setting))
2703 wr32(hw, GLINT_ITR(rx_rc->itr_idx, q_vector->reg_idx),
2704 ITR_REG_ALIGN(rx_rc->itr_setting) >>
2705 ICE_ITR_GRAN_S);
2706
2707 q_vector->intrl = coalesce->intrl;
2708 wr32(hw, GLINT_RATE(q_vector->reg_idx),
2709 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
2710}
2711
2712/**
2713 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2714 * @vsi: VSI connected with q_vectors
2715 * @coalesce: array of struct with stored coalesce
2716 *
2717 * Returns array size.
2718 */
2719static int
2720ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2721 struct ice_coalesce_stored *coalesce)
2722{
2723 int i;
2724
2725 ice_for_each_q_vector(vsi, i) {
2726 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2727
2728 coalesce[i].itr_tx = q_vector->tx.itr_setting;
2729 coalesce[i].itr_rx = q_vector->rx.itr_setting;
2730 coalesce[i].intrl = q_vector->intrl;
2731 }
2732
2733 return vsi->num_q_vectors;
2734}
2735
2736/**
2737 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
2738 * @vsi: VSI connected with q_vectors
2739 * @coalesce: pointer to array of struct with stored coalesce
2740 * @size: size of coalesce array
2741 *
2742 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
2743 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
2744 * to default value.
2745 */
2746static void
2747ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
2748 struct ice_coalesce_stored *coalesce, int size)
2749{
2750 int i;
2751
2752 if ((size && !coalesce) || !vsi)
2753 return;
2754
2755 for (i = 0; i < size && i < vsi->num_q_vectors; i++)
2756 ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i],
2757 &coalesce[i]);
2758
2759 /* number of q_vectors increased, so assume coalesce settings were
2760 * changed globally (i.e. ethtool -C eth0 instead of per-queue) and use
2761 * the previous settings from q_vector 0 for all of the new q_vectors
2762 */
2763 for (; i < vsi->num_q_vectors; i++)
2764 ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i],
2765 &coalesce[0]);
2766}
2767
2768/**
2769 * ice_vsi_rebuild - Rebuild VSI after reset
2770 * @vsi: VSI to be rebuild
2771 * @init_vsi: is this an initialization or a reconfigure of the VSI
2772 *
2773 * Returns 0 on success and negative value on failure
2774 */
2775int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi)
2776{
2777 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2778 struct ice_coalesce_stored *coalesce;
2779 int prev_num_q_vectors = 0;
2780 struct ice_vf *vf = NULL;
2781 enum ice_status status;
2782 struct ice_pf *pf;
2783 int ret, i;
2784
2785 if (!vsi)
2786 return -EINVAL;
2787
2788 pf = vsi->back;
2789 if (vsi->type == ICE_VSI_VF)
2790 vf = &pf->vf[vsi->vf_id];
2791
2792 coalesce = kcalloc(vsi->num_q_vectors,
2793 sizeof(struct ice_coalesce_stored), GFP_KERNEL);
2794 if (coalesce)
2795 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi,
2796 coalesce);
2797 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2798 ice_vsi_free_q_vectors(vsi);
2799
2800 /* SR-IOV determines needed MSIX resources all at once instead of per
2801 * VSI since when VFs are spawned we know how many VFs there are and how
2802 * many interrupts each VF needs. SR-IOV MSIX resources are also
2803 * cleared in the same manner.
2804 */
2805 if (vsi->type != ICE_VSI_VF) {
2806 /* reclaim SW interrupts back to the common pool */
2807 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2808 pf->num_avail_sw_msix += vsi->num_q_vectors;
2809 vsi->base_vector = 0;
2810 }
2811
2812 if (ice_is_xdp_ena_vsi(vsi))
2813 /* return value check can be skipped here, it always returns
2814 * 0 if reset is in progress
2815 */
2816 ice_destroy_xdp_rings(vsi);
2817 ice_vsi_put_qs(vsi);
2818 ice_vsi_clear_rings(vsi);
2819 ice_vsi_free_arrays(vsi);
2820 if (vsi->type == ICE_VSI_VF)
2821 ice_vsi_set_num_qs(vsi, vf->vf_id);
2822 else
2823 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
2824
2825 ret = ice_vsi_alloc_arrays(vsi);
2826 if (ret < 0)
2827 goto err_vsi;
2828
2829 ice_vsi_get_qs(vsi);
2830
2831 ice_alloc_fd_res(vsi);
2832 ice_vsi_set_tc_cfg(vsi);
2833
2834 /* Initialize VSI struct elements and create VSI in FW */
2835 ret = ice_vsi_init(vsi, init_vsi);
2836 if (ret < 0)
2837 goto err_vsi;
2838
2839 switch (vsi->type) {
2840 case ICE_VSI_CTRL:
2841 case ICE_VSI_PF:
2842 ret = ice_vsi_alloc_q_vectors(vsi);
2843 if (ret)
2844 goto err_rings;
2845
2846 ret = ice_vsi_setup_vector_base(vsi);
2847 if (ret)
2848 goto err_vectors;
2849
2850 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2851 if (ret)
2852 goto err_vectors;
2853
2854 ret = ice_vsi_alloc_rings(vsi);
2855 if (ret)
2856 goto err_vectors;
2857
2858 ice_vsi_map_rings_to_vectors(vsi);
2859 if (ice_is_xdp_ena_vsi(vsi)) {
2860 vsi->num_xdp_txq = vsi->alloc_rxq;
2861 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
2862 if (ret)
2863 goto err_vectors;
2864 }
2865 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2866 if (vsi->type != ICE_VSI_CTRL)
2867 /* Do not exit if configuring RSS had an issue, at
2868 * least receive traffic on first queue. Hence no
2869 * need to capture return value
2870 */
2871 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2872 ice_vsi_cfg_rss_lut_key(vsi);
2873 break;
2874 case ICE_VSI_VF:
2875 ret = ice_vsi_alloc_q_vectors(vsi);
2876 if (ret)
2877 goto err_rings;
2878
2879 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2880 if (ret)
2881 goto err_vectors;
2882
2883 ret = ice_vsi_alloc_rings(vsi);
2884 if (ret)
2885 goto err_vectors;
2886
2887 break;
2888 default:
2889 break;
2890 }
2891
2892 /* configure VSI nodes based on number of queues and TC's */
2893 for (i = 0; i < vsi->tc_cfg.numtc; i++) {
2894 max_txqs[i] = vsi->alloc_txq;
2895
2896 if (ice_is_xdp_ena_vsi(vsi))
2897 max_txqs[i] += vsi->num_xdp_txq;
2898 }
2899
2900 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2901 max_txqs);
2902 if (status) {
2903 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n",
2904 vsi->vsi_num, ice_stat_str(status));
2905 if (init_vsi) {
2906 ret = -EIO;
2907 goto err_vectors;
2908 } else {
2909 return ice_schedule_reset(pf, ICE_RESET_PFR);
2910 }
2911 }
2912 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
2913 kfree(coalesce);
2914
2915 return 0;
2916
2917err_vectors:
2918 ice_vsi_free_q_vectors(vsi);
2919err_rings:
2920 if (vsi->netdev) {
2921 vsi->current_netdev_flags = 0;
2922 unregister_netdev(vsi->netdev);
2923 free_netdev(vsi->netdev);
2924 vsi->netdev = NULL;
2925 }
2926err_vsi:
2927 ice_vsi_clear(vsi);
2928 set_bit(__ICE_RESET_FAILED, pf->state);
2929 kfree(coalesce);
2930 return ret;
2931}
2932
2933/**
2934 * ice_is_reset_in_progress - check for a reset in progress
2935 * @state: PF state field
2936 */
2937bool ice_is_reset_in_progress(unsigned long *state)
2938{
2939 return test_bit(__ICE_RESET_OICR_RECV, state) ||
2940 test_bit(__ICE_DCBNL_DEVRESET, state) ||
2941 test_bit(__ICE_PFR_REQ, state) ||
2942 test_bit(__ICE_CORER_REQ, state) ||
2943 test_bit(__ICE_GLOBR_REQ, state);
2944}
2945
2946#ifdef CONFIG_DCB
2947/**
2948 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
2949 * @vsi: VSI being configured
2950 * @ctx: the context buffer returned from AQ VSI update command
2951 */
2952static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
2953{
2954 vsi->info.mapping_flags = ctx->info.mapping_flags;
2955 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
2956 sizeof(vsi->info.q_mapping));
2957 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
2958 sizeof(vsi->info.tc_mapping));
2959}
2960
2961/**
2962 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
2963 * @vsi: VSI to be configured
2964 * @ena_tc: TC bitmap
2965 *
2966 * VSI queues expected to be quiesced before calling this function
2967 */
2968int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
2969{
2970 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2971 struct ice_pf *pf = vsi->back;
2972 struct ice_vsi_ctx *ctx;
2973 enum ice_status status;
2974 struct device *dev;
2975 int i, ret = 0;
2976 u8 num_tc = 0;
2977
2978 dev = ice_pf_to_dev(pf);
2979
2980 ice_for_each_traffic_class(i) {
2981 /* build bitmap of enabled TCs */
2982 if (ena_tc & BIT(i))
2983 num_tc++;
2984 /* populate max_txqs per TC */
2985 max_txqs[i] = vsi->alloc_txq;
2986 }
2987
2988 vsi->tc_cfg.ena_tc = ena_tc;
2989 vsi->tc_cfg.numtc = num_tc;
2990
2991 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2992 if (!ctx)
2993 return -ENOMEM;
2994
2995 ctx->vf_num = 0;
2996 ctx->info = vsi->info;
2997
2998 ice_vsi_setup_q_map(vsi, ctx);
2999
3000 /* must to indicate which section of VSI context are being modified */
3001 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3002 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3003 if (status) {
3004 dev_info(dev, "Failed VSI Update\n");
3005 ret = -EIO;
3006 goto out;
3007 }
3008
3009 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3010 max_txqs);
3011
3012 if (status) {
3013 dev_err(dev, "VSI %d failed TC config, error %s\n",
3014 vsi->vsi_num, ice_stat_str(status));
3015 ret = -EIO;
3016 goto out;
3017 }
3018 ice_vsi_update_q_map(vsi, ctx);
3019 vsi->info.valid_sections = 0;
3020
3021 ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3022out:
3023 kfree(ctx);
3024 return ret;
3025}
3026#endif /* CONFIG_DCB */
3027
3028/**
3029 * ice_update_ring_stats - Update ring statistics
3030 * @ring: ring to update
3031 * @cont: used to increment per-vector counters
3032 * @pkts: number of processed packets
3033 * @bytes: number of processed bytes
3034 *
3035 * This function assumes that caller has acquired a u64_stats_sync lock.
3036 */
3037static void
3038ice_update_ring_stats(struct ice_ring *ring, struct ice_ring_container *cont,
3039 u64 pkts, u64 bytes)
3040{
3041 ring->stats.bytes += bytes;
3042 ring->stats.pkts += pkts;
3043 cont->total_bytes += bytes;
3044 cont->total_pkts += pkts;
3045}
3046
3047/**
3048 * ice_update_tx_ring_stats - Update Tx ring specific counters
3049 * @tx_ring: ring to update
3050 * @pkts: number of processed packets
3051 * @bytes: number of processed bytes
3052 */
3053void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes)
3054{
3055 u64_stats_update_begin(&tx_ring->syncp);
3056 ice_update_ring_stats(tx_ring, &tx_ring->q_vector->tx, pkts, bytes);
3057 u64_stats_update_end(&tx_ring->syncp);
3058}
3059
3060/**
3061 * ice_update_rx_ring_stats - Update Rx ring specific counters
3062 * @rx_ring: ring to update
3063 * @pkts: number of processed packets
3064 * @bytes: number of processed bytes
3065 */
3066void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes)
3067{
3068 u64_stats_update_begin(&rx_ring->syncp);
3069 ice_update_ring_stats(rx_ring, &rx_ring->q_vector->rx, pkts, bytes);
3070 u64_stats_update_end(&rx_ring->syncp);
3071}
3072
3073/**
3074 * ice_status_to_errno - convert from enum ice_status to Linux errno
3075 * @err: ice_status value to convert
3076 */
3077int ice_status_to_errno(enum ice_status err)
3078{
3079 switch (err) {
3080 case ICE_SUCCESS:
3081 return 0;
3082 case ICE_ERR_DOES_NOT_EXIST:
3083 return -ENOENT;
3084 case ICE_ERR_OUT_OF_RANGE:
3085 return -ENOTTY;
3086 case ICE_ERR_PARAM:
3087 return -EINVAL;
3088 case ICE_ERR_NO_MEMORY:
3089 return -ENOMEM;
3090 case ICE_ERR_MAX_LIMIT:
3091 return -EAGAIN;
3092 default:
3093 return -EINVAL;
3094 }
3095}
3096
3097/**
3098 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3099 * @sw: switch to check if its default forwarding VSI is free
3100 *
3101 * Return true if the default forwarding VSI is already being used, else returns
3102 * false signalling that it's available to use.
3103 */
3104bool ice_is_dflt_vsi_in_use(struct ice_sw *sw)
3105{
3106 return (sw->dflt_vsi && sw->dflt_vsi_ena);
3107}
3108
3109/**
3110 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3111 * @sw: switch for the default forwarding VSI to compare against
3112 * @vsi: VSI to compare against default forwarding VSI
3113 *
3114 * If this VSI passed in is the default forwarding VSI then return true, else
3115 * return false
3116 */
3117bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
3118{
3119 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena);
3120}
3121
3122/**
3123 * ice_set_dflt_vsi - set the default forwarding VSI
3124 * @sw: switch used to assign the default forwarding VSI
3125 * @vsi: VSI getting set as the default forwarding VSI on the switch
3126 *
3127 * If the VSI passed in is already the default VSI and it's enabled just return
3128 * success.
3129 *
3130 * If there is already a default VSI on the switch and it's enabled then return
3131 * -EEXIST since there can only be one default VSI per switch.
3132 *
3133 * Otherwise try to set the VSI passed in as the switch's default VSI and
3134 * return the result.
3135 */
3136int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
3137{
3138 enum ice_status status;
3139 struct device *dev;
3140
3141 if (!sw || !vsi)
3142 return -EINVAL;
3143
3144 dev = ice_pf_to_dev(vsi->back);
3145
3146 /* the VSI passed in is already the default VSI */
3147 if (ice_is_vsi_dflt_vsi(sw, vsi)) {
3148 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3149 vsi->vsi_num);
3150 return 0;
3151 }
3152
3153 /* another VSI is already the default VSI for this switch */
3154 if (ice_is_dflt_vsi_in_use(sw)) {
3155 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n",
3156 sw->dflt_vsi->vsi_num);
3157 return -EEXIST;
3158 }
3159
3160 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX);
3161 if (status) {
3162 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n",
3163 vsi->vsi_num, ice_stat_str(status));
3164 return -EIO;
3165 }
3166
3167 sw->dflt_vsi = vsi;
3168 sw->dflt_vsi_ena = true;
3169
3170 return 0;
3171}
3172
3173/**
3174 * ice_clear_dflt_vsi - clear the default forwarding VSI
3175 * @sw: switch used to clear the default VSI
3176 *
3177 * If the switch has no default VSI or it's not enabled then return error.
3178 *
3179 * Otherwise try to clear the default VSI and return the result.
3180 */
3181int ice_clear_dflt_vsi(struct ice_sw *sw)
3182{
3183 struct ice_vsi *dflt_vsi;
3184 enum ice_status status;
3185 struct device *dev;
3186
3187 if (!sw)
3188 return -EINVAL;
3189
3190 dev = ice_pf_to_dev(sw->pf);
3191
3192 dflt_vsi = sw->dflt_vsi;
3193
3194 /* there is no default VSI configured */
3195 if (!ice_is_dflt_vsi_in_use(sw))
3196 return -ENODEV;
3197
3198 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false,
3199 ICE_FLTR_RX);
3200 if (status) {
3201 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n",
3202 dflt_vsi->vsi_num, ice_stat_str(status));
3203 return -EIO;
3204 }
3205
3206 sw->dflt_vsi = NULL;
3207 sw->dflt_vsi_ena = false;
3208
3209 return 0;
3210}
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4#include "ice.h"
5#include "ice_lib.h"
6#include "ice_dcb_lib.h"
7
8/**
9 * ice_setup_rx_ctx - Configure a receive ring context
10 * @ring: The Rx ring to configure
11 *
12 * Configure the Rx descriptor ring in RLAN context.
13 */
14static int ice_setup_rx_ctx(struct ice_ring *ring)
15{
16 struct ice_vsi *vsi = ring->vsi;
17 struct ice_hw *hw = &vsi->back->hw;
18 u32 rxdid = ICE_RXDID_FLEX_NIC;
19 struct ice_rlan_ctx rlan_ctx;
20 u32 regval;
21 u16 pf_q;
22 int err;
23
24 /* what is Rx queue number in global space of 2K Rx queues */
25 pf_q = vsi->rxq_map[ring->q_index];
26
27 /* clear the context structure first */
28 memset(&rlan_ctx, 0, sizeof(rlan_ctx));
29
30 rlan_ctx.base = ring->dma >> 7;
31
32 rlan_ctx.qlen = ring->count;
33
34 /* Receive Packet Data Buffer Size.
35 * The Packet Data Buffer Size is defined in 128 byte units.
36 */
37 rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
38
39 /* use 32 byte descriptors */
40 rlan_ctx.dsize = 1;
41
42 /* Strip the Ethernet CRC bytes before the packet is posted to host
43 * memory.
44 */
45 rlan_ctx.crcstrip = 1;
46
47 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
48 rlan_ctx.l2tsel = 1;
49
50 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
51 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
52 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
53
54 /* This controls whether VLAN is stripped from inner headers
55 * The VLAN in the inner L2 header is stripped to the receive
56 * descriptor if enabled by this flag.
57 */
58 rlan_ctx.showiv = 0;
59
60 /* Max packet size for this queue - must not be set to a larger value
61 * than 5 x DBUF
62 */
63 rlan_ctx.rxmax = min_t(u16, vsi->max_frame,
64 ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len);
65
66 /* Rx queue threshold in units of 64 */
67 rlan_ctx.lrxqthresh = 1;
68
69 /* Enable Flexible Descriptors in the queue context which
70 * allows this driver to select a specific receive descriptor format
71 */
72 if (vsi->type != ICE_VSI_VF) {
73 regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
74 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
75 QRXFLXP_CNTXT_RXDID_IDX_M;
76
77 /* increasing context priority to pick up profile ID;
78 * default is 0x01; setting to 0x03 to ensure profile
79 * is programming if prev context is of same priority
80 */
81 regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
82 QRXFLXP_CNTXT_RXDID_PRIO_M;
83
84 wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
85 }
86
87 /* Absolute queue number out of 2K needs to be passed */
88 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
89 if (err) {
90 dev_err(&vsi->back->pdev->dev,
91 "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
92 pf_q, err);
93 return -EIO;
94 }
95
96 if (vsi->type == ICE_VSI_VF)
97 return 0;
98
99 /* init queue specific tail register */
100 ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
101 writel(0, ring->tail);
102 ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring));
103
104 return 0;
105}
106
107/**
108 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
109 * @ring: The Tx ring to configure
110 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
111 * @pf_q: queue index in the PF space
112 *
113 * Configure the Tx descriptor ring in TLAN context.
114 */
115static void
116ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
117{
118 struct ice_vsi *vsi = ring->vsi;
119 struct ice_hw *hw = &vsi->back->hw;
120
121 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
122
123 tlan_ctx->port_num = vsi->port_info->lport;
124
125 /* Transmit Queue Length */
126 tlan_ctx->qlen = ring->count;
127
128 ice_set_cgd_num(tlan_ctx, ring);
129
130 /* PF number */
131 tlan_ctx->pf_num = hw->pf_id;
132
133 /* queue belongs to a specific VSI type
134 * VF / VM index should be programmed per vmvf_type setting:
135 * for vmvf_type = VF, it is VF number between 0-256
136 * for vmvf_type = VM, it is VM number between 0-767
137 * for PF or EMP this field should be set to zero
138 */
139 switch (vsi->type) {
140 case ICE_VSI_LB:
141 /* fall through */
142 case ICE_VSI_PF:
143 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
144 break;
145 case ICE_VSI_VF:
146 /* Firmware expects vmvf_num to be absolute VF ID */
147 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
148 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
149 break;
150 default:
151 return;
152 }
153
154 /* make sure the context is associated with the right VSI */
155 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
156
157 tlan_ctx->tso_ena = ICE_TX_LEGACY;
158 tlan_ctx->tso_qnum = pf_q;
159
160 /* Legacy or Advanced Host Interface:
161 * 0: Advanced Host Interface
162 * 1: Legacy Host Interface
163 */
164 tlan_ctx->legacy_int = ICE_TX_LEGACY;
165}
166
167/**
168 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
169 * @pf: the PF being configured
170 * @pf_q: the PF queue
171 * @ena: enable or disable state of the queue
172 *
173 * This routine will wait for the given Rx queue of the PF to reach the
174 * enabled or disabled state.
175 * Returns -ETIMEDOUT in case of failing to reach the requested state after
176 * multiple retries; else will return 0 in case of success.
177 */
178static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
179{
180 int i;
181
182 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
183 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
184 QRX_CTRL_QENA_STAT_M))
185 return 0;
186
187 usleep_range(20, 40);
188 }
189
190 return -ETIMEDOUT;
191}
192
193/**
194 * ice_vsi_ctrl_rx_ring - Start or stop a VSI's Rx ring
195 * @vsi: the VSI being configured
196 * @ena: start or stop the Rx rings
197 * @rxq_idx: Rx queue index
198 */
199#ifndef CONFIG_PCI_IOV
200static
201#endif /* !CONFIG_PCI_IOV */
202int ice_vsi_ctrl_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
203{
204 int pf_q = vsi->rxq_map[rxq_idx];
205 struct ice_pf *pf = vsi->back;
206 struct ice_hw *hw = &pf->hw;
207 int ret = 0;
208 u32 rx_reg;
209
210 rx_reg = rd32(hw, QRX_CTRL(pf_q));
211
212 /* Skip if the queue is already in the requested state */
213 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
214 return 0;
215
216 /* turn on/off the queue */
217 if (ena)
218 rx_reg |= QRX_CTRL_QENA_REQ_M;
219 else
220 rx_reg &= ~QRX_CTRL_QENA_REQ_M;
221 wr32(hw, QRX_CTRL(pf_q), rx_reg);
222
223 /* wait for the change to finish */
224 ret = ice_pf_rxq_wait(pf, pf_q, ena);
225 if (ret)
226 dev_err(&pf->pdev->dev,
227 "VSI idx %d Rx ring %d %sable timeout\n",
228 vsi->idx, pf_q, (ena ? "en" : "dis"));
229
230 return ret;
231}
232
233/**
234 * ice_vsi_ctrl_rx_rings - Start or stop a VSI's Rx rings
235 * @vsi: the VSI being configured
236 * @ena: start or stop the Rx rings
237 */
238static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena)
239{
240 int i, ret = 0;
241
242 for (i = 0; i < vsi->num_rxq; i++) {
243 ret = ice_vsi_ctrl_rx_ring(vsi, ena, i);
244 if (ret)
245 break;
246 }
247
248 return ret;
249}
250
251/**
252 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
253 * @vsi: VSI pointer
254 *
255 * On error: returns error code (negative)
256 * On success: returns 0
257 */
258static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
259{
260 struct ice_pf *pf = vsi->back;
261
262 /* allocate memory for both Tx and Rx ring pointers */
263 vsi->tx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq,
264 sizeof(*vsi->tx_rings), GFP_KERNEL);
265 if (!vsi->tx_rings)
266 return -ENOMEM;
267
268 vsi->rx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq,
269 sizeof(*vsi->rx_rings), GFP_KERNEL);
270 if (!vsi->rx_rings)
271 goto err_rings;
272
273 vsi->txq_map = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq,
274 sizeof(*vsi->txq_map), GFP_KERNEL);
275
276 if (!vsi->txq_map)
277 goto err_txq_map;
278
279 vsi->rxq_map = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq,
280 sizeof(*vsi->rxq_map), GFP_KERNEL);
281 if (!vsi->rxq_map)
282 goto err_rxq_map;
283
284
285 /* There is no need to allocate q_vectors for a loopback VSI. */
286 if (vsi->type == ICE_VSI_LB)
287 return 0;
288
289 /* allocate memory for q_vector pointers */
290 vsi->q_vectors = devm_kcalloc(&pf->pdev->dev, vsi->num_q_vectors,
291 sizeof(*vsi->q_vectors), GFP_KERNEL);
292 if (!vsi->q_vectors)
293 goto err_vectors;
294
295 return 0;
296
297err_vectors:
298 devm_kfree(&pf->pdev->dev, vsi->rxq_map);
299err_rxq_map:
300 devm_kfree(&pf->pdev->dev, vsi->txq_map);
301err_txq_map:
302 devm_kfree(&pf->pdev->dev, vsi->rx_rings);
303err_rings:
304 devm_kfree(&pf->pdev->dev, vsi->tx_rings);
305 return -ENOMEM;
306}
307
308/**
309 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
310 * @vsi: the VSI being configured
311 */
312static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
313{
314 switch (vsi->type) {
315 case ICE_VSI_PF:
316 /* fall through */
317 case ICE_VSI_LB:
318 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
319 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
320 break;
321 default:
322 dev_dbg(&vsi->back->pdev->dev,
323 "Not setting number of Tx/Rx descriptors for VSI type %d\n",
324 vsi->type);
325 break;
326 }
327}
328
329/**
330 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
331 * @vsi: the VSI being configured
332 * @vf_id: ID of the VF being configured
333 *
334 * Return 0 on success and a negative value on error
335 */
336static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id)
337{
338 struct ice_pf *pf = vsi->back;
339 struct ice_vf *vf = NULL;
340
341 if (vsi->type == ICE_VSI_VF)
342 vsi->vf_id = vf_id;
343
344 switch (vsi->type) {
345 case ICE_VSI_PF:
346 vsi->alloc_txq = min_t(int, ice_get_avail_txq_count(pf),
347 num_online_cpus());
348
349 pf->num_lan_tx = vsi->alloc_txq;
350
351 /* only 1 Rx queue unless RSS is enabled */
352 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags))
353 vsi->alloc_rxq = 1;
354 else
355 vsi->alloc_rxq = min_t(int, ice_get_avail_rxq_count(pf),
356 num_online_cpus());
357
358 pf->num_lan_rx = vsi->alloc_rxq;
359
360 vsi->num_q_vectors = max_t(int, vsi->alloc_rxq, vsi->alloc_txq);
361 break;
362 case ICE_VSI_VF:
363 vf = &pf->vf[vsi->vf_id];
364 vsi->alloc_txq = vf->num_vf_qs;
365 vsi->alloc_rxq = vf->num_vf_qs;
366 /* pf->num_vf_msix includes (VF miscellaneous vector +
367 * data queue interrupts). Since vsi->num_q_vectors is number
368 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
369 * original vector count
370 */
371 vsi->num_q_vectors = pf->num_vf_msix - ICE_NONQ_VECS_VF;
372 break;
373 case ICE_VSI_LB:
374 vsi->alloc_txq = 1;
375 vsi->alloc_rxq = 1;
376 break;
377 default:
378 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
379 break;
380 }
381
382 ice_vsi_set_num_desc(vsi);
383}
384
385/**
386 * ice_get_free_slot - get the next non-NULL location index in array
387 * @array: array to search
388 * @size: size of the array
389 * @curr: last known occupied index to be used as a search hint
390 *
391 * void * is being used to keep the functionality generic. This lets us use this
392 * function on any array of pointers.
393 */
394static int ice_get_free_slot(void *array, int size, int curr)
395{
396 int **tmp_array = (int **)array;
397 int next;
398
399 if (curr < (size - 1) && !tmp_array[curr + 1]) {
400 next = curr + 1;
401 } else {
402 int i = 0;
403
404 while ((i < size) && (tmp_array[i]))
405 i++;
406 if (i == size)
407 next = ICE_NO_VSI;
408 else
409 next = i;
410 }
411 return next;
412}
413
414/**
415 * ice_vsi_delete - delete a VSI from the switch
416 * @vsi: pointer to VSI being removed
417 */
418void ice_vsi_delete(struct ice_vsi *vsi)
419{
420 struct ice_pf *pf = vsi->back;
421 struct ice_vsi_ctx *ctxt;
422 enum ice_status status;
423
424 ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL);
425 if (!ctxt)
426 return;
427
428 if (vsi->type == ICE_VSI_VF)
429 ctxt->vf_num = vsi->vf_id;
430 ctxt->vsi_num = vsi->vsi_num;
431
432 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
433
434 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
435 if (status)
436 dev_err(&pf->pdev->dev, "Failed to delete VSI %i in FW\n",
437 vsi->vsi_num);
438
439 devm_kfree(&pf->pdev->dev, ctxt);
440}
441
442/**
443 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
444 * @vsi: pointer to VSI being cleared
445 */
446static void ice_vsi_free_arrays(struct ice_vsi *vsi)
447{
448 struct ice_pf *pf = vsi->back;
449
450 /* free the ring and vector containers */
451 if (vsi->q_vectors) {
452 devm_kfree(&pf->pdev->dev, vsi->q_vectors);
453 vsi->q_vectors = NULL;
454 }
455 if (vsi->tx_rings) {
456 devm_kfree(&pf->pdev->dev, vsi->tx_rings);
457 vsi->tx_rings = NULL;
458 }
459 if (vsi->rx_rings) {
460 devm_kfree(&pf->pdev->dev, vsi->rx_rings);
461 vsi->rx_rings = NULL;
462 }
463 if (vsi->txq_map) {
464 devm_kfree(&pf->pdev->dev, vsi->txq_map);
465 vsi->txq_map = NULL;
466 }
467 if (vsi->rxq_map) {
468 devm_kfree(&pf->pdev->dev, vsi->rxq_map);
469 vsi->rxq_map = NULL;
470 }
471}
472
473/**
474 * ice_vsi_clear - clean up and deallocate the provided VSI
475 * @vsi: pointer to VSI being cleared
476 *
477 * This deallocates the VSI's queue resources, removes it from the PF's
478 * VSI array if necessary, and deallocates the VSI
479 *
480 * Returns 0 on success, negative on failure
481 */
482int ice_vsi_clear(struct ice_vsi *vsi)
483{
484 struct ice_pf *pf = NULL;
485
486 if (!vsi)
487 return 0;
488
489 if (!vsi->back)
490 return -EINVAL;
491
492 pf = vsi->back;
493
494 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
495 dev_dbg(&pf->pdev->dev, "vsi does not exist at pf->vsi[%d]\n",
496 vsi->idx);
497 return -EINVAL;
498 }
499
500 mutex_lock(&pf->sw_mutex);
501 /* updates the PF for this cleared VSI */
502
503 pf->vsi[vsi->idx] = NULL;
504 if (vsi->idx < pf->next_vsi)
505 pf->next_vsi = vsi->idx;
506
507 ice_vsi_free_arrays(vsi);
508 mutex_unlock(&pf->sw_mutex);
509 devm_kfree(&pf->pdev->dev, vsi);
510
511 return 0;
512}
513
514/**
515 * ice_msix_clean_rings - MSIX mode Interrupt Handler
516 * @irq: interrupt number
517 * @data: pointer to a q_vector
518 */
519static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
520{
521 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
522
523 if (!q_vector->tx.ring && !q_vector->rx.ring)
524 return IRQ_HANDLED;
525
526 napi_schedule(&q_vector->napi);
527
528 return IRQ_HANDLED;
529}
530
531/**
532 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
533 * @pf: board private structure
534 * @type: type of VSI
535 * @vf_id: ID of the VF being configured
536 *
537 * returns a pointer to a VSI on success, NULL on failure.
538 */
539static struct ice_vsi *
540ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type, u16 vf_id)
541{
542 struct ice_vsi *vsi = NULL;
543
544 /* Need to protect the allocation of the VSIs at the PF level */
545 mutex_lock(&pf->sw_mutex);
546
547 /* If we have already allocated our maximum number of VSIs,
548 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
549 * is available to be populated
550 */
551 if (pf->next_vsi == ICE_NO_VSI) {
552 dev_dbg(&pf->pdev->dev, "out of VSI slots!\n");
553 goto unlock_pf;
554 }
555
556 vsi = devm_kzalloc(&pf->pdev->dev, sizeof(*vsi), GFP_KERNEL);
557 if (!vsi)
558 goto unlock_pf;
559
560 vsi->type = type;
561 vsi->back = pf;
562 set_bit(__ICE_DOWN, vsi->state);
563
564 vsi->idx = pf->next_vsi;
565
566 if (type == ICE_VSI_VF)
567 ice_vsi_set_num_qs(vsi, vf_id);
568 else
569 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
570
571 switch (vsi->type) {
572 case ICE_VSI_PF:
573 if (ice_vsi_alloc_arrays(vsi))
574 goto err_rings;
575
576 /* Setup default MSIX irq handler for VSI */
577 vsi->irq_handler = ice_msix_clean_rings;
578 break;
579 case ICE_VSI_VF:
580 if (ice_vsi_alloc_arrays(vsi))
581 goto err_rings;
582 break;
583 case ICE_VSI_LB:
584 if (ice_vsi_alloc_arrays(vsi))
585 goto err_rings;
586 break;
587 default:
588 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
589 goto unlock_pf;
590 }
591
592 /* fill VSI slot in the PF struct */
593 pf->vsi[pf->next_vsi] = vsi;
594
595 /* prepare pf->next_vsi for next use */
596 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
597 pf->next_vsi);
598 goto unlock_pf;
599
600err_rings:
601 devm_kfree(&pf->pdev->dev, vsi);
602 vsi = NULL;
603unlock_pf:
604 mutex_unlock(&pf->sw_mutex);
605 return vsi;
606}
607
608/**
609 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
610 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
611 *
612 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
613 */
614static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
615{
616 int offset, i;
617
618 mutex_lock(qs_cfg->qs_mutex);
619 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
620 0, qs_cfg->q_count, 0);
621 if (offset >= qs_cfg->pf_map_size) {
622 mutex_unlock(qs_cfg->qs_mutex);
623 return -ENOMEM;
624 }
625
626 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
627 for (i = 0; i < qs_cfg->q_count; i++)
628 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = i + offset;
629 mutex_unlock(qs_cfg->qs_mutex);
630
631 return 0;
632}
633
634/**
635 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
636 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
637 *
638 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
639 */
640static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
641{
642 int i, index = 0;
643
644 mutex_lock(qs_cfg->qs_mutex);
645 for (i = 0; i < qs_cfg->q_count; i++) {
646 index = find_next_zero_bit(qs_cfg->pf_map,
647 qs_cfg->pf_map_size, index);
648 if (index >= qs_cfg->pf_map_size)
649 goto err_scatter;
650 set_bit(index, qs_cfg->pf_map);
651 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = index;
652 }
653 mutex_unlock(qs_cfg->qs_mutex);
654
655 return 0;
656err_scatter:
657 for (index = 0; index < i; index++) {
658 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
659 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
660 }
661 mutex_unlock(qs_cfg->qs_mutex);
662
663 return -ENOMEM;
664}
665
666/**
667 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
668 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
669 *
670 * This function first tries to find contiguous space. If it is not successful,
671 * it tries with the scatter approach.
672 *
673 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
674 */
675static int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
676{
677 int ret = 0;
678
679 ret = __ice_vsi_get_qs_contig(qs_cfg);
680 if (ret) {
681 /* contig failed, so try with scatter approach */
682 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
683 qs_cfg->q_count = min_t(u16, qs_cfg->q_count,
684 qs_cfg->scatter_count);
685 ret = __ice_vsi_get_qs_sc(qs_cfg);
686 }
687 return ret;
688}
689
690/**
691 * ice_vsi_get_qs - Assign queues from PF to VSI
692 * @vsi: the VSI to assign queues to
693 *
694 * Returns 0 on success and a negative value on error
695 */
696static int ice_vsi_get_qs(struct ice_vsi *vsi)
697{
698 struct ice_pf *pf = vsi->back;
699 struct ice_qs_cfg tx_qs_cfg = {
700 .qs_mutex = &pf->avail_q_mutex,
701 .pf_map = pf->avail_txqs,
702 .pf_map_size = pf->max_pf_txqs,
703 .q_count = vsi->alloc_txq,
704 .scatter_count = ICE_MAX_SCATTER_TXQS,
705 .vsi_map = vsi->txq_map,
706 .vsi_map_offset = 0,
707 .mapping_mode = vsi->tx_mapping_mode
708 };
709 struct ice_qs_cfg rx_qs_cfg = {
710 .qs_mutex = &pf->avail_q_mutex,
711 .pf_map = pf->avail_rxqs,
712 .pf_map_size = pf->max_pf_rxqs,
713 .q_count = vsi->alloc_rxq,
714 .scatter_count = ICE_MAX_SCATTER_RXQS,
715 .vsi_map = vsi->rxq_map,
716 .vsi_map_offset = 0,
717 .mapping_mode = vsi->rx_mapping_mode
718 };
719 int ret = 0;
720
721 vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG;
722 vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG;
723
724 ret = __ice_vsi_get_qs(&tx_qs_cfg);
725 if (!ret)
726 ret = __ice_vsi_get_qs(&rx_qs_cfg);
727
728 return ret;
729}
730
731/**
732 * ice_vsi_put_qs - Release queues from VSI to PF
733 * @vsi: the VSI that is going to release queues
734 */
735void ice_vsi_put_qs(struct ice_vsi *vsi)
736{
737 struct ice_pf *pf = vsi->back;
738 int i;
739
740 mutex_lock(&pf->avail_q_mutex);
741
742 for (i = 0; i < vsi->alloc_txq; i++) {
743 clear_bit(vsi->txq_map[i], pf->avail_txqs);
744 vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
745 }
746
747 for (i = 0; i < vsi->alloc_rxq; i++) {
748 clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
749 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
750 }
751
752 mutex_unlock(&pf->avail_q_mutex);
753}
754
755/**
756 * ice_is_safe_mode
757 * @pf: pointer to the PF struct
758 *
759 * returns true if driver is in safe mode, false otherwise
760 */
761bool ice_is_safe_mode(struct ice_pf *pf)
762{
763 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
764}
765
766/**
767 * ice_rss_clean - Delete RSS related VSI structures that hold user inputs
768 * @vsi: the VSI being removed
769 */
770static void ice_rss_clean(struct ice_vsi *vsi)
771{
772 struct ice_pf *pf;
773
774 pf = vsi->back;
775
776 if (vsi->rss_hkey_user)
777 devm_kfree(&pf->pdev->dev, vsi->rss_hkey_user);
778 if (vsi->rss_lut_user)
779 devm_kfree(&pf->pdev->dev, vsi->rss_lut_user);
780}
781
782/**
783 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
784 * @vsi: the VSI being configured
785 */
786static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
787{
788 struct ice_hw_common_caps *cap;
789 struct ice_pf *pf = vsi->back;
790
791 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
792 vsi->rss_size = 1;
793 return;
794 }
795
796 cap = &pf->hw.func_caps.common_cap;
797 switch (vsi->type) {
798 case ICE_VSI_PF:
799 /* PF VSI will inherit RSS instance of PF */
800 vsi->rss_table_size = cap->rss_table_size;
801 vsi->rss_size = min_t(int, num_online_cpus(),
802 BIT(cap->rss_table_entry_width));
803 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
804 break;
805 case ICE_VSI_VF:
806 /* VF VSI will gets a small RSS table
807 * For VSI_LUT, LUT size should be set to 64 bytes
808 */
809 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
810 vsi->rss_size = min_t(int, num_online_cpus(),
811 BIT(cap->rss_table_entry_width));
812 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
813 break;
814 case ICE_VSI_LB:
815 break;
816 default:
817 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n",
818 vsi->type);
819 break;
820 }
821}
822
823/**
824 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
825 * @ctxt: the VSI context being set
826 *
827 * This initializes a default VSI context for all sections except the Queues.
828 */
829static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
830{
831 u32 table = 0;
832
833 memset(&ctxt->info, 0, sizeof(ctxt->info));
834 /* VSI's should be allocated from shared pool */
835 ctxt->alloc_from_pool = true;
836 /* Src pruning enabled by default */
837 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
838 /* Traffic from VSI can be sent to LAN */
839 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
840 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy
841 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all
842 * packets untagged/tagged.
843 */
844 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL &
845 ICE_AQ_VSI_VLAN_MODE_M) >>
846 ICE_AQ_VSI_VLAN_MODE_S);
847 /* Have 1:1 UP mapping for both ingress/egress tables */
848 table |= ICE_UP_TABLE_TRANSLATE(0, 0);
849 table |= ICE_UP_TABLE_TRANSLATE(1, 1);
850 table |= ICE_UP_TABLE_TRANSLATE(2, 2);
851 table |= ICE_UP_TABLE_TRANSLATE(3, 3);
852 table |= ICE_UP_TABLE_TRANSLATE(4, 4);
853 table |= ICE_UP_TABLE_TRANSLATE(5, 5);
854 table |= ICE_UP_TABLE_TRANSLATE(6, 6);
855 table |= ICE_UP_TABLE_TRANSLATE(7, 7);
856 ctxt->info.ingress_table = cpu_to_le32(table);
857 ctxt->info.egress_table = cpu_to_le32(table);
858 /* Have 1:1 UP mapping for outer to inner UP table */
859 ctxt->info.outer_up_table = cpu_to_le32(table);
860 /* No Outer tag support outer_tag_flags remains to zero */
861}
862
863/**
864 * ice_vsi_setup_q_map - Setup a VSI queue map
865 * @vsi: the VSI being configured
866 * @ctxt: VSI context structure
867 */
868static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
869{
870 u16 offset = 0, qmap = 0, tx_count = 0;
871 u16 qcount_tx = vsi->alloc_txq;
872 u16 qcount_rx = vsi->alloc_rxq;
873 u16 tx_numq_tc, rx_numq_tc;
874 u16 pow = 0, max_rss = 0;
875 bool ena_tc0 = false;
876 u8 netdev_tc = 0;
877 int i;
878
879 /* at least TC0 should be enabled by default */
880 if (vsi->tc_cfg.numtc) {
881 if (!(vsi->tc_cfg.ena_tc & BIT(0)))
882 ena_tc0 = true;
883 } else {
884 ena_tc0 = true;
885 }
886
887 if (ena_tc0) {
888 vsi->tc_cfg.numtc++;
889 vsi->tc_cfg.ena_tc |= 1;
890 }
891
892 rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc;
893 if (!rx_numq_tc)
894 rx_numq_tc = 1;
895 tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc;
896 if (!tx_numq_tc)
897 tx_numq_tc = 1;
898
899 /* TC mapping is a function of the number of Rx queues assigned to the
900 * VSI for each traffic class and the offset of these queues.
901 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
902 * queues allocated to TC0. No:of queues is a power-of-2.
903 *
904 * If TC is not enabled, the queue offset is set to 0, and allocate one
905 * queue, this way, traffic for the given TC will be sent to the default
906 * queue.
907 *
908 * Setup number and offset of Rx queues for all TCs for the VSI
909 */
910
911 qcount_rx = rx_numq_tc;
912
913 /* qcount will change if RSS is enabled */
914 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) {
915 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) {
916 if (vsi->type == ICE_VSI_PF)
917 max_rss = ICE_MAX_LG_RSS_QS;
918 else
919 max_rss = ICE_MAX_SMALL_RSS_QS;
920 qcount_rx = min_t(int, rx_numq_tc, max_rss);
921 qcount_rx = min_t(int, qcount_rx, vsi->rss_size);
922 }
923 }
924
925 /* find the (rounded up) power-of-2 of qcount */
926 pow = order_base_2(qcount_rx);
927
928 ice_for_each_traffic_class(i) {
929 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
930 /* TC is not enabled */
931 vsi->tc_cfg.tc_info[i].qoffset = 0;
932 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
933 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
934 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
935 ctxt->info.tc_mapping[i] = 0;
936 continue;
937 }
938
939 /* TC is enabled */
940 vsi->tc_cfg.tc_info[i].qoffset = offset;
941 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
942 vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc;
943 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
944
945 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
946 ICE_AQ_VSI_TC_Q_OFFSET_M) |
947 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
948 ICE_AQ_VSI_TC_Q_NUM_M);
949 offset += qcount_rx;
950 tx_count += tx_numq_tc;
951 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
952 }
953
954 /* if offset is non-zero, means it is calculated correctly based on
955 * enabled TCs for a given VSI otherwise qcount_rx will always
956 * be correct and non-zero because it is based off - VSI's
957 * allocated Rx queues which is at least 1 (hence qcount_tx will be
958 * at least 1)
959 */
960 if (offset)
961 vsi->num_rxq = offset;
962 else
963 vsi->num_rxq = qcount_rx;
964
965 vsi->num_txq = tx_count;
966
967 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
968 dev_dbg(&vsi->back->pdev->dev, "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
969 /* since there is a chance that num_rxq could have been changed
970 * in the above for loop, make num_txq equal to num_rxq.
971 */
972 vsi->num_txq = vsi->num_rxq;
973 }
974
975 /* Rx queue mapping */
976 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
977 /* q_mapping buffer holds the info for the first queue allocated for
978 * this VSI in the PF space and also the number of queues associated
979 * with this VSI.
980 */
981 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
982 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
983}
984
985/**
986 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
987 * @ctxt: the VSI context being set
988 * @vsi: the VSI being configured
989 */
990static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
991{
992 u8 lut_type, hash_type;
993 struct ice_pf *pf;
994
995 pf = vsi->back;
996
997 switch (vsi->type) {
998 case ICE_VSI_PF:
999 /* PF VSI will inherit RSS instance of PF */
1000 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1001 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1002 break;
1003 case ICE_VSI_VF:
1004 /* VF VSI will gets a small RSS table which is a VSI LUT type */
1005 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1006 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1007 break;
1008 case ICE_VSI_LB:
1009 dev_dbg(&pf->pdev->dev, "Unsupported VSI type %d\n", vsi->type);
1010 return;
1011 default:
1012 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
1013 return;
1014 }
1015
1016 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1017 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1018 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
1019 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
1020}
1021
1022/**
1023 * ice_vsi_init - Create and initialize a VSI
1024 * @vsi: the VSI being configured
1025 *
1026 * This initializes a VSI context depending on the VSI type to be added and
1027 * passes it down to the add_vsi aq command to create a new VSI.
1028 */
1029static int ice_vsi_init(struct ice_vsi *vsi)
1030{
1031 struct ice_pf *pf = vsi->back;
1032 struct ice_hw *hw = &pf->hw;
1033 struct ice_vsi_ctx *ctxt;
1034 int ret = 0;
1035
1036 ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL);
1037 if (!ctxt)
1038 return -ENOMEM;
1039
1040 ctxt->info = vsi->info;
1041 switch (vsi->type) {
1042 case ICE_VSI_LB:
1043 /* fall through */
1044 case ICE_VSI_PF:
1045 ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1046 break;
1047 case ICE_VSI_VF:
1048 ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1049 /* VF number here is the absolute VF number (0-255) */
1050 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
1051 break;
1052 default:
1053 return -ENODEV;
1054 }
1055
1056 ice_set_dflt_vsi_ctx(ctxt);
1057 /* if the switch is in VEB mode, allow VSI loopback */
1058 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1059 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1060
1061 /* Set LUT type and HASH type if RSS is enabled */
1062 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
1063 ice_set_rss_vsi_ctx(ctxt, vsi);
1064
1065 ctxt->info.sw_id = vsi->port_info->sw_id;
1066 ice_vsi_setup_q_map(vsi, ctxt);
1067
1068 /* Enable MAC Antispoof with new VSI being initialized or updated */
1069 if (vsi->type == ICE_VSI_VF && pf->vf[vsi->vf_id].spoofchk) {
1070 ctxt->info.valid_sections |=
1071 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1072 ctxt->info.sec_flags |=
1073 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF;
1074 }
1075
1076 /* Allow control frames out of main VSI */
1077 if (vsi->type == ICE_VSI_PF) {
1078 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1079 ctxt->info.valid_sections |=
1080 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1081 }
1082
1083 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1084 if (ret) {
1085 dev_err(&pf->pdev->dev,
1086 "Add VSI failed, err %d\n", ret);
1087 return -EIO;
1088 }
1089
1090 /* keep context for update VSI operations */
1091 vsi->info = ctxt->info;
1092
1093 /* record VSI number returned */
1094 vsi->vsi_num = ctxt->vsi_num;
1095
1096 devm_kfree(&pf->pdev->dev, ctxt);
1097 return ret;
1098}
1099
1100/**
1101 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
1102 * @vsi: VSI having the memory freed
1103 * @v_idx: index of the vector to be freed
1104 */
1105static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
1106{
1107 struct ice_q_vector *q_vector;
1108 struct ice_pf *pf = vsi->back;
1109 struct ice_ring *ring;
1110
1111 if (!vsi->q_vectors[v_idx]) {
1112 dev_dbg(&pf->pdev->dev, "Queue vector at index %d not found\n",
1113 v_idx);
1114 return;
1115 }
1116 q_vector = vsi->q_vectors[v_idx];
1117
1118 ice_for_each_ring(ring, q_vector->tx)
1119 ring->q_vector = NULL;
1120 ice_for_each_ring(ring, q_vector->rx)
1121 ring->q_vector = NULL;
1122
1123 /* only VSI with an associated netdev is set up with NAPI */
1124 if (vsi->netdev)
1125 netif_napi_del(&q_vector->napi);
1126
1127 devm_kfree(&pf->pdev->dev, q_vector);
1128 vsi->q_vectors[v_idx] = NULL;
1129}
1130
1131/**
1132 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
1133 * @vsi: the VSI having memory freed
1134 */
1135void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
1136{
1137 int v_idx;
1138
1139 ice_for_each_q_vector(vsi, v_idx)
1140 ice_free_q_vector(vsi, v_idx);
1141}
1142
1143/**
1144 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
1145 * @vsi: the VSI being configured
1146 * @v_idx: index of the vector in the VSI struct
1147 *
1148 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1149 */
1150static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx)
1151{
1152 struct ice_pf *pf = vsi->back;
1153 struct ice_q_vector *q_vector;
1154
1155 /* allocate q_vector */
1156 q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL);
1157 if (!q_vector)
1158 return -ENOMEM;
1159
1160 q_vector->vsi = vsi;
1161 q_vector->v_idx = v_idx;
1162 if (vsi->type == ICE_VSI_VF)
1163 goto out;
1164 /* only set affinity_mask if the CPU is online */
1165 if (cpu_online(v_idx))
1166 cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
1167
1168 /* This will not be called in the driver load path because the netdev
1169 * will not be created yet. All other cases with register the NAPI
1170 * handler here (i.e. resume, reset/rebuild, etc.)
1171 */
1172 if (vsi->netdev)
1173 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
1174 NAPI_POLL_WEIGHT);
1175
1176out:
1177 /* tie q_vector and VSI together */
1178 vsi->q_vectors[v_idx] = q_vector;
1179
1180 return 0;
1181}
1182
1183/**
1184 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
1185 * @vsi: the VSI being configured
1186 *
1187 * We allocate one q_vector per queue interrupt. If allocation fails we
1188 * return -ENOMEM.
1189 */
1190static int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
1191{
1192 struct ice_pf *pf = vsi->back;
1193 int v_idx = 0, num_q_vectors;
1194 int err;
1195
1196 if (vsi->q_vectors[0]) {
1197 dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
1198 vsi->vsi_num);
1199 return -EEXIST;
1200 }
1201
1202 num_q_vectors = vsi->num_q_vectors;
1203
1204 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
1205 err = ice_vsi_alloc_q_vector(vsi, v_idx);
1206 if (err)
1207 goto err_out;
1208 }
1209
1210 return 0;
1211
1212err_out:
1213 while (v_idx--)
1214 ice_free_q_vector(vsi, v_idx);
1215
1216 dev_err(&pf->pdev->dev,
1217 "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
1218 vsi->num_q_vectors, vsi->vsi_num, err);
1219 vsi->num_q_vectors = 0;
1220 return err;
1221}
1222
1223/**
1224 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1225 * @vsi: ptr to the VSI
1226 *
1227 * This should only be called after ice_vsi_alloc() which allocates the
1228 * corresponding SW VSI structure and initializes num_queue_pairs for the
1229 * newly allocated VSI.
1230 *
1231 * Returns 0 on success or negative on failure
1232 */
1233static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1234{
1235 struct ice_pf *pf = vsi->back;
1236 u16 num_q_vectors;
1237
1238 /* SRIOV doesn't grab irq_tracker entries for each VSI */
1239 if (vsi->type == ICE_VSI_VF)
1240 return 0;
1241
1242 if (vsi->base_vector) {
1243 dev_dbg(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n",
1244 vsi->vsi_num, vsi->base_vector);
1245 return -EEXIST;
1246 }
1247
1248 num_q_vectors = vsi->num_q_vectors;
1249 /* reserve slots from OS requested IRQs */
1250 vsi->base_vector = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
1251 vsi->idx);
1252 if (vsi->base_vector < 0) {
1253 dev_err(&pf->pdev->dev,
1254 "Failed to get tracking for %d vectors for VSI %d, err=%d\n",
1255 num_q_vectors, vsi->vsi_num, vsi->base_vector);
1256 return -ENOENT;
1257 }
1258 pf->num_avail_sw_msix -= num_q_vectors;
1259
1260 return 0;
1261}
1262
1263/**
1264 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1265 * @vsi: the VSI having rings deallocated
1266 */
1267static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1268{
1269 int i;
1270
1271 if (vsi->tx_rings) {
1272 for (i = 0; i < vsi->alloc_txq; i++) {
1273 if (vsi->tx_rings[i]) {
1274 kfree_rcu(vsi->tx_rings[i], rcu);
1275 vsi->tx_rings[i] = NULL;
1276 }
1277 }
1278 }
1279 if (vsi->rx_rings) {
1280 for (i = 0; i < vsi->alloc_rxq; i++) {
1281 if (vsi->rx_rings[i]) {
1282 kfree_rcu(vsi->rx_rings[i], rcu);
1283 vsi->rx_rings[i] = NULL;
1284 }
1285 }
1286 }
1287}
1288
1289/**
1290 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1291 * @vsi: VSI which is having rings allocated
1292 */
1293static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1294{
1295 struct ice_pf *pf = vsi->back;
1296 int i;
1297
1298 /* Allocate Tx rings */
1299 for (i = 0; i < vsi->alloc_txq; i++) {
1300 struct ice_ring *ring;
1301
1302 /* allocate with kzalloc(), free with kfree_rcu() */
1303 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1304
1305 if (!ring)
1306 goto err_out;
1307
1308 ring->q_index = i;
1309 ring->reg_idx = vsi->txq_map[i];
1310 ring->ring_active = false;
1311 ring->vsi = vsi;
1312 ring->dev = &pf->pdev->dev;
1313 ring->count = vsi->num_tx_desc;
1314 vsi->tx_rings[i] = ring;
1315 }
1316
1317 /* Allocate Rx rings */
1318 for (i = 0; i < vsi->alloc_rxq; i++) {
1319 struct ice_ring *ring;
1320
1321 /* allocate with kzalloc(), free with kfree_rcu() */
1322 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1323 if (!ring)
1324 goto err_out;
1325
1326 ring->q_index = i;
1327 ring->reg_idx = vsi->rxq_map[i];
1328 ring->ring_active = false;
1329 ring->vsi = vsi;
1330 ring->netdev = vsi->netdev;
1331 ring->dev = &pf->pdev->dev;
1332 ring->count = vsi->num_rx_desc;
1333 vsi->rx_rings[i] = ring;
1334 }
1335
1336 return 0;
1337
1338err_out:
1339 ice_vsi_clear_rings(vsi);
1340 return -ENOMEM;
1341}
1342
1343/**
1344 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
1345 * @vsi: the VSI being configured
1346 *
1347 * This function maps descriptor rings to the queue-specific vectors allotted
1348 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
1349 * and Rx rings to the vector as "efficiently" as possible.
1350 */
1351#ifdef CONFIG_DCB
1352void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
1353#else
1354static void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
1355#endif /* CONFIG_DCB */
1356{
1357 int q_vectors = vsi->num_q_vectors;
1358 int tx_rings_rem, rx_rings_rem;
1359 int v_id;
1360
1361 /* initially assigning remaining rings count to VSIs num queue value */
1362 tx_rings_rem = vsi->num_txq;
1363 rx_rings_rem = vsi->num_rxq;
1364
1365 for (v_id = 0; v_id < q_vectors; v_id++) {
1366 struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
1367 int tx_rings_per_v, rx_rings_per_v, q_id, q_base;
1368
1369 /* Tx rings mapping to vector */
1370 tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id);
1371 q_vector->num_ring_tx = tx_rings_per_v;
1372 q_vector->tx.ring = NULL;
1373 q_vector->tx.itr_idx = ICE_TX_ITR;
1374 q_base = vsi->num_txq - tx_rings_rem;
1375
1376 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
1377 struct ice_ring *tx_ring = vsi->tx_rings[q_id];
1378
1379 tx_ring->q_vector = q_vector;
1380 tx_ring->next = q_vector->tx.ring;
1381 q_vector->tx.ring = tx_ring;
1382 }
1383 tx_rings_rem -= tx_rings_per_v;
1384
1385 /* Rx rings mapping to vector */
1386 rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id);
1387 q_vector->num_ring_rx = rx_rings_per_v;
1388 q_vector->rx.ring = NULL;
1389 q_vector->rx.itr_idx = ICE_RX_ITR;
1390 q_base = vsi->num_rxq - rx_rings_rem;
1391
1392 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
1393 struct ice_ring *rx_ring = vsi->rx_rings[q_id];
1394
1395 rx_ring->q_vector = q_vector;
1396 rx_ring->next = q_vector->rx.ring;
1397 q_vector->rx.ring = rx_ring;
1398 }
1399 rx_rings_rem -= rx_rings_per_v;
1400 }
1401}
1402
1403/**
1404 * ice_vsi_manage_rss_lut - disable/enable RSS
1405 * @vsi: the VSI being changed
1406 * @ena: boolean value indicating if this is an enable or disable request
1407 *
1408 * In the event of disable request for RSS, this function will zero out RSS
1409 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1410 * LUT.
1411 */
1412int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1413{
1414 int err = 0;
1415 u8 *lut;
1416
1417 lut = devm_kzalloc(&vsi->back->pdev->dev, vsi->rss_table_size,
1418 GFP_KERNEL);
1419 if (!lut)
1420 return -ENOMEM;
1421
1422 if (ena) {
1423 if (vsi->rss_lut_user)
1424 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1425 else
1426 ice_fill_rss_lut(lut, vsi->rss_table_size,
1427 vsi->rss_size);
1428 }
1429
1430 err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size);
1431 devm_kfree(&vsi->back->pdev->dev, lut);
1432 return err;
1433}
1434
1435/**
1436 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1437 * @vsi: VSI to be configured
1438 */
1439static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1440{
1441 struct ice_aqc_get_set_rss_keys *key;
1442 struct ice_pf *pf = vsi->back;
1443 enum ice_status status;
1444 int err = 0;
1445 u8 *lut;
1446
1447 vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq);
1448
1449 lut = devm_kzalloc(&pf->pdev->dev, vsi->rss_table_size, GFP_KERNEL);
1450 if (!lut)
1451 return -ENOMEM;
1452
1453 if (vsi->rss_lut_user)
1454 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1455 else
1456 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1457
1458 status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut,
1459 vsi->rss_table_size);
1460
1461 if (status) {
1462 dev_err(&pf->pdev->dev,
1463 "set_rss_lut failed, error %d\n", status);
1464 err = -EIO;
1465 goto ice_vsi_cfg_rss_exit;
1466 }
1467
1468 key = devm_kzalloc(&pf->pdev->dev, sizeof(*key), GFP_KERNEL);
1469 if (!key) {
1470 err = -ENOMEM;
1471 goto ice_vsi_cfg_rss_exit;
1472 }
1473
1474 if (vsi->rss_hkey_user)
1475 memcpy(key,
1476 (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user,
1477 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1478 else
1479 netdev_rss_key_fill((void *)key,
1480 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1481
1482 status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key);
1483
1484 if (status) {
1485 dev_err(&pf->pdev->dev, "set_rss_key failed, error %d\n",
1486 status);
1487 err = -EIO;
1488 }
1489
1490 devm_kfree(&pf->pdev->dev, key);
1491ice_vsi_cfg_rss_exit:
1492 devm_kfree(&pf->pdev->dev, lut);
1493 return err;
1494}
1495
1496/**
1497 * ice_add_mac_to_list - Add a MAC address filter entry to the list
1498 * @vsi: the VSI to be forwarded to
1499 * @add_list: pointer to the list which contains MAC filter entries
1500 * @macaddr: the MAC address to be added.
1501 *
1502 * Adds MAC address filter entry to the temp list
1503 *
1504 * Returns 0 on success or ENOMEM on failure.
1505 */
1506int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list,
1507 const u8 *macaddr)
1508{
1509 struct ice_fltr_list_entry *tmp;
1510 struct ice_pf *pf = vsi->back;
1511
1512 tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_ATOMIC);
1513 if (!tmp)
1514 return -ENOMEM;
1515
1516 tmp->fltr_info.flag = ICE_FLTR_TX;
1517 tmp->fltr_info.src_id = ICE_SRC_ID_VSI;
1518 tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC;
1519 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1520 tmp->fltr_info.vsi_handle = vsi->idx;
1521 ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr);
1522
1523 INIT_LIST_HEAD(&tmp->list_entry);
1524 list_add(&tmp->list_entry, add_list);
1525
1526 return 0;
1527}
1528
1529/**
1530 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1531 * @vsi: the VSI to be updated
1532 */
1533void ice_update_eth_stats(struct ice_vsi *vsi)
1534{
1535 struct ice_eth_stats *prev_es, *cur_es;
1536 struct ice_hw *hw = &vsi->back->hw;
1537 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */
1538
1539 prev_es = &vsi->eth_stats_prev;
1540 cur_es = &vsi->eth_stats;
1541
1542 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1543 &prev_es->rx_bytes, &cur_es->rx_bytes);
1544
1545 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1546 &prev_es->rx_unicast, &cur_es->rx_unicast);
1547
1548 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1549 &prev_es->rx_multicast, &cur_es->rx_multicast);
1550
1551 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1552 &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1553
1554 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1555 &prev_es->rx_discards, &cur_es->rx_discards);
1556
1557 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1558 &prev_es->tx_bytes, &cur_es->tx_bytes);
1559
1560 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1561 &prev_es->tx_unicast, &cur_es->tx_unicast);
1562
1563 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1564 &prev_es->tx_multicast, &cur_es->tx_multicast);
1565
1566 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1567 &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1568
1569 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1570 &prev_es->tx_errors, &cur_es->tx_errors);
1571
1572 vsi->stat_offsets_loaded = true;
1573}
1574
1575/**
1576 * ice_free_fltr_list - free filter lists helper
1577 * @dev: pointer to the device struct
1578 * @h: pointer to the list head to be freed
1579 *
1580 * Helper function to free filter lists previously created using
1581 * ice_add_mac_to_list
1582 */
1583void ice_free_fltr_list(struct device *dev, struct list_head *h)
1584{
1585 struct ice_fltr_list_entry *e, *tmp;
1586
1587 list_for_each_entry_safe(e, tmp, h, list_entry) {
1588 list_del(&e->list_entry);
1589 devm_kfree(dev, e);
1590 }
1591}
1592
1593/**
1594 * ice_vsi_add_vlan - Add VSI membership for given VLAN
1595 * @vsi: the VSI being configured
1596 * @vid: VLAN ID to be added
1597 */
1598int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid)
1599{
1600 struct ice_fltr_list_entry *tmp;
1601 struct ice_pf *pf = vsi->back;
1602 LIST_HEAD(tmp_add_list);
1603 enum ice_status status;
1604 int err = 0;
1605
1606 tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_KERNEL);
1607 if (!tmp)
1608 return -ENOMEM;
1609
1610 tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
1611 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1612 tmp->fltr_info.flag = ICE_FLTR_TX;
1613 tmp->fltr_info.src_id = ICE_SRC_ID_VSI;
1614 tmp->fltr_info.vsi_handle = vsi->idx;
1615 tmp->fltr_info.l_data.vlan.vlan_id = vid;
1616
1617 INIT_LIST_HEAD(&tmp->list_entry);
1618 list_add(&tmp->list_entry, &tmp_add_list);
1619
1620 status = ice_add_vlan(&pf->hw, &tmp_add_list);
1621 if (status) {
1622 err = -ENODEV;
1623 dev_err(&pf->pdev->dev, "Failure Adding VLAN %d on VSI %i\n",
1624 vid, vsi->vsi_num);
1625 }
1626
1627 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
1628 return err;
1629}
1630
1631/**
1632 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
1633 * @vsi: the VSI being configured
1634 * @vid: VLAN ID to be removed
1635 *
1636 * Returns 0 on success and negative on failure
1637 */
1638int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
1639{
1640 struct ice_fltr_list_entry *list;
1641 struct ice_pf *pf = vsi->back;
1642 LIST_HEAD(tmp_add_list);
1643 enum ice_status status;
1644 int err = 0;
1645
1646 list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
1647 if (!list)
1648 return -ENOMEM;
1649
1650 list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
1651 list->fltr_info.vsi_handle = vsi->idx;
1652 list->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1653 list->fltr_info.l_data.vlan.vlan_id = vid;
1654 list->fltr_info.flag = ICE_FLTR_TX;
1655 list->fltr_info.src_id = ICE_SRC_ID_VSI;
1656
1657 INIT_LIST_HEAD(&list->list_entry);
1658 list_add(&list->list_entry, &tmp_add_list);
1659
1660 status = ice_remove_vlan(&pf->hw, &tmp_add_list);
1661 if (status == ICE_ERR_DOES_NOT_EXIST) {
1662 dev_dbg(&pf->pdev->dev,
1663 "Failed to remove VLAN %d on VSI %i, it does not exist, status: %d\n",
1664 vid, vsi->vsi_num, status);
1665 } else if (status) {
1666 dev_err(&pf->pdev->dev,
1667 "Error removing VLAN %d on vsi %i error: %d\n",
1668 vid, vsi->vsi_num, status);
1669 err = -EIO;
1670 }
1671
1672 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
1673 return err;
1674}
1675
1676/**
1677 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1678 * @vsi: the VSI being configured
1679 *
1680 * Return 0 on success and a negative value on error
1681 * Configure the Rx VSI for operation.
1682 */
1683int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1684{
1685 u16 i;
1686
1687 if (vsi->type == ICE_VSI_VF)
1688 goto setup_rings;
1689
1690 if (vsi->netdev && vsi->netdev->mtu > ETH_DATA_LEN)
1691 vsi->max_frame = vsi->netdev->mtu +
1692 ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
1693 else
1694 vsi->max_frame = ICE_RXBUF_2048;
1695
1696 vsi->rx_buf_len = ICE_RXBUF_2048;
1697setup_rings:
1698 /* set up individual rings */
1699 for (i = 0; i < vsi->num_rxq; i++) {
1700 int err;
1701
1702 err = ice_setup_rx_ctx(vsi->rx_rings[i]);
1703 if (err) {
1704 dev_err(&vsi->back->pdev->dev,
1705 "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
1706 i, err);
1707 return err;
1708 }
1709 }
1710
1711 return 0;
1712}
1713
1714/**
1715 * ice_vsi_cfg_txq - Configure single Tx queue
1716 * @vsi: the VSI that queue belongs to
1717 * @ring: Tx ring to be configured
1718 * @tc_q_idx: queue index within given TC
1719 * @qg_buf: queue group buffer
1720 * @tc: TC that Tx ring belongs to
1721 */
1722static int
1723ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring, u16 tc_q_idx,
1724 struct ice_aqc_add_tx_qgrp *qg_buf, u8 tc)
1725{
1726 struct ice_tlan_ctx tlan_ctx = { 0 };
1727 struct ice_aqc_add_txqs_perq *txq;
1728 struct ice_pf *pf = vsi->back;
1729 u8 buf_len = sizeof(*qg_buf);
1730 enum ice_status status;
1731 u16 pf_q;
1732
1733 pf_q = ring->reg_idx;
1734 ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
1735 /* copy context contents into the qg_buf */
1736 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
1737 ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
1738 ice_tlan_ctx_info);
1739
1740 /* init queue specific tail reg. It is referred as
1741 * transmit comm scheduler queue doorbell.
1742 */
1743 ring->tail = pf->hw.hw_addr + QTX_COMM_DBELL(pf_q);
1744
1745 /* Add unique software queue handle of the Tx queue per
1746 * TC into the VSI Tx ring
1747 */
1748 ring->q_handle = tc_q_idx;
1749
1750 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle,
1751 1, qg_buf, buf_len, NULL);
1752 if (status) {
1753 dev_err(&pf->pdev->dev,
1754 "Failed to set LAN Tx queue context, error: %d\n",
1755 status);
1756 return -ENODEV;
1757 }
1758
1759 /* Add Tx Queue TEID into the VSI Tx ring from the
1760 * response. This will complete configuring and
1761 * enabling the queue.
1762 */
1763 txq = &qg_buf->txqs[0];
1764 if (pf_q == le16_to_cpu(txq->txq_id))
1765 ring->txq_teid = le32_to_cpu(txq->q_teid);
1766
1767 return 0;
1768}
1769
1770/**
1771 * ice_vsi_cfg_txqs - Configure the VSI for Tx
1772 * @vsi: the VSI being configured
1773 * @rings: Tx ring array to be configured
1774 * @offset: offset within vsi->txq_map
1775 *
1776 * Return 0 on success and a negative value on error
1777 * Configure the Tx VSI for operation.
1778 */
1779static int
1780ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings, int offset)
1781{
1782 struct ice_aqc_add_tx_qgrp *qg_buf;
1783 struct ice_pf *pf = vsi->back;
1784 u16 q_idx = 0, i;
1785 int err = 0;
1786 u8 tc;
1787
1788 qg_buf = devm_kzalloc(&pf->pdev->dev, sizeof(*qg_buf), GFP_KERNEL);
1789 if (!qg_buf)
1790 return -ENOMEM;
1791
1792 qg_buf->num_txqs = 1;
1793
1794 /* set up and configure the Tx queues for each enabled TC */
1795 ice_for_each_traffic_class(tc) {
1796 if (!(vsi->tc_cfg.ena_tc & BIT(tc)))
1797 break;
1798
1799 for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) {
1800 err = ice_vsi_cfg_txq(vsi, rings[q_idx], i + offset,
1801 qg_buf, tc);
1802 if (err)
1803 goto err_cfg_txqs;
1804
1805 q_idx++;
1806 }
1807 }
1808err_cfg_txqs:
1809 devm_kfree(&pf->pdev->dev, qg_buf);
1810 return err;
1811}
1812
1813/**
1814 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1815 * @vsi: the VSI being configured
1816 *
1817 * Return 0 on success and a negative value on error
1818 * Configure the Tx VSI for operation.
1819 */
1820int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1821{
1822 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, 0);
1823}
1824
1825/**
1826 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1827 * @intrl: interrupt rate limit in usecs
1828 * @gran: interrupt rate limit granularity in usecs
1829 *
1830 * This function converts a decimal interrupt rate limit in usecs to the format
1831 * expected by firmware.
1832 */
1833u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1834{
1835 u32 val = intrl / gran;
1836
1837 if (val)
1838 return val | GLINT_RATE_INTRL_ENA_M;
1839 return 0;
1840}
1841
1842/**
1843 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
1844 * @hw: board specific structure
1845 */
1846static void ice_cfg_itr_gran(struct ice_hw *hw)
1847{
1848 u32 regval = rd32(hw, GLINT_CTL);
1849
1850 /* no need to update global register if ITR gran is already set */
1851 if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
1852 (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
1853 GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
1854 (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
1855 GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
1856 (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
1857 GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
1858 (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
1859 GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
1860 return;
1861
1862 regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
1863 GLINT_CTL_ITR_GRAN_200_M) |
1864 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
1865 GLINT_CTL_ITR_GRAN_100_M) |
1866 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
1867 GLINT_CTL_ITR_GRAN_50_M) |
1868 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
1869 GLINT_CTL_ITR_GRAN_25_M);
1870 wr32(hw, GLINT_CTL, regval);
1871}
1872
1873/**
1874 * ice_cfg_itr - configure the initial interrupt throttle values
1875 * @hw: pointer to the HW structure
1876 * @q_vector: interrupt vector that's being configured
1877 *
1878 * Configure interrupt throttling values for the ring containers that are
1879 * associated with the interrupt vector passed in.
1880 */
1881static void
1882ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
1883{
1884 ice_cfg_itr_gran(hw);
1885
1886 if (q_vector->num_ring_rx) {
1887 struct ice_ring_container *rc = &q_vector->rx;
1888
1889 /* if this value is set then don't overwrite with default */
1890 if (!rc->itr_setting)
1891 rc->itr_setting = ICE_DFLT_RX_ITR;
1892
1893 rc->target_itr = ITR_TO_REG(rc->itr_setting);
1894 rc->next_update = jiffies + 1;
1895 rc->current_itr = rc->target_itr;
1896 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1897 ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
1898 }
1899
1900 if (q_vector->num_ring_tx) {
1901 struct ice_ring_container *rc = &q_vector->tx;
1902
1903 /* if this value is set then don't overwrite with default */
1904 if (!rc->itr_setting)
1905 rc->itr_setting = ICE_DFLT_TX_ITR;
1906
1907 rc->target_itr = ITR_TO_REG(rc->itr_setting);
1908 rc->next_update = jiffies + 1;
1909 rc->current_itr = rc->target_itr;
1910 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1911 ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
1912 }
1913}
1914
1915/**
1916 * ice_cfg_txq_interrupt - configure interrupt on Tx queue
1917 * @vsi: the VSI being configured
1918 * @txq: Tx queue being mapped to MSI-X vector
1919 * @msix_idx: MSI-X vector index within the function
1920 * @itr_idx: ITR index of the interrupt cause
1921 *
1922 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
1923 * within the function space.
1924 */
1925#ifdef CONFIG_PCI_IOV
1926void
1927ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1928#else
1929static void
1930ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1931#endif /* CONFIG_PCI_IOV */
1932{
1933 struct ice_pf *pf = vsi->back;
1934 struct ice_hw *hw = &pf->hw;
1935 u32 val;
1936
1937 itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
1938
1939 val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
1940 ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
1941
1942 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
1943}
1944
1945/**
1946 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
1947 * @vsi: the VSI being configured
1948 * @rxq: Rx queue being mapped to MSI-X vector
1949 * @msix_idx: MSI-X vector index within the function
1950 * @itr_idx: ITR index of the interrupt cause
1951 *
1952 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
1953 * within the function space.
1954 */
1955#ifdef CONFIG_PCI_IOV
1956void
1957ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1958#else
1959static void
1960ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1961#endif /* CONFIG_PCI_IOV */
1962{
1963 struct ice_pf *pf = vsi->back;
1964 struct ice_hw *hw = &pf->hw;
1965 u32 val;
1966
1967 itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
1968
1969 val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
1970 ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
1971
1972 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
1973
1974 ice_flush(hw);
1975}
1976
1977/**
1978 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1979 * @vsi: the VSI being configured
1980 *
1981 * This configures MSIX mode interrupts for the PF VSI, and should not be used
1982 * for the VF VSI.
1983 */
1984void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1985{
1986 struct ice_pf *pf = vsi->back;
1987 struct ice_hw *hw = &pf->hw;
1988 u32 txq = 0, rxq = 0;
1989 int i, q;
1990
1991 for (i = 0; i < vsi->num_q_vectors; i++) {
1992 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1993 u16 reg_idx = q_vector->reg_idx;
1994
1995 ice_cfg_itr(hw, q_vector);
1996
1997 wr32(hw, GLINT_RATE(reg_idx),
1998 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
1999
2000 /* Both Transmit Queue Interrupt Cause Control register
2001 * and Receive Queue Interrupt Cause control register
2002 * expects MSIX_INDX field to be the vector index
2003 * within the function space and not the absolute
2004 * vector index across PF or across device.
2005 * For SR-IOV VF VSIs queue vector index always starts
2006 * with 1 since first vector index(0) is used for OICR
2007 * in VF space. Since VMDq and other PF VSIs are within
2008 * the PF function space, use the vector index that is
2009 * tracked for this PF.
2010 */
2011 for (q = 0; q < q_vector->num_ring_tx; q++) {
2012 ice_cfg_txq_interrupt(vsi, txq, reg_idx,
2013 q_vector->tx.itr_idx);
2014 txq++;
2015 }
2016
2017 for (q = 0; q < q_vector->num_ring_rx; q++) {
2018 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
2019 q_vector->rx.itr_idx);
2020 rxq++;
2021 }
2022 }
2023}
2024
2025/**
2026 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
2027 * @vsi: the VSI being changed
2028 */
2029int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
2030{
2031 struct device *dev = &vsi->back->pdev->dev;
2032 struct ice_hw *hw = &vsi->back->hw;
2033 struct ice_vsi_ctx *ctxt;
2034 enum ice_status status;
2035 int ret = 0;
2036
2037 ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
2038 if (!ctxt)
2039 return -ENOMEM;
2040
2041 /* Here we are configuring the VSI to let the driver add VLAN tags by
2042 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag
2043 * insertion happens in the Tx hot path, in ice_tx_map.
2044 */
2045 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL;
2046
2047 /* Preserve existing VLAN strip setting */
2048 ctxt->info.vlan_flags |= (vsi->info.vlan_flags &
2049 ICE_AQ_VSI_VLAN_EMOD_M);
2050
2051 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
2052
2053 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
2054 if (status) {
2055 dev_err(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n",
2056 status, hw->adminq.sq_last_status);
2057 ret = -EIO;
2058 goto out;
2059 }
2060
2061 vsi->info.vlan_flags = ctxt->info.vlan_flags;
2062out:
2063 devm_kfree(dev, ctxt);
2064 return ret;
2065}
2066
2067/**
2068 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
2069 * @vsi: the VSI being changed
2070 * @ena: boolean value indicating if this is a enable or disable request
2071 */
2072int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
2073{
2074 struct device *dev = &vsi->back->pdev->dev;
2075 struct ice_hw *hw = &vsi->back->hw;
2076 struct ice_vsi_ctx *ctxt;
2077 enum ice_status status;
2078 int ret = 0;
2079
2080 ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
2081 if (!ctxt)
2082 return -ENOMEM;
2083
2084 /* Here we are configuring what the VSI should do with the VLAN tag in
2085 * the Rx packet. We can either leave the tag in the packet or put it in
2086 * the Rx descriptor.
2087 */
2088 if (ena)
2089 /* Strip VLAN tag from Rx packet and put it in the desc */
2090 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH;
2091 else
2092 /* Disable stripping. Leave tag in packet */
2093 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING;
2094
2095 /* Allow all packets untagged/tagged */
2096 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL;
2097
2098 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
2099
2100 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
2101 if (status) {
2102 dev_err(dev, "update VSI for VLAN strip failed, ena = %d err %d aq_err %d\n",
2103 ena, status, hw->adminq.sq_last_status);
2104 ret = -EIO;
2105 goto out;
2106 }
2107
2108 vsi->info.vlan_flags = ctxt->info.vlan_flags;
2109out:
2110 devm_kfree(dev, ctxt);
2111 return ret;
2112}
2113
2114/**
2115 * ice_vsi_start_rx_rings - start VSI's Rx rings
2116 * @vsi: the VSI whose rings are to be started
2117 *
2118 * Returns 0 on success and a negative value on error
2119 */
2120int ice_vsi_start_rx_rings(struct ice_vsi *vsi)
2121{
2122 return ice_vsi_ctrl_rx_rings(vsi, true);
2123}
2124
2125/**
2126 * ice_vsi_stop_rx_rings - stop VSI's Rx rings
2127 * @vsi: the VSI
2128 *
2129 * Returns 0 on success and a negative value on error
2130 */
2131int ice_vsi_stop_rx_rings(struct ice_vsi *vsi)
2132{
2133 return ice_vsi_ctrl_rx_rings(vsi, false);
2134}
2135
2136/**
2137 * ice_trigger_sw_intr - trigger a software interrupt
2138 * @hw: pointer to the HW structure
2139 * @q_vector: interrupt vector to trigger the software interrupt for
2140 */
2141void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
2142{
2143 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
2144 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
2145 GLINT_DYN_CTL_SWINT_TRIG_M |
2146 GLINT_DYN_CTL_INTENA_M);
2147}
2148
2149/**
2150 * ice_vsi_stop_tx_ring - Disable single Tx ring
2151 * @vsi: the VSI being configured
2152 * @rst_src: reset source
2153 * @rel_vmvf_num: Relative ID of VF/VM
2154 * @ring: Tx ring to be stopped
2155 * @txq_meta: Meta data of Tx ring to be stopped
2156 */
2157#ifndef CONFIG_PCI_IOV
2158static
2159#endif /* !CONFIG_PCI_IOV */
2160int
2161ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2162 u16 rel_vmvf_num, struct ice_ring *ring,
2163 struct ice_txq_meta *txq_meta)
2164{
2165 struct ice_pf *pf = vsi->back;
2166 struct ice_q_vector *q_vector;
2167 struct ice_hw *hw = &pf->hw;
2168 enum ice_status status;
2169 u32 val;
2170
2171 /* clear cause_ena bit for disabled queues */
2172 val = rd32(hw, QINT_TQCTL(ring->reg_idx));
2173 val &= ~QINT_TQCTL_CAUSE_ENA_M;
2174 wr32(hw, QINT_TQCTL(ring->reg_idx), val);
2175
2176 /* software is expected to wait for 100 ns */
2177 ndelay(100);
2178
2179 /* trigger a software interrupt for the vector
2180 * associated to the queue to schedule NAPI handler
2181 */
2182 q_vector = ring->q_vector;
2183 if (q_vector)
2184 ice_trigger_sw_intr(hw, q_vector);
2185
2186 status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
2187 txq_meta->tc, 1, &txq_meta->q_handle,
2188 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
2189 rel_vmvf_num, NULL);
2190
2191 /* if the disable queue command was exercised during an
2192 * active reset flow, ICE_ERR_RESET_ONGOING is returned.
2193 * This is not an error as the reset operation disables
2194 * queues at the hardware level anyway.
2195 */
2196 if (status == ICE_ERR_RESET_ONGOING) {
2197 dev_dbg(&vsi->back->pdev->dev,
2198 "Reset in progress. LAN Tx queues already disabled\n");
2199 } else if (status == ICE_ERR_DOES_NOT_EXIST) {
2200 dev_dbg(&vsi->back->pdev->dev,
2201 "LAN Tx queues do not exist, nothing to disable\n");
2202 } else if (status) {
2203 dev_err(&vsi->back->pdev->dev,
2204 "Failed to disable LAN Tx queues, error: %d\n", status);
2205 return -ENODEV;
2206 }
2207
2208 return 0;
2209}
2210
2211/**
2212 * ice_fill_txq_meta - Prepare the Tx queue's meta data
2213 * @vsi: VSI that ring belongs to
2214 * @ring: ring that txq_meta will be based on
2215 * @txq_meta: a helper struct that wraps Tx queue's information
2216 *
2217 * Set up a helper struct that will contain all the necessary fields that
2218 * are needed for stopping Tx queue
2219 */
2220#ifndef CONFIG_PCI_IOV
2221static
2222#endif /* !CONFIG_PCI_IOV */
2223void
2224ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring,
2225 struct ice_txq_meta *txq_meta)
2226{
2227 u8 tc = 0;
2228
2229#ifdef CONFIG_DCB
2230 tc = ring->dcb_tc;
2231#endif /* CONFIG_DCB */
2232 txq_meta->q_id = ring->reg_idx;
2233 txq_meta->q_teid = ring->txq_teid;
2234 txq_meta->q_handle = ring->q_handle;
2235 txq_meta->vsi_idx = vsi->idx;
2236 txq_meta->tc = tc;
2237}
2238
2239/**
2240 * ice_vsi_stop_tx_rings - Disable Tx rings
2241 * @vsi: the VSI being configured
2242 * @rst_src: reset source
2243 * @rel_vmvf_num: Relative ID of VF/VM
2244 * @rings: Tx ring array to be stopped
2245 */
2246static int
2247ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2248 u16 rel_vmvf_num, struct ice_ring **rings)
2249{
2250 u16 i, q_idx = 0;
2251 int status;
2252 u8 tc;
2253
2254 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2255 return -EINVAL;
2256
2257 /* set up the Tx queue list to be disabled for each enabled TC */
2258 ice_for_each_traffic_class(tc) {
2259 if (!(vsi->tc_cfg.ena_tc & BIT(tc)))
2260 break;
2261
2262 for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) {
2263 struct ice_txq_meta txq_meta = { };
2264
2265 if (!rings || !rings[q_idx])
2266 return -EINVAL;
2267
2268 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2269 status = ice_vsi_stop_tx_ring(vsi, rst_src,
2270 rel_vmvf_num,
2271 rings[q_idx], &txq_meta);
2272
2273 if (status)
2274 return status;
2275
2276 q_idx++;
2277 }
2278 }
2279
2280 return 0;
2281}
2282
2283/**
2284 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2285 * @vsi: the VSI being configured
2286 * @rst_src: reset source
2287 * @rel_vmvf_num: Relative ID of VF/VM
2288 */
2289int
2290ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2291 u16 rel_vmvf_num)
2292{
2293 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings);
2294}
2295
2296/**
2297 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI
2298 * @vsi: VSI to enable or disable VLAN pruning on
2299 * @ena: set to true to enable VLAN pruning and false to disable it
2300 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode
2301 *
2302 * returns 0 if VSI is updated, negative otherwise
2303 */
2304int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc)
2305{
2306 struct ice_vsi_ctx *ctxt;
2307 struct device *dev;
2308 struct ice_pf *pf;
2309 int status;
2310
2311 if (!vsi)
2312 return -EINVAL;
2313
2314 pf = vsi->back;
2315 dev = &pf->pdev->dev;
2316 ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
2317 if (!ctxt)
2318 return -ENOMEM;
2319
2320 ctxt->info = vsi->info;
2321
2322 if (ena) {
2323 ctxt->info.sec_flags |=
2324 ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
2325 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S;
2326 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2327 } else {
2328 ctxt->info.sec_flags &=
2329 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
2330 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
2331 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2332 }
2333
2334 if (!vlan_promisc)
2335 ctxt->info.valid_sections =
2336 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID |
2337 ICE_AQ_VSI_PROP_SW_VALID);
2338
2339 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL);
2340 if (status) {
2341 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %d, aq_err = %d\n",
2342 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, status,
2343 pf->hw.adminq.sq_last_status);
2344 goto err_out;
2345 }
2346
2347 vsi->info.sec_flags = ctxt->info.sec_flags;
2348 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
2349
2350 devm_kfree(dev, ctxt);
2351 return 0;
2352
2353err_out:
2354 devm_kfree(dev, ctxt);
2355 return -EIO;
2356}
2357
2358static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2359{
2360 struct ice_dcbx_cfg *cfg = &vsi->port_info->local_dcbx_cfg;
2361
2362 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg);
2363 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg);
2364}
2365
2366/**
2367 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2368 * @vsi: VSI to set the q_vectors register index on
2369 */
2370static int
2371ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2372{
2373 u16 i;
2374
2375 if (!vsi || !vsi->q_vectors)
2376 return -EINVAL;
2377
2378 ice_for_each_q_vector(vsi, i) {
2379 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2380
2381 if (!q_vector) {
2382 dev_err(&vsi->back->pdev->dev,
2383 "Failed to set reg_idx on q_vector %d VSI %d\n",
2384 i, vsi->vsi_num);
2385 goto clear_reg_idx;
2386 }
2387
2388 if (vsi->type == ICE_VSI_VF) {
2389 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id];
2390
2391 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
2392 } else {
2393 q_vector->reg_idx =
2394 q_vector->v_idx + vsi->base_vector;
2395 }
2396 }
2397
2398 return 0;
2399
2400clear_reg_idx:
2401 ice_for_each_q_vector(vsi, i) {
2402 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2403
2404 if (q_vector)
2405 q_vector->reg_idx = 0;
2406 }
2407
2408 return -EINVAL;
2409}
2410
2411/**
2412 * ice_vsi_add_rem_eth_mac - Program VSI ethertype based filter with rule
2413 * @vsi: the VSI being configured
2414 * @add_rule: boolean value to add or remove ethertype filter rule
2415 */
2416static void
2417ice_vsi_add_rem_eth_mac(struct ice_vsi *vsi, bool add_rule)
2418{
2419 struct ice_fltr_list_entry *list;
2420 struct ice_pf *pf = vsi->back;
2421 LIST_HEAD(tmp_add_list);
2422 enum ice_status status;
2423
2424 list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
2425 if (!list)
2426 return;
2427
2428 list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE;
2429 list->fltr_info.fltr_act = ICE_DROP_PACKET;
2430 list->fltr_info.flag = ICE_FLTR_TX;
2431 list->fltr_info.src_id = ICE_SRC_ID_VSI;
2432 list->fltr_info.vsi_handle = vsi->idx;
2433 list->fltr_info.l_data.ethertype_mac.ethertype = vsi->ethtype;
2434
2435 INIT_LIST_HEAD(&list->list_entry);
2436 list_add(&list->list_entry, &tmp_add_list);
2437
2438 if (add_rule)
2439 status = ice_add_eth_mac(&pf->hw, &tmp_add_list);
2440 else
2441 status = ice_remove_eth_mac(&pf->hw, &tmp_add_list);
2442
2443 if (status)
2444 dev_err(&pf->pdev->dev,
2445 "Failure Adding or Removing Ethertype on VSI %i error: %d\n",
2446 vsi->vsi_num, status);
2447
2448 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
2449}
2450
2451/**
2452 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2453 * @vsi: the VSI being configured
2454 * @tx: bool to determine Tx or Rx rule
2455 * @create: bool to determine create or remove Rule
2456 */
2457void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2458{
2459 struct ice_fltr_list_entry *list;
2460 struct ice_pf *pf = vsi->back;
2461 LIST_HEAD(tmp_add_list);
2462 enum ice_status status;
2463
2464 list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
2465 if (!list)
2466 return;
2467
2468 list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE;
2469 list->fltr_info.vsi_handle = vsi->idx;
2470 list->fltr_info.l_data.ethertype_mac.ethertype = ETH_P_LLDP;
2471
2472 if (tx) {
2473 list->fltr_info.fltr_act = ICE_DROP_PACKET;
2474 list->fltr_info.flag = ICE_FLTR_TX;
2475 list->fltr_info.src_id = ICE_SRC_ID_VSI;
2476 } else {
2477 list->fltr_info.fltr_act = ICE_FWD_TO_VSI;
2478 list->fltr_info.flag = ICE_FLTR_RX;
2479 list->fltr_info.src_id = ICE_SRC_ID_LPORT;
2480 }
2481
2482 INIT_LIST_HEAD(&list->list_entry);
2483 list_add(&list->list_entry, &tmp_add_list);
2484
2485 if (create)
2486 status = ice_add_eth_mac(&pf->hw, &tmp_add_list);
2487 else
2488 status = ice_remove_eth_mac(&pf->hw, &tmp_add_list);
2489
2490 if (status)
2491 dev_err(&pf->pdev->dev,
2492 "Fail %s %s LLDP rule on VSI %i error: %d\n",
2493 create ? "adding" : "removing", tx ? "TX" : "RX",
2494 vsi->vsi_num, status);
2495
2496 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
2497}
2498
2499/**
2500 * ice_vsi_setup - Set up a VSI by a given type
2501 * @pf: board private structure
2502 * @pi: pointer to the port_info instance
2503 * @type: VSI type
2504 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be
2505 * used only for ICE_VSI_VF VSI type. For other VSI types, should
2506 * fill-in ICE_INVAL_VFID as input.
2507 *
2508 * This allocates the sw VSI structure and its queue resources.
2509 *
2510 * Returns pointer to the successfully allocated and configured VSI sw struct on
2511 * success, NULL on failure.
2512 */
2513struct ice_vsi *
2514ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2515 enum ice_vsi_type type, u16 vf_id)
2516{
2517 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2518 struct device *dev = &pf->pdev->dev;
2519 enum ice_status status;
2520 struct ice_vsi *vsi;
2521 int ret, i;
2522
2523 if (type == ICE_VSI_VF)
2524 vsi = ice_vsi_alloc(pf, type, vf_id);
2525 else
2526 vsi = ice_vsi_alloc(pf, type, ICE_INVAL_VFID);
2527
2528 if (!vsi) {
2529 dev_err(dev, "could not allocate VSI\n");
2530 return NULL;
2531 }
2532
2533 vsi->port_info = pi;
2534 vsi->vsw = pf->first_sw;
2535 if (vsi->type == ICE_VSI_PF)
2536 vsi->ethtype = ETH_P_PAUSE;
2537
2538 if (vsi->type == ICE_VSI_VF)
2539 vsi->vf_id = vf_id;
2540
2541 if (ice_vsi_get_qs(vsi)) {
2542 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2543 vsi->idx);
2544 goto unroll_get_qs;
2545 }
2546
2547 /* set RSS capabilities */
2548 ice_vsi_set_rss_params(vsi);
2549
2550 /* set TC configuration */
2551 ice_vsi_set_tc_cfg(vsi);
2552
2553 /* create the VSI */
2554 ret = ice_vsi_init(vsi);
2555 if (ret)
2556 goto unroll_get_qs;
2557
2558 switch (vsi->type) {
2559 case ICE_VSI_PF:
2560 ret = ice_vsi_alloc_q_vectors(vsi);
2561 if (ret)
2562 goto unroll_vsi_init;
2563
2564 ret = ice_vsi_setup_vector_base(vsi);
2565 if (ret)
2566 goto unroll_alloc_q_vector;
2567
2568 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2569 if (ret)
2570 goto unroll_vector_base;
2571
2572 ret = ice_vsi_alloc_rings(vsi);
2573 if (ret)
2574 goto unroll_vector_base;
2575
2576 ice_vsi_map_rings_to_vectors(vsi);
2577
2578 /* Do not exit if configuring RSS had an issue, at least
2579 * receive traffic on first queue. Hence no need to capture
2580 * return value
2581 */
2582 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2583 ice_vsi_cfg_rss_lut_key(vsi);
2584 break;
2585 case ICE_VSI_VF:
2586 /* VF driver will take care of creating netdev for this type and
2587 * map queues to vectors through Virtchnl, PF driver only
2588 * creates a VSI and corresponding structures for bookkeeping
2589 * purpose
2590 */
2591 ret = ice_vsi_alloc_q_vectors(vsi);
2592 if (ret)
2593 goto unroll_vsi_init;
2594
2595 ret = ice_vsi_alloc_rings(vsi);
2596 if (ret)
2597 goto unroll_alloc_q_vector;
2598
2599 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2600 if (ret)
2601 goto unroll_vector_base;
2602
2603 /* Do not exit if configuring RSS had an issue, at least
2604 * receive traffic on first queue. Hence no need to capture
2605 * return value
2606 */
2607 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2608 ice_vsi_cfg_rss_lut_key(vsi);
2609 break;
2610 case ICE_VSI_LB:
2611 ret = ice_vsi_alloc_rings(vsi);
2612 if (ret)
2613 goto unroll_vsi_init;
2614 break;
2615 default:
2616 /* clean up the resources and exit */
2617 goto unroll_vsi_init;
2618 }
2619
2620 /* configure VSI nodes based on number of queues and TC's */
2621 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2622 max_txqs[i] = vsi->alloc_txq;
2623
2624 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2625 max_txqs);
2626 if (status) {
2627 dev_err(&pf->pdev->dev,
2628 "VSI %d failed lan queue config, error %d\n",
2629 vsi->vsi_num, status);
2630 goto unroll_vector_base;
2631 }
2632
2633 /* Add switch rule to drop all Tx Flow Control Frames, of look up
2634 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2635 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2636 * The rule is added once for PF VSI in order to create appropriate
2637 * recipe, since VSI/VSI list is ignored with drop action...
2638 * Also add rules to handle LLDP Tx and Rx packets. Tx LLDP packets
2639 * need to be dropped so that VFs cannot send LLDP packets to reconfig
2640 * DCB settings in the HW. Also, if the FW DCBX engine is not running
2641 * then Rx LLDP packets need to be redirected up the stack.
2642 */
2643 if (!ice_is_safe_mode(pf)) {
2644 if (vsi->type == ICE_VSI_PF) {
2645 ice_vsi_add_rem_eth_mac(vsi, true);
2646
2647 /* Tx LLDP packets */
2648 ice_cfg_sw_lldp(vsi, true, true);
2649
2650 /* Rx LLDP packets */
2651 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2652 ice_cfg_sw_lldp(vsi, false, true);
2653 }
2654 }
2655
2656 return vsi;
2657
2658unroll_vector_base:
2659 /* reclaim SW interrupts back to the common pool */
2660 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2661 pf->num_avail_sw_msix += vsi->num_q_vectors;
2662unroll_alloc_q_vector:
2663 ice_vsi_free_q_vectors(vsi);
2664unroll_vsi_init:
2665 ice_vsi_delete(vsi);
2666unroll_get_qs:
2667 ice_vsi_put_qs(vsi);
2668 ice_vsi_clear(vsi);
2669
2670 return NULL;
2671}
2672
2673/**
2674 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2675 * @vsi: the VSI being cleaned up
2676 */
2677static void ice_vsi_release_msix(struct ice_vsi *vsi)
2678{
2679 struct ice_pf *pf = vsi->back;
2680 struct ice_hw *hw = &pf->hw;
2681 u32 txq = 0;
2682 u32 rxq = 0;
2683 int i, q;
2684
2685 for (i = 0; i < vsi->num_q_vectors; i++) {
2686 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2687 u16 reg_idx = q_vector->reg_idx;
2688
2689 wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0);
2690 wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0);
2691 for (q = 0; q < q_vector->num_ring_tx; q++) {
2692 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2693 txq++;
2694 }
2695
2696 for (q = 0; q < q_vector->num_ring_rx; q++) {
2697 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2698 rxq++;
2699 }
2700 }
2701
2702 ice_flush(hw);
2703}
2704
2705/**
2706 * ice_vsi_free_irq - Free the IRQ association with the OS
2707 * @vsi: the VSI being configured
2708 */
2709void ice_vsi_free_irq(struct ice_vsi *vsi)
2710{
2711 struct ice_pf *pf = vsi->back;
2712 int base = vsi->base_vector;
2713 int i;
2714
2715 if (!vsi->q_vectors || !vsi->irqs_ready)
2716 return;
2717
2718 ice_vsi_release_msix(vsi);
2719 if (vsi->type == ICE_VSI_VF)
2720 return;
2721
2722 vsi->irqs_ready = false;
2723 ice_for_each_q_vector(vsi, i) {
2724 u16 vector = i + base;
2725 int irq_num;
2726
2727 irq_num = pf->msix_entries[vector].vector;
2728
2729 /* free only the irqs that were actually requested */
2730 if (!vsi->q_vectors[i] ||
2731 !(vsi->q_vectors[i]->num_ring_tx ||
2732 vsi->q_vectors[i]->num_ring_rx))
2733 continue;
2734
2735 /* clear the affinity notifier in the IRQ descriptor */
2736 irq_set_affinity_notifier(irq_num, NULL);
2737
2738 /* clear the affinity_mask in the IRQ descriptor */
2739 irq_set_affinity_hint(irq_num, NULL);
2740 synchronize_irq(irq_num);
2741 devm_free_irq(&pf->pdev->dev, irq_num,
2742 vsi->q_vectors[i]);
2743 }
2744}
2745
2746/**
2747 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2748 * @vsi: the VSI having resources freed
2749 */
2750void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2751{
2752 int i;
2753
2754 if (!vsi->tx_rings)
2755 return;
2756
2757 ice_for_each_txq(vsi, i)
2758 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2759 ice_free_tx_ring(vsi->tx_rings[i]);
2760}
2761
2762/**
2763 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2764 * @vsi: the VSI having resources freed
2765 */
2766void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2767{
2768 int i;
2769
2770 if (!vsi->rx_rings)
2771 return;
2772
2773 ice_for_each_rxq(vsi, i)
2774 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2775 ice_free_rx_ring(vsi->rx_rings[i]);
2776}
2777
2778/**
2779 * ice_vsi_close - Shut down a VSI
2780 * @vsi: the VSI being shut down
2781 */
2782void ice_vsi_close(struct ice_vsi *vsi)
2783{
2784 if (!test_and_set_bit(__ICE_DOWN, vsi->state))
2785 ice_down(vsi);
2786
2787 ice_vsi_free_irq(vsi);
2788 ice_vsi_free_tx_rings(vsi);
2789 ice_vsi_free_rx_rings(vsi);
2790}
2791
2792/**
2793 * ice_free_res - free a block of resources
2794 * @res: pointer to the resource
2795 * @index: starting index previously returned by ice_get_res
2796 * @id: identifier to track owner
2797 *
2798 * Returns number of resources freed
2799 */
2800int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
2801{
2802 int count = 0;
2803 int i;
2804
2805 if (!res || index >= res->end)
2806 return -EINVAL;
2807
2808 id |= ICE_RES_VALID_BIT;
2809 for (i = index; i < res->end && res->list[i] == id; i++) {
2810 res->list[i] = 0;
2811 count++;
2812 }
2813
2814 return count;
2815}
2816
2817/**
2818 * ice_search_res - Search the tracker for a block of resources
2819 * @res: pointer to the resource
2820 * @needed: size of the block needed
2821 * @id: identifier to track owner
2822 *
2823 * Returns the base item index of the block, or -ENOMEM for error
2824 */
2825static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
2826{
2827 int start = 0, end = 0;
2828
2829 if (needed > res->end)
2830 return -ENOMEM;
2831
2832 id |= ICE_RES_VALID_BIT;
2833
2834 do {
2835 /* skip already allocated entries */
2836 if (res->list[end++] & ICE_RES_VALID_BIT) {
2837 start = end;
2838 if ((start + needed) > res->end)
2839 break;
2840 }
2841
2842 if (end == (start + needed)) {
2843 int i = start;
2844
2845 /* there was enough, so assign it to the requestor */
2846 while (i != end)
2847 res->list[i++] = id;
2848
2849 return start;
2850 }
2851 } while (end < res->end);
2852
2853 return -ENOMEM;
2854}
2855
2856/**
2857 * ice_get_res - get a block of resources
2858 * @pf: board private structure
2859 * @res: pointer to the resource
2860 * @needed: size of the block needed
2861 * @id: identifier to track owner
2862 *
2863 * Returns the base item index of the block, or negative for error
2864 */
2865int
2866ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
2867{
2868 if (!res || !pf)
2869 return -EINVAL;
2870
2871 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
2872 dev_err(&pf->pdev->dev,
2873 "param err: needed=%d, num_entries = %d id=0x%04x\n",
2874 needed, res->num_entries, id);
2875 return -EINVAL;
2876 }
2877
2878 return ice_search_res(res, needed, id);
2879}
2880
2881/**
2882 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2883 * @vsi: the VSI being un-configured
2884 */
2885void ice_vsi_dis_irq(struct ice_vsi *vsi)
2886{
2887 int base = vsi->base_vector;
2888 struct ice_pf *pf = vsi->back;
2889 struct ice_hw *hw = &pf->hw;
2890 u32 val;
2891 int i;
2892
2893 /* disable interrupt causation from each queue */
2894 if (vsi->tx_rings) {
2895 ice_for_each_txq(vsi, i) {
2896 if (vsi->tx_rings[i]) {
2897 u16 reg;
2898
2899 reg = vsi->tx_rings[i]->reg_idx;
2900 val = rd32(hw, QINT_TQCTL(reg));
2901 val &= ~QINT_TQCTL_CAUSE_ENA_M;
2902 wr32(hw, QINT_TQCTL(reg), val);
2903 }
2904 }
2905 }
2906
2907 if (vsi->rx_rings) {
2908 ice_for_each_rxq(vsi, i) {
2909 if (vsi->rx_rings[i]) {
2910 u16 reg;
2911
2912 reg = vsi->rx_rings[i]->reg_idx;
2913 val = rd32(hw, QINT_RQCTL(reg));
2914 val &= ~QINT_RQCTL_CAUSE_ENA_M;
2915 wr32(hw, QINT_RQCTL(reg), val);
2916 }
2917 }
2918 }
2919
2920 /* disable each interrupt */
2921 ice_for_each_q_vector(vsi, i) {
2922 if (!vsi->q_vectors[i])
2923 continue;
2924 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2925 }
2926
2927 ice_flush(hw);
2928
2929 /* don't call synchronize_irq() for VF's from the host */
2930 if (vsi->type == ICE_VSI_VF)
2931 return;
2932
2933 ice_for_each_q_vector(vsi, i)
2934 synchronize_irq(pf->msix_entries[i + base].vector);
2935}
2936
2937/**
2938 * ice_napi_del - Remove NAPI handler for the VSI
2939 * @vsi: VSI for which NAPI handler is to be removed
2940 */
2941void ice_napi_del(struct ice_vsi *vsi)
2942{
2943 int v_idx;
2944
2945 if (!vsi->netdev)
2946 return;
2947
2948 ice_for_each_q_vector(vsi, v_idx)
2949 netif_napi_del(&vsi->q_vectors[v_idx]->napi);
2950}
2951
2952/**
2953 * ice_vsi_release - Delete a VSI and free its resources
2954 * @vsi: the VSI being removed
2955 *
2956 * Returns 0 on success or < 0 on error
2957 */
2958int ice_vsi_release(struct ice_vsi *vsi)
2959{
2960 struct ice_pf *pf;
2961
2962 if (!vsi->back)
2963 return -ENODEV;
2964 pf = vsi->back;
2965
2966 /* do not unregister while driver is in the reset recovery pending
2967 * state. Since reset/rebuild happens through PF service task workqueue,
2968 * it's not a good idea to unregister netdev that is associated to the
2969 * PF that is running the work queue items currently. This is done to
2970 * avoid check_flush_dependency() warning on this wq
2971 */
2972 if (vsi->netdev && !ice_is_reset_in_progress(pf->state))
2973 unregister_netdev(vsi->netdev);
2974
2975 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2976 ice_rss_clean(vsi);
2977
2978 /* Disable VSI and free resources */
2979 if (vsi->type != ICE_VSI_LB)
2980 ice_vsi_dis_irq(vsi);
2981 ice_vsi_close(vsi);
2982
2983 /* SR-IOV determines needed MSIX resources all at once instead of per
2984 * VSI since when VFs are spawned we know how many VFs there are and how
2985 * many interrupts each VF needs. SR-IOV MSIX resources are also
2986 * cleared in the same manner.
2987 */
2988 if (vsi->type != ICE_VSI_VF) {
2989 /* reclaim SW interrupts back to the common pool */
2990 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2991 pf->num_avail_sw_msix += vsi->num_q_vectors;
2992 }
2993
2994 if (!ice_is_safe_mode(pf)) {
2995 if (vsi->type == ICE_VSI_PF) {
2996 ice_vsi_add_rem_eth_mac(vsi, false);
2997 ice_cfg_sw_lldp(vsi, true, false);
2998 /* The Rx rule will only exist to remove if the LLDP FW
2999 * engine is currently stopped
3000 */
3001 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
3002 ice_cfg_sw_lldp(vsi, false, false);
3003 }
3004 }
3005
3006 ice_remove_vsi_fltr(&pf->hw, vsi->idx);
3007 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3008 ice_vsi_delete(vsi);
3009 ice_vsi_free_q_vectors(vsi);
3010
3011 /* make sure unregister_netdev() was called by checking __ICE_DOWN */
3012 if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) {
3013 free_netdev(vsi->netdev);
3014 vsi->netdev = NULL;
3015 }
3016
3017 ice_vsi_clear_rings(vsi);
3018
3019 ice_vsi_put_qs(vsi);
3020
3021 /* retain SW VSI data structure since it is needed to unregister and
3022 * free VSI netdev when PF is not in reset recovery pending state,\
3023 * for ex: during rmmod.
3024 */
3025 if (!ice_is_reset_in_progress(pf->state))
3026 ice_vsi_clear(vsi);
3027
3028 return 0;
3029}
3030
3031/**
3032 * ice_vsi_rebuild - Rebuild VSI after reset
3033 * @vsi: VSI to be rebuild
3034 *
3035 * Returns 0 on success and negative value on failure
3036 */
3037int ice_vsi_rebuild(struct ice_vsi *vsi)
3038{
3039 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3040 struct ice_vf *vf = NULL;
3041 enum ice_status status;
3042 struct ice_pf *pf;
3043 int ret, i;
3044
3045 if (!vsi)
3046 return -EINVAL;
3047
3048 pf = vsi->back;
3049 if (vsi->type == ICE_VSI_VF)
3050 vf = &pf->vf[vsi->vf_id];
3051
3052 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3053 ice_vsi_free_q_vectors(vsi);
3054
3055 /* SR-IOV determines needed MSIX resources all at once instead of per
3056 * VSI since when VFs are spawned we know how many VFs there are and how
3057 * many interrupts each VF needs. SR-IOV MSIX resources are also
3058 * cleared in the same manner.
3059 */
3060 if (vsi->type != ICE_VSI_VF) {
3061 /* reclaim SW interrupts back to the common pool */
3062 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
3063 pf->num_avail_sw_msix += vsi->num_q_vectors;
3064 vsi->base_vector = 0;
3065 }
3066
3067 ice_vsi_put_qs(vsi);
3068 ice_vsi_clear_rings(vsi);
3069 ice_vsi_free_arrays(vsi);
3070 ice_dev_onetime_setup(&pf->hw);
3071 if (vsi->type == ICE_VSI_VF)
3072 ice_vsi_set_num_qs(vsi, vf->vf_id);
3073 else
3074 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
3075
3076 ret = ice_vsi_alloc_arrays(vsi);
3077 if (ret < 0)
3078 goto err_vsi;
3079
3080 ice_vsi_get_qs(vsi);
3081 ice_vsi_set_tc_cfg(vsi);
3082
3083 /* Initialize VSI struct elements and create VSI in FW */
3084 ret = ice_vsi_init(vsi);
3085 if (ret < 0)
3086 goto err_vsi;
3087
3088
3089 switch (vsi->type) {
3090 case ICE_VSI_PF:
3091 ret = ice_vsi_alloc_q_vectors(vsi);
3092 if (ret)
3093 goto err_rings;
3094
3095 ret = ice_vsi_setup_vector_base(vsi);
3096 if (ret)
3097 goto err_vectors;
3098
3099 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3100 if (ret)
3101 goto err_vectors;
3102
3103 ret = ice_vsi_alloc_rings(vsi);
3104 if (ret)
3105 goto err_vectors;
3106
3107 ice_vsi_map_rings_to_vectors(vsi);
3108 /* Do not exit if configuring RSS had an issue, at least
3109 * receive traffic on first queue. Hence no need to capture
3110 * return value
3111 */
3112 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3113 ice_vsi_cfg_rss_lut_key(vsi);
3114 break;
3115 case ICE_VSI_VF:
3116 ret = ice_vsi_alloc_q_vectors(vsi);
3117 if (ret)
3118 goto err_rings;
3119
3120 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3121 if (ret)
3122 goto err_vectors;
3123
3124 ret = ice_vsi_alloc_rings(vsi);
3125 if (ret)
3126 goto err_vectors;
3127
3128 break;
3129 default:
3130 break;
3131 }
3132
3133 /* configure VSI nodes based on number of queues and TC's */
3134 for (i = 0; i < vsi->tc_cfg.numtc; i++)
3135 max_txqs[i] = vsi->alloc_txq;
3136
3137 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3138 max_txqs);
3139 if (status) {
3140 dev_err(&pf->pdev->dev,
3141 "VSI %d failed lan queue config, error %d\n",
3142 vsi->vsi_num, status);
3143 goto err_vectors;
3144 }
3145 return 0;
3146
3147err_vectors:
3148 ice_vsi_free_q_vectors(vsi);
3149err_rings:
3150 if (vsi->netdev) {
3151 vsi->current_netdev_flags = 0;
3152 unregister_netdev(vsi->netdev);
3153 free_netdev(vsi->netdev);
3154 vsi->netdev = NULL;
3155 }
3156err_vsi:
3157 ice_vsi_clear(vsi);
3158 set_bit(__ICE_RESET_FAILED, pf->state);
3159 return ret;
3160}
3161
3162/**
3163 * ice_is_reset_in_progress - check for a reset in progress
3164 * @state: PF state field
3165 */
3166bool ice_is_reset_in_progress(unsigned long *state)
3167{
3168 return test_bit(__ICE_RESET_OICR_RECV, state) ||
3169 test_bit(__ICE_PFR_REQ, state) ||
3170 test_bit(__ICE_CORER_REQ, state) ||
3171 test_bit(__ICE_GLOBR_REQ, state);
3172}
3173
3174#ifdef CONFIG_DCB
3175/**
3176 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3177 * @vsi: VSI being configured
3178 * @ctx: the context buffer returned from AQ VSI update command
3179 */
3180static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3181{
3182 vsi->info.mapping_flags = ctx->info.mapping_flags;
3183 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3184 sizeof(vsi->info.q_mapping));
3185 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3186 sizeof(vsi->info.tc_mapping));
3187}
3188
3189/**
3190 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3191 * @vsi: VSI to be configured
3192 * @ena_tc: TC bitmap
3193 *
3194 * VSI queues expected to be quiesced before calling this function
3195 */
3196int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3197{
3198 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3199 struct ice_vsi_ctx *ctx;
3200 struct ice_pf *pf = vsi->back;
3201 enum ice_status status;
3202 int i, ret = 0;
3203 u8 num_tc = 0;
3204
3205 ice_for_each_traffic_class(i) {
3206 /* build bitmap of enabled TCs */
3207 if (ena_tc & BIT(i))
3208 num_tc++;
3209 /* populate max_txqs per TC */
3210 max_txqs[i] = vsi->alloc_txq;
3211 }
3212
3213 vsi->tc_cfg.ena_tc = ena_tc;
3214 vsi->tc_cfg.numtc = num_tc;
3215
3216 ctx = devm_kzalloc(&pf->pdev->dev, sizeof(*ctx), GFP_KERNEL);
3217 if (!ctx)
3218 return -ENOMEM;
3219
3220 ctx->vf_num = 0;
3221 ctx->info = vsi->info;
3222
3223 ice_vsi_setup_q_map(vsi, ctx);
3224
3225 /* must to indicate which section of VSI context are being modified */
3226 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3227 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3228 if (status) {
3229 dev_info(&pf->pdev->dev, "Failed VSI Update\n");
3230 ret = -EIO;
3231 goto out;
3232 }
3233
3234 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3235 max_txqs);
3236
3237 if (status) {
3238 dev_err(&pf->pdev->dev,
3239 "VSI %d failed TC config, error %d\n",
3240 vsi->vsi_num, status);
3241 ret = -EIO;
3242 goto out;
3243 }
3244 ice_vsi_update_q_map(vsi, ctx);
3245 vsi->info.valid_sections = 0;
3246
3247 ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3248out:
3249 devm_kfree(&pf->pdev->dev, ctx);
3250 return ret;
3251}
3252#endif /* CONFIG_DCB */
3253
3254/**
3255 * ice_nvm_version_str - format the NVM version strings
3256 * @hw: ptr to the hardware info
3257 */
3258char *ice_nvm_version_str(struct ice_hw *hw)
3259{
3260 u8 oem_ver, oem_patch, ver_hi, ver_lo;
3261 static char buf[ICE_NVM_VER_LEN];
3262 u16 oem_build;
3263
3264 ice_get_nvm_version(hw, &oem_ver, &oem_build, &oem_patch, &ver_hi,
3265 &ver_lo);
3266
3267 snprintf(buf, sizeof(buf), "%x.%02x 0x%x %d.%d.%d", ver_hi, ver_lo,
3268 hw->nvm.eetrack, oem_ver, oem_build, oem_patch);
3269
3270 return buf;
3271}
3272
3273/**
3274 * ice_vsi_cfg_mac_fltr - Add or remove a MAC address filter for a VSI
3275 * @vsi: the VSI being configured MAC filter
3276 * @macaddr: the MAC address to be added.
3277 * @set: Add or delete a MAC filter
3278 *
3279 * Adds or removes MAC address filter entry for VF VSI
3280 */
3281enum ice_status
3282ice_vsi_cfg_mac_fltr(struct ice_vsi *vsi, const u8 *macaddr, bool set)
3283{
3284 LIST_HEAD(tmp_add_list);
3285 enum ice_status status;
3286
3287 /* Update MAC filter list to be added or removed for a VSI */
3288 if (ice_add_mac_to_list(vsi, &tmp_add_list, macaddr)) {
3289 status = ICE_ERR_NO_MEMORY;
3290 goto cfg_mac_fltr_exit;
3291 }
3292
3293 if (set)
3294 status = ice_add_mac(&vsi->back->hw, &tmp_add_list);
3295 else
3296 status = ice_remove_mac(&vsi->back->hw, &tmp_add_list);
3297
3298cfg_mac_fltr_exit:
3299 ice_free_fltr_list(&vsi->back->pdev->dev, &tmp_add_list);
3300 return status;
3301}