Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * pptt.c - parsing of Processor Properties Topology Table (PPTT)
  4 *
  5 * Copyright (C) 2018, ARM
  6 *
  7 * This file implements parsing of the Processor Properties Topology Table
  8 * which is optionally used to describe the processor and cache topology.
  9 * Due to the relative pointers used throughout the table, this doesn't
 10 * leverage the existing subtable parsing in the kernel.
 11 *
 12 * The PPTT structure is an inverted tree, with each node potentially
 13 * holding one or two inverted tree data structures describing
 14 * the caches available at that level. Each cache structure optionally
 15 * contains properties describing the cache at a given level which can be
 16 * used to override hardware probed values.
 17 */
 18#define pr_fmt(fmt) "ACPI PPTT: " fmt
 19
 20#include <linux/acpi.h>
 21#include <linux/cacheinfo.h>
 22#include <acpi/processor.h>
 23
 24static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr,
 25							u32 pptt_ref)
 26{
 27	struct acpi_subtable_header *entry;
 28
 29	/* there isn't a subtable at reference 0 */
 30	if (pptt_ref < sizeof(struct acpi_subtable_header))
 31		return NULL;
 32
 33	if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
 34		return NULL;
 35
 36	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref);
 37
 38	if (entry->length == 0)
 39		return NULL;
 40
 41	if (pptt_ref + entry->length > table_hdr->length)
 42		return NULL;
 43
 44	return entry;
 45}
 46
 47static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr,
 48						   u32 pptt_ref)
 49{
 50	return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
 51}
 52
 53static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr,
 54						u32 pptt_ref)
 55{
 56	return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
 57}
 58
 59static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr,
 60							   struct acpi_pptt_processor *node,
 61							   int resource)
 62{
 63	u32 *ref;
 64
 65	if (resource >= node->number_of_priv_resources)
 66		return NULL;
 67
 68	ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor));
 69	ref += resource;
 70
 71	return fetch_pptt_subtable(table_hdr, *ref);
 72}
 73
 74static inline bool acpi_pptt_match_type(int table_type, int type)
 75{
 76	return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type ||
 77		table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type);
 78}
 79
 80/**
 81 * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
 82 * @table_hdr: Pointer to the head of the PPTT table
 83 * @local_level: passed res reflects this cache level
 84 * @res: cache resource in the PPTT we want to walk
 85 * @found: returns a pointer to the requested level if found
 86 * @level: the requested cache level
 87 * @type: the requested cache type
 88 *
 89 * Attempt to find a given cache level, while counting the max number
 90 * of cache levels for the cache node.
 91 *
 92 * Given a pptt resource, verify that it is a cache node, then walk
 93 * down each level of caches, counting how many levels are found
 94 * as well as checking the cache type (icache, dcache, unified). If a
 95 * level & type match, then we set found, and continue the search.
 96 * Once the entire cache branch has been walked return its max
 97 * depth.
 98 *
 99 * Return: The cache structure and the level we terminated with.
100 */
101static unsigned int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
102					 unsigned int local_level,
103					 struct acpi_subtable_header *res,
104					 struct acpi_pptt_cache **found,
105					 unsigned int level, int type)
106{
107	struct acpi_pptt_cache *cache;
108
109	if (res->type != ACPI_PPTT_TYPE_CACHE)
110		return 0;
111
112	cache = (struct acpi_pptt_cache *) res;
113	while (cache) {
114		local_level++;
115
116		if (local_level == level &&
117		    cache->flags & ACPI_PPTT_CACHE_TYPE_VALID &&
118		    acpi_pptt_match_type(cache->attributes, type)) {
119			if (*found != NULL && cache != *found)
120				pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");
121
122			pr_debug("Found cache @ level %u\n", level);
123			*found = cache;
124			/*
125			 * continue looking at this node's resource list
126			 * to verify that we don't find a duplicate
127			 * cache node.
128			 */
129		}
130		cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
131	}
132	return local_level;
133}
134
135static struct acpi_pptt_cache *
136acpi_find_cache_level(struct acpi_table_header *table_hdr,
137		      struct acpi_pptt_processor *cpu_node,
138		      unsigned int *starting_level, unsigned int level,
139		      int type)
140{
141	struct acpi_subtable_header *res;
142	unsigned int number_of_levels = *starting_level;
143	int resource = 0;
144	struct acpi_pptt_cache *ret = NULL;
145	unsigned int local_level;
146
147	/* walk down from processor node */
148	while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
149		resource++;
150
151		local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
152						   res, &ret, level, type);
153		/*
154		 * we are looking for the max depth. Since its potentially
155		 * possible for a given node to have resources with differing
156		 * depths verify that the depth we have found is the largest.
157		 */
158		if (number_of_levels < local_level)
159			number_of_levels = local_level;
160	}
161	if (number_of_levels > *starting_level)
162		*starting_level = number_of_levels;
163
164	return ret;
165}
166
167/**
168 * acpi_count_levels() - Given a PPTT table, and a CPU node, count the caches
169 * @table_hdr: Pointer to the head of the PPTT table
170 * @cpu_node: processor node we wish to count caches for
171 *
172 * Given a processor node containing a processing unit, walk into it and count
173 * how many levels exist solely for it, and then walk up each level until we hit
174 * the root node (ignore the package level because it may be possible to have
175 * caches that exist across packages). Count the number of cache levels that
176 * exist at each level on the way up.
177 *
178 * Return: Total number of levels found.
179 */
180static int acpi_count_levels(struct acpi_table_header *table_hdr,
181			     struct acpi_pptt_processor *cpu_node)
182{
183	int total_levels = 0;
184
185	do {
186		acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0);
187		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
188	} while (cpu_node);
189
190	return total_levels;
191}
192
193/**
194 * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
195 * @table_hdr: Pointer to the head of the PPTT table
196 * @node: passed node is checked to see if its a leaf
197 *
198 * Determine if the *node parameter is a leaf node by iterating the
199 * PPTT table, looking for nodes which reference it.
200 *
201 * Return: 0 if we find a node referencing the passed node (or table error),
202 * or 1 if we don't.
203 */
204static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr,
205			       struct acpi_pptt_processor *node)
206{
207	struct acpi_subtable_header *entry;
208	unsigned long table_end;
209	u32 node_entry;
210	struct acpi_pptt_processor *cpu_node;
211	u32 proc_sz;
212
213	if (table_hdr->revision > 1)
214		return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE);
215
216	table_end = (unsigned long)table_hdr + table_hdr->length;
217	node_entry = ACPI_PTR_DIFF(node, table_hdr);
218	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
219			     sizeof(struct acpi_table_pptt));
220	proc_sz = sizeof(struct acpi_pptt_processor *);
221
222	while ((unsigned long)entry + proc_sz < table_end) {
223		cpu_node = (struct acpi_pptt_processor *)entry;
224		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
225		    cpu_node->parent == node_entry)
226			return 0;
227		if (entry->length == 0)
228			return 0;
229		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
230				     entry->length);
231
232	}
233	return 1;
234}
235
236/**
237 * acpi_find_processor_node() - Given a PPTT table find the requested processor
238 * @table_hdr:  Pointer to the head of the PPTT table
239 * @acpi_cpu_id: CPU we are searching for
240 *
241 * Find the subtable entry describing the provided processor.
242 * This is done by iterating the PPTT table looking for processor nodes
243 * which have an acpi_processor_id that matches the acpi_cpu_id parameter
244 * passed into the function. If we find a node that matches this criteria
245 * we verify that its a leaf node in the topology rather than depending
246 * on the valid flag, which doesn't need to be set for leaf nodes.
247 *
248 * Return: NULL, or the processors acpi_pptt_processor*
249 */
250static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr,
251							    u32 acpi_cpu_id)
252{
253	struct acpi_subtable_header *entry;
254	unsigned long table_end;
255	struct acpi_pptt_processor *cpu_node;
256	u32 proc_sz;
257
258	table_end = (unsigned long)table_hdr + table_hdr->length;
259	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
260			     sizeof(struct acpi_table_pptt));
261	proc_sz = sizeof(struct acpi_pptt_processor *);
262
263	/* find the processor structure associated with this cpuid */
264	while ((unsigned long)entry + proc_sz < table_end) {
265		cpu_node = (struct acpi_pptt_processor *)entry;
266
267		if (entry->length == 0) {
268			pr_warn("Invalid zero length subtable\n");
269			break;
270		}
271		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
272		    acpi_cpu_id == cpu_node->acpi_processor_id &&
273		     acpi_pptt_leaf_node(table_hdr, cpu_node)) {
274			return (struct acpi_pptt_processor *)entry;
275		}
276
277		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
278				     entry->length);
279	}
280
281	return NULL;
282}
283
284static int acpi_find_cache_levels(struct acpi_table_header *table_hdr,
285				  u32 acpi_cpu_id)
286{
287	int number_of_levels = 0;
288	struct acpi_pptt_processor *cpu;
289
290	cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id);
291	if (cpu)
292		number_of_levels = acpi_count_levels(table_hdr, cpu);
293
294	return number_of_levels;
295}
296
297static u8 acpi_cache_type(enum cache_type type)
298{
299	switch (type) {
300	case CACHE_TYPE_DATA:
301		pr_debug("Looking for data cache\n");
302		return ACPI_PPTT_CACHE_TYPE_DATA;
303	case CACHE_TYPE_INST:
304		pr_debug("Looking for instruction cache\n");
305		return ACPI_PPTT_CACHE_TYPE_INSTR;
306	default:
307	case CACHE_TYPE_UNIFIED:
308		pr_debug("Looking for unified cache\n");
309		/*
310		 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
311		 * contains the bit pattern that will match both
312		 * ACPI unified bit patterns because we use it later
313		 * to match both cases.
314		 */
315		return ACPI_PPTT_CACHE_TYPE_UNIFIED;
316	}
317}
318
319static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr,
320						    u32 acpi_cpu_id,
321						    enum cache_type type,
322						    unsigned int level,
323						    struct acpi_pptt_processor **node)
324{
325	unsigned int total_levels = 0;
326	struct acpi_pptt_cache *found = NULL;
327	struct acpi_pptt_processor *cpu_node;
328	u8 acpi_type = acpi_cache_type(type);
329
330	pr_debug("Looking for CPU %d's level %u cache type %d\n",
331		 acpi_cpu_id, level, acpi_type);
332
333	cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
334
335	while (cpu_node && !found) {
336		found = acpi_find_cache_level(table_hdr, cpu_node,
337					      &total_levels, level, acpi_type);
338		*node = cpu_node;
339		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
340	}
341
342	return found;
343}
344
345/**
346 * update_cache_properties() - Update cacheinfo for the given processor
347 * @this_leaf: Kernel cache info structure being updated
348 * @found_cache: The PPTT node describing this cache instance
349 * @cpu_node: A unique reference to describe this cache instance
350 *
351 * The ACPI spec implies that the fields in the cache structures are used to
352 * extend and correct the information probed from the hardware. Lets only
353 * set fields that we determine are VALID.
354 *
355 * Return: nothing. Side effect of updating the global cacheinfo
356 */
357static void update_cache_properties(struct cacheinfo *this_leaf,
358				    struct acpi_pptt_cache *found_cache,
359				    struct acpi_pptt_processor *cpu_node)
360{
361	this_leaf->fw_token = cpu_node;
362	if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
363		this_leaf->size = found_cache->size;
364	if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
365		this_leaf->coherency_line_size = found_cache->line_size;
366	if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
367		this_leaf->number_of_sets = found_cache->number_of_sets;
368	if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
369		this_leaf->ways_of_associativity = found_cache->associativity;
370	if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) {
371		switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
372		case ACPI_PPTT_CACHE_POLICY_WT:
373			this_leaf->attributes = CACHE_WRITE_THROUGH;
374			break;
375		case ACPI_PPTT_CACHE_POLICY_WB:
376			this_leaf->attributes = CACHE_WRITE_BACK;
377			break;
378		}
379	}
380	if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) {
381		switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
382		case ACPI_PPTT_CACHE_READ_ALLOCATE:
383			this_leaf->attributes |= CACHE_READ_ALLOCATE;
384			break;
385		case ACPI_PPTT_CACHE_WRITE_ALLOCATE:
386			this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
387			break;
388		case ACPI_PPTT_CACHE_RW_ALLOCATE:
389		case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT:
390			this_leaf->attributes |=
391				CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE;
392			break;
393		}
394	}
395	/*
396	 * If cache type is NOCACHE, then the cache hasn't been specified
397	 * via other mechanisms.  Update the type if a cache type has been
398	 * provided.
399	 *
400	 * Note, we assume such caches are unified based on conventional system
401	 * design and known examples.  Significant work is required elsewhere to
402	 * fully support data/instruction only type caches which are only
403	 * specified in PPTT.
404	 */
405	if (this_leaf->type == CACHE_TYPE_NOCACHE &&
406	    found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)
407		this_leaf->type = CACHE_TYPE_UNIFIED;
408}
409
410static void cache_setup_acpi_cpu(struct acpi_table_header *table,
411				 unsigned int cpu)
412{
413	struct acpi_pptt_cache *found_cache;
414	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
415	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
416	struct cacheinfo *this_leaf;
417	unsigned int index = 0;
418	struct acpi_pptt_processor *cpu_node = NULL;
419
420	while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
421		this_leaf = this_cpu_ci->info_list + index;
422		found_cache = acpi_find_cache_node(table, acpi_cpu_id,
423						   this_leaf->type,
424						   this_leaf->level,
425						   &cpu_node);
426		pr_debug("found = %p %p\n", found_cache, cpu_node);
427		if (found_cache)
428			update_cache_properties(this_leaf,
429						found_cache,
430						cpu_node);
431
432		index++;
433	}
434}
435
436static bool flag_identical(struct acpi_table_header *table_hdr,
437			   struct acpi_pptt_processor *cpu)
438{
439	struct acpi_pptt_processor *next;
440
441	/* heterogeneous machines must use PPTT revision > 1 */
442	if (table_hdr->revision < 2)
443		return false;
444
445	/* Locate the last node in the tree with IDENTICAL set */
446	if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) {
447		next = fetch_pptt_node(table_hdr, cpu->parent);
448		if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL))
449			return true;
450	}
451
452	return false;
453}
454
455/* Passing level values greater than this will result in search termination */
456#define PPTT_ABORT_PACKAGE 0xFF
457
458static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr,
459							   struct acpi_pptt_processor *cpu,
460							   int level, int flag)
461{
462	struct acpi_pptt_processor *prev_node;
463
464	while (cpu && level) {
465		/* special case the identical flag to find last identical */
466		if (flag == ACPI_PPTT_ACPI_IDENTICAL) {
467			if (flag_identical(table_hdr, cpu))
468				break;
469		} else if (cpu->flags & flag)
470			break;
471		pr_debug("level %d\n", level);
472		prev_node = fetch_pptt_node(table_hdr, cpu->parent);
473		if (prev_node == NULL)
474			break;
475		cpu = prev_node;
476		level--;
477	}
478	return cpu;
479}
480
481static void acpi_pptt_warn_missing(void)
482{
483	pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n");
484}
485
486/**
487 * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
488 * @table: Pointer to the head of the PPTT table
489 * @cpu: Kernel logical CPU number
490 * @level: A level that terminates the search
491 * @flag: A flag which terminates the search
492 *
493 * Get a unique value given a CPU, and a topology level, that can be
494 * matched to determine which cpus share common topological features
495 * at that level.
496 *
497 * Return: Unique value, or -ENOENT if unable to locate CPU
498 */
499static int topology_get_acpi_cpu_tag(struct acpi_table_header *table,
500				     unsigned int cpu, int level, int flag)
501{
502	struct acpi_pptt_processor *cpu_node;
503	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
504
505	cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
506	if (cpu_node) {
507		cpu_node = acpi_find_processor_tag(table, cpu_node,
508						   level, flag);
509		/*
510		 * As per specification if the processor structure represents
511		 * an actual processor, then ACPI processor ID must be valid.
512		 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
513		 * should be set if the UID is valid
514		 */
515		if (level == 0 ||
516		    cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
517			return cpu_node->acpi_processor_id;
518		return ACPI_PTR_DIFF(cpu_node, table);
519	}
520	pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
521		    cpu, acpi_cpu_id);
522	return -ENOENT;
523}
524
525static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag)
526{
527	struct acpi_table_header *table;
528	acpi_status status;
529	int retval;
530
531	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
532	if (ACPI_FAILURE(status)) {
533		acpi_pptt_warn_missing();
534		return -ENOENT;
535	}
536	retval = topology_get_acpi_cpu_tag(table, cpu, level, flag);
537	pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n",
538		 cpu, level, retval);
539	acpi_put_table(table);
540
541	return retval;
542}
543
544/**
545 * check_acpi_cpu_flag() - Determine if CPU node has a flag set
546 * @cpu: Kernel logical CPU number
547 * @rev: The minimum PPTT revision defining the flag
548 * @flag: The flag itself
549 *
550 * Check the node representing a CPU for a given flag.
551 *
552 * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or
553 *	   the table revision isn't new enough.
554 *	   1, any passed flag set
555 *	   0, flag unset
556 */
557static int check_acpi_cpu_flag(unsigned int cpu, int rev, u32 flag)
558{
559	struct acpi_table_header *table;
560	acpi_status status;
561	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
562	struct acpi_pptt_processor *cpu_node = NULL;
563	int ret = -ENOENT;
564
565	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
566	if (ACPI_FAILURE(status)) {
567		acpi_pptt_warn_missing();
568		return ret;
569	}
570
571	if (table->revision >= rev)
572		cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
573
574	if (cpu_node)
575		ret = (cpu_node->flags & flag) != 0;
576
577	acpi_put_table(table);
578
579	return ret;
580}
581
582/**
583 * acpi_find_last_cache_level() - Determines the number of cache levels for a PE
584 * @cpu: Kernel logical CPU number
585 *
586 * Given a logical CPU number, returns the number of levels of cache represented
587 * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
588 * indicating we didn't find any cache levels.
589 *
590 * Return: Cache levels visible to this core.
591 */
592int acpi_find_last_cache_level(unsigned int cpu)
593{
594	u32 acpi_cpu_id;
595	struct acpi_table_header *table;
596	int number_of_levels = 0;
597	acpi_status status;
598
599	pr_debug("Cache Setup find last level CPU=%d\n", cpu);
600
601	acpi_cpu_id = get_acpi_id_for_cpu(cpu);
602	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
603	if (ACPI_FAILURE(status)) {
604		acpi_pptt_warn_missing();
605	} else {
606		number_of_levels = acpi_find_cache_levels(table, acpi_cpu_id);
607		acpi_put_table(table);
608	}
609	pr_debug("Cache Setup find last level level=%d\n", number_of_levels);
610
611	return number_of_levels;
612}
613
614/**
615 * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
616 * @cpu: Kernel logical CPU number
617 *
618 * Updates the global cache info provided by cpu_get_cacheinfo()
619 * when there are valid properties in the acpi_pptt_cache nodes. A
620 * successful parse may not result in any updates if none of the
621 * cache levels have any valid flags set.  Further, a unique value is
622 * associated with each known CPU cache entry. This unique value
623 * can be used to determine whether caches are shared between CPUs.
624 *
625 * Return: -ENOENT on failure to find table, or 0 on success
626 */
627int cache_setup_acpi(unsigned int cpu)
628{
629	struct acpi_table_header *table;
630	acpi_status status;
631
632	pr_debug("Cache Setup ACPI CPU %d\n", cpu);
633
634	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
635	if (ACPI_FAILURE(status)) {
636		acpi_pptt_warn_missing();
637		return -ENOENT;
638	}
639
640	cache_setup_acpi_cpu(table, cpu);
641	acpi_put_table(table);
642
643	return status;
644}
645
646/**
647 * acpi_pptt_cpu_is_thread() - Determine if CPU is a thread
648 * @cpu: Kernel logical CPU number
649 *
650 * Return: 1, a thread
651 *         0, not a thread
652 *         -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or
653 *         the table revision isn't new enough.
654 */
655int acpi_pptt_cpu_is_thread(unsigned int cpu)
656{
657	return check_acpi_cpu_flag(cpu, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD);
658}
659
660/**
661 * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU
662 * @cpu: Kernel logical CPU number
663 * @level: The topological level for which we would like a unique ID
664 *
665 * Determine a topology unique ID for each thread/core/cluster/mc_grouping
666 * /socket/etc. This ID can then be used to group peers, which will have
667 * matching ids.
668 *
669 * The search terminates when either the requested level is found or
670 * we reach a root node. Levels beyond the termination point will return the
671 * same unique ID. The unique id for level 0 is the acpi processor id. All
672 * other levels beyond this use a generated value to uniquely identify
673 * a topological feature.
674 *
675 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
676 * Otherwise returns a value which represents a unique topological feature.
677 */
678int find_acpi_cpu_topology(unsigned int cpu, int level)
679{
680	return find_acpi_cpu_topology_tag(cpu, level, 0);
681}
682
683/**
684 * find_acpi_cpu_cache_topology() - Determine a unique cache topology value
685 * @cpu: Kernel logical CPU number
686 * @level: The cache level for which we would like a unique ID
687 *
688 * Determine a unique ID for each unified cache in the system
689 *
690 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
691 * Otherwise returns a value which represents a unique topological feature.
692 */
693int find_acpi_cpu_cache_topology(unsigned int cpu, int level)
694{
695	struct acpi_table_header *table;
696	struct acpi_pptt_cache *found_cache;
697	acpi_status status;
698	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
699	struct acpi_pptt_processor *cpu_node = NULL;
700	int ret = -1;
701
702	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
703	if (ACPI_FAILURE(status)) {
704		acpi_pptt_warn_missing();
705		return -ENOENT;
706	}
707
708	found_cache = acpi_find_cache_node(table, acpi_cpu_id,
709					   CACHE_TYPE_UNIFIED,
710					   level,
711					   &cpu_node);
712	if (found_cache)
713		ret = ACPI_PTR_DIFF(cpu_node, table);
714
715	acpi_put_table(table);
716
717	return ret;
718}
719
720/**
721 * find_acpi_cpu_topology_package() - Determine a unique CPU package value
722 * @cpu: Kernel logical CPU number
723 *
724 * Determine a topology unique package ID for the given CPU.
725 * This ID can then be used to group peers, which will have matching ids.
726 *
727 * The search terminates when either a level is found with the PHYSICAL_PACKAGE
728 * flag set or we reach a root node.
729 *
730 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
731 * Otherwise returns a value which represents the package for this CPU.
732 */
733int find_acpi_cpu_topology_package(unsigned int cpu)
734{
735	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
736					  ACPI_PPTT_PHYSICAL_PACKAGE);
737}
738
739/**
740 * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag
741 * @cpu: Kernel logical CPU number
742 *
743 * Determine a unique heterogeneous tag for the given CPU. CPUs with the same
744 * implementation should have matching tags.
745 *
746 * The returned tag can be used to group peers with identical implementation.
747 *
748 * The search terminates when a level is found with the identical implementation
749 * flag set or we reach a root node.
750 *
751 * Due to limitations in the PPTT data structure, there may be rare situations
752 * where two cores in a heterogeneous machine may be identical, but won't have
753 * the same tag.
754 *
755 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
756 * Otherwise returns a value which represents a group of identical cores
757 * similar to this CPU.
758 */
759int find_acpi_cpu_topology_hetero_id(unsigned int cpu)
760{
761	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
762					  ACPI_PPTT_ACPI_IDENTICAL);
763}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * pptt.c - parsing of Processor Properties Topology Table (PPTT)
  4 *
  5 * Copyright (C) 2018, ARM
  6 *
  7 * This file implements parsing of the Processor Properties Topology Table
  8 * which is optionally used to describe the processor and cache topology.
  9 * Due to the relative pointers used throughout the table, this doesn't
 10 * leverage the existing subtable parsing in the kernel.
 11 *
 12 * The PPTT structure is an inverted tree, with each node potentially
 13 * holding one or two inverted tree data structures describing
 14 * the caches available at that level. Each cache structure optionally
 15 * contains properties describing the cache at a given level which can be
 16 * used to override hardware probed values.
 17 */
 18#define pr_fmt(fmt) "ACPI PPTT: " fmt
 19
 20#include <linux/acpi.h>
 21#include <linux/cacheinfo.h>
 22#include <acpi/processor.h>
 23
 24static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr,
 25							u32 pptt_ref)
 26{
 27	struct acpi_subtable_header *entry;
 28
 29	/* there isn't a subtable at reference 0 */
 30	if (pptt_ref < sizeof(struct acpi_subtable_header))
 31		return NULL;
 32
 33	if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
 34		return NULL;
 35
 36	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref);
 37
 38	if (entry->length == 0)
 39		return NULL;
 40
 41	if (pptt_ref + entry->length > table_hdr->length)
 42		return NULL;
 43
 44	return entry;
 45}
 46
 47static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr,
 48						   u32 pptt_ref)
 49{
 50	return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
 51}
 52
 53static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr,
 54						u32 pptt_ref)
 55{
 56	return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
 57}
 58
 59static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr,
 60							   struct acpi_pptt_processor *node,
 61							   int resource)
 62{
 63	u32 *ref;
 64
 65	if (resource >= node->number_of_priv_resources)
 66		return NULL;
 67
 68	ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor));
 69	ref += resource;
 70
 71	return fetch_pptt_subtable(table_hdr, *ref);
 72}
 73
 74static inline bool acpi_pptt_match_type(int table_type, int type)
 75{
 76	return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type ||
 77		table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type);
 78}
 79
 80/**
 81 * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
 82 * @table_hdr: Pointer to the head of the PPTT table
 83 * @local_level: passed res reflects this cache level
 84 * @res: cache resource in the PPTT we want to walk
 85 * @found: returns a pointer to the requested level if found
 86 * @level: the requested cache level
 87 * @type: the requested cache type
 88 *
 89 * Attempt to find a given cache level, while counting the max number
 90 * of cache levels for the cache node.
 91 *
 92 * Given a pptt resource, verify that it is a cache node, then walk
 93 * down each level of caches, counting how many levels are found
 94 * as well as checking the cache type (icache, dcache, unified). If a
 95 * level & type match, then we set found, and continue the search.
 96 * Once the entire cache branch has been walked return its max
 97 * depth.
 98 *
 99 * Return: The cache structure and the level we terminated with.
100 */
101static int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
102				int local_level,
103				struct acpi_subtable_header *res,
104				struct acpi_pptt_cache **found,
105				int level, int type)
106{
107	struct acpi_pptt_cache *cache;
108
109	if (res->type != ACPI_PPTT_TYPE_CACHE)
110		return 0;
111
112	cache = (struct acpi_pptt_cache *) res;
113	while (cache) {
114		local_level++;
115
116		if (local_level == level &&
117		    cache->flags & ACPI_PPTT_CACHE_TYPE_VALID &&
118		    acpi_pptt_match_type(cache->attributes, type)) {
119			if (*found != NULL && cache != *found)
120				pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");
121
122			pr_debug("Found cache @ level %d\n", level);
123			*found = cache;
124			/*
125			 * continue looking at this node's resource list
126			 * to verify that we don't find a duplicate
127			 * cache node.
128			 */
129		}
130		cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
131	}
132	return local_level;
133}
134
135static struct acpi_pptt_cache *acpi_find_cache_level(struct acpi_table_header *table_hdr,
136						     struct acpi_pptt_processor *cpu_node,
137						     int *starting_level, int level,
138						     int type)
 
139{
140	struct acpi_subtable_header *res;
141	int number_of_levels = *starting_level;
142	int resource = 0;
143	struct acpi_pptt_cache *ret = NULL;
144	int local_level;
145
146	/* walk down from processor node */
147	while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
148		resource++;
149
150		local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
151						   res, &ret, level, type);
152		/*
153		 * we are looking for the max depth. Since its potentially
154		 * possible for a given node to have resources with differing
155		 * depths verify that the depth we have found is the largest.
156		 */
157		if (number_of_levels < local_level)
158			number_of_levels = local_level;
159	}
160	if (number_of_levels > *starting_level)
161		*starting_level = number_of_levels;
162
163	return ret;
164}
165
166/**
167 * acpi_count_levels() - Given a PPTT table, and a CPU node, count the caches
168 * @table_hdr: Pointer to the head of the PPTT table
169 * @cpu_node: processor node we wish to count caches for
170 *
171 * Given a processor node containing a processing unit, walk into it and count
172 * how many levels exist solely for it, and then walk up each level until we hit
173 * the root node (ignore the package level because it may be possible to have
174 * caches that exist across packages). Count the number of cache levels that
175 * exist at each level on the way up.
176 *
177 * Return: Total number of levels found.
178 */
179static int acpi_count_levels(struct acpi_table_header *table_hdr,
180			     struct acpi_pptt_processor *cpu_node)
181{
182	int total_levels = 0;
183
184	do {
185		acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0);
186		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
187	} while (cpu_node);
188
189	return total_levels;
190}
191
192/**
193 * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
194 * @table_hdr: Pointer to the head of the PPTT table
195 * @node: passed node is checked to see if its a leaf
196 *
197 * Determine if the *node parameter is a leaf node by iterating the
198 * PPTT table, looking for nodes which reference it.
199 *
200 * Return: 0 if we find a node referencing the passed node (or table error),
201 * or 1 if we don't.
202 */
203static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr,
204			       struct acpi_pptt_processor *node)
205{
206	struct acpi_subtable_header *entry;
207	unsigned long table_end;
208	u32 node_entry;
209	struct acpi_pptt_processor *cpu_node;
210	u32 proc_sz;
211
212	if (table_hdr->revision > 1)
213		return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE);
214
215	table_end = (unsigned long)table_hdr + table_hdr->length;
216	node_entry = ACPI_PTR_DIFF(node, table_hdr);
217	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
218			     sizeof(struct acpi_table_pptt));
219	proc_sz = sizeof(struct acpi_pptt_processor *);
220
221	while ((unsigned long)entry + proc_sz < table_end) {
222		cpu_node = (struct acpi_pptt_processor *)entry;
223		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
224		    cpu_node->parent == node_entry)
225			return 0;
226		if (entry->length == 0)
227			return 0;
228		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
229				     entry->length);
230
231	}
232	return 1;
233}
234
235/**
236 * acpi_find_processor_node() - Given a PPTT table find the requested processor
237 * @table_hdr:  Pointer to the head of the PPTT table
238 * @acpi_cpu_id: CPU we are searching for
239 *
240 * Find the subtable entry describing the provided processor.
241 * This is done by iterating the PPTT table looking for processor nodes
242 * which have an acpi_processor_id that matches the acpi_cpu_id parameter
243 * passed into the function. If we find a node that matches this criteria
244 * we verify that its a leaf node in the topology rather than depending
245 * on the valid flag, which doesn't need to be set for leaf nodes.
246 *
247 * Return: NULL, or the processors acpi_pptt_processor*
248 */
249static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr,
250							    u32 acpi_cpu_id)
251{
252	struct acpi_subtable_header *entry;
253	unsigned long table_end;
254	struct acpi_pptt_processor *cpu_node;
255	u32 proc_sz;
256
257	table_end = (unsigned long)table_hdr + table_hdr->length;
258	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
259			     sizeof(struct acpi_table_pptt));
260	proc_sz = sizeof(struct acpi_pptt_processor *);
261
262	/* find the processor structure associated with this cpuid */
263	while ((unsigned long)entry + proc_sz < table_end) {
264		cpu_node = (struct acpi_pptt_processor *)entry;
265
266		if (entry->length == 0) {
267			pr_warn("Invalid zero length subtable\n");
268			break;
269		}
270		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
271		    acpi_cpu_id == cpu_node->acpi_processor_id &&
272		     acpi_pptt_leaf_node(table_hdr, cpu_node)) {
273			return (struct acpi_pptt_processor *)entry;
274		}
275
276		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
277				     entry->length);
278	}
279
280	return NULL;
281}
282
283static int acpi_find_cache_levels(struct acpi_table_header *table_hdr,
284				  u32 acpi_cpu_id)
285{
286	int number_of_levels = 0;
287	struct acpi_pptt_processor *cpu;
288
289	cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id);
290	if (cpu)
291		number_of_levels = acpi_count_levels(table_hdr, cpu);
292
293	return number_of_levels;
294}
295
296static u8 acpi_cache_type(enum cache_type type)
297{
298	switch (type) {
299	case CACHE_TYPE_DATA:
300		pr_debug("Looking for data cache\n");
301		return ACPI_PPTT_CACHE_TYPE_DATA;
302	case CACHE_TYPE_INST:
303		pr_debug("Looking for instruction cache\n");
304		return ACPI_PPTT_CACHE_TYPE_INSTR;
305	default:
306	case CACHE_TYPE_UNIFIED:
307		pr_debug("Looking for unified cache\n");
308		/*
309		 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
310		 * contains the bit pattern that will match both
311		 * ACPI unified bit patterns because we use it later
312		 * to match both cases.
313		 */
314		return ACPI_PPTT_CACHE_TYPE_UNIFIED;
315	}
316}
317
318static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr,
319						    u32 acpi_cpu_id,
320						    enum cache_type type,
321						    unsigned int level,
322						    struct acpi_pptt_processor **node)
323{
324	int total_levels = 0;
325	struct acpi_pptt_cache *found = NULL;
326	struct acpi_pptt_processor *cpu_node;
327	u8 acpi_type = acpi_cache_type(type);
328
329	pr_debug("Looking for CPU %d's level %d cache type %d\n",
330		 acpi_cpu_id, level, acpi_type);
331
332	cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
333
334	while (cpu_node && !found) {
335		found = acpi_find_cache_level(table_hdr, cpu_node,
336					      &total_levels, level, acpi_type);
337		*node = cpu_node;
338		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
339	}
340
341	return found;
342}
343
344/**
345 * update_cache_properties() - Update cacheinfo for the given processor
346 * @this_leaf: Kernel cache info structure being updated
347 * @found_cache: The PPTT node describing this cache instance
348 * @cpu_node: A unique reference to describe this cache instance
349 *
350 * The ACPI spec implies that the fields in the cache structures are used to
351 * extend and correct the information probed from the hardware. Lets only
352 * set fields that we determine are VALID.
353 *
354 * Return: nothing. Side effect of updating the global cacheinfo
355 */
356static void update_cache_properties(struct cacheinfo *this_leaf,
357				    struct acpi_pptt_cache *found_cache,
358				    struct acpi_pptt_processor *cpu_node)
359{
360	this_leaf->fw_token = cpu_node;
361	if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
362		this_leaf->size = found_cache->size;
363	if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
364		this_leaf->coherency_line_size = found_cache->line_size;
365	if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
366		this_leaf->number_of_sets = found_cache->number_of_sets;
367	if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
368		this_leaf->ways_of_associativity = found_cache->associativity;
369	if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) {
370		switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
371		case ACPI_PPTT_CACHE_POLICY_WT:
372			this_leaf->attributes = CACHE_WRITE_THROUGH;
373			break;
374		case ACPI_PPTT_CACHE_POLICY_WB:
375			this_leaf->attributes = CACHE_WRITE_BACK;
376			break;
377		}
378	}
379	if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) {
380		switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
381		case ACPI_PPTT_CACHE_READ_ALLOCATE:
382			this_leaf->attributes |= CACHE_READ_ALLOCATE;
383			break;
384		case ACPI_PPTT_CACHE_WRITE_ALLOCATE:
385			this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
386			break;
387		case ACPI_PPTT_CACHE_RW_ALLOCATE:
388		case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT:
389			this_leaf->attributes |=
390				CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE;
391			break;
392		}
393	}
394	/*
395	 * If cache type is NOCACHE, then the cache hasn't been specified
396	 * via other mechanisms.  Update the type if a cache type has been
397	 * provided.
398	 *
399	 * Note, we assume such caches are unified based on conventional system
400	 * design and known examples.  Significant work is required elsewhere to
401	 * fully support data/instruction only type caches which are only
402	 * specified in PPTT.
403	 */
404	if (this_leaf->type == CACHE_TYPE_NOCACHE &&
405	    found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)
406		this_leaf->type = CACHE_TYPE_UNIFIED;
407}
408
409static void cache_setup_acpi_cpu(struct acpi_table_header *table,
410				 unsigned int cpu)
411{
412	struct acpi_pptt_cache *found_cache;
413	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
414	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
415	struct cacheinfo *this_leaf;
416	unsigned int index = 0;
417	struct acpi_pptt_processor *cpu_node = NULL;
418
419	while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
420		this_leaf = this_cpu_ci->info_list + index;
421		found_cache = acpi_find_cache_node(table, acpi_cpu_id,
422						   this_leaf->type,
423						   this_leaf->level,
424						   &cpu_node);
425		pr_debug("found = %p %p\n", found_cache, cpu_node);
426		if (found_cache)
427			update_cache_properties(this_leaf,
428						found_cache,
429						cpu_node);
430
431		index++;
432	}
433}
434
435static bool flag_identical(struct acpi_table_header *table_hdr,
436			   struct acpi_pptt_processor *cpu)
437{
438	struct acpi_pptt_processor *next;
439
440	/* heterogeneous machines must use PPTT revision > 1 */
441	if (table_hdr->revision < 2)
442		return false;
443
444	/* Locate the last node in the tree with IDENTICAL set */
445	if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) {
446		next = fetch_pptt_node(table_hdr, cpu->parent);
447		if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL))
448			return true;
449	}
450
451	return false;
452}
453
454/* Passing level values greater than this will result in search termination */
455#define PPTT_ABORT_PACKAGE 0xFF
456
457static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr,
458							   struct acpi_pptt_processor *cpu,
459							   int level, int flag)
460{
461	struct acpi_pptt_processor *prev_node;
462
463	while (cpu && level) {
464		/* special case the identical flag to find last identical */
465		if (flag == ACPI_PPTT_ACPI_IDENTICAL) {
466			if (flag_identical(table_hdr, cpu))
467				break;
468		} else if (cpu->flags & flag)
469			break;
470		pr_debug("level %d\n", level);
471		prev_node = fetch_pptt_node(table_hdr, cpu->parent);
472		if (prev_node == NULL)
473			break;
474		cpu = prev_node;
475		level--;
476	}
477	return cpu;
478}
479
480static void acpi_pptt_warn_missing(void)
481{
482	pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n");
483}
484
485/**
486 * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
487 * @table: Pointer to the head of the PPTT table
488 * @cpu: Kernel logical CPU number
489 * @level: A level that terminates the search
490 * @flag: A flag which terminates the search
491 *
492 * Get a unique value given a CPU, and a topology level, that can be
493 * matched to determine which cpus share common topological features
494 * at that level.
495 *
496 * Return: Unique value, or -ENOENT if unable to locate CPU
497 */
498static int topology_get_acpi_cpu_tag(struct acpi_table_header *table,
499				     unsigned int cpu, int level, int flag)
500{
501	struct acpi_pptt_processor *cpu_node;
502	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
503
504	cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
505	if (cpu_node) {
506		cpu_node = acpi_find_processor_tag(table, cpu_node,
507						   level, flag);
508		/*
509		 * As per specification if the processor structure represents
510		 * an actual processor, then ACPI processor ID must be valid.
511		 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
512		 * should be set if the UID is valid
513		 */
514		if (level == 0 ||
515		    cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
516			return cpu_node->acpi_processor_id;
517		return ACPI_PTR_DIFF(cpu_node, table);
518	}
519	pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
520		    cpu, acpi_cpu_id);
521	return -ENOENT;
522}
523
524static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag)
525{
526	struct acpi_table_header *table;
527	acpi_status status;
528	int retval;
529
530	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
531	if (ACPI_FAILURE(status)) {
532		acpi_pptt_warn_missing();
533		return -ENOENT;
534	}
535	retval = topology_get_acpi_cpu_tag(table, cpu, level, flag);
536	pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n",
537		 cpu, level, retval);
538	acpi_put_table(table);
539
540	return retval;
541}
542
543/**
544 * check_acpi_cpu_flag() - Determine if CPU node has a flag set
545 * @cpu: Kernel logical CPU number
546 * @rev: The minimum PPTT revision defining the flag
547 * @flag: The flag itself
548 *
549 * Check the node representing a CPU for a given flag.
550 *
551 * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or
552 *	   the table revision isn't new enough.
553 *	   1, any passed flag set
554 *	   0, flag unset
555 */
556static int check_acpi_cpu_flag(unsigned int cpu, int rev, u32 flag)
557{
558	struct acpi_table_header *table;
559	acpi_status status;
560	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
561	struct acpi_pptt_processor *cpu_node = NULL;
562	int ret = -ENOENT;
563
564	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
565	if (ACPI_FAILURE(status)) {
566		acpi_pptt_warn_missing();
567		return ret;
568	}
569
570	if (table->revision >= rev)
571		cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
572
573	if (cpu_node)
574		ret = (cpu_node->flags & flag) != 0;
575
576	acpi_put_table(table);
577
578	return ret;
579}
580
581/**
582 * acpi_find_last_cache_level() - Determines the number of cache levels for a PE
583 * @cpu: Kernel logical CPU number
584 *
585 * Given a logical CPU number, returns the number of levels of cache represented
586 * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
587 * indicating we didn't find any cache levels.
588 *
589 * Return: Cache levels visible to this core.
590 */
591int acpi_find_last_cache_level(unsigned int cpu)
592{
593	u32 acpi_cpu_id;
594	struct acpi_table_header *table;
595	int number_of_levels = 0;
596	acpi_status status;
597
598	pr_debug("Cache Setup find last level CPU=%d\n", cpu);
599
600	acpi_cpu_id = get_acpi_id_for_cpu(cpu);
601	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
602	if (ACPI_FAILURE(status)) {
603		acpi_pptt_warn_missing();
604	} else {
605		number_of_levels = acpi_find_cache_levels(table, acpi_cpu_id);
606		acpi_put_table(table);
607	}
608	pr_debug("Cache Setup find last level level=%d\n", number_of_levels);
609
610	return number_of_levels;
611}
612
613/**
614 * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
615 * @cpu: Kernel logical CPU number
616 *
617 * Updates the global cache info provided by cpu_get_cacheinfo()
618 * when there are valid properties in the acpi_pptt_cache nodes. A
619 * successful parse may not result in any updates if none of the
620 * cache levels have any valid flags set.  Further, a unique value is
621 * associated with each known CPU cache entry. This unique value
622 * can be used to determine whether caches are shared between CPUs.
623 *
624 * Return: -ENOENT on failure to find table, or 0 on success
625 */
626int cache_setup_acpi(unsigned int cpu)
627{
628	struct acpi_table_header *table;
629	acpi_status status;
630
631	pr_debug("Cache Setup ACPI CPU %d\n", cpu);
632
633	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
634	if (ACPI_FAILURE(status)) {
635		acpi_pptt_warn_missing();
636		return -ENOENT;
637	}
638
639	cache_setup_acpi_cpu(table, cpu);
640	acpi_put_table(table);
641
642	return status;
643}
644
645/**
646 * acpi_pptt_cpu_is_thread() - Determine if CPU is a thread
647 * @cpu: Kernel logical CPU number
648 *
649 * Return: 1, a thread
650 *         0, not a thread
651 *         -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or
652 *         the table revision isn't new enough.
653 */
654int acpi_pptt_cpu_is_thread(unsigned int cpu)
655{
656	return check_acpi_cpu_flag(cpu, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD);
657}
658
659/**
660 * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU
661 * @cpu: Kernel logical CPU number
662 * @level: The topological level for which we would like a unique ID
663 *
664 * Determine a topology unique ID for each thread/core/cluster/mc_grouping
665 * /socket/etc. This ID can then be used to group peers, which will have
666 * matching ids.
667 *
668 * The search terminates when either the requested level is found or
669 * we reach a root node. Levels beyond the termination point will return the
670 * same unique ID. The unique id for level 0 is the acpi processor id. All
671 * other levels beyond this use a generated value to uniquely identify
672 * a topological feature.
673 *
674 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
675 * Otherwise returns a value which represents a unique topological feature.
676 */
677int find_acpi_cpu_topology(unsigned int cpu, int level)
678{
679	return find_acpi_cpu_topology_tag(cpu, level, 0);
680}
681
682/**
683 * find_acpi_cpu_cache_topology() - Determine a unique cache topology value
684 * @cpu: Kernel logical CPU number
685 * @level: The cache level for which we would like a unique ID
686 *
687 * Determine a unique ID for each unified cache in the system
688 *
689 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
690 * Otherwise returns a value which represents a unique topological feature.
691 */
692int find_acpi_cpu_cache_topology(unsigned int cpu, int level)
693{
694	struct acpi_table_header *table;
695	struct acpi_pptt_cache *found_cache;
696	acpi_status status;
697	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
698	struct acpi_pptt_processor *cpu_node = NULL;
699	int ret = -1;
700
701	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
702	if (ACPI_FAILURE(status)) {
703		acpi_pptt_warn_missing();
704		return -ENOENT;
705	}
706
707	found_cache = acpi_find_cache_node(table, acpi_cpu_id,
708					   CACHE_TYPE_UNIFIED,
709					   level,
710					   &cpu_node);
711	if (found_cache)
712		ret = ACPI_PTR_DIFF(cpu_node, table);
713
714	acpi_put_table(table);
715
716	return ret;
717}
718
719/**
720 * find_acpi_cpu_topology_package() - Determine a unique CPU package value
721 * @cpu: Kernel logical CPU number
722 *
723 * Determine a topology unique package ID for the given CPU.
724 * This ID can then be used to group peers, which will have matching ids.
725 *
726 * The search terminates when either a level is found with the PHYSICAL_PACKAGE
727 * flag set or we reach a root node.
728 *
729 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
730 * Otherwise returns a value which represents the package for this CPU.
731 */
732int find_acpi_cpu_topology_package(unsigned int cpu)
733{
734	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
735					  ACPI_PPTT_PHYSICAL_PACKAGE);
736}
737
738/**
739 * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag
740 * @cpu: Kernel logical CPU number
741 *
742 * Determine a unique heterogeneous tag for the given CPU. CPUs with the same
743 * implementation should have matching tags.
744 *
745 * The returned tag can be used to group peers with identical implementation.
746 *
747 * The search terminates when a level is found with the identical implementation
748 * flag set or we reach a root node.
749 *
750 * Due to limitations in the PPTT data structure, there may be rare situations
751 * where two cores in a heterogeneous machine may be identical, but won't have
752 * the same tag.
753 *
754 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
755 * Otherwise returns a value which represents a group of identical cores
756 * similar to this CPU.
757 */
758int find_acpi_cpu_topology_hetero_id(unsigned int cpu)
759{
760	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
761					  ACPI_PPTT_ACPI_IDENTICAL);
762}