Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Cryptographic API.
   4 *
   5 * Support for ATMEL AES HW acceleration.
   6 *
   7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
   8 * Author: Nicolas Royer <nicolas@eukrea.com>
   9 *
  10 * Some ideas are from omap-aes.c driver.
  11 */
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/err.h>
  18#include <linux/clk.h>
  19#include <linux/io.h>
  20#include <linux/hw_random.h>
  21#include <linux/platform_device.h>
  22
  23#include <linux/device.h>
  24#include <linux/dmaengine.h>
  25#include <linux/init.h>
  26#include <linux/errno.h>
  27#include <linux/interrupt.h>
  28#include <linux/irq.h>
  29#include <linux/scatterlist.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/of_device.h>
  32#include <linux/delay.h>
  33#include <linux/crypto.h>
  34#include <crypto/scatterwalk.h>
  35#include <crypto/algapi.h>
  36#include <crypto/aes.h>
  37#include <crypto/gcm.h>
  38#include <crypto/xts.h>
  39#include <crypto/internal/aead.h>
  40#include <crypto/internal/skcipher.h>
 
  41#include "atmel-aes-regs.h"
  42#include "atmel-authenc.h"
  43
  44#define ATMEL_AES_PRIORITY	300
  45
  46#define ATMEL_AES_BUFFER_ORDER	2
  47#define ATMEL_AES_BUFFER_SIZE	(PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
  48
  49#define CFB8_BLOCK_SIZE		1
  50#define CFB16_BLOCK_SIZE	2
  51#define CFB32_BLOCK_SIZE	4
  52#define CFB64_BLOCK_SIZE	8
  53
  54#define SIZE_IN_WORDS(x)	((x) >> 2)
  55
  56/* AES flags */
  57/* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
  58#define AES_FLAGS_ENCRYPT	AES_MR_CYPHER_ENC
  59#define AES_FLAGS_GTAGEN	AES_MR_GTAGEN
  60#define AES_FLAGS_OPMODE_MASK	(AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
  61#define AES_FLAGS_ECB		AES_MR_OPMOD_ECB
  62#define AES_FLAGS_CBC		AES_MR_OPMOD_CBC
  63#define AES_FLAGS_OFB		AES_MR_OPMOD_OFB
  64#define AES_FLAGS_CFB128	(AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
  65#define AES_FLAGS_CFB64		(AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
  66#define AES_FLAGS_CFB32		(AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
  67#define AES_FLAGS_CFB16		(AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
  68#define AES_FLAGS_CFB8		(AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
  69#define AES_FLAGS_CTR		AES_MR_OPMOD_CTR
  70#define AES_FLAGS_GCM		AES_MR_OPMOD_GCM
  71#define AES_FLAGS_XTS		AES_MR_OPMOD_XTS
  72
  73#define AES_FLAGS_MODE_MASK	(AES_FLAGS_OPMODE_MASK |	\
  74				 AES_FLAGS_ENCRYPT |		\
  75				 AES_FLAGS_GTAGEN)
  76
  77#define AES_FLAGS_BUSY		BIT(3)
  78#define AES_FLAGS_DUMP_REG	BIT(4)
  79#define AES_FLAGS_OWN_SHA	BIT(5)
  80
  81#define AES_FLAGS_PERSISTENT	AES_FLAGS_BUSY
  82
  83#define ATMEL_AES_QUEUE_LENGTH	50
  84
  85#define ATMEL_AES_DMA_THRESHOLD		256
  86
  87
  88struct atmel_aes_caps {
  89	bool			has_dualbuff;
  90	bool			has_cfb64;
 
  91	bool			has_gcm;
  92	bool			has_xts;
  93	bool			has_authenc;
  94	u32			max_burst_size;
  95};
  96
  97struct atmel_aes_dev;
  98
  99
 100typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
 101
 102
 103struct atmel_aes_base_ctx {
 104	struct atmel_aes_dev	*dd;
 105	atmel_aes_fn_t		start;
 106	int			keylen;
 107	u32			key[AES_KEYSIZE_256 / sizeof(u32)];
 108	u16			block_size;
 109	bool			is_aead;
 110};
 111
 112struct atmel_aes_ctx {
 113	struct atmel_aes_base_ctx	base;
 114};
 115
 116struct atmel_aes_ctr_ctx {
 117	struct atmel_aes_base_ctx	base;
 118
 119	__be32			iv[AES_BLOCK_SIZE / sizeof(u32)];
 120	size_t			offset;
 121	struct scatterlist	src[2];
 122	struct scatterlist	dst[2];
 123	u32			blocks;
 124};
 125
 126struct atmel_aes_gcm_ctx {
 127	struct atmel_aes_base_ctx	base;
 128
 129	struct scatterlist	src[2];
 130	struct scatterlist	dst[2];
 131
 132	__be32			j0[AES_BLOCK_SIZE / sizeof(u32)];
 133	u32			tag[AES_BLOCK_SIZE / sizeof(u32)];
 134	__be32			ghash[AES_BLOCK_SIZE / sizeof(u32)];
 135	size_t			textlen;
 136
 137	const __be32		*ghash_in;
 138	__be32			*ghash_out;
 139	atmel_aes_fn_t		ghash_resume;
 140};
 141
 142struct atmel_aes_xts_ctx {
 143	struct atmel_aes_base_ctx	base;
 144
 145	u32			key2[AES_KEYSIZE_256 / sizeof(u32)];
 146};
 147
 148#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 149struct atmel_aes_authenc_ctx {
 150	struct atmel_aes_base_ctx	base;
 151	struct atmel_sha_authenc_ctx	*auth;
 152};
 153#endif
 154
 155struct atmel_aes_reqctx {
 156	unsigned long		mode;
 157	u8			lastc[AES_BLOCK_SIZE];
 158};
 159
 160#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 161struct atmel_aes_authenc_reqctx {
 162	struct atmel_aes_reqctx	base;
 163
 164	struct scatterlist	src[2];
 165	struct scatterlist	dst[2];
 166	size_t			textlen;
 167	u32			digest[SHA512_DIGEST_SIZE / sizeof(u32)];
 168
 169	/* auth_req MUST be place last. */
 170	struct ahash_request	auth_req;
 171};
 172#endif
 173
 174struct atmel_aes_dma {
 175	struct dma_chan		*chan;
 176	struct scatterlist	*sg;
 177	int			nents;
 178	unsigned int		remainder;
 179	unsigned int		sg_len;
 180};
 181
 182struct atmel_aes_dev {
 183	struct list_head	list;
 184	unsigned long		phys_base;
 185	void __iomem		*io_base;
 186
 187	struct crypto_async_request	*areq;
 188	struct atmel_aes_base_ctx	*ctx;
 189
 190	bool			is_async;
 191	atmel_aes_fn_t		resume;
 192	atmel_aes_fn_t		cpu_transfer_complete;
 193
 194	struct device		*dev;
 195	struct clk		*iclk;
 196	int			irq;
 197
 198	unsigned long		flags;
 199
 200	spinlock_t		lock;
 201	struct crypto_queue	queue;
 202
 203	struct tasklet_struct	done_task;
 204	struct tasklet_struct	queue_task;
 205
 206	size_t			total;
 207	size_t			datalen;
 208	u32			*data;
 209
 210	struct atmel_aes_dma	src;
 211	struct atmel_aes_dma	dst;
 212
 213	size_t			buflen;
 214	void			*buf;
 215	struct scatterlist	aligned_sg;
 216	struct scatterlist	*real_dst;
 217
 218	struct atmel_aes_caps	caps;
 219
 220	u32			hw_version;
 221};
 222
 223struct atmel_aes_drv {
 224	struct list_head	dev_list;
 225	spinlock_t		lock;
 226};
 227
 228static struct atmel_aes_drv atmel_aes = {
 229	.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
 230	.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
 231};
 232
 233#ifdef VERBOSE_DEBUG
 234static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
 235{
 236	switch (offset) {
 237	case AES_CR:
 238		return "CR";
 239
 240	case AES_MR:
 241		return "MR";
 242
 243	case AES_ISR:
 244		return "ISR";
 245
 246	case AES_IMR:
 247		return "IMR";
 248
 249	case AES_IER:
 250		return "IER";
 251
 252	case AES_IDR:
 253		return "IDR";
 254
 255	case AES_KEYWR(0):
 256	case AES_KEYWR(1):
 257	case AES_KEYWR(2):
 258	case AES_KEYWR(3):
 259	case AES_KEYWR(4):
 260	case AES_KEYWR(5):
 261	case AES_KEYWR(6):
 262	case AES_KEYWR(7):
 263		snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
 264		break;
 265
 266	case AES_IDATAR(0):
 267	case AES_IDATAR(1):
 268	case AES_IDATAR(2):
 269	case AES_IDATAR(3):
 270		snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
 271		break;
 272
 273	case AES_ODATAR(0):
 274	case AES_ODATAR(1):
 275	case AES_ODATAR(2):
 276	case AES_ODATAR(3):
 277		snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
 278		break;
 279
 280	case AES_IVR(0):
 281	case AES_IVR(1):
 282	case AES_IVR(2):
 283	case AES_IVR(3):
 284		snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
 285		break;
 286
 287	case AES_AADLENR:
 288		return "AADLENR";
 289
 290	case AES_CLENR:
 291		return "CLENR";
 292
 293	case AES_GHASHR(0):
 294	case AES_GHASHR(1):
 295	case AES_GHASHR(2):
 296	case AES_GHASHR(3):
 297		snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
 298		break;
 299
 300	case AES_TAGR(0):
 301	case AES_TAGR(1):
 302	case AES_TAGR(2):
 303	case AES_TAGR(3):
 304		snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
 305		break;
 306
 307	case AES_CTRR:
 308		return "CTRR";
 309
 310	case AES_GCMHR(0):
 311	case AES_GCMHR(1):
 312	case AES_GCMHR(2):
 313	case AES_GCMHR(3):
 314		snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
 315		break;
 316
 317	case AES_EMR:
 318		return "EMR";
 319
 320	case AES_TWR(0):
 321	case AES_TWR(1):
 322	case AES_TWR(2):
 323	case AES_TWR(3):
 324		snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
 325		break;
 326
 327	case AES_ALPHAR(0):
 328	case AES_ALPHAR(1):
 329	case AES_ALPHAR(2):
 330	case AES_ALPHAR(3):
 331		snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
 332		break;
 333
 334	default:
 335		snprintf(tmp, sz, "0x%02x", offset);
 336		break;
 337	}
 338
 339	return tmp;
 340}
 341#endif /* VERBOSE_DEBUG */
 342
 343/* Shared functions */
 344
 345static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
 346{
 347	u32 value = readl_relaxed(dd->io_base + offset);
 348
 349#ifdef VERBOSE_DEBUG
 350	if (dd->flags & AES_FLAGS_DUMP_REG) {
 351		char tmp[16];
 352
 353		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
 354			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 355	}
 356#endif /* VERBOSE_DEBUG */
 357
 358	return value;
 359}
 360
 361static inline void atmel_aes_write(struct atmel_aes_dev *dd,
 362					u32 offset, u32 value)
 363{
 364#ifdef VERBOSE_DEBUG
 365	if (dd->flags & AES_FLAGS_DUMP_REG) {
 366		char tmp[16];
 367
 368		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
 369			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 370	}
 371#endif /* VERBOSE_DEBUG */
 372
 373	writel_relaxed(value, dd->io_base + offset);
 374}
 375
 376static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
 377					u32 *value, int count)
 378{
 379	for (; count--; value++, offset += 4)
 380		*value = atmel_aes_read(dd, offset);
 381}
 382
 383static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
 384			      const u32 *value, int count)
 385{
 386	for (; count--; value++, offset += 4)
 387		atmel_aes_write(dd, offset, *value);
 388}
 389
 390static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
 391					void *value)
 392{
 393	atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 394}
 395
 396static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
 397					 const void *value)
 398{
 399	atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 400}
 401
 402static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
 403						atmel_aes_fn_t resume)
 404{
 405	u32 isr = atmel_aes_read(dd, AES_ISR);
 406
 407	if (unlikely(isr & AES_INT_DATARDY))
 408		return resume(dd);
 409
 410	dd->resume = resume;
 411	atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 412	return -EINPROGRESS;
 413}
 414
 415static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
 416{
 417	len &= block_size - 1;
 418	return len ? block_size - len : 0;
 419}
 420
 421static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
 422{
 423	struct atmel_aes_dev *aes_dd = NULL;
 424	struct atmel_aes_dev *tmp;
 425
 426	spin_lock_bh(&atmel_aes.lock);
 427	if (!ctx->dd) {
 428		list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
 429			aes_dd = tmp;
 430			break;
 431		}
 432		ctx->dd = aes_dd;
 433	} else {
 434		aes_dd = ctx->dd;
 435	}
 436
 437	spin_unlock_bh(&atmel_aes.lock);
 438
 439	return aes_dd;
 440}
 441
 442static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
 443{
 444	int err;
 445
 446	err = clk_enable(dd->iclk);
 447	if (err)
 448		return err;
 449
 450	atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
 451	atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
 452
 453	return 0;
 454}
 455
 456static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
 457{
 458	return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
 459}
 460
 461static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
 462{
 463	int err;
 464
 465	err = atmel_aes_hw_init(dd);
 466	if (err)
 467		return err;
 468
 469	dd->hw_version = atmel_aes_get_version(dd);
 470
 471	dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
 472
 473	clk_disable(dd->iclk);
 474	return 0;
 475}
 476
 477static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
 478				      const struct atmel_aes_reqctx *rctx)
 479{
 480	/* Clear all but persistent flags and set request flags. */
 481	dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
 482}
 483
 484static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
 485{
 486	return (dd->flags & AES_FLAGS_ENCRYPT);
 487}
 488
 489#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 490static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
 491#endif
 492
 493static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
 494{
 495	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 496	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 497	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 498	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
 499
 500	if (req->cryptlen < ivsize)
 501		return;
 502
 503	if (rctx->mode & AES_FLAGS_ENCRYPT) {
 504		scatterwalk_map_and_copy(req->iv, req->dst,
 505					 req->cryptlen - ivsize, ivsize, 0);
 506	} else {
 507		if (req->src == req->dst)
 508			memcpy(req->iv, rctx->lastc, ivsize);
 509		else
 510			scatterwalk_map_and_copy(req->iv, req->src,
 511						 req->cryptlen - ivsize,
 512						 ivsize, 0);
 513	}
 514}
 515
 516static inline struct atmel_aes_ctr_ctx *
 517atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
 518{
 519	return container_of(ctx, struct atmel_aes_ctr_ctx, base);
 520}
 521
 522static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
 523{
 524	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
 525	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 526	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 527	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
 528	int i;
 529
 530	/*
 531	 * The CTR transfer works in fragments of data of maximum 1 MByte
 532	 * because of the 16 bit CTR counter embedded in the IP. When reaching
 533	 * here, ctx->blocks contains the number of blocks of the last fragment
 534	 * processed, there is no need to explicit cast it to u16.
 535	 */
 536	for (i = 0; i < ctx->blocks; i++)
 537		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
 538
 539	memcpy(req->iv, ctx->iv, ivsize);
 540}
 541
 542static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
 543{
 544	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 545	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 546
 547#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 548	if (dd->ctx->is_aead)
 549		atmel_aes_authenc_complete(dd, err);
 550#endif
 551
 552	clk_disable(dd->iclk);
 553	dd->flags &= ~AES_FLAGS_BUSY;
 554
 555	if (!err && !dd->ctx->is_aead &&
 556	    (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
 557		if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
 558			atmel_aes_set_iv_as_last_ciphertext_block(dd);
 559		else
 560			atmel_aes_ctr_update_req_iv(dd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 561	}
 562
 563	if (dd->is_async)
 564		dd->areq->complete(dd->areq, err);
 565
 566	tasklet_schedule(&dd->queue_task);
 567
 568	return err;
 569}
 570
 571static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
 572				     const __be32 *iv, const u32 *key, int keylen)
 573{
 574	u32 valmr = 0;
 575
 576	/* MR register must be set before IV registers */
 577	if (keylen == AES_KEYSIZE_128)
 578		valmr |= AES_MR_KEYSIZE_128;
 579	else if (keylen == AES_KEYSIZE_192)
 580		valmr |= AES_MR_KEYSIZE_192;
 581	else
 582		valmr |= AES_MR_KEYSIZE_256;
 583
 584	valmr |= dd->flags & AES_FLAGS_MODE_MASK;
 585
 586	if (use_dma) {
 587		valmr |= AES_MR_SMOD_IDATAR0;
 588		if (dd->caps.has_dualbuff)
 589			valmr |= AES_MR_DUALBUFF;
 590	} else {
 591		valmr |= AES_MR_SMOD_AUTO;
 592	}
 593
 594	atmel_aes_write(dd, AES_MR, valmr);
 595
 596	atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
 597
 598	if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
 599		atmel_aes_write_block(dd, AES_IVR(0), iv);
 600}
 601
 602static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
 603					const __be32 *iv)
 604
 605{
 606	atmel_aes_write_ctrl_key(dd, use_dma, iv,
 607				 dd->ctx->key, dd->ctx->keylen);
 608}
 609
 610/* CPU transfer */
 611
 612static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
 613{
 614	int err = 0;
 615	u32 isr;
 616
 617	for (;;) {
 618		atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
 619		dd->data += 4;
 620		dd->datalen -= AES_BLOCK_SIZE;
 621
 622		if (dd->datalen < AES_BLOCK_SIZE)
 623			break;
 624
 625		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 626
 627		isr = atmel_aes_read(dd, AES_ISR);
 628		if (!(isr & AES_INT_DATARDY)) {
 629			dd->resume = atmel_aes_cpu_transfer;
 630			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 631			return -EINPROGRESS;
 632		}
 633	}
 634
 635	if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 636				 dd->buf, dd->total))
 637		err = -EINVAL;
 638
 639	if (err)
 640		return atmel_aes_complete(dd, err);
 641
 642	return dd->cpu_transfer_complete(dd);
 643}
 644
 645static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
 646			       struct scatterlist *src,
 647			       struct scatterlist *dst,
 648			       size_t len,
 649			       atmel_aes_fn_t resume)
 650{
 651	size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
 652
 653	if (unlikely(len == 0))
 654		return -EINVAL;
 655
 656	sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 657
 658	dd->total = len;
 659	dd->real_dst = dst;
 660	dd->cpu_transfer_complete = resume;
 661	dd->datalen = len + padlen;
 662	dd->data = (u32 *)dd->buf;
 663	atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 664	return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
 665}
 666
 667
 668/* DMA transfer */
 669
 670static void atmel_aes_dma_callback(void *data);
 671
 672static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
 673				    struct scatterlist *sg,
 674				    size_t len,
 675				    struct atmel_aes_dma *dma)
 676{
 677	int nents;
 678
 679	if (!IS_ALIGNED(len, dd->ctx->block_size))
 680		return false;
 681
 682	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
 683		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 684			return false;
 685
 686		if (len <= sg->length) {
 687			if (!IS_ALIGNED(len, dd->ctx->block_size))
 688				return false;
 689
 690			dma->nents = nents+1;
 691			dma->remainder = sg->length - len;
 692			sg->length = len;
 693			return true;
 694		}
 695
 696		if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
 697			return false;
 698
 699		len -= sg->length;
 700	}
 701
 702	return false;
 703}
 704
 705static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
 706{
 707	struct scatterlist *sg = dma->sg;
 708	int nents = dma->nents;
 709
 710	if (!dma->remainder)
 711		return;
 712
 713	while (--nents > 0 && sg)
 714		sg = sg_next(sg);
 715
 716	if (!sg)
 717		return;
 718
 719	sg->length += dma->remainder;
 720}
 721
 722static int atmel_aes_map(struct atmel_aes_dev *dd,
 723			 struct scatterlist *src,
 724			 struct scatterlist *dst,
 725			 size_t len)
 726{
 727	bool src_aligned, dst_aligned;
 728	size_t padlen;
 729
 730	dd->total = len;
 731	dd->src.sg = src;
 732	dd->dst.sg = dst;
 733	dd->real_dst = dst;
 734
 735	src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
 736	if (src == dst)
 737		dst_aligned = src_aligned;
 738	else
 739		dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
 740	if (!src_aligned || !dst_aligned) {
 741		padlen = atmel_aes_padlen(len, dd->ctx->block_size);
 742
 743		if (dd->buflen < len + padlen)
 744			return -ENOMEM;
 745
 746		if (!src_aligned) {
 747			sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 748			dd->src.sg = &dd->aligned_sg;
 749			dd->src.nents = 1;
 750			dd->src.remainder = 0;
 751		}
 752
 753		if (!dst_aligned) {
 754			dd->dst.sg = &dd->aligned_sg;
 755			dd->dst.nents = 1;
 756			dd->dst.remainder = 0;
 757		}
 758
 759		sg_init_table(&dd->aligned_sg, 1);
 760		sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
 761	}
 762
 763	if (dd->src.sg == dd->dst.sg) {
 764		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 765					    DMA_BIDIRECTIONAL);
 766		dd->dst.sg_len = dd->src.sg_len;
 767		if (!dd->src.sg_len)
 768			return -EFAULT;
 769	} else {
 770		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 771					    DMA_TO_DEVICE);
 772		if (!dd->src.sg_len)
 773			return -EFAULT;
 774
 775		dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 776					    DMA_FROM_DEVICE);
 777		if (!dd->dst.sg_len) {
 778			dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 779				     DMA_TO_DEVICE);
 780			return -EFAULT;
 781		}
 782	}
 783
 784	return 0;
 785}
 786
 787static void atmel_aes_unmap(struct atmel_aes_dev *dd)
 788{
 789	if (dd->src.sg == dd->dst.sg) {
 790		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 791			     DMA_BIDIRECTIONAL);
 792
 793		if (dd->src.sg != &dd->aligned_sg)
 794			atmel_aes_restore_sg(&dd->src);
 795	} else {
 796		dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 797			     DMA_FROM_DEVICE);
 798
 799		if (dd->dst.sg != &dd->aligned_sg)
 800			atmel_aes_restore_sg(&dd->dst);
 801
 802		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 803			     DMA_TO_DEVICE);
 804
 805		if (dd->src.sg != &dd->aligned_sg)
 806			atmel_aes_restore_sg(&dd->src);
 807	}
 808
 809	if (dd->dst.sg == &dd->aligned_sg)
 810		sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 811				    dd->buf, dd->total);
 812}
 813
 814static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
 815					enum dma_slave_buswidth addr_width,
 816					enum dma_transfer_direction dir,
 817					u32 maxburst)
 818{
 819	struct dma_async_tx_descriptor *desc;
 820	struct dma_slave_config config;
 821	dma_async_tx_callback callback;
 822	struct atmel_aes_dma *dma;
 823	int err;
 824
 825	memset(&config, 0, sizeof(config));
 
 826	config.src_addr_width = addr_width;
 827	config.dst_addr_width = addr_width;
 828	config.src_maxburst = maxburst;
 829	config.dst_maxburst = maxburst;
 830
 831	switch (dir) {
 832	case DMA_MEM_TO_DEV:
 833		dma = &dd->src;
 834		callback = NULL;
 835		config.dst_addr = dd->phys_base + AES_IDATAR(0);
 836		break;
 837
 838	case DMA_DEV_TO_MEM:
 839		dma = &dd->dst;
 840		callback = atmel_aes_dma_callback;
 841		config.src_addr = dd->phys_base + AES_ODATAR(0);
 842		break;
 843
 844	default:
 845		return -EINVAL;
 846	}
 847
 848	err = dmaengine_slave_config(dma->chan, &config);
 849	if (err)
 850		return err;
 851
 852	desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
 853				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 854	if (!desc)
 855		return -ENOMEM;
 856
 857	desc->callback = callback;
 858	desc->callback_param = dd;
 859	dmaengine_submit(desc);
 860	dma_async_issue_pending(dma->chan);
 861
 862	return 0;
 863}
 864
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 865static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
 866			       struct scatterlist *src,
 867			       struct scatterlist *dst,
 868			       size_t len,
 869			       atmel_aes_fn_t resume)
 870{
 871	enum dma_slave_buswidth addr_width;
 872	u32 maxburst;
 873	int err;
 874
 875	switch (dd->ctx->block_size) {
 876	case CFB8_BLOCK_SIZE:
 877		addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 878		maxburst = 1;
 879		break;
 880
 881	case CFB16_BLOCK_SIZE:
 882		addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 883		maxburst = 1;
 884		break;
 885
 886	case CFB32_BLOCK_SIZE:
 887	case CFB64_BLOCK_SIZE:
 888		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 889		maxburst = 1;
 890		break;
 891
 892	case AES_BLOCK_SIZE:
 893		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 894		maxburst = dd->caps.max_burst_size;
 895		break;
 896
 897	default:
 898		err = -EINVAL;
 899		goto exit;
 900	}
 901
 902	err = atmel_aes_map(dd, src, dst, len);
 903	if (err)
 904		goto exit;
 905
 906	dd->resume = resume;
 907
 908	/* Set output DMA transfer first */
 909	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
 910					   maxburst);
 911	if (err)
 912		goto unmap;
 913
 914	/* Then set input DMA transfer */
 915	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
 916					   maxburst);
 917	if (err)
 918		goto output_transfer_stop;
 919
 920	return -EINPROGRESS;
 921
 922output_transfer_stop:
 923	dmaengine_terminate_sync(dd->dst.chan);
 924unmap:
 925	atmel_aes_unmap(dd);
 926exit:
 927	return atmel_aes_complete(dd, err);
 928}
 929
 
 
 
 
 
 
 
 930static void atmel_aes_dma_callback(void *data)
 931{
 932	struct atmel_aes_dev *dd = data;
 933
 934	atmel_aes_unmap(dd);
 935	dd->is_async = true;
 936	(void)dd->resume(dd);
 937}
 938
 939static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
 940				  struct crypto_async_request *new_areq)
 941{
 942	struct crypto_async_request *areq, *backlog;
 943	struct atmel_aes_base_ctx *ctx;
 944	unsigned long flags;
 945	bool start_async;
 946	int err, ret = 0;
 947
 948	spin_lock_irqsave(&dd->lock, flags);
 949	if (new_areq)
 950		ret = crypto_enqueue_request(&dd->queue, new_areq);
 951	if (dd->flags & AES_FLAGS_BUSY) {
 952		spin_unlock_irqrestore(&dd->lock, flags);
 953		return ret;
 954	}
 955	backlog = crypto_get_backlog(&dd->queue);
 956	areq = crypto_dequeue_request(&dd->queue);
 957	if (areq)
 958		dd->flags |= AES_FLAGS_BUSY;
 959	spin_unlock_irqrestore(&dd->lock, flags);
 960
 961	if (!areq)
 962		return ret;
 963
 964	if (backlog)
 965		backlog->complete(backlog, -EINPROGRESS);
 966
 967	ctx = crypto_tfm_ctx(areq->tfm);
 968
 969	dd->areq = areq;
 970	dd->ctx = ctx;
 971	start_async = (areq != new_areq);
 972	dd->is_async = start_async;
 973
 974	/* WARNING: ctx->start() MAY change dd->is_async. */
 975	err = ctx->start(dd);
 976	return (start_async) ? ret : err;
 977}
 978
 979
 980/* AES async block ciphers */
 981
 982static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
 983{
 984	return atmel_aes_complete(dd, 0);
 985}
 986
 987static int atmel_aes_start(struct atmel_aes_dev *dd)
 988{
 989	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 990	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 991	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
 992			dd->ctx->block_size != AES_BLOCK_SIZE);
 993	int err;
 994
 995	atmel_aes_set_mode(dd, rctx);
 996
 997	err = atmel_aes_hw_init(dd);
 998	if (err)
 999		return atmel_aes_complete(dd, err);
1000
1001	atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
1002	if (use_dma)
1003		return atmel_aes_dma_start(dd, req->src, req->dst,
1004					   req->cryptlen,
1005					   atmel_aes_transfer_complete);
1006
1007	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1008				   atmel_aes_transfer_complete);
1009}
1010
 
 
 
 
 
 
1011static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
1012{
1013	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1014	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1015	struct scatterlist *src, *dst;
 
1016	size_t datalen;
1017	u32 ctr;
1018	u16 start, end;
1019	bool use_dma, fragmented = false;
1020
1021	/* Check for transfer completion. */
1022	ctx->offset += dd->total;
1023	if (ctx->offset >= req->cryptlen)
1024		return atmel_aes_transfer_complete(dd);
1025
1026	/* Compute data length. */
1027	datalen = req->cryptlen - ctx->offset;
1028	ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1029	ctr = be32_to_cpu(ctx->iv[3]);
1030
1031	/* Check 16bit counter overflow. */
1032	start = ctr & 0xffff;
1033	end = start + ctx->blocks - 1;
1034
1035	if (ctx->blocks >> 16 || end < start) {
1036		ctr |= 0xffff;
1037		datalen = AES_BLOCK_SIZE * (0x10000 - start);
1038		fragmented = true;
 
 
 
 
 
 
 
 
 
 
 
1039	}
1040
1041	use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1042
1043	/* Jump to offset. */
1044	src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1045	dst = ((req->src == req->dst) ? src :
1046	       scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1047
1048	/* Configure hardware. */
1049	atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1050	if (unlikely(fragmented)) {
1051		/*
1052		 * Increment the counter manually to cope with the hardware
1053		 * counter overflow.
1054		 */
1055		ctx->iv[3] = cpu_to_be32(ctr);
1056		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1057	}
1058
1059	if (use_dma)
1060		return atmel_aes_dma_start(dd, src, dst, datalen,
1061					   atmel_aes_ctr_transfer);
1062
1063	return atmel_aes_cpu_start(dd, src, dst, datalen,
1064				   atmel_aes_ctr_transfer);
1065}
1066
1067static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1068{
1069	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1070	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1071	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1072	int err;
1073
1074	atmel_aes_set_mode(dd, rctx);
1075
1076	err = atmel_aes_hw_init(dd);
1077	if (err)
1078		return atmel_aes_complete(dd, err);
1079
1080	memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1081	ctx->offset = 0;
1082	dd->total = 0;
1083	return atmel_aes_ctr_transfer(dd);
1084}
1085
1086static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1087{
1088	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1089	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1090	struct atmel_aes_reqctx *rctx;
1091	struct atmel_aes_dev *dd;
1092
1093	switch (mode & AES_FLAGS_OPMODE_MASK) {
1094	case AES_FLAGS_CFB8:
1095		ctx->block_size = CFB8_BLOCK_SIZE;
1096		break;
1097
1098	case AES_FLAGS_CFB16:
1099		ctx->block_size = CFB16_BLOCK_SIZE;
1100		break;
1101
1102	case AES_FLAGS_CFB32:
1103		ctx->block_size = CFB32_BLOCK_SIZE;
1104		break;
1105
1106	case AES_FLAGS_CFB64:
1107		ctx->block_size = CFB64_BLOCK_SIZE;
1108		break;
1109
1110	default:
1111		ctx->block_size = AES_BLOCK_SIZE;
1112		break;
1113	}
1114	ctx->is_aead = false;
1115
1116	dd = atmel_aes_find_dev(ctx);
1117	if (!dd)
1118		return -ENODEV;
1119
1120	rctx = skcipher_request_ctx(req);
1121	rctx->mode = mode;
1122
1123	if ((mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB &&
1124	    !(mode & AES_FLAGS_ENCRYPT) && req->src == req->dst) {
1125		unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1126
1127		if (req->cryptlen >= ivsize)
1128			scatterwalk_map_and_copy(rctx->lastc, req->src,
1129						 req->cryptlen - ivsize,
1130						 ivsize, 0);
1131	}
1132
1133	return atmel_aes_handle_queue(dd, &req->base);
1134}
1135
1136static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1137			   unsigned int keylen)
1138{
1139	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1140
1141	if (keylen != AES_KEYSIZE_128 &&
1142	    keylen != AES_KEYSIZE_192 &&
1143	    keylen != AES_KEYSIZE_256)
 
1144		return -EINVAL;
 
1145
1146	memcpy(ctx->key, key, keylen);
1147	ctx->keylen = keylen;
1148
1149	return 0;
1150}
1151
1152static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1153{
1154	return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1155}
1156
1157static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1158{
1159	return atmel_aes_crypt(req, AES_FLAGS_ECB);
1160}
1161
1162static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1163{
1164	return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1165}
1166
1167static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1168{
1169	return atmel_aes_crypt(req, AES_FLAGS_CBC);
1170}
1171
1172static int atmel_aes_ofb_encrypt(struct skcipher_request *req)
1173{
1174	return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1175}
1176
1177static int atmel_aes_ofb_decrypt(struct skcipher_request *req)
1178{
1179	return atmel_aes_crypt(req, AES_FLAGS_OFB);
1180}
1181
1182static int atmel_aes_cfb_encrypt(struct skcipher_request *req)
1183{
1184	return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1185}
1186
1187static int atmel_aes_cfb_decrypt(struct skcipher_request *req)
1188{
1189	return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1190}
1191
1192static int atmel_aes_cfb64_encrypt(struct skcipher_request *req)
1193{
1194	return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1195}
1196
1197static int atmel_aes_cfb64_decrypt(struct skcipher_request *req)
1198{
1199	return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1200}
1201
1202static int atmel_aes_cfb32_encrypt(struct skcipher_request *req)
1203{
1204	return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1205}
1206
1207static int atmel_aes_cfb32_decrypt(struct skcipher_request *req)
1208{
1209	return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1210}
1211
1212static int atmel_aes_cfb16_encrypt(struct skcipher_request *req)
1213{
1214	return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1215}
1216
1217static int atmel_aes_cfb16_decrypt(struct skcipher_request *req)
1218{
1219	return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1220}
1221
1222static int atmel_aes_cfb8_encrypt(struct skcipher_request *req)
1223{
1224	return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1225}
1226
1227static int atmel_aes_cfb8_decrypt(struct skcipher_request *req)
1228{
1229	return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1230}
1231
1232static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
1233{
1234	return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1235}
1236
1237static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1238{
1239	return atmel_aes_crypt(req, AES_FLAGS_CTR);
1240}
1241
1242static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1243{
1244	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1245
1246	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1247	ctx->base.start = atmel_aes_start;
1248
1249	return 0;
1250}
1251
1252static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1253{
1254	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1255
1256	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1257	ctx->base.start = atmel_aes_ctr_start;
1258
1259	return 0;
1260}
1261
1262static struct skcipher_alg aes_algs[] = {
1263{
1264	.base.cra_name		= "ecb(aes)",
1265	.base.cra_driver_name	= "atmel-ecb-aes",
1266	.base.cra_blocksize	= AES_BLOCK_SIZE,
1267	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1268
1269	.init			= atmel_aes_init_tfm,
1270	.min_keysize		= AES_MIN_KEY_SIZE,
1271	.max_keysize		= AES_MAX_KEY_SIZE,
1272	.setkey			= atmel_aes_setkey,
1273	.encrypt		= atmel_aes_ecb_encrypt,
1274	.decrypt		= atmel_aes_ecb_decrypt,
 
 
 
 
 
 
1275},
1276{
1277	.base.cra_name		= "cbc(aes)",
1278	.base.cra_driver_name	= "atmel-cbc-aes",
1279	.base.cra_blocksize	= AES_BLOCK_SIZE,
1280	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1281
1282	.init			= atmel_aes_init_tfm,
1283	.min_keysize		= AES_MIN_KEY_SIZE,
1284	.max_keysize		= AES_MAX_KEY_SIZE,
1285	.setkey			= atmel_aes_setkey,
1286	.encrypt		= atmel_aes_cbc_encrypt,
1287	.decrypt		= atmel_aes_cbc_decrypt,
1288	.ivsize			= AES_BLOCK_SIZE,
 
 
 
 
 
 
1289},
1290{
1291	.base.cra_name		= "ofb(aes)",
1292	.base.cra_driver_name	= "atmel-ofb-aes",
1293	.base.cra_blocksize	= AES_BLOCK_SIZE,
1294	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1295
1296	.init			= atmel_aes_init_tfm,
1297	.min_keysize		= AES_MIN_KEY_SIZE,
1298	.max_keysize		= AES_MAX_KEY_SIZE,
1299	.setkey			= atmel_aes_setkey,
1300	.encrypt		= atmel_aes_ofb_encrypt,
1301	.decrypt		= atmel_aes_ofb_decrypt,
1302	.ivsize			= AES_BLOCK_SIZE,
 
 
 
 
 
 
1303},
1304{
1305	.base.cra_name		= "cfb(aes)",
1306	.base.cra_driver_name	= "atmel-cfb-aes",
1307	.base.cra_blocksize	= AES_BLOCK_SIZE,
1308	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1309
1310	.init			= atmel_aes_init_tfm,
1311	.min_keysize		= AES_MIN_KEY_SIZE,
1312	.max_keysize		= AES_MAX_KEY_SIZE,
1313	.setkey			= atmel_aes_setkey,
1314	.encrypt		= atmel_aes_cfb_encrypt,
1315	.decrypt		= atmel_aes_cfb_decrypt,
1316	.ivsize			= AES_BLOCK_SIZE,
 
 
 
 
 
 
1317},
1318{
1319	.base.cra_name		= "cfb32(aes)",
1320	.base.cra_driver_name	= "atmel-cfb32-aes",
1321	.base.cra_blocksize	= CFB32_BLOCK_SIZE,
1322	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1323
1324	.init			= atmel_aes_init_tfm,
1325	.min_keysize		= AES_MIN_KEY_SIZE,
1326	.max_keysize		= AES_MAX_KEY_SIZE,
1327	.setkey			= atmel_aes_setkey,
1328	.encrypt		= atmel_aes_cfb32_encrypt,
1329	.decrypt		= atmel_aes_cfb32_decrypt,
1330	.ivsize			= AES_BLOCK_SIZE,
 
 
 
 
 
 
1331},
1332{
1333	.base.cra_name		= "cfb16(aes)",
1334	.base.cra_driver_name	= "atmel-cfb16-aes",
1335	.base.cra_blocksize	= CFB16_BLOCK_SIZE,
1336	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1337
1338	.init			= atmel_aes_init_tfm,
1339	.min_keysize		= AES_MIN_KEY_SIZE,
1340	.max_keysize		= AES_MAX_KEY_SIZE,
1341	.setkey			= atmel_aes_setkey,
1342	.encrypt		= atmel_aes_cfb16_encrypt,
1343	.decrypt		= atmel_aes_cfb16_decrypt,
1344	.ivsize			= AES_BLOCK_SIZE,
 
 
 
 
 
 
1345},
1346{
1347	.base.cra_name		= "cfb8(aes)",
1348	.base.cra_driver_name	= "atmel-cfb8-aes",
1349	.base.cra_blocksize	= CFB8_BLOCK_SIZE,
1350	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1351
1352	.init			= atmel_aes_init_tfm,
1353	.min_keysize		= AES_MIN_KEY_SIZE,
1354	.max_keysize		= AES_MAX_KEY_SIZE,
1355	.setkey			= atmel_aes_setkey,
1356	.encrypt		= atmel_aes_cfb8_encrypt,
1357	.decrypt		= atmel_aes_cfb8_decrypt,
1358	.ivsize			= AES_BLOCK_SIZE,
 
 
 
 
 
 
1359},
1360{
1361	.base.cra_name		= "ctr(aes)",
1362	.base.cra_driver_name	= "atmel-ctr-aes",
1363	.base.cra_blocksize	= 1,
1364	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctr_ctx),
1365
1366	.init			= atmel_aes_ctr_init_tfm,
1367	.min_keysize		= AES_MIN_KEY_SIZE,
1368	.max_keysize		= AES_MAX_KEY_SIZE,
1369	.setkey			= atmel_aes_setkey,
1370	.encrypt		= atmel_aes_ctr_encrypt,
1371	.decrypt		= atmel_aes_ctr_decrypt,
1372	.ivsize			= AES_BLOCK_SIZE,
 
 
 
 
 
 
1373},
1374};
1375
1376static struct skcipher_alg aes_cfb64_alg = {
1377	.base.cra_name		= "cfb64(aes)",
1378	.base.cra_driver_name	= "atmel-cfb64-aes",
1379	.base.cra_blocksize	= CFB64_BLOCK_SIZE,
1380	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1381
1382	.init			= atmel_aes_init_tfm,
1383	.min_keysize		= AES_MIN_KEY_SIZE,
1384	.max_keysize		= AES_MAX_KEY_SIZE,
1385	.setkey			= atmel_aes_setkey,
1386	.encrypt		= atmel_aes_cfb64_encrypt,
1387	.decrypt		= atmel_aes_cfb64_decrypt,
1388	.ivsize			= AES_BLOCK_SIZE,
 
 
 
 
 
 
1389};
1390
1391
1392/* gcm aead functions */
1393
1394static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1395			       const u32 *data, size_t datalen,
1396			       const __be32 *ghash_in, __be32 *ghash_out,
1397			       atmel_aes_fn_t resume);
1398static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1399static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1400
1401static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1402static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1403static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1404static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1405static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1406static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1407static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1408
1409static inline struct atmel_aes_gcm_ctx *
1410atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1411{
1412	return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1413}
1414
1415static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1416			       const u32 *data, size_t datalen,
1417			       const __be32 *ghash_in, __be32 *ghash_out,
1418			       atmel_aes_fn_t resume)
1419{
1420	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1421
1422	dd->data = (u32 *)data;
1423	dd->datalen = datalen;
1424	ctx->ghash_in = ghash_in;
1425	ctx->ghash_out = ghash_out;
1426	ctx->ghash_resume = resume;
1427
1428	atmel_aes_write_ctrl(dd, false, NULL);
1429	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1430}
1431
1432static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1433{
1434	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1435
1436	/* Set the data length. */
1437	atmel_aes_write(dd, AES_AADLENR, dd->total);
1438	atmel_aes_write(dd, AES_CLENR, 0);
1439
1440	/* If needed, overwrite the GCM Intermediate Hash Word Registers */
1441	if (ctx->ghash_in)
1442		atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1443
1444	return atmel_aes_gcm_ghash_finalize(dd);
1445}
1446
1447static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1448{
1449	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1450	u32 isr;
1451
1452	/* Write data into the Input Data Registers. */
1453	while (dd->datalen > 0) {
1454		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1455		dd->data += 4;
1456		dd->datalen -= AES_BLOCK_SIZE;
1457
1458		isr = atmel_aes_read(dd, AES_ISR);
1459		if (!(isr & AES_INT_DATARDY)) {
1460			dd->resume = atmel_aes_gcm_ghash_finalize;
1461			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1462			return -EINPROGRESS;
1463		}
1464	}
1465
1466	/* Read the computed hash from GHASHRx. */
1467	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1468
1469	return ctx->ghash_resume(dd);
1470}
1471
1472
1473static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1474{
1475	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1476	struct aead_request *req = aead_request_cast(dd->areq);
1477	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1478	struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1479	size_t ivsize = crypto_aead_ivsize(tfm);
1480	size_t datalen, padlen;
1481	const void *iv = req->iv;
1482	u8 *data = dd->buf;
1483	int err;
1484
1485	atmel_aes_set_mode(dd, rctx);
1486
1487	err = atmel_aes_hw_init(dd);
1488	if (err)
1489		return atmel_aes_complete(dd, err);
1490
1491	if (likely(ivsize == GCM_AES_IV_SIZE)) {
1492		memcpy(ctx->j0, iv, ivsize);
1493		ctx->j0[3] = cpu_to_be32(1);
1494		return atmel_aes_gcm_process(dd);
1495	}
1496
1497	padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1498	datalen = ivsize + padlen + AES_BLOCK_SIZE;
1499	if (datalen > dd->buflen)
1500		return atmel_aes_complete(dd, -EINVAL);
1501
1502	memcpy(data, iv, ivsize);
1503	memset(data + ivsize, 0, padlen + sizeof(u64));
1504	((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1505
1506	return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1507				   NULL, ctx->j0, atmel_aes_gcm_process);
1508}
1509
1510static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1511{
1512	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1513	struct aead_request *req = aead_request_cast(dd->areq);
1514	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1515	bool enc = atmel_aes_is_encrypt(dd);
1516	u32 authsize;
1517
1518	/* Compute text length. */
1519	authsize = crypto_aead_authsize(tfm);
1520	ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1521
1522	/*
1523	 * According to tcrypt test suite, the GCM Automatic Tag Generation
1524	 * fails when both the message and its associated data are empty.
1525	 */
1526	if (likely(req->assoclen != 0 || ctx->textlen != 0))
1527		dd->flags |= AES_FLAGS_GTAGEN;
1528
1529	atmel_aes_write_ctrl(dd, false, NULL);
1530	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1531}
1532
1533static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1534{
1535	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1536	struct aead_request *req = aead_request_cast(dd->areq);
1537	__be32 j0_lsw, *j0 = ctx->j0;
1538	size_t padlen;
1539
1540	/* Write incr32(J0) into IV. */
1541	j0_lsw = j0[3];
1542	j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
1543	atmel_aes_write_block(dd, AES_IVR(0), j0);
1544	j0[3] = j0_lsw;
1545
1546	/* Set aad and text lengths. */
1547	atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1548	atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1549
1550	/* Check whether AAD are present. */
1551	if (unlikely(req->assoclen == 0)) {
1552		dd->datalen = 0;
1553		return atmel_aes_gcm_data(dd);
1554	}
1555
1556	/* Copy assoc data and add padding. */
1557	padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1558	if (unlikely(req->assoclen + padlen > dd->buflen))
1559		return atmel_aes_complete(dd, -EINVAL);
1560	sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1561
1562	/* Write assoc data into the Input Data register. */
1563	dd->data = (u32 *)dd->buf;
1564	dd->datalen = req->assoclen + padlen;
1565	return atmel_aes_gcm_data(dd);
1566}
1567
1568static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1569{
1570	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1571	struct aead_request *req = aead_request_cast(dd->areq);
1572	bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1573	struct scatterlist *src, *dst;
1574	u32 isr, mr;
1575
1576	/* Write AAD first. */
1577	while (dd->datalen > 0) {
1578		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1579		dd->data += 4;
1580		dd->datalen -= AES_BLOCK_SIZE;
1581
1582		isr = atmel_aes_read(dd, AES_ISR);
1583		if (!(isr & AES_INT_DATARDY)) {
1584			dd->resume = atmel_aes_gcm_data;
1585			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1586			return -EINPROGRESS;
1587		}
1588	}
1589
1590	/* GMAC only. */
1591	if (unlikely(ctx->textlen == 0))
1592		return atmel_aes_gcm_tag_init(dd);
1593
1594	/* Prepare src and dst scatter lists to transfer cipher/plain texts */
1595	src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1596	dst = ((req->src == req->dst) ? src :
1597	       scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1598
1599	if (use_dma) {
1600		/* Update the Mode Register for DMA transfers. */
1601		mr = atmel_aes_read(dd, AES_MR);
1602		mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1603		mr |= AES_MR_SMOD_IDATAR0;
1604		if (dd->caps.has_dualbuff)
1605			mr |= AES_MR_DUALBUFF;
1606		atmel_aes_write(dd, AES_MR, mr);
1607
1608		return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1609					   atmel_aes_gcm_tag_init);
1610	}
1611
1612	return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1613				   atmel_aes_gcm_tag_init);
1614}
1615
1616static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1617{
1618	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1619	struct aead_request *req = aead_request_cast(dd->areq);
1620	__be64 *data = dd->buf;
1621
1622	if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1623		if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1624			dd->resume = atmel_aes_gcm_tag_init;
1625			atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1626			return -EINPROGRESS;
1627		}
1628
1629		return atmel_aes_gcm_finalize(dd);
1630	}
1631
1632	/* Read the GCM Intermediate Hash Word Registers. */
1633	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1634
1635	data[0] = cpu_to_be64(req->assoclen * 8);
1636	data[1] = cpu_to_be64(ctx->textlen * 8);
1637
1638	return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1639				   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1640}
1641
1642static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1643{
1644	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1645	unsigned long flags;
1646
1647	/*
1648	 * Change mode to CTR to complete the tag generation.
1649	 * Use J0 as Initialization Vector.
1650	 */
1651	flags = dd->flags;
1652	dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1653	dd->flags |= AES_FLAGS_CTR;
1654	atmel_aes_write_ctrl(dd, false, ctx->j0);
1655	dd->flags = flags;
1656
1657	atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1658	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1659}
1660
1661static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1662{
1663	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1664	struct aead_request *req = aead_request_cast(dd->areq);
1665	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1666	bool enc = atmel_aes_is_encrypt(dd);
1667	u32 offset, authsize, itag[4], *otag = ctx->tag;
1668	int err;
1669
1670	/* Read the computed tag. */
1671	if (likely(dd->flags & AES_FLAGS_GTAGEN))
1672		atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1673	else
1674		atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1675
1676	offset = req->assoclen + ctx->textlen;
1677	authsize = crypto_aead_authsize(tfm);
1678	if (enc) {
1679		scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1680		err = 0;
1681	} else {
1682		scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1683		err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1684	}
1685
1686	return atmel_aes_complete(dd, err);
1687}
1688
1689static int atmel_aes_gcm_crypt(struct aead_request *req,
1690			       unsigned long mode)
1691{
1692	struct atmel_aes_base_ctx *ctx;
1693	struct atmel_aes_reqctx *rctx;
1694	struct atmel_aes_dev *dd;
1695
1696	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1697	ctx->block_size = AES_BLOCK_SIZE;
1698	ctx->is_aead = true;
1699
1700	dd = atmel_aes_find_dev(ctx);
1701	if (!dd)
1702		return -ENODEV;
1703
1704	rctx = aead_request_ctx(req);
1705	rctx->mode = AES_FLAGS_GCM | mode;
1706
1707	return atmel_aes_handle_queue(dd, &req->base);
1708}
1709
1710static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1711				unsigned int keylen)
1712{
1713	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1714
1715	if (keylen != AES_KEYSIZE_256 &&
1716	    keylen != AES_KEYSIZE_192 &&
1717	    keylen != AES_KEYSIZE_128)
 
1718		return -EINVAL;
 
1719
1720	memcpy(ctx->key, key, keylen);
1721	ctx->keylen = keylen;
1722
1723	return 0;
1724}
1725
1726static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1727				     unsigned int authsize)
1728{
1729	return crypto_gcm_check_authsize(authsize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1730}
1731
1732static int atmel_aes_gcm_encrypt(struct aead_request *req)
1733{
1734	return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1735}
1736
1737static int atmel_aes_gcm_decrypt(struct aead_request *req)
1738{
1739	return atmel_aes_gcm_crypt(req, 0);
1740}
1741
1742static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1743{
1744	struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1745
1746	crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1747	ctx->base.start = atmel_aes_gcm_start;
1748
1749	return 0;
1750}
1751
1752static struct aead_alg aes_gcm_alg = {
1753	.setkey		= atmel_aes_gcm_setkey,
1754	.setauthsize	= atmel_aes_gcm_setauthsize,
1755	.encrypt	= atmel_aes_gcm_encrypt,
1756	.decrypt	= atmel_aes_gcm_decrypt,
1757	.init		= atmel_aes_gcm_init,
1758	.ivsize		= GCM_AES_IV_SIZE,
1759	.maxauthsize	= AES_BLOCK_SIZE,
1760
1761	.base = {
1762		.cra_name		= "gcm(aes)",
1763		.cra_driver_name	= "atmel-gcm-aes",
 
 
1764		.cra_blocksize		= 1,
1765		.cra_ctxsize		= sizeof(struct atmel_aes_gcm_ctx),
 
 
1766	},
1767};
1768
1769
1770/* xts functions */
1771
1772static inline struct atmel_aes_xts_ctx *
1773atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1774{
1775	return container_of(ctx, struct atmel_aes_xts_ctx, base);
1776}
1777
1778static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1779
1780static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1781{
1782	struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1783	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1784	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1785	unsigned long flags;
1786	int err;
1787
1788	atmel_aes_set_mode(dd, rctx);
1789
1790	err = atmel_aes_hw_init(dd);
1791	if (err)
1792		return atmel_aes_complete(dd, err);
1793
1794	/* Compute the tweak value from req->iv with ecb(aes). */
1795	flags = dd->flags;
1796	dd->flags &= ~AES_FLAGS_MODE_MASK;
1797	dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1798	atmel_aes_write_ctrl_key(dd, false, NULL,
1799				 ctx->key2, ctx->base.keylen);
1800	dd->flags = flags;
1801
1802	atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1803	return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1804}
1805
1806static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1807{
1808	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1809	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1810	u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1811	static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1812	u8 *tweak_bytes = (u8 *)tweak;
1813	int i;
1814
1815	/* Read the computed ciphered tweak value. */
1816	atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1817	/*
1818	 * Hardware quirk:
1819	 * the order of the ciphered tweak bytes need to be reversed before
1820	 * writing them into the ODATARx registers.
1821	 */
1822	for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
1823		u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
1824
1825		tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
1826		tweak_bytes[i] = tmp;
1827	}
1828
1829	/* Process the data. */
1830	atmel_aes_write_ctrl(dd, use_dma, NULL);
1831	atmel_aes_write_block(dd, AES_TWR(0), tweak);
1832	atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1833	if (use_dma)
1834		return atmel_aes_dma_start(dd, req->src, req->dst,
1835					   req->cryptlen,
1836					   atmel_aes_transfer_complete);
1837
1838	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1839				   atmel_aes_transfer_complete);
1840}
1841
1842static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1843				unsigned int keylen)
1844{
1845	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1846	int err;
1847
1848	err = xts_check_key(crypto_skcipher_tfm(tfm), key, keylen);
1849	if (err)
1850		return err;
1851
1852	memcpy(ctx->base.key, key, keylen/2);
1853	memcpy(ctx->key2, key + keylen/2, keylen/2);
1854	ctx->base.keylen = keylen/2;
1855
1856	return 0;
1857}
1858
1859static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1860{
1861	return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1862}
1863
1864static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1865{
1866	return atmel_aes_crypt(req, AES_FLAGS_XTS);
1867}
1868
1869static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1870{
1871	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1872
1873	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1874	ctx->base.start = atmel_aes_xts_start;
1875
1876	return 0;
1877}
1878
1879static struct skcipher_alg aes_xts_alg = {
1880	.base.cra_name		= "xts(aes)",
1881	.base.cra_driver_name	= "atmel-xts-aes",
1882	.base.cra_blocksize	= AES_BLOCK_SIZE,
1883	.base.cra_ctxsize	= sizeof(struct atmel_aes_xts_ctx),
1884
1885	.min_keysize		= 2 * AES_MIN_KEY_SIZE,
1886	.max_keysize		= 2 * AES_MAX_KEY_SIZE,
1887	.ivsize			= AES_BLOCK_SIZE,
1888	.setkey			= atmel_aes_xts_setkey,
1889	.encrypt		= atmel_aes_xts_encrypt,
1890	.decrypt		= atmel_aes_xts_decrypt,
1891	.init			= atmel_aes_xts_init_tfm,
 
 
 
 
 
 
1892};
1893
1894#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1895/* authenc aead functions */
1896
1897static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1898static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1899				  bool is_async);
1900static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1901				      bool is_async);
1902static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1903static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1904				   bool is_async);
1905
1906static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1907{
1908	struct aead_request *req = aead_request_cast(dd->areq);
1909	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1910
1911	if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1912		atmel_sha_authenc_abort(&rctx->auth_req);
1913	dd->flags &= ~AES_FLAGS_OWN_SHA;
1914}
1915
1916static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1917{
1918	struct aead_request *req = aead_request_cast(dd->areq);
1919	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1920	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1921	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1922	int err;
1923
1924	atmel_aes_set_mode(dd, &rctx->base);
1925
1926	err = atmel_aes_hw_init(dd);
1927	if (err)
1928		return atmel_aes_complete(dd, err);
1929
1930	return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
1931					  atmel_aes_authenc_init, dd);
1932}
1933
1934static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1935				  bool is_async)
1936{
1937	struct aead_request *req = aead_request_cast(dd->areq);
1938	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1939
1940	if (is_async)
1941		dd->is_async = true;
1942	if (err)
1943		return atmel_aes_complete(dd, err);
1944
1945	/* If here, we've got the ownership of the SHA device. */
1946	dd->flags |= AES_FLAGS_OWN_SHA;
1947
1948	/* Configure the SHA device. */
1949	return atmel_sha_authenc_init(&rctx->auth_req,
1950				      req->src, req->assoclen,
1951				      rctx->textlen,
1952				      atmel_aes_authenc_transfer, dd);
1953}
1954
1955static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1956				      bool is_async)
1957{
1958	struct aead_request *req = aead_request_cast(dd->areq);
1959	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1960	bool enc = atmel_aes_is_encrypt(dd);
1961	struct scatterlist *src, *dst;
1962	__be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
1963	u32 emr;
1964
1965	if (is_async)
1966		dd->is_async = true;
1967	if (err)
1968		return atmel_aes_complete(dd, err);
1969
1970	/* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
1971	src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
1972	dst = src;
1973
1974	if (req->src != req->dst)
1975		dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
1976
1977	/* Configure the AES device. */
1978	memcpy(iv, req->iv, sizeof(iv));
1979
1980	/*
1981	 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
1982	 * 'true' even if the data transfer is actually performed by the CPU (so
1983	 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
1984	 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
1985	 * must be set to *_MR_SMOD_IDATAR0.
1986	 */
1987	atmel_aes_write_ctrl(dd, true, iv);
1988	emr = AES_EMR_PLIPEN;
1989	if (!enc)
1990		emr |= AES_EMR_PLIPD;
1991	atmel_aes_write(dd, AES_EMR, emr);
1992
1993	/* Transfer data. */
1994	return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
1995				   atmel_aes_authenc_digest);
1996}
1997
1998static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
1999{
2000	struct aead_request *req = aead_request_cast(dd->areq);
2001	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2002
2003	/* atmel_sha_authenc_final() releases the SHA device. */
2004	dd->flags &= ~AES_FLAGS_OWN_SHA;
2005	return atmel_sha_authenc_final(&rctx->auth_req,
2006				       rctx->digest, sizeof(rctx->digest),
2007				       atmel_aes_authenc_final, dd);
2008}
2009
2010static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2011				   bool is_async)
2012{
2013	struct aead_request *req = aead_request_cast(dd->areq);
2014	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2015	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2016	bool enc = atmel_aes_is_encrypt(dd);
2017	u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2018	u32 offs, authsize;
2019
2020	if (is_async)
2021		dd->is_async = true;
2022	if (err)
2023		goto complete;
2024
2025	offs = req->assoclen + rctx->textlen;
2026	authsize = crypto_aead_authsize(tfm);
2027	if (enc) {
2028		scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2029	} else {
2030		scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2031		if (crypto_memneq(idigest, odigest, authsize))
2032			err = -EBADMSG;
2033	}
2034
2035complete:
2036	return atmel_aes_complete(dd, err);
2037}
2038
2039static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2040				    unsigned int keylen)
2041{
2042	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2043	struct crypto_authenc_keys keys;
 
2044	int err;
2045
2046	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2047		goto badkey;
2048
2049	if (keys.enckeylen > sizeof(ctx->base.key))
2050		goto badkey;
2051
2052	/* Save auth key. */
 
2053	err = atmel_sha_authenc_setkey(ctx->auth,
2054				       keys.authkey, keys.authkeylen,
2055				       crypto_aead_get_flags(tfm));
 
2056	if (err) {
2057		memzero_explicit(&keys, sizeof(keys));
2058		return err;
2059	}
2060
2061	/* Save enc key. */
2062	ctx->base.keylen = keys.enckeylen;
2063	memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2064
2065	memzero_explicit(&keys, sizeof(keys));
2066	return 0;
2067
2068badkey:
 
2069	memzero_explicit(&keys, sizeof(keys));
2070	return -EINVAL;
2071}
2072
2073static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2074				      unsigned long auth_mode)
2075{
2076	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2077	unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2078
2079	ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2080	if (IS_ERR(ctx->auth))
2081		return PTR_ERR(ctx->auth);
2082
2083	crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2084				      auth_reqsize));
2085	ctx->base.start = atmel_aes_authenc_start;
2086
2087	return 0;
2088}
2089
2090static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2091{
2092	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2093}
2094
2095static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2096{
2097	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2098}
2099
2100static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2101{
2102	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2103}
2104
2105static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2106{
2107	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2108}
2109
2110static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2111{
2112	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2113}
2114
2115static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2116{
2117	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2118
2119	atmel_sha_authenc_free(ctx->auth);
2120}
2121
2122static int atmel_aes_authenc_crypt(struct aead_request *req,
2123				   unsigned long mode)
2124{
2125	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2126	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2127	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2128	u32 authsize = crypto_aead_authsize(tfm);
2129	bool enc = (mode & AES_FLAGS_ENCRYPT);
2130	struct atmel_aes_dev *dd;
2131
2132	/* Compute text length. */
2133	if (!enc && req->cryptlen < authsize)
2134		return -EINVAL;
2135	rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2136
2137	/*
2138	 * Currently, empty messages are not supported yet:
2139	 * the SHA auto-padding can be used only on non-empty messages.
2140	 * Hence a special case needs to be implemented for empty message.
2141	 */
2142	if (!rctx->textlen && !req->assoclen)
2143		return -EINVAL;
2144
2145	rctx->base.mode = mode;
2146	ctx->block_size = AES_BLOCK_SIZE;
2147	ctx->is_aead = true;
2148
2149	dd = atmel_aes_find_dev(ctx);
2150	if (!dd)
2151		return -ENODEV;
2152
2153	return atmel_aes_handle_queue(dd, &req->base);
2154}
2155
2156static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2157{
2158	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2159}
2160
2161static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2162{
2163	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2164}
2165
2166static struct aead_alg aes_authenc_algs[] = {
2167{
2168	.setkey		= atmel_aes_authenc_setkey,
2169	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2170	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2171	.init		= atmel_aes_authenc_hmac_sha1_init_tfm,
2172	.exit		= atmel_aes_authenc_exit_tfm,
2173	.ivsize		= AES_BLOCK_SIZE,
2174	.maxauthsize	= SHA1_DIGEST_SIZE,
2175
2176	.base = {
2177		.cra_name		= "authenc(hmac(sha1),cbc(aes))",
2178		.cra_driver_name	= "atmel-authenc-hmac-sha1-cbc-aes",
 
 
2179		.cra_blocksize		= AES_BLOCK_SIZE,
2180		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
 
 
2181	},
2182},
2183{
2184	.setkey		= atmel_aes_authenc_setkey,
2185	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2186	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2187	.init		= atmel_aes_authenc_hmac_sha224_init_tfm,
2188	.exit		= atmel_aes_authenc_exit_tfm,
2189	.ivsize		= AES_BLOCK_SIZE,
2190	.maxauthsize	= SHA224_DIGEST_SIZE,
2191
2192	.base = {
2193		.cra_name		= "authenc(hmac(sha224),cbc(aes))",
2194		.cra_driver_name	= "atmel-authenc-hmac-sha224-cbc-aes",
 
 
2195		.cra_blocksize		= AES_BLOCK_SIZE,
2196		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
 
 
2197	},
2198},
2199{
2200	.setkey		= atmel_aes_authenc_setkey,
2201	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2202	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2203	.init		= atmel_aes_authenc_hmac_sha256_init_tfm,
2204	.exit		= atmel_aes_authenc_exit_tfm,
2205	.ivsize		= AES_BLOCK_SIZE,
2206	.maxauthsize	= SHA256_DIGEST_SIZE,
2207
2208	.base = {
2209		.cra_name		= "authenc(hmac(sha256),cbc(aes))",
2210		.cra_driver_name	= "atmel-authenc-hmac-sha256-cbc-aes",
 
 
2211		.cra_blocksize		= AES_BLOCK_SIZE,
2212		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
 
 
2213	},
2214},
2215{
2216	.setkey		= atmel_aes_authenc_setkey,
2217	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2218	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2219	.init		= atmel_aes_authenc_hmac_sha384_init_tfm,
2220	.exit		= atmel_aes_authenc_exit_tfm,
2221	.ivsize		= AES_BLOCK_SIZE,
2222	.maxauthsize	= SHA384_DIGEST_SIZE,
2223
2224	.base = {
2225		.cra_name		= "authenc(hmac(sha384),cbc(aes))",
2226		.cra_driver_name	= "atmel-authenc-hmac-sha384-cbc-aes",
 
 
2227		.cra_blocksize		= AES_BLOCK_SIZE,
2228		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
 
 
2229	},
2230},
2231{
2232	.setkey		= atmel_aes_authenc_setkey,
2233	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2234	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2235	.init		= atmel_aes_authenc_hmac_sha512_init_tfm,
2236	.exit		= atmel_aes_authenc_exit_tfm,
2237	.ivsize		= AES_BLOCK_SIZE,
2238	.maxauthsize	= SHA512_DIGEST_SIZE,
2239
2240	.base = {
2241		.cra_name		= "authenc(hmac(sha512),cbc(aes))",
2242		.cra_driver_name	= "atmel-authenc-hmac-sha512-cbc-aes",
 
 
2243		.cra_blocksize		= AES_BLOCK_SIZE,
2244		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
 
 
2245	},
2246},
2247};
2248#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2249
2250/* Probe functions */
2251
2252static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2253{
2254	dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2255	dd->buflen = ATMEL_AES_BUFFER_SIZE;
2256	dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2257
2258	if (!dd->buf) {
2259		dev_err(dd->dev, "unable to alloc pages.\n");
2260		return -ENOMEM;
2261	}
2262
2263	return 0;
2264}
2265
2266static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2267{
2268	free_page((unsigned long)dd->buf);
2269}
2270
2271static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
 
 
 
 
 
 
 
 
 
 
 
 
 
2272{
2273	int ret;
 
 
 
 
2274
2275	/* Try to grab 2 DMA channels */
2276	dd->src.chan = dma_request_chan(dd->dev, "tx");
2277	if (IS_ERR(dd->src.chan)) {
2278		ret = PTR_ERR(dd->src.chan);
 
2279		goto err_dma_in;
2280	}
2281
2282	dd->dst.chan = dma_request_chan(dd->dev, "rx");
2283	if (IS_ERR(dd->dst.chan)) {
2284		ret = PTR_ERR(dd->dst.chan);
 
2285		goto err_dma_out;
2286	}
2287
2288	return 0;
2289
2290err_dma_out:
2291	dma_release_channel(dd->src.chan);
2292err_dma_in:
2293	dev_err(dd->dev, "no DMA channel available\n");
2294	return ret;
2295}
2296
2297static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2298{
2299	dma_release_channel(dd->dst.chan);
2300	dma_release_channel(dd->src.chan);
2301}
2302
2303static void atmel_aes_queue_task(unsigned long data)
2304{
2305	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2306
2307	atmel_aes_handle_queue(dd, NULL);
2308}
2309
2310static void atmel_aes_done_task(unsigned long data)
2311{
2312	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2313
2314	dd->is_async = true;
2315	(void)dd->resume(dd);
2316}
2317
2318static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2319{
2320	struct atmel_aes_dev *aes_dd = dev_id;
2321	u32 reg;
2322
2323	reg = atmel_aes_read(aes_dd, AES_ISR);
2324	if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2325		atmel_aes_write(aes_dd, AES_IDR, reg);
2326		if (AES_FLAGS_BUSY & aes_dd->flags)
2327			tasklet_schedule(&aes_dd->done_task);
2328		else
2329			dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2330		return IRQ_HANDLED;
2331	}
2332
2333	return IRQ_NONE;
2334}
2335
2336static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2337{
2338	int i;
2339
2340#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2341	if (dd->caps.has_authenc)
2342		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2343			crypto_unregister_aead(&aes_authenc_algs[i]);
2344#endif
2345
2346	if (dd->caps.has_xts)
2347		crypto_unregister_skcipher(&aes_xts_alg);
2348
2349	if (dd->caps.has_gcm)
2350		crypto_unregister_aead(&aes_gcm_alg);
2351
2352	if (dd->caps.has_cfb64)
2353		crypto_unregister_skcipher(&aes_cfb64_alg);
2354
2355	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2356		crypto_unregister_skcipher(&aes_algs[i]);
2357}
2358
2359static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
2360{
2361	alg->cra_flags = CRYPTO_ALG_ASYNC;
2362	alg->cra_alignmask = 0xf;
2363	alg->cra_priority = ATMEL_AES_PRIORITY;
2364	alg->cra_module = THIS_MODULE;
2365}
2366
2367static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2368{
2369	int err, i, j;
2370
2371	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2372		atmel_aes_crypto_alg_init(&aes_algs[i].base);
2373
2374		err = crypto_register_skcipher(&aes_algs[i]);
2375		if (err)
2376			goto err_aes_algs;
2377	}
2378
2379	if (dd->caps.has_cfb64) {
2380		atmel_aes_crypto_alg_init(&aes_cfb64_alg.base);
2381
2382		err = crypto_register_skcipher(&aes_cfb64_alg);
2383		if (err)
2384			goto err_aes_cfb64_alg;
2385	}
2386
2387	if (dd->caps.has_gcm) {
2388		atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
2389
2390		err = crypto_register_aead(&aes_gcm_alg);
2391		if (err)
2392			goto err_aes_gcm_alg;
2393	}
2394
2395	if (dd->caps.has_xts) {
2396		atmel_aes_crypto_alg_init(&aes_xts_alg.base);
2397
2398		err = crypto_register_skcipher(&aes_xts_alg);
2399		if (err)
2400			goto err_aes_xts_alg;
2401	}
2402
2403#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2404	if (dd->caps.has_authenc) {
2405		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2406			atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
2407
2408			err = crypto_register_aead(&aes_authenc_algs[i]);
2409			if (err)
2410				goto err_aes_authenc_alg;
2411		}
2412	}
2413#endif
2414
2415	return 0;
2416
2417#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2418	/* i = ARRAY_SIZE(aes_authenc_algs); */
2419err_aes_authenc_alg:
2420	for (j = 0; j < i; j++)
2421		crypto_unregister_aead(&aes_authenc_algs[j]);
2422	crypto_unregister_skcipher(&aes_xts_alg);
2423#endif
2424err_aes_xts_alg:
2425	crypto_unregister_aead(&aes_gcm_alg);
2426err_aes_gcm_alg:
2427	crypto_unregister_skcipher(&aes_cfb64_alg);
2428err_aes_cfb64_alg:
2429	i = ARRAY_SIZE(aes_algs);
2430err_aes_algs:
2431	for (j = 0; j < i; j++)
2432		crypto_unregister_skcipher(&aes_algs[j]);
2433
2434	return err;
2435}
2436
2437static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2438{
2439	dd->caps.has_dualbuff = 0;
2440	dd->caps.has_cfb64 = 0;
 
2441	dd->caps.has_gcm = 0;
2442	dd->caps.has_xts = 0;
2443	dd->caps.has_authenc = 0;
2444	dd->caps.max_burst_size = 1;
2445
2446	/* keep only major version number */
2447	switch (dd->hw_version & 0xff0) {
2448	case 0x500:
2449		dd->caps.has_dualbuff = 1;
2450		dd->caps.has_cfb64 = 1;
 
2451		dd->caps.has_gcm = 1;
2452		dd->caps.has_xts = 1;
2453		dd->caps.has_authenc = 1;
2454		dd->caps.max_burst_size = 4;
2455		break;
2456	case 0x200:
2457		dd->caps.has_dualbuff = 1;
2458		dd->caps.has_cfb64 = 1;
 
2459		dd->caps.has_gcm = 1;
2460		dd->caps.max_burst_size = 4;
2461		break;
2462	case 0x130:
2463		dd->caps.has_dualbuff = 1;
2464		dd->caps.has_cfb64 = 1;
2465		dd->caps.max_burst_size = 4;
2466		break;
2467	case 0x120:
2468		break;
2469	default:
2470		dev_warn(dd->dev,
2471				"Unmanaged aes version, set minimum capabilities\n");
2472		break;
2473	}
2474}
2475
2476#if defined(CONFIG_OF)
2477static const struct of_device_id atmel_aes_dt_ids[] = {
2478	{ .compatible = "atmel,at91sam9g46-aes" },
2479	{ /* sentinel */ }
2480};
2481MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2482#endif
2483
2484static int atmel_aes_probe(struct platform_device *pdev)
2485{
2486	struct atmel_aes_dev *aes_dd;
 
2487	struct device *dev = &pdev->dev;
2488	struct resource *aes_res;
2489	int err;
2490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2491	aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2492	if (!aes_dd)
2493		return -ENOMEM;
 
 
2494
2495	aes_dd->dev = dev;
2496
2497	platform_set_drvdata(pdev, aes_dd);
2498
2499	INIT_LIST_HEAD(&aes_dd->list);
2500	spin_lock_init(&aes_dd->lock);
2501
2502	tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2503					(unsigned long)aes_dd);
2504	tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2505					(unsigned long)aes_dd);
2506
2507	crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2508
2509	/* Get the base address */
2510	aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2511	if (!aes_res) {
2512		dev_err(dev, "no MEM resource info\n");
2513		err = -ENODEV;
2514		goto err_tasklet_kill;
2515	}
2516	aes_dd->phys_base = aes_res->start;
2517
2518	/* Get the IRQ */
2519	aes_dd->irq = platform_get_irq(pdev,  0);
2520	if (aes_dd->irq < 0) {
2521		err = aes_dd->irq;
2522		goto err_tasklet_kill;
2523	}
2524
2525	err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2526			       IRQF_SHARED, "atmel-aes", aes_dd);
2527	if (err) {
2528		dev_err(dev, "unable to request aes irq.\n");
2529		goto err_tasklet_kill;
2530	}
2531
2532	/* Initializing the clock */
2533	aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2534	if (IS_ERR(aes_dd->iclk)) {
2535		dev_err(dev, "clock initialization failed.\n");
2536		err = PTR_ERR(aes_dd->iclk);
2537		goto err_tasklet_kill;
2538	}
2539
2540	aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2541	if (IS_ERR(aes_dd->io_base)) {
2542		dev_err(dev, "can't ioremap\n");
2543		err = PTR_ERR(aes_dd->io_base);
2544		goto err_tasklet_kill;
2545	}
2546
2547	err = clk_prepare(aes_dd->iclk);
2548	if (err)
2549		goto err_tasklet_kill;
2550
2551	err = atmel_aes_hw_version_init(aes_dd);
2552	if (err)
2553		goto err_iclk_unprepare;
2554
2555	atmel_aes_get_cap(aes_dd);
2556
2557#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2558	if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2559		err = -EPROBE_DEFER;
2560		goto err_iclk_unprepare;
2561	}
2562#endif
2563
2564	err = atmel_aes_buff_init(aes_dd);
2565	if (err)
2566		goto err_iclk_unprepare;
2567
2568	err = atmel_aes_dma_init(aes_dd);
2569	if (err)
2570		goto err_buff_cleanup;
2571
2572	spin_lock(&atmel_aes.lock);
2573	list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2574	spin_unlock(&atmel_aes.lock);
2575
2576	err = atmel_aes_register_algs(aes_dd);
2577	if (err)
2578		goto err_algs;
2579
2580	dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2581			dma_chan_name(aes_dd->src.chan),
2582			dma_chan_name(aes_dd->dst.chan));
2583
2584	return 0;
2585
2586err_algs:
2587	spin_lock(&atmel_aes.lock);
2588	list_del(&aes_dd->list);
2589	spin_unlock(&atmel_aes.lock);
2590	atmel_aes_dma_cleanup(aes_dd);
2591err_buff_cleanup:
2592	atmel_aes_buff_cleanup(aes_dd);
2593err_iclk_unprepare:
 
2594	clk_unprepare(aes_dd->iclk);
2595err_tasklet_kill:
2596	tasklet_kill(&aes_dd->done_task);
2597	tasklet_kill(&aes_dd->queue_task);
 
 
 
2598
2599	return err;
2600}
2601
2602static int atmel_aes_remove(struct platform_device *pdev)
2603{
2604	struct atmel_aes_dev *aes_dd;
2605
2606	aes_dd = platform_get_drvdata(pdev);
2607	if (!aes_dd)
2608		return -ENODEV;
2609	spin_lock(&atmel_aes.lock);
2610	list_del(&aes_dd->list);
2611	spin_unlock(&atmel_aes.lock);
2612
2613	atmel_aes_unregister_algs(aes_dd);
2614
2615	tasklet_kill(&aes_dd->done_task);
2616	tasklet_kill(&aes_dd->queue_task);
2617
2618	atmel_aes_dma_cleanup(aes_dd);
2619	atmel_aes_buff_cleanup(aes_dd);
2620
2621	clk_unprepare(aes_dd->iclk);
2622
2623	return 0;
2624}
2625
2626static struct platform_driver atmel_aes_driver = {
2627	.probe		= atmel_aes_probe,
2628	.remove		= atmel_aes_remove,
2629	.driver		= {
2630		.name	= "atmel_aes",
2631		.of_match_table = of_match_ptr(atmel_aes_dt_ids),
2632	},
2633};
2634
2635module_platform_driver(atmel_aes_driver);
2636
2637MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2638MODULE_LICENSE("GPL v2");
2639MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Cryptographic API.
   4 *
   5 * Support for ATMEL AES HW acceleration.
   6 *
   7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
   8 * Author: Nicolas Royer <nicolas@eukrea.com>
   9 *
  10 * Some ideas are from omap-aes.c driver.
  11 */
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/err.h>
  18#include <linux/clk.h>
  19#include <linux/io.h>
  20#include <linux/hw_random.h>
  21#include <linux/platform_device.h>
  22
  23#include <linux/device.h>
 
  24#include <linux/init.h>
  25#include <linux/errno.h>
  26#include <linux/interrupt.h>
  27#include <linux/irq.h>
  28#include <linux/scatterlist.h>
  29#include <linux/dma-mapping.h>
  30#include <linux/of_device.h>
  31#include <linux/delay.h>
  32#include <linux/crypto.h>
  33#include <crypto/scatterwalk.h>
  34#include <crypto/algapi.h>
  35#include <crypto/aes.h>
  36#include <crypto/gcm.h>
  37#include <crypto/xts.h>
  38#include <crypto/internal/aead.h>
  39#include <linux/platform_data/crypto-atmel.h>
  40#include <dt-bindings/dma/at91.h>
  41#include "atmel-aes-regs.h"
  42#include "atmel-authenc.h"
  43
  44#define ATMEL_AES_PRIORITY	300
  45
  46#define ATMEL_AES_BUFFER_ORDER	2
  47#define ATMEL_AES_BUFFER_SIZE	(PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
  48
  49#define CFB8_BLOCK_SIZE		1
  50#define CFB16_BLOCK_SIZE	2
  51#define CFB32_BLOCK_SIZE	4
  52#define CFB64_BLOCK_SIZE	8
  53
  54#define SIZE_IN_WORDS(x)	((x) >> 2)
  55
  56/* AES flags */
  57/* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
  58#define AES_FLAGS_ENCRYPT	AES_MR_CYPHER_ENC
  59#define AES_FLAGS_GTAGEN	AES_MR_GTAGEN
  60#define AES_FLAGS_OPMODE_MASK	(AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
  61#define AES_FLAGS_ECB		AES_MR_OPMOD_ECB
  62#define AES_FLAGS_CBC		AES_MR_OPMOD_CBC
  63#define AES_FLAGS_OFB		AES_MR_OPMOD_OFB
  64#define AES_FLAGS_CFB128	(AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
  65#define AES_FLAGS_CFB64		(AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
  66#define AES_FLAGS_CFB32		(AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
  67#define AES_FLAGS_CFB16		(AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
  68#define AES_FLAGS_CFB8		(AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
  69#define AES_FLAGS_CTR		AES_MR_OPMOD_CTR
  70#define AES_FLAGS_GCM		AES_MR_OPMOD_GCM
  71#define AES_FLAGS_XTS		AES_MR_OPMOD_XTS
  72
  73#define AES_FLAGS_MODE_MASK	(AES_FLAGS_OPMODE_MASK |	\
  74				 AES_FLAGS_ENCRYPT |		\
  75				 AES_FLAGS_GTAGEN)
  76
  77#define AES_FLAGS_BUSY		BIT(3)
  78#define AES_FLAGS_DUMP_REG	BIT(4)
  79#define AES_FLAGS_OWN_SHA	BIT(5)
  80
  81#define AES_FLAGS_PERSISTENT	AES_FLAGS_BUSY
  82
  83#define ATMEL_AES_QUEUE_LENGTH	50
  84
  85#define ATMEL_AES_DMA_THRESHOLD		256
  86
  87
  88struct atmel_aes_caps {
  89	bool			has_dualbuff;
  90	bool			has_cfb64;
  91	bool			has_ctr32;
  92	bool			has_gcm;
  93	bool			has_xts;
  94	bool			has_authenc;
  95	u32			max_burst_size;
  96};
  97
  98struct atmel_aes_dev;
  99
 100
 101typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
 102
 103
 104struct atmel_aes_base_ctx {
 105	struct atmel_aes_dev	*dd;
 106	atmel_aes_fn_t		start;
 107	int			keylen;
 108	u32			key[AES_KEYSIZE_256 / sizeof(u32)];
 109	u16			block_size;
 110	bool			is_aead;
 111};
 112
 113struct atmel_aes_ctx {
 114	struct atmel_aes_base_ctx	base;
 115};
 116
 117struct atmel_aes_ctr_ctx {
 118	struct atmel_aes_base_ctx	base;
 119
 120	u32			iv[AES_BLOCK_SIZE / sizeof(u32)];
 121	size_t			offset;
 122	struct scatterlist	src[2];
 123	struct scatterlist	dst[2];
 
 124};
 125
 126struct atmel_aes_gcm_ctx {
 127	struct atmel_aes_base_ctx	base;
 128
 129	struct scatterlist	src[2];
 130	struct scatterlist	dst[2];
 131
 132	u32			j0[AES_BLOCK_SIZE / sizeof(u32)];
 133	u32			tag[AES_BLOCK_SIZE / sizeof(u32)];
 134	u32			ghash[AES_BLOCK_SIZE / sizeof(u32)];
 135	size_t			textlen;
 136
 137	const u32		*ghash_in;
 138	u32			*ghash_out;
 139	atmel_aes_fn_t		ghash_resume;
 140};
 141
 142struct atmel_aes_xts_ctx {
 143	struct atmel_aes_base_ctx	base;
 144
 145	u32			key2[AES_KEYSIZE_256 / sizeof(u32)];
 146};
 147
 148#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
 149struct atmel_aes_authenc_ctx {
 150	struct atmel_aes_base_ctx	base;
 151	struct atmel_sha_authenc_ctx	*auth;
 152};
 153#endif
 154
 155struct atmel_aes_reqctx {
 156	unsigned long		mode;
 157	u32			lastc[AES_BLOCK_SIZE / sizeof(u32)];
 158};
 159
 160#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
 161struct atmel_aes_authenc_reqctx {
 162	struct atmel_aes_reqctx	base;
 163
 164	struct scatterlist	src[2];
 165	struct scatterlist	dst[2];
 166	size_t			textlen;
 167	u32			digest[SHA512_DIGEST_SIZE / sizeof(u32)];
 168
 169	/* auth_req MUST be place last. */
 170	struct ahash_request	auth_req;
 171};
 172#endif
 173
 174struct atmel_aes_dma {
 175	struct dma_chan		*chan;
 176	struct scatterlist	*sg;
 177	int			nents;
 178	unsigned int		remainder;
 179	unsigned int		sg_len;
 180};
 181
 182struct atmel_aes_dev {
 183	struct list_head	list;
 184	unsigned long		phys_base;
 185	void __iomem		*io_base;
 186
 187	struct crypto_async_request	*areq;
 188	struct atmel_aes_base_ctx	*ctx;
 189
 190	bool			is_async;
 191	atmel_aes_fn_t		resume;
 192	atmel_aes_fn_t		cpu_transfer_complete;
 193
 194	struct device		*dev;
 195	struct clk		*iclk;
 196	int			irq;
 197
 198	unsigned long		flags;
 199
 200	spinlock_t		lock;
 201	struct crypto_queue	queue;
 202
 203	struct tasklet_struct	done_task;
 204	struct tasklet_struct	queue_task;
 205
 206	size_t			total;
 207	size_t			datalen;
 208	u32			*data;
 209
 210	struct atmel_aes_dma	src;
 211	struct atmel_aes_dma	dst;
 212
 213	size_t			buflen;
 214	void			*buf;
 215	struct scatterlist	aligned_sg;
 216	struct scatterlist	*real_dst;
 217
 218	struct atmel_aes_caps	caps;
 219
 220	u32			hw_version;
 221};
 222
 223struct atmel_aes_drv {
 224	struct list_head	dev_list;
 225	spinlock_t		lock;
 226};
 227
 228static struct atmel_aes_drv atmel_aes = {
 229	.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
 230	.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
 231};
 232
 233#ifdef VERBOSE_DEBUG
 234static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
 235{
 236	switch (offset) {
 237	case AES_CR:
 238		return "CR";
 239
 240	case AES_MR:
 241		return "MR";
 242
 243	case AES_ISR:
 244		return "ISR";
 245
 246	case AES_IMR:
 247		return "IMR";
 248
 249	case AES_IER:
 250		return "IER";
 251
 252	case AES_IDR:
 253		return "IDR";
 254
 255	case AES_KEYWR(0):
 256	case AES_KEYWR(1):
 257	case AES_KEYWR(2):
 258	case AES_KEYWR(3):
 259	case AES_KEYWR(4):
 260	case AES_KEYWR(5):
 261	case AES_KEYWR(6):
 262	case AES_KEYWR(7):
 263		snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
 264		break;
 265
 266	case AES_IDATAR(0):
 267	case AES_IDATAR(1):
 268	case AES_IDATAR(2):
 269	case AES_IDATAR(3):
 270		snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
 271		break;
 272
 273	case AES_ODATAR(0):
 274	case AES_ODATAR(1):
 275	case AES_ODATAR(2):
 276	case AES_ODATAR(3):
 277		snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
 278		break;
 279
 280	case AES_IVR(0):
 281	case AES_IVR(1):
 282	case AES_IVR(2):
 283	case AES_IVR(3):
 284		snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
 285		break;
 286
 287	case AES_AADLENR:
 288		return "AADLENR";
 289
 290	case AES_CLENR:
 291		return "CLENR";
 292
 293	case AES_GHASHR(0):
 294	case AES_GHASHR(1):
 295	case AES_GHASHR(2):
 296	case AES_GHASHR(3):
 297		snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
 298		break;
 299
 300	case AES_TAGR(0):
 301	case AES_TAGR(1):
 302	case AES_TAGR(2):
 303	case AES_TAGR(3):
 304		snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
 305		break;
 306
 307	case AES_CTRR:
 308		return "CTRR";
 309
 310	case AES_GCMHR(0):
 311	case AES_GCMHR(1):
 312	case AES_GCMHR(2):
 313	case AES_GCMHR(3):
 314		snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
 315		break;
 316
 317	case AES_EMR:
 318		return "EMR";
 319
 320	case AES_TWR(0):
 321	case AES_TWR(1):
 322	case AES_TWR(2):
 323	case AES_TWR(3):
 324		snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
 325		break;
 326
 327	case AES_ALPHAR(0):
 328	case AES_ALPHAR(1):
 329	case AES_ALPHAR(2):
 330	case AES_ALPHAR(3):
 331		snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
 332		break;
 333
 334	default:
 335		snprintf(tmp, sz, "0x%02x", offset);
 336		break;
 337	}
 338
 339	return tmp;
 340}
 341#endif /* VERBOSE_DEBUG */
 342
 343/* Shared functions */
 344
 345static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
 346{
 347	u32 value = readl_relaxed(dd->io_base + offset);
 348
 349#ifdef VERBOSE_DEBUG
 350	if (dd->flags & AES_FLAGS_DUMP_REG) {
 351		char tmp[16];
 352
 353		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
 354			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 355	}
 356#endif /* VERBOSE_DEBUG */
 357
 358	return value;
 359}
 360
 361static inline void atmel_aes_write(struct atmel_aes_dev *dd,
 362					u32 offset, u32 value)
 363{
 364#ifdef VERBOSE_DEBUG
 365	if (dd->flags & AES_FLAGS_DUMP_REG) {
 366		char tmp[16];
 367
 368		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
 369			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 370	}
 371#endif /* VERBOSE_DEBUG */
 372
 373	writel_relaxed(value, dd->io_base + offset);
 374}
 375
 376static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
 377					u32 *value, int count)
 378{
 379	for (; count--; value++, offset += 4)
 380		*value = atmel_aes_read(dd, offset);
 381}
 382
 383static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
 384			      const u32 *value, int count)
 385{
 386	for (; count--; value++, offset += 4)
 387		atmel_aes_write(dd, offset, *value);
 388}
 389
 390static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
 391					u32 *value)
 392{
 393	atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 394}
 395
 396static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
 397					 const u32 *value)
 398{
 399	atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 400}
 401
 402static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
 403						atmel_aes_fn_t resume)
 404{
 405	u32 isr = atmel_aes_read(dd, AES_ISR);
 406
 407	if (unlikely(isr & AES_INT_DATARDY))
 408		return resume(dd);
 409
 410	dd->resume = resume;
 411	atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 412	return -EINPROGRESS;
 413}
 414
 415static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
 416{
 417	len &= block_size - 1;
 418	return len ? block_size - len : 0;
 419}
 420
 421static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
 422{
 423	struct atmel_aes_dev *aes_dd = NULL;
 424	struct atmel_aes_dev *tmp;
 425
 426	spin_lock_bh(&atmel_aes.lock);
 427	if (!ctx->dd) {
 428		list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
 429			aes_dd = tmp;
 430			break;
 431		}
 432		ctx->dd = aes_dd;
 433	} else {
 434		aes_dd = ctx->dd;
 435	}
 436
 437	spin_unlock_bh(&atmel_aes.lock);
 438
 439	return aes_dd;
 440}
 441
 442static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
 443{
 444	int err;
 445
 446	err = clk_enable(dd->iclk);
 447	if (err)
 448		return err;
 449
 450	atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
 451	atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
 452
 453	return 0;
 454}
 455
 456static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
 457{
 458	return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
 459}
 460
 461static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
 462{
 463	int err;
 464
 465	err = atmel_aes_hw_init(dd);
 466	if (err)
 467		return err;
 468
 469	dd->hw_version = atmel_aes_get_version(dd);
 470
 471	dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
 472
 473	clk_disable(dd->iclk);
 474	return 0;
 475}
 476
 477static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
 478				      const struct atmel_aes_reqctx *rctx)
 479{
 480	/* Clear all but persistent flags and set request flags. */
 481	dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
 482}
 483
 484static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
 485{
 486	return (dd->flags & AES_FLAGS_ENCRYPT);
 487}
 488
 489#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
 490static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
 491#endif
 492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 493static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
 494{
 495#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
 
 
 
 496	if (dd->ctx->is_aead)
 497		atmel_aes_authenc_complete(dd, err);
 498#endif
 499
 500	clk_disable(dd->iclk);
 501	dd->flags &= ~AES_FLAGS_BUSY;
 502
 503	if (!dd->ctx->is_aead) {
 504		struct ablkcipher_request *req =
 505			ablkcipher_request_cast(dd->areq);
 506		struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
 507		struct crypto_ablkcipher *ablkcipher =
 508			crypto_ablkcipher_reqtfm(req);
 509		int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
 510
 511		if (rctx->mode & AES_FLAGS_ENCRYPT) {
 512			scatterwalk_map_and_copy(req->info, req->dst,
 513				req->nbytes - ivsize, ivsize, 0);
 514		} else {
 515			if (req->src == req->dst) {
 516				memcpy(req->info, rctx->lastc, ivsize);
 517			} else {
 518				scatterwalk_map_and_copy(req->info, req->src,
 519					req->nbytes - ivsize, ivsize, 0);
 520			}
 521		}
 522	}
 523
 524	if (dd->is_async)
 525		dd->areq->complete(dd->areq, err);
 526
 527	tasklet_schedule(&dd->queue_task);
 528
 529	return err;
 530}
 531
 532static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
 533				     const u32 *iv, const u32 *key, int keylen)
 534{
 535	u32 valmr = 0;
 536
 537	/* MR register must be set before IV registers */
 538	if (keylen == AES_KEYSIZE_128)
 539		valmr |= AES_MR_KEYSIZE_128;
 540	else if (keylen == AES_KEYSIZE_192)
 541		valmr |= AES_MR_KEYSIZE_192;
 542	else
 543		valmr |= AES_MR_KEYSIZE_256;
 544
 545	valmr |= dd->flags & AES_FLAGS_MODE_MASK;
 546
 547	if (use_dma) {
 548		valmr |= AES_MR_SMOD_IDATAR0;
 549		if (dd->caps.has_dualbuff)
 550			valmr |= AES_MR_DUALBUFF;
 551	} else {
 552		valmr |= AES_MR_SMOD_AUTO;
 553	}
 554
 555	atmel_aes_write(dd, AES_MR, valmr);
 556
 557	atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
 558
 559	if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
 560		atmel_aes_write_block(dd, AES_IVR(0), iv);
 561}
 562
 563static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
 564					const u32 *iv)
 565
 566{
 567	atmel_aes_write_ctrl_key(dd, use_dma, iv,
 568				 dd->ctx->key, dd->ctx->keylen);
 569}
 570
 571/* CPU transfer */
 572
 573static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
 574{
 575	int err = 0;
 576	u32 isr;
 577
 578	for (;;) {
 579		atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
 580		dd->data += 4;
 581		dd->datalen -= AES_BLOCK_SIZE;
 582
 583		if (dd->datalen < AES_BLOCK_SIZE)
 584			break;
 585
 586		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 587
 588		isr = atmel_aes_read(dd, AES_ISR);
 589		if (!(isr & AES_INT_DATARDY)) {
 590			dd->resume = atmel_aes_cpu_transfer;
 591			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 592			return -EINPROGRESS;
 593		}
 594	}
 595
 596	if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 597				 dd->buf, dd->total))
 598		err = -EINVAL;
 599
 600	if (err)
 601		return atmel_aes_complete(dd, err);
 602
 603	return dd->cpu_transfer_complete(dd);
 604}
 605
 606static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
 607			       struct scatterlist *src,
 608			       struct scatterlist *dst,
 609			       size_t len,
 610			       atmel_aes_fn_t resume)
 611{
 612	size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
 613
 614	if (unlikely(len == 0))
 615		return -EINVAL;
 616
 617	sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 618
 619	dd->total = len;
 620	dd->real_dst = dst;
 621	dd->cpu_transfer_complete = resume;
 622	dd->datalen = len + padlen;
 623	dd->data = (u32 *)dd->buf;
 624	atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 625	return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
 626}
 627
 628
 629/* DMA transfer */
 630
 631static void atmel_aes_dma_callback(void *data);
 632
 633static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
 634				    struct scatterlist *sg,
 635				    size_t len,
 636				    struct atmel_aes_dma *dma)
 637{
 638	int nents;
 639
 640	if (!IS_ALIGNED(len, dd->ctx->block_size))
 641		return false;
 642
 643	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
 644		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 645			return false;
 646
 647		if (len <= sg->length) {
 648			if (!IS_ALIGNED(len, dd->ctx->block_size))
 649				return false;
 650
 651			dma->nents = nents+1;
 652			dma->remainder = sg->length - len;
 653			sg->length = len;
 654			return true;
 655		}
 656
 657		if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
 658			return false;
 659
 660		len -= sg->length;
 661	}
 662
 663	return false;
 664}
 665
 666static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
 667{
 668	struct scatterlist *sg = dma->sg;
 669	int nents = dma->nents;
 670
 671	if (!dma->remainder)
 672		return;
 673
 674	while (--nents > 0 && sg)
 675		sg = sg_next(sg);
 676
 677	if (!sg)
 678		return;
 679
 680	sg->length += dma->remainder;
 681}
 682
 683static int atmel_aes_map(struct atmel_aes_dev *dd,
 684			 struct scatterlist *src,
 685			 struct scatterlist *dst,
 686			 size_t len)
 687{
 688	bool src_aligned, dst_aligned;
 689	size_t padlen;
 690
 691	dd->total = len;
 692	dd->src.sg = src;
 693	dd->dst.sg = dst;
 694	dd->real_dst = dst;
 695
 696	src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
 697	if (src == dst)
 698		dst_aligned = src_aligned;
 699	else
 700		dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
 701	if (!src_aligned || !dst_aligned) {
 702		padlen = atmel_aes_padlen(len, dd->ctx->block_size);
 703
 704		if (dd->buflen < len + padlen)
 705			return -ENOMEM;
 706
 707		if (!src_aligned) {
 708			sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 709			dd->src.sg = &dd->aligned_sg;
 710			dd->src.nents = 1;
 711			dd->src.remainder = 0;
 712		}
 713
 714		if (!dst_aligned) {
 715			dd->dst.sg = &dd->aligned_sg;
 716			dd->dst.nents = 1;
 717			dd->dst.remainder = 0;
 718		}
 719
 720		sg_init_table(&dd->aligned_sg, 1);
 721		sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
 722	}
 723
 724	if (dd->src.sg == dd->dst.sg) {
 725		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 726					    DMA_BIDIRECTIONAL);
 727		dd->dst.sg_len = dd->src.sg_len;
 728		if (!dd->src.sg_len)
 729			return -EFAULT;
 730	} else {
 731		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 732					    DMA_TO_DEVICE);
 733		if (!dd->src.sg_len)
 734			return -EFAULT;
 735
 736		dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 737					    DMA_FROM_DEVICE);
 738		if (!dd->dst.sg_len) {
 739			dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 740				     DMA_TO_DEVICE);
 741			return -EFAULT;
 742		}
 743	}
 744
 745	return 0;
 746}
 747
 748static void atmel_aes_unmap(struct atmel_aes_dev *dd)
 749{
 750	if (dd->src.sg == dd->dst.sg) {
 751		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 752			     DMA_BIDIRECTIONAL);
 753
 754		if (dd->src.sg != &dd->aligned_sg)
 755			atmel_aes_restore_sg(&dd->src);
 756	} else {
 757		dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 758			     DMA_FROM_DEVICE);
 759
 760		if (dd->dst.sg != &dd->aligned_sg)
 761			atmel_aes_restore_sg(&dd->dst);
 762
 763		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 764			     DMA_TO_DEVICE);
 765
 766		if (dd->src.sg != &dd->aligned_sg)
 767			atmel_aes_restore_sg(&dd->src);
 768	}
 769
 770	if (dd->dst.sg == &dd->aligned_sg)
 771		sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 772				    dd->buf, dd->total);
 773}
 774
 775static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
 776					enum dma_slave_buswidth addr_width,
 777					enum dma_transfer_direction dir,
 778					u32 maxburst)
 779{
 780	struct dma_async_tx_descriptor *desc;
 781	struct dma_slave_config config;
 782	dma_async_tx_callback callback;
 783	struct atmel_aes_dma *dma;
 784	int err;
 785
 786	memset(&config, 0, sizeof(config));
 787	config.direction = dir;
 788	config.src_addr_width = addr_width;
 789	config.dst_addr_width = addr_width;
 790	config.src_maxburst = maxburst;
 791	config.dst_maxburst = maxburst;
 792
 793	switch (dir) {
 794	case DMA_MEM_TO_DEV:
 795		dma = &dd->src;
 796		callback = NULL;
 797		config.dst_addr = dd->phys_base + AES_IDATAR(0);
 798		break;
 799
 800	case DMA_DEV_TO_MEM:
 801		dma = &dd->dst;
 802		callback = atmel_aes_dma_callback;
 803		config.src_addr = dd->phys_base + AES_ODATAR(0);
 804		break;
 805
 806	default:
 807		return -EINVAL;
 808	}
 809
 810	err = dmaengine_slave_config(dma->chan, &config);
 811	if (err)
 812		return err;
 813
 814	desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
 815				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 816	if (!desc)
 817		return -ENOMEM;
 818
 819	desc->callback = callback;
 820	desc->callback_param = dd;
 821	dmaengine_submit(desc);
 822	dma_async_issue_pending(dma->chan);
 823
 824	return 0;
 825}
 826
 827static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
 828					enum dma_transfer_direction dir)
 829{
 830	struct atmel_aes_dma *dma;
 831
 832	switch (dir) {
 833	case DMA_MEM_TO_DEV:
 834		dma = &dd->src;
 835		break;
 836
 837	case DMA_DEV_TO_MEM:
 838		dma = &dd->dst;
 839		break;
 840
 841	default:
 842		return;
 843	}
 844
 845	dmaengine_terminate_all(dma->chan);
 846}
 847
 848static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
 849			       struct scatterlist *src,
 850			       struct scatterlist *dst,
 851			       size_t len,
 852			       atmel_aes_fn_t resume)
 853{
 854	enum dma_slave_buswidth addr_width;
 855	u32 maxburst;
 856	int err;
 857
 858	switch (dd->ctx->block_size) {
 859	case CFB8_BLOCK_SIZE:
 860		addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 861		maxburst = 1;
 862		break;
 863
 864	case CFB16_BLOCK_SIZE:
 865		addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 866		maxburst = 1;
 867		break;
 868
 869	case CFB32_BLOCK_SIZE:
 870	case CFB64_BLOCK_SIZE:
 871		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 872		maxburst = 1;
 873		break;
 874
 875	case AES_BLOCK_SIZE:
 876		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 877		maxburst = dd->caps.max_burst_size;
 878		break;
 879
 880	default:
 881		err = -EINVAL;
 882		goto exit;
 883	}
 884
 885	err = atmel_aes_map(dd, src, dst, len);
 886	if (err)
 887		goto exit;
 888
 889	dd->resume = resume;
 890
 891	/* Set output DMA transfer first */
 892	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
 893					   maxburst);
 894	if (err)
 895		goto unmap;
 896
 897	/* Then set input DMA transfer */
 898	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
 899					   maxburst);
 900	if (err)
 901		goto output_transfer_stop;
 902
 903	return -EINPROGRESS;
 904
 905output_transfer_stop:
 906	atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
 907unmap:
 908	atmel_aes_unmap(dd);
 909exit:
 910	return atmel_aes_complete(dd, err);
 911}
 912
 913static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
 914{
 915	atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
 916	atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
 917	atmel_aes_unmap(dd);
 918}
 919
 920static void atmel_aes_dma_callback(void *data)
 921{
 922	struct atmel_aes_dev *dd = data;
 923
 924	atmel_aes_dma_stop(dd);
 925	dd->is_async = true;
 926	(void)dd->resume(dd);
 927}
 928
 929static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
 930				  struct crypto_async_request *new_areq)
 931{
 932	struct crypto_async_request *areq, *backlog;
 933	struct atmel_aes_base_ctx *ctx;
 934	unsigned long flags;
 935	bool start_async;
 936	int err, ret = 0;
 937
 938	spin_lock_irqsave(&dd->lock, flags);
 939	if (new_areq)
 940		ret = crypto_enqueue_request(&dd->queue, new_areq);
 941	if (dd->flags & AES_FLAGS_BUSY) {
 942		spin_unlock_irqrestore(&dd->lock, flags);
 943		return ret;
 944	}
 945	backlog = crypto_get_backlog(&dd->queue);
 946	areq = crypto_dequeue_request(&dd->queue);
 947	if (areq)
 948		dd->flags |= AES_FLAGS_BUSY;
 949	spin_unlock_irqrestore(&dd->lock, flags);
 950
 951	if (!areq)
 952		return ret;
 953
 954	if (backlog)
 955		backlog->complete(backlog, -EINPROGRESS);
 956
 957	ctx = crypto_tfm_ctx(areq->tfm);
 958
 959	dd->areq = areq;
 960	dd->ctx = ctx;
 961	start_async = (areq != new_areq);
 962	dd->is_async = start_async;
 963
 964	/* WARNING: ctx->start() MAY change dd->is_async. */
 965	err = ctx->start(dd);
 966	return (start_async) ? ret : err;
 967}
 968
 969
 970/* AES async block ciphers */
 971
 972static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
 973{
 974	return atmel_aes_complete(dd, 0);
 975}
 976
 977static int atmel_aes_start(struct atmel_aes_dev *dd)
 978{
 979	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
 980	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
 981	bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD ||
 982			dd->ctx->block_size != AES_BLOCK_SIZE);
 983	int err;
 984
 985	atmel_aes_set_mode(dd, rctx);
 986
 987	err = atmel_aes_hw_init(dd);
 988	if (err)
 989		return atmel_aes_complete(dd, err);
 990
 991	atmel_aes_write_ctrl(dd, use_dma, req->info);
 992	if (use_dma)
 993		return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
 
 994					   atmel_aes_transfer_complete);
 995
 996	return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
 997				   atmel_aes_transfer_complete);
 998}
 999
1000static inline struct atmel_aes_ctr_ctx *
1001atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
1002{
1003	return container_of(ctx, struct atmel_aes_ctr_ctx, base);
1004}
1005
1006static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
1007{
1008	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1009	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1010	struct scatterlist *src, *dst;
1011	u32 ctr, blocks;
1012	size_t datalen;
 
 
1013	bool use_dma, fragmented = false;
1014
1015	/* Check for transfer completion. */
1016	ctx->offset += dd->total;
1017	if (ctx->offset >= req->nbytes)
1018		return atmel_aes_transfer_complete(dd);
1019
1020	/* Compute data length. */
1021	datalen = req->nbytes - ctx->offset;
1022	blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1023	ctr = be32_to_cpu(ctx->iv[3]);
1024	if (dd->caps.has_ctr32) {
1025		/* Check 32bit counter overflow. */
1026		u32 start = ctr;
1027		u32 end = start + blocks - 1;
1028
1029		if (end < start) {
1030			ctr |= 0xffffffff;
1031			datalen = AES_BLOCK_SIZE * -start;
1032			fragmented = true;
1033		}
1034	} else {
1035		/* Check 16bit counter overflow. */
1036		u16 start = ctr & 0xffff;
1037		u16 end = start + (u16)blocks - 1;
1038
1039		if (blocks >> 16 || end < start) {
1040			ctr |= 0xffff;
1041			datalen = AES_BLOCK_SIZE * (0x10000-start);
1042			fragmented = true;
1043		}
1044	}
 
1045	use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1046
1047	/* Jump to offset. */
1048	src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1049	dst = ((req->src == req->dst) ? src :
1050	       scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1051
1052	/* Configure hardware. */
1053	atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1054	if (unlikely(fragmented)) {
1055		/*
1056		 * Increment the counter manually to cope with the hardware
1057		 * counter overflow.
1058		 */
1059		ctx->iv[3] = cpu_to_be32(ctr);
1060		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1061	}
1062
1063	if (use_dma)
1064		return atmel_aes_dma_start(dd, src, dst, datalen,
1065					   atmel_aes_ctr_transfer);
1066
1067	return atmel_aes_cpu_start(dd, src, dst, datalen,
1068				   atmel_aes_ctr_transfer);
1069}
1070
1071static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1072{
1073	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1074	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1075	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
1076	int err;
1077
1078	atmel_aes_set_mode(dd, rctx);
1079
1080	err = atmel_aes_hw_init(dd);
1081	if (err)
1082		return atmel_aes_complete(dd, err);
1083
1084	memcpy(ctx->iv, req->info, AES_BLOCK_SIZE);
1085	ctx->offset = 0;
1086	dd->total = 0;
1087	return atmel_aes_ctr_transfer(dd);
1088}
1089
1090static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
1091{
1092	struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
1093	struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
1094	struct atmel_aes_reqctx *rctx;
1095	struct atmel_aes_dev *dd;
1096
1097	switch (mode & AES_FLAGS_OPMODE_MASK) {
1098	case AES_FLAGS_CFB8:
1099		ctx->block_size = CFB8_BLOCK_SIZE;
1100		break;
1101
1102	case AES_FLAGS_CFB16:
1103		ctx->block_size = CFB16_BLOCK_SIZE;
1104		break;
1105
1106	case AES_FLAGS_CFB32:
1107		ctx->block_size = CFB32_BLOCK_SIZE;
1108		break;
1109
1110	case AES_FLAGS_CFB64:
1111		ctx->block_size = CFB64_BLOCK_SIZE;
1112		break;
1113
1114	default:
1115		ctx->block_size = AES_BLOCK_SIZE;
1116		break;
1117	}
1118	ctx->is_aead = false;
1119
1120	dd = atmel_aes_find_dev(ctx);
1121	if (!dd)
1122		return -ENODEV;
1123
1124	rctx = ablkcipher_request_ctx(req);
1125	rctx->mode = mode;
1126
1127	if (!(mode & AES_FLAGS_ENCRYPT) && (req->src == req->dst)) {
1128		int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
1129
1130		scatterwalk_map_and_copy(rctx->lastc, req->src,
1131			(req->nbytes - ivsize), ivsize, 0);
 
 
 
1132	}
1133
1134	return atmel_aes_handle_queue(dd, &req->base);
1135}
1136
1137static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1138			   unsigned int keylen)
1139{
1140	struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1141
1142	if (keylen != AES_KEYSIZE_128 &&
1143	    keylen != AES_KEYSIZE_192 &&
1144	    keylen != AES_KEYSIZE_256) {
1145		crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1146		return -EINVAL;
1147	}
1148
1149	memcpy(ctx->key, key, keylen);
1150	ctx->keylen = keylen;
1151
1152	return 0;
1153}
1154
1155static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req)
1156{
1157	return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1158}
1159
1160static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req)
1161{
1162	return atmel_aes_crypt(req, AES_FLAGS_ECB);
1163}
1164
1165static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req)
1166{
1167	return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1168}
1169
1170static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req)
1171{
1172	return atmel_aes_crypt(req, AES_FLAGS_CBC);
1173}
1174
1175static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req)
1176{
1177	return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1178}
1179
1180static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req)
1181{
1182	return atmel_aes_crypt(req, AES_FLAGS_OFB);
1183}
1184
1185static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req)
1186{
1187	return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1188}
1189
1190static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req)
1191{
1192	return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1193}
1194
1195static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req)
1196{
1197	return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1198}
1199
1200static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req)
1201{
1202	return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1203}
1204
1205static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req)
1206{
1207	return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1208}
1209
1210static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req)
1211{
1212	return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1213}
1214
1215static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req)
1216{
1217	return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1218}
1219
1220static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req)
1221{
1222	return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1223}
1224
1225static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req)
1226{
1227	return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1228}
1229
1230static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req)
1231{
1232	return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1233}
1234
1235static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req)
1236{
1237	return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1238}
1239
1240static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req)
1241{
1242	return atmel_aes_crypt(req, AES_FLAGS_CTR);
1243}
1244
1245static int atmel_aes_cra_init(struct crypto_tfm *tfm)
1246{
1247	struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1248
1249	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1250	ctx->base.start = atmel_aes_start;
1251
1252	return 0;
1253}
1254
1255static int atmel_aes_ctr_cra_init(struct crypto_tfm *tfm)
1256{
1257	struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1258
1259	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1260	ctx->base.start = atmel_aes_ctr_start;
1261
1262	return 0;
1263}
1264
1265static struct crypto_alg aes_algs[] = {
1266{
1267	.cra_name		= "ecb(aes)",
1268	.cra_driver_name	= "atmel-ecb-aes",
1269	.cra_priority		= ATMEL_AES_PRIORITY,
1270	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1271	.cra_blocksize		= AES_BLOCK_SIZE,
1272	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1273	.cra_alignmask		= 0xf,
1274	.cra_type		= &crypto_ablkcipher_type,
1275	.cra_module		= THIS_MODULE,
1276	.cra_init		= atmel_aes_cra_init,
1277	.cra_u.ablkcipher = {
1278		.min_keysize	= AES_MIN_KEY_SIZE,
1279		.max_keysize	= AES_MAX_KEY_SIZE,
1280		.setkey		= atmel_aes_setkey,
1281		.encrypt	= atmel_aes_ecb_encrypt,
1282		.decrypt	= atmel_aes_ecb_decrypt,
1283	}
1284},
1285{
1286	.cra_name		= "cbc(aes)",
1287	.cra_driver_name	= "atmel-cbc-aes",
1288	.cra_priority		= ATMEL_AES_PRIORITY,
1289	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1290	.cra_blocksize		= AES_BLOCK_SIZE,
1291	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1292	.cra_alignmask		= 0xf,
1293	.cra_type		= &crypto_ablkcipher_type,
1294	.cra_module		= THIS_MODULE,
1295	.cra_init		= atmel_aes_cra_init,
1296	.cra_u.ablkcipher = {
1297		.min_keysize	= AES_MIN_KEY_SIZE,
1298		.max_keysize	= AES_MAX_KEY_SIZE,
1299		.ivsize		= AES_BLOCK_SIZE,
1300		.setkey		= atmel_aes_setkey,
1301		.encrypt	= atmel_aes_cbc_encrypt,
1302		.decrypt	= atmel_aes_cbc_decrypt,
1303	}
1304},
1305{
1306	.cra_name		= "ofb(aes)",
1307	.cra_driver_name	= "atmel-ofb-aes",
1308	.cra_priority		= ATMEL_AES_PRIORITY,
1309	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1310	.cra_blocksize		= AES_BLOCK_SIZE,
1311	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1312	.cra_alignmask		= 0xf,
1313	.cra_type		= &crypto_ablkcipher_type,
1314	.cra_module		= THIS_MODULE,
1315	.cra_init		= atmel_aes_cra_init,
1316	.cra_u.ablkcipher = {
1317		.min_keysize	= AES_MIN_KEY_SIZE,
1318		.max_keysize	= AES_MAX_KEY_SIZE,
1319		.ivsize		= AES_BLOCK_SIZE,
1320		.setkey		= atmel_aes_setkey,
1321		.encrypt	= atmel_aes_ofb_encrypt,
1322		.decrypt	= atmel_aes_ofb_decrypt,
1323	}
1324},
1325{
1326	.cra_name		= "cfb(aes)",
1327	.cra_driver_name	= "atmel-cfb-aes",
1328	.cra_priority		= ATMEL_AES_PRIORITY,
1329	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1330	.cra_blocksize		= AES_BLOCK_SIZE,
1331	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1332	.cra_alignmask		= 0xf,
1333	.cra_type		= &crypto_ablkcipher_type,
1334	.cra_module		= THIS_MODULE,
1335	.cra_init		= atmel_aes_cra_init,
1336	.cra_u.ablkcipher = {
1337		.min_keysize	= AES_MIN_KEY_SIZE,
1338		.max_keysize	= AES_MAX_KEY_SIZE,
1339		.ivsize		= AES_BLOCK_SIZE,
1340		.setkey		= atmel_aes_setkey,
1341		.encrypt	= atmel_aes_cfb_encrypt,
1342		.decrypt	= atmel_aes_cfb_decrypt,
1343	}
1344},
1345{
1346	.cra_name		= "cfb32(aes)",
1347	.cra_driver_name	= "atmel-cfb32-aes",
1348	.cra_priority		= ATMEL_AES_PRIORITY,
1349	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1350	.cra_blocksize		= CFB32_BLOCK_SIZE,
1351	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1352	.cra_alignmask		= 0x3,
1353	.cra_type		= &crypto_ablkcipher_type,
1354	.cra_module		= THIS_MODULE,
1355	.cra_init		= atmel_aes_cra_init,
1356	.cra_u.ablkcipher = {
1357		.min_keysize	= AES_MIN_KEY_SIZE,
1358		.max_keysize	= AES_MAX_KEY_SIZE,
1359		.ivsize		= AES_BLOCK_SIZE,
1360		.setkey		= atmel_aes_setkey,
1361		.encrypt	= atmel_aes_cfb32_encrypt,
1362		.decrypt	= atmel_aes_cfb32_decrypt,
1363	}
1364},
1365{
1366	.cra_name		= "cfb16(aes)",
1367	.cra_driver_name	= "atmel-cfb16-aes",
1368	.cra_priority		= ATMEL_AES_PRIORITY,
1369	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1370	.cra_blocksize		= CFB16_BLOCK_SIZE,
1371	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1372	.cra_alignmask		= 0x1,
1373	.cra_type		= &crypto_ablkcipher_type,
1374	.cra_module		= THIS_MODULE,
1375	.cra_init		= atmel_aes_cra_init,
1376	.cra_u.ablkcipher = {
1377		.min_keysize	= AES_MIN_KEY_SIZE,
1378		.max_keysize	= AES_MAX_KEY_SIZE,
1379		.ivsize		= AES_BLOCK_SIZE,
1380		.setkey		= atmel_aes_setkey,
1381		.encrypt	= atmel_aes_cfb16_encrypt,
1382		.decrypt	= atmel_aes_cfb16_decrypt,
1383	}
1384},
1385{
1386	.cra_name		= "cfb8(aes)",
1387	.cra_driver_name	= "atmel-cfb8-aes",
1388	.cra_priority		= ATMEL_AES_PRIORITY,
1389	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1390	.cra_blocksize		= CFB8_BLOCK_SIZE,
1391	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1392	.cra_alignmask		= 0x0,
1393	.cra_type		= &crypto_ablkcipher_type,
1394	.cra_module		= THIS_MODULE,
1395	.cra_init		= atmel_aes_cra_init,
1396	.cra_u.ablkcipher = {
1397		.min_keysize	= AES_MIN_KEY_SIZE,
1398		.max_keysize	= AES_MAX_KEY_SIZE,
1399		.ivsize		= AES_BLOCK_SIZE,
1400		.setkey		= atmel_aes_setkey,
1401		.encrypt	= atmel_aes_cfb8_encrypt,
1402		.decrypt	= atmel_aes_cfb8_decrypt,
1403	}
1404},
1405{
1406	.cra_name		= "ctr(aes)",
1407	.cra_driver_name	= "atmel-ctr-aes",
1408	.cra_priority		= ATMEL_AES_PRIORITY,
1409	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1410	.cra_blocksize		= 1,
1411	.cra_ctxsize		= sizeof(struct atmel_aes_ctr_ctx),
1412	.cra_alignmask		= 0xf,
1413	.cra_type		= &crypto_ablkcipher_type,
1414	.cra_module		= THIS_MODULE,
1415	.cra_init		= atmel_aes_ctr_cra_init,
1416	.cra_u.ablkcipher = {
1417		.min_keysize	= AES_MIN_KEY_SIZE,
1418		.max_keysize	= AES_MAX_KEY_SIZE,
1419		.ivsize		= AES_BLOCK_SIZE,
1420		.setkey		= atmel_aes_setkey,
1421		.encrypt	= atmel_aes_ctr_encrypt,
1422		.decrypt	= atmel_aes_ctr_decrypt,
1423	}
1424},
1425};
1426
1427static struct crypto_alg aes_cfb64_alg = {
1428	.cra_name		= "cfb64(aes)",
1429	.cra_driver_name	= "atmel-cfb64-aes",
1430	.cra_priority		= ATMEL_AES_PRIORITY,
1431	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1432	.cra_blocksize		= CFB64_BLOCK_SIZE,
1433	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1434	.cra_alignmask		= 0x7,
1435	.cra_type		= &crypto_ablkcipher_type,
1436	.cra_module		= THIS_MODULE,
1437	.cra_init		= atmel_aes_cra_init,
1438	.cra_u.ablkcipher = {
1439		.min_keysize	= AES_MIN_KEY_SIZE,
1440		.max_keysize	= AES_MAX_KEY_SIZE,
1441		.ivsize		= AES_BLOCK_SIZE,
1442		.setkey		= atmel_aes_setkey,
1443		.encrypt	= atmel_aes_cfb64_encrypt,
1444		.decrypt	= atmel_aes_cfb64_decrypt,
1445	}
1446};
1447
1448
1449/* gcm aead functions */
1450
1451static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1452			       const u32 *data, size_t datalen,
1453			       const u32 *ghash_in, u32 *ghash_out,
1454			       atmel_aes_fn_t resume);
1455static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1456static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1457
1458static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1459static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1460static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1461static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1462static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1463static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1464static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1465
1466static inline struct atmel_aes_gcm_ctx *
1467atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1468{
1469	return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1470}
1471
1472static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1473			       const u32 *data, size_t datalen,
1474			       const u32 *ghash_in, u32 *ghash_out,
1475			       atmel_aes_fn_t resume)
1476{
1477	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1478
1479	dd->data = (u32 *)data;
1480	dd->datalen = datalen;
1481	ctx->ghash_in = ghash_in;
1482	ctx->ghash_out = ghash_out;
1483	ctx->ghash_resume = resume;
1484
1485	atmel_aes_write_ctrl(dd, false, NULL);
1486	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1487}
1488
1489static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1490{
1491	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1492
1493	/* Set the data length. */
1494	atmel_aes_write(dd, AES_AADLENR, dd->total);
1495	atmel_aes_write(dd, AES_CLENR, 0);
1496
1497	/* If needed, overwrite the GCM Intermediate Hash Word Registers */
1498	if (ctx->ghash_in)
1499		atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1500
1501	return atmel_aes_gcm_ghash_finalize(dd);
1502}
1503
1504static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1505{
1506	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1507	u32 isr;
1508
1509	/* Write data into the Input Data Registers. */
1510	while (dd->datalen > 0) {
1511		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1512		dd->data += 4;
1513		dd->datalen -= AES_BLOCK_SIZE;
1514
1515		isr = atmel_aes_read(dd, AES_ISR);
1516		if (!(isr & AES_INT_DATARDY)) {
1517			dd->resume = atmel_aes_gcm_ghash_finalize;
1518			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1519			return -EINPROGRESS;
1520		}
1521	}
1522
1523	/* Read the computed hash from GHASHRx. */
1524	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1525
1526	return ctx->ghash_resume(dd);
1527}
1528
1529
1530static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1531{
1532	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1533	struct aead_request *req = aead_request_cast(dd->areq);
1534	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1535	struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1536	size_t ivsize = crypto_aead_ivsize(tfm);
1537	size_t datalen, padlen;
1538	const void *iv = req->iv;
1539	u8 *data = dd->buf;
1540	int err;
1541
1542	atmel_aes_set_mode(dd, rctx);
1543
1544	err = atmel_aes_hw_init(dd);
1545	if (err)
1546		return atmel_aes_complete(dd, err);
1547
1548	if (likely(ivsize == GCM_AES_IV_SIZE)) {
1549		memcpy(ctx->j0, iv, ivsize);
1550		ctx->j0[3] = cpu_to_be32(1);
1551		return atmel_aes_gcm_process(dd);
1552	}
1553
1554	padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1555	datalen = ivsize + padlen + AES_BLOCK_SIZE;
1556	if (datalen > dd->buflen)
1557		return atmel_aes_complete(dd, -EINVAL);
1558
1559	memcpy(data, iv, ivsize);
1560	memset(data + ivsize, 0, padlen + sizeof(u64));
1561	((u64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1562
1563	return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1564				   NULL, ctx->j0, atmel_aes_gcm_process);
1565}
1566
1567static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1568{
1569	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1570	struct aead_request *req = aead_request_cast(dd->areq);
1571	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1572	bool enc = atmel_aes_is_encrypt(dd);
1573	u32 authsize;
1574
1575	/* Compute text length. */
1576	authsize = crypto_aead_authsize(tfm);
1577	ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1578
1579	/*
1580	 * According to tcrypt test suite, the GCM Automatic Tag Generation
1581	 * fails when both the message and its associated data are empty.
1582	 */
1583	if (likely(req->assoclen != 0 || ctx->textlen != 0))
1584		dd->flags |= AES_FLAGS_GTAGEN;
1585
1586	atmel_aes_write_ctrl(dd, false, NULL);
1587	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1588}
1589
1590static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1591{
1592	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1593	struct aead_request *req = aead_request_cast(dd->areq);
1594	u32 j0_lsw, *j0 = ctx->j0;
1595	size_t padlen;
1596
1597	/* Write incr32(J0) into IV. */
1598	j0_lsw = j0[3];
1599	j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
1600	atmel_aes_write_block(dd, AES_IVR(0), j0);
1601	j0[3] = j0_lsw;
1602
1603	/* Set aad and text lengths. */
1604	atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1605	atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1606
1607	/* Check whether AAD are present. */
1608	if (unlikely(req->assoclen == 0)) {
1609		dd->datalen = 0;
1610		return atmel_aes_gcm_data(dd);
1611	}
1612
1613	/* Copy assoc data and add padding. */
1614	padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1615	if (unlikely(req->assoclen + padlen > dd->buflen))
1616		return atmel_aes_complete(dd, -EINVAL);
1617	sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1618
1619	/* Write assoc data into the Input Data register. */
1620	dd->data = (u32 *)dd->buf;
1621	dd->datalen = req->assoclen + padlen;
1622	return atmel_aes_gcm_data(dd);
1623}
1624
1625static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1626{
1627	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1628	struct aead_request *req = aead_request_cast(dd->areq);
1629	bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1630	struct scatterlist *src, *dst;
1631	u32 isr, mr;
1632
1633	/* Write AAD first. */
1634	while (dd->datalen > 0) {
1635		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1636		dd->data += 4;
1637		dd->datalen -= AES_BLOCK_SIZE;
1638
1639		isr = atmel_aes_read(dd, AES_ISR);
1640		if (!(isr & AES_INT_DATARDY)) {
1641			dd->resume = atmel_aes_gcm_data;
1642			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1643			return -EINPROGRESS;
1644		}
1645	}
1646
1647	/* GMAC only. */
1648	if (unlikely(ctx->textlen == 0))
1649		return atmel_aes_gcm_tag_init(dd);
1650
1651	/* Prepare src and dst scatter lists to transfer cipher/plain texts */
1652	src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1653	dst = ((req->src == req->dst) ? src :
1654	       scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1655
1656	if (use_dma) {
1657		/* Update the Mode Register for DMA transfers. */
1658		mr = atmel_aes_read(dd, AES_MR);
1659		mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1660		mr |= AES_MR_SMOD_IDATAR0;
1661		if (dd->caps.has_dualbuff)
1662			mr |= AES_MR_DUALBUFF;
1663		atmel_aes_write(dd, AES_MR, mr);
1664
1665		return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1666					   atmel_aes_gcm_tag_init);
1667	}
1668
1669	return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1670				   atmel_aes_gcm_tag_init);
1671}
1672
1673static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1674{
1675	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1676	struct aead_request *req = aead_request_cast(dd->areq);
1677	u64 *data = dd->buf;
1678
1679	if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1680		if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1681			dd->resume = atmel_aes_gcm_tag_init;
1682			atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1683			return -EINPROGRESS;
1684		}
1685
1686		return atmel_aes_gcm_finalize(dd);
1687	}
1688
1689	/* Read the GCM Intermediate Hash Word Registers. */
1690	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1691
1692	data[0] = cpu_to_be64(req->assoclen * 8);
1693	data[1] = cpu_to_be64(ctx->textlen * 8);
1694
1695	return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1696				   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1697}
1698
1699static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1700{
1701	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1702	unsigned long flags;
1703
1704	/*
1705	 * Change mode to CTR to complete the tag generation.
1706	 * Use J0 as Initialization Vector.
1707	 */
1708	flags = dd->flags;
1709	dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1710	dd->flags |= AES_FLAGS_CTR;
1711	atmel_aes_write_ctrl(dd, false, ctx->j0);
1712	dd->flags = flags;
1713
1714	atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1715	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1716}
1717
1718static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1719{
1720	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1721	struct aead_request *req = aead_request_cast(dd->areq);
1722	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1723	bool enc = atmel_aes_is_encrypt(dd);
1724	u32 offset, authsize, itag[4], *otag = ctx->tag;
1725	int err;
1726
1727	/* Read the computed tag. */
1728	if (likely(dd->flags & AES_FLAGS_GTAGEN))
1729		atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1730	else
1731		atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1732
1733	offset = req->assoclen + ctx->textlen;
1734	authsize = crypto_aead_authsize(tfm);
1735	if (enc) {
1736		scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1737		err = 0;
1738	} else {
1739		scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1740		err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1741	}
1742
1743	return atmel_aes_complete(dd, err);
1744}
1745
1746static int atmel_aes_gcm_crypt(struct aead_request *req,
1747			       unsigned long mode)
1748{
1749	struct atmel_aes_base_ctx *ctx;
1750	struct atmel_aes_reqctx *rctx;
1751	struct atmel_aes_dev *dd;
1752
1753	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1754	ctx->block_size = AES_BLOCK_SIZE;
1755	ctx->is_aead = true;
1756
1757	dd = atmel_aes_find_dev(ctx);
1758	if (!dd)
1759		return -ENODEV;
1760
1761	rctx = aead_request_ctx(req);
1762	rctx->mode = AES_FLAGS_GCM | mode;
1763
1764	return atmel_aes_handle_queue(dd, &req->base);
1765}
1766
1767static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1768				unsigned int keylen)
1769{
1770	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1771
1772	if (keylen != AES_KEYSIZE_256 &&
1773	    keylen != AES_KEYSIZE_192 &&
1774	    keylen != AES_KEYSIZE_128) {
1775		crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1776		return -EINVAL;
1777	}
1778
1779	memcpy(ctx->key, key, keylen);
1780	ctx->keylen = keylen;
1781
1782	return 0;
1783}
1784
1785static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1786				     unsigned int authsize)
1787{
1788	/* Same as crypto_gcm_authsize() from crypto/gcm.c */
1789	switch (authsize) {
1790	case 4:
1791	case 8:
1792	case 12:
1793	case 13:
1794	case 14:
1795	case 15:
1796	case 16:
1797		break;
1798	default:
1799		return -EINVAL;
1800	}
1801
1802	return 0;
1803}
1804
1805static int atmel_aes_gcm_encrypt(struct aead_request *req)
1806{
1807	return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1808}
1809
1810static int atmel_aes_gcm_decrypt(struct aead_request *req)
1811{
1812	return atmel_aes_gcm_crypt(req, 0);
1813}
1814
1815static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1816{
1817	struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1818
1819	crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1820	ctx->base.start = atmel_aes_gcm_start;
1821
1822	return 0;
1823}
1824
1825static struct aead_alg aes_gcm_alg = {
1826	.setkey		= atmel_aes_gcm_setkey,
1827	.setauthsize	= atmel_aes_gcm_setauthsize,
1828	.encrypt	= atmel_aes_gcm_encrypt,
1829	.decrypt	= atmel_aes_gcm_decrypt,
1830	.init		= atmel_aes_gcm_init,
1831	.ivsize		= GCM_AES_IV_SIZE,
1832	.maxauthsize	= AES_BLOCK_SIZE,
1833
1834	.base = {
1835		.cra_name		= "gcm(aes)",
1836		.cra_driver_name	= "atmel-gcm-aes",
1837		.cra_priority		= ATMEL_AES_PRIORITY,
1838		.cra_flags		= CRYPTO_ALG_ASYNC,
1839		.cra_blocksize		= 1,
1840		.cra_ctxsize		= sizeof(struct atmel_aes_gcm_ctx),
1841		.cra_alignmask		= 0xf,
1842		.cra_module		= THIS_MODULE,
1843	},
1844};
1845
1846
1847/* xts functions */
1848
1849static inline struct atmel_aes_xts_ctx *
1850atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1851{
1852	return container_of(ctx, struct atmel_aes_xts_ctx, base);
1853}
1854
1855static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1856
1857static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1858{
1859	struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1860	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1861	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
1862	unsigned long flags;
1863	int err;
1864
1865	atmel_aes_set_mode(dd, rctx);
1866
1867	err = atmel_aes_hw_init(dd);
1868	if (err)
1869		return atmel_aes_complete(dd, err);
1870
1871	/* Compute the tweak value from req->info with ecb(aes). */
1872	flags = dd->flags;
1873	dd->flags &= ~AES_FLAGS_MODE_MASK;
1874	dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1875	atmel_aes_write_ctrl_key(dd, false, NULL,
1876				 ctx->key2, ctx->base.keylen);
1877	dd->flags = flags;
1878
1879	atmel_aes_write_block(dd, AES_IDATAR(0), req->info);
1880	return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1881}
1882
1883static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1884{
1885	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1886	bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD);
1887	u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1888	static const u32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1889	u8 *tweak_bytes = (u8 *)tweak;
1890	int i;
1891
1892	/* Read the computed ciphered tweak value. */
1893	atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1894	/*
1895	 * Hardware quirk:
1896	 * the order of the ciphered tweak bytes need to be reversed before
1897	 * writing them into the ODATARx registers.
1898	 */
1899	for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
1900		u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
1901
1902		tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
1903		tweak_bytes[i] = tmp;
1904	}
1905
1906	/* Process the data. */
1907	atmel_aes_write_ctrl(dd, use_dma, NULL);
1908	atmel_aes_write_block(dd, AES_TWR(0), tweak);
1909	atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1910	if (use_dma)
1911		return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
 
1912					   atmel_aes_transfer_complete);
1913
1914	return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
1915				   atmel_aes_transfer_complete);
1916}
1917
1918static int atmel_aes_xts_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1919				unsigned int keylen)
1920{
1921	struct atmel_aes_xts_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1922	int err;
1923
1924	err = xts_check_key(crypto_ablkcipher_tfm(tfm), key, keylen);
1925	if (err)
1926		return err;
1927
1928	memcpy(ctx->base.key, key, keylen/2);
1929	memcpy(ctx->key2, key + keylen/2, keylen/2);
1930	ctx->base.keylen = keylen/2;
1931
1932	return 0;
1933}
1934
1935static int atmel_aes_xts_encrypt(struct ablkcipher_request *req)
1936{
1937	return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1938}
1939
1940static int atmel_aes_xts_decrypt(struct ablkcipher_request *req)
1941{
1942	return atmel_aes_crypt(req, AES_FLAGS_XTS);
1943}
1944
1945static int atmel_aes_xts_cra_init(struct crypto_tfm *tfm)
1946{
1947	struct atmel_aes_xts_ctx *ctx = crypto_tfm_ctx(tfm);
1948
1949	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1950	ctx->base.start = atmel_aes_xts_start;
1951
1952	return 0;
1953}
1954
1955static struct crypto_alg aes_xts_alg = {
1956	.cra_name		= "xts(aes)",
1957	.cra_driver_name	= "atmel-xts-aes",
1958	.cra_priority		= ATMEL_AES_PRIORITY,
1959	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1960	.cra_blocksize		= AES_BLOCK_SIZE,
1961	.cra_ctxsize		= sizeof(struct atmel_aes_xts_ctx),
1962	.cra_alignmask		= 0xf,
1963	.cra_type		= &crypto_ablkcipher_type,
1964	.cra_module		= THIS_MODULE,
1965	.cra_init		= atmel_aes_xts_cra_init,
1966	.cra_u.ablkcipher = {
1967		.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1968		.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1969		.ivsize		= AES_BLOCK_SIZE,
1970		.setkey		= atmel_aes_xts_setkey,
1971		.encrypt	= atmel_aes_xts_encrypt,
1972		.decrypt	= atmel_aes_xts_decrypt,
1973	}
1974};
1975
1976#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
1977/* authenc aead functions */
1978
1979static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1980static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1981				  bool is_async);
1982static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1983				      bool is_async);
1984static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1985static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1986				   bool is_async);
1987
1988static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1989{
1990	struct aead_request *req = aead_request_cast(dd->areq);
1991	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1992
1993	if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1994		atmel_sha_authenc_abort(&rctx->auth_req);
1995	dd->flags &= ~AES_FLAGS_OWN_SHA;
1996}
1997
1998static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1999{
2000	struct aead_request *req = aead_request_cast(dd->areq);
2001	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2002	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2003	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2004	int err;
2005
2006	atmel_aes_set_mode(dd, &rctx->base);
2007
2008	err = atmel_aes_hw_init(dd);
2009	if (err)
2010		return atmel_aes_complete(dd, err);
2011
2012	return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
2013					  atmel_aes_authenc_init, dd);
2014}
2015
2016static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
2017				  bool is_async)
2018{
2019	struct aead_request *req = aead_request_cast(dd->areq);
2020	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2021
2022	if (is_async)
2023		dd->is_async = true;
2024	if (err)
2025		return atmel_aes_complete(dd, err);
2026
2027	/* If here, we've got the ownership of the SHA device. */
2028	dd->flags |= AES_FLAGS_OWN_SHA;
2029
2030	/* Configure the SHA device. */
2031	return atmel_sha_authenc_init(&rctx->auth_req,
2032				      req->src, req->assoclen,
2033				      rctx->textlen,
2034				      atmel_aes_authenc_transfer, dd);
2035}
2036
2037static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
2038				      bool is_async)
2039{
2040	struct aead_request *req = aead_request_cast(dd->areq);
2041	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2042	bool enc = atmel_aes_is_encrypt(dd);
2043	struct scatterlist *src, *dst;
2044	u32 iv[AES_BLOCK_SIZE / sizeof(u32)];
2045	u32 emr;
2046
2047	if (is_async)
2048		dd->is_async = true;
2049	if (err)
2050		return atmel_aes_complete(dd, err);
2051
2052	/* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
2053	src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
2054	dst = src;
2055
2056	if (req->src != req->dst)
2057		dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
2058
2059	/* Configure the AES device. */
2060	memcpy(iv, req->iv, sizeof(iv));
2061
2062	/*
2063	 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
2064	 * 'true' even if the data transfer is actually performed by the CPU (so
2065	 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
2066	 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
2067	 * must be set to *_MR_SMOD_IDATAR0.
2068	 */
2069	atmel_aes_write_ctrl(dd, true, iv);
2070	emr = AES_EMR_PLIPEN;
2071	if (!enc)
2072		emr |= AES_EMR_PLIPD;
2073	atmel_aes_write(dd, AES_EMR, emr);
2074
2075	/* Transfer data. */
2076	return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
2077				   atmel_aes_authenc_digest);
2078}
2079
2080static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
2081{
2082	struct aead_request *req = aead_request_cast(dd->areq);
2083	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2084
2085	/* atmel_sha_authenc_final() releases the SHA device. */
2086	dd->flags &= ~AES_FLAGS_OWN_SHA;
2087	return atmel_sha_authenc_final(&rctx->auth_req,
2088				       rctx->digest, sizeof(rctx->digest),
2089				       atmel_aes_authenc_final, dd);
2090}
2091
2092static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2093				   bool is_async)
2094{
2095	struct aead_request *req = aead_request_cast(dd->areq);
2096	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2097	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2098	bool enc = atmel_aes_is_encrypt(dd);
2099	u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2100	u32 offs, authsize;
2101
2102	if (is_async)
2103		dd->is_async = true;
2104	if (err)
2105		goto complete;
2106
2107	offs = req->assoclen + rctx->textlen;
2108	authsize = crypto_aead_authsize(tfm);
2109	if (enc) {
2110		scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2111	} else {
2112		scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2113		if (crypto_memneq(idigest, odigest, authsize))
2114			err = -EBADMSG;
2115	}
2116
2117complete:
2118	return atmel_aes_complete(dd, err);
2119}
2120
2121static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2122				    unsigned int keylen)
2123{
2124	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2125	struct crypto_authenc_keys keys;
2126	u32 flags;
2127	int err;
2128
2129	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2130		goto badkey;
2131
2132	if (keys.enckeylen > sizeof(ctx->base.key))
2133		goto badkey;
2134
2135	/* Save auth key. */
2136	flags = crypto_aead_get_flags(tfm);
2137	err = atmel_sha_authenc_setkey(ctx->auth,
2138				       keys.authkey, keys.authkeylen,
2139				       &flags);
2140	crypto_aead_set_flags(tfm, flags & CRYPTO_TFM_RES_MASK);
2141	if (err) {
2142		memzero_explicit(&keys, sizeof(keys));
2143		return err;
2144	}
2145
2146	/* Save enc key. */
2147	ctx->base.keylen = keys.enckeylen;
2148	memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2149
2150	memzero_explicit(&keys, sizeof(keys));
2151	return 0;
2152
2153badkey:
2154	crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
2155	memzero_explicit(&keys, sizeof(keys));
2156	return -EINVAL;
2157}
2158
2159static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2160				      unsigned long auth_mode)
2161{
2162	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2163	unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2164
2165	ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2166	if (IS_ERR(ctx->auth))
2167		return PTR_ERR(ctx->auth);
2168
2169	crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2170				      auth_reqsize));
2171	ctx->base.start = atmel_aes_authenc_start;
2172
2173	return 0;
2174}
2175
2176static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2177{
2178	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2179}
2180
2181static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2182{
2183	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2184}
2185
2186static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2187{
2188	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2189}
2190
2191static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2192{
2193	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2194}
2195
2196static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2197{
2198	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2199}
2200
2201static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2202{
2203	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2204
2205	atmel_sha_authenc_free(ctx->auth);
2206}
2207
2208static int atmel_aes_authenc_crypt(struct aead_request *req,
2209				   unsigned long mode)
2210{
2211	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2212	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2213	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2214	u32 authsize = crypto_aead_authsize(tfm);
2215	bool enc = (mode & AES_FLAGS_ENCRYPT);
2216	struct atmel_aes_dev *dd;
2217
2218	/* Compute text length. */
2219	if (!enc && req->cryptlen < authsize)
2220		return -EINVAL;
2221	rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2222
2223	/*
2224	 * Currently, empty messages are not supported yet:
2225	 * the SHA auto-padding can be used only on non-empty messages.
2226	 * Hence a special case needs to be implemented for empty message.
2227	 */
2228	if (!rctx->textlen && !req->assoclen)
2229		return -EINVAL;
2230
2231	rctx->base.mode = mode;
2232	ctx->block_size = AES_BLOCK_SIZE;
2233	ctx->is_aead = true;
2234
2235	dd = atmel_aes_find_dev(ctx);
2236	if (!dd)
2237		return -ENODEV;
2238
2239	return atmel_aes_handle_queue(dd, &req->base);
2240}
2241
2242static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2243{
2244	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2245}
2246
2247static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2248{
2249	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2250}
2251
2252static struct aead_alg aes_authenc_algs[] = {
2253{
2254	.setkey		= atmel_aes_authenc_setkey,
2255	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2256	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2257	.init		= atmel_aes_authenc_hmac_sha1_init_tfm,
2258	.exit		= atmel_aes_authenc_exit_tfm,
2259	.ivsize		= AES_BLOCK_SIZE,
2260	.maxauthsize	= SHA1_DIGEST_SIZE,
2261
2262	.base = {
2263		.cra_name		= "authenc(hmac(sha1),cbc(aes))",
2264		.cra_driver_name	= "atmel-authenc-hmac-sha1-cbc-aes",
2265		.cra_priority		= ATMEL_AES_PRIORITY,
2266		.cra_flags		= CRYPTO_ALG_ASYNC,
2267		.cra_blocksize		= AES_BLOCK_SIZE,
2268		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2269		.cra_alignmask		= 0xf,
2270		.cra_module		= THIS_MODULE,
2271	},
2272},
2273{
2274	.setkey		= atmel_aes_authenc_setkey,
2275	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2276	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2277	.init		= atmel_aes_authenc_hmac_sha224_init_tfm,
2278	.exit		= atmel_aes_authenc_exit_tfm,
2279	.ivsize		= AES_BLOCK_SIZE,
2280	.maxauthsize	= SHA224_DIGEST_SIZE,
2281
2282	.base = {
2283		.cra_name		= "authenc(hmac(sha224),cbc(aes))",
2284		.cra_driver_name	= "atmel-authenc-hmac-sha224-cbc-aes",
2285		.cra_priority		= ATMEL_AES_PRIORITY,
2286		.cra_flags		= CRYPTO_ALG_ASYNC,
2287		.cra_blocksize		= AES_BLOCK_SIZE,
2288		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2289		.cra_alignmask		= 0xf,
2290		.cra_module		= THIS_MODULE,
2291	},
2292},
2293{
2294	.setkey		= atmel_aes_authenc_setkey,
2295	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2296	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2297	.init		= atmel_aes_authenc_hmac_sha256_init_tfm,
2298	.exit		= atmel_aes_authenc_exit_tfm,
2299	.ivsize		= AES_BLOCK_SIZE,
2300	.maxauthsize	= SHA256_DIGEST_SIZE,
2301
2302	.base = {
2303		.cra_name		= "authenc(hmac(sha256),cbc(aes))",
2304		.cra_driver_name	= "atmel-authenc-hmac-sha256-cbc-aes",
2305		.cra_priority		= ATMEL_AES_PRIORITY,
2306		.cra_flags		= CRYPTO_ALG_ASYNC,
2307		.cra_blocksize		= AES_BLOCK_SIZE,
2308		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2309		.cra_alignmask		= 0xf,
2310		.cra_module		= THIS_MODULE,
2311	},
2312},
2313{
2314	.setkey		= atmel_aes_authenc_setkey,
2315	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2316	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2317	.init		= atmel_aes_authenc_hmac_sha384_init_tfm,
2318	.exit		= atmel_aes_authenc_exit_tfm,
2319	.ivsize		= AES_BLOCK_SIZE,
2320	.maxauthsize	= SHA384_DIGEST_SIZE,
2321
2322	.base = {
2323		.cra_name		= "authenc(hmac(sha384),cbc(aes))",
2324		.cra_driver_name	= "atmel-authenc-hmac-sha384-cbc-aes",
2325		.cra_priority		= ATMEL_AES_PRIORITY,
2326		.cra_flags		= CRYPTO_ALG_ASYNC,
2327		.cra_blocksize		= AES_BLOCK_SIZE,
2328		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2329		.cra_alignmask		= 0xf,
2330		.cra_module		= THIS_MODULE,
2331	},
2332},
2333{
2334	.setkey		= atmel_aes_authenc_setkey,
2335	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2336	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2337	.init		= atmel_aes_authenc_hmac_sha512_init_tfm,
2338	.exit		= atmel_aes_authenc_exit_tfm,
2339	.ivsize		= AES_BLOCK_SIZE,
2340	.maxauthsize	= SHA512_DIGEST_SIZE,
2341
2342	.base = {
2343		.cra_name		= "authenc(hmac(sha512),cbc(aes))",
2344		.cra_driver_name	= "atmel-authenc-hmac-sha512-cbc-aes",
2345		.cra_priority		= ATMEL_AES_PRIORITY,
2346		.cra_flags		= CRYPTO_ALG_ASYNC,
2347		.cra_blocksize		= AES_BLOCK_SIZE,
2348		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2349		.cra_alignmask		= 0xf,
2350		.cra_module		= THIS_MODULE,
2351	},
2352},
2353};
2354#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2355
2356/* Probe functions */
2357
2358static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2359{
2360	dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2361	dd->buflen = ATMEL_AES_BUFFER_SIZE;
2362	dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2363
2364	if (!dd->buf) {
2365		dev_err(dd->dev, "unable to alloc pages.\n");
2366		return -ENOMEM;
2367	}
2368
2369	return 0;
2370}
2371
2372static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2373{
2374	free_page((unsigned long)dd->buf);
2375}
2376
2377static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
2378{
2379	struct at_dma_slave	*sl = slave;
2380
2381	if (sl && sl->dma_dev == chan->device->dev) {
2382		chan->private = sl;
2383		return true;
2384	} else {
2385		return false;
2386	}
2387}
2388
2389static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
2390			      struct crypto_platform_data *pdata)
2391{
2392	struct at_dma_slave *slave;
2393	dma_cap_mask_t mask;
2394
2395	dma_cap_zero(mask);
2396	dma_cap_set(DMA_SLAVE, mask);
2397
2398	/* Try to grab 2 DMA channels */
2399	slave = &pdata->dma_slave->rxdata;
2400	dd->src.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2401							slave, dd->dev, "tx");
2402	if (!dd->src.chan)
2403		goto err_dma_in;
 
2404
2405	slave = &pdata->dma_slave->txdata;
2406	dd->dst.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2407							slave, dd->dev, "rx");
2408	if (!dd->dst.chan)
2409		goto err_dma_out;
 
2410
2411	return 0;
2412
2413err_dma_out:
2414	dma_release_channel(dd->src.chan);
2415err_dma_in:
2416	dev_warn(dd->dev, "no DMA channel available\n");
2417	return -ENODEV;
2418}
2419
2420static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2421{
2422	dma_release_channel(dd->dst.chan);
2423	dma_release_channel(dd->src.chan);
2424}
2425
2426static void atmel_aes_queue_task(unsigned long data)
2427{
2428	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2429
2430	atmel_aes_handle_queue(dd, NULL);
2431}
2432
2433static void atmel_aes_done_task(unsigned long data)
2434{
2435	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2436
2437	dd->is_async = true;
2438	(void)dd->resume(dd);
2439}
2440
2441static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2442{
2443	struct atmel_aes_dev *aes_dd = dev_id;
2444	u32 reg;
2445
2446	reg = atmel_aes_read(aes_dd, AES_ISR);
2447	if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2448		atmel_aes_write(aes_dd, AES_IDR, reg);
2449		if (AES_FLAGS_BUSY & aes_dd->flags)
2450			tasklet_schedule(&aes_dd->done_task);
2451		else
2452			dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2453		return IRQ_HANDLED;
2454	}
2455
2456	return IRQ_NONE;
2457}
2458
2459static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2460{
2461	int i;
2462
2463#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2464	if (dd->caps.has_authenc)
2465		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2466			crypto_unregister_aead(&aes_authenc_algs[i]);
2467#endif
2468
2469	if (dd->caps.has_xts)
2470		crypto_unregister_alg(&aes_xts_alg);
2471
2472	if (dd->caps.has_gcm)
2473		crypto_unregister_aead(&aes_gcm_alg);
2474
2475	if (dd->caps.has_cfb64)
2476		crypto_unregister_alg(&aes_cfb64_alg);
2477
2478	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2479		crypto_unregister_alg(&aes_algs[i]);
 
 
 
 
 
 
 
 
2480}
2481
2482static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2483{
2484	int err, i, j;
2485
2486	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2487		err = crypto_register_alg(&aes_algs[i]);
 
 
2488		if (err)
2489			goto err_aes_algs;
2490	}
2491
2492	if (dd->caps.has_cfb64) {
2493		err = crypto_register_alg(&aes_cfb64_alg);
 
 
2494		if (err)
2495			goto err_aes_cfb64_alg;
2496	}
2497
2498	if (dd->caps.has_gcm) {
 
 
2499		err = crypto_register_aead(&aes_gcm_alg);
2500		if (err)
2501			goto err_aes_gcm_alg;
2502	}
2503
2504	if (dd->caps.has_xts) {
2505		err = crypto_register_alg(&aes_xts_alg);
 
 
2506		if (err)
2507			goto err_aes_xts_alg;
2508	}
2509
2510#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2511	if (dd->caps.has_authenc) {
2512		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
 
 
2513			err = crypto_register_aead(&aes_authenc_algs[i]);
2514			if (err)
2515				goto err_aes_authenc_alg;
2516		}
2517	}
2518#endif
2519
2520	return 0;
2521
2522#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2523	/* i = ARRAY_SIZE(aes_authenc_algs); */
2524err_aes_authenc_alg:
2525	for (j = 0; j < i; j++)
2526		crypto_unregister_aead(&aes_authenc_algs[j]);
2527	crypto_unregister_alg(&aes_xts_alg);
2528#endif
2529err_aes_xts_alg:
2530	crypto_unregister_aead(&aes_gcm_alg);
2531err_aes_gcm_alg:
2532	crypto_unregister_alg(&aes_cfb64_alg);
2533err_aes_cfb64_alg:
2534	i = ARRAY_SIZE(aes_algs);
2535err_aes_algs:
2536	for (j = 0; j < i; j++)
2537		crypto_unregister_alg(&aes_algs[j]);
2538
2539	return err;
2540}
2541
2542static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2543{
2544	dd->caps.has_dualbuff = 0;
2545	dd->caps.has_cfb64 = 0;
2546	dd->caps.has_ctr32 = 0;
2547	dd->caps.has_gcm = 0;
2548	dd->caps.has_xts = 0;
2549	dd->caps.has_authenc = 0;
2550	dd->caps.max_burst_size = 1;
2551
2552	/* keep only major version number */
2553	switch (dd->hw_version & 0xff0) {
2554	case 0x500:
2555		dd->caps.has_dualbuff = 1;
2556		dd->caps.has_cfb64 = 1;
2557		dd->caps.has_ctr32 = 1;
2558		dd->caps.has_gcm = 1;
2559		dd->caps.has_xts = 1;
2560		dd->caps.has_authenc = 1;
2561		dd->caps.max_burst_size = 4;
2562		break;
2563	case 0x200:
2564		dd->caps.has_dualbuff = 1;
2565		dd->caps.has_cfb64 = 1;
2566		dd->caps.has_ctr32 = 1;
2567		dd->caps.has_gcm = 1;
2568		dd->caps.max_burst_size = 4;
2569		break;
2570	case 0x130:
2571		dd->caps.has_dualbuff = 1;
2572		dd->caps.has_cfb64 = 1;
2573		dd->caps.max_burst_size = 4;
2574		break;
2575	case 0x120:
2576		break;
2577	default:
2578		dev_warn(dd->dev,
2579				"Unmanaged aes version, set minimum capabilities\n");
2580		break;
2581	}
2582}
2583
2584#if defined(CONFIG_OF)
2585static const struct of_device_id atmel_aes_dt_ids[] = {
2586	{ .compatible = "atmel,at91sam9g46-aes" },
2587	{ /* sentinel */ }
2588};
2589MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2590
2591static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2592{
2593	struct device_node *np = pdev->dev.of_node;
2594	struct crypto_platform_data *pdata;
2595
2596	if (!np) {
2597		dev_err(&pdev->dev, "device node not found\n");
2598		return ERR_PTR(-EINVAL);
2599	}
2600
2601	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
2602	if (!pdata)
2603		return ERR_PTR(-ENOMEM);
2604
2605	pdata->dma_slave = devm_kzalloc(&pdev->dev,
2606					sizeof(*(pdata->dma_slave)),
2607					GFP_KERNEL);
2608	if (!pdata->dma_slave) {
2609		devm_kfree(&pdev->dev, pdata);
2610		return ERR_PTR(-ENOMEM);
2611	}
2612
2613	return pdata;
2614}
2615#else
2616static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2617{
2618	return ERR_PTR(-EINVAL);
2619}
2620#endif
2621
2622static int atmel_aes_probe(struct platform_device *pdev)
2623{
2624	struct atmel_aes_dev *aes_dd;
2625	struct crypto_platform_data *pdata;
2626	struct device *dev = &pdev->dev;
2627	struct resource *aes_res;
2628	int err;
2629
2630	pdata = pdev->dev.platform_data;
2631	if (!pdata) {
2632		pdata = atmel_aes_of_init(pdev);
2633		if (IS_ERR(pdata)) {
2634			err = PTR_ERR(pdata);
2635			goto aes_dd_err;
2636		}
2637	}
2638
2639	if (!pdata->dma_slave) {
2640		err = -ENXIO;
2641		goto aes_dd_err;
2642	}
2643
2644	aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2645	if (aes_dd == NULL) {
2646		err = -ENOMEM;
2647		goto aes_dd_err;
2648	}
2649
2650	aes_dd->dev = dev;
2651
2652	platform_set_drvdata(pdev, aes_dd);
2653
2654	INIT_LIST_HEAD(&aes_dd->list);
2655	spin_lock_init(&aes_dd->lock);
2656
2657	tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2658					(unsigned long)aes_dd);
2659	tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2660					(unsigned long)aes_dd);
2661
2662	crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2663
2664	/* Get the base address */
2665	aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2666	if (!aes_res) {
2667		dev_err(dev, "no MEM resource info\n");
2668		err = -ENODEV;
2669		goto res_err;
2670	}
2671	aes_dd->phys_base = aes_res->start;
2672
2673	/* Get the IRQ */
2674	aes_dd->irq = platform_get_irq(pdev,  0);
2675	if (aes_dd->irq < 0) {
2676		err = aes_dd->irq;
2677		goto res_err;
2678	}
2679
2680	err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2681			       IRQF_SHARED, "atmel-aes", aes_dd);
2682	if (err) {
2683		dev_err(dev, "unable to request aes irq.\n");
2684		goto res_err;
2685	}
2686
2687	/* Initializing the clock */
2688	aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2689	if (IS_ERR(aes_dd->iclk)) {
2690		dev_err(dev, "clock initialization failed.\n");
2691		err = PTR_ERR(aes_dd->iclk);
2692		goto res_err;
2693	}
2694
2695	aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2696	if (IS_ERR(aes_dd->io_base)) {
2697		dev_err(dev, "can't ioremap\n");
2698		err = PTR_ERR(aes_dd->io_base);
2699		goto res_err;
2700	}
2701
2702	err = clk_prepare(aes_dd->iclk);
2703	if (err)
2704		goto res_err;
2705
2706	err = atmel_aes_hw_version_init(aes_dd);
2707	if (err)
2708		goto iclk_unprepare;
2709
2710	atmel_aes_get_cap(aes_dd);
2711
2712#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2713	if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2714		err = -EPROBE_DEFER;
2715		goto iclk_unprepare;
2716	}
2717#endif
2718
2719	err = atmel_aes_buff_init(aes_dd);
2720	if (err)
2721		goto err_aes_buff;
2722
2723	err = atmel_aes_dma_init(aes_dd, pdata);
2724	if (err)
2725		goto err_aes_dma;
2726
2727	spin_lock(&atmel_aes.lock);
2728	list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2729	spin_unlock(&atmel_aes.lock);
2730
2731	err = atmel_aes_register_algs(aes_dd);
2732	if (err)
2733		goto err_algs;
2734
2735	dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2736			dma_chan_name(aes_dd->src.chan),
2737			dma_chan_name(aes_dd->dst.chan));
2738
2739	return 0;
2740
2741err_algs:
2742	spin_lock(&atmel_aes.lock);
2743	list_del(&aes_dd->list);
2744	spin_unlock(&atmel_aes.lock);
2745	atmel_aes_dma_cleanup(aes_dd);
2746err_aes_dma:
2747	atmel_aes_buff_cleanup(aes_dd);
2748err_aes_buff:
2749iclk_unprepare:
2750	clk_unprepare(aes_dd->iclk);
2751res_err:
2752	tasklet_kill(&aes_dd->done_task);
2753	tasklet_kill(&aes_dd->queue_task);
2754aes_dd_err:
2755	if (err != -EPROBE_DEFER)
2756		dev_err(dev, "initialization failed.\n");
2757
2758	return err;
2759}
2760
2761static int atmel_aes_remove(struct platform_device *pdev)
2762{
2763	struct atmel_aes_dev *aes_dd;
2764
2765	aes_dd = platform_get_drvdata(pdev);
2766	if (!aes_dd)
2767		return -ENODEV;
2768	spin_lock(&atmel_aes.lock);
2769	list_del(&aes_dd->list);
2770	spin_unlock(&atmel_aes.lock);
2771
2772	atmel_aes_unregister_algs(aes_dd);
2773
2774	tasklet_kill(&aes_dd->done_task);
2775	tasklet_kill(&aes_dd->queue_task);
2776
2777	atmel_aes_dma_cleanup(aes_dd);
2778	atmel_aes_buff_cleanup(aes_dd);
2779
2780	clk_unprepare(aes_dd->iclk);
2781
2782	return 0;
2783}
2784
2785static struct platform_driver atmel_aes_driver = {
2786	.probe		= atmel_aes_probe,
2787	.remove		= atmel_aes_remove,
2788	.driver		= {
2789		.name	= "atmel_aes",
2790		.of_match_table = of_match_ptr(atmel_aes_dt_ids),
2791	},
2792};
2793
2794module_platform_driver(atmel_aes_driver);
2795
2796MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2797MODULE_LICENSE("GPL v2");
2798MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");