Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Tegra host1x Syncpoints
  4 *
  5 * Copyright (c) 2010-2015, NVIDIA Corporation.
  6 */
  7
  8#include <linux/module.h>
  9#include <linux/device.h>
 10#include <linux/slab.h>
 11
 12#include <trace/events/host1x.h>
 13
 14#include "syncpt.h"
 15#include "dev.h"
 16#include "intr.h"
 17#include "debug.h"
 18
 19#define SYNCPT_CHECK_PERIOD (2 * HZ)
 20#define MAX_STUCK_CHECK_COUNT 15
 21
 22static struct host1x_syncpt_base *
 23host1x_syncpt_base_request(struct host1x *host)
 24{
 25	struct host1x_syncpt_base *bases = host->bases;
 26	unsigned int i;
 27
 28	for (i = 0; i < host->info->nb_bases; i++)
 29		if (!bases[i].requested)
 30			break;
 31
 32	if (i >= host->info->nb_bases)
 33		return NULL;
 34
 35	bases[i].requested = true;
 36	return &bases[i];
 37}
 38
 39static void host1x_syncpt_base_free(struct host1x_syncpt_base *base)
 40{
 41	if (base)
 42		base->requested = false;
 43}
 44
 45static struct host1x_syncpt *host1x_syncpt_alloc(struct host1x *host,
 46						 struct host1x_client *client,
 47						 unsigned long flags)
 48{
 49	struct host1x_syncpt *sp = host->syncpt;
 50	unsigned int i;
 51	char *name;
 52
 53	mutex_lock(&host->syncpt_mutex);
 54
 55	for (i = 0; i < host->info->nb_pts && sp->name; i++, sp++)
 56		;
 57
 58	if (i >= host->info->nb_pts)
 59		goto unlock;
 60
 61	if (flags & HOST1X_SYNCPT_HAS_BASE) {
 62		sp->base = host1x_syncpt_base_request(host);
 63		if (!sp->base)
 64			goto unlock;
 65	}
 66
 67	name = kasprintf(GFP_KERNEL, "%02u-%s", sp->id,
 68			 client ? dev_name(client->dev) : NULL);
 69	if (!name)
 70		goto free_base;
 71
 72	sp->client = client;
 73	sp->name = name;
 74
 75	if (flags & HOST1X_SYNCPT_CLIENT_MANAGED)
 76		sp->client_managed = true;
 77	else
 78		sp->client_managed = false;
 79
 80	mutex_unlock(&host->syncpt_mutex);
 81	return sp;
 82
 83free_base:
 84	host1x_syncpt_base_free(sp->base);
 85	sp->base = NULL;
 86unlock:
 87	mutex_unlock(&host->syncpt_mutex);
 88	return NULL;
 89}
 90
 91/**
 92 * host1x_syncpt_id() - retrieve syncpoint ID
 93 * @sp: host1x syncpoint
 94 *
 95 * Given a pointer to a struct host1x_syncpt, retrieves its ID. This ID is
 96 * often used as a value to program into registers that control how hardware
 97 * blocks interact with syncpoints.
 98 */
 99u32 host1x_syncpt_id(struct host1x_syncpt *sp)
100{
101	return sp->id;
102}
103EXPORT_SYMBOL(host1x_syncpt_id);
104
105/**
106 * host1x_syncpt_incr_max() - update the value sent to hardware
107 * @sp: host1x syncpoint
108 * @incrs: number of increments
109 */
110u32 host1x_syncpt_incr_max(struct host1x_syncpt *sp, u32 incrs)
111{
112	return (u32)atomic_add_return(incrs, &sp->max_val);
113}
114EXPORT_SYMBOL(host1x_syncpt_incr_max);
115
116 /*
117 * Write cached syncpoint and waitbase values to hardware.
118 */
119void host1x_syncpt_restore(struct host1x *host)
120{
121	struct host1x_syncpt *sp_base = host->syncpt;
122	unsigned int i;
123
124	for (i = 0; i < host1x_syncpt_nb_pts(host); i++)
125		host1x_hw_syncpt_restore(host, sp_base + i);
126
127	for (i = 0; i < host1x_syncpt_nb_bases(host); i++)
128		host1x_hw_syncpt_restore_wait_base(host, sp_base + i);
129
130	wmb();
131}
132
133/*
134 * Update the cached syncpoint and waitbase values by reading them
135 * from the registers.
136  */
137void host1x_syncpt_save(struct host1x *host)
138{
139	struct host1x_syncpt *sp_base = host->syncpt;
140	unsigned int i;
141
142	for (i = 0; i < host1x_syncpt_nb_pts(host); i++) {
143		if (host1x_syncpt_client_managed(sp_base + i))
144			host1x_hw_syncpt_load(host, sp_base + i);
145		else
146			WARN_ON(!host1x_syncpt_idle(sp_base + i));
147	}
148
149	for (i = 0; i < host1x_syncpt_nb_bases(host); i++)
150		host1x_hw_syncpt_load_wait_base(host, sp_base + i);
151}
152
153/*
154 * Updates the cached syncpoint value by reading a new value from the hardware
155 * register
156 */
157u32 host1x_syncpt_load(struct host1x_syncpt *sp)
158{
159	u32 val;
160
161	val = host1x_hw_syncpt_load(sp->host, sp);
162	trace_host1x_syncpt_load_min(sp->id, val);
163
164	return val;
165}
166
167/*
168 * Get the current syncpoint base
169 */
170u32 host1x_syncpt_load_wait_base(struct host1x_syncpt *sp)
171{
172	host1x_hw_syncpt_load_wait_base(sp->host, sp);
173
174	return sp->base_val;
175}
176
177/**
178 * host1x_syncpt_incr() - increment syncpoint value from CPU, updating cache
179 * @sp: host1x syncpoint
180 */
181int host1x_syncpt_incr(struct host1x_syncpt *sp)
182{
183	return host1x_hw_syncpt_cpu_incr(sp->host, sp);
184}
185EXPORT_SYMBOL(host1x_syncpt_incr);
186
187/*
188 * Updated sync point form hardware, and returns true if syncpoint is expired,
189 * false if we may need to wait
190 */
191static bool syncpt_load_min_is_expired(struct host1x_syncpt *sp, u32 thresh)
192{
193	host1x_hw_syncpt_load(sp->host, sp);
194
195	return host1x_syncpt_is_expired(sp, thresh);
196}
197
198/**
199 * host1x_syncpt_wait() - wait for a syncpoint to reach a given value
200 * @sp: host1x syncpoint
201 * @thresh: threshold
202 * @timeout: maximum time to wait for the syncpoint to reach the given value
203 * @value: return location for the syncpoint value
204 */
205int host1x_syncpt_wait(struct host1x_syncpt *sp, u32 thresh, long timeout,
206		       u32 *value)
207{
208	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
209	void *ref;
210	struct host1x_waitlist *waiter;
211	int err = 0, check_count = 0;
212	u32 val;
213
214	if (value)
215		*value = 0;
216
217	/* first check cache */
218	if (host1x_syncpt_is_expired(sp, thresh)) {
219		if (value)
220			*value = host1x_syncpt_load(sp);
221
222		return 0;
223	}
224
225	/* try to read from register */
226	val = host1x_hw_syncpt_load(sp->host, sp);
227	if (host1x_syncpt_is_expired(sp, thresh)) {
228		if (value)
229			*value = val;
230
231		goto done;
232	}
233
234	if (!timeout) {
235		err = -EAGAIN;
236		goto done;
237	}
238
239	/* allocate a waiter */
240	waiter = kzalloc(sizeof(*waiter), GFP_KERNEL);
241	if (!waiter) {
242		err = -ENOMEM;
243		goto done;
244	}
245
246	/* schedule a wakeup when the syncpoint value is reached */
247	err = host1x_intr_add_action(sp->host, sp, thresh,
248				     HOST1X_INTR_ACTION_WAKEUP_INTERRUPTIBLE,
249				     &wq, waiter, &ref);
250	if (err)
251		goto done;
252
253	err = -EAGAIN;
254	/* Caller-specified timeout may be impractically low */
255	if (timeout < 0)
256		timeout = LONG_MAX;
257
258	/* wait for the syncpoint, or timeout, or signal */
259	while (timeout) {
260		long check = min_t(long, SYNCPT_CHECK_PERIOD, timeout);
261		int remain;
262
263		remain = wait_event_interruptible_timeout(wq,
264				syncpt_load_min_is_expired(sp, thresh),
265				check);
266		if (remain > 0 || host1x_syncpt_is_expired(sp, thresh)) {
267			if (value)
268				*value = host1x_syncpt_load(sp);
269
270			err = 0;
271
272			break;
273		}
274
275		if (remain < 0) {
276			err = remain;
277			break;
278		}
279
280		timeout -= check;
281
282		if (timeout && check_count <= MAX_STUCK_CHECK_COUNT) {
283			dev_warn(sp->host->dev,
284				"%s: syncpoint id %u (%s) stuck waiting %d, timeout=%ld\n",
285				 current->comm, sp->id, sp->name,
286				 thresh, timeout);
287
288			host1x_debug_dump_syncpts(sp->host);
289
290			if (check_count == MAX_STUCK_CHECK_COUNT)
291				host1x_debug_dump(sp->host);
292
293			check_count++;
294		}
295	}
296
297	host1x_intr_put_ref(sp->host, sp->id, ref);
298
299done:
300	return err;
301}
302EXPORT_SYMBOL(host1x_syncpt_wait);
303
304/*
305 * Returns true if syncpoint is expired, false if we may need to wait
306 */
307bool host1x_syncpt_is_expired(struct host1x_syncpt *sp, u32 thresh)
308{
309	u32 current_val;
310	u32 future_val;
311
312	smp_rmb();
313
314	current_val = (u32)atomic_read(&sp->min_val);
315	future_val = (u32)atomic_read(&sp->max_val);
316
317	/* Note the use of unsigned arithmetic here (mod 1<<32).
318	 *
319	 * c = current_val = min_val	= the current value of the syncpoint.
320	 * t = thresh			= the value we are checking
321	 * f = future_val  = max_val	= the value c will reach when all
322	 *				  outstanding increments have completed.
323	 *
324	 * Note that c always chases f until it reaches f.
325	 *
326	 * Dtf = (f - t)
327	 * Dtc = (c - t)
328	 *
329	 *  Consider all cases:
330	 *
331	 *	A) .....c..t..f.....	Dtf < Dtc	need to wait
332	 *	B) .....c.....f..t..	Dtf > Dtc	expired
333	 *	C) ..t..c.....f.....	Dtf > Dtc	expired	   (Dct very large)
334	 *
335	 *  Any case where f==c: always expired (for any t).	Dtf == Dcf
336	 *  Any case where t==c: always expired (for any f).	Dtf >= Dtc (because Dtc==0)
337	 *  Any case where t==f!=c: always wait.		Dtf <  Dtc (because Dtf==0,
338	 *							Dtc!=0)
339	 *
340	 *  Other cases:
341	 *
342	 *	A) .....t..f..c.....	Dtf < Dtc	need to wait
343	 *	A) .....f..c..t.....	Dtf < Dtc	need to wait
344	 *	A) .....f..t..c.....	Dtf > Dtc	expired
345	 *
346	 *   So:
347	 *	   Dtf >= Dtc implies EXPIRED	(return true)
348	 *	   Dtf <  Dtc implies WAIT	(return false)
349	 *
350	 * Note: If t is expired then we *cannot* wait on it. We would wait
351	 * forever (hang the system).
352	 *
353	 * Note: do NOT get clever and remove the -thresh from both sides. It
354	 * is NOT the same.
355	 *
356	 * If future valueis zero, we have a client managed sync point. In that
357	 * case we do a direct comparison.
358	 */
359	if (!host1x_syncpt_client_managed(sp))
360		return future_val - thresh >= current_val - thresh;
361	else
362		return (s32)(current_val - thresh) >= 0;
363}
364
365int host1x_syncpt_init(struct host1x *host)
366{
367	struct host1x_syncpt_base *bases;
368	struct host1x_syncpt *syncpt;
369	unsigned int i;
370
371	syncpt = devm_kcalloc(host->dev, host->info->nb_pts, sizeof(*syncpt),
372			      GFP_KERNEL);
373	if (!syncpt)
374		return -ENOMEM;
375
376	bases = devm_kcalloc(host->dev, host->info->nb_bases, sizeof(*bases),
377			     GFP_KERNEL);
378	if (!bases)
379		return -ENOMEM;
380
381	for (i = 0; i < host->info->nb_pts; i++) {
382		syncpt[i].id = i;
383		syncpt[i].host = host;
384
385		/*
386		 * Unassign syncpt from channels for purposes of Tegra186
387		 * syncpoint protection. This prevents any channel from
388		 * accessing it until it is reassigned.
389		 */
390		host1x_hw_syncpt_assign_to_channel(host, &syncpt[i], NULL);
391	}
392
393	for (i = 0; i < host->info->nb_bases; i++)
394		bases[i].id = i;
395
396	mutex_init(&host->syncpt_mutex);
397	host->syncpt = syncpt;
398	host->bases = bases;
399
400	host1x_syncpt_restore(host);
401	host1x_hw_syncpt_enable_protection(host);
402
403	/* Allocate sync point to use for clearing waits for expired fences */
404	host->nop_sp = host1x_syncpt_alloc(host, NULL, 0);
405	if (!host->nop_sp)
406		return -ENOMEM;
407
408	return 0;
409}
410
411/**
412 * host1x_syncpt_request() - request a syncpoint
413 * @client: client requesting the syncpoint
414 * @flags: flags
415 *
416 * host1x client drivers can use this function to allocate a syncpoint for
417 * subsequent use. A syncpoint returned by this function will be reserved for
418 * use by the client exclusively. When no longer using a syncpoint, a host1x
419 * client driver needs to release it using host1x_syncpt_free().
420 */
421struct host1x_syncpt *host1x_syncpt_request(struct host1x_client *client,
422					    unsigned long flags)
423{
424	struct host1x *host = dev_get_drvdata(client->host->parent);
425
426	return host1x_syncpt_alloc(host, client, flags);
427}
428EXPORT_SYMBOL(host1x_syncpt_request);
429
430/**
431 * host1x_syncpt_free() - free a requested syncpoint
432 * @sp: host1x syncpoint
433 *
434 * Release a syncpoint previously allocated using host1x_syncpt_request(). A
435 * host1x client driver should call this when the syncpoint is no longer in
436 * use. Note that client drivers must ensure that the syncpoint doesn't remain
437 * under the control of hardware after calling this function, otherwise two
438 * clients may end up trying to access the same syncpoint concurrently.
439 */
440void host1x_syncpt_free(struct host1x_syncpt *sp)
441{
442	if (!sp)
443		return;
444
445	mutex_lock(&sp->host->syncpt_mutex);
446
447	host1x_syncpt_base_free(sp->base);
448	kfree(sp->name);
449	sp->base = NULL;
450	sp->client = NULL;
451	sp->name = NULL;
452	sp->client_managed = false;
453
454	mutex_unlock(&sp->host->syncpt_mutex);
455}
456EXPORT_SYMBOL(host1x_syncpt_free);
457
458void host1x_syncpt_deinit(struct host1x *host)
459{
460	struct host1x_syncpt *sp = host->syncpt;
461	unsigned int i;
462
463	for (i = 0; i < host->info->nb_pts; i++, sp++)
464		kfree(sp->name);
465}
466
467/**
468 * host1x_syncpt_read_max() - read maximum syncpoint value
469 * @sp: host1x syncpoint
470 *
471 * The maximum syncpoint value indicates how many operations there are in
472 * queue, either in channel or in a software thread.
473 */
474u32 host1x_syncpt_read_max(struct host1x_syncpt *sp)
475{
476	smp_rmb();
477
478	return (u32)atomic_read(&sp->max_val);
479}
480EXPORT_SYMBOL(host1x_syncpt_read_max);
481
482/**
483 * host1x_syncpt_read_min() - read minimum syncpoint value
484 * @sp: host1x syncpoint
485 *
486 * The minimum syncpoint value is a shadow of the current sync point value in
487 * hardware.
488 */
489u32 host1x_syncpt_read_min(struct host1x_syncpt *sp)
490{
491	smp_rmb();
492
493	return (u32)atomic_read(&sp->min_val);
494}
495EXPORT_SYMBOL(host1x_syncpt_read_min);
496
497/**
498 * host1x_syncpt_read() - read the current syncpoint value
499 * @sp: host1x syncpoint
500 */
501u32 host1x_syncpt_read(struct host1x_syncpt *sp)
502{
503	return host1x_syncpt_load(sp);
504}
505EXPORT_SYMBOL(host1x_syncpt_read);
506
507unsigned int host1x_syncpt_nb_pts(struct host1x *host)
508{
509	return host->info->nb_pts;
510}
511
512unsigned int host1x_syncpt_nb_bases(struct host1x *host)
513{
514	return host->info->nb_bases;
515}
516
517unsigned int host1x_syncpt_nb_mlocks(struct host1x *host)
518{
519	return host->info->nb_mlocks;
520}
521
522/**
523 * host1x_syncpt_get() - obtain a syncpoint by ID
524 * @host: host1x controller
525 * @id: syncpoint ID
526 */
527struct host1x_syncpt *host1x_syncpt_get(struct host1x *host, unsigned int id)
528{
529	if (id >= host->info->nb_pts)
530		return NULL;
531
532	return host->syncpt + id;
533}
534EXPORT_SYMBOL(host1x_syncpt_get);
535
536/**
537 * host1x_syncpt_get_base() - obtain the wait base associated with a syncpoint
538 * @sp: host1x syncpoint
539 */
540struct host1x_syncpt_base *host1x_syncpt_get_base(struct host1x_syncpt *sp)
541{
542	return sp ? sp->base : NULL;
543}
544EXPORT_SYMBOL(host1x_syncpt_get_base);
545
546/**
547 * host1x_syncpt_base_id() - retrieve the ID of a syncpoint wait base
548 * @base: host1x syncpoint wait base
549 */
550u32 host1x_syncpt_base_id(struct host1x_syncpt_base *base)
551{
552	return base->id;
553}
554EXPORT_SYMBOL(host1x_syncpt_base_id);
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Tegra host1x Syncpoints
  4 *
  5 * Copyright (c) 2010-2015, NVIDIA Corporation.
  6 */
  7
  8#include <linux/module.h>
  9#include <linux/device.h>
 10#include <linux/slab.h>
 11
 12#include <trace/events/host1x.h>
 13
 14#include "syncpt.h"
 15#include "dev.h"
 16#include "intr.h"
 17#include "debug.h"
 18
 19#define SYNCPT_CHECK_PERIOD (2 * HZ)
 20#define MAX_STUCK_CHECK_COUNT 15
 21
 22static struct host1x_syncpt_base *
 23host1x_syncpt_base_request(struct host1x *host)
 24{
 25	struct host1x_syncpt_base *bases = host->bases;
 26	unsigned int i;
 27
 28	for (i = 0; i < host->info->nb_bases; i++)
 29		if (!bases[i].requested)
 30			break;
 31
 32	if (i >= host->info->nb_bases)
 33		return NULL;
 34
 35	bases[i].requested = true;
 36	return &bases[i];
 37}
 38
 39static void host1x_syncpt_base_free(struct host1x_syncpt_base *base)
 40{
 41	if (base)
 42		base->requested = false;
 43}
 44
 45static struct host1x_syncpt *host1x_syncpt_alloc(struct host1x *host,
 46						 struct host1x_client *client,
 47						 unsigned long flags)
 48{
 49	struct host1x_syncpt *sp = host->syncpt;
 50	unsigned int i;
 51	char *name;
 52
 53	mutex_lock(&host->syncpt_mutex);
 54
 55	for (i = 0; i < host->info->nb_pts && sp->name; i++, sp++)
 56		;
 57
 58	if (i >= host->info->nb_pts)
 59		goto unlock;
 60
 61	if (flags & HOST1X_SYNCPT_HAS_BASE) {
 62		sp->base = host1x_syncpt_base_request(host);
 63		if (!sp->base)
 64			goto unlock;
 65	}
 66
 67	name = kasprintf(GFP_KERNEL, "%02u-%s", sp->id,
 68			 client ? dev_name(client->dev) : NULL);
 69	if (!name)
 70		goto free_base;
 71
 72	sp->client = client;
 73	sp->name = name;
 74
 75	if (flags & HOST1X_SYNCPT_CLIENT_MANAGED)
 76		sp->client_managed = true;
 77	else
 78		sp->client_managed = false;
 79
 80	mutex_unlock(&host->syncpt_mutex);
 81	return sp;
 82
 83free_base:
 84	host1x_syncpt_base_free(sp->base);
 85	sp->base = NULL;
 86unlock:
 87	mutex_unlock(&host->syncpt_mutex);
 88	return NULL;
 89}
 90
 91/**
 92 * host1x_syncpt_id() - retrieve syncpoint ID
 93 * @sp: host1x syncpoint
 94 *
 95 * Given a pointer to a struct host1x_syncpt, retrieves its ID. This ID is
 96 * often used as a value to program into registers that control how hardware
 97 * blocks interact with syncpoints.
 98 */
 99u32 host1x_syncpt_id(struct host1x_syncpt *sp)
100{
101	return sp->id;
102}
103EXPORT_SYMBOL(host1x_syncpt_id);
104
105/**
106 * host1x_syncpt_incr_max() - update the value sent to hardware
107 * @sp: host1x syncpoint
108 * @incrs: number of increments
109 */
110u32 host1x_syncpt_incr_max(struct host1x_syncpt *sp, u32 incrs)
111{
112	return (u32)atomic_add_return(incrs, &sp->max_val);
113}
114EXPORT_SYMBOL(host1x_syncpt_incr_max);
115
116 /*
117 * Write cached syncpoint and waitbase values to hardware.
118 */
119void host1x_syncpt_restore(struct host1x *host)
120{
121	struct host1x_syncpt *sp_base = host->syncpt;
122	unsigned int i;
123
124	for (i = 0; i < host1x_syncpt_nb_pts(host); i++)
125		host1x_hw_syncpt_restore(host, sp_base + i);
126
127	for (i = 0; i < host1x_syncpt_nb_bases(host); i++)
128		host1x_hw_syncpt_restore_wait_base(host, sp_base + i);
129
130	wmb();
131}
132
133/*
134 * Update the cached syncpoint and waitbase values by reading them
135 * from the registers.
136  */
137void host1x_syncpt_save(struct host1x *host)
138{
139	struct host1x_syncpt *sp_base = host->syncpt;
140	unsigned int i;
141
142	for (i = 0; i < host1x_syncpt_nb_pts(host); i++) {
143		if (host1x_syncpt_client_managed(sp_base + i))
144			host1x_hw_syncpt_load(host, sp_base + i);
145		else
146			WARN_ON(!host1x_syncpt_idle(sp_base + i));
147	}
148
149	for (i = 0; i < host1x_syncpt_nb_bases(host); i++)
150		host1x_hw_syncpt_load_wait_base(host, sp_base + i);
151}
152
153/*
154 * Updates the cached syncpoint value by reading a new value from the hardware
155 * register
156 */
157u32 host1x_syncpt_load(struct host1x_syncpt *sp)
158{
159	u32 val;
160
161	val = host1x_hw_syncpt_load(sp->host, sp);
162	trace_host1x_syncpt_load_min(sp->id, val);
163
164	return val;
165}
166
167/*
168 * Get the current syncpoint base
169 */
170u32 host1x_syncpt_load_wait_base(struct host1x_syncpt *sp)
171{
172	host1x_hw_syncpt_load_wait_base(sp->host, sp);
173
174	return sp->base_val;
175}
176
177/**
178 * host1x_syncpt_incr() - increment syncpoint value from CPU, updating cache
179 * @sp: host1x syncpoint
180 */
181int host1x_syncpt_incr(struct host1x_syncpt *sp)
182{
183	return host1x_hw_syncpt_cpu_incr(sp->host, sp);
184}
185EXPORT_SYMBOL(host1x_syncpt_incr);
186
187/*
188 * Updated sync point form hardware, and returns true if syncpoint is expired,
189 * false if we may need to wait
190 */
191static bool syncpt_load_min_is_expired(struct host1x_syncpt *sp, u32 thresh)
192{
193	host1x_hw_syncpt_load(sp->host, sp);
194
195	return host1x_syncpt_is_expired(sp, thresh);
196}
197
198/**
199 * host1x_syncpt_wait() - wait for a syncpoint to reach a given value
200 * @sp: host1x syncpoint
201 * @thresh: threshold
202 * @timeout: maximum time to wait for the syncpoint to reach the given value
203 * @value: return location for the syncpoint value
204 */
205int host1x_syncpt_wait(struct host1x_syncpt *sp, u32 thresh, long timeout,
206		       u32 *value)
207{
208	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
209	void *ref;
210	struct host1x_waitlist *waiter;
211	int err = 0, check_count = 0;
212	u32 val;
213
214	if (value)
215		*value = 0;
216
217	/* first check cache */
218	if (host1x_syncpt_is_expired(sp, thresh)) {
219		if (value)
220			*value = host1x_syncpt_load(sp);
221
222		return 0;
223	}
224
225	/* try to read from register */
226	val = host1x_hw_syncpt_load(sp->host, sp);
227	if (host1x_syncpt_is_expired(sp, thresh)) {
228		if (value)
229			*value = val;
230
231		goto done;
232	}
233
234	if (!timeout) {
235		err = -EAGAIN;
236		goto done;
237	}
238
239	/* allocate a waiter */
240	waiter = kzalloc(sizeof(*waiter), GFP_KERNEL);
241	if (!waiter) {
242		err = -ENOMEM;
243		goto done;
244	}
245
246	/* schedule a wakeup when the syncpoint value is reached */
247	err = host1x_intr_add_action(sp->host, sp, thresh,
248				     HOST1X_INTR_ACTION_WAKEUP_INTERRUPTIBLE,
249				     &wq, waiter, &ref);
250	if (err)
251		goto done;
252
253	err = -EAGAIN;
254	/* Caller-specified timeout may be impractically low */
255	if (timeout < 0)
256		timeout = LONG_MAX;
257
258	/* wait for the syncpoint, or timeout, or signal */
259	while (timeout) {
260		long check = min_t(long, SYNCPT_CHECK_PERIOD, timeout);
261		int remain;
262
263		remain = wait_event_interruptible_timeout(wq,
264				syncpt_load_min_is_expired(sp, thresh),
265				check);
266		if (remain > 0 || host1x_syncpt_is_expired(sp, thresh)) {
267			if (value)
268				*value = host1x_syncpt_load(sp);
269
270			err = 0;
271
272			break;
273		}
274
275		if (remain < 0) {
276			err = remain;
277			break;
278		}
279
280		timeout -= check;
281
282		if (timeout && check_count <= MAX_STUCK_CHECK_COUNT) {
283			dev_warn(sp->host->dev,
284				"%s: syncpoint id %u (%s) stuck waiting %d, timeout=%ld\n",
285				 current->comm, sp->id, sp->name,
286				 thresh, timeout);
287
288			host1x_debug_dump_syncpts(sp->host);
289
290			if (check_count == MAX_STUCK_CHECK_COUNT)
291				host1x_debug_dump(sp->host);
292
293			check_count++;
294		}
295	}
296
297	host1x_intr_put_ref(sp->host, sp->id, ref);
298
299done:
300	return err;
301}
302EXPORT_SYMBOL(host1x_syncpt_wait);
303
304/*
305 * Returns true if syncpoint is expired, false if we may need to wait
306 */
307bool host1x_syncpt_is_expired(struct host1x_syncpt *sp, u32 thresh)
308{
309	u32 current_val;
310	u32 future_val;
311
312	smp_rmb();
313
314	current_val = (u32)atomic_read(&sp->min_val);
315	future_val = (u32)atomic_read(&sp->max_val);
316
317	/* Note the use of unsigned arithmetic here (mod 1<<32).
318	 *
319	 * c = current_val = min_val	= the current value of the syncpoint.
320	 * t = thresh			= the value we are checking
321	 * f = future_val  = max_val	= the value c will reach when all
322	 *				  outstanding increments have completed.
323	 *
324	 * Note that c always chases f until it reaches f.
325	 *
326	 * Dtf = (f - t)
327	 * Dtc = (c - t)
328	 *
329	 *  Consider all cases:
330	 *
331	 *	A) .....c..t..f.....	Dtf < Dtc	need to wait
332	 *	B) .....c.....f..t..	Dtf > Dtc	expired
333	 *	C) ..t..c.....f.....	Dtf > Dtc	expired	   (Dct very large)
334	 *
335	 *  Any case where f==c: always expired (for any t).	Dtf == Dcf
336	 *  Any case where t==c: always expired (for any f).	Dtf >= Dtc (because Dtc==0)
337	 *  Any case where t==f!=c: always wait.		Dtf <  Dtc (because Dtf==0,
338	 *							Dtc!=0)
339	 *
340	 *  Other cases:
341	 *
342	 *	A) .....t..f..c.....	Dtf < Dtc	need to wait
343	 *	A) .....f..c..t.....	Dtf < Dtc	need to wait
344	 *	A) .....f..t..c.....	Dtf > Dtc	expired
345	 *
346	 *   So:
347	 *	   Dtf >= Dtc implies EXPIRED	(return true)
348	 *	   Dtf <  Dtc implies WAIT	(return false)
349	 *
350	 * Note: If t is expired then we *cannot* wait on it. We would wait
351	 * forever (hang the system).
352	 *
353	 * Note: do NOT get clever and remove the -thresh from both sides. It
354	 * is NOT the same.
355	 *
356	 * If future valueis zero, we have a client managed sync point. In that
357	 * case we do a direct comparison.
358	 */
359	if (!host1x_syncpt_client_managed(sp))
360		return future_val - thresh >= current_val - thresh;
361	else
362		return (s32)(current_val - thresh) >= 0;
363}
364
365int host1x_syncpt_init(struct host1x *host)
366{
367	struct host1x_syncpt_base *bases;
368	struct host1x_syncpt *syncpt;
369	unsigned int i;
370
371	syncpt = devm_kcalloc(host->dev, host->info->nb_pts, sizeof(*syncpt),
372			      GFP_KERNEL);
373	if (!syncpt)
374		return -ENOMEM;
375
376	bases = devm_kcalloc(host->dev, host->info->nb_bases, sizeof(*bases),
377			     GFP_KERNEL);
378	if (!bases)
379		return -ENOMEM;
380
381	for (i = 0; i < host->info->nb_pts; i++) {
382		syncpt[i].id = i;
383		syncpt[i].host = host;
384
385		/*
386		 * Unassign syncpt from channels for purposes of Tegra186
387		 * syncpoint protection. This prevents any channel from
388		 * accessing it until it is reassigned.
389		 */
390		host1x_hw_syncpt_assign_to_channel(host, &syncpt[i], NULL);
391	}
392
393	for (i = 0; i < host->info->nb_bases; i++)
394		bases[i].id = i;
395
396	mutex_init(&host->syncpt_mutex);
397	host->syncpt = syncpt;
398	host->bases = bases;
399
400	host1x_syncpt_restore(host);
401	host1x_hw_syncpt_enable_protection(host);
402
403	/* Allocate sync point to use for clearing waits for expired fences */
404	host->nop_sp = host1x_syncpt_alloc(host, NULL, 0);
405	if (!host->nop_sp)
406		return -ENOMEM;
407
408	return 0;
409}
410
411/**
412 * host1x_syncpt_request() - request a syncpoint
413 * @client: client requesting the syncpoint
414 * @flags: flags
415 *
416 * host1x client drivers can use this function to allocate a syncpoint for
417 * subsequent use. A syncpoint returned by this function will be reserved for
418 * use by the client exclusively. When no longer using a syncpoint, a host1x
419 * client driver needs to release it using host1x_syncpt_free().
420 */
421struct host1x_syncpt *host1x_syncpt_request(struct host1x_client *client,
422					    unsigned long flags)
423{
424	struct host1x *host = dev_get_drvdata(client->parent->parent);
425
426	return host1x_syncpt_alloc(host, client, flags);
427}
428EXPORT_SYMBOL(host1x_syncpt_request);
429
430/**
431 * host1x_syncpt_free() - free a requested syncpoint
432 * @sp: host1x syncpoint
433 *
434 * Release a syncpoint previously allocated using host1x_syncpt_request(). A
435 * host1x client driver should call this when the syncpoint is no longer in
436 * use. Note that client drivers must ensure that the syncpoint doesn't remain
437 * under the control of hardware after calling this function, otherwise two
438 * clients may end up trying to access the same syncpoint concurrently.
439 */
440void host1x_syncpt_free(struct host1x_syncpt *sp)
441{
442	if (!sp)
443		return;
444
445	mutex_lock(&sp->host->syncpt_mutex);
446
447	host1x_syncpt_base_free(sp->base);
448	kfree(sp->name);
449	sp->base = NULL;
450	sp->client = NULL;
451	sp->name = NULL;
452	sp->client_managed = false;
453
454	mutex_unlock(&sp->host->syncpt_mutex);
455}
456EXPORT_SYMBOL(host1x_syncpt_free);
457
458void host1x_syncpt_deinit(struct host1x *host)
459{
460	struct host1x_syncpt *sp = host->syncpt;
461	unsigned int i;
462
463	for (i = 0; i < host->info->nb_pts; i++, sp++)
464		kfree(sp->name);
465}
466
467/**
468 * host1x_syncpt_read_max() - read maximum syncpoint value
469 * @sp: host1x syncpoint
470 *
471 * The maximum syncpoint value indicates how many operations there are in
472 * queue, either in channel or in a software thread.
473 */
474u32 host1x_syncpt_read_max(struct host1x_syncpt *sp)
475{
476	smp_rmb();
477
478	return (u32)atomic_read(&sp->max_val);
479}
480EXPORT_SYMBOL(host1x_syncpt_read_max);
481
482/**
483 * host1x_syncpt_read_min() - read minimum syncpoint value
484 * @sp: host1x syncpoint
485 *
486 * The minimum syncpoint value is a shadow of the current sync point value in
487 * hardware.
488 */
489u32 host1x_syncpt_read_min(struct host1x_syncpt *sp)
490{
491	smp_rmb();
492
493	return (u32)atomic_read(&sp->min_val);
494}
495EXPORT_SYMBOL(host1x_syncpt_read_min);
496
497/**
498 * host1x_syncpt_read() - read the current syncpoint value
499 * @sp: host1x syncpoint
500 */
501u32 host1x_syncpt_read(struct host1x_syncpt *sp)
502{
503	return host1x_syncpt_load(sp);
504}
505EXPORT_SYMBOL(host1x_syncpt_read);
506
507unsigned int host1x_syncpt_nb_pts(struct host1x *host)
508{
509	return host->info->nb_pts;
510}
511
512unsigned int host1x_syncpt_nb_bases(struct host1x *host)
513{
514	return host->info->nb_bases;
515}
516
517unsigned int host1x_syncpt_nb_mlocks(struct host1x *host)
518{
519	return host->info->nb_mlocks;
520}
521
522/**
523 * host1x_syncpt_get() - obtain a syncpoint by ID
524 * @host: host1x controller
525 * @id: syncpoint ID
526 */
527struct host1x_syncpt *host1x_syncpt_get(struct host1x *host, unsigned int id)
528{
529	if (id >= host->info->nb_pts)
530		return NULL;
531
532	return host->syncpt + id;
533}
534EXPORT_SYMBOL(host1x_syncpt_get);
535
536/**
537 * host1x_syncpt_get_base() - obtain the wait base associated with a syncpoint
538 * @sp: host1x syncpoint
539 */
540struct host1x_syncpt_base *host1x_syncpt_get_base(struct host1x_syncpt *sp)
541{
542	return sp ? sp->base : NULL;
543}
544EXPORT_SYMBOL(host1x_syncpt_get_base);
545
546/**
547 * host1x_syncpt_base_id() - retrieve the ID of a syncpoint wait base
548 * @base: host1x syncpoint wait base
549 */
550u32 host1x_syncpt_base_id(struct host1x_syncpt_base *base)
551{
552	return base->id;
553}
554EXPORT_SYMBOL(host1x_syncpt_base_id);