Linux Audio

Check our new training course

Loading...
v5.9
   1/*
   2 * Copyright (C) 2012 Red Hat. All rights reserved.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm.h"
   8#include "dm-bio-prison-v2.h"
   9#include "dm-bio-record.h"
  10#include "dm-cache-metadata.h"
  11
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/init.h>
  16#include <linux/mempool.h>
  17#include <linux/module.h>
  18#include <linux/rwsem.h>
  19#include <linux/slab.h>
  20#include <linux/vmalloc.h>
  21
  22#define DM_MSG_PREFIX "cache"
  23
  24DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
  25	"A percentage of time allocated for copying to and/or from cache");
  26
  27/*----------------------------------------------------------------*/
  28
  29/*
  30 * Glossary:
  31 *
  32 * oblock: index of an origin block
  33 * cblock: index of a cache block
  34 * promotion: movement of a block from origin to cache
  35 * demotion: movement of a block from cache to origin
  36 * migration: movement of a block between the origin and cache device,
  37 *	      either direction
  38 */
  39
  40/*----------------------------------------------------------------*/
  41
  42struct io_tracker {
  43	spinlock_t lock;
  44
  45	/*
  46	 * Sectors of in-flight IO.
  47	 */
  48	sector_t in_flight;
  49
  50	/*
  51	 * The time, in jiffies, when this device became idle (if it is
  52	 * indeed idle).
  53	 */
  54	unsigned long idle_time;
  55	unsigned long last_update_time;
  56};
  57
  58static void iot_init(struct io_tracker *iot)
  59{
  60	spin_lock_init(&iot->lock);
  61	iot->in_flight = 0ul;
  62	iot->idle_time = 0ul;
  63	iot->last_update_time = jiffies;
  64}
  65
  66static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  67{
  68	if (iot->in_flight)
  69		return false;
  70
  71	return time_after(jiffies, iot->idle_time + jifs);
  72}
  73
  74static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  75{
  76	bool r;
 
  77
  78	spin_lock_irq(&iot->lock);
  79	r = __iot_idle_for(iot, jifs);
  80	spin_unlock_irq(&iot->lock);
  81
  82	return r;
  83}
  84
  85static void iot_io_begin(struct io_tracker *iot, sector_t len)
  86{
  87	spin_lock_irq(&iot->lock);
 
 
  88	iot->in_flight += len;
  89	spin_unlock_irq(&iot->lock);
  90}
  91
  92static void __iot_io_end(struct io_tracker *iot, sector_t len)
  93{
  94	if (!len)
  95		return;
  96
  97	iot->in_flight -= len;
  98	if (!iot->in_flight)
  99		iot->idle_time = jiffies;
 100}
 101
 102static void iot_io_end(struct io_tracker *iot, sector_t len)
 103{
 104	unsigned long flags;
 105
 106	spin_lock_irqsave(&iot->lock, flags);
 107	__iot_io_end(iot, len);
 108	spin_unlock_irqrestore(&iot->lock, flags);
 109}
 110
 111/*----------------------------------------------------------------*/
 112
 113/*
 114 * Represents a chunk of future work.  'input' allows continuations to pass
 115 * values between themselves, typically error values.
 116 */
 117struct continuation {
 118	struct work_struct ws;
 119	blk_status_t input;
 120};
 121
 122static inline void init_continuation(struct continuation *k,
 123				     void (*fn)(struct work_struct *))
 124{
 125	INIT_WORK(&k->ws, fn);
 126	k->input = 0;
 127}
 128
 129static inline void queue_continuation(struct workqueue_struct *wq,
 130				      struct continuation *k)
 131{
 132	queue_work(wq, &k->ws);
 133}
 134
 135/*----------------------------------------------------------------*/
 136
 137/*
 138 * The batcher collects together pieces of work that need a particular
 139 * operation to occur before they can proceed (typically a commit).
 140 */
 141struct batcher {
 142	/*
 143	 * The operation that everyone is waiting for.
 144	 */
 145	blk_status_t (*commit_op)(void *context);
 146	void *commit_context;
 147
 148	/*
 149	 * This is how bios should be issued once the commit op is complete
 150	 * (accounted_request).
 151	 */
 152	void (*issue_op)(struct bio *bio, void *context);
 153	void *issue_context;
 154
 155	/*
 156	 * Queued work gets put on here after commit.
 157	 */
 158	struct workqueue_struct *wq;
 159
 160	spinlock_t lock;
 161	struct list_head work_items;
 162	struct bio_list bios;
 163	struct work_struct commit_work;
 164
 165	bool commit_scheduled;
 166};
 167
 168static void __commit(struct work_struct *_ws)
 169{
 170	struct batcher *b = container_of(_ws, struct batcher, commit_work);
 171	blk_status_t r;
 
 172	struct list_head work_items;
 173	struct work_struct *ws, *tmp;
 174	struct continuation *k;
 175	struct bio *bio;
 176	struct bio_list bios;
 177
 178	INIT_LIST_HEAD(&work_items);
 179	bio_list_init(&bios);
 180
 181	/*
 182	 * We have to grab these before the commit_op to avoid a race
 183	 * condition.
 184	 */
 185	spin_lock_irq(&b->lock);
 186	list_splice_init(&b->work_items, &work_items);
 187	bio_list_merge(&bios, &b->bios);
 188	bio_list_init(&b->bios);
 189	b->commit_scheduled = false;
 190	spin_unlock_irq(&b->lock);
 191
 192	r = b->commit_op(b->commit_context);
 193
 194	list_for_each_entry_safe(ws, tmp, &work_items, entry) {
 195		k = container_of(ws, struct continuation, ws);
 196		k->input = r;
 197		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
 198		queue_work(b->wq, ws);
 199	}
 200
 201	while ((bio = bio_list_pop(&bios))) {
 202		if (r) {
 203			bio->bi_status = r;
 204			bio_endio(bio);
 205		} else
 206			b->issue_op(bio, b->issue_context);
 207	}
 208}
 209
 210static void batcher_init(struct batcher *b,
 211			 blk_status_t (*commit_op)(void *),
 212			 void *commit_context,
 213			 void (*issue_op)(struct bio *bio, void *),
 214			 void *issue_context,
 215			 struct workqueue_struct *wq)
 216{
 217	b->commit_op = commit_op;
 218	b->commit_context = commit_context;
 219	b->issue_op = issue_op;
 220	b->issue_context = issue_context;
 221	b->wq = wq;
 222
 223	spin_lock_init(&b->lock);
 224	INIT_LIST_HEAD(&b->work_items);
 225	bio_list_init(&b->bios);
 226	INIT_WORK(&b->commit_work, __commit);
 227	b->commit_scheduled = false;
 228}
 229
 230static void async_commit(struct batcher *b)
 231{
 232	queue_work(b->wq, &b->commit_work);
 233}
 234
 235static void continue_after_commit(struct batcher *b, struct continuation *k)
 236{
 
 237	bool commit_scheduled;
 238
 239	spin_lock_irq(&b->lock);
 240	commit_scheduled = b->commit_scheduled;
 241	list_add_tail(&k->ws.entry, &b->work_items);
 242	spin_unlock_irq(&b->lock);
 243
 244	if (commit_scheduled)
 245		async_commit(b);
 246}
 247
 248/*
 249 * Bios are errored if commit failed.
 250 */
 251static void issue_after_commit(struct batcher *b, struct bio *bio)
 252{
 
 253       bool commit_scheduled;
 254
 255       spin_lock_irq(&b->lock);
 256       commit_scheduled = b->commit_scheduled;
 257       bio_list_add(&b->bios, bio);
 258       spin_unlock_irq(&b->lock);
 259
 260       if (commit_scheduled)
 261	       async_commit(b);
 262}
 263
 264/*
 265 * Call this if some urgent work is waiting for the commit to complete.
 266 */
 267static void schedule_commit(struct batcher *b)
 268{
 269	bool immediate;
 
 270
 271	spin_lock_irq(&b->lock);
 272	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
 273	b->commit_scheduled = true;
 274	spin_unlock_irq(&b->lock);
 275
 276	if (immediate)
 277		async_commit(b);
 278}
 279
 280/*
 281 * There are a couple of places where we let a bio run, but want to do some
 282 * work before calling its endio function.  We do this by temporarily
 283 * changing the endio fn.
 284 */
 285struct dm_hook_info {
 286	bio_end_io_t *bi_end_io;
 287};
 288
 289static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
 290			bio_end_io_t *bi_end_io, void *bi_private)
 291{
 292	h->bi_end_io = bio->bi_end_io;
 293
 294	bio->bi_end_io = bi_end_io;
 295	bio->bi_private = bi_private;
 296}
 297
 298static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
 299{
 300	bio->bi_end_io = h->bi_end_io;
 301}
 302
 303/*----------------------------------------------------------------*/
 304
 305#define MIGRATION_POOL_SIZE 128
 306#define COMMIT_PERIOD HZ
 307#define MIGRATION_COUNT_WINDOW 10
 308
 309/*
 310 * The block size of the device holding cache data must be
 311 * between 32KB and 1GB.
 312 */
 313#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
 314#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
 315
 316enum cache_metadata_mode {
 317	CM_WRITE,		/* metadata may be changed */
 318	CM_READ_ONLY,		/* metadata may not be changed */
 319	CM_FAIL
 320};
 321
 322enum cache_io_mode {
 323	/*
 324	 * Data is written to cached blocks only.  These blocks are marked
 325	 * dirty.  If you lose the cache device you will lose data.
 326	 * Potential performance increase for both reads and writes.
 327	 */
 328	CM_IO_WRITEBACK,
 329
 330	/*
 331	 * Data is written to both cache and origin.  Blocks are never
 332	 * dirty.  Potential performance benfit for reads only.
 333	 */
 334	CM_IO_WRITETHROUGH,
 335
 336	/*
 337	 * A degraded mode useful for various cache coherency situations
 338	 * (eg, rolling back snapshots).  Reads and writes always go to the
 339	 * origin.  If a write goes to a cached oblock, then the cache
 340	 * block is invalidated.
 341	 */
 342	CM_IO_PASSTHROUGH
 343};
 344
 345struct cache_features {
 346	enum cache_metadata_mode mode;
 347	enum cache_io_mode io_mode;
 348	unsigned metadata_version;
 349	bool discard_passdown:1;
 350};
 351
 352struct cache_stats {
 353	atomic_t read_hit;
 354	atomic_t read_miss;
 355	atomic_t write_hit;
 356	atomic_t write_miss;
 357	atomic_t demotion;
 358	atomic_t promotion;
 359	atomic_t writeback;
 360	atomic_t copies_avoided;
 361	atomic_t cache_cell_clash;
 362	atomic_t commit_count;
 363	atomic_t discard_count;
 364};
 365
 366struct cache {
 367	struct dm_target *ti;
 368	spinlock_t lock;
 369
 370	/*
 371	 * Fields for converting from sectors to blocks.
 372	 */
 373	int sectors_per_block_shift;
 374	sector_t sectors_per_block;
 375
 376	struct dm_cache_metadata *cmd;
 377
 378	/*
 379	 * Metadata is written to this device.
 380	 */
 381	struct dm_dev *metadata_dev;
 382
 383	/*
 384	 * The slower of the two data devices.  Typically a spindle.
 385	 */
 386	struct dm_dev *origin_dev;
 387
 388	/*
 389	 * The faster of the two data devices.  Typically an SSD.
 390	 */
 391	struct dm_dev *cache_dev;
 392
 393	/*
 394	 * Size of the origin device in _complete_ blocks and native sectors.
 395	 */
 396	dm_oblock_t origin_blocks;
 397	sector_t origin_sectors;
 398
 399	/*
 400	 * Size of the cache device in blocks.
 401	 */
 402	dm_cblock_t cache_size;
 403
 404	/*
 405	 * Invalidation fields.
 406	 */
 407	spinlock_t invalidation_lock;
 408	struct list_head invalidation_requests;
 409
 410	sector_t migration_threshold;
 411	wait_queue_head_t migration_wait;
 412	atomic_t nr_allocated_migrations;
 413
 414	/*
 415	 * The number of in flight migrations that are performing
 416	 * background io. eg, promotion, writeback.
 417	 */
 418	atomic_t nr_io_migrations;
 419
 420	struct bio_list deferred_bios;
 421
 422	struct rw_semaphore quiesce_lock;
 423
 
 
 424	/*
 425	 * origin_blocks entries, discarded if set.
 426	 */
 427	dm_dblock_t discard_nr_blocks;
 428	unsigned long *discard_bitset;
 429	uint32_t discard_block_size; /* a power of 2 times sectors per block */
 430
 431	/*
 432	 * Rather than reconstructing the table line for the status we just
 433	 * save it and regurgitate.
 434	 */
 435	unsigned nr_ctr_args;
 436	const char **ctr_args;
 437
 438	struct dm_kcopyd_client *copier;
 439	struct work_struct deferred_bio_worker;
 440	struct work_struct migration_worker;
 441	struct workqueue_struct *wq;
 442	struct delayed_work waker;
 443	struct dm_bio_prison_v2 *prison;
 444
 445	/*
 446	 * cache_size entries, dirty if set
 447	 */
 448	unsigned long *dirty_bitset;
 449	atomic_t nr_dirty;
 450
 451	unsigned policy_nr_args;
 452	struct dm_cache_policy *policy;
 453
 454	/*
 455	 * Cache features such as write-through.
 456	 */
 457	struct cache_features features;
 458
 459	struct cache_stats stats;
 460
 461	bool need_tick_bio:1;
 462	bool sized:1;
 463	bool invalidate:1;
 464	bool commit_requested:1;
 465	bool loaded_mappings:1;
 466	bool loaded_discards:1;
 467
 468	struct rw_semaphore background_work_lock;
 469
 470	struct batcher committer;
 471	struct work_struct commit_ws;
 472
 473	struct io_tracker tracker;
 474
 475	mempool_t migration_pool;
 476
 477	struct bio_set bs;
 478};
 479
 480struct per_bio_data {
 481	bool tick:1;
 482	unsigned req_nr:2;
 483	struct dm_bio_prison_cell_v2 *cell;
 484	struct dm_hook_info hook_info;
 485	sector_t len;
 486};
 487
 488struct dm_cache_migration {
 489	struct continuation k;
 490	struct cache *cache;
 491
 492	struct policy_work *op;
 493	struct bio *overwrite_bio;
 494	struct dm_bio_prison_cell_v2 *cell;
 495
 496	dm_cblock_t invalidate_cblock;
 497	dm_oblock_t invalidate_oblock;
 498};
 499
 500/*----------------------------------------------------------------*/
 501
 502static bool writethrough_mode(struct cache *cache)
 503{
 504	return cache->features.io_mode == CM_IO_WRITETHROUGH;
 505}
 506
 507static bool writeback_mode(struct cache *cache)
 508{
 509	return cache->features.io_mode == CM_IO_WRITEBACK;
 510}
 511
 512static inline bool passthrough_mode(struct cache *cache)
 513{
 514	return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
 515}
 516
 517/*----------------------------------------------------------------*/
 518
 519static void wake_deferred_bio_worker(struct cache *cache)
 520{
 521	queue_work(cache->wq, &cache->deferred_bio_worker);
 522}
 523
 524static void wake_migration_worker(struct cache *cache)
 525{
 526	if (passthrough_mode(cache))
 527		return;
 528
 529	queue_work(cache->wq, &cache->migration_worker);
 530}
 531
 532/*----------------------------------------------------------------*/
 533
 534static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
 535{
 536	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
 537}
 538
 539static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
 540{
 541	dm_bio_prison_free_cell_v2(cache->prison, cell);
 542}
 543
 544static struct dm_cache_migration *alloc_migration(struct cache *cache)
 545{
 546	struct dm_cache_migration *mg;
 547
 548	mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
 549
 550	memset(mg, 0, sizeof(*mg));
 551
 552	mg->cache = cache;
 553	atomic_inc(&cache->nr_allocated_migrations);
 554
 555	return mg;
 556}
 557
 558static void free_migration(struct dm_cache_migration *mg)
 559{
 560	struct cache *cache = mg->cache;
 561
 562	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
 563		wake_up(&cache->migration_wait);
 564
 565	mempool_free(mg, &cache->migration_pool);
 566}
 567
 568/*----------------------------------------------------------------*/
 569
 570static inline dm_oblock_t oblock_succ(dm_oblock_t b)
 571{
 572	return to_oblock(from_oblock(b) + 1ull);
 573}
 574
 575static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
 576{
 577	key->virtual = 0;
 578	key->dev = 0;
 579	key->block_begin = from_oblock(begin);
 580	key->block_end = from_oblock(end);
 581}
 582
 583/*
 584 * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
 585 * level 1 which prevents *both* READs and WRITEs.
 586 */
 587#define WRITE_LOCK_LEVEL 0
 588#define READ_WRITE_LOCK_LEVEL 1
 589
 590static unsigned lock_level(struct bio *bio)
 591{
 592	return bio_data_dir(bio) == WRITE ?
 593		WRITE_LOCK_LEVEL :
 594		READ_WRITE_LOCK_LEVEL;
 595}
 596
 597/*----------------------------------------------------------------
 598 * Per bio data
 599 *--------------------------------------------------------------*/
 600
 601static struct per_bio_data *get_per_bio_data(struct bio *bio)
 602{
 603	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
 604	BUG_ON(!pb);
 605	return pb;
 606}
 607
 608static struct per_bio_data *init_per_bio_data(struct bio *bio)
 609{
 610	struct per_bio_data *pb = get_per_bio_data(bio);
 611
 612	pb->tick = false;
 613	pb->req_nr = dm_bio_get_target_bio_nr(bio);
 614	pb->cell = NULL;
 615	pb->len = 0;
 616
 617	return pb;
 618}
 619
 620/*----------------------------------------------------------------*/
 621
 622static void defer_bio(struct cache *cache, struct bio *bio)
 623{
 624	spin_lock_irq(&cache->lock);
 
 
 625	bio_list_add(&cache->deferred_bios, bio);
 626	spin_unlock_irq(&cache->lock);
 627
 628	wake_deferred_bio_worker(cache);
 629}
 630
 631static void defer_bios(struct cache *cache, struct bio_list *bios)
 632{
 633	spin_lock_irq(&cache->lock);
 
 
 634	bio_list_merge(&cache->deferred_bios, bios);
 635	bio_list_init(bios);
 636	spin_unlock_irq(&cache->lock);
 637
 638	wake_deferred_bio_worker(cache);
 639}
 640
 641/*----------------------------------------------------------------*/
 642
 643static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
 644{
 645	bool r;
 646	struct per_bio_data *pb;
 647	struct dm_cell_key_v2 key;
 648	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
 649	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
 650
 651	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
 652
 653	build_key(oblock, end, &key);
 654	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
 655	if (!r) {
 656		/*
 657		 * Failed to get the lock.
 658		 */
 659		free_prison_cell(cache, cell_prealloc);
 660		return r;
 661	}
 662
 663	if (cell != cell_prealloc)
 664		free_prison_cell(cache, cell_prealloc);
 665
 666	pb = get_per_bio_data(bio);
 667	pb->cell = cell;
 668
 669	return r;
 670}
 671
 672/*----------------------------------------------------------------*/
 673
 674static bool is_dirty(struct cache *cache, dm_cblock_t b)
 675{
 676	return test_bit(from_cblock(b), cache->dirty_bitset);
 677}
 678
 679static void set_dirty(struct cache *cache, dm_cblock_t cblock)
 680{
 681	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
 682		atomic_inc(&cache->nr_dirty);
 683		policy_set_dirty(cache->policy, cblock);
 684	}
 685}
 686
 687/*
 688 * These two are called when setting after migrations to force the policy
 689 * and dirty bitset to be in sync.
 690 */
 691static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
 692{
 693	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
 694		atomic_inc(&cache->nr_dirty);
 695	policy_set_dirty(cache->policy, cblock);
 696}
 697
 698static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
 699{
 700	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
 701		if (atomic_dec_return(&cache->nr_dirty) == 0)
 702			dm_table_event(cache->ti->table);
 703	}
 704
 705	policy_clear_dirty(cache->policy, cblock);
 706}
 707
 708/*----------------------------------------------------------------*/
 709
 710static bool block_size_is_power_of_two(struct cache *cache)
 711{
 712	return cache->sectors_per_block_shift >= 0;
 713}
 714
 715/* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
 716#if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
 717__always_inline
 718#endif
 719static dm_block_t block_div(dm_block_t b, uint32_t n)
 720{
 721	do_div(b, n);
 722
 723	return b;
 724}
 725
 726static dm_block_t oblocks_per_dblock(struct cache *cache)
 727{
 728	dm_block_t oblocks = cache->discard_block_size;
 729
 730	if (block_size_is_power_of_two(cache))
 731		oblocks >>= cache->sectors_per_block_shift;
 732	else
 733		oblocks = block_div(oblocks, cache->sectors_per_block);
 734
 735	return oblocks;
 736}
 737
 738static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
 739{
 740	return to_dblock(block_div(from_oblock(oblock),
 741				   oblocks_per_dblock(cache)));
 742}
 743
 744static void set_discard(struct cache *cache, dm_dblock_t b)
 745{
 
 
 746	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
 747	atomic_inc(&cache->stats.discard_count);
 748
 749	spin_lock_irq(&cache->lock);
 750	set_bit(from_dblock(b), cache->discard_bitset);
 751	spin_unlock_irq(&cache->lock);
 752}
 753
 754static void clear_discard(struct cache *cache, dm_dblock_t b)
 755{
 756	spin_lock_irq(&cache->lock);
 
 
 757	clear_bit(from_dblock(b), cache->discard_bitset);
 758	spin_unlock_irq(&cache->lock);
 759}
 760
 761static bool is_discarded(struct cache *cache, dm_dblock_t b)
 762{
 763	int r;
 764	spin_lock_irq(&cache->lock);
 
 
 765	r = test_bit(from_dblock(b), cache->discard_bitset);
 766	spin_unlock_irq(&cache->lock);
 767
 768	return r;
 769}
 770
 771static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
 772{
 773	int r;
 774	spin_lock_irq(&cache->lock);
 
 
 775	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
 776		     cache->discard_bitset);
 777	spin_unlock_irq(&cache->lock);
 778
 779	return r;
 780}
 781
 782/*----------------------------------------------------------------
 783 * Remapping
 784 *--------------------------------------------------------------*/
 785static void remap_to_origin(struct cache *cache, struct bio *bio)
 786{
 787	bio_set_dev(bio, cache->origin_dev->bdev);
 788}
 789
 790static void remap_to_cache(struct cache *cache, struct bio *bio,
 791			   dm_cblock_t cblock)
 792{
 793	sector_t bi_sector = bio->bi_iter.bi_sector;
 794	sector_t block = from_cblock(cblock);
 795
 796	bio_set_dev(bio, cache->cache_dev->bdev);
 797	if (!block_size_is_power_of_two(cache))
 798		bio->bi_iter.bi_sector =
 799			(block * cache->sectors_per_block) +
 800			sector_div(bi_sector, cache->sectors_per_block);
 801	else
 802		bio->bi_iter.bi_sector =
 803			(block << cache->sectors_per_block_shift) |
 804			(bi_sector & (cache->sectors_per_block - 1));
 805}
 806
 807static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
 808{
 
 809	struct per_bio_data *pb;
 810
 811	spin_lock_irq(&cache->lock);
 812	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
 813	    bio_op(bio) != REQ_OP_DISCARD) {
 814		pb = get_per_bio_data(bio);
 815		pb->tick = true;
 816		cache->need_tick_bio = false;
 817	}
 818	spin_unlock_irq(&cache->lock);
 819}
 820
 821static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 822					    dm_oblock_t oblock, bool bio_has_pbd)
 823{
 824	if (bio_has_pbd)
 825		check_if_tick_bio_needed(cache, bio);
 826	remap_to_origin(cache, bio);
 827	if (bio_data_dir(bio) == WRITE)
 828		clear_discard(cache, oblock_to_dblock(cache, oblock));
 829}
 830
 831static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 832					  dm_oblock_t oblock)
 833{
 834	// FIXME: check_if_tick_bio_needed() is called way too much through this interface
 835	__remap_to_origin_clear_discard(cache, bio, oblock, true);
 836}
 837
 838static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
 839				 dm_oblock_t oblock, dm_cblock_t cblock)
 840{
 841	check_if_tick_bio_needed(cache, bio);
 842	remap_to_cache(cache, bio, cblock);
 843	if (bio_data_dir(bio) == WRITE) {
 844		set_dirty(cache, cblock);
 845		clear_discard(cache, oblock_to_dblock(cache, oblock));
 846	}
 847}
 848
 849static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
 850{
 851	sector_t block_nr = bio->bi_iter.bi_sector;
 852
 853	if (!block_size_is_power_of_two(cache))
 854		(void) sector_div(block_nr, cache->sectors_per_block);
 855	else
 856		block_nr >>= cache->sectors_per_block_shift;
 857
 858	return to_oblock(block_nr);
 859}
 860
 861static bool accountable_bio(struct cache *cache, struct bio *bio)
 862{
 863	return bio_op(bio) != REQ_OP_DISCARD;
 864}
 865
 866static void accounted_begin(struct cache *cache, struct bio *bio)
 867{
 868	struct per_bio_data *pb;
 869
 870	if (accountable_bio(cache, bio)) {
 871		pb = get_per_bio_data(bio);
 872		pb->len = bio_sectors(bio);
 873		iot_io_begin(&cache->tracker, pb->len);
 874	}
 875}
 876
 877static void accounted_complete(struct cache *cache, struct bio *bio)
 878{
 879	struct per_bio_data *pb = get_per_bio_data(bio);
 880
 881	iot_io_end(&cache->tracker, pb->len);
 882}
 883
 884static void accounted_request(struct cache *cache, struct bio *bio)
 885{
 886	accounted_begin(cache, bio);
 887	submit_bio_noacct(bio);
 888}
 889
 890static void issue_op(struct bio *bio, void *context)
 891{
 892	struct cache *cache = context;
 893	accounted_request(cache, bio);
 894}
 895
 896/*
 897 * When running in writethrough mode we need to send writes to clean blocks
 898 * to both the cache and origin devices.  Clone the bio and send them in parallel.
 899 */
 900static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
 901				      dm_oblock_t oblock, dm_cblock_t cblock)
 902{
 903	struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs);
 904
 905	BUG_ON(!origin_bio);
 906
 907	bio_chain(origin_bio, bio);
 908	/*
 909	 * Passing false to __remap_to_origin_clear_discard() skips
 910	 * all code that might use per_bio_data (since clone doesn't have it)
 911	 */
 912	__remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
 913	submit_bio(origin_bio);
 914
 915	remap_to_cache(cache, bio, cblock);
 916}
 917
 918/*----------------------------------------------------------------
 919 * Failure modes
 920 *--------------------------------------------------------------*/
 921static enum cache_metadata_mode get_cache_mode(struct cache *cache)
 922{
 923	return cache->features.mode;
 924}
 925
 926static const char *cache_device_name(struct cache *cache)
 927{
 928	return dm_device_name(dm_table_get_md(cache->ti->table));
 929}
 930
 931static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
 932{
 933	const char *descs[] = {
 934		"write",
 935		"read-only",
 936		"fail"
 937	};
 938
 939	dm_table_event(cache->ti->table);
 940	DMINFO("%s: switching cache to %s mode",
 941	       cache_device_name(cache), descs[(int)mode]);
 942}
 943
 944static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
 945{
 946	bool needs_check;
 947	enum cache_metadata_mode old_mode = get_cache_mode(cache);
 948
 949	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
 950		DMERR("%s: unable to read needs_check flag, setting failure mode.",
 951		      cache_device_name(cache));
 952		new_mode = CM_FAIL;
 953	}
 954
 955	if (new_mode == CM_WRITE && needs_check) {
 956		DMERR("%s: unable to switch cache to write mode until repaired.",
 957		      cache_device_name(cache));
 958		if (old_mode != new_mode)
 959			new_mode = old_mode;
 960		else
 961			new_mode = CM_READ_ONLY;
 962	}
 963
 964	/* Never move out of fail mode */
 965	if (old_mode == CM_FAIL)
 966		new_mode = CM_FAIL;
 967
 968	switch (new_mode) {
 969	case CM_FAIL:
 970	case CM_READ_ONLY:
 971		dm_cache_metadata_set_read_only(cache->cmd);
 972		break;
 973
 974	case CM_WRITE:
 975		dm_cache_metadata_set_read_write(cache->cmd);
 976		break;
 977	}
 978
 979	cache->features.mode = new_mode;
 980
 981	if (new_mode != old_mode)
 982		notify_mode_switch(cache, new_mode);
 983}
 984
 985static void abort_transaction(struct cache *cache)
 986{
 987	const char *dev_name = cache_device_name(cache);
 988
 989	if (get_cache_mode(cache) >= CM_READ_ONLY)
 990		return;
 991
 992	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
 993		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
 994		set_cache_mode(cache, CM_FAIL);
 995	}
 996
 997	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
 998	if (dm_cache_metadata_abort(cache->cmd)) {
 999		DMERR("%s: failed to abort metadata transaction", dev_name);
1000		set_cache_mode(cache, CM_FAIL);
1001	}
1002}
1003
1004static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1005{
1006	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1007		    cache_device_name(cache), op, r);
1008	abort_transaction(cache);
1009	set_cache_mode(cache, CM_READ_ONLY);
1010}
1011
1012/*----------------------------------------------------------------*/
1013
1014static void load_stats(struct cache *cache)
1015{
1016	struct dm_cache_statistics stats;
1017
1018	dm_cache_metadata_get_stats(cache->cmd, &stats);
1019	atomic_set(&cache->stats.read_hit, stats.read_hits);
1020	atomic_set(&cache->stats.read_miss, stats.read_misses);
1021	atomic_set(&cache->stats.write_hit, stats.write_hits);
1022	atomic_set(&cache->stats.write_miss, stats.write_misses);
1023}
1024
1025static void save_stats(struct cache *cache)
1026{
1027	struct dm_cache_statistics stats;
1028
1029	if (get_cache_mode(cache) >= CM_READ_ONLY)
1030		return;
1031
1032	stats.read_hits = atomic_read(&cache->stats.read_hit);
1033	stats.read_misses = atomic_read(&cache->stats.read_miss);
1034	stats.write_hits = atomic_read(&cache->stats.write_hit);
1035	stats.write_misses = atomic_read(&cache->stats.write_miss);
1036
1037	dm_cache_metadata_set_stats(cache->cmd, &stats);
1038}
1039
1040static void update_stats(struct cache_stats *stats, enum policy_operation op)
1041{
1042	switch (op) {
1043	case POLICY_PROMOTE:
1044		atomic_inc(&stats->promotion);
1045		break;
1046
1047	case POLICY_DEMOTE:
1048		atomic_inc(&stats->demotion);
1049		break;
1050
1051	case POLICY_WRITEBACK:
1052		atomic_inc(&stats->writeback);
1053		break;
1054	}
1055}
1056
1057/*----------------------------------------------------------------
1058 * Migration processing
1059 *
1060 * Migration covers moving data from the origin device to the cache, or
1061 * vice versa.
1062 *--------------------------------------------------------------*/
1063
1064static void inc_io_migrations(struct cache *cache)
1065{
1066	atomic_inc(&cache->nr_io_migrations);
1067}
1068
1069static void dec_io_migrations(struct cache *cache)
1070{
1071	atomic_dec(&cache->nr_io_migrations);
1072}
1073
1074static bool discard_or_flush(struct bio *bio)
1075{
1076	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1077}
1078
1079static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1080				     dm_dblock_t *b, dm_dblock_t *e)
1081{
1082	sector_t sb = bio->bi_iter.bi_sector;
1083	sector_t se = bio_end_sector(bio);
1084
1085	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1086
1087	if (se - sb < cache->discard_block_size)
1088		*e = *b;
1089	else
1090		*e = to_dblock(block_div(se, cache->discard_block_size));
1091}
1092
1093/*----------------------------------------------------------------*/
1094
1095static void prevent_background_work(struct cache *cache)
1096{
1097	lockdep_off();
1098	down_write(&cache->background_work_lock);
1099	lockdep_on();
1100}
1101
1102static void allow_background_work(struct cache *cache)
1103{
1104	lockdep_off();
1105	up_write(&cache->background_work_lock);
1106	lockdep_on();
1107}
1108
1109static bool background_work_begin(struct cache *cache)
1110{
1111	bool r;
1112
1113	lockdep_off();
1114	r = down_read_trylock(&cache->background_work_lock);
1115	lockdep_on();
1116
1117	return r;
1118}
1119
1120static void background_work_end(struct cache *cache)
1121{
1122	lockdep_off();
1123	up_read(&cache->background_work_lock);
1124	lockdep_on();
1125}
1126
1127/*----------------------------------------------------------------*/
1128
1129static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1130{
1131	return (bio_data_dir(bio) == WRITE) &&
1132		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1133}
1134
1135static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1136{
1137	return writeback_mode(cache) &&
1138		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1139}
1140
1141static void quiesce(struct dm_cache_migration *mg,
1142		    void (*continuation)(struct work_struct *))
1143{
1144	init_continuation(&mg->k, continuation);
1145	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1146}
1147
1148static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1149{
1150	struct continuation *k = container_of(ws, struct continuation, ws);
1151	return container_of(k, struct dm_cache_migration, k);
1152}
1153
1154static void copy_complete(int read_err, unsigned long write_err, void *context)
1155{
1156	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1157
1158	if (read_err || write_err)
1159		mg->k.input = BLK_STS_IOERR;
1160
1161	queue_continuation(mg->cache->wq, &mg->k);
1162}
1163
1164static void copy(struct dm_cache_migration *mg, bool promote)
1165{
1166	struct dm_io_region o_region, c_region;
1167	struct cache *cache = mg->cache;
1168
1169	o_region.bdev = cache->origin_dev->bdev;
1170	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1171	o_region.count = cache->sectors_per_block;
1172
1173	c_region.bdev = cache->cache_dev->bdev;
1174	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1175	c_region.count = cache->sectors_per_block;
1176
1177	if (promote)
1178		dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1179	else
1180		dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1181}
1182
1183static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1184{
1185	struct per_bio_data *pb = get_per_bio_data(bio);
1186
1187	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1188		free_prison_cell(cache, pb->cell);
1189	pb->cell = NULL;
1190}
1191
1192static void overwrite_endio(struct bio *bio)
1193{
1194	struct dm_cache_migration *mg = bio->bi_private;
1195	struct cache *cache = mg->cache;
1196	struct per_bio_data *pb = get_per_bio_data(bio);
1197
1198	dm_unhook_bio(&pb->hook_info, bio);
1199
1200	if (bio->bi_status)
1201		mg->k.input = bio->bi_status;
1202
1203	queue_continuation(cache->wq, &mg->k);
1204}
1205
1206static void overwrite(struct dm_cache_migration *mg,
1207		      void (*continuation)(struct work_struct *))
1208{
1209	struct bio *bio = mg->overwrite_bio;
1210	struct per_bio_data *pb = get_per_bio_data(bio);
1211
1212	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1213
1214	/*
1215	 * The overwrite bio is part of the copy operation, as such it does
1216	 * not set/clear discard or dirty flags.
1217	 */
1218	if (mg->op->op == POLICY_PROMOTE)
1219		remap_to_cache(mg->cache, bio, mg->op->cblock);
1220	else
1221		remap_to_origin(mg->cache, bio);
1222
1223	init_continuation(&mg->k, continuation);
1224	accounted_request(mg->cache, bio);
1225}
1226
1227/*
1228 * Migration steps:
1229 *
1230 * 1) exclusive lock preventing WRITEs
1231 * 2) quiesce
1232 * 3) copy or issue overwrite bio
1233 * 4) upgrade to exclusive lock preventing READs and WRITEs
1234 * 5) quiesce
1235 * 6) update metadata and commit
1236 * 7) unlock
1237 */
1238static void mg_complete(struct dm_cache_migration *mg, bool success)
1239{
1240	struct bio_list bios;
1241	struct cache *cache = mg->cache;
1242	struct policy_work *op = mg->op;
1243	dm_cblock_t cblock = op->cblock;
1244
1245	if (success)
1246		update_stats(&cache->stats, op->op);
1247
1248	switch (op->op) {
1249	case POLICY_PROMOTE:
1250		clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1251		policy_complete_background_work(cache->policy, op, success);
1252
1253		if (mg->overwrite_bio) {
1254			if (success)
1255				force_set_dirty(cache, cblock);
1256			else if (mg->k.input)
1257				mg->overwrite_bio->bi_status = mg->k.input;
1258			else
1259				mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1260			bio_endio(mg->overwrite_bio);
1261		} else {
1262			if (success)
1263				force_clear_dirty(cache, cblock);
1264			dec_io_migrations(cache);
1265		}
1266		break;
1267
1268	case POLICY_DEMOTE:
1269		/*
1270		 * We clear dirty here to update the nr_dirty counter.
1271		 */
1272		if (success)
1273			force_clear_dirty(cache, cblock);
1274		policy_complete_background_work(cache->policy, op, success);
1275		dec_io_migrations(cache);
1276		break;
1277
1278	case POLICY_WRITEBACK:
1279		if (success)
1280			force_clear_dirty(cache, cblock);
1281		policy_complete_background_work(cache->policy, op, success);
1282		dec_io_migrations(cache);
1283		break;
1284	}
1285
1286	bio_list_init(&bios);
1287	if (mg->cell) {
1288		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1289			free_prison_cell(cache, mg->cell);
1290	}
1291
1292	free_migration(mg);
1293	defer_bios(cache, &bios);
1294	wake_migration_worker(cache);
1295
1296	background_work_end(cache);
1297}
1298
1299static void mg_success(struct work_struct *ws)
1300{
1301	struct dm_cache_migration *mg = ws_to_mg(ws);
1302	mg_complete(mg, mg->k.input == 0);
1303}
1304
1305static void mg_update_metadata(struct work_struct *ws)
1306{
1307	int r;
1308	struct dm_cache_migration *mg = ws_to_mg(ws);
1309	struct cache *cache = mg->cache;
1310	struct policy_work *op = mg->op;
1311
1312	switch (op->op) {
1313	case POLICY_PROMOTE:
1314		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1315		if (r) {
1316			DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1317				    cache_device_name(cache));
1318			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1319
1320			mg_complete(mg, false);
1321			return;
1322		}
1323		mg_complete(mg, true);
1324		break;
1325
1326	case POLICY_DEMOTE:
1327		r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1328		if (r) {
1329			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1330				    cache_device_name(cache));
1331			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1332
1333			mg_complete(mg, false);
1334			return;
1335		}
1336
1337		/*
1338		 * It would be nice if we only had to commit when a REQ_FLUSH
1339		 * comes through.  But there's one scenario that we have to
1340		 * look out for:
1341		 *
1342		 * - vblock x in a cache block
1343		 * - domotion occurs
1344		 * - cache block gets reallocated and over written
1345		 * - crash
1346		 *
1347		 * When we recover, because there was no commit the cache will
1348		 * rollback to having the data for vblock x in the cache block.
1349		 * But the cache block has since been overwritten, so it'll end
1350		 * up pointing to data that was never in 'x' during the history
1351		 * of the device.
1352		 *
1353		 * To avoid this issue we require a commit as part of the
1354		 * demotion operation.
1355		 */
1356		init_continuation(&mg->k, mg_success);
1357		continue_after_commit(&cache->committer, &mg->k);
1358		schedule_commit(&cache->committer);
1359		break;
1360
1361	case POLICY_WRITEBACK:
1362		mg_complete(mg, true);
1363		break;
1364	}
1365}
1366
1367static void mg_update_metadata_after_copy(struct work_struct *ws)
1368{
1369	struct dm_cache_migration *mg = ws_to_mg(ws);
1370
1371	/*
1372	 * Did the copy succeed?
1373	 */
1374	if (mg->k.input)
1375		mg_complete(mg, false);
1376	else
1377		mg_update_metadata(ws);
1378}
1379
1380static void mg_upgrade_lock(struct work_struct *ws)
1381{
1382	int r;
1383	struct dm_cache_migration *mg = ws_to_mg(ws);
1384
1385	/*
1386	 * Did the copy succeed?
1387	 */
1388	if (mg->k.input)
1389		mg_complete(mg, false);
1390
1391	else {
1392		/*
1393		 * Now we want the lock to prevent both reads and writes.
1394		 */
1395		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1396					    READ_WRITE_LOCK_LEVEL);
1397		if (r < 0)
1398			mg_complete(mg, false);
1399
1400		else if (r)
1401			quiesce(mg, mg_update_metadata);
1402
1403		else
1404			mg_update_metadata(ws);
1405	}
1406}
1407
1408static void mg_full_copy(struct work_struct *ws)
1409{
1410	struct dm_cache_migration *mg = ws_to_mg(ws);
1411	struct cache *cache = mg->cache;
1412	struct policy_work *op = mg->op;
1413	bool is_policy_promote = (op->op == POLICY_PROMOTE);
1414
1415	if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1416	    is_discarded_oblock(cache, op->oblock)) {
1417		mg_upgrade_lock(ws);
1418		return;
1419	}
1420
1421	init_continuation(&mg->k, mg_upgrade_lock);
1422	copy(mg, is_policy_promote);
1423}
1424
1425static void mg_copy(struct work_struct *ws)
1426{
1427	struct dm_cache_migration *mg = ws_to_mg(ws);
1428
1429	if (mg->overwrite_bio) {
1430		/*
1431		 * No exclusive lock was held when we last checked if the bio
1432		 * was optimisable.  So we have to check again in case things
1433		 * have changed (eg, the block may no longer be discarded).
1434		 */
1435		if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1436			/*
1437			 * Fallback to a real full copy after doing some tidying up.
1438			 */
1439			bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1440			BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1441			mg->overwrite_bio = NULL;
1442			inc_io_migrations(mg->cache);
1443			mg_full_copy(ws);
1444			return;
1445		}
1446
1447		/*
1448		 * It's safe to do this here, even though it's new data
1449		 * because all IO has been locked out of the block.
1450		 *
1451		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1452		 * so _not_ using mg_upgrade_lock() as continutation.
1453		 */
1454		overwrite(mg, mg_update_metadata_after_copy);
1455
1456	} else
1457		mg_full_copy(ws);
1458}
1459
1460static int mg_lock_writes(struct dm_cache_migration *mg)
1461{
1462	int r;
1463	struct dm_cell_key_v2 key;
1464	struct cache *cache = mg->cache;
1465	struct dm_bio_prison_cell_v2 *prealloc;
1466
1467	prealloc = alloc_prison_cell(cache);
1468
1469	/*
1470	 * Prevent writes to the block, but allow reads to continue.
1471	 * Unless we're using an overwrite bio, in which case we lock
1472	 * everything.
1473	 */
1474	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1475	r = dm_cell_lock_v2(cache->prison, &key,
1476			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1477			    prealloc, &mg->cell);
1478	if (r < 0) {
1479		free_prison_cell(cache, prealloc);
1480		mg_complete(mg, false);
1481		return r;
1482	}
1483
1484	if (mg->cell != prealloc)
1485		free_prison_cell(cache, prealloc);
1486
1487	if (r == 0)
1488		mg_copy(&mg->k.ws);
1489	else
1490		quiesce(mg, mg_copy);
1491
1492	return 0;
1493}
1494
1495static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1496{
1497	struct dm_cache_migration *mg;
1498
1499	if (!background_work_begin(cache)) {
1500		policy_complete_background_work(cache->policy, op, false);
1501		return -EPERM;
1502	}
1503
1504	mg = alloc_migration(cache);
1505
1506	mg->op = op;
1507	mg->overwrite_bio = bio;
1508
1509	if (!bio)
1510		inc_io_migrations(cache);
1511
1512	return mg_lock_writes(mg);
1513}
1514
1515/*----------------------------------------------------------------
1516 * invalidation processing
1517 *--------------------------------------------------------------*/
1518
1519static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1520{
1521	struct bio_list bios;
1522	struct cache *cache = mg->cache;
1523
1524	bio_list_init(&bios);
1525	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1526		free_prison_cell(cache, mg->cell);
1527
1528	if (!success && mg->overwrite_bio)
1529		bio_io_error(mg->overwrite_bio);
1530
1531	free_migration(mg);
1532	defer_bios(cache, &bios);
1533
1534	background_work_end(cache);
1535}
1536
1537static void invalidate_completed(struct work_struct *ws)
1538{
1539	struct dm_cache_migration *mg = ws_to_mg(ws);
1540	invalidate_complete(mg, !mg->k.input);
1541}
1542
1543static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1544{
1545	int r = policy_invalidate_mapping(cache->policy, cblock);
1546	if (!r) {
1547		r = dm_cache_remove_mapping(cache->cmd, cblock);
1548		if (r) {
1549			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1550				    cache_device_name(cache));
1551			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1552		}
1553
1554	} else if (r == -ENODATA) {
1555		/*
1556		 * Harmless, already unmapped.
1557		 */
1558		r = 0;
1559
1560	} else
1561		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1562
1563	return r;
1564}
1565
1566static void invalidate_remove(struct work_struct *ws)
1567{
1568	int r;
1569	struct dm_cache_migration *mg = ws_to_mg(ws);
1570	struct cache *cache = mg->cache;
1571
1572	r = invalidate_cblock(cache, mg->invalidate_cblock);
1573	if (r) {
1574		invalidate_complete(mg, false);
1575		return;
1576	}
1577
1578	init_continuation(&mg->k, invalidate_completed);
1579	continue_after_commit(&cache->committer, &mg->k);
1580	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1581	mg->overwrite_bio = NULL;
1582	schedule_commit(&cache->committer);
1583}
1584
1585static int invalidate_lock(struct dm_cache_migration *mg)
1586{
1587	int r;
1588	struct dm_cell_key_v2 key;
1589	struct cache *cache = mg->cache;
1590	struct dm_bio_prison_cell_v2 *prealloc;
1591
1592	prealloc = alloc_prison_cell(cache);
1593
1594	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1595	r = dm_cell_lock_v2(cache->prison, &key,
1596			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1597	if (r < 0) {
1598		free_prison_cell(cache, prealloc);
1599		invalidate_complete(mg, false);
1600		return r;
1601	}
1602
1603	if (mg->cell != prealloc)
1604		free_prison_cell(cache, prealloc);
1605
1606	if (r)
1607		quiesce(mg, invalidate_remove);
1608
1609	else {
1610		/*
1611		 * We can't call invalidate_remove() directly here because we
1612		 * might still be in request context.
1613		 */
1614		init_continuation(&mg->k, invalidate_remove);
1615		queue_work(cache->wq, &mg->k.ws);
1616	}
1617
1618	return 0;
1619}
1620
1621static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1622			    dm_oblock_t oblock, struct bio *bio)
1623{
1624	struct dm_cache_migration *mg;
1625
1626	if (!background_work_begin(cache))
1627		return -EPERM;
1628
1629	mg = alloc_migration(cache);
1630
1631	mg->overwrite_bio = bio;
1632	mg->invalidate_cblock = cblock;
1633	mg->invalidate_oblock = oblock;
1634
1635	return invalidate_lock(mg);
1636}
1637
1638/*----------------------------------------------------------------
1639 * bio processing
1640 *--------------------------------------------------------------*/
1641
1642enum busy {
1643	IDLE,
1644	BUSY
1645};
1646
1647static enum busy spare_migration_bandwidth(struct cache *cache)
1648{
1649	bool idle = iot_idle_for(&cache->tracker, HZ);
1650	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1651		cache->sectors_per_block;
1652
1653	if (idle && current_volume <= cache->migration_threshold)
1654		return IDLE;
1655	else
1656		return BUSY;
1657}
1658
1659static void inc_hit_counter(struct cache *cache, struct bio *bio)
1660{
1661	atomic_inc(bio_data_dir(bio) == READ ?
1662		   &cache->stats.read_hit : &cache->stats.write_hit);
1663}
1664
1665static void inc_miss_counter(struct cache *cache, struct bio *bio)
1666{
1667	atomic_inc(bio_data_dir(bio) == READ ?
1668		   &cache->stats.read_miss : &cache->stats.write_miss);
1669}
1670
1671/*----------------------------------------------------------------*/
1672
1673static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1674		   bool *commit_needed)
1675{
1676	int r, data_dir;
1677	bool rb, background_queued;
1678	dm_cblock_t cblock;
1679
1680	*commit_needed = false;
1681
1682	rb = bio_detain_shared(cache, block, bio);
1683	if (!rb) {
1684		/*
1685		 * An exclusive lock is held for this block, so we have to
1686		 * wait.  We set the commit_needed flag so the current
1687		 * transaction will be committed asap, allowing this lock
1688		 * to be dropped.
1689		 */
1690		*commit_needed = true;
1691		return DM_MAPIO_SUBMITTED;
1692	}
1693
1694	data_dir = bio_data_dir(bio);
1695
1696	if (optimisable_bio(cache, bio, block)) {
1697		struct policy_work *op = NULL;
1698
1699		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1700		if (unlikely(r && r != -ENOENT)) {
1701			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1702				    cache_device_name(cache), r);
1703			bio_io_error(bio);
1704			return DM_MAPIO_SUBMITTED;
1705		}
1706
1707		if (r == -ENOENT && op) {
1708			bio_drop_shared_lock(cache, bio);
1709			BUG_ON(op->op != POLICY_PROMOTE);
1710			mg_start(cache, op, bio);
1711			return DM_MAPIO_SUBMITTED;
1712		}
1713	} else {
1714		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1715		if (unlikely(r && r != -ENOENT)) {
1716			DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1717				    cache_device_name(cache), r);
1718			bio_io_error(bio);
1719			return DM_MAPIO_SUBMITTED;
1720		}
1721
1722		if (background_queued)
1723			wake_migration_worker(cache);
1724	}
1725
1726	if (r == -ENOENT) {
1727		struct per_bio_data *pb = get_per_bio_data(bio);
1728
1729		/*
1730		 * Miss.
1731		 */
1732		inc_miss_counter(cache, bio);
1733		if (pb->req_nr == 0) {
1734			accounted_begin(cache, bio);
1735			remap_to_origin_clear_discard(cache, bio, block);
1736		} else {
1737			/*
1738			 * This is a duplicate writethrough io that is no
1739			 * longer needed because the block has been demoted.
1740			 */
1741			bio_endio(bio);
1742			return DM_MAPIO_SUBMITTED;
1743		}
1744	} else {
1745		/*
1746		 * Hit.
1747		 */
1748		inc_hit_counter(cache, bio);
1749
1750		/*
1751		 * Passthrough always maps to the origin, invalidating any
1752		 * cache blocks that are written to.
1753		 */
1754		if (passthrough_mode(cache)) {
1755			if (bio_data_dir(bio) == WRITE) {
1756				bio_drop_shared_lock(cache, bio);
1757				atomic_inc(&cache->stats.demotion);
1758				invalidate_start(cache, cblock, block, bio);
1759			} else
1760				remap_to_origin_clear_discard(cache, bio, block);
1761		} else {
1762			if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1763			    !is_dirty(cache, cblock)) {
1764				remap_to_origin_and_cache(cache, bio, block, cblock);
1765				accounted_begin(cache, bio);
1766			} else
1767				remap_to_cache_dirty(cache, bio, block, cblock);
1768		}
1769	}
1770
1771	/*
1772	 * dm core turns FUA requests into a separate payload and FLUSH req.
1773	 */
1774	if (bio->bi_opf & REQ_FUA) {
1775		/*
1776		 * issue_after_commit will call accounted_begin a second time.  So
1777		 * we call accounted_complete() to avoid double accounting.
1778		 */
1779		accounted_complete(cache, bio);
1780		issue_after_commit(&cache->committer, bio);
1781		*commit_needed = true;
1782		return DM_MAPIO_SUBMITTED;
1783	}
1784
1785	return DM_MAPIO_REMAPPED;
1786}
1787
1788static bool process_bio(struct cache *cache, struct bio *bio)
1789{
1790	bool commit_needed;
1791
1792	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1793		submit_bio_noacct(bio);
1794
1795	return commit_needed;
1796}
1797
1798/*
1799 * A non-zero return indicates read_only or fail_io mode.
1800 */
1801static int commit(struct cache *cache, bool clean_shutdown)
1802{
1803	int r;
1804
1805	if (get_cache_mode(cache) >= CM_READ_ONLY)
1806		return -EINVAL;
1807
1808	atomic_inc(&cache->stats.commit_count);
1809	r = dm_cache_commit(cache->cmd, clean_shutdown);
1810	if (r)
1811		metadata_operation_failed(cache, "dm_cache_commit", r);
1812
1813	return r;
1814}
1815
1816/*
1817 * Used by the batcher.
1818 */
1819static blk_status_t commit_op(void *context)
1820{
1821	struct cache *cache = context;
1822
1823	if (dm_cache_changed_this_transaction(cache->cmd))
1824		return errno_to_blk_status(commit(cache, false));
1825
1826	return 0;
1827}
1828
1829/*----------------------------------------------------------------*/
1830
1831static bool process_flush_bio(struct cache *cache, struct bio *bio)
1832{
1833	struct per_bio_data *pb = get_per_bio_data(bio);
1834
1835	if (!pb->req_nr)
1836		remap_to_origin(cache, bio);
1837	else
1838		remap_to_cache(cache, bio, 0);
1839
1840	issue_after_commit(&cache->committer, bio);
1841	return true;
1842}
1843
1844static bool process_discard_bio(struct cache *cache, struct bio *bio)
1845{
1846	dm_dblock_t b, e;
1847
1848	// FIXME: do we need to lock the region?  Or can we just assume the
1849	// user wont be so foolish as to issue discard concurrently with
1850	// other IO?
1851	calc_discard_block_range(cache, bio, &b, &e);
1852	while (b != e) {
1853		set_discard(cache, b);
1854		b = to_dblock(from_dblock(b) + 1);
1855	}
1856
1857	if (cache->features.discard_passdown) {
1858		remap_to_origin(cache, bio);
1859		submit_bio_noacct(bio);
1860	} else
1861		bio_endio(bio);
1862
1863	return false;
1864}
1865
1866static void process_deferred_bios(struct work_struct *ws)
1867{
1868	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1869
 
1870	bool commit_needed = false;
1871	struct bio_list bios;
1872	struct bio *bio;
1873
1874	bio_list_init(&bios);
1875
1876	spin_lock_irq(&cache->lock);
1877	bio_list_merge(&bios, &cache->deferred_bios);
1878	bio_list_init(&cache->deferred_bios);
1879	spin_unlock_irq(&cache->lock);
1880
1881	while ((bio = bio_list_pop(&bios))) {
1882		if (bio->bi_opf & REQ_PREFLUSH)
1883			commit_needed = process_flush_bio(cache, bio) || commit_needed;
1884
1885		else if (bio_op(bio) == REQ_OP_DISCARD)
1886			commit_needed = process_discard_bio(cache, bio) || commit_needed;
1887
1888		else
1889			commit_needed = process_bio(cache, bio) || commit_needed;
1890	}
1891
1892	if (commit_needed)
1893		schedule_commit(&cache->committer);
1894}
1895
1896/*----------------------------------------------------------------
1897 * Main worker loop
1898 *--------------------------------------------------------------*/
1899
1900static void requeue_deferred_bios(struct cache *cache)
1901{
1902	struct bio *bio;
1903	struct bio_list bios;
1904
1905	bio_list_init(&bios);
1906	bio_list_merge(&bios, &cache->deferred_bios);
1907	bio_list_init(&cache->deferred_bios);
1908
1909	while ((bio = bio_list_pop(&bios))) {
1910		bio->bi_status = BLK_STS_DM_REQUEUE;
1911		bio_endio(bio);
1912	}
1913}
1914
1915/*
1916 * We want to commit periodically so that not too much
1917 * unwritten metadata builds up.
1918 */
1919static void do_waker(struct work_struct *ws)
1920{
1921	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1922
1923	policy_tick(cache->policy, true);
1924	wake_migration_worker(cache);
1925	schedule_commit(&cache->committer);
1926	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1927}
1928
1929static void check_migrations(struct work_struct *ws)
1930{
1931	int r;
1932	struct policy_work *op;
1933	struct cache *cache = container_of(ws, struct cache, migration_worker);
1934	enum busy b;
1935
1936	for (;;) {
1937		b = spare_migration_bandwidth(cache);
1938
1939		r = policy_get_background_work(cache->policy, b == IDLE, &op);
1940		if (r == -ENODATA)
1941			break;
1942
1943		if (r) {
1944			DMERR_LIMIT("%s: policy_background_work failed",
1945				    cache_device_name(cache));
1946			break;
1947		}
1948
1949		r = mg_start(cache, op, NULL);
1950		if (r)
1951			break;
1952	}
1953}
1954
1955/*----------------------------------------------------------------
1956 * Target methods
1957 *--------------------------------------------------------------*/
1958
1959/*
1960 * This function gets called on the error paths of the constructor, so we
1961 * have to cope with a partially initialised struct.
1962 */
1963static void destroy(struct cache *cache)
1964{
1965	unsigned i;
1966
1967	mempool_exit(&cache->migration_pool);
1968
1969	if (cache->prison)
1970		dm_bio_prison_destroy_v2(cache->prison);
1971
1972	if (cache->wq)
1973		destroy_workqueue(cache->wq);
1974
1975	if (cache->dirty_bitset)
1976		free_bitset(cache->dirty_bitset);
1977
1978	if (cache->discard_bitset)
1979		free_bitset(cache->discard_bitset);
1980
1981	if (cache->copier)
1982		dm_kcopyd_client_destroy(cache->copier);
1983
1984	if (cache->cmd)
1985		dm_cache_metadata_close(cache->cmd);
1986
1987	if (cache->metadata_dev)
1988		dm_put_device(cache->ti, cache->metadata_dev);
1989
1990	if (cache->origin_dev)
1991		dm_put_device(cache->ti, cache->origin_dev);
1992
1993	if (cache->cache_dev)
1994		dm_put_device(cache->ti, cache->cache_dev);
1995
1996	if (cache->policy)
1997		dm_cache_policy_destroy(cache->policy);
1998
1999	for (i = 0; i < cache->nr_ctr_args ; i++)
2000		kfree(cache->ctr_args[i]);
2001	kfree(cache->ctr_args);
2002
2003	bioset_exit(&cache->bs);
2004
2005	kfree(cache);
2006}
2007
2008static void cache_dtr(struct dm_target *ti)
2009{
2010	struct cache *cache = ti->private;
2011
2012	destroy(cache);
2013}
2014
2015static sector_t get_dev_size(struct dm_dev *dev)
2016{
2017	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2018}
2019
2020/*----------------------------------------------------------------*/
2021
2022/*
2023 * Construct a cache device mapping.
2024 *
2025 * cache <metadata dev> <cache dev> <origin dev> <block size>
2026 *       <#feature args> [<feature arg>]*
2027 *       <policy> <#policy args> [<policy arg>]*
2028 *
2029 * metadata dev    : fast device holding the persistent metadata
2030 * cache dev	   : fast device holding cached data blocks
2031 * origin dev	   : slow device holding original data blocks
2032 * block size	   : cache unit size in sectors
2033 *
2034 * #feature args   : number of feature arguments passed
2035 * feature args    : writethrough.  (The default is writeback.)
2036 *
2037 * policy	   : the replacement policy to use
2038 * #policy args    : an even number of policy arguments corresponding
2039 *		     to key/value pairs passed to the policy
2040 * policy args	   : key/value pairs passed to the policy
2041 *		     E.g. 'sequential_threshold 1024'
2042 *		     See cache-policies.txt for details.
2043 *
2044 * Optional feature arguments are:
2045 *   writethrough  : write through caching that prohibits cache block
2046 *		     content from being different from origin block content.
2047 *		     Without this argument, the default behaviour is to write
2048 *		     back cache block contents later for performance reasons,
2049 *		     so they may differ from the corresponding origin blocks.
2050 */
2051struct cache_args {
2052	struct dm_target *ti;
2053
2054	struct dm_dev *metadata_dev;
2055
2056	struct dm_dev *cache_dev;
2057	sector_t cache_sectors;
2058
2059	struct dm_dev *origin_dev;
2060	sector_t origin_sectors;
2061
2062	uint32_t block_size;
2063
2064	const char *policy_name;
2065	int policy_argc;
2066	const char **policy_argv;
2067
2068	struct cache_features features;
2069};
2070
2071static void destroy_cache_args(struct cache_args *ca)
2072{
2073	if (ca->metadata_dev)
2074		dm_put_device(ca->ti, ca->metadata_dev);
2075
2076	if (ca->cache_dev)
2077		dm_put_device(ca->ti, ca->cache_dev);
2078
2079	if (ca->origin_dev)
2080		dm_put_device(ca->ti, ca->origin_dev);
2081
2082	kfree(ca);
2083}
2084
2085static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2086{
2087	if (!as->argc) {
2088		*error = "Insufficient args";
2089		return false;
2090	}
2091
2092	return true;
2093}
2094
2095static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2096			      char **error)
2097{
2098	int r;
2099	sector_t metadata_dev_size;
2100	char b[BDEVNAME_SIZE];
2101
2102	if (!at_least_one_arg(as, error))
2103		return -EINVAL;
2104
2105	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2106			  &ca->metadata_dev);
2107	if (r) {
2108		*error = "Error opening metadata device";
2109		return r;
2110	}
2111
2112	metadata_dev_size = get_dev_size(ca->metadata_dev);
2113	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2114		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2115		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2116
2117	return 0;
2118}
2119
2120static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2121			   char **error)
2122{
2123	int r;
2124
2125	if (!at_least_one_arg(as, error))
2126		return -EINVAL;
2127
2128	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2129			  &ca->cache_dev);
2130	if (r) {
2131		*error = "Error opening cache device";
2132		return r;
2133	}
2134	ca->cache_sectors = get_dev_size(ca->cache_dev);
2135
2136	return 0;
2137}
2138
2139static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2140			    char **error)
2141{
2142	int r;
2143
2144	if (!at_least_one_arg(as, error))
2145		return -EINVAL;
2146
2147	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2148			  &ca->origin_dev);
2149	if (r) {
2150		*error = "Error opening origin device";
2151		return r;
2152	}
2153
2154	ca->origin_sectors = get_dev_size(ca->origin_dev);
2155	if (ca->ti->len > ca->origin_sectors) {
2156		*error = "Device size larger than cached device";
2157		return -EINVAL;
2158	}
2159
2160	return 0;
2161}
2162
2163static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2164			    char **error)
2165{
2166	unsigned long block_size;
2167
2168	if (!at_least_one_arg(as, error))
2169		return -EINVAL;
2170
2171	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2172	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2173	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2174	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2175		*error = "Invalid data block size";
2176		return -EINVAL;
2177	}
2178
2179	if (block_size > ca->cache_sectors) {
2180		*error = "Data block size is larger than the cache device";
2181		return -EINVAL;
2182	}
2183
2184	ca->block_size = block_size;
2185
2186	return 0;
2187}
2188
2189static void init_features(struct cache_features *cf)
2190{
2191	cf->mode = CM_WRITE;
2192	cf->io_mode = CM_IO_WRITEBACK;
2193	cf->metadata_version = 1;
2194	cf->discard_passdown = true;
2195}
2196
2197static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2198			  char **error)
2199{
2200	static const struct dm_arg _args[] = {
2201		{0, 3, "Invalid number of cache feature arguments"},
2202	};
2203
2204	int r, mode_ctr = 0;
2205	unsigned argc;
2206	const char *arg;
2207	struct cache_features *cf = &ca->features;
2208
2209	init_features(cf);
2210
2211	r = dm_read_arg_group(_args, as, &argc, error);
2212	if (r)
2213		return -EINVAL;
2214
2215	while (argc--) {
2216		arg = dm_shift_arg(as);
2217
2218		if (!strcasecmp(arg, "writeback")) {
2219			cf->io_mode = CM_IO_WRITEBACK;
2220			mode_ctr++;
2221		}
2222
2223		else if (!strcasecmp(arg, "writethrough")) {
2224			cf->io_mode = CM_IO_WRITETHROUGH;
2225			mode_ctr++;
2226		}
2227
2228		else if (!strcasecmp(arg, "passthrough")) {
2229			cf->io_mode = CM_IO_PASSTHROUGH;
2230			mode_ctr++;
2231		}
2232
2233		else if (!strcasecmp(arg, "metadata2"))
2234			cf->metadata_version = 2;
2235
2236		else if (!strcasecmp(arg, "no_discard_passdown"))
2237			cf->discard_passdown = false;
2238
2239		else {
2240			*error = "Unrecognised cache feature requested";
2241			return -EINVAL;
2242		}
2243	}
2244
2245	if (mode_ctr > 1) {
2246		*error = "Duplicate cache io_mode features requested";
2247		return -EINVAL;
2248	}
2249
2250	return 0;
2251}
2252
2253static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2254			char **error)
2255{
2256	static const struct dm_arg _args[] = {
2257		{0, 1024, "Invalid number of policy arguments"},
2258	};
2259
2260	int r;
2261
2262	if (!at_least_one_arg(as, error))
2263		return -EINVAL;
2264
2265	ca->policy_name = dm_shift_arg(as);
2266
2267	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2268	if (r)
2269		return -EINVAL;
2270
2271	ca->policy_argv = (const char **)as->argv;
2272	dm_consume_args(as, ca->policy_argc);
2273
2274	return 0;
2275}
2276
2277static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2278			    char **error)
2279{
2280	int r;
2281	struct dm_arg_set as;
2282
2283	as.argc = argc;
2284	as.argv = argv;
2285
2286	r = parse_metadata_dev(ca, &as, error);
2287	if (r)
2288		return r;
2289
2290	r = parse_cache_dev(ca, &as, error);
2291	if (r)
2292		return r;
2293
2294	r = parse_origin_dev(ca, &as, error);
2295	if (r)
2296		return r;
2297
2298	r = parse_block_size(ca, &as, error);
2299	if (r)
2300		return r;
2301
2302	r = parse_features(ca, &as, error);
2303	if (r)
2304		return r;
2305
2306	r = parse_policy(ca, &as, error);
2307	if (r)
2308		return r;
2309
2310	return 0;
2311}
2312
2313/*----------------------------------------------------------------*/
2314
2315static struct kmem_cache *migration_cache;
2316
2317#define NOT_CORE_OPTION 1
2318
2319static int process_config_option(struct cache *cache, const char *key, const char *value)
2320{
2321	unsigned long tmp;
2322
2323	if (!strcasecmp(key, "migration_threshold")) {
2324		if (kstrtoul(value, 10, &tmp))
2325			return -EINVAL;
2326
2327		cache->migration_threshold = tmp;
2328		return 0;
2329	}
2330
2331	return NOT_CORE_OPTION;
2332}
2333
2334static int set_config_value(struct cache *cache, const char *key, const char *value)
2335{
2336	int r = process_config_option(cache, key, value);
2337
2338	if (r == NOT_CORE_OPTION)
2339		r = policy_set_config_value(cache->policy, key, value);
2340
2341	if (r)
2342		DMWARN("bad config value for %s: %s", key, value);
2343
2344	return r;
2345}
2346
2347static int set_config_values(struct cache *cache, int argc, const char **argv)
2348{
2349	int r = 0;
2350
2351	if (argc & 1) {
2352		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2353		return -EINVAL;
2354	}
2355
2356	while (argc) {
2357		r = set_config_value(cache, argv[0], argv[1]);
2358		if (r)
2359			break;
2360
2361		argc -= 2;
2362		argv += 2;
2363	}
2364
2365	return r;
2366}
2367
2368static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2369			       char **error)
2370{
2371	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2372							   cache->cache_size,
2373							   cache->origin_sectors,
2374							   cache->sectors_per_block);
2375	if (IS_ERR(p)) {
2376		*error = "Error creating cache's policy";
2377		return PTR_ERR(p);
2378	}
2379	cache->policy = p;
2380	BUG_ON(!cache->policy);
2381
2382	return 0;
2383}
2384
2385/*
2386 * We want the discard block size to be at least the size of the cache
2387 * block size and have no more than 2^14 discard blocks across the origin.
2388 */
2389#define MAX_DISCARD_BLOCKS (1 << 14)
2390
2391static bool too_many_discard_blocks(sector_t discard_block_size,
2392				    sector_t origin_size)
2393{
2394	(void) sector_div(origin_size, discard_block_size);
2395
2396	return origin_size > MAX_DISCARD_BLOCKS;
2397}
2398
2399static sector_t calculate_discard_block_size(sector_t cache_block_size,
2400					     sector_t origin_size)
2401{
2402	sector_t discard_block_size = cache_block_size;
2403
2404	if (origin_size)
2405		while (too_many_discard_blocks(discard_block_size, origin_size))
2406			discard_block_size *= 2;
2407
2408	return discard_block_size;
2409}
2410
2411static void set_cache_size(struct cache *cache, dm_cblock_t size)
2412{
2413	dm_block_t nr_blocks = from_cblock(size);
2414
2415	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2416		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2417			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2418			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2419			     (unsigned long long) nr_blocks);
2420
2421	cache->cache_size = size;
2422}
2423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2424#define DEFAULT_MIGRATION_THRESHOLD 2048
2425
2426static int cache_create(struct cache_args *ca, struct cache **result)
2427{
2428	int r = 0;
2429	char **error = &ca->ti->error;
2430	struct cache *cache;
2431	struct dm_target *ti = ca->ti;
2432	dm_block_t origin_blocks;
2433	struct dm_cache_metadata *cmd;
2434	bool may_format = ca->features.mode == CM_WRITE;
2435
2436	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2437	if (!cache)
2438		return -ENOMEM;
2439
2440	cache->ti = ca->ti;
2441	ti->private = cache;
2442	ti->num_flush_bios = 2;
2443	ti->flush_supported = true;
2444
2445	ti->num_discard_bios = 1;
2446	ti->discards_supported = true;
2447
2448	ti->per_io_data_size = sizeof(struct per_bio_data);
2449
2450	cache->features = ca->features;
2451	if (writethrough_mode(cache)) {
2452		/* Create bioset for writethrough bios issued to origin */
2453		r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2454		if (r)
2455			goto bad;
2456	}
2457
 
 
 
2458	cache->metadata_dev = ca->metadata_dev;
2459	cache->origin_dev = ca->origin_dev;
2460	cache->cache_dev = ca->cache_dev;
2461
2462	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2463
2464	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2465	origin_blocks = block_div(origin_blocks, ca->block_size);
2466	cache->origin_blocks = to_oblock(origin_blocks);
2467
2468	cache->sectors_per_block = ca->block_size;
2469	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2470		r = -EINVAL;
2471		goto bad;
2472	}
2473
2474	if (ca->block_size & (ca->block_size - 1)) {
2475		dm_block_t cache_size = ca->cache_sectors;
2476
2477		cache->sectors_per_block_shift = -1;
2478		cache_size = block_div(cache_size, ca->block_size);
2479		set_cache_size(cache, to_cblock(cache_size));
2480	} else {
2481		cache->sectors_per_block_shift = __ffs(ca->block_size);
2482		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2483	}
2484
2485	r = create_cache_policy(cache, ca, error);
2486	if (r)
2487		goto bad;
2488
2489	cache->policy_nr_args = ca->policy_argc;
2490	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2491
2492	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2493	if (r) {
2494		*error = "Error setting cache policy's config values";
2495		goto bad;
2496	}
2497
2498	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2499				     ca->block_size, may_format,
2500				     dm_cache_policy_get_hint_size(cache->policy),
2501				     ca->features.metadata_version);
2502	if (IS_ERR(cmd)) {
2503		*error = "Error creating metadata object";
2504		r = PTR_ERR(cmd);
2505		goto bad;
2506	}
2507	cache->cmd = cmd;
2508	set_cache_mode(cache, CM_WRITE);
2509	if (get_cache_mode(cache) != CM_WRITE) {
2510		*error = "Unable to get write access to metadata, please check/repair metadata.";
2511		r = -EINVAL;
2512		goto bad;
2513	}
2514
2515	if (passthrough_mode(cache)) {
2516		bool all_clean;
2517
2518		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2519		if (r) {
2520			*error = "dm_cache_metadata_all_clean() failed";
2521			goto bad;
2522		}
2523
2524		if (!all_clean) {
2525			*error = "Cannot enter passthrough mode unless all blocks are clean";
2526			r = -EINVAL;
2527			goto bad;
2528		}
2529
2530		policy_allow_migrations(cache->policy, false);
2531	}
2532
2533	spin_lock_init(&cache->lock);
2534	bio_list_init(&cache->deferred_bios);
2535	atomic_set(&cache->nr_allocated_migrations, 0);
2536	atomic_set(&cache->nr_io_migrations, 0);
2537	init_waitqueue_head(&cache->migration_wait);
2538
2539	r = -ENOMEM;
2540	atomic_set(&cache->nr_dirty, 0);
2541	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2542	if (!cache->dirty_bitset) {
2543		*error = "could not allocate dirty bitset";
2544		goto bad;
2545	}
2546	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2547
2548	cache->discard_block_size =
2549		calculate_discard_block_size(cache->sectors_per_block,
2550					     cache->origin_sectors);
2551	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2552							      cache->discard_block_size));
2553	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2554	if (!cache->discard_bitset) {
2555		*error = "could not allocate discard bitset";
2556		goto bad;
2557	}
2558	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2559
2560	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2561	if (IS_ERR(cache->copier)) {
2562		*error = "could not create kcopyd client";
2563		r = PTR_ERR(cache->copier);
2564		goto bad;
2565	}
2566
2567	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2568	if (!cache->wq) {
2569		*error = "could not create workqueue for metadata object";
2570		goto bad;
2571	}
2572	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2573	INIT_WORK(&cache->migration_worker, check_migrations);
2574	INIT_DELAYED_WORK(&cache->waker, do_waker);
2575
2576	cache->prison = dm_bio_prison_create_v2(cache->wq);
2577	if (!cache->prison) {
2578		*error = "could not create bio prison";
2579		goto bad;
2580	}
2581
2582	r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2583				   migration_cache);
2584	if (r) {
2585		*error = "Error creating cache's migration mempool";
2586		goto bad;
2587	}
2588
2589	cache->need_tick_bio = true;
2590	cache->sized = false;
2591	cache->invalidate = false;
2592	cache->commit_requested = false;
2593	cache->loaded_mappings = false;
2594	cache->loaded_discards = false;
2595
2596	load_stats(cache);
2597
2598	atomic_set(&cache->stats.demotion, 0);
2599	atomic_set(&cache->stats.promotion, 0);
2600	atomic_set(&cache->stats.copies_avoided, 0);
2601	atomic_set(&cache->stats.cache_cell_clash, 0);
2602	atomic_set(&cache->stats.commit_count, 0);
2603	atomic_set(&cache->stats.discard_count, 0);
2604
2605	spin_lock_init(&cache->invalidation_lock);
2606	INIT_LIST_HEAD(&cache->invalidation_requests);
2607
2608	batcher_init(&cache->committer, commit_op, cache,
2609		     issue_op, cache, cache->wq);
2610	iot_init(&cache->tracker);
2611
2612	init_rwsem(&cache->background_work_lock);
2613	prevent_background_work(cache);
2614
2615	*result = cache;
2616	return 0;
2617bad:
2618	destroy(cache);
2619	return r;
2620}
2621
2622static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2623{
2624	unsigned i;
2625	const char **copy;
2626
2627	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2628	if (!copy)
2629		return -ENOMEM;
2630	for (i = 0; i < argc; i++) {
2631		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2632		if (!copy[i]) {
2633			while (i--)
2634				kfree(copy[i]);
2635			kfree(copy);
2636			return -ENOMEM;
2637		}
2638	}
2639
2640	cache->nr_ctr_args = argc;
2641	cache->ctr_args = copy;
2642
2643	return 0;
2644}
2645
2646static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2647{
2648	int r = -EINVAL;
2649	struct cache_args *ca;
2650	struct cache *cache = NULL;
2651
2652	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2653	if (!ca) {
2654		ti->error = "Error allocating memory for cache";
2655		return -ENOMEM;
2656	}
2657	ca->ti = ti;
2658
2659	r = parse_cache_args(ca, argc, argv, &ti->error);
2660	if (r)
2661		goto out;
2662
2663	r = cache_create(ca, &cache);
2664	if (r)
2665		goto out;
2666
2667	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2668	if (r) {
2669		destroy(cache);
2670		goto out;
2671	}
2672
2673	ti->private = cache;
2674out:
2675	destroy_cache_args(ca);
2676	return r;
2677}
2678
2679/*----------------------------------------------------------------*/
2680
2681static int cache_map(struct dm_target *ti, struct bio *bio)
2682{
2683	struct cache *cache = ti->private;
2684
2685	int r;
2686	bool commit_needed;
2687	dm_oblock_t block = get_bio_block(cache, bio);
2688
2689	init_per_bio_data(bio);
2690	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2691		/*
2692		 * This can only occur if the io goes to a partial block at
2693		 * the end of the origin device.  We don't cache these.
2694		 * Just remap to the origin and carry on.
2695		 */
2696		remap_to_origin(cache, bio);
2697		accounted_begin(cache, bio);
2698		return DM_MAPIO_REMAPPED;
2699	}
2700
2701	if (discard_or_flush(bio)) {
2702		defer_bio(cache, bio);
2703		return DM_MAPIO_SUBMITTED;
2704	}
2705
2706	r = map_bio(cache, bio, block, &commit_needed);
2707	if (commit_needed)
2708		schedule_commit(&cache->committer);
2709
2710	return r;
2711}
2712
2713static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2714{
2715	struct cache *cache = ti->private;
2716	unsigned long flags;
2717	struct per_bio_data *pb = get_per_bio_data(bio);
2718
2719	if (pb->tick) {
2720		policy_tick(cache->policy, false);
2721
2722		spin_lock_irqsave(&cache->lock, flags);
2723		cache->need_tick_bio = true;
2724		spin_unlock_irqrestore(&cache->lock, flags);
2725	}
2726
2727	bio_drop_shared_lock(cache, bio);
2728	accounted_complete(cache, bio);
2729
2730	return DM_ENDIO_DONE;
2731}
2732
2733static int write_dirty_bitset(struct cache *cache)
2734{
2735	int r;
2736
2737	if (get_cache_mode(cache) >= CM_READ_ONLY)
2738		return -EINVAL;
2739
2740	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2741	if (r)
2742		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2743
2744	return r;
2745}
2746
2747static int write_discard_bitset(struct cache *cache)
2748{
2749	unsigned i, r;
2750
2751	if (get_cache_mode(cache) >= CM_READ_ONLY)
2752		return -EINVAL;
2753
2754	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2755					   cache->discard_nr_blocks);
2756	if (r) {
2757		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2758		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2759		return r;
2760	}
2761
2762	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2763		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2764					 is_discarded(cache, to_dblock(i)));
2765		if (r) {
2766			metadata_operation_failed(cache, "dm_cache_set_discard", r);
2767			return r;
2768		}
2769	}
2770
2771	return 0;
2772}
2773
2774static int write_hints(struct cache *cache)
2775{
2776	int r;
2777
2778	if (get_cache_mode(cache) >= CM_READ_ONLY)
2779		return -EINVAL;
2780
2781	r = dm_cache_write_hints(cache->cmd, cache->policy);
2782	if (r) {
2783		metadata_operation_failed(cache, "dm_cache_write_hints", r);
2784		return r;
2785	}
2786
2787	return 0;
2788}
2789
2790/*
2791 * returns true on success
2792 */
2793static bool sync_metadata(struct cache *cache)
2794{
2795	int r1, r2, r3, r4;
2796
2797	r1 = write_dirty_bitset(cache);
2798	if (r1)
2799		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2800
2801	r2 = write_discard_bitset(cache);
2802	if (r2)
2803		DMERR("%s: could not write discard bitset", cache_device_name(cache));
2804
2805	save_stats(cache);
2806
2807	r3 = write_hints(cache);
2808	if (r3)
2809		DMERR("%s: could not write hints", cache_device_name(cache));
2810
2811	/*
2812	 * If writing the above metadata failed, we still commit, but don't
2813	 * set the clean shutdown flag.  This will effectively force every
2814	 * dirty bit to be set on reload.
2815	 */
2816	r4 = commit(cache, !r1 && !r2 && !r3);
2817	if (r4)
2818		DMERR("%s: could not write cache metadata", cache_device_name(cache));
2819
2820	return !r1 && !r2 && !r3 && !r4;
2821}
2822
2823static void cache_postsuspend(struct dm_target *ti)
2824{
2825	struct cache *cache = ti->private;
2826
2827	prevent_background_work(cache);
2828	BUG_ON(atomic_read(&cache->nr_io_migrations));
2829
2830	cancel_delayed_work_sync(&cache->waker);
2831	drain_workqueue(cache->wq);
2832	WARN_ON(cache->tracker.in_flight);
2833
2834	/*
2835	 * If it's a flush suspend there won't be any deferred bios, so this
2836	 * call is harmless.
2837	 */
2838	requeue_deferred_bios(cache);
2839
2840	if (get_cache_mode(cache) == CM_WRITE)
2841		(void) sync_metadata(cache);
2842}
2843
2844static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2845			bool dirty, uint32_t hint, bool hint_valid)
2846{
2847	int r;
2848	struct cache *cache = context;
2849
2850	if (dirty) {
2851		set_bit(from_cblock(cblock), cache->dirty_bitset);
2852		atomic_inc(&cache->nr_dirty);
2853	} else
2854		clear_bit(from_cblock(cblock), cache->dirty_bitset);
2855
2856	r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2857	if (r)
2858		return r;
2859
2860	return 0;
2861}
2862
2863/*
2864 * The discard block size in the on disk metadata is not
2865 * neccessarily the same as we're currently using.  So we have to
2866 * be careful to only set the discarded attribute if we know it
2867 * covers a complete block of the new size.
2868 */
2869struct discard_load_info {
2870	struct cache *cache;
2871
2872	/*
2873	 * These blocks are sized using the on disk dblock size, rather
2874	 * than the current one.
2875	 */
2876	dm_block_t block_size;
2877	dm_block_t discard_begin, discard_end;
2878};
2879
2880static void discard_load_info_init(struct cache *cache,
2881				   struct discard_load_info *li)
2882{
2883	li->cache = cache;
2884	li->discard_begin = li->discard_end = 0;
2885}
2886
2887static void set_discard_range(struct discard_load_info *li)
2888{
2889	sector_t b, e;
2890
2891	if (li->discard_begin == li->discard_end)
2892		return;
2893
2894	/*
2895	 * Convert to sectors.
2896	 */
2897	b = li->discard_begin * li->block_size;
2898	e = li->discard_end * li->block_size;
2899
2900	/*
2901	 * Then convert back to the current dblock size.
2902	 */
2903	b = dm_sector_div_up(b, li->cache->discard_block_size);
2904	sector_div(e, li->cache->discard_block_size);
2905
2906	/*
2907	 * The origin may have shrunk, so we need to check we're still in
2908	 * bounds.
2909	 */
2910	if (e > from_dblock(li->cache->discard_nr_blocks))
2911		e = from_dblock(li->cache->discard_nr_blocks);
2912
2913	for (; b < e; b++)
2914		set_discard(li->cache, to_dblock(b));
2915}
2916
2917static int load_discard(void *context, sector_t discard_block_size,
2918			dm_dblock_t dblock, bool discard)
2919{
2920	struct discard_load_info *li = context;
2921
2922	li->block_size = discard_block_size;
2923
2924	if (discard) {
2925		if (from_dblock(dblock) == li->discard_end)
2926			/*
2927			 * We're already in a discard range, just extend it.
2928			 */
2929			li->discard_end = li->discard_end + 1ULL;
2930
2931		else {
2932			/*
2933			 * Emit the old range and start a new one.
2934			 */
2935			set_discard_range(li);
2936			li->discard_begin = from_dblock(dblock);
2937			li->discard_end = li->discard_begin + 1ULL;
2938		}
2939	} else {
2940		set_discard_range(li);
2941		li->discard_begin = li->discard_end = 0;
2942	}
2943
2944	return 0;
2945}
2946
2947static dm_cblock_t get_cache_dev_size(struct cache *cache)
2948{
2949	sector_t size = get_dev_size(cache->cache_dev);
2950	(void) sector_div(size, cache->sectors_per_block);
2951	return to_cblock(size);
2952}
2953
2954static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2955{
2956	if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2957		if (cache->sized) {
2958			DMERR("%s: unable to extend cache due to missing cache table reload",
2959			      cache_device_name(cache));
2960			return false;
2961		}
2962	}
2963
2964	/*
2965	 * We can't drop a dirty block when shrinking the cache.
2966	 */
2967	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2968		new_size = to_cblock(from_cblock(new_size) + 1);
2969		if (is_dirty(cache, new_size)) {
2970			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2971			      cache_device_name(cache),
2972			      (unsigned long long) from_cblock(new_size));
2973			return false;
2974		}
2975	}
2976
2977	return true;
2978}
2979
2980static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2981{
2982	int r;
2983
2984	r = dm_cache_resize(cache->cmd, new_size);
2985	if (r) {
2986		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2987		metadata_operation_failed(cache, "dm_cache_resize", r);
2988		return r;
2989	}
2990
2991	set_cache_size(cache, new_size);
2992
2993	return 0;
2994}
2995
2996static int cache_preresume(struct dm_target *ti)
2997{
2998	int r = 0;
2999	struct cache *cache = ti->private;
3000	dm_cblock_t csize = get_cache_dev_size(cache);
3001
3002	/*
3003	 * Check to see if the cache has resized.
3004	 */
3005	if (!cache->sized) {
3006		r = resize_cache_dev(cache, csize);
3007		if (r)
3008			return r;
3009
3010		cache->sized = true;
3011
3012	} else if (csize != cache->cache_size) {
3013		if (!can_resize(cache, csize))
3014			return -EINVAL;
3015
3016		r = resize_cache_dev(cache, csize);
3017		if (r)
3018			return r;
3019	}
3020
3021	if (!cache->loaded_mappings) {
3022		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3023					   load_mapping, cache);
3024		if (r) {
3025			DMERR("%s: could not load cache mappings", cache_device_name(cache));
3026			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3027			return r;
3028		}
3029
3030		cache->loaded_mappings = true;
3031	}
3032
3033	if (!cache->loaded_discards) {
3034		struct discard_load_info li;
3035
3036		/*
3037		 * The discard bitset could have been resized, or the
3038		 * discard block size changed.  To be safe we start by
3039		 * setting every dblock to not discarded.
3040		 */
3041		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3042
3043		discard_load_info_init(cache, &li);
3044		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3045		if (r) {
3046			DMERR("%s: could not load origin discards", cache_device_name(cache));
3047			metadata_operation_failed(cache, "dm_cache_load_discards", r);
3048			return r;
3049		}
3050		set_discard_range(&li);
3051
3052		cache->loaded_discards = true;
3053	}
3054
3055	return r;
3056}
3057
3058static void cache_resume(struct dm_target *ti)
3059{
3060	struct cache *cache = ti->private;
3061
3062	cache->need_tick_bio = true;
3063	allow_background_work(cache);
3064	do_waker(&cache->waker.work);
3065}
3066
3067static void emit_flags(struct cache *cache, char *result,
3068		       unsigned maxlen, ssize_t *sz_ptr)
3069{
3070	ssize_t sz = *sz_ptr;
3071	struct cache_features *cf = &cache->features;
3072	unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
3073
3074	DMEMIT("%u ", count);
3075
3076	if (cf->metadata_version == 2)
3077		DMEMIT("metadata2 ");
3078
3079	if (writethrough_mode(cache))
3080		DMEMIT("writethrough ");
3081
3082	else if (passthrough_mode(cache))
3083		DMEMIT("passthrough ");
3084
3085	else if (writeback_mode(cache))
3086		DMEMIT("writeback ");
3087
3088	else {
3089		DMEMIT("unknown ");
3090		DMERR("%s: internal error: unknown io mode: %d",
3091		      cache_device_name(cache), (int) cf->io_mode);
3092	}
3093
3094	if (!cf->discard_passdown)
3095		DMEMIT("no_discard_passdown ");
3096
3097	*sz_ptr = sz;
3098}
3099
3100/*
3101 * Status format:
3102 *
3103 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3104 * <cache block size> <#used cache blocks>/<#total cache blocks>
3105 * <#read hits> <#read misses> <#write hits> <#write misses>
3106 * <#demotions> <#promotions> <#dirty>
3107 * <#features> <features>*
3108 * <#core args> <core args>
3109 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3110 */
3111static void cache_status(struct dm_target *ti, status_type_t type,
3112			 unsigned status_flags, char *result, unsigned maxlen)
3113{
3114	int r = 0;
3115	unsigned i;
3116	ssize_t sz = 0;
3117	dm_block_t nr_free_blocks_metadata = 0;
3118	dm_block_t nr_blocks_metadata = 0;
3119	char buf[BDEVNAME_SIZE];
3120	struct cache *cache = ti->private;
3121	dm_cblock_t residency;
3122	bool needs_check;
3123
3124	switch (type) {
3125	case STATUSTYPE_INFO:
3126		if (get_cache_mode(cache) == CM_FAIL) {
3127			DMEMIT("Fail");
3128			break;
3129		}
3130
3131		/* Commit to ensure statistics aren't out-of-date */
3132		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3133			(void) commit(cache, false);
3134
3135		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3136		if (r) {
3137			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3138			      cache_device_name(cache), r);
3139			goto err;
3140		}
3141
3142		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3143		if (r) {
3144			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3145			      cache_device_name(cache), r);
3146			goto err;
3147		}
3148
3149		residency = policy_residency(cache->policy);
3150
3151		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3152		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3153		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3154		       (unsigned long long)nr_blocks_metadata,
3155		       (unsigned long long)cache->sectors_per_block,
3156		       (unsigned long long) from_cblock(residency),
3157		       (unsigned long long) from_cblock(cache->cache_size),
3158		       (unsigned) atomic_read(&cache->stats.read_hit),
3159		       (unsigned) atomic_read(&cache->stats.read_miss),
3160		       (unsigned) atomic_read(&cache->stats.write_hit),
3161		       (unsigned) atomic_read(&cache->stats.write_miss),
3162		       (unsigned) atomic_read(&cache->stats.demotion),
3163		       (unsigned) atomic_read(&cache->stats.promotion),
3164		       (unsigned long) atomic_read(&cache->nr_dirty));
3165
3166		emit_flags(cache, result, maxlen, &sz);
3167
3168		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3169
3170		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3171		if (sz < maxlen) {
3172			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3173			if (r)
3174				DMERR("%s: policy_emit_config_values returned %d",
3175				      cache_device_name(cache), r);
3176		}
3177
3178		if (get_cache_mode(cache) == CM_READ_ONLY)
3179			DMEMIT("ro ");
3180		else
3181			DMEMIT("rw ");
3182
3183		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3184
3185		if (r || needs_check)
3186			DMEMIT("needs_check ");
3187		else
3188			DMEMIT("- ");
3189
3190		break;
3191
3192	case STATUSTYPE_TABLE:
3193		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3194		DMEMIT("%s ", buf);
3195		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3196		DMEMIT("%s ", buf);
3197		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3198		DMEMIT("%s", buf);
3199
3200		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3201			DMEMIT(" %s", cache->ctr_args[i]);
3202		if (cache->nr_ctr_args)
3203			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3204	}
3205
3206	return;
3207
3208err:
3209	DMEMIT("Error");
3210}
3211
3212/*
3213 * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3214 * the one-past-the-end value.
3215 */
3216struct cblock_range {
3217	dm_cblock_t begin;
3218	dm_cblock_t end;
3219};
3220
3221/*
3222 * A cache block range can take two forms:
3223 *
3224 * i) A single cblock, eg. '3456'
3225 * ii) A begin and end cblock with a dash between, eg. 123-234
3226 */
3227static int parse_cblock_range(struct cache *cache, const char *str,
3228			      struct cblock_range *result)
3229{
3230	char dummy;
3231	uint64_t b, e;
3232	int r;
3233
3234	/*
3235	 * Try and parse form (ii) first.
3236	 */
3237	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3238	if (r < 0)
3239		return r;
3240
3241	if (r == 2) {
3242		result->begin = to_cblock(b);
3243		result->end = to_cblock(e);
3244		return 0;
3245	}
3246
3247	/*
3248	 * That didn't work, try form (i).
3249	 */
3250	r = sscanf(str, "%llu%c", &b, &dummy);
3251	if (r < 0)
3252		return r;
3253
3254	if (r == 1) {
3255		result->begin = to_cblock(b);
3256		result->end = to_cblock(from_cblock(result->begin) + 1u);
3257		return 0;
3258	}
3259
3260	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3261	return -EINVAL;
3262}
3263
3264static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3265{
3266	uint64_t b = from_cblock(range->begin);
3267	uint64_t e = from_cblock(range->end);
3268	uint64_t n = from_cblock(cache->cache_size);
3269
3270	if (b >= n) {
3271		DMERR("%s: begin cblock out of range: %llu >= %llu",
3272		      cache_device_name(cache), b, n);
3273		return -EINVAL;
3274	}
3275
3276	if (e > n) {
3277		DMERR("%s: end cblock out of range: %llu > %llu",
3278		      cache_device_name(cache), e, n);
3279		return -EINVAL;
3280	}
3281
3282	if (b >= e) {
3283		DMERR("%s: invalid cblock range: %llu >= %llu",
3284		      cache_device_name(cache), b, e);
3285		return -EINVAL;
3286	}
3287
3288	return 0;
3289}
3290
3291static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3292{
3293	return to_cblock(from_cblock(b) + 1);
3294}
3295
3296static int request_invalidation(struct cache *cache, struct cblock_range *range)
3297{
3298	int r = 0;
3299
3300	/*
3301	 * We don't need to do any locking here because we know we're in
3302	 * passthrough mode.  There's is potential for a race between an
3303	 * invalidation triggered by an io and an invalidation message.  This
3304	 * is harmless, we must not worry if the policy call fails.
3305	 */
3306	while (range->begin != range->end) {
3307		r = invalidate_cblock(cache, range->begin);
3308		if (r)
3309			return r;
3310
3311		range->begin = cblock_succ(range->begin);
3312	}
3313
3314	cache->commit_requested = true;
3315	return r;
3316}
3317
3318static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3319					      const char **cblock_ranges)
3320{
3321	int r = 0;
3322	unsigned i;
3323	struct cblock_range range;
3324
3325	if (!passthrough_mode(cache)) {
3326		DMERR("%s: cache has to be in passthrough mode for invalidation",
3327		      cache_device_name(cache));
3328		return -EPERM;
3329	}
3330
3331	for (i = 0; i < count; i++) {
3332		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3333		if (r)
3334			break;
3335
3336		r = validate_cblock_range(cache, &range);
3337		if (r)
3338			break;
3339
3340		/*
3341		 * Pass begin and end origin blocks to the worker and wake it.
3342		 */
3343		r = request_invalidation(cache, &range);
3344		if (r)
3345			break;
3346	}
3347
3348	return r;
3349}
3350
3351/*
3352 * Supports
3353 *	"<key> <value>"
3354 * and
3355 *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3356 *
3357 * The key migration_threshold is supported by the cache target core.
3358 */
3359static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3360			 char *result, unsigned maxlen)
3361{
3362	struct cache *cache = ti->private;
3363
3364	if (!argc)
3365		return -EINVAL;
3366
3367	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3368		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3369		      cache_device_name(cache));
3370		return -EOPNOTSUPP;
3371	}
3372
3373	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3374		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3375
3376	if (argc != 2)
3377		return -EINVAL;
3378
3379	return set_config_value(cache, argv[0], argv[1]);
3380}
3381
3382static int cache_iterate_devices(struct dm_target *ti,
3383				 iterate_devices_callout_fn fn, void *data)
3384{
3385	int r = 0;
3386	struct cache *cache = ti->private;
3387
3388	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3389	if (!r)
3390		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3391
3392	return r;
3393}
3394
3395static bool origin_dev_supports_discard(struct block_device *origin_bdev)
3396{
3397	struct request_queue *q = bdev_get_queue(origin_bdev);
3398
3399	return q && blk_queue_discard(q);
3400}
3401
3402/*
3403 * If discard_passdown was enabled verify that the origin device
3404 * supports discards.  Disable discard_passdown if not.
3405 */
3406static void disable_passdown_if_not_supported(struct cache *cache)
3407{
3408	struct block_device *origin_bdev = cache->origin_dev->bdev;
3409	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3410	const char *reason = NULL;
3411	char buf[BDEVNAME_SIZE];
3412
3413	if (!cache->features.discard_passdown)
3414		return;
3415
3416	if (!origin_dev_supports_discard(origin_bdev))
3417		reason = "discard unsupported";
3418
3419	else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3420		reason = "max discard sectors smaller than a block";
3421
3422	if (reason) {
3423		DMWARN("Origin device (%s) %s: Disabling discard passdown.",
3424		       bdevname(origin_bdev, buf), reason);
3425		cache->features.discard_passdown = false;
3426	}
3427}
3428
3429static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3430{
3431	struct block_device *origin_bdev = cache->origin_dev->bdev;
3432	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3433
3434	if (!cache->features.discard_passdown) {
3435		/* No passdown is done so setting own virtual limits */
3436		limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3437						    cache->origin_sectors);
3438		limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3439		return;
3440	}
3441
3442	/*
3443	 * cache_iterate_devices() is stacking both origin and fast device limits
3444	 * but discards aren't passed to fast device, so inherit origin's limits.
3445	 */
3446	limits->max_discard_sectors = origin_limits->max_discard_sectors;
3447	limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3448	limits->discard_granularity = origin_limits->discard_granularity;
3449	limits->discard_alignment = origin_limits->discard_alignment;
3450	limits->discard_misaligned = origin_limits->discard_misaligned;
3451}
3452
3453static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3454{
3455	struct cache *cache = ti->private;
3456	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3457
3458	/*
3459	 * If the system-determined stacked limits are compatible with the
3460	 * cache's blocksize (io_opt is a factor) do not override them.
3461	 */
3462	if (io_opt_sectors < cache->sectors_per_block ||
3463	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3464		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3465		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3466	}
3467
3468	disable_passdown_if_not_supported(cache);
3469	set_discard_limits(cache, limits);
3470}
3471
3472/*----------------------------------------------------------------*/
3473
3474static struct target_type cache_target = {
3475	.name = "cache",
3476	.version = {2, 2, 0},
3477	.module = THIS_MODULE,
3478	.ctr = cache_ctr,
3479	.dtr = cache_dtr,
3480	.map = cache_map,
3481	.end_io = cache_end_io,
3482	.postsuspend = cache_postsuspend,
3483	.preresume = cache_preresume,
3484	.resume = cache_resume,
3485	.status = cache_status,
3486	.message = cache_message,
3487	.iterate_devices = cache_iterate_devices,
3488	.io_hints = cache_io_hints,
3489};
3490
3491static int __init dm_cache_init(void)
3492{
3493	int r;
3494
3495	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3496	if (!migration_cache)
3497		return -ENOMEM;
3498
3499	r = dm_register_target(&cache_target);
3500	if (r) {
3501		DMERR("cache target registration failed: %d", r);
3502		kmem_cache_destroy(migration_cache);
3503		return r;
3504	}
3505
3506	return 0;
3507}
3508
3509static void __exit dm_cache_exit(void)
3510{
3511	dm_unregister_target(&cache_target);
3512	kmem_cache_destroy(migration_cache);
3513}
3514
3515module_init(dm_cache_init);
3516module_exit(dm_cache_exit);
3517
3518MODULE_DESCRIPTION(DM_NAME " cache target");
3519MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3520MODULE_LICENSE("GPL");
v5.4
   1/*
   2 * Copyright (C) 2012 Red Hat. All rights reserved.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm.h"
   8#include "dm-bio-prison-v2.h"
   9#include "dm-bio-record.h"
  10#include "dm-cache-metadata.h"
  11
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/init.h>
  16#include <linux/mempool.h>
  17#include <linux/module.h>
  18#include <linux/rwsem.h>
  19#include <linux/slab.h>
  20#include <linux/vmalloc.h>
  21
  22#define DM_MSG_PREFIX "cache"
  23
  24DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
  25	"A percentage of time allocated for copying to and/or from cache");
  26
  27/*----------------------------------------------------------------*/
  28
  29/*
  30 * Glossary:
  31 *
  32 * oblock: index of an origin block
  33 * cblock: index of a cache block
  34 * promotion: movement of a block from origin to cache
  35 * demotion: movement of a block from cache to origin
  36 * migration: movement of a block between the origin and cache device,
  37 *	      either direction
  38 */
  39
  40/*----------------------------------------------------------------*/
  41
  42struct io_tracker {
  43	spinlock_t lock;
  44
  45	/*
  46	 * Sectors of in-flight IO.
  47	 */
  48	sector_t in_flight;
  49
  50	/*
  51	 * The time, in jiffies, when this device became idle (if it is
  52	 * indeed idle).
  53	 */
  54	unsigned long idle_time;
  55	unsigned long last_update_time;
  56};
  57
  58static void iot_init(struct io_tracker *iot)
  59{
  60	spin_lock_init(&iot->lock);
  61	iot->in_flight = 0ul;
  62	iot->idle_time = 0ul;
  63	iot->last_update_time = jiffies;
  64}
  65
  66static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  67{
  68	if (iot->in_flight)
  69		return false;
  70
  71	return time_after(jiffies, iot->idle_time + jifs);
  72}
  73
  74static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  75{
  76	bool r;
  77	unsigned long flags;
  78
  79	spin_lock_irqsave(&iot->lock, flags);
  80	r = __iot_idle_for(iot, jifs);
  81	spin_unlock_irqrestore(&iot->lock, flags);
  82
  83	return r;
  84}
  85
  86static void iot_io_begin(struct io_tracker *iot, sector_t len)
  87{
  88	unsigned long flags;
  89
  90	spin_lock_irqsave(&iot->lock, flags);
  91	iot->in_flight += len;
  92	spin_unlock_irqrestore(&iot->lock, flags);
  93}
  94
  95static void __iot_io_end(struct io_tracker *iot, sector_t len)
  96{
  97	if (!len)
  98		return;
  99
 100	iot->in_flight -= len;
 101	if (!iot->in_flight)
 102		iot->idle_time = jiffies;
 103}
 104
 105static void iot_io_end(struct io_tracker *iot, sector_t len)
 106{
 107	unsigned long flags;
 108
 109	spin_lock_irqsave(&iot->lock, flags);
 110	__iot_io_end(iot, len);
 111	spin_unlock_irqrestore(&iot->lock, flags);
 112}
 113
 114/*----------------------------------------------------------------*/
 115
 116/*
 117 * Represents a chunk of future work.  'input' allows continuations to pass
 118 * values between themselves, typically error values.
 119 */
 120struct continuation {
 121	struct work_struct ws;
 122	blk_status_t input;
 123};
 124
 125static inline void init_continuation(struct continuation *k,
 126				     void (*fn)(struct work_struct *))
 127{
 128	INIT_WORK(&k->ws, fn);
 129	k->input = 0;
 130}
 131
 132static inline void queue_continuation(struct workqueue_struct *wq,
 133				      struct continuation *k)
 134{
 135	queue_work(wq, &k->ws);
 136}
 137
 138/*----------------------------------------------------------------*/
 139
 140/*
 141 * The batcher collects together pieces of work that need a particular
 142 * operation to occur before they can proceed (typically a commit).
 143 */
 144struct batcher {
 145	/*
 146	 * The operation that everyone is waiting for.
 147	 */
 148	blk_status_t (*commit_op)(void *context);
 149	void *commit_context;
 150
 151	/*
 152	 * This is how bios should be issued once the commit op is complete
 153	 * (accounted_request).
 154	 */
 155	void (*issue_op)(struct bio *bio, void *context);
 156	void *issue_context;
 157
 158	/*
 159	 * Queued work gets put on here after commit.
 160	 */
 161	struct workqueue_struct *wq;
 162
 163	spinlock_t lock;
 164	struct list_head work_items;
 165	struct bio_list bios;
 166	struct work_struct commit_work;
 167
 168	bool commit_scheduled;
 169};
 170
 171static void __commit(struct work_struct *_ws)
 172{
 173	struct batcher *b = container_of(_ws, struct batcher, commit_work);
 174	blk_status_t r;
 175	unsigned long flags;
 176	struct list_head work_items;
 177	struct work_struct *ws, *tmp;
 178	struct continuation *k;
 179	struct bio *bio;
 180	struct bio_list bios;
 181
 182	INIT_LIST_HEAD(&work_items);
 183	bio_list_init(&bios);
 184
 185	/*
 186	 * We have to grab these before the commit_op to avoid a race
 187	 * condition.
 188	 */
 189	spin_lock_irqsave(&b->lock, flags);
 190	list_splice_init(&b->work_items, &work_items);
 191	bio_list_merge(&bios, &b->bios);
 192	bio_list_init(&b->bios);
 193	b->commit_scheduled = false;
 194	spin_unlock_irqrestore(&b->lock, flags);
 195
 196	r = b->commit_op(b->commit_context);
 197
 198	list_for_each_entry_safe(ws, tmp, &work_items, entry) {
 199		k = container_of(ws, struct continuation, ws);
 200		k->input = r;
 201		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
 202		queue_work(b->wq, ws);
 203	}
 204
 205	while ((bio = bio_list_pop(&bios))) {
 206		if (r) {
 207			bio->bi_status = r;
 208			bio_endio(bio);
 209		} else
 210			b->issue_op(bio, b->issue_context);
 211	}
 212}
 213
 214static void batcher_init(struct batcher *b,
 215			 blk_status_t (*commit_op)(void *),
 216			 void *commit_context,
 217			 void (*issue_op)(struct bio *bio, void *),
 218			 void *issue_context,
 219			 struct workqueue_struct *wq)
 220{
 221	b->commit_op = commit_op;
 222	b->commit_context = commit_context;
 223	b->issue_op = issue_op;
 224	b->issue_context = issue_context;
 225	b->wq = wq;
 226
 227	spin_lock_init(&b->lock);
 228	INIT_LIST_HEAD(&b->work_items);
 229	bio_list_init(&b->bios);
 230	INIT_WORK(&b->commit_work, __commit);
 231	b->commit_scheduled = false;
 232}
 233
 234static void async_commit(struct batcher *b)
 235{
 236	queue_work(b->wq, &b->commit_work);
 237}
 238
 239static void continue_after_commit(struct batcher *b, struct continuation *k)
 240{
 241	unsigned long flags;
 242	bool commit_scheduled;
 243
 244	spin_lock_irqsave(&b->lock, flags);
 245	commit_scheduled = b->commit_scheduled;
 246	list_add_tail(&k->ws.entry, &b->work_items);
 247	spin_unlock_irqrestore(&b->lock, flags);
 248
 249	if (commit_scheduled)
 250		async_commit(b);
 251}
 252
 253/*
 254 * Bios are errored if commit failed.
 255 */
 256static void issue_after_commit(struct batcher *b, struct bio *bio)
 257{
 258       unsigned long flags;
 259       bool commit_scheduled;
 260
 261       spin_lock_irqsave(&b->lock, flags);
 262       commit_scheduled = b->commit_scheduled;
 263       bio_list_add(&b->bios, bio);
 264       spin_unlock_irqrestore(&b->lock, flags);
 265
 266       if (commit_scheduled)
 267	       async_commit(b);
 268}
 269
 270/*
 271 * Call this if some urgent work is waiting for the commit to complete.
 272 */
 273static void schedule_commit(struct batcher *b)
 274{
 275	bool immediate;
 276	unsigned long flags;
 277
 278	spin_lock_irqsave(&b->lock, flags);
 279	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
 280	b->commit_scheduled = true;
 281	spin_unlock_irqrestore(&b->lock, flags);
 282
 283	if (immediate)
 284		async_commit(b);
 285}
 286
 287/*
 288 * There are a couple of places where we let a bio run, but want to do some
 289 * work before calling its endio function.  We do this by temporarily
 290 * changing the endio fn.
 291 */
 292struct dm_hook_info {
 293	bio_end_io_t *bi_end_io;
 294};
 295
 296static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
 297			bio_end_io_t *bi_end_io, void *bi_private)
 298{
 299	h->bi_end_io = bio->bi_end_io;
 300
 301	bio->bi_end_io = bi_end_io;
 302	bio->bi_private = bi_private;
 303}
 304
 305static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
 306{
 307	bio->bi_end_io = h->bi_end_io;
 308}
 309
 310/*----------------------------------------------------------------*/
 311
 312#define MIGRATION_POOL_SIZE 128
 313#define COMMIT_PERIOD HZ
 314#define MIGRATION_COUNT_WINDOW 10
 315
 316/*
 317 * The block size of the device holding cache data must be
 318 * between 32KB and 1GB.
 319 */
 320#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
 321#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
 322
 323enum cache_metadata_mode {
 324	CM_WRITE,		/* metadata may be changed */
 325	CM_READ_ONLY,		/* metadata may not be changed */
 326	CM_FAIL
 327};
 328
 329enum cache_io_mode {
 330	/*
 331	 * Data is written to cached blocks only.  These blocks are marked
 332	 * dirty.  If you lose the cache device you will lose data.
 333	 * Potential performance increase for both reads and writes.
 334	 */
 335	CM_IO_WRITEBACK,
 336
 337	/*
 338	 * Data is written to both cache and origin.  Blocks are never
 339	 * dirty.  Potential performance benfit for reads only.
 340	 */
 341	CM_IO_WRITETHROUGH,
 342
 343	/*
 344	 * A degraded mode useful for various cache coherency situations
 345	 * (eg, rolling back snapshots).  Reads and writes always go to the
 346	 * origin.  If a write goes to a cached oblock, then the cache
 347	 * block is invalidated.
 348	 */
 349	CM_IO_PASSTHROUGH
 350};
 351
 352struct cache_features {
 353	enum cache_metadata_mode mode;
 354	enum cache_io_mode io_mode;
 355	unsigned metadata_version;
 356	bool discard_passdown:1;
 357};
 358
 359struct cache_stats {
 360	atomic_t read_hit;
 361	atomic_t read_miss;
 362	atomic_t write_hit;
 363	atomic_t write_miss;
 364	atomic_t demotion;
 365	atomic_t promotion;
 366	atomic_t writeback;
 367	atomic_t copies_avoided;
 368	atomic_t cache_cell_clash;
 369	atomic_t commit_count;
 370	atomic_t discard_count;
 371};
 372
 373struct cache {
 374	struct dm_target *ti;
 375	spinlock_t lock;
 376
 377	/*
 378	 * Fields for converting from sectors to blocks.
 379	 */
 380	int sectors_per_block_shift;
 381	sector_t sectors_per_block;
 382
 383	struct dm_cache_metadata *cmd;
 384
 385	/*
 386	 * Metadata is written to this device.
 387	 */
 388	struct dm_dev *metadata_dev;
 389
 390	/*
 391	 * The slower of the two data devices.  Typically a spindle.
 392	 */
 393	struct dm_dev *origin_dev;
 394
 395	/*
 396	 * The faster of the two data devices.  Typically an SSD.
 397	 */
 398	struct dm_dev *cache_dev;
 399
 400	/*
 401	 * Size of the origin device in _complete_ blocks and native sectors.
 402	 */
 403	dm_oblock_t origin_blocks;
 404	sector_t origin_sectors;
 405
 406	/*
 407	 * Size of the cache device in blocks.
 408	 */
 409	dm_cblock_t cache_size;
 410
 411	/*
 412	 * Invalidation fields.
 413	 */
 414	spinlock_t invalidation_lock;
 415	struct list_head invalidation_requests;
 416
 417	sector_t migration_threshold;
 418	wait_queue_head_t migration_wait;
 419	atomic_t nr_allocated_migrations;
 420
 421	/*
 422	 * The number of in flight migrations that are performing
 423	 * background io. eg, promotion, writeback.
 424	 */
 425	atomic_t nr_io_migrations;
 426
 427	struct bio_list deferred_bios;
 428
 429	struct rw_semaphore quiesce_lock;
 430
 431	struct dm_target_callbacks callbacks;
 432
 433	/*
 434	 * origin_blocks entries, discarded if set.
 435	 */
 436	dm_dblock_t discard_nr_blocks;
 437	unsigned long *discard_bitset;
 438	uint32_t discard_block_size; /* a power of 2 times sectors per block */
 439
 440	/*
 441	 * Rather than reconstructing the table line for the status we just
 442	 * save it and regurgitate.
 443	 */
 444	unsigned nr_ctr_args;
 445	const char **ctr_args;
 446
 447	struct dm_kcopyd_client *copier;
 448	struct work_struct deferred_bio_worker;
 449	struct work_struct migration_worker;
 450	struct workqueue_struct *wq;
 451	struct delayed_work waker;
 452	struct dm_bio_prison_v2 *prison;
 453
 454	/*
 455	 * cache_size entries, dirty if set
 456	 */
 457	unsigned long *dirty_bitset;
 458	atomic_t nr_dirty;
 459
 460	unsigned policy_nr_args;
 461	struct dm_cache_policy *policy;
 462
 463	/*
 464	 * Cache features such as write-through.
 465	 */
 466	struct cache_features features;
 467
 468	struct cache_stats stats;
 469
 470	bool need_tick_bio:1;
 471	bool sized:1;
 472	bool invalidate:1;
 473	bool commit_requested:1;
 474	bool loaded_mappings:1;
 475	bool loaded_discards:1;
 476
 477	struct rw_semaphore background_work_lock;
 478
 479	struct batcher committer;
 480	struct work_struct commit_ws;
 481
 482	struct io_tracker tracker;
 483
 484	mempool_t migration_pool;
 485
 486	struct bio_set bs;
 487};
 488
 489struct per_bio_data {
 490	bool tick:1;
 491	unsigned req_nr:2;
 492	struct dm_bio_prison_cell_v2 *cell;
 493	struct dm_hook_info hook_info;
 494	sector_t len;
 495};
 496
 497struct dm_cache_migration {
 498	struct continuation k;
 499	struct cache *cache;
 500
 501	struct policy_work *op;
 502	struct bio *overwrite_bio;
 503	struct dm_bio_prison_cell_v2 *cell;
 504
 505	dm_cblock_t invalidate_cblock;
 506	dm_oblock_t invalidate_oblock;
 507};
 508
 509/*----------------------------------------------------------------*/
 510
 511static bool writethrough_mode(struct cache *cache)
 512{
 513	return cache->features.io_mode == CM_IO_WRITETHROUGH;
 514}
 515
 516static bool writeback_mode(struct cache *cache)
 517{
 518	return cache->features.io_mode == CM_IO_WRITEBACK;
 519}
 520
 521static inline bool passthrough_mode(struct cache *cache)
 522{
 523	return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
 524}
 525
 526/*----------------------------------------------------------------*/
 527
 528static void wake_deferred_bio_worker(struct cache *cache)
 529{
 530	queue_work(cache->wq, &cache->deferred_bio_worker);
 531}
 532
 533static void wake_migration_worker(struct cache *cache)
 534{
 535	if (passthrough_mode(cache))
 536		return;
 537
 538	queue_work(cache->wq, &cache->migration_worker);
 539}
 540
 541/*----------------------------------------------------------------*/
 542
 543static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
 544{
 545	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
 546}
 547
 548static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
 549{
 550	dm_bio_prison_free_cell_v2(cache->prison, cell);
 551}
 552
 553static struct dm_cache_migration *alloc_migration(struct cache *cache)
 554{
 555	struct dm_cache_migration *mg;
 556
 557	mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
 558
 559	memset(mg, 0, sizeof(*mg));
 560
 561	mg->cache = cache;
 562	atomic_inc(&cache->nr_allocated_migrations);
 563
 564	return mg;
 565}
 566
 567static void free_migration(struct dm_cache_migration *mg)
 568{
 569	struct cache *cache = mg->cache;
 570
 571	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
 572		wake_up(&cache->migration_wait);
 573
 574	mempool_free(mg, &cache->migration_pool);
 575}
 576
 577/*----------------------------------------------------------------*/
 578
 579static inline dm_oblock_t oblock_succ(dm_oblock_t b)
 580{
 581	return to_oblock(from_oblock(b) + 1ull);
 582}
 583
 584static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
 585{
 586	key->virtual = 0;
 587	key->dev = 0;
 588	key->block_begin = from_oblock(begin);
 589	key->block_end = from_oblock(end);
 590}
 591
 592/*
 593 * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
 594 * level 1 which prevents *both* READs and WRITEs.
 595 */
 596#define WRITE_LOCK_LEVEL 0
 597#define READ_WRITE_LOCK_LEVEL 1
 598
 599static unsigned lock_level(struct bio *bio)
 600{
 601	return bio_data_dir(bio) == WRITE ?
 602		WRITE_LOCK_LEVEL :
 603		READ_WRITE_LOCK_LEVEL;
 604}
 605
 606/*----------------------------------------------------------------
 607 * Per bio data
 608 *--------------------------------------------------------------*/
 609
 610static struct per_bio_data *get_per_bio_data(struct bio *bio)
 611{
 612	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
 613	BUG_ON(!pb);
 614	return pb;
 615}
 616
 617static struct per_bio_data *init_per_bio_data(struct bio *bio)
 618{
 619	struct per_bio_data *pb = get_per_bio_data(bio);
 620
 621	pb->tick = false;
 622	pb->req_nr = dm_bio_get_target_bio_nr(bio);
 623	pb->cell = NULL;
 624	pb->len = 0;
 625
 626	return pb;
 627}
 628
 629/*----------------------------------------------------------------*/
 630
 631static void defer_bio(struct cache *cache, struct bio *bio)
 632{
 633	unsigned long flags;
 634
 635	spin_lock_irqsave(&cache->lock, flags);
 636	bio_list_add(&cache->deferred_bios, bio);
 637	spin_unlock_irqrestore(&cache->lock, flags);
 638
 639	wake_deferred_bio_worker(cache);
 640}
 641
 642static void defer_bios(struct cache *cache, struct bio_list *bios)
 643{
 644	unsigned long flags;
 645
 646	spin_lock_irqsave(&cache->lock, flags);
 647	bio_list_merge(&cache->deferred_bios, bios);
 648	bio_list_init(bios);
 649	spin_unlock_irqrestore(&cache->lock, flags);
 650
 651	wake_deferred_bio_worker(cache);
 652}
 653
 654/*----------------------------------------------------------------*/
 655
 656static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
 657{
 658	bool r;
 659	struct per_bio_data *pb;
 660	struct dm_cell_key_v2 key;
 661	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
 662	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
 663
 664	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
 665
 666	build_key(oblock, end, &key);
 667	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
 668	if (!r) {
 669		/*
 670		 * Failed to get the lock.
 671		 */
 672		free_prison_cell(cache, cell_prealloc);
 673		return r;
 674	}
 675
 676	if (cell != cell_prealloc)
 677		free_prison_cell(cache, cell_prealloc);
 678
 679	pb = get_per_bio_data(bio);
 680	pb->cell = cell;
 681
 682	return r;
 683}
 684
 685/*----------------------------------------------------------------*/
 686
 687static bool is_dirty(struct cache *cache, dm_cblock_t b)
 688{
 689	return test_bit(from_cblock(b), cache->dirty_bitset);
 690}
 691
 692static void set_dirty(struct cache *cache, dm_cblock_t cblock)
 693{
 694	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
 695		atomic_inc(&cache->nr_dirty);
 696		policy_set_dirty(cache->policy, cblock);
 697	}
 698}
 699
 700/*
 701 * These two are called when setting after migrations to force the policy
 702 * and dirty bitset to be in sync.
 703 */
 704static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
 705{
 706	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
 707		atomic_inc(&cache->nr_dirty);
 708	policy_set_dirty(cache->policy, cblock);
 709}
 710
 711static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
 712{
 713	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
 714		if (atomic_dec_return(&cache->nr_dirty) == 0)
 715			dm_table_event(cache->ti->table);
 716	}
 717
 718	policy_clear_dirty(cache->policy, cblock);
 719}
 720
 721/*----------------------------------------------------------------*/
 722
 723static bool block_size_is_power_of_two(struct cache *cache)
 724{
 725	return cache->sectors_per_block_shift >= 0;
 726}
 727
 728/* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
 729#if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
 730__always_inline
 731#endif
 732static dm_block_t block_div(dm_block_t b, uint32_t n)
 733{
 734	do_div(b, n);
 735
 736	return b;
 737}
 738
 739static dm_block_t oblocks_per_dblock(struct cache *cache)
 740{
 741	dm_block_t oblocks = cache->discard_block_size;
 742
 743	if (block_size_is_power_of_two(cache))
 744		oblocks >>= cache->sectors_per_block_shift;
 745	else
 746		oblocks = block_div(oblocks, cache->sectors_per_block);
 747
 748	return oblocks;
 749}
 750
 751static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
 752{
 753	return to_dblock(block_div(from_oblock(oblock),
 754				   oblocks_per_dblock(cache)));
 755}
 756
 757static void set_discard(struct cache *cache, dm_dblock_t b)
 758{
 759	unsigned long flags;
 760
 761	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
 762	atomic_inc(&cache->stats.discard_count);
 763
 764	spin_lock_irqsave(&cache->lock, flags);
 765	set_bit(from_dblock(b), cache->discard_bitset);
 766	spin_unlock_irqrestore(&cache->lock, flags);
 767}
 768
 769static void clear_discard(struct cache *cache, dm_dblock_t b)
 770{
 771	unsigned long flags;
 772
 773	spin_lock_irqsave(&cache->lock, flags);
 774	clear_bit(from_dblock(b), cache->discard_bitset);
 775	spin_unlock_irqrestore(&cache->lock, flags);
 776}
 777
 778static bool is_discarded(struct cache *cache, dm_dblock_t b)
 779{
 780	int r;
 781	unsigned long flags;
 782
 783	spin_lock_irqsave(&cache->lock, flags);
 784	r = test_bit(from_dblock(b), cache->discard_bitset);
 785	spin_unlock_irqrestore(&cache->lock, flags);
 786
 787	return r;
 788}
 789
 790static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
 791{
 792	int r;
 793	unsigned long flags;
 794
 795	spin_lock_irqsave(&cache->lock, flags);
 796	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
 797		     cache->discard_bitset);
 798	spin_unlock_irqrestore(&cache->lock, flags);
 799
 800	return r;
 801}
 802
 803/*----------------------------------------------------------------
 804 * Remapping
 805 *--------------------------------------------------------------*/
 806static void remap_to_origin(struct cache *cache, struct bio *bio)
 807{
 808	bio_set_dev(bio, cache->origin_dev->bdev);
 809}
 810
 811static void remap_to_cache(struct cache *cache, struct bio *bio,
 812			   dm_cblock_t cblock)
 813{
 814	sector_t bi_sector = bio->bi_iter.bi_sector;
 815	sector_t block = from_cblock(cblock);
 816
 817	bio_set_dev(bio, cache->cache_dev->bdev);
 818	if (!block_size_is_power_of_two(cache))
 819		bio->bi_iter.bi_sector =
 820			(block * cache->sectors_per_block) +
 821			sector_div(bi_sector, cache->sectors_per_block);
 822	else
 823		bio->bi_iter.bi_sector =
 824			(block << cache->sectors_per_block_shift) |
 825			(bi_sector & (cache->sectors_per_block - 1));
 826}
 827
 828static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
 829{
 830	unsigned long flags;
 831	struct per_bio_data *pb;
 832
 833	spin_lock_irqsave(&cache->lock, flags);
 834	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
 835	    bio_op(bio) != REQ_OP_DISCARD) {
 836		pb = get_per_bio_data(bio);
 837		pb->tick = true;
 838		cache->need_tick_bio = false;
 839	}
 840	spin_unlock_irqrestore(&cache->lock, flags);
 841}
 842
 843static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 844					    dm_oblock_t oblock, bool bio_has_pbd)
 845{
 846	if (bio_has_pbd)
 847		check_if_tick_bio_needed(cache, bio);
 848	remap_to_origin(cache, bio);
 849	if (bio_data_dir(bio) == WRITE)
 850		clear_discard(cache, oblock_to_dblock(cache, oblock));
 851}
 852
 853static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 854					  dm_oblock_t oblock)
 855{
 856	// FIXME: check_if_tick_bio_needed() is called way too much through this interface
 857	__remap_to_origin_clear_discard(cache, bio, oblock, true);
 858}
 859
 860static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
 861				 dm_oblock_t oblock, dm_cblock_t cblock)
 862{
 863	check_if_tick_bio_needed(cache, bio);
 864	remap_to_cache(cache, bio, cblock);
 865	if (bio_data_dir(bio) == WRITE) {
 866		set_dirty(cache, cblock);
 867		clear_discard(cache, oblock_to_dblock(cache, oblock));
 868	}
 869}
 870
 871static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
 872{
 873	sector_t block_nr = bio->bi_iter.bi_sector;
 874
 875	if (!block_size_is_power_of_two(cache))
 876		(void) sector_div(block_nr, cache->sectors_per_block);
 877	else
 878		block_nr >>= cache->sectors_per_block_shift;
 879
 880	return to_oblock(block_nr);
 881}
 882
 883static bool accountable_bio(struct cache *cache, struct bio *bio)
 884{
 885	return bio_op(bio) != REQ_OP_DISCARD;
 886}
 887
 888static void accounted_begin(struct cache *cache, struct bio *bio)
 889{
 890	struct per_bio_data *pb;
 891
 892	if (accountable_bio(cache, bio)) {
 893		pb = get_per_bio_data(bio);
 894		pb->len = bio_sectors(bio);
 895		iot_io_begin(&cache->tracker, pb->len);
 896	}
 897}
 898
 899static void accounted_complete(struct cache *cache, struct bio *bio)
 900{
 901	struct per_bio_data *pb = get_per_bio_data(bio);
 902
 903	iot_io_end(&cache->tracker, pb->len);
 904}
 905
 906static void accounted_request(struct cache *cache, struct bio *bio)
 907{
 908	accounted_begin(cache, bio);
 909	generic_make_request(bio);
 910}
 911
 912static void issue_op(struct bio *bio, void *context)
 913{
 914	struct cache *cache = context;
 915	accounted_request(cache, bio);
 916}
 917
 918/*
 919 * When running in writethrough mode we need to send writes to clean blocks
 920 * to both the cache and origin devices.  Clone the bio and send them in parallel.
 921 */
 922static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
 923				      dm_oblock_t oblock, dm_cblock_t cblock)
 924{
 925	struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs);
 926
 927	BUG_ON(!origin_bio);
 928
 929	bio_chain(origin_bio, bio);
 930	/*
 931	 * Passing false to __remap_to_origin_clear_discard() skips
 932	 * all code that might use per_bio_data (since clone doesn't have it)
 933	 */
 934	__remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
 935	submit_bio(origin_bio);
 936
 937	remap_to_cache(cache, bio, cblock);
 938}
 939
 940/*----------------------------------------------------------------
 941 * Failure modes
 942 *--------------------------------------------------------------*/
 943static enum cache_metadata_mode get_cache_mode(struct cache *cache)
 944{
 945	return cache->features.mode;
 946}
 947
 948static const char *cache_device_name(struct cache *cache)
 949{
 950	return dm_device_name(dm_table_get_md(cache->ti->table));
 951}
 952
 953static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
 954{
 955	const char *descs[] = {
 956		"write",
 957		"read-only",
 958		"fail"
 959	};
 960
 961	dm_table_event(cache->ti->table);
 962	DMINFO("%s: switching cache to %s mode",
 963	       cache_device_name(cache), descs[(int)mode]);
 964}
 965
 966static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
 967{
 968	bool needs_check;
 969	enum cache_metadata_mode old_mode = get_cache_mode(cache);
 970
 971	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
 972		DMERR("%s: unable to read needs_check flag, setting failure mode.",
 973		      cache_device_name(cache));
 974		new_mode = CM_FAIL;
 975	}
 976
 977	if (new_mode == CM_WRITE && needs_check) {
 978		DMERR("%s: unable to switch cache to write mode until repaired.",
 979		      cache_device_name(cache));
 980		if (old_mode != new_mode)
 981			new_mode = old_mode;
 982		else
 983			new_mode = CM_READ_ONLY;
 984	}
 985
 986	/* Never move out of fail mode */
 987	if (old_mode == CM_FAIL)
 988		new_mode = CM_FAIL;
 989
 990	switch (new_mode) {
 991	case CM_FAIL:
 992	case CM_READ_ONLY:
 993		dm_cache_metadata_set_read_only(cache->cmd);
 994		break;
 995
 996	case CM_WRITE:
 997		dm_cache_metadata_set_read_write(cache->cmd);
 998		break;
 999	}
1000
1001	cache->features.mode = new_mode;
1002
1003	if (new_mode != old_mode)
1004		notify_mode_switch(cache, new_mode);
1005}
1006
1007static void abort_transaction(struct cache *cache)
1008{
1009	const char *dev_name = cache_device_name(cache);
1010
1011	if (get_cache_mode(cache) >= CM_READ_ONLY)
1012		return;
1013
1014	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1015		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1016		set_cache_mode(cache, CM_FAIL);
1017	}
1018
1019	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1020	if (dm_cache_metadata_abort(cache->cmd)) {
1021		DMERR("%s: failed to abort metadata transaction", dev_name);
1022		set_cache_mode(cache, CM_FAIL);
1023	}
1024}
1025
1026static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1027{
1028	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1029		    cache_device_name(cache), op, r);
1030	abort_transaction(cache);
1031	set_cache_mode(cache, CM_READ_ONLY);
1032}
1033
1034/*----------------------------------------------------------------*/
1035
1036static void load_stats(struct cache *cache)
1037{
1038	struct dm_cache_statistics stats;
1039
1040	dm_cache_metadata_get_stats(cache->cmd, &stats);
1041	atomic_set(&cache->stats.read_hit, stats.read_hits);
1042	atomic_set(&cache->stats.read_miss, stats.read_misses);
1043	atomic_set(&cache->stats.write_hit, stats.write_hits);
1044	atomic_set(&cache->stats.write_miss, stats.write_misses);
1045}
1046
1047static void save_stats(struct cache *cache)
1048{
1049	struct dm_cache_statistics stats;
1050
1051	if (get_cache_mode(cache) >= CM_READ_ONLY)
1052		return;
1053
1054	stats.read_hits = atomic_read(&cache->stats.read_hit);
1055	stats.read_misses = atomic_read(&cache->stats.read_miss);
1056	stats.write_hits = atomic_read(&cache->stats.write_hit);
1057	stats.write_misses = atomic_read(&cache->stats.write_miss);
1058
1059	dm_cache_metadata_set_stats(cache->cmd, &stats);
1060}
1061
1062static void update_stats(struct cache_stats *stats, enum policy_operation op)
1063{
1064	switch (op) {
1065	case POLICY_PROMOTE:
1066		atomic_inc(&stats->promotion);
1067		break;
1068
1069	case POLICY_DEMOTE:
1070		atomic_inc(&stats->demotion);
1071		break;
1072
1073	case POLICY_WRITEBACK:
1074		atomic_inc(&stats->writeback);
1075		break;
1076	}
1077}
1078
1079/*----------------------------------------------------------------
1080 * Migration processing
1081 *
1082 * Migration covers moving data from the origin device to the cache, or
1083 * vice versa.
1084 *--------------------------------------------------------------*/
1085
1086static void inc_io_migrations(struct cache *cache)
1087{
1088	atomic_inc(&cache->nr_io_migrations);
1089}
1090
1091static void dec_io_migrations(struct cache *cache)
1092{
1093	atomic_dec(&cache->nr_io_migrations);
1094}
1095
1096static bool discard_or_flush(struct bio *bio)
1097{
1098	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1099}
1100
1101static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1102				     dm_dblock_t *b, dm_dblock_t *e)
1103{
1104	sector_t sb = bio->bi_iter.bi_sector;
1105	sector_t se = bio_end_sector(bio);
1106
1107	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1108
1109	if (se - sb < cache->discard_block_size)
1110		*e = *b;
1111	else
1112		*e = to_dblock(block_div(se, cache->discard_block_size));
1113}
1114
1115/*----------------------------------------------------------------*/
1116
1117static void prevent_background_work(struct cache *cache)
1118{
1119	lockdep_off();
1120	down_write(&cache->background_work_lock);
1121	lockdep_on();
1122}
1123
1124static void allow_background_work(struct cache *cache)
1125{
1126	lockdep_off();
1127	up_write(&cache->background_work_lock);
1128	lockdep_on();
1129}
1130
1131static bool background_work_begin(struct cache *cache)
1132{
1133	bool r;
1134
1135	lockdep_off();
1136	r = down_read_trylock(&cache->background_work_lock);
1137	lockdep_on();
1138
1139	return r;
1140}
1141
1142static void background_work_end(struct cache *cache)
1143{
1144	lockdep_off();
1145	up_read(&cache->background_work_lock);
1146	lockdep_on();
1147}
1148
1149/*----------------------------------------------------------------*/
1150
1151static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1152{
1153	return (bio_data_dir(bio) == WRITE) &&
1154		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1155}
1156
1157static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1158{
1159	return writeback_mode(cache) &&
1160		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1161}
1162
1163static void quiesce(struct dm_cache_migration *mg,
1164		    void (*continuation)(struct work_struct *))
1165{
1166	init_continuation(&mg->k, continuation);
1167	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1168}
1169
1170static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1171{
1172	struct continuation *k = container_of(ws, struct continuation, ws);
1173	return container_of(k, struct dm_cache_migration, k);
1174}
1175
1176static void copy_complete(int read_err, unsigned long write_err, void *context)
1177{
1178	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1179
1180	if (read_err || write_err)
1181		mg->k.input = BLK_STS_IOERR;
1182
1183	queue_continuation(mg->cache->wq, &mg->k);
1184}
1185
1186static void copy(struct dm_cache_migration *mg, bool promote)
1187{
1188	struct dm_io_region o_region, c_region;
1189	struct cache *cache = mg->cache;
1190
1191	o_region.bdev = cache->origin_dev->bdev;
1192	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1193	o_region.count = cache->sectors_per_block;
1194
1195	c_region.bdev = cache->cache_dev->bdev;
1196	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1197	c_region.count = cache->sectors_per_block;
1198
1199	if (promote)
1200		dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1201	else
1202		dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1203}
1204
1205static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1206{
1207	struct per_bio_data *pb = get_per_bio_data(bio);
1208
1209	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1210		free_prison_cell(cache, pb->cell);
1211	pb->cell = NULL;
1212}
1213
1214static void overwrite_endio(struct bio *bio)
1215{
1216	struct dm_cache_migration *mg = bio->bi_private;
1217	struct cache *cache = mg->cache;
1218	struct per_bio_data *pb = get_per_bio_data(bio);
1219
1220	dm_unhook_bio(&pb->hook_info, bio);
1221
1222	if (bio->bi_status)
1223		mg->k.input = bio->bi_status;
1224
1225	queue_continuation(cache->wq, &mg->k);
1226}
1227
1228static void overwrite(struct dm_cache_migration *mg,
1229		      void (*continuation)(struct work_struct *))
1230{
1231	struct bio *bio = mg->overwrite_bio;
1232	struct per_bio_data *pb = get_per_bio_data(bio);
1233
1234	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1235
1236	/*
1237	 * The overwrite bio is part of the copy operation, as such it does
1238	 * not set/clear discard or dirty flags.
1239	 */
1240	if (mg->op->op == POLICY_PROMOTE)
1241		remap_to_cache(mg->cache, bio, mg->op->cblock);
1242	else
1243		remap_to_origin(mg->cache, bio);
1244
1245	init_continuation(&mg->k, continuation);
1246	accounted_request(mg->cache, bio);
1247}
1248
1249/*
1250 * Migration steps:
1251 *
1252 * 1) exclusive lock preventing WRITEs
1253 * 2) quiesce
1254 * 3) copy or issue overwrite bio
1255 * 4) upgrade to exclusive lock preventing READs and WRITEs
1256 * 5) quiesce
1257 * 6) update metadata and commit
1258 * 7) unlock
1259 */
1260static void mg_complete(struct dm_cache_migration *mg, bool success)
1261{
1262	struct bio_list bios;
1263	struct cache *cache = mg->cache;
1264	struct policy_work *op = mg->op;
1265	dm_cblock_t cblock = op->cblock;
1266
1267	if (success)
1268		update_stats(&cache->stats, op->op);
1269
1270	switch (op->op) {
1271	case POLICY_PROMOTE:
1272		clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1273		policy_complete_background_work(cache->policy, op, success);
1274
1275		if (mg->overwrite_bio) {
1276			if (success)
1277				force_set_dirty(cache, cblock);
1278			else if (mg->k.input)
1279				mg->overwrite_bio->bi_status = mg->k.input;
1280			else
1281				mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1282			bio_endio(mg->overwrite_bio);
1283		} else {
1284			if (success)
1285				force_clear_dirty(cache, cblock);
1286			dec_io_migrations(cache);
1287		}
1288		break;
1289
1290	case POLICY_DEMOTE:
1291		/*
1292		 * We clear dirty here to update the nr_dirty counter.
1293		 */
1294		if (success)
1295			force_clear_dirty(cache, cblock);
1296		policy_complete_background_work(cache->policy, op, success);
1297		dec_io_migrations(cache);
1298		break;
1299
1300	case POLICY_WRITEBACK:
1301		if (success)
1302			force_clear_dirty(cache, cblock);
1303		policy_complete_background_work(cache->policy, op, success);
1304		dec_io_migrations(cache);
1305		break;
1306	}
1307
1308	bio_list_init(&bios);
1309	if (mg->cell) {
1310		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1311			free_prison_cell(cache, mg->cell);
1312	}
1313
1314	free_migration(mg);
1315	defer_bios(cache, &bios);
1316	wake_migration_worker(cache);
1317
1318	background_work_end(cache);
1319}
1320
1321static void mg_success(struct work_struct *ws)
1322{
1323	struct dm_cache_migration *mg = ws_to_mg(ws);
1324	mg_complete(mg, mg->k.input == 0);
1325}
1326
1327static void mg_update_metadata(struct work_struct *ws)
1328{
1329	int r;
1330	struct dm_cache_migration *mg = ws_to_mg(ws);
1331	struct cache *cache = mg->cache;
1332	struct policy_work *op = mg->op;
1333
1334	switch (op->op) {
1335	case POLICY_PROMOTE:
1336		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1337		if (r) {
1338			DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1339				    cache_device_name(cache));
1340			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1341
1342			mg_complete(mg, false);
1343			return;
1344		}
1345		mg_complete(mg, true);
1346		break;
1347
1348	case POLICY_DEMOTE:
1349		r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1350		if (r) {
1351			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1352				    cache_device_name(cache));
1353			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1354
1355			mg_complete(mg, false);
1356			return;
1357		}
1358
1359		/*
1360		 * It would be nice if we only had to commit when a REQ_FLUSH
1361		 * comes through.  But there's one scenario that we have to
1362		 * look out for:
1363		 *
1364		 * - vblock x in a cache block
1365		 * - domotion occurs
1366		 * - cache block gets reallocated and over written
1367		 * - crash
1368		 *
1369		 * When we recover, because there was no commit the cache will
1370		 * rollback to having the data for vblock x in the cache block.
1371		 * But the cache block has since been overwritten, so it'll end
1372		 * up pointing to data that was never in 'x' during the history
1373		 * of the device.
1374		 *
1375		 * To avoid this issue we require a commit as part of the
1376		 * demotion operation.
1377		 */
1378		init_continuation(&mg->k, mg_success);
1379		continue_after_commit(&cache->committer, &mg->k);
1380		schedule_commit(&cache->committer);
1381		break;
1382
1383	case POLICY_WRITEBACK:
1384		mg_complete(mg, true);
1385		break;
1386	}
1387}
1388
1389static void mg_update_metadata_after_copy(struct work_struct *ws)
1390{
1391	struct dm_cache_migration *mg = ws_to_mg(ws);
1392
1393	/*
1394	 * Did the copy succeed?
1395	 */
1396	if (mg->k.input)
1397		mg_complete(mg, false);
1398	else
1399		mg_update_metadata(ws);
1400}
1401
1402static void mg_upgrade_lock(struct work_struct *ws)
1403{
1404	int r;
1405	struct dm_cache_migration *mg = ws_to_mg(ws);
1406
1407	/*
1408	 * Did the copy succeed?
1409	 */
1410	if (mg->k.input)
1411		mg_complete(mg, false);
1412
1413	else {
1414		/*
1415		 * Now we want the lock to prevent both reads and writes.
1416		 */
1417		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1418					    READ_WRITE_LOCK_LEVEL);
1419		if (r < 0)
1420			mg_complete(mg, false);
1421
1422		else if (r)
1423			quiesce(mg, mg_update_metadata);
1424
1425		else
1426			mg_update_metadata(ws);
1427	}
1428}
1429
1430static void mg_full_copy(struct work_struct *ws)
1431{
1432	struct dm_cache_migration *mg = ws_to_mg(ws);
1433	struct cache *cache = mg->cache;
1434	struct policy_work *op = mg->op;
1435	bool is_policy_promote = (op->op == POLICY_PROMOTE);
1436
1437	if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1438	    is_discarded_oblock(cache, op->oblock)) {
1439		mg_upgrade_lock(ws);
1440		return;
1441	}
1442
1443	init_continuation(&mg->k, mg_upgrade_lock);
1444	copy(mg, is_policy_promote);
1445}
1446
1447static void mg_copy(struct work_struct *ws)
1448{
1449	struct dm_cache_migration *mg = ws_to_mg(ws);
1450
1451	if (mg->overwrite_bio) {
1452		/*
1453		 * No exclusive lock was held when we last checked if the bio
1454		 * was optimisable.  So we have to check again in case things
1455		 * have changed (eg, the block may no longer be discarded).
1456		 */
1457		if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1458			/*
1459			 * Fallback to a real full copy after doing some tidying up.
1460			 */
1461			bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1462			BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1463			mg->overwrite_bio = NULL;
1464			inc_io_migrations(mg->cache);
1465			mg_full_copy(ws);
1466			return;
1467		}
1468
1469		/*
1470		 * It's safe to do this here, even though it's new data
1471		 * because all IO has been locked out of the block.
1472		 *
1473		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1474		 * so _not_ using mg_upgrade_lock() as continutation.
1475		 */
1476		overwrite(mg, mg_update_metadata_after_copy);
1477
1478	} else
1479		mg_full_copy(ws);
1480}
1481
1482static int mg_lock_writes(struct dm_cache_migration *mg)
1483{
1484	int r;
1485	struct dm_cell_key_v2 key;
1486	struct cache *cache = mg->cache;
1487	struct dm_bio_prison_cell_v2 *prealloc;
1488
1489	prealloc = alloc_prison_cell(cache);
1490
1491	/*
1492	 * Prevent writes to the block, but allow reads to continue.
1493	 * Unless we're using an overwrite bio, in which case we lock
1494	 * everything.
1495	 */
1496	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1497	r = dm_cell_lock_v2(cache->prison, &key,
1498			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1499			    prealloc, &mg->cell);
1500	if (r < 0) {
1501		free_prison_cell(cache, prealloc);
1502		mg_complete(mg, false);
1503		return r;
1504	}
1505
1506	if (mg->cell != prealloc)
1507		free_prison_cell(cache, prealloc);
1508
1509	if (r == 0)
1510		mg_copy(&mg->k.ws);
1511	else
1512		quiesce(mg, mg_copy);
1513
1514	return 0;
1515}
1516
1517static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1518{
1519	struct dm_cache_migration *mg;
1520
1521	if (!background_work_begin(cache)) {
1522		policy_complete_background_work(cache->policy, op, false);
1523		return -EPERM;
1524	}
1525
1526	mg = alloc_migration(cache);
1527
1528	mg->op = op;
1529	mg->overwrite_bio = bio;
1530
1531	if (!bio)
1532		inc_io_migrations(cache);
1533
1534	return mg_lock_writes(mg);
1535}
1536
1537/*----------------------------------------------------------------
1538 * invalidation processing
1539 *--------------------------------------------------------------*/
1540
1541static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1542{
1543	struct bio_list bios;
1544	struct cache *cache = mg->cache;
1545
1546	bio_list_init(&bios);
1547	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1548		free_prison_cell(cache, mg->cell);
1549
1550	if (!success && mg->overwrite_bio)
1551		bio_io_error(mg->overwrite_bio);
1552
1553	free_migration(mg);
1554	defer_bios(cache, &bios);
1555
1556	background_work_end(cache);
1557}
1558
1559static void invalidate_completed(struct work_struct *ws)
1560{
1561	struct dm_cache_migration *mg = ws_to_mg(ws);
1562	invalidate_complete(mg, !mg->k.input);
1563}
1564
1565static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1566{
1567	int r = policy_invalidate_mapping(cache->policy, cblock);
1568	if (!r) {
1569		r = dm_cache_remove_mapping(cache->cmd, cblock);
1570		if (r) {
1571			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1572				    cache_device_name(cache));
1573			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1574		}
1575
1576	} else if (r == -ENODATA) {
1577		/*
1578		 * Harmless, already unmapped.
1579		 */
1580		r = 0;
1581
1582	} else
1583		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1584
1585	return r;
1586}
1587
1588static void invalidate_remove(struct work_struct *ws)
1589{
1590	int r;
1591	struct dm_cache_migration *mg = ws_to_mg(ws);
1592	struct cache *cache = mg->cache;
1593
1594	r = invalidate_cblock(cache, mg->invalidate_cblock);
1595	if (r) {
1596		invalidate_complete(mg, false);
1597		return;
1598	}
1599
1600	init_continuation(&mg->k, invalidate_completed);
1601	continue_after_commit(&cache->committer, &mg->k);
1602	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1603	mg->overwrite_bio = NULL;
1604	schedule_commit(&cache->committer);
1605}
1606
1607static int invalidate_lock(struct dm_cache_migration *mg)
1608{
1609	int r;
1610	struct dm_cell_key_v2 key;
1611	struct cache *cache = mg->cache;
1612	struct dm_bio_prison_cell_v2 *prealloc;
1613
1614	prealloc = alloc_prison_cell(cache);
1615
1616	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1617	r = dm_cell_lock_v2(cache->prison, &key,
1618			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1619	if (r < 0) {
1620		free_prison_cell(cache, prealloc);
1621		invalidate_complete(mg, false);
1622		return r;
1623	}
1624
1625	if (mg->cell != prealloc)
1626		free_prison_cell(cache, prealloc);
1627
1628	if (r)
1629		quiesce(mg, invalidate_remove);
1630
1631	else {
1632		/*
1633		 * We can't call invalidate_remove() directly here because we
1634		 * might still be in request context.
1635		 */
1636		init_continuation(&mg->k, invalidate_remove);
1637		queue_work(cache->wq, &mg->k.ws);
1638	}
1639
1640	return 0;
1641}
1642
1643static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1644			    dm_oblock_t oblock, struct bio *bio)
1645{
1646	struct dm_cache_migration *mg;
1647
1648	if (!background_work_begin(cache))
1649		return -EPERM;
1650
1651	mg = alloc_migration(cache);
1652
1653	mg->overwrite_bio = bio;
1654	mg->invalidate_cblock = cblock;
1655	mg->invalidate_oblock = oblock;
1656
1657	return invalidate_lock(mg);
1658}
1659
1660/*----------------------------------------------------------------
1661 * bio processing
1662 *--------------------------------------------------------------*/
1663
1664enum busy {
1665	IDLE,
1666	BUSY
1667};
1668
1669static enum busy spare_migration_bandwidth(struct cache *cache)
1670{
1671	bool idle = iot_idle_for(&cache->tracker, HZ);
1672	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1673		cache->sectors_per_block;
1674
1675	if (idle && current_volume <= cache->migration_threshold)
1676		return IDLE;
1677	else
1678		return BUSY;
1679}
1680
1681static void inc_hit_counter(struct cache *cache, struct bio *bio)
1682{
1683	atomic_inc(bio_data_dir(bio) == READ ?
1684		   &cache->stats.read_hit : &cache->stats.write_hit);
1685}
1686
1687static void inc_miss_counter(struct cache *cache, struct bio *bio)
1688{
1689	atomic_inc(bio_data_dir(bio) == READ ?
1690		   &cache->stats.read_miss : &cache->stats.write_miss);
1691}
1692
1693/*----------------------------------------------------------------*/
1694
1695static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1696		   bool *commit_needed)
1697{
1698	int r, data_dir;
1699	bool rb, background_queued;
1700	dm_cblock_t cblock;
1701
1702	*commit_needed = false;
1703
1704	rb = bio_detain_shared(cache, block, bio);
1705	if (!rb) {
1706		/*
1707		 * An exclusive lock is held for this block, so we have to
1708		 * wait.  We set the commit_needed flag so the current
1709		 * transaction will be committed asap, allowing this lock
1710		 * to be dropped.
1711		 */
1712		*commit_needed = true;
1713		return DM_MAPIO_SUBMITTED;
1714	}
1715
1716	data_dir = bio_data_dir(bio);
1717
1718	if (optimisable_bio(cache, bio, block)) {
1719		struct policy_work *op = NULL;
1720
1721		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1722		if (unlikely(r && r != -ENOENT)) {
1723			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1724				    cache_device_name(cache), r);
1725			bio_io_error(bio);
1726			return DM_MAPIO_SUBMITTED;
1727		}
1728
1729		if (r == -ENOENT && op) {
1730			bio_drop_shared_lock(cache, bio);
1731			BUG_ON(op->op != POLICY_PROMOTE);
1732			mg_start(cache, op, bio);
1733			return DM_MAPIO_SUBMITTED;
1734		}
1735	} else {
1736		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1737		if (unlikely(r && r != -ENOENT)) {
1738			DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1739				    cache_device_name(cache), r);
1740			bio_io_error(bio);
1741			return DM_MAPIO_SUBMITTED;
1742		}
1743
1744		if (background_queued)
1745			wake_migration_worker(cache);
1746	}
1747
1748	if (r == -ENOENT) {
1749		struct per_bio_data *pb = get_per_bio_data(bio);
1750
1751		/*
1752		 * Miss.
1753		 */
1754		inc_miss_counter(cache, bio);
1755		if (pb->req_nr == 0) {
1756			accounted_begin(cache, bio);
1757			remap_to_origin_clear_discard(cache, bio, block);
1758		} else {
1759			/*
1760			 * This is a duplicate writethrough io that is no
1761			 * longer needed because the block has been demoted.
1762			 */
1763			bio_endio(bio);
1764			return DM_MAPIO_SUBMITTED;
1765		}
1766	} else {
1767		/*
1768		 * Hit.
1769		 */
1770		inc_hit_counter(cache, bio);
1771
1772		/*
1773		 * Passthrough always maps to the origin, invalidating any
1774		 * cache blocks that are written to.
1775		 */
1776		if (passthrough_mode(cache)) {
1777			if (bio_data_dir(bio) == WRITE) {
1778				bio_drop_shared_lock(cache, bio);
1779				atomic_inc(&cache->stats.demotion);
1780				invalidate_start(cache, cblock, block, bio);
1781			} else
1782				remap_to_origin_clear_discard(cache, bio, block);
1783		} else {
1784			if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1785			    !is_dirty(cache, cblock)) {
1786				remap_to_origin_and_cache(cache, bio, block, cblock);
1787				accounted_begin(cache, bio);
1788			} else
1789				remap_to_cache_dirty(cache, bio, block, cblock);
1790		}
1791	}
1792
1793	/*
1794	 * dm core turns FUA requests into a separate payload and FLUSH req.
1795	 */
1796	if (bio->bi_opf & REQ_FUA) {
1797		/*
1798		 * issue_after_commit will call accounted_begin a second time.  So
1799		 * we call accounted_complete() to avoid double accounting.
1800		 */
1801		accounted_complete(cache, bio);
1802		issue_after_commit(&cache->committer, bio);
1803		*commit_needed = true;
1804		return DM_MAPIO_SUBMITTED;
1805	}
1806
1807	return DM_MAPIO_REMAPPED;
1808}
1809
1810static bool process_bio(struct cache *cache, struct bio *bio)
1811{
1812	bool commit_needed;
1813
1814	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1815		generic_make_request(bio);
1816
1817	return commit_needed;
1818}
1819
1820/*
1821 * A non-zero return indicates read_only or fail_io mode.
1822 */
1823static int commit(struct cache *cache, bool clean_shutdown)
1824{
1825	int r;
1826
1827	if (get_cache_mode(cache) >= CM_READ_ONLY)
1828		return -EINVAL;
1829
1830	atomic_inc(&cache->stats.commit_count);
1831	r = dm_cache_commit(cache->cmd, clean_shutdown);
1832	if (r)
1833		metadata_operation_failed(cache, "dm_cache_commit", r);
1834
1835	return r;
1836}
1837
1838/*
1839 * Used by the batcher.
1840 */
1841static blk_status_t commit_op(void *context)
1842{
1843	struct cache *cache = context;
1844
1845	if (dm_cache_changed_this_transaction(cache->cmd))
1846		return errno_to_blk_status(commit(cache, false));
1847
1848	return 0;
1849}
1850
1851/*----------------------------------------------------------------*/
1852
1853static bool process_flush_bio(struct cache *cache, struct bio *bio)
1854{
1855	struct per_bio_data *pb = get_per_bio_data(bio);
1856
1857	if (!pb->req_nr)
1858		remap_to_origin(cache, bio);
1859	else
1860		remap_to_cache(cache, bio, 0);
1861
1862	issue_after_commit(&cache->committer, bio);
1863	return true;
1864}
1865
1866static bool process_discard_bio(struct cache *cache, struct bio *bio)
1867{
1868	dm_dblock_t b, e;
1869
1870	// FIXME: do we need to lock the region?  Or can we just assume the
1871	// user wont be so foolish as to issue discard concurrently with
1872	// other IO?
1873	calc_discard_block_range(cache, bio, &b, &e);
1874	while (b != e) {
1875		set_discard(cache, b);
1876		b = to_dblock(from_dblock(b) + 1);
1877	}
1878
1879	if (cache->features.discard_passdown) {
1880		remap_to_origin(cache, bio);
1881		generic_make_request(bio);
1882	} else
1883		bio_endio(bio);
1884
1885	return false;
1886}
1887
1888static void process_deferred_bios(struct work_struct *ws)
1889{
1890	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1891
1892	unsigned long flags;
1893	bool commit_needed = false;
1894	struct bio_list bios;
1895	struct bio *bio;
1896
1897	bio_list_init(&bios);
1898
1899	spin_lock_irqsave(&cache->lock, flags);
1900	bio_list_merge(&bios, &cache->deferred_bios);
1901	bio_list_init(&cache->deferred_bios);
1902	spin_unlock_irqrestore(&cache->lock, flags);
1903
1904	while ((bio = bio_list_pop(&bios))) {
1905		if (bio->bi_opf & REQ_PREFLUSH)
1906			commit_needed = process_flush_bio(cache, bio) || commit_needed;
1907
1908		else if (bio_op(bio) == REQ_OP_DISCARD)
1909			commit_needed = process_discard_bio(cache, bio) || commit_needed;
1910
1911		else
1912			commit_needed = process_bio(cache, bio) || commit_needed;
1913	}
1914
1915	if (commit_needed)
1916		schedule_commit(&cache->committer);
1917}
1918
1919/*----------------------------------------------------------------
1920 * Main worker loop
1921 *--------------------------------------------------------------*/
1922
1923static void requeue_deferred_bios(struct cache *cache)
1924{
1925	struct bio *bio;
1926	struct bio_list bios;
1927
1928	bio_list_init(&bios);
1929	bio_list_merge(&bios, &cache->deferred_bios);
1930	bio_list_init(&cache->deferred_bios);
1931
1932	while ((bio = bio_list_pop(&bios))) {
1933		bio->bi_status = BLK_STS_DM_REQUEUE;
1934		bio_endio(bio);
1935	}
1936}
1937
1938/*
1939 * We want to commit periodically so that not too much
1940 * unwritten metadata builds up.
1941 */
1942static void do_waker(struct work_struct *ws)
1943{
1944	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1945
1946	policy_tick(cache->policy, true);
1947	wake_migration_worker(cache);
1948	schedule_commit(&cache->committer);
1949	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1950}
1951
1952static void check_migrations(struct work_struct *ws)
1953{
1954	int r;
1955	struct policy_work *op;
1956	struct cache *cache = container_of(ws, struct cache, migration_worker);
1957	enum busy b;
1958
1959	for (;;) {
1960		b = spare_migration_bandwidth(cache);
1961
1962		r = policy_get_background_work(cache->policy, b == IDLE, &op);
1963		if (r == -ENODATA)
1964			break;
1965
1966		if (r) {
1967			DMERR_LIMIT("%s: policy_background_work failed",
1968				    cache_device_name(cache));
1969			break;
1970		}
1971
1972		r = mg_start(cache, op, NULL);
1973		if (r)
1974			break;
1975	}
1976}
1977
1978/*----------------------------------------------------------------
1979 * Target methods
1980 *--------------------------------------------------------------*/
1981
1982/*
1983 * This function gets called on the error paths of the constructor, so we
1984 * have to cope with a partially initialised struct.
1985 */
1986static void destroy(struct cache *cache)
1987{
1988	unsigned i;
1989
1990	mempool_exit(&cache->migration_pool);
1991
1992	if (cache->prison)
1993		dm_bio_prison_destroy_v2(cache->prison);
1994
1995	if (cache->wq)
1996		destroy_workqueue(cache->wq);
1997
1998	if (cache->dirty_bitset)
1999		free_bitset(cache->dirty_bitset);
2000
2001	if (cache->discard_bitset)
2002		free_bitset(cache->discard_bitset);
2003
2004	if (cache->copier)
2005		dm_kcopyd_client_destroy(cache->copier);
2006
2007	if (cache->cmd)
2008		dm_cache_metadata_close(cache->cmd);
2009
2010	if (cache->metadata_dev)
2011		dm_put_device(cache->ti, cache->metadata_dev);
2012
2013	if (cache->origin_dev)
2014		dm_put_device(cache->ti, cache->origin_dev);
2015
2016	if (cache->cache_dev)
2017		dm_put_device(cache->ti, cache->cache_dev);
2018
2019	if (cache->policy)
2020		dm_cache_policy_destroy(cache->policy);
2021
2022	for (i = 0; i < cache->nr_ctr_args ; i++)
2023		kfree(cache->ctr_args[i]);
2024	kfree(cache->ctr_args);
2025
2026	bioset_exit(&cache->bs);
2027
2028	kfree(cache);
2029}
2030
2031static void cache_dtr(struct dm_target *ti)
2032{
2033	struct cache *cache = ti->private;
2034
2035	destroy(cache);
2036}
2037
2038static sector_t get_dev_size(struct dm_dev *dev)
2039{
2040	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2041}
2042
2043/*----------------------------------------------------------------*/
2044
2045/*
2046 * Construct a cache device mapping.
2047 *
2048 * cache <metadata dev> <cache dev> <origin dev> <block size>
2049 *       <#feature args> [<feature arg>]*
2050 *       <policy> <#policy args> [<policy arg>]*
2051 *
2052 * metadata dev    : fast device holding the persistent metadata
2053 * cache dev	   : fast device holding cached data blocks
2054 * origin dev	   : slow device holding original data blocks
2055 * block size	   : cache unit size in sectors
2056 *
2057 * #feature args   : number of feature arguments passed
2058 * feature args    : writethrough.  (The default is writeback.)
2059 *
2060 * policy	   : the replacement policy to use
2061 * #policy args    : an even number of policy arguments corresponding
2062 *		     to key/value pairs passed to the policy
2063 * policy args	   : key/value pairs passed to the policy
2064 *		     E.g. 'sequential_threshold 1024'
2065 *		     See cache-policies.txt for details.
2066 *
2067 * Optional feature arguments are:
2068 *   writethrough  : write through caching that prohibits cache block
2069 *		     content from being different from origin block content.
2070 *		     Without this argument, the default behaviour is to write
2071 *		     back cache block contents later for performance reasons,
2072 *		     so they may differ from the corresponding origin blocks.
2073 */
2074struct cache_args {
2075	struct dm_target *ti;
2076
2077	struct dm_dev *metadata_dev;
2078
2079	struct dm_dev *cache_dev;
2080	sector_t cache_sectors;
2081
2082	struct dm_dev *origin_dev;
2083	sector_t origin_sectors;
2084
2085	uint32_t block_size;
2086
2087	const char *policy_name;
2088	int policy_argc;
2089	const char **policy_argv;
2090
2091	struct cache_features features;
2092};
2093
2094static void destroy_cache_args(struct cache_args *ca)
2095{
2096	if (ca->metadata_dev)
2097		dm_put_device(ca->ti, ca->metadata_dev);
2098
2099	if (ca->cache_dev)
2100		dm_put_device(ca->ti, ca->cache_dev);
2101
2102	if (ca->origin_dev)
2103		dm_put_device(ca->ti, ca->origin_dev);
2104
2105	kfree(ca);
2106}
2107
2108static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2109{
2110	if (!as->argc) {
2111		*error = "Insufficient args";
2112		return false;
2113	}
2114
2115	return true;
2116}
2117
2118static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2119			      char **error)
2120{
2121	int r;
2122	sector_t metadata_dev_size;
2123	char b[BDEVNAME_SIZE];
2124
2125	if (!at_least_one_arg(as, error))
2126		return -EINVAL;
2127
2128	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2129			  &ca->metadata_dev);
2130	if (r) {
2131		*error = "Error opening metadata device";
2132		return r;
2133	}
2134
2135	metadata_dev_size = get_dev_size(ca->metadata_dev);
2136	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2137		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2138		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2139
2140	return 0;
2141}
2142
2143static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2144			   char **error)
2145{
2146	int r;
2147
2148	if (!at_least_one_arg(as, error))
2149		return -EINVAL;
2150
2151	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2152			  &ca->cache_dev);
2153	if (r) {
2154		*error = "Error opening cache device";
2155		return r;
2156	}
2157	ca->cache_sectors = get_dev_size(ca->cache_dev);
2158
2159	return 0;
2160}
2161
2162static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2163			    char **error)
2164{
2165	int r;
2166
2167	if (!at_least_one_arg(as, error))
2168		return -EINVAL;
2169
2170	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2171			  &ca->origin_dev);
2172	if (r) {
2173		*error = "Error opening origin device";
2174		return r;
2175	}
2176
2177	ca->origin_sectors = get_dev_size(ca->origin_dev);
2178	if (ca->ti->len > ca->origin_sectors) {
2179		*error = "Device size larger than cached device";
2180		return -EINVAL;
2181	}
2182
2183	return 0;
2184}
2185
2186static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2187			    char **error)
2188{
2189	unsigned long block_size;
2190
2191	if (!at_least_one_arg(as, error))
2192		return -EINVAL;
2193
2194	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2195	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2196	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2197	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2198		*error = "Invalid data block size";
2199		return -EINVAL;
2200	}
2201
2202	if (block_size > ca->cache_sectors) {
2203		*error = "Data block size is larger than the cache device";
2204		return -EINVAL;
2205	}
2206
2207	ca->block_size = block_size;
2208
2209	return 0;
2210}
2211
2212static void init_features(struct cache_features *cf)
2213{
2214	cf->mode = CM_WRITE;
2215	cf->io_mode = CM_IO_WRITEBACK;
2216	cf->metadata_version = 1;
2217	cf->discard_passdown = true;
2218}
2219
2220static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2221			  char **error)
2222{
2223	static const struct dm_arg _args[] = {
2224		{0, 3, "Invalid number of cache feature arguments"},
2225	};
2226
2227	int r, mode_ctr = 0;
2228	unsigned argc;
2229	const char *arg;
2230	struct cache_features *cf = &ca->features;
2231
2232	init_features(cf);
2233
2234	r = dm_read_arg_group(_args, as, &argc, error);
2235	if (r)
2236		return -EINVAL;
2237
2238	while (argc--) {
2239		arg = dm_shift_arg(as);
2240
2241		if (!strcasecmp(arg, "writeback")) {
2242			cf->io_mode = CM_IO_WRITEBACK;
2243			mode_ctr++;
2244		}
2245
2246		else if (!strcasecmp(arg, "writethrough")) {
2247			cf->io_mode = CM_IO_WRITETHROUGH;
2248			mode_ctr++;
2249		}
2250
2251		else if (!strcasecmp(arg, "passthrough")) {
2252			cf->io_mode = CM_IO_PASSTHROUGH;
2253			mode_ctr++;
2254		}
2255
2256		else if (!strcasecmp(arg, "metadata2"))
2257			cf->metadata_version = 2;
2258
2259		else if (!strcasecmp(arg, "no_discard_passdown"))
2260			cf->discard_passdown = false;
2261
2262		else {
2263			*error = "Unrecognised cache feature requested";
2264			return -EINVAL;
2265		}
2266	}
2267
2268	if (mode_ctr > 1) {
2269		*error = "Duplicate cache io_mode features requested";
2270		return -EINVAL;
2271	}
2272
2273	return 0;
2274}
2275
2276static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2277			char **error)
2278{
2279	static const struct dm_arg _args[] = {
2280		{0, 1024, "Invalid number of policy arguments"},
2281	};
2282
2283	int r;
2284
2285	if (!at_least_one_arg(as, error))
2286		return -EINVAL;
2287
2288	ca->policy_name = dm_shift_arg(as);
2289
2290	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2291	if (r)
2292		return -EINVAL;
2293
2294	ca->policy_argv = (const char **)as->argv;
2295	dm_consume_args(as, ca->policy_argc);
2296
2297	return 0;
2298}
2299
2300static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2301			    char **error)
2302{
2303	int r;
2304	struct dm_arg_set as;
2305
2306	as.argc = argc;
2307	as.argv = argv;
2308
2309	r = parse_metadata_dev(ca, &as, error);
2310	if (r)
2311		return r;
2312
2313	r = parse_cache_dev(ca, &as, error);
2314	if (r)
2315		return r;
2316
2317	r = parse_origin_dev(ca, &as, error);
2318	if (r)
2319		return r;
2320
2321	r = parse_block_size(ca, &as, error);
2322	if (r)
2323		return r;
2324
2325	r = parse_features(ca, &as, error);
2326	if (r)
2327		return r;
2328
2329	r = parse_policy(ca, &as, error);
2330	if (r)
2331		return r;
2332
2333	return 0;
2334}
2335
2336/*----------------------------------------------------------------*/
2337
2338static struct kmem_cache *migration_cache;
2339
2340#define NOT_CORE_OPTION 1
2341
2342static int process_config_option(struct cache *cache, const char *key, const char *value)
2343{
2344	unsigned long tmp;
2345
2346	if (!strcasecmp(key, "migration_threshold")) {
2347		if (kstrtoul(value, 10, &tmp))
2348			return -EINVAL;
2349
2350		cache->migration_threshold = tmp;
2351		return 0;
2352	}
2353
2354	return NOT_CORE_OPTION;
2355}
2356
2357static int set_config_value(struct cache *cache, const char *key, const char *value)
2358{
2359	int r = process_config_option(cache, key, value);
2360
2361	if (r == NOT_CORE_OPTION)
2362		r = policy_set_config_value(cache->policy, key, value);
2363
2364	if (r)
2365		DMWARN("bad config value for %s: %s", key, value);
2366
2367	return r;
2368}
2369
2370static int set_config_values(struct cache *cache, int argc, const char **argv)
2371{
2372	int r = 0;
2373
2374	if (argc & 1) {
2375		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2376		return -EINVAL;
2377	}
2378
2379	while (argc) {
2380		r = set_config_value(cache, argv[0], argv[1]);
2381		if (r)
2382			break;
2383
2384		argc -= 2;
2385		argv += 2;
2386	}
2387
2388	return r;
2389}
2390
2391static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2392			       char **error)
2393{
2394	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2395							   cache->cache_size,
2396							   cache->origin_sectors,
2397							   cache->sectors_per_block);
2398	if (IS_ERR(p)) {
2399		*error = "Error creating cache's policy";
2400		return PTR_ERR(p);
2401	}
2402	cache->policy = p;
2403	BUG_ON(!cache->policy);
2404
2405	return 0;
2406}
2407
2408/*
2409 * We want the discard block size to be at least the size of the cache
2410 * block size and have no more than 2^14 discard blocks across the origin.
2411 */
2412#define MAX_DISCARD_BLOCKS (1 << 14)
2413
2414static bool too_many_discard_blocks(sector_t discard_block_size,
2415				    sector_t origin_size)
2416{
2417	(void) sector_div(origin_size, discard_block_size);
2418
2419	return origin_size > MAX_DISCARD_BLOCKS;
2420}
2421
2422static sector_t calculate_discard_block_size(sector_t cache_block_size,
2423					     sector_t origin_size)
2424{
2425	sector_t discard_block_size = cache_block_size;
2426
2427	if (origin_size)
2428		while (too_many_discard_blocks(discard_block_size, origin_size))
2429			discard_block_size *= 2;
2430
2431	return discard_block_size;
2432}
2433
2434static void set_cache_size(struct cache *cache, dm_cblock_t size)
2435{
2436	dm_block_t nr_blocks = from_cblock(size);
2437
2438	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2439		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2440			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2441			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2442			     (unsigned long long) nr_blocks);
2443
2444	cache->cache_size = size;
2445}
2446
2447static int is_congested(struct dm_dev *dev, int bdi_bits)
2448{
2449	struct request_queue *q = bdev_get_queue(dev->bdev);
2450	return bdi_congested(q->backing_dev_info, bdi_bits);
2451}
2452
2453static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2454{
2455	struct cache *cache = container_of(cb, struct cache, callbacks);
2456
2457	return is_congested(cache->origin_dev, bdi_bits) ||
2458		is_congested(cache->cache_dev, bdi_bits);
2459}
2460
2461#define DEFAULT_MIGRATION_THRESHOLD 2048
2462
2463static int cache_create(struct cache_args *ca, struct cache **result)
2464{
2465	int r = 0;
2466	char **error = &ca->ti->error;
2467	struct cache *cache;
2468	struct dm_target *ti = ca->ti;
2469	dm_block_t origin_blocks;
2470	struct dm_cache_metadata *cmd;
2471	bool may_format = ca->features.mode == CM_WRITE;
2472
2473	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2474	if (!cache)
2475		return -ENOMEM;
2476
2477	cache->ti = ca->ti;
2478	ti->private = cache;
2479	ti->num_flush_bios = 2;
2480	ti->flush_supported = true;
2481
2482	ti->num_discard_bios = 1;
2483	ti->discards_supported = true;
2484
2485	ti->per_io_data_size = sizeof(struct per_bio_data);
2486
2487	cache->features = ca->features;
2488	if (writethrough_mode(cache)) {
2489		/* Create bioset for writethrough bios issued to origin */
2490		r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2491		if (r)
2492			goto bad;
2493	}
2494
2495	cache->callbacks.congested_fn = cache_is_congested;
2496	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2497
2498	cache->metadata_dev = ca->metadata_dev;
2499	cache->origin_dev = ca->origin_dev;
2500	cache->cache_dev = ca->cache_dev;
2501
2502	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2503
2504	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2505	origin_blocks = block_div(origin_blocks, ca->block_size);
2506	cache->origin_blocks = to_oblock(origin_blocks);
2507
2508	cache->sectors_per_block = ca->block_size;
2509	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2510		r = -EINVAL;
2511		goto bad;
2512	}
2513
2514	if (ca->block_size & (ca->block_size - 1)) {
2515		dm_block_t cache_size = ca->cache_sectors;
2516
2517		cache->sectors_per_block_shift = -1;
2518		cache_size = block_div(cache_size, ca->block_size);
2519		set_cache_size(cache, to_cblock(cache_size));
2520	} else {
2521		cache->sectors_per_block_shift = __ffs(ca->block_size);
2522		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2523	}
2524
2525	r = create_cache_policy(cache, ca, error);
2526	if (r)
2527		goto bad;
2528
2529	cache->policy_nr_args = ca->policy_argc;
2530	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2531
2532	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2533	if (r) {
2534		*error = "Error setting cache policy's config values";
2535		goto bad;
2536	}
2537
2538	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2539				     ca->block_size, may_format,
2540				     dm_cache_policy_get_hint_size(cache->policy),
2541				     ca->features.metadata_version);
2542	if (IS_ERR(cmd)) {
2543		*error = "Error creating metadata object";
2544		r = PTR_ERR(cmd);
2545		goto bad;
2546	}
2547	cache->cmd = cmd;
2548	set_cache_mode(cache, CM_WRITE);
2549	if (get_cache_mode(cache) != CM_WRITE) {
2550		*error = "Unable to get write access to metadata, please check/repair metadata.";
2551		r = -EINVAL;
2552		goto bad;
2553	}
2554
2555	if (passthrough_mode(cache)) {
2556		bool all_clean;
2557
2558		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2559		if (r) {
2560			*error = "dm_cache_metadata_all_clean() failed";
2561			goto bad;
2562		}
2563
2564		if (!all_clean) {
2565			*error = "Cannot enter passthrough mode unless all blocks are clean";
2566			r = -EINVAL;
2567			goto bad;
2568		}
2569
2570		policy_allow_migrations(cache->policy, false);
2571	}
2572
2573	spin_lock_init(&cache->lock);
2574	bio_list_init(&cache->deferred_bios);
2575	atomic_set(&cache->nr_allocated_migrations, 0);
2576	atomic_set(&cache->nr_io_migrations, 0);
2577	init_waitqueue_head(&cache->migration_wait);
2578
2579	r = -ENOMEM;
2580	atomic_set(&cache->nr_dirty, 0);
2581	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2582	if (!cache->dirty_bitset) {
2583		*error = "could not allocate dirty bitset";
2584		goto bad;
2585	}
2586	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2587
2588	cache->discard_block_size =
2589		calculate_discard_block_size(cache->sectors_per_block,
2590					     cache->origin_sectors);
2591	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2592							      cache->discard_block_size));
2593	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2594	if (!cache->discard_bitset) {
2595		*error = "could not allocate discard bitset";
2596		goto bad;
2597	}
2598	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2599
2600	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2601	if (IS_ERR(cache->copier)) {
2602		*error = "could not create kcopyd client";
2603		r = PTR_ERR(cache->copier);
2604		goto bad;
2605	}
2606
2607	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2608	if (!cache->wq) {
2609		*error = "could not create workqueue for metadata object";
2610		goto bad;
2611	}
2612	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2613	INIT_WORK(&cache->migration_worker, check_migrations);
2614	INIT_DELAYED_WORK(&cache->waker, do_waker);
2615
2616	cache->prison = dm_bio_prison_create_v2(cache->wq);
2617	if (!cache->prison) {
2618		*error = "could not create bio prison";
2619		goto bad;
2620	}
2621
2622	r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2623				   migration_cache);
2624	if (r) {
2625		*error = "Error creating cache's migration mempool";
2626		goto bad;
2627	}
2628
2629	cache->need_tick_bio = true;
2630	cache->sized = false;
2631	cache->invalidate = false;
2632	cache->commit_requested = false;
2633	cache->loaded_mappings = false;
2634	cache->loaded_discards = false;
2635
2636	load_stats(cache);
2637
2638	atomic_set(&cache->stats.demotion, 0);
2639	atomic_set(&cache->stats.promotion, 0);
2640	atomic_set(&cache->stats.copies_avoided, 0);
2641	atomic_set(&cache->stats.cache_cell_clash, 0);
2642	atomic_set(&cache->stats.commit_count, 0);
2643	atomic_set(&cache->stats.discard_count, 0);
2644
2645	spin_lock_init(&cache->invalidation_lock);
2646	INIT_LIST_HEAD(&cache->invalidation_requests);
2647
2648	batcher_init(&cache->committer, commit_op, cache,
2649		     issue_op, cache, cache->wq);
2650	iot_init(&cache->tracker);
2651
2652	init_rwsem(&cache->background_work_lock);
2653	prevent_background_work(cache);
2654
2655	*result = cache;
2656	return 0;
2657bad:
2658	destroy(cache);
2659	return r;
2660}
2661
2662static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2663{
2664	unsigned i;
2665	const char **copy;
2666
2667	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2668	if (!copy)
2669		return -ENOMEM;
2670	for (i = 0; i < argc; i++) {
2671		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2672		if (!copy[i]) {
2673			while (i--)
2674				kfree(copy[i]);
2675			kfree(copy);
2676			return -ENOMEM;
2677		}
2678	}
2679
2680	cache->nr_ctr_args = argc;
2681	cache->ctr_args = copy;
2682
2683	return 0;
2684}
2685
2686static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2687{
2688	int r = -EINVAL;
2689	struct cache_args *ca;
2690	struct cache *cache = NULL;
2691
2692	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2693	if (!ca) {
2694		ti->error = "Error allocating memory for cache";
2695		return -ENOMEM;
2696	}
2697	ca->ti = ti;
2698
2699	r = parse_cache_args(ca, argc, argv, &ti->error);
2700	if (r)
2701		goto out;
2702
2703	r = cache_create(ca, &cache);
2704	if (r)
2705		goto out;
2706
2707	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2708	if (r) {
2709		destroy(cache);
2710		goto out;
2711	}
2712
2713	ti->private = cache;
2714out:
2715	destroy_cache_args(ca);
2716	return r;
2717}
2718
2719/*----------------------------------------------------------------*/
2720
2721static int cache_map(struct dm_target *ti, struct bio *bio)
2722{
2723	struct cache *cache = ti->private;
2724
2725	int r;
2726	bool commit_needed;
2727	dm_oblock_t block = get_bio_block(cache, bio);
2728
2729	init_per_bio_data(bio);
2730	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2731		/*
2732		 * This can only occur if the io goes to a partial block at
2733		 * the end of the origin device.  We don't cache these.
2734		 * Just remap to the origin and carry on.
2735		 */
2736		remap_to_origin(cache, bio);
2737		accounted_begin(cache, bio);
2738		return DM_MAPIO_REMAPPED;
2739	}
2740
2741	if (discard_or_flush(bio)) {
2742		defer_bio(cache, bio);
2743		return DM_MAPIO_SUBMITTED;
2744	}
2745
2746	r = map_bio(cache, bio, block, &commit_needed);
2747	if (commit_needed)
2748		schedule_commit(&cache->committer);
2749
2750	return r;
2751}
2752
2753static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2754{
2755	struct cache *cache = ti->private;
2756	unsigned long flags;
2757	struct per_bio_data *pb = get_per_bio_data(bio);
2758
2759	if (pb->tick) {
2760		policy_tick(cache->policy, false);
2761
2762		spin_lock_irqsave(&cache->lock, flags);
2763		cache->need_tick_bio = true;
2764		spin_unlock_irqrestore(&cache->lock, flags);
2765	}
2766
2767	bio_drop_shared_lock(cache, bio);
2768	accounted_complete(cache, bio);
2769
2770	return DM_ENDIO_DONE;
2771}
2772
2773static int write_dirty_bitset(struct cache *cache)
2774{
2775	int r;
2776
2777	if (get_cache_mode(cache) >= CM_READ_ONLY)
2778		return -EINVAL;
2779
2780	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2781	if (r)
2782		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2783
2784	return r;
2785}
2786
2787static int write_discard_bitset(struct cache *cache)
2788{
2789	unsigned i, r;
2790
2791	if (get_cache_mode(cache) >= CM_READ_ONLY)
2792		return -EINVAL;
2793
2794	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2795					   cache->discard_nr_blocks);
2796	if (r) {
2797		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2798		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2799		return r;
2800	}
2801
2802	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2803		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2804					 is_discarded(cache, to_dblock(i)));
2805		if (r) {
2806			metadata_operation_failed(cache, "dm_cache_set_discard", r);
2807			return r;
2808		}
2809	}
2810
2811	return 0;
2812}
2813
2814static int write_hints(struct cache *cache)
2815{
2816	int r;
2817
2818	if (get_cache_mode(cache) >= CM_READ_ONLY)
2819		return -EINVAL;
2820
2821	r = dm_cache_write_hints(cache->cmd, cache->policy);
2822	if (r) {
2823		metadata_operation_failed(cache, "dm_cache_write_hints", r);
2824		return r;
2825	}
2826
2827	return 0;
2828}
2829
2830/*
2831 * returns true on success
2832 */
2833static bool sync_metadata(struct cache *cache)
2834{
2835	int r1, r2, r3, r4;
2836
2837	r1 = write_dirty_bitset(cache);
2838	if (r1)
2839		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2840
2841	r2 = write_discard_bitset(cache);
2842	if (r2)
2843		DMERR("%s: could not write discard bitset", cache_device_name(cache));
2844
2845	save_stats(cache);
2846
2847	r3 = write_hints(cache);
2848	if (r3)
2849		DMERR("%s: could not write hints", cache_device_name(cache));
2850
2851	/*
2852	 * If writing the above metadata failed, we still commit, but don't
2853	 * set the clean shutdown flag.  This will effectively force every
2854	 * dirty bit to be set on reload.
2855	 */
2856	r4 = commit(cache, !r1 && !r2 && !r3);
2857	if (r4)
2858		DMERR("%s: could not write cache metadata", cache_device_name(cache));
2859
2860	return !r1 && !r2 && !r3 && !r4;
2861}
2862
2863static void cache_postsuspend(struct dm_target *ti)
2864{
2865	struct cache *cache = ti->private;
2866
2867	prevent_background_work(cache);
2868	BUG_ON(atomic_read(&cache->nr_io_migrations));
2869
2870	cancel_delayed_work(&cache->waker);
2871	flush_workqueue(cache->wq);
2872	WARN_ON(cache->tracker.in_flight);
2873
2874	/*
2875	 * If it's a flush suspend there won't be any deferred bios, so this
2876	 * call is harmless.
2877	 */
2878	requeue_deferred_bios(cache);
2879
2880	if (get_cache_mode(cache) == CM_WRITE)
2881		(void) sync_metadata(cache);
2882}
2883
2884static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2885			bool dirty, uint32_t hint, bool hint_valid)
2886{
2887	int r;
2888	struct cache *cache = context;
2889
2890	if (dirty) {
2891		set_bit(from_cblock(cblock), cache->dirty_bitset);
2892		atomic_inc(&cache->nr_dirty);
2893	} else
2894		clear_bit(from_cblock(cblock), cache->dirty_bitset);
2895
2896	r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2897	if (r)
2898		return r;
2899
2900	return 0;
2901}
2902
2903/*
2904 * The discard block size in the on disk metadata is not
2905 * neccessarily the same as we're currently using.  So we have to
2906 * be careful to only set the discarded attribute if we know it
2907 * covers a complete block of the new size.
2908 */
2909struct discard_load_info {
2910	struct cache *cache;
2911
2912	/*
2913	 * These blocks are sized using the on disk dblock size, rather
2914	 * than the current one.
2915	 */
2916	dm_block_t block_size;
2917	dm_block_t discard_begin, discard_end;
2918};
2919
2920static void discard_load_info_init(struct cache *cache,
2921				   struct discard_load_info *li)
2922{
2923	li->cache = cache;
2924	li->discard_begin = li->discard_end = 0;
2925}
2926
2927static void set_discard_range(struct discard_load_info *li)
2928{
2929	sector_t b, e;
2930
2931	if (li->discard_begin == li->discard_end)
2932		return;
2933
2934	/*
2935	 * Convert to sectors.
2936	 */
2937	b = li->discard_begin * li->block_size;
2938	e = li->discard_end * li->block_size;
2939
2940	/*
2941	 * Then convert back to the current dblock size.
2942	 */
2943	b = dm_sector_div_up(b, li->cache->discard_block_size);
2944	sector_div(e, li->cache->discard_block_size);
2945
2946	/*
2947	 * The origin may have shrunk, so we need to check we're still in
2948	 * bounds.
2949	 */
2950	if (e > from_dblock(li->cache->discard_nr_blocks))
2951		e = from_dblock(li->cache->discard_nr_blocks);
2952
2953	for (; b < e; b++)
2954		set_discard(li->cache, to_dblock(b));
2955}
2956
2957static int load_discard(void *context, sector_t discard_block_size,
2958			dm_dblock_t dblock, bool discard)
2959{
2960	struct discard_load_info *li = context;
2961
2962	li->block_size = discard_block_size;
2963
2964	if (discard) {
2965		if (from_dblock(dblock) == li->discard_end)
2966			/*
2967			 * We're already in a discard range, just extend it.
2968			 */
2969			li->discard_end = li->discard_end + 1ULL;
2970
2971		else {
2972			/*
2973			 * Emit the old range and start a new one.
2974			 */
2975			set_discard_range(li);
2976			li->discard_begin = from_dblock(dblock);
2977			li->discard_end = li->discard_begin + 1ULL;
2978		}
2979	} else {
2980		set_discard_range(li);
2981		li->discard_begin = li->discard_end = 0;
2982	}
2983
2984	return 0;
2985}
2986
2987static dm_cblock_t get_cache_dev_size(struct cache *cache)
2988{
2989	sector_t size = get_dev_size(cache->cache_dev);
2990	(void) sector_div(size, cache->sectors_per_block);
2991	return to_cblock(size);
2992}
2993
2994static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2995{
2996	if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2997		if (cache->sized) {
2998			DMERR("%s: unable to extend cache due to missing cache table reload",
2999			      cache_device_name(cache));
3000			return false;
3001		}
3002	}
3003
3004	/*
3005	 * We can't drop a dirty block when shrinking the cache.
3006	 */
3007	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3008		new_size = to_cblock(from_cblock(new_size) + 1);
3009		if (is_dirty(cache, new_size)) {
3010			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3011			      cache_device_name(cache),
3012			      (unsigned long long) from_cblock(new_size));
3013			return false;
3014		}
3015	}
3016
3017	return true;
3018}
3019
3020static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3021{
3022	int r;
3023
3024	r = dm_cache_resize(cache->cmd, new_size);
3025	if (r) {
3026		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3027		metadata_operation_failed(cache, "dm_cache_resize", r);
3028		return r;
3029	}
3030
3031	set_cache_size(cache, new_size);
3032
3033	return 0;
3034}
3035
3036static int cache_preresume(struct dm_target *ti)
3037{
3038	int r = 0;
3039	struct cache *cache = ti->private;
3040	dm_cblock_t csize = get_cache_dev_size(cache);
3041
3042	/*
3043	 * Check to see if the cache has resized.
3044	 */
3045	if (!cache->sized) {
3046		r = resize_cache_dev(cache, csize);
3047		if (r)
3048			return r;
3049
3050		cache->sized = true;
3051
3052	} else if (csize != cache->cache_size) {
3053		if (!can_resize(cache, csize))
3054			return -EINVAL;
3055
3056		r = resize_cache_dev(cache, csize);
3057		if (r)
3058			return r;
3059	}
3060
3061	if (!cache->loaded_mappings) {
3062		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3063					   load_mapping, cache);
3064		if (r) {
3065			DMERR("%s: could not load cache mappings", cache_device_name(cache));
3066			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3067			return r;
3068		}
3069
3070		cache->loaded_mappings = true;
3071	}
3072
3073	if (!cache->loaded_discards) {
3074		struct discard_load_info li;
3075
3076		/*
3077		 * The discard bitset could have been resized, or the
3078		 * discard block size changed.  To be safe we start by
3079		 * setting every dblock to not discarded.
3080		 */
3081		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3082
3083		discard_load_info_init(cache, &li);
3084		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3085		if (r) {
3086			DMERR("%s: could not load origin discards", cache_device_name(cache));
3087			metadata_operation_failed(cache, "dm_cache_load_discards", r);
3088			return r;
3089		}
3090		set_discard_range(&li);
3091
3092		cache->loaded_discards = true;
3093	}
3094
3095	return r;
3096}
3097
3098static void cache_resume(struct dm_target *ti)
3099{
3100	struct cache *cache = ti->private;
3101
3102	cache->need_tick_bio = true;
3103	allow_background_work(cache);
3104	do_waker(&cache->waker.work);
3105}
3106
3107static void emit_flags(struct cache *cache, char *result,
3108		       unsigned maxlen, ssize_t *sz_ptr)
3109{
3110	ssize_t sz = *sz_ptr;
3111	struct cache_features *cf = &cache->features;
3112	unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
3113
3114	DMEMIT("%u ", count);
3115
3116	if (cf->metadata_version == 2)
3117		DMEMIT("metadata2 ");
3118
3119	if (writethrough_mode(cache))
3120		DMEMIT("writethrough ");
3121
3122	else if (passthrough_mode(cache))
3123		DMEMIT("passthrough ");
3124
3125	else if (writeback_mode(cache))
3126		DMEMIT("writeback ");
3127
3128	else {
3129		DMEMIT("unknown ");
3130		DMERR("%s: internal error: unknown io mode: %d",
3131		      cache_device_name(cache), (int) cf->io_mode);
3132	}
3133
3134	if (!cf->discard_passdown)
3135		DMEMIT("no_discard_passdown ");
3136
3137	*sz_ptr = sz;
3138}
3139
3140/*
3141 * Status format:
3142 *
3143 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3144 * <cache block size> <#used cache blocks>/<#total cache blocks>
3145 * <#read hits> <#read misses> <#write hits> <#write misses>
3146 * <#demotions> <#promotions> <#dirty>
3147 * <#features> <features>*
3148 * <#core args> <core args>
3149 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3150 */
3151static void cache_status(struct dm_target *ti, status_type_t type,
3152			 unsigned status_flags, char *result, unsigned maxlen)
3153{
3154	int r = 0;
3155	unsigned i;
3156	ssize_t sz = 0;
3157	dm_block_t nr_free_blocks_metadata = 0;
3158	dm_block_t nr_blocks_metadata = 0;
3159	char buf[BDEVNAME_SIZE];
3160	struct cache *cache = ti->private;
3161	dm_cblock_t residency;
3162	bool needs_check;
3163
3164	switch (type) {
3165	case STATUSTYPE_INFO:
3166		if (get_cache_mode(cache) == CM_FAIL) {
3167			DMEMIT("Fail");
3168			break;
3169		}
3170
3171		/* Commit to ensure statistics aren't out-of-date */
3172		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3173			(void) commit(cache, false);
3174
3175		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3176		if (r) {
3177			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3178			      cache_device_name(cache), r);
3179			goto err;
3180		}
3181
3182		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3183		if (r) {
3184			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3185			      cache_device_name(cache), r);
3186			goto err;
3187		}
3188
3189		residency = policy_residency(cache->policy);
3190
3191		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3192		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3193		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3194		       (unsigned long long)nr_blocks_metadata,
3195		       (unsigned long long)cache->sectors_per_block,
3196		       (unsigned long long) from_cblock(residency),
3197		       (unsigned long long) from_cblock(cache->cache_size),
3198		       (unsigned) atomic_read(&cache->stats.read_hit),
3199		       (unsigned) atomic_read(&cache->stats.read_miss),
3200		       (unsigned) atomic_read(&cache->stats.write_hit),
3201		       (unsigned) atomic_read(&cache->stats.write_miss),
3202		       (unsigned) atomic_read(&cache->stats.demotion),
3203		       (unsigned) atomic_read(&cache->stats.promotion),
3204		       (unsigned long) atomic_read(&cache->nr_dirty));
3205
3206		emit_flags(cache, result, maxlen, &sz);
3207
3208		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3209
3210		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3211		if (sz < maxlen) {
3212			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3213			if (r)
3214				DMERR("%s: policy_emit_config_values returned %d",
3215				      cache_device_name(cache), r);
3216		}
3217
3218		if (get_cache_mode(cache) == CM_READ_ONLY)
3219			DMEMIT("ro ");
3220		else
3221			DMEMIT("rw ");
3222
3223		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3224
3225		if (r || needs_check)
3226			DMEMIT("needs_check ");
3227		else
3228			DMEMIT("- ");
3229
3230		break;
3231
3232	case STATUSTYPE_TABLE:
3233		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3234		DMEMIT("%s ", buf);
3235		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3236		DMEMIT("%s ", buf);
3237		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3238		DMEMIT("%s", buf);
3239
3240		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3241			DMEMIT(" %s", cache->ctr_args[i]);
3242		if (cache->nr_ctr_args)
3243			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3244	}
3245
3246	return;
3247
3248err:
3249	DMEMIT("Error");
3250}
3251
3252/*
3253 * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3254 * the one-past-the-end value.
3255 */
3256struct cblock_range {
3257	dm_cblock_t begin;
3258	dm_cblock_t end;
3259};
3260
3261/*
3262 * A cache block range can take two forms:
3263 *
3264 * i) A single cblock, eg. '3456'
3265 * ii) A begin and end cblock with a dash between, eg. 123-234
3266 */
3267static int parse_cblock_range(struct cache *cache, const char *str,
3268			      struct cblock_range *result)
3269{
3270	char dummy;
3271	uint64_t b, e;
3272	int r;
3273
3274	/*
3275	 * Try and parse form (ii) first.
3276	 */
3277	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3278	if (r < 0)
3279		return r;
3280
3281	if (r == 2) {
3282		result->begin = to_cblock(b);
3283		result->end = to_cblock(e);
3284		return 0;
3285	}
3286
3287	/*
3288	 * That didn't work, try form (i).
3289	 */
3290	r = sscanf(str, "%llu%c", &b, &dummy);
3291	if (r < 0)
3292		return r;
3293
3294	if (r == 1) {
3295		result->begin = to_cblock(b);
3296		result->end = to_cblock(from_cblock(result->begin) + 1u);
3297		return 0;
3298	}
3299
3300	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3301	return -EINVAL;
3302}
3303
3304static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3305{
3306	uint64_t b = from_cblock(range->begin);
3307	uint64_t e = from_cblock(range->end);
3308	uint64_t n = from_cblock(cache->cache_size);
3309
3310	if (b >= n) {
3311		DMERR("%s: begin cblock out of range: %llu >= %llu",
3312		      cache_device_name(cache), b, n);
3313		return -EINVAL;
3314	}
3315
3316	if (e > n) {
3317		DMERR("%s: end cblock out of range: %llu > %llu",
3318		      cache_device_name(cache), e, n);
3319		return -EINVAL;
3320	}
3321
3322	if (b >= e) {
3323		DMERR("%s: invalid cblock range: %llu >= %llu",
3324		      cache_device_name(cache), b, e);
3325		return -EINVAL;
3326	}
3327
3328	return 0;
3329}
3330
3331static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3332{
3333	return to_cblock(from_cblock(b) + 1);
3334}
3335
3336static int request_invalidation(struct cache *cache, struct cblock_range *range)
3337{
3338	int r = 0;
3339
3340	/*
3341	 * We don't need to do any locking here because we know we're in
3342	 * passthrough mode.  There's is potential for a race between an
3343	 * invalidation triggered by an io and an invalidation message.  This
3344	 * is harmless, we must not worry if the policy call fails.
3345	 */
3346	while (range->begin != range->end) {
3347		r = invalidate_cblock(cache, range->begin);
3348		if (r)
3349			return r;
3350
3351		range->begin = cblock_succ(range->begin);
3352	}
3353
3354	cache->commit_requested = true;
3355	return r;
3356}
3357
3358static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3359					      const char **cblock_ranges)
3360{
3361	int r = 0;
3362	unsigned i;
3363	struct cblock_range range;
3364
3365	if (!passthrough_mode(cache)) {
3366		DMERR("%s: cache has to be in passthrough mode for invalidation",
3367		      cache_device_name(cache));
3368		return -EPERM;
3369	}
3370
3371	for (i = 0; i < count; i++) {
3372		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3373		if (r)
3374			break;
3375
3376		r = validate_cblock_range(cache, &range);
3377		if (r)
3378			break;
3379
3380		/*
3381		 * Pass begin and end origin blocks to the worker and wake it.
3382		 */
3383		r = request_invalidation(cache, &range);
3384		if (r)
3385			break;
3386	}
3387
3388	return r;
3389}
3390
3391/*
3392 * Supports
3393 *	"<key> <value>"
3394 * and
3395 *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3396 *
3397 * The key migration_threshold is supported by the cache target core.
3398 */
3399static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3400			 char *result, unsigned maxlen)
3401{
3402	struct cache *cache = ti->private;
3403
3404	if (!argc)
3405		return -EINVAL;
3406
3407	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3408		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3409		      cache_device_name(cache));
3410		return -EOPNOTSUPP;
3411	}
3412
3413	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3414		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3415
3416	if (argc != 2)
3417		return -EINVAL;
3418
3419	return set_config_value(cache, argv[0], argv[1]);
3420}
3421
3422static int cache_iterate_devices(struct dm_target *ti,
3423				 iterate_devices_callout_fn fn, void *data)
3424{
3425	int r = 0;
3426	struct cache *cache = ti->private;
3427
3428	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3429	if (!r)
3430		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3431
3432	return r;
3433}
3434
3435static bool origin_dev_supports_discard(struct block_device *origin_bdev)
3436{
3437	struct request_queue *q = bdev_get_queue(origin_bdev);
3438
3439	return q && blk_queue_discard(q);
3440}
3441
3442/*
3443 * If discard_passdown was enabled verify that the origin device
3444 * supports discards.  Disable discard_passdown if not.
3445 */
3446static void disable_passdown_if_not_supported(struct cache *cache)
3447{
3448	struct block_device *origin_bdev = cache->origin_dev->bdev;
3449	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3450	const char *reason = NULL;
3451	char buf[BDEVNAME_SIZE];
3452
3453	if (!cache->features.discard_passdown)
3454		return;
3455
3456	if (!origin_dev_supports_discard(origin_bdev))
3457		reason = "discard unsupported";
3458
3459	else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3460		reason = "max discard sectors smaller than a block";
3461
3462	if (reason) {
3463		DMWARN("Origin device (%s) %s: Disabling discard passdown.",
3464		       bdevname(origin_bdev, buf), reason);
3465		cache->features.discard_passdown = false;
3466	}
3467}
3468
3469static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3470{
3471	struct block_device *origin_bdev = cache->origin_dev->bdev;
3472	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3473
3474	if (!cache->features.discard_passdown) {
3475		/* No passdown is done so setting own virtual limits */
3476		limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3477						    cache->origin_sectors);
3478		limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3479		return;
3480	}
3481
3482	/*
3483	 * cache_iterate_devices() is stacking both origin and fast device limits
3484	 * but discards aren't passed to fast device, so inherit origin's limits.
3485	 */
3486	limits->max_discard_sectors = origin_limits->max_discard_sectors;
3487	limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3488	limits->discard_granularity = origin_limits->discard_granularity;
3489	limits->discard_alignment = origin_limits->discard_alignment;
3490	limits->discard_misaligned = origin_limits->discard_misaligned;
3491}
3492
3493static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3494{
3495	struct cache *cache = ti->private;
3496	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3497
3498	/*
3499	 * If the system-determined stacked limits are compatible with the
3500	 * cache's blocksize (io_opt is a factor) do not override them.
3501	 */
3502	if (io_opt_sectors < cache->sectors_per_block ||
3503	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3504		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3505		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3506	}
3507
3508	disable_passdown_if_not_supported(cache);
3509	set_discard_limits(cache, limits);
3510}
3511
3512/*----------------------------------------------------------------*/
3513
3514static struct target_type cache_target = {
3515	.name = "cache",
3516	.version = {2, 1, 0},
3517	.module = THIS_MODULE,
3518	.ctr = cache_ctr,
3519	.dtr = cache_dtr,
3520	.map = cache_map,
3521	.end_io = cache_end_io,
3522	.postsuspend = cache_postsuspend,
3523	.preresume = cache_preresume,
3524	.resume = cache_resume,
3525	.status = cache_status,
3526	.message = cache_message,
3527	.iterate_devices = cache_iterate_devices,
3528	.io_hints = cache_io_hints,
3529};
3530
3531static int __init dm_cache_init(void)
3532{
3533	int r;
3534
3535	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3536	if (!migration_cache)
3537		return -ENOMEM;
3538
3539	r = dm_register_target(&cache_target);
3540	if (r) {
3541		DMERR("cache target registration failed: %d", r);
3542		kmem_cache_destroy(migration_cache);
3543		return r;
3544	}
3545
3546	return 0;
3547}
3548
3549static void __exit dm_cache_exit(void)
3550{
3551	dm_unregister_target(&cache_target);
3552	kmem_cache_destroy(migration_cache);
3553}
3554
3555module_init(dm_cache_init);
3556module_exit(dm_cache_exit);
3557
3558MODULE_DESCRIPTION(DM_NAME " cache target");
3559MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3560MODULE_LICENSE("GPL");