Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4#include <linux/bpf.h>
5#include <linux/rcupdate.h>
6#include <linux/random.h>
7#include <linux/smp.h>
8#include <linux/topology.h>
9#include <linux/ktime.h>
10#include <linux/sched.h>
11#include <linux/uidgid.h>
12#include <linux/filter.h>
13#include <linux/ctype.h>
14#include <linux/jiffies.h>
15#include <linux/pid_namespace.h>
16#include <linux/proc_ns.h>
17
18#include "../../lib/kstrtox.h"
19
20/* If kernel subsystem is allowing eBPF programs to call this function,
21 * inside its own verifier_ops->get_func_proto() callback it should return
22 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
23 *
24 * Different map implementations will rely on rcu in map methods
25 * lookup/update/delete, therefore eBPF programs must run under rcu lock
26 * if program is allowed to access maps, so check rcu_read_lock_held in
27 * all three functions.
28 */
29BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
30{
31 WARN_ON_ONCE(!rcu_read_lock_held());
32 return (unsigned long) map->ops->map_lookup_elem(map, key);
33}
34
35const struct bpf_func_proto bpf_map_lookup_elem_proto = {
36 .func = bpf_map_lookup_elem,
37 .gpl_only = false,
38 .pkt_access = true,
39 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
40 .arg1_type = ARG_CONST_MAP_PTR,
41 .arg2_type = ARG_PTR_TO_MAP_KEY,
42};
43
44BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
45 void *, value, u64, flags)
46{
47 WARN_ON_ONCE(!rcu_read_lock_held());
48 return map->ops->map_update_elem(map, key, value, flags);
49}
50
51const struct bpf_func_proto bpf_map_update_elem_proto = {
52 .func = bpf_map_update_elem,
53 .gpl_only = false,
54 .pkt_access = true,
55 .ret_type = RET_INTEGER,
56 .arg1_type = ARG_CONST_MAP_PTR,
57 .arg2_type = ARG_PTR_TO_MAP_KEY,
58 .arg3_type = ARG_PTR_TO_MAP_VALUE,
59 .arg4_type = ARG_ANYTHING,
60};
61
62BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
63{
64 WARN_ON_ONCE(!rcu_read_lock_held());
65 return map->ops->map_delete_elem(map, key);
66}
67
68const struct bpf_func_proto bpf_map_delete_elem_proto = {
69 .func = bpf_map_delete_elem,
70 .gpl_only = false,
71 .pkt_access = true,
72 .ret_type = RET_INTEGER,
73 .arg1_type = ARG_CONST_MAP_PTR,
74 .arg2_type = ARG_PTR_TO_MAP_KEY,
75};
76
77BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
78{
79 return map->ops->map_push_elem(map, value, flags);
80}
81
82const struct bpf_func_proto bpf_map_push_elem_proto = {
83 .func = bpf_map_push_elem,
84 .gpl_only = false,
85 .pkt_access = true,
86 .ret_type = RET_INTEGER,
87 .arg1_type = ARG_CONST_MAP_PTR,
88 .arg2_type = ARG_PTR_TO_MAP_VALUE,
89 .arg3_type = ARG_ANYTHING,
90};
91
92BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
93{
94 return map->ops->map_pop_elem(map, value);
95}
96
97const struct bpf_func_proto bpf_map_pop_elem_proto = {
98 .func = bpf_map_pop_elem,
99 .gpl_only = false,
100 .ret_type = RET_INTEGER,
101 .arg1_type = ARG_CONST_MAP_PTR,
102 .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE,
103};
104
105BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
106{
107 return map->ops->map_peek_elem(map, value);
108}
109
110const struct bpf_func_proto bpf_map_peek_elem_proto = {
111 .func = bpf_map_pop_elem,
112 .gpl_only = false,
113 .ret_type = RET_INTEGER,
114 .arg1_type = ARG_CONST_MAP_PTR,
115 .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE,
116};
117
118const struct bpf_func_proto bpf_get_prandom_u32_proto = {
119 .func = bpf_user_rnd_u32,
120 .gpl_only = false,
121 .ret_type = RET_INTEGER,
122};
123
124BPF_CALL_0(bpf_get_smp_processor_id)
125{
126 return smp_processor_id();
127}
128
129const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
130 .func = bpf_get_smp_processor_id,
131 .gpl_only = false,
132 .ret_type = RET_INTEGER,
133};
134
135BPF_CALL_0(bpf_get_numa_node_id)
136{
137 return numa_node_id();
138}
139
140const struct bpf_func_proto bpf_get_numa_node_id_proto = {
141 .func = bpf_get_numa_node_id,
142 .gpl_only = false,
143 .ret_type = RET_INTEGER,
144};
145
146BPF_CALL_0(bpf_ktime_get_ns)
147{
148 /* NMI safe access to clock monotonic */
149 return ktime_get_mono_fast_ns();
150}
151
152const struct bpf_func_proto bpf_ktime_get_ns_proto = {
153 .func = bpf_ktime_get_ns,
154 .gpl_only = false,
155 .ret_type = RET_INTEGER,
156};
157
158BPF_CALL_0(bpf_ktime_get_boot_ns)
159{
160 /* NMI safe access to clock boottime */
161 return ktime_get_boot_fast_ns();
162}
163
164const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
165 .func = bpf_ktime_get_boot_ns,
166 .gpl_only = false,
167 .ret_type = RET_INTEGER,
168};
169
170BPF_CALL_0(bpf_get_current_pid_tgid)
171{
172 struct task_struct *task = current;
173
174 if (unlikely(!task))
175 return -EINVAL;
176
177 return (u64) task->tgid << 32 | task->pid;
178}
179
180const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
181 .func = bpf_get_current_pid_tgid,
182 .gpl_only = false,
183 .ret_type = RET_INTEGER,
184};
185
186BPF_CALL_0(bpf_get_current_uid_gid)
187{
188 struct task_struct *task = current;
189 kuid_t uid;
190 kgid_t gid;
191
192 if (unlikely(!task))
193 return -EINVAL;
194
195 current_uid_gid(&uid, &gid);
196 return (u64) from_kgid(&init_user_ns, gid) << 32 |
197 from_kuid(&init_user_ns, uid);
198}
199
200const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
201 .func = bpf_get_current_uid_gid,
202 .gpl_only = false,
203 .ret_type = RET_INTEGER,
204};
205
206BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
207{
208 struct task_struct *task = current;
209
210 if (unlikely(!task))
211 goto err_clear;
212
213 strncpy(buf, task->comm, size);
214
215 /* Verifier guarantees that size > 0. For task->comm exceeding
216 * size, guarantee that buf is %NUL-terminated. Unconditionally
217 * done here to save the size test.
218 */
219 buf[size - 1] = 0;
220 return 0;
221err_clear:
222 memset(buf, 0, size);
223 return -EINVAL;
224}
225
226const struct bpf_func_proto bpf_get_current_comm_proto = {
227 .func = bpf_get_current_comm,
228 .gpl_only = false,
229 .ret_type = RET_INTEGER,
230 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
231 .arg2_type = ARG_CONST_SIZE,
232};
233
234#if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
235
236static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
237{
238 arch_spinlock_t *l = (void *)lock;
239 union {
240 __u32 val;
241 arch_spinlock_t lock;
242 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
243
244 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
245 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
246 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
247 arch_spin_lock(l);
248}
249
250static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
251{
252 arch_spinlock_t *l = (void *)lock;
253
254 arch_spin_unlock(l);
255}
256
257#else
258
259static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
260{
261 atomic_t *l = (void *)lock;
262
263 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
264 do {
265 atomic_cond_read_relaxed(l, !VAL);
266 } while (atomic_xchg(l, 1));
267}
268
269static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
270{
271 atomic_t *l = (void *)lock;
272
273 atomic_set_release(l, 0);
274}
275
276#endif
277
278static DEFINE_PER_CPU(unsigned long, irqsave_flags);
279
280notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
281{
282 unsigned long flags;
283
284 local_irq_save(flags);
285 __bpf_spin_lock(lock);
286 __this_cpu_write(irqsave_flags, flags);
287 return 0;
288}
289
290const struct bpf_func_proto bpf_spin_lock_proto = {
291 .func = bpf_spin_lock,
292 .gpl_only = false,
293 .ret_type = RET_VOID,
294 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
295};
296
297notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
298{
299 unsigned long flags;
300
301 flags = __this_cpu_read(irqsave_flags);
302 __bpf_spin_unlock(lock);
303 local_irq_restore(flags);
304 return 0;
305}
306
307const struct bpf_func_proto bpf_spin_unlock_proto = {
308 .func = bpf_spin_unlock,
309 .gpl_only = false,
310 .ret_type = RET_VOID,
311 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
312};
313
314void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
315 bool lock_src)
316{
317 struct bpf_spin_lock *lock;
318
319 if (lock_src)
320 lock = src + map->spin_lock_off;
321 else
322 lock = dst + map->spin_lock_off;
323 preempt_disable();
324 ____bpf_spin_lock(lock);
325 copy_map_value(map, dst, src);
326 ____bpf_spin_unlock(lock);
327 preempt_enable();
328}
329
330BPF_CALL_0(bpf_jiffies64)
331{
332 return get_jiffies_64();
333}
334
335const struct bpf_func_proto bpf_jiffies64_proto = {
336 .func = bpf_jiffies64,
337 .gpl_only = false,
338 .ret_type = RET_INTEGER,
339};
340
341#ifdef CONFIG_CGROUPS
342BPF_CALL_0(bpf_get_current_cgroup_id)
343{
344 struct cgroup *cgrp = task_dfl_cgroup(current);
345
346 return cgroup_id(cgrp);
347}
348
349const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
350 .func = bpf_get_current_cgroup_id,
351 .gpl_only = false,
352 .ret_type = RET_INTEGER,
353};
354
355BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
356{
357 struct cgroup *cgrp = task_dfl_cgroup(current);
358 struct cgroup *ancestor;
359
360 ancestor = cgroup_ancestor(cgrp, ancestor_level);
361 if (!ancestor)
362 return 0;
363 return cgroup_id(ancestor);
364}
365
366const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
367 .func = bpf_get_current_ancestor_cgroup_id,
368 .gpl_only = false,
369 .ret_type = RET_INTEGER,
370 .arg1_type = ARG_ANYTHING,
371};
372
373#ifdef CONFIG_CGROUP_BPF
374DECLARE_PER_CPU(struct bpf_cgroup_storage*,
375 bpf_cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]);
376
377BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags)
378{
379 /* flags argument is not used now,
380 * but provides an ability to extend the API.
381 * verifier checks that its value is correct.
382 */
383 enum bpf_cgroup_storage_type stype = cgroup_storage_type(map);
384 struct bpf_cgroup_storage *storage;
385 void *ptr;
386
387 storage = this_cpu_read(bpf_cgroup_storage[stype]);
388
389 if (stype == BPF_CGROUP_STORAGE_SHARED)
390 ptr = &READ_ONCE(storage->buf)->data[0];
391 else
392 ptr = this_cpu_ptr(storage->percpu_buf);
393
394 return (unsigned long)ptr;
395}
396
397const struct bpf_func_proto bpf_get_local_storage_proto = {
398 .func = bpf_get_local_storage,
399 .gpl_only = false,
400 .ret_type = RET_PTR_TO_MAP_VALUE,
401 .arg1_type = ARG_CONST_MAP_PTR,
402 .arg2_type = ARG_ANYTHING,
403};
404#endif
405
406#define BPF_STRTOX_BASE_MASK 0x1F
407
408static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
409 unsigned long long *res, bool *is_negative)
410{
411 unsigned int base = flags & BPF_STRTOX_BASE_MASK;
412 const char *cur_buf = buf;
413 size_t cur_len = buf_len;
414 unsigned int consumed;
415 size_t val_len;
416 char str[64];
417
418 if (!buf || !buf_len || !res || !is_negative)
419 return -EINVAL;
420
421 if (base != 0 && base != 8 && base != 10 && base != 16)
422 return -EINVAL;
423
424 if (flags & ~BPF_STRTOX_BASE_MASK)
425 return -EINVAL;
426
427 while (cur_buf < buf + buf_len && isspace(*cur_buf))
428 ++cur_buf;
429
430 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
431 if (*is_negative)
432 ++cur_buf;
433
434 consumed = cur_buf - buf;
435 cur_len -= consumed;
436 if (!cur_len)
437 return -EINVAL;
438
439 cur_len = min(cur_len, sizeof(str) - 1);
440 memcpy(str, cur_buf, cur_len);
441 str[cur_len] = '\0';
442 cur_buf = str;
443
444 cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
445 val_len = _parse_integer(cur_buf, base, res);
446
447 if (val_len & KSTRTOX_OVERFLOW)
448 return -ERANGE;
449
450 if (val_len == 0)
451 return -EINVAL;
452
453 cur_buf += val_len;
454 consumed += cur_buf - str;
455
456 return consumed;
457}
458
459static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
460 long long *res)
461{
462 unsigned long long _res;
463 bool is_negative;
464 int err;
465
466 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
467 if (err < 0)
468 return err;
469 if (is_negative) {
470 if ((long long)-_res > 0)
471 return -ERANGE;
472 *res = -_res;
473 } else {
474 if ((long long)_res < 0)
475 return -ERANGE;
476 *res = _res;
477 }
478 return err;
479}
480
481BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
482 long *, res)
483{
484 long long _res;
485 int err;
486
487 err = __bpf_strtoll(buf, buf_len, flags, &_res);
488 if (err < 0)
489 return err;
490 if (_res != (long)_res)
491 return -ERANGE;
492 *res = _res;
493 return err;
494}
495
496const struct bpf_func_proto bpf_strtol_proto = {
497 .func = bpf_strtol,
498 .gpl_only = false,
499 .ret_type = RET_INTEGER,
500 .arg1_type = ARG_PTR_TO_MEM,
501 .arg2_type = ARG_CONST_SIZE,
502 .arg3_type = ARG_ANYTHING,
503 .arg4_type = ARG_PTR_TO_LONG,
504};
505
506BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
507 unsigned long *, res)
508{
509 unsigned long long _res;
510 bool is_negative;
511 int err;
512
513 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
514 if (err < 0)
515 return err;
516 if (is_negative)
517 return -EINVAL;
518 if (_res != (unsigned long)_res)
519 return -ERANGE;
520 *res = _res;
521 return err;
522}
523
524const struct bpf_func_proto bpf_strtoul_proto = {
525 .func = bpf_strtoul,
526 .gpl_only = false,
527 .ret_type = RET_INTEGER,
528 .arg1_type = ARG_PTR_TO_MEM,
529 .arg2_type = ARG_CONST_SIZE,
530 .arg3_type = ARG_ANYTHING,
531 .arg4_type = ARG_PTR_TO_LONG,
532};
533#endif
534
535BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
536 struct bpf_pidns_info *, nsdata, u32, size)
537{
538 struct task_struct *task = current;
539 struct pid_namespace *pidns;
540 int err = -EINVAL;
541
542 if (unlikely(size != sizeof(struct bpf_pidns_info)))
543 goto clear;
544
545 if (unlikely((u64)(dev_t)dev != dev))
546 goto clear;
547
548 if (unlikely(!task))
549 goto clear;
550
551 pidns = task_active_pid_ns(task);
552 if (unlikely(!pidns)) {
553 err = -ENOENT;
554 goto clear;
555 }
556
557 if (!ns_match(&pidns->ns, (dev_t)dev, ino))
558 goto clear;
559
560 nsdata->pid = task_pid_nr_ns(task, pidns);
561 nsdata->tgid = task_tgid_nr_ns(task, pidns);
562 return 0;
563clear:
564 memset((void *)nsdata, 0, (size_t) size);
565 return err;
566}
567
568const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
569 .func = bpf_get_ns_current_pid_tgid,
570 .gpl_only = false,
571 .ret_type = RET_INTEGER,
572 .arg1_type = ARG_ANYTHING,
573 .arg2_type = ARG_ANYTHING,
574 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
575 .arg4_type = ARG_CONST_SIZE,
576};
577
578static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
579 .func = bpf_get_raw_cpu_id,
580 .gpl_only = false,
581 .ret_type = RET_INTEGER,
582};
583
584BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
585 u64, flags, void *, data, u64, size)
586{
587 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
588 return -EINVAL;
589
590 return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
591}
592
593const struct bpf_func_proto bpf_event_output_data_proto = {
594 .func = bpf_event_output_data,
595 .gpl_only = true,
596 .ret_type = RET_INTEGER,
597 .arg1_type = ARG_PTR_TO_CTX,
598 .arg2_type = ARG_CONST_MAP_PTR,
599 .arg3_type = ARG_ANYTHING,
600 .arg4_type = ARG_PTR_TO_MEM,
601 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
602};
603
604const struct bpf_func_proto bpf_get_current_task_proto __weak;
605const struct bpf_func_proto bpf_probe_read_user_proto __weak;
606const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
607const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
608const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
609
610const struct bpf_func_proto *
611bpf_base_func_proto(enum bpf_func_id func_id)
612{
613 switch (func_id) {
614 case BPF_FUNC_map_lookup_elem:
615 return &bpf_map_lookup_elem_proto;
616 case BPF_FUNC_map_update_elem:
617 return &bpf_map_update_elem_proto;
618 case BPF_FUNC_map_delete_elem:
619 return &bpf_map_delete_elem_proto;
620 case BPF_FUNC_map_push_elem:
621 return &bpf_map_push_elem_proto;
622 case BPF_FUNC_map_pop_elem:
623 return &bpf_map_pop_elem_proto;
624 case BPF_FUNC_map_peek_elem:
625 return &bpf_map_peek_elem_proto;
626 case BPF_FUNC_get_prandom_u32:
627 return &bpf_get_prandom_u32_proto;
628 case BPF_FUNC_get_smp_processor_id:
629 return &bpf_get_raw_smp_processor_id_proto;
630 case BPF_FUNC_get_numa_node_id:
631 return &bpf_get_numa_node_id_proto;
632 case BPF_FUNC_tail_call:
633 return &bpf_tail_call_proto;
634 case BPF_FUNC_ktime_get_ns:
635 return &bpf_ktime_get_ns_proto;
636 case BPF_FUNC_ktime_get_boot_ns:
637 return &bpf_ktime_get_boot_ns_proto;
638 case BPF_FUNC_ringbuf_output:
639 return &bpf_ringbuf_output_proto;
640 case BPF_FUNC_ringbuf_reserve:
641 return &bpf_ringbuf_reserve_proto;
642 case BPF_FUNC_ringbuf_submit:
643 return &bpf_ringbuf_submit_proto;
644 case BPF_FUNC_ringbuf_discard:
645 return &bpf_ringbuf_discard_proto;
646 case BPF_FUNC_ringbuf_query:
647 return &bpf_ringbuf_query_proto;
648 default:
649 break;
650 }
651
652 if (!bpf_capable())
653 return NULL;
654
655 switch (func_id) {
656 case BPF_FUNC_spin_lock:
657 return &bpf_spin_lock_proto;
658 case BPF_FUNC_spin_unlock:
659 return &bpf_spin_unlock_proto;
660 case BPF_FUNC_trace_printk:
661 if (!perfmon_capable())
662 return NULL;
663 return bpf_get_trace_printk_proto();
664 case BPF_FUNC_jiffies64:
665 return &bpf_jiffies64_proto;
666 default:
667 break;
668 }
669
670 if (!perfmon_capable())
671 return NULL;
672
673 switch (func_id) {
674 case BPF_FUNC_get_current_task:
675 return &bpf_get_current_task_proto;
676 case BPF_FUNC_probe_read_user:
677 return &bpf_probe_read_user_proto;
678 case BPF_FUNC_probe_read_kernel:
679 return &bpf_probe_read_kernel_proto;
680 case BPF_FUNC_probe_read_user_str:
681 return &bpf_probe_read_user_str_proto;
682 case BPF_FUNC_probe_read_kernel_str:
683 return &bpf_probe_read_kernel_str_proto;
684 default:
685 return NULL;
686 }
687}
1// SPDX-License-Identifier: GPL-2.0-only
2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4#include <linux/bpf.h>
5#include <linux/rcupdate.h>
6#include <linux/random.h>
7#include <linux/smp.h>
8#include <linux/topology.h>
9#include <linux/ktime.h>
10#include <linux/sched.h>
11#include <linux/uidgid.h>
12#include <linux/filter.h>
13#include <linux/ctype.h>
14#include <linux/jiffies.h>
15#include <linux/pid_namespace.h>
16#include <linux/proc_ns.h>
17#include <linux/security.h>
18
19#include "../../lib/kstrtox.h"
20
21/* If kernel subsystem is allowing eBPF programs to call this function,
22 * inside its own verifier_ops->get_func_proto() callback it should return
23 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
24 *
25 * Different map implementations will rely on rcu in map methods
26 * lookup/update/delete, therefore eBPF programs must run under rcu lock
27 * if program is allowed to access maps, so check rcu_read_lock_held in
28 * all three functions.
29 */
30BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
31{
32 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
33 return (unsigned long) map->ops->map_lookup_elem(map, key);
34}
35
36const struct bpf_func_proto bpf_map_lookup_elem_proto = {
37 .func = bpf_map_lookup_elem,
38 .gpl_only = false,
39 .pkt_access = true,
40 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
41 .arg1_type = ARG_CONST_MAP_PTR,
42 .arg2_type = ARG_PTR_TO_MAP_KEY,
43};
44
45BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
46 void *, value, u64, flags)
47{
48 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
49 return map->ops->map_update_elem(map, key, value, flags);
50}
51
52const struct bpf_func_proto bpf_map_update_elem_proto = {
53 .func = bpf_map_update_elem,
54 .gpl_only = false,
55 .pkt_access = true,
56 .ret_type = RET_INTEGER,
57 .arg1_type = ARG_CONST_MAP_PTR,
58 .arg2_type = ARG_PTR_TO_MAP_KEY,
59 .arg3_type = ARG_PTR_TO_MAP_VALUE,
60 .arg4_type = ARG_ANYTHING,
61};
62
63BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
64{
65 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
66 return map->ops->map_delete_elem(map, key);
67}
68
69const struct bpf_func_proto bpf_map_delete_elem_proto = {
70 .func = bpf_map_delete_elem,
71 .gpl_only = false,
72 .pkt_access = true,
73 .ret_type = RET_INTEGER,
74 .arg1_type = ARG_CONST_MAP_PTR,
75 .arg2_type = ARG_PTR_TO_MAP_KEY,
76};
77
78BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
79{
80 return map->ops->map_push_elem(map, value, flags);
81}
82
83const struct bpf_func_proto bpf_map_push_elem_proto = {
84 .func = bpf_map_push_elem,
85 .gpl_only = false,
86 .pkt_access = true,
87 .ret_type = RET_INTEGER,
88 .arg1_type = ARG_CONST_MAP_PTR,
89 .arg2_type = ARG_PTR_TO_MAP_VALUE,
90 .arg3_type = ARG_ANYTHING,
91};
92
93BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
94{
95 return map->ops->map_pop_elem(map, value);
96}
97
98const struct bpf_func_proto bpf_map_pop_elem_proto = {
99 .func = bpf_map_pop_elem,
100 .gpl_only = false,
101 .ret_type = RET_INTEGER,
102 .arg1_type = ARG_CONST_MAP_PTR,
103 .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE,
104};
105
106BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
107{
108 return map->ops->map_peek_elem(map, value);
109}
110
111const struct bpf_func_proto bpf_map_peek_elem_proto = {
112 .func = bpf_map_peek_elem,
113 .gpl_only = false,
114 .ret_type = RET_INTEGER,
115 .arg1_type = ARG_CONST_MAP_PTR,
116 .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE,
117};
118
119const struct bpf_func_proto bpf_get_prandom_u32_proto = {
120 .func = bpf_user_rnd_u32,
121 .gpl_only = false,
122 .ret_type = RET_INTEGER,
123};
124
125BPF_CALL_0(bpf_get_smp_processor_id)
126{
127 return smp_processor_id();
128}
129
130const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
131 .func = bpf_get_smp_processor_id,
132 .gpl_only = false,
133 .ret_type = RET_INTEGER,
134};
135
136BPF_CALL_0(bpf_get_numa_node_id)
137{
138 return numa_node_id();
139}
140
141const struct bpf_func_proto bpf_get_numa_node_id_proto = {
142 .func = bpf_get_numa_node_id,
143 .gpl_only = false,
144 .ret_type = RET_INTEGER,
145};
146
147BPF_CALL_0(bpf_ktime_get_ns)
148{
149 /* NMI safe access to clock monotonic */
150 return ktime_get_mono_fast_ns();
151}
152
153const struct bpf_func_proto bpf_ktime_get_ns_proto = {
154 .func = bpf_ktime_get_ns,
155 .gpl_only = false,
156 .ret_type = RET_INTEGER,
157};
158
159BPF_CALL_0(bpf_ktime_get_boot_ns)
160{
161 /* NMI safe access to clock boottime */
162 return ktime_get_boot_fast_ns();
163}
164
165const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
166 .func = bpf_ktime_get_boot_ns,
167 .gpl_only = false,
168 .ret_type = RET_INTEGER,
169};
170
171BPF_CALL_0(bpf_ktime_get_coarse_ns)
172{
173 return ktime_get_coarse_ns();
174}
175
176const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
177 .func = bpf_ktime_get_coarse_ns,
178 .gpl_only = false,
179 .ret_type = RET_INTEGER,
180};
181
182BPF_CALL_0(bpf_get_current_pid_tgid)
183{
184 struct task_struct *task = current;
185
186 if (unlikely(!task))
187 return -EINVAL;
188
189 return (u64) task->tgid << 32 | task->pid;
190}
191
192const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
193 .func = bpf_get_current_pid_tgid,
194 .gpl_only = false,
195 .ret_type = RET_INTEGER,
196};
197
198BPF_CALL_0(bpf_get_current_uid_gid)
199{
200 struct task_struct *task = current;
201 kuid_t uid;
202 kgid_t gid;
203
204 if (unlikely(!task))
205 return -EINVAL;
206
207 current_uid_gid(&uid, &gid);
208 return (u64) from_kgid(&init_user_ns, gid) << 32 |
209 from_kuid(&init_user_ns, uid);
210}
211
212const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
213 .func = bpf_get_current_uid_gid,
214 .gpl_only = false,
215 .ret_type = RET_INTEGER,
216};
217
218BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
219{
220 struct task_struct *task = current;
221
222 if (unlikely(!task))
223 goto err_clear;
224
225 strncpy(buf, task->comm, size);
226
227 /* Verifier guarantees that size > 0. For task->comm exceeding
228 * size, guarantee that buf is %NUL-terminated. Unconditionally
229 * done here to save the size test.
230 */
231 buf[size - 1] = 0;
232 return 0;
233err_clear:
234 memset(buf, 0, size);
235 return -EINVAL;
236}
237
238const struct bpf_func_proto bpf_get_current_comm_proto = {
239 .func = bpf_get_current_comm,
240 .gpl_only = false,
241 .ret_type = RET_INTEGER,
242 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
243 .arg2_type = ARG_CONST_SIZE,
244};
245
246#if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
247
248static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
249{
250 arch_spinlock_t *l = (void *)lock;
251 union {
252 __u32 val;
253 arch_spinlock_t lock;
254 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
255
256 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
257 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
258 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
259 arch_spin_lock(l);
260}
261
262static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
263{
264 arch_spinlock_t *l = (void *)lock;
265
266 arch_spin_unlock(l);
267}
268
269#else
270
271static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
272{
273 atomic_t *l = (void *)lock;
274
275 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
276 do {
277 atomic_cond_read_relaxed(l, !VAL);
278 } while (atomic_xchg(l, 1));
279}
280
281static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
282{
283 atomic_t *l = (void *)lock;
284
285 atomic_set_release(l, 0);
286}
287
288#endif
289
290static DEFINE_PER_CPU(unsigned long, irqsave_flags);
291
292notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
293{
294 unsigned long flags;
295
296 local_irq_save(flags);
297 __bpf_spin_lock(lock);
298 __this_cpu_write(irqsave_flags, flags);
299 return 0;
300}
301
302const struct bpf_func_proto bpf_spin_lock_proto = {
303 .func = bpf_spin_lock,
304 .gpl_only = false,
305 .ret_type = RET_VOID,
306 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
307};
308
309notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
310{
311 unsigned long flags;
312
313 flags = __this_cpu_read(irqsave_flags);
314 __bpf_spin_unlock(lock);
315 local_irq_restore(flags);
316 return 0;
317}
318
319const struct bpf_func_proto bpf_spin_unlock_proto = {
320 .func = bpf_spin_unlock,
321 .gpl_only = false,
322 .ret_type = RET_VOID,
323 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
324};
325
326void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
327 bool lock_src)
328{
329 struct bpf_spin_lock *lock;
330
331 if (lock_src)
332 lock = src + map->spin_lock_off;
333 else
334 lock = dst + map->spin_lock_off;
335 preempt_disable();
336 ____bpf_spin_lock(lock);
337 copy_map_value(map, dst, src);
338 ____bpf_spin_unlock(lock);
339 preempt_enable();
340}
341
342BPF_CALL_0(bpf_jiffies64)
343{
344 return get_jiffies_64();
345}
346
347const struct bpf_func_proto bpf_jiffies64_proto = {
348 .func = bpf_jiffies64,
349 .gpl_only = false,
350 .ret_type = RET_INTEGER,
351};
352
353#ifdef CONFIG_CGROUPS
354BPF_CALL_0(bpf_get_current_cgroup_id)
355{
356 struct cgroup *cgrp;
357 u64 cgrp_id;
358
359 rcu_read_lock();
360 cgrp = task_dfl_cgroup(current);
361 cgrp_id = cgroup_id(cgrp);
362 rcu_read_unlock();
363
364 return cgrp_id;
365}
366
367const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
368 .func = bpf_get_current_cgroup_id,
369 .gpl_only = false,
370 .ret_type = RET_INTEGER,
371};
372
373BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
374{
375 struct cgroup *cgrp;
376 struct cgroup *ancestor;
377 u64 cgrp_id;
378
379 rcu_read_lock();
380 cgrp = task_dfl_cgroup(current);
381 ancestor = cgroup_ancestor(cgrp, ancestor_level);
382 cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
383 rcu_read_unlock();
384
385 return cgrp_id;
386}
387
388const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
389 .func = bpf_get_current_ancestor_cgroup_id,
390 .gpl_only = false,
391 .ret_type = RET_INTEGER,
392 .arg1_type = ARG_ANYTHING,
393};
394
395#ifdef CONFIG_CGROUP_BPF
396DECLARE_PER_CPU(struct bpf_cgroup_storage_info,
397 bpf_cgroup_storage_info[BPF_CGROUP_STORAGE_NEST_MAX]);
398
399BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags)
400{
401 /* flags argument is not used now,
402 * but provides an ability to extend the API.
403 * verifier checks that its value is correct.
404 */
405 enum bpf_cgroup_storage_type stype = cgroup_storage_type(map);
406 struct bpf_cgroup_storage *storage = NULL;
407 void *ptr;
408 int i;
409
410 for (i = BPF_CGROUP_STORAGE_NEST_MAX - 1; i >= 0; i--) {
411 if (likely(this_cpu_read(bpf_cgroup_storage_info[i].task) != current))
412 continue;
413
414 storage = this_cpu_read(bpf_cgroup_storage_info[i].storage[stype]);
415 break;
416 }
417
418 if (stype == BPF_CGROUP_STORAGE_SHARED)
419 ptr = &READ_ONCE(storage->buf)->data[0];
420 else
421 ptr = this_cpu_ptr(storage->percpu_buf);
422
423 return (unsigned long)ptr;
424}
425
426const struct bpf_func_proto bpf_get_local_storage_proto = {
427 .func = bpf_get_local_storage,
428 .gpl_only = false,
429 .ret_type = RET_PTR_TO_MAP_VALUE,
430 .arg1_type = ARG_CONST_MAP_PTR,
431 .arg2_type = ARG_ANYTHING,
432};
433#endif
434
435#define BPF_STRTOX_BASE_MASK 0x1F
436
437static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
438 unsigned long long *res, bool *is_negative)
439{
440 unsigned int base = flags & BPF_STRTOX_BASE_MASK;
441 const char *cur_buf = buf;
442 size_t cur_len = buf_len;
443 unsigned int consumed;
444 size_t val_len;
445 char str[64];
446
447 if (!buf || !buf_len || !res || !is_negative)
448 return -EINVAL;
449
450 if (base != 0 && base != 8 && base != 10 && base != 16)
451 return -EINVAL;
452
453 if (flags & ~BPF_STRTOX_BASE_MASK)
454 return -EINVAL;
455
456 while (cur_buf < buf + buf_len && isspace(*cur_buf))
457 ++cur_buf;
458
459 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
460 if (*is_negative)
461 ++cur_buf;
462
463 consumed = cur_buf - buf;
464 cur_len -= consumed;
465 if (!cur_len)
466 return -EINVAL;
467
468 cur_len = min(cur_len, sizeof(str) - 1);
469 memcpy(str, cur_buf, cur_len);
470 str[cur_len] = '\0';
471 cur_buf = str;
472
473 cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
474 val_len = _parse_integer(cur_buf, base, res);
475
476 if (val_len & KSTRTOX_OVERFLOW)
477 return -ERANGE;
478
479 if (val_len == 0)
480 return -EINVAL;
481
482 cur_buf += val_len;
483 consumed += cur_buf - str;
484
485 return consumed;
486}
487
488static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
489 long long *res)
490{
491 unsigned long long _res;
492 bool is_negative;
493 int err;
494
495 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
496 if (err < 0)
497 return err;
498 if (is_negative) {
499 if ((long long)-_res > 0)
500 return -ERANGE;
501 *res = -_res;
502 } else {
503 if ((long long)_res < 0)
504 return -ERANGE;
505 *res = _res;
506 }
507 return err;
508}
509
510BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
511 long *, res)
512{
513 long long _res;
514 int err;
515
516 err = __bpf_strtoll(buf, buf_len, flags, &_res);
517 if (err < 0)
518 return err;
519 if (_res != (long)_res)
520 return -ERANGE;
521 *res = _res;
522 return err;
523}
524
525const struct bpf_func_proto bpf_strtol_proto = {
526 .func = bpf_strtol,
527 .gpl_only = false,
528 .ret_type = RET_INTEGER,
529 .arg1_type = ARG_PTR_TO_MEM,
530 .arg2_type = ARG_CONST_SIZE,
531 .arg3_type = ARG_ANYTHING,
532 .arg4_type = ARG_PTR_TO_LONG,
533};
534
535BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
536 unsigned long *, res)
537{
538 unsigned long long _res;
539 bool is_negative;
540 int err;
541
542 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
543 if (err < 0)
544 return err;
545 if (is_negative)
546 return -EINVAL;
547 if (_res != (unsigned long)_res)
548 return -ERANGE;
549 *res = _res;
550 return err;
551}
552
553const struct bpf_func_proto bpf_strtoul_proto = {
554 .func = bpf_strtoul,
555 .gpl_only = false,
556 .ret_type = RET_INTEGER,
557 .arg1_type = ARG_PTR_TO_MEM,
558 .arg2_type = ARG_CONST_SIZE,
559 .arg3_type = ARG_ANYTHING,
560 .arg4_type = ARG_PTR_TO_LONG,
561};
562#endif
563
564BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
565 struct bpf_pidns_info *, nsdata, u32, size)
566{
567 struct task_struct *task = current;
568 struct pid_namespace *pidns;
569 int err = -EINVAL;
570
571 if (unlikely(size != sizeof(struct bpf_pidns_info)))
572 goto clear;
573
574 if (unlikely((u64)(dev_t)dev != dev))
575 goto clear;
576
577 if (unlikely(!task))
578 goto clear;
579
580 pidns = task_active_pid_ns(task);
581 if (unlikely(!pidns)) {
582 err = -ENOENT;
583 goto clear;
584 }
585
586 if (!ns_match(&pidns->ns, (dev_t)dev, ino))
587 goto clear;
588
589 nsdata->pid = task_pid_nr_ns(task, pidns);
590 nsdata->tgid = task_tgid_nr_ns(task, pidns);
591 return 0;
592clear:
593 memset((void *)nsdata, 0, (size_t) size);
594 return err;
595}
596
597const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
598 .func = bpf_get_ns_current_pid_tgid,
599 .gpl_only = false,
600 .ret_type = RET_INTEGER,
601 .arg1_type = ARG_ANYTHING,
602 .arg2_type = ARG_ANYTHING,
603 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
604 .arg4_type = ARG_CONST_SIZE,
605};
606
607static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
608 .func = bpf_get_raw_cpu_id,
609 .gpl_only = false,
610 .ret_type = RET_INTEGER,
611};
612
613BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
614 u64, flags, void *, data, u64, size)
615{
616 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
617 return -EINVAL;
618
619 return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
620}
621
622const struct bpf_func_proto bpf_event_output_data_proto = {
623 .func = bpf_event_output_data,
624 .gpl_only = true,
625 .ret_type = RET_INTEGER,
626 .arg1_type = ARG_PTR_TO_CTX,
627 .arg2_type = ARG_CONST_MAP_PTR,
628 .arg3_type = ARG_ANYTHING,
629 .arg4_type = ARG_PTR_TO_MEM,
630 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
631};
632
633BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
634 const void __user *, user_ptr)
635{
636 int ret = copy_from_user(dst, user_ptr, size);
637
638 if (unlikely(ret)) {
639 memset(dst, 0, size);
640 ret = -EFAULT;
641 }
642
643 return ret;
644}
645
646const struct bpf_func_proto bpf_copy_from_user_proto = {
647 .func = bpf_copy_from_user,
648 .gpl_only = false,
649 .ret_type = RET_INTEGER,
650 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
651 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
652 .arg3_type = ARG_ANYTHING,
653};
654
655BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
656{
657 if (cpu >= nr_cpu_ids)
658 return (unsigned long)NULL;
659
660 return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
661}
662
663const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
664 .func = bpf_per_cpu_ptr,
665 .gpl_only = false,
666 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL,
667 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
668 .arg2_type = ARG_ANYTHING,
669};
670
671BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
672{
673 return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
674}
675
676const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
677 .func = bpf_this_cpu_ptr,
678 .gpl_only = false,
679 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID,
680 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
681};
682
683static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
684 size_t bufsz)
685{
686 void __user *user_ptr = (__force void __user *)unsafe_ptr;
687
688 buf[0] = 0;
689
690 switch (fmt_ptype) {
691 case 's':
692#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
693 if ((unsigned long)unsafe_ptr < TASK_SIZE)
694 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
695 fallthrough;
696#endif
697 case 'k':
698 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
699 case 'u':
700 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
701 }
702
703 return -EINVAL;
704}
705
706/* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
707 * arguments representation.
708 */
709#define MAX_BPRINTF_BUF_LEN 512
710
711/* Support executing three nested bprintf helper calls on a given CPU */
712#define MAX_BPRINTF_NEST_LEVEL 3
713struct bpf_bprintf_buffers {
714 char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN];
715};
716static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs);
717static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
718
719static int try_get_fmt_tmp_buf(char **tmp_buf)
720{
721 struct bpf_bprintf_buffers *bufs;
722 int nest_level;
723
724 preempt_disable();
725 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
726 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
727 this_cpu_dec(bpf_bprintf_nest_level);
728 preempt_enable();
729 return -EBUSY;
730 }
731 bufs = this_cpu_ptr(&bpf_bprintf_bufs);
732 *tmp_buf = bufs->tmp_bufs[nest_level - 1];
733
734 return 0;
735}
736
737void bpf_bprintf_cleanup(void)
738{
739 if (this_cpu_read(bpf_bprintf_nest_level)) {
740 this_cpu_dec(bpf_bprintf_nest_level);
741 preempt_enable();
742 }
743}
744
745/*
746 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
747 *
748 * Returns a negative value if fmt is an invalid format string or 0 otherwise.
749 *
750 * This can be used in two ways:
751 * - Format string verification only: when bin_args is NULL
752 * - Arguments preparation: in addition to the above verification, it writes in
753 * bin_args a binary representation of arguments usable by bstr_printf where
754 * pointers from BPF have been sanitized.
755 *
756 * In argument preparation mode, if 0 is returned, safe temporary buffers are
757 * allocated and bpf_bprintf_cleanup should be called to free them after use.
758 */
759int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
760 u32 **bin_args, u32 num_args)
761{
762 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
763 size_t sizeof_cur_arg, sizeof_cur_ip;
764 int err, i, num_spec = 0;
765 u64 cur_arg;
766 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
767
768 fmt_end = strnchr(fmt, fmt_size, 0);
769 if (!fmt_end)
770 return -EINVAL;
771 fmt_size = fmt_end - fmt;
772
773 if (bin_args) {
774 if (num_args && try_get_fmt_tmp_buf(&tmp_buf))
775 return -EBUSY;
776
777 tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN;
778 *bin_args = (u32 *)tmp_buf;
779 }
780
781 for (i = 0; i < fmt_size; i++) {
782 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
783 err = -EINVAL;
784 goto out;
785 }
786
787 if (fmt[i] != '%')
788 continue;
789
790 if (fmt[i + 1] == '%') {
791 i++;
792 continue;
793 }
794
795 if (num_spec >= num_args) {
796 err = -EINVAL;
797 goto out;
798 }
799
800 /* The string is zero-terminated so if fmt[i] != 0, we can
801 * always access fmt[i + 1], in the worst case it will be a 0
802 */
803 i++;
804
805 /* skip optional "[0 +-][num]" width formatting field */
806 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' ||
807 fmt[i] == ' ')
808 i++;
809 if (fmt[i] >= '1' && fmt[i] <= '9') {
810 i++;
811 while (fmt[i] >= '0' && fmt[i] <= '9')
812 i++;
813 }
814
815 if (fmt[i] == 'p') {
816 sizeof_cur_arg = sizeof(long);
817
818 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
819 fmt[i + 2] == 's') {
820 fmt_ptype = fmt[i + 1];
821 i += 2;
822 goto fmt_str;
823 }
824
825 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
826 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
827 fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
828 fmt[i + 1] == 'S') {
829 /* just kernel pointers */
830 if (tmp_buf)
831 cur_arg = raw_args[num_spec];
832 i++;
833 goto nocopy_fmt;
834 }
835
836 if (fmt[i + 1] == 'B') {
837 if (tmp_buf) {
838 err = snprintf(tmp_buf,
839 (tmp_buf_end - tmp_buf),
840 "%pB",
841 (void *)(long)raw_args[num_spec]);
842 tmp_buf += (err + 1);
843 }
844
845 i++;
846 num_spec++;
847 continue;
848 }
849
850 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
851 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
852 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
853 err = -EINVAL;
854 goto out;
855 }
856
857 i += 2;
858 if (!tmp_buf)
859 goto nocopy_fmt;
860
861 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
862 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
863 err = -ENOSPC;
864 goto out;
865 }
866
867 unsafe_ptr = (char *)(long)raw_args[num_spec];
868 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
869 sizeof_cur_ip);
870 if (err < 0)
871 memset(cur_ip, 0, sizeof_cur_ip);
872
873 /* hack: bstr_printf expects IP addresses to be
874 * pre-formatted as strings, ironically, the easiest way
875 * to do that is to call snprintf.
876 */
877 ip_spec[2] = fmt[i - 1];
878 ip_spec[3] = fmt[i];
879 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
880 ip_spec, &cur_ip);
881
882 tmp_buf += err + 1;
883 num_spec++;
884
885 continue;
886 } else if (fmt[i] == 's') {
887 fmt_ptype = fmt[i];
888fmt_str:
889 if (fmt[i + 1] != 0 &&
890 !isspace(fmt[i + 1]) &&
891 !ispunct(fmt[i + 1])) {
892 err = -EINVAL;
893 goto out;
894 }
895
896 if (!tmp_buf)
897 goto nocopy_fmt;
898
899 if (tmp_buf_end == tmp_buf) {
900 err = -ENOSPC;
901 goto out;
902 }
903
904 unsafe_ptr = (char *)(long)raw_args[num_spec];
905 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
906 fmt_ptype,
907 tmp_buf_end - tmp_buf);
908 if (err < 0) {
909 tmp_buf[0] = '\0';
910 err = 1;
911 }
912
913 tmp_buf += err;
914 num_spec++;
915
916 continue;
917 }
918
919 sizeof_cur_arg = sizeof(int);
920
921 if (fmt[i] == 'l') {
922 sizeof_cur_arg = sizeof(long);
923 i++;
924 }
925 if (fmt[i] == 'l') {
926 sizeof_cur_arg = sizeof(long long);
927 i++;
928 }
929
930 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
931 fmt[i] != 'x' && fmt[i] != 'X') {
932 err = -EINVAL;
933 goto out;
934 }
935
936 if (tmp_buf)
937 cur_arg = raw_args[num_spec];
938nocopy_fmt:
939 if (tmp_buf) {
940 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
941 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
942 err = -ENOSPC;
943 goto out;
944 }
945
946 if (sizeof_cur_arg == 8) {
947 *(u32 *)tmp_buf = *(u32 *)&cur_arg;
948 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
949 } else {
950 *(u32 *)tmp_buf = (u32)(long)cur_arg;
951 }
952 tmp_buf += sizeof_cur_arg;
953 }
954 num_spec++;
955 }
956
957 err = 0;
958out:
959 if (err)
960 bpf_bprintf_cleanup();
961 return err;
962}
963
964#define MAX_SNPRINTF_VARARGS 12
965
966BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
967 const void *, data, u32, data_len)
968{
969 int err, num_args;
970 u32 *bin_args;
971
972 if (data_len % 8 || data_len > MAX_SNPRINTF_VARARGS * 8 ||
973 (data_len && !data))
974 return -EINVAL;
975 num_args = data_len / 8;
976
977 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
978 * can safely give an unbounded size.
979 */
980 err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args);
981 if (err < 0)
982 return err;
983
984 err = bstr_printf(str, str_size, fmt, bin_args);
985
986 bpf_bprintf_cleanup();
987
988 return err + 1;
989}
990
991const struct bpf_func_proto bpf_snprintf_proto = {
992 .func = bpf_snprintf,
993 .gpl_only = true,
994 .ret_type = RET_INTEGER,
995 .arg1_type = ARG_PTR_TO_MEM_OR_NULL,
996 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
997 .arg3_type = ARG_PTR_TO_CONST_STR,
998 .arg4_type = ARG_PTR_TO_MEM_OR_NULL,
999 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1000};
1001
1002const struct bpf_func_proto bpf_get_current_task_proto __weak;
1003const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1004const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1005const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1006const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1007
1008const struct bpf_func_proto *
1009bpf_base_func_proto(enum bpf_func_id func_id)
1010{
1011 switch (func_id) {
1012 case BPF_FUNC_map_lookup_elem:
1013 return &bpf_map_lookup_elem_proto;
1014 case BPF_FUNC_map_update_elem:
1015 return &bpf_map_update_elem_proto;
1016 case BPF_FUNC_map_delete_elem:
1017 return &bpf_map_delete_elem_proto;
1018 case BPF_FUNC_map_push_elem:
1019 return &bpf_map_push_elem_proto;
1020 case BPF_FUNC_map_pop_elem:
1021 return &bpf_map_pop_elem_proto;
1022 case BPF_FUNC_map_peek_elem:
1023 return &bpf_map_peek_elem_proto;
1024 case BPF_FUNC_get_prandom_u32:
1025 return &bpf_get_prandom_u32_proto;
1026 case BPF_FUNC_get_smp_processor_id:
1027 return &bpf_get_raw_smp_processor_id_proto;
1028 case BPF_FUNC_get_numa_node_id:
1029 return &bpf_get_numa_node_id_proto;
1030 case BPF_FUNC_tail_call:
1031 return &bpf_tail_call_proto;
1032 case BPF_FUNC_ktime_get_ns:
1033 return &bpf_ktime_get_ns_proto;
1034 case BPF_FUNC_ktime_get_boot_ns:
1035 return &bpf_ktime_get_boot_ns_proto;
1036 case BPF_FUNC_ktime_get_coarse_ns:
1037 return &bpf_ktime_get_coarse_ns_proto;
1038 case BPF_FUNC_ringbuf_output:
1039 return &bpf_ringbuf_output_proto;
1040 case BPF_FUNC_ringbuf_reserve:
1041 return &bpf_ringbuf_reserve_proto;
1042 case BPF_FUNC_ringbuf_submit:
1043 return &bpf_ringbuf_submit_proto;
1044 case BPF_FUNC_ringbuf_discard:
1045 return &bpf_ringbuf_discard_proto;
1046 case BPF_FUNC_ringbuf_query:
1047 return &bpf_ringbuf_query_proto;
1048 case BPF_FUNC_for_each_map_elem:
1049 return &bpf_for_each_map_elem_proto;
1050 default:
1051 break;
1052 }
1053
1054 if (!bpf_capable())
1055 return NULL;
1056
1057 switch (func_id) {
1058 case BPF_FUNC_spin_lock:
1059 return &bpf_spin_lock_proto;
1060 case BPF_FUNC_spin_unlock:
1061 return &bpf_spin_unlock_proto;
1062 case BPF_FUNC_jiffies64:
1063 return &bpf_jiffies64_proto;
1064 case BPF_FUNC_per_cpu_ptr:
1065 return &bpf_per_cpu_ptr_proto;
1066 case BPF_FUNC_this_cpu_ptr:
1067 return &bpf_this_cpu_ptr_proto;
1068 default:
1069 break;
1070 }
1071
1072 if (!perfmon_capable())
1073 return NULL;
1074
1075 switch (func_id) {
1076 case BPF_FUNC_trace_printk:
1077 return bpf_get_trace_printk_proto();
1078 case BPF_FUNC_get_current_task:
1079 return &bpf_get_current_task_proto;
1080 case BPF_FUNC_probe_read_user:
1081 return &bpf_probe_read_user_proto;
1082 case BPF_FUNC_probe_read_kernel:
1083 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1084 NULL : &bpf_probe_read_kernel_proto;
1085 case BPF_FUNC_probe_read_user_str:
1086 return &bpf_probe_read_user_str_proto;
1087 case BPF_FUNC_probe_read_kernel_str:
1088 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1089 NULL : &bpf_probe_read_kernel_str_proto;
1090 case BPF_FUNC_snprintf_btf:
1091 return &bpf_snprintf_btf_proto;
1092 case BPF_FUNC_snprintf:
1093 return &bpf_snprintf_proto;
1094 default:
1095 return NULL;
1096 }
1097}