Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_sb.h"
  14#include "xfs_mount.h"
  15#include "xfs_inode.h"
  16#include "xfs_dir2.h"
  17#include "xfs_ialloc.h"
  18#include "xfs_alloc.h"
  19#include "xfs_rtalloc.h"
  20#include "xfs_bmap.h"
  21#include "xfs_trans.h"
  22#include "xfs_trans_priv.h"
  23#include "xfs_log.h"
  24#include "xfs_error.h"
  25#include "xfs_quota.h"
  26#include "xfs_fsops.h"
  27#include "xfs_icache.h"
  28#include "xfs_sysfs.h"
  29#include "xfs_rmap_btree.h"
  30#include "xfs_refcount_btree.h"
  31#include "xfs_reflink.h"
  32#include "xfs_extent_busy.h"
  33#include "xfs_health.h"
  34#include "xfs_trace.h"
 
  35
  36static DEFINE_MUTEX(xfs_uuid_table_mutex);
  37static int xfs_uuid_table_size;
  38static uuid_t *xfs_uuid_table;
  39
  40void
  41xfs_uuid_table_free(void)
  42{
  43	if (xfs_uuid_table_size == 0)
  44		return;
  45	kmem_free(xfs_uuid_table);
  46	xfs_uuid_table = NULL;
  47	xfs_uuid_table_size = 0;
  48}
  49
  50/*
  51 * See if the UUID is unique among mounted XFS filesystems.
  52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
  53 */
  54STATIC int
  55xfs_uuid_mount(
  56	struct xfs_mount	*mp)
  57{
  58	uuid_t			*uuid = &mp->m_sb.sb_uuid;
  59	int			hole, i;
  60
  61	/* Publish UUID in struct super_block */
  62	uuid_copy(&mp->m_super->s_uuid, uuid);
  63
  64	if (mp->m_flags & XFS_MOUNT_NOUUID)
  65		return 0;
  66
  67	if (uuid_is_null(uuid)) {
  68		xfs_warn(mp, "Filesystem has null UUID - can't mount");
  69		return -EINVAL;
  70	}
  71
  72	mutex_lock(&xfs_uuid_table_mutex);
  73	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
  74		if (uuid_is_null(&xfs_uuid_table[i])) {
  75			hole = i;
  76			continue;
  77		}
  78		if (uuid_equal(uuid, &xfs_uuid_table[i]))
  79			goto out_duplicate;
  80	}
  81
  82	if (hole < 0) {
  83		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
  84			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
  85			0);
  86		hole = xfs_uuid_table_size++;
  87	}
  88	xfs_uuid_table[hole] = *uuid;
  89	mutex_unlock(&xfs_uuid_table_mutex);
  90
  91	return 0;
  92
  93 out_duplicate:
  94	mutex_unlock(&xfs_uuid_table_mutex);
  95	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
  96	return -EINVAL;
  97}
  98
  99STATIC void
 100xfs_uuid_unmount(
 101	struct xfs_mount	*mp)
 102{
 103	uuid_t			*uuid = &mp->m_sb.sb_uuid;
 104	int			i;
 105
 106	if (mp->m_flags & XFS_MOUNT_NOUUID)
 107		return;
 108
 109	mutex_lock(&xfs_uuid_table_mutex);
 110	for (i = 0; i < xfs_uuid_table_size; i++) {
 111		if (uuid_is_null(&xfs_uuid_table[i]))
 112			continue;
 113		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
 114			continue;
 115		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
 116		break;
 117	}
 118	ASSERT(i < xfs_uuid_table_size);
 119	mutex_unlock(&xfs_uuid_table_mutex);
 120}
 121
 122
 123STATIC void
 124__xfs_free_perag(
 125	struct rcu_head	*head)
 126{
 127	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
 128
 129	ASSERT(atomic_read(&pag->pag_ref) == 0);
 130	kmem_free(pag);
 131}
 132
 133/*
 134 * Free up the per-ag resources associated with the mount structure.
 135 */
 136STATIC void
 137xfs_free_perag(
 138	xfs_mount_t	*mp)
 139{
 140	xfs_agnumber_t	agno;
 141	struct xfs_perag *pag;
 142
 143	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 144		spin_lock(&mp->m_perag_lock);
 145		pag = radix_tree_delete(&mp->m_perag_tree, agno);
 146		spin_unlock(&mp->m_perag_lock);
 147		ASSERT(pag);
 148		ASSERT(atomic_read(&pag->pag_ref) == 0);
 149		xfs_iunlink_destroy(pag);
 150		xfs_buf_hash_destroy(pag);
 151		call_rcu(&pag->rcu_head, __xfs_free_perag);
 152	}
 153}
 154
 155/*
 156 * Check size of device based on the (data/realtime) block count.
 157 * Note: this check is used by the growfs code as well as mount.
 158 */
 159int
 160xfs_sb_validate_fsb_count(
 161	xfs_sb_t	*sbp,
 162	uint64_t	nblocks)
 163{
 164	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
 165	ASSERT(sbp->sb_blocklog >= BBSHIFT);
 166
 167	/* Limited by ULONG_MAX of page cache index */
 168	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
 169		return -EFBIG;
 170	return 0;
 171}
 172
 173int
 174xfs_initialize_perag(
 175	xfs_mount_t	*mp,
 176	xfs_agnumber_t	agcount,
 177	xfs_agnumber_t	*maxagi)
 178{
 179	xfs_agnumber_t	index;
 180	xfs_agnumber_t	first_initialised = NULLAGNUMBER;
 181	xfs_perag_t	*pag;
 182	int		error = -ENOMEM;
 183
 184	/*
 185	 * Walk the current per-ag tree so we don't try to initialise AGs
 186	 * that already exist (growfs case). Allocate and insert all the
 187	 * AGs we don't find ready for initialisation.
 188	 */
 189	for (index = 0; index < agcount; index++) {
 190		pag = xfs_perag_get(mp, index);
 191		if (pag) {
 192			xfs_perag_put(pag);
 193			continue;
 194		}
 195
 196		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
 197		if (!pag)
 198			goto out_unwind_new_pags;
 199		pag->pag_agno = index;
 200		pag->pag_mount = mp;
 201		spin_lock_init(&pag->pag_ici_lock);
 202		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
 203		if (xfs_buf_hash_init(pag))
 204			goto out_free_pag;
 205		init_waitqueue_head(&pag->pagb_wait);
 206		spin_lock_init(&pag->pagb_lock);
 207		pag->pagb_count = 0;
 208		pag->pagb_tree = RB_ROOT;
 209
 210		if (radix_tree_preload(GFP_NOFS))
 211			goto out_hash_destroy;
 212
 213		spin_lock(&mp->m_perag_lock);
 214		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
 215			WARN_ON_ONCE(1);
 216			spin_unlock(&mp->m_perag_lock);
 217			radix_tree_preload_end();
 218			error = -EEXIST;
 219			goto out_hash_destroy;
 220		}
 221		spin_unlock(&mp->m_perag_lock);
 222		radix_tree_preload_end();
 223		/* first new pag is fully initialized */
 224		if (first_initialised == NULLAGNUMBER)
 225			first_initialised = index;
 226		error = xfs_iunlink_init(pag);
 227		if (error)
 228			goto out_hash_destroy;
 229		spin_lock_init(&pag->pag_state_lock);
 230	}
 231
 232	index = xfs_set_inode_alloc(mp, agcount);
 233
 234	if (maxagi)
 235		*maxagi = index;
 236
 237	mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
 238	return 0;
 239
 240out_hash_destroy:
 241	xfs_buf_hash_destroy(pag);
 242out_free_pag:
 243	kmem_free(pag);
 244out_unwind_new_pags:
 245	/* unwind any prior newly initialized pags */
 246	for (index = first_initialised; index < agcount; index++) {
 247		pag = radix_tree_delete(&mp->m_perag_tree, index);
 248		if (!pag)
 249			break;
 250		xfs_buf_hash_destroy(pag);
 251		xfs_iunlink_destroy(pag);
 252		kmem_free(pag);
 253	}
 254	return error;
 255}
 256
 257/*
 258 * xfs_readsb
 259 *
 260 * Does the initial read of the superblock.
 261 */
 262int
 263xfs_readsb(
 264	struct xfs_mount *mp,
 265	int		flags)
 266{
 267	unsigned int	sector_size;
 268	struct xfs_buf	*bp;
 269	struct xfs_sb	*sbp = &mp->m_sb;
 270	int		error;
 271	int		loud = !(flags & XFS_MFSI_QUIET);
 272	const struct xfs_buf_ops *buf_ops;
 273
 274	ASSERT(mp->m_sb_bp == NULL);
 275	ASSERT(mp->m_ddev_targp != NULL);
 276
 277	/*
 278	 * For the initial read, we must guess at the sector
 279	 * size based on the block device.  It's enough to
 280	 * get the sb_sectsize out of the superblock and
 281	 * then reread with the proper length.
 282	 * We don't verify it yet, because it may not be complete.
 283	 */
 284	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
 285	buf_ops = NULL;
 286
 287	/*
 288	 * Allocate a (locked) buffer to hold the superblock. This will be kept
 289	 * around at all times to optimize access to the superblock. Therefore,
 290	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
 291	 * elevated.
 292	 */
 293reread:
 294	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
 295				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
 296				      buf_ops);
 297	if (error) {
 298		if (loud)
 299			xfs_warn(mp, "SB validate failed with error %d.", error);
 300		/* bad CRC means corrupted metadata */
 301		if (error == -EFSBADCRC)
 302			error = -EFSCORRUPTED;
 303		return error;
 304	}
 305
 306	/*
 307	 * Initialize the mount structure from the superblock.
 308	 */
 309	xfs_sb_from_disk(sbp, bp->b_addr);
 310
 311	/*
 312	 * If we haven't validated the superblock, do so now before we try
 313	 * to check the sector size and reread the superblock appropriately.
 314	 */
 315	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
 316		if (loud)
 317			xfs_warn(mp, "Invalid superblock magic number");
 318		error = -EINVAL;
 319		goto release_buf;
 320	}
 321
 322	/*
 323	 * We must be able to do sector-sized and sector-aligned IO.
 324	 */
 325	if (sector_size > sbp->sb_sectsize) {
 326		if (loud)
 327			xfs_warn(mp, "device supports %u byte sectors (not %u)",
 328				sector_size, sbp->sb_sectsize);
 329		error = -ENOSYS;
 330		goto release_buf;
 331	}
 332
 333	if (buf_ops == NULL) {
 334		/*
 335		 * Re-read the superblock so the buffer is correctly sized,
 336		 * and properly verified.
 337		 */
 338		xfs_buf_relse(bp);
 339		sector_size = sbp->sb_sectsize;
 340		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
 341		goto reread;
 342	}
 343
 344	xfs_reinit_percpu_counters(mp);
 345
 346	/* no need to be quiet anymore, so reset the buf ops */
 347	bp->b_ops = &xfs_sb_buf_ops;
 348
 349	mp->m_sb_bp = bp;
 350	xfs_buf_unlock(bp);
 351	return 0;
 352
 353release_buf:
 354	xfs_buf_relse(bp);
 355	return error;
 356}
 357
 358/*
 359 * If the sunit/swidth change would move the precomputed root inode value, we
 360 * must reject the ondisk change because repair will stumble over that.
 361 * However, we allow the mount to proceed because we never rejected this
 362 * combination before.  Returns true to update the sb, false otherwise.
 363 */
 364static inline int
 365xfs_check_new_dalign(
 366	struct xfs_mount	*mp,
 367	int			new_dalign,
 368	bool			*update_sb)
 369{
 370	struct xfs_sb		*sbp = &mp->m_sb;
 371	xfs_ino_t		calc_ino;
 372
 373	calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
 374	trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
 375
 376	if (sbp->sb_rootino == calc_ino) {
 377		*update_sb = true;
 378		return 0;
 379	}
 380
 381	xfs_warn(mp,
 382"Cannot change stripe alignment; would require moving root inode.");
 383
 384	/*
 385	 * XXX: Next time we add a new incompat feature, this should start
 386	 * returning -EINVAL to fail the mount.  Until then, spit out a warning
 387	 * that we're ignoring the administrator's instructions.
 388	 */
 389	xfs_warn(mp, "Skipping superblock stripe alignment update.");
 390	*update_sb = false;
 391	return 0;
 392}
 393
 394/*
 395 * If we were provided with new sunit/swidth values as mount options, make sure
 396 * that they pass basic alignment and superblock feature checks, and convert
 397 * them into the same units (FSB) that everything else expects.  This step
 398 * /must/ be done before computing the inode geometry.
 399 */
 400STATIC int
 401xfs_validate_new_dalign(
 402	struct xfs_mount	*mp)
 403{
 404	if (mp->m_dalign == 0)
 405		return 0;
 406
 407	/*
 408	 * If stripe unit and stripe width are not multiples
 409	 * of the fs blocksize turn off alignment.
 410	 */
 411	if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
 412	    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
 413		xfs_warn(mp,
 414	"alignment check failed: sunit/swidth vs. blocksize(%d)",
 415			mp->m_sb.sb_blocksize);
 416		return -EINVAL;
 417	} else {
 418		/*
 419		 * Convert the stripe unit and width to FSBs.
 420		 */
 421		mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
 422		if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
 423			xfs_warn(mp,
 424		"alignment check failed: sunit/swidth vs. agsize(%d)",
 425				 mp->m_sb.sb_agblocks);
 426			return -EINVAL;
 427		} else if (mp->m_dalign) {
 428			mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
 429		} else {
 430			xfs_warn(mp,
 431		"alignment check failed: sunit(%d) less than bsize(%d)",
 432				 mp->m_dalign, mp->m_sb.sb_blocksize);
 433			return -EINVAL;
 434		}
 435	}
 436
 437	if (!xfs_sb_version_hasdalign(&mp->m_sb)) {
 438		xfs_warn(mp,
 439"cannot change alignment: superblock does not support data alignment");
 440		return -EINVAL;
 441	}
 442
 443	return 0;
 444}
 445
 446/* Update alignment values based on mount options and sb values. */
 447STATIC int
 448xfs_update_alignment(
 449	struct xfs_mount	*mp)
 450{
 451	struct xfs_sb		*sbp = &mp->m_sb;
 452
 453	if (mp->m_dalign) {
 454		bool		update_sb;
 455		int		error;
 456
 457		if (sbp->sb_unit == mp->m_dalign &&
 458		    sbp->sb_width == mp->m_swidth)
 459			return 0;
 460
 461		error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
 462		if (error || !update_sb)
 463			return error;
 464
 465		sbp->sb_unit = mp->m_dalign;
 466		sbp->sb_width = mp->m_swidth;
 467		mp->m_update_sb = true;
 468	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
 469		    xfs_sb_version_hasdalign(&mp->m_sb)) {
 470		mp->m_dalign = sbp->sb_unit;
 471		mp->m_swidth = sbp->sb_width;
 472	}
 473
 474	return 0;
 475}
 476
 477/*
 478 * precalculate the low space thresholds for dynamic speculative preallocation.
 479 */
 480void
 481xfs_set_low_space_thresholds(
 482	struct xfs_mount	*mp)
 483{
 484	int i;
 485
 486	for (i = 0; i < XFS_LOWSP_MAX; i++) {
 487		uint64_t space = mp->m_sb.sb_dblocks;
 488
 489		do_div(space, 100);
 490		mp->m_low_space[i] = space * (i + 1);
 491	}
 492}
 493
 494/*
 495 * Check that the data (and log if separate) is an ok size.
 496 */
 497STATIC int
 498xfs_check_sizes(
 499	struct xfs_mount *mp)
 500{
 501	struct xfs_buf	*bp;
 502	xfs_daddr_t	d;
 503	int		error;
 504
 505	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
 506	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
 507		xfs_warn(mp, "filesystem size mismatch detected");
 508		return -EFBIG;
 509	}
 510	error = xfs_buf_read_uncached(mp->m_ddev_targp,
 511					d - XFS_FSS_TO_BB(mp, 1),
 512					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
 513	if (error) {
 514		xfs_warn(mp, "last sector read failed");
 515		return error;
 516	}
 517	xfs_buf_relse(bp);
 518
 519	if (mp->m_logdev_targp == mp->m_ddev_targp)
 520		return 0;
 521
 522	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
 523	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
 524		xfs_warn(mp, "log size mismatch detected");
 525		return -EFBIG;
 526	}
 527	error = xfs_buf_read_uncached(mp->m_logdev_targp,
 528					d - XFS_FSB_TO_BB(mp, 1),
 529					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
 530	if (error) {
 531		xfs_warn(mp, "log device read failed");
 532		return error;
 533	}
 534	xfs_buf_relse(bp);
 535	return 0;
 536}
 537
 538/*
 539 * Clear the quotaflags in memory and in the superblock.
 540 */
 541int
 542xfs_mount_reset_sbqflags(
 543	struct xfs_mount	*mp)
 544{
 545	mp->m_qflags = 0;
 546
 547	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
 548	if (mp->m_sb.sb_qflags == 0)
 549		return 0;
 550	spin_lock(&mp->m_sb_lock);
 551	mp->m_sb.sb_qflags = 0;
 552	spin_unlock(&mp->m_sb_lock);
 553
 554	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
 555		return 0;
 556
 557	return xfs_sync_sb(mp, false);
 558}
 559
 560uint64_t
 561xfs_default_resblks(xfs_mount_t *mp)
 562{
 563	uint64_t resblks;
 564
 565	/*
 566	 * We default to 5% or 8192 fsbs of space reserved, whichever is
 567	 * smaller.  This is intended to cover concurrent allocation
 568	 * transactions when we initially hit enospc. These each require a 4
 569	 * block reservation. Hence by default we cover roughly 2000 concurrent
 570	 * allocation reservations.
 571	 */
 572	resblks = mp->m_sb.sb_dblocks;
 573	do_div(resblks, 20);
 574	resblks = min_t(uint64_t, resblks, 8192);
 575	return resblks;
 576}
 577
 578/* Ensure the summary counts are correct. */
 579STATIC int
 580xfs_check_summary_counts(
 581	struct xfs_mount	*mp)
 582{
 583	/*
 584	 * The AG0 superblock verifier rejects in-progress filesystems,
 585	 * so we should never see the flag set this far into mounting.
 586	 */
 587	if (mp->m_sb.sb_inprogress) {
 588		xfs_err(mp, "sb_inprogress set after log recovery??");
 589		WARN_ON(1);
 590		return -EFSCORRUPTED;
 591	}
 592
 593	/*
 594	 * Now the log is mounted, we know if it was an unclean shutdown or
 595	 * not. If it was, with the first phase of recovery has completed, we
 596	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
 597	 * but they are recovered transactionally in the second recovery phase
 598	 * later.
 599	 *
 600	 * If the log was clean when we mounted, we can check the summary
 601	 * counters.  If any of them are obviously incorrect, we can recompute
 602	 * them from the AGF headers in the next step.
 603	 */
 604	if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
 605	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
 606	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
 607	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
 608		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
 609
 610	/*
 611	 * We can safely re-initialise incore superblock counters from the
 612	 * per-ag data. These may not be correct if the filesystem was not
 613	 * cleanly unmounted, so we waited for recovery to finish before doing
 614	 * this.
 615	 *
 616	 * If the filesystem was cleanly unmounted or the previous check did
 617	 * not flag anything weird, then we can trust the values in the
 618	 * superblock to be correct and we don't need to do anything here.
 619	 * Otherwise, recalculate the summary counters.
 620	 */
 621	if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
 622	     XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
 623	    !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
 624		return 0;
 625
 626	return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
 627}
 628
 629/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 630 * This function does the following on an initial mount of a file system:
 631 *	- reads the superblock from disk and init the mount struct
 632 *	- if we're a 32-bit kernel, do a size check on the superblock
 633 *		so we don't mount terabyte filesystems
 634 *	- init mount struct realtime fields
 635 *	- allocate inode hash table for fs
 636 *	- init directory manager
 637 *	- perform recovery and init the log manager
 638 */
 639int
 640xfs_mountfs(
 641	struct xfs_mount	*mp)
 642{
 643	struct xfs_sb		*sbp = &(mp->m_sb);
 644	struct xfs_inode	*rip;
 645	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
 646	uint64_t		resblks;
 647	uint			quotamount = 0;
 648	uint			quotaflags = 0;
 649	int			error = 0;
 650
 651	xfs_sb_mount_common(mp, sbp);
 652
 653	/*
 654	 * Check for a mismatched features2 values.  Older kernels read & wrote
 655	 * into the wrong sb offset for sb_features2 on some platforms due to
 656	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
 657	 * which made older superblock reading/writing routines swap it as a
 658	 * 64-bit value.
 659	 *
 660	 * For backwards compatibility, we make both slots equal.
 661	 *
 662	 * If we detect a mismatched field, we OR the set bits into the existing
 663	 * features2 field in case it has already been modified; we don't want
 664	 * to lose any features.  We then update the bad location with the ORed
 665	 * value so that older kernels will see any features2 flags. The
 666	 * superblock writeback code ensures the new sb_features2 is copied to
 667	 * sb_bad_features2 before it is logged or written to disk.
 668	 */
 669	if (xfs_sb_has_mismatched_features2(sbp)) {
 670		xfs_warn(mp, "correcting sb_features alignment problem");
 671		sbp->sb_features2 |= sbp->sb_bad_features2;
 672		mp->m_update_sb = true;
 673
 674		/*
 675		 * Re-check for ATTR2 in case it was found in bad_features2
 676		 * slot.
 677		 */
 678		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 679		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
 680			mp->m_flags |= XFS_MOUNT_ATTR2;
 681	}
 682
 683	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 684	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
 685		xfs_sb_version_removeattr2(&mp->m_sb);
 686		mp->m_update_sb = true;
 687
 688		/* update sb_versionnum for the clearing of the morebits */
 689		if (!sbp->sb_features2)
 690			mp->m_update_sb = true;
 691	}
 692
 693	/* always use v2 inodes by default now */
 694	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
 695		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
 696		mp->m_update_sb = true;
 697	}
 698
 699	/*
 700	 * If we were given new sunit/swidth options, do some basic validation
 701	 * checks and convert the incore dalign and swidth values to the
 702	 * same units (FSB) that everything else uses.  This /must/ happen
 703	 * before computing the inode geometry.
 704	 */
 705	error = xfs_validate_new_dalign(mp);
 706	if (error)
 707		goto out;
 708
 709	xfs_alloc_compute_maxlevels(mp);
 710	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
 711	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
 712	xfs_ialloc_setup_geometry(mp);
 713	xfs_rmapbt_compute_maxlevels(mp);
 714	xfs_refcountbt_compute_maxlevels(mp);
 715
 716	/*
 717	 * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
 718	 * is NOT aligned turn off m_dalign since allocator alignment is within
 719	 * an ag, therefore ag has to be aligned at stripe boundary.  Note that
 720	 * we must compute the free space and rmap btree geometry before doing
 721	 * this.
 722	 */
 723	error = xfs_update_alignment(mp);
 724	if (error)
 725		goto out;
 726
 727	/* enable fail_at_unmount as default */
 728	mp->m_fail_unmount = true;
 729
 730	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
 731			       NULL, mp->m_super->s_id);
 732	if (error)
 733		goto out;
 734
 735	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
 736			       &mp->m_kobj, "stats");
 737	if (error)
 738		goto out_remove_sysfs;
 739
 740	error = xfs_error_sysfs_init(mp);
 741	if (error)
 742		goto out_del_stats;
 743
 744	error = xfs_errortag_init(mp);
 745	if (error)
 746		goto out_remove_error_sysfs;
 747
 748	error = xfs_uuid_mount(mp);
 749	if (error)
 750		goto out_remove_errortag;
 751
 752	/*
 753	 * Update the preferred write size based on the information from the
 754	 * on-disk superblock.
 755	 */
 756	mp->m_allocsize_log =
 757		max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
 758	mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
 759
 760	/* set the low space thresholds for dynamic preallocation */
 761	xfs_set_low_space_thresholds(mp);
 762
 763	/*
 764	 * If enabled, sparse inode chunk alignment is expected to match the
 765	 * cluster size. Full inode chunk alignment must match the chunk size,
 766	 * but that is checked on sb read verification...
 767	 */
 768	if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
 769	    mp->m_sb.sb_spino_align !=
 770			XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
 771		xfs_warn(mp,
 772	"Sparse inode block alignment (%u) must match cluster size (%llu).",
 773			 mp->m_sb.sb_spino_align,
 774			 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
 775		error = -EINVAL;
 776		goto out_remove_uuid;
 777	}
 778
 779	/*
 780	 * Check that the data (and log if separate) is an ok size.
 781	 */
 782	error = xfs_check_sizes(mp);
 783	if (error)
 784		goto out_remove_uuid;
 785
 786	/*
 787	 * Initialize realtime fields in the mount structure
 788	 */
 789	error = xfs_rtmount_init(mp);
 790	if (error) {
 791		xfs_warn(mp, "RT mount failed");
 792		goto out_remove_uuid;
 793	}
 794
 795	/*
 796	 *  Copies the low order bits of the timestamp and the randomly
 797	 *  set "sequence" number out of a UUID.
 798	 */
 799	mp->m_fixedfsid[0] =
 800		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
 801		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
 802	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
 803
 804	error = xfs_da_mount(mp);
 805	if (error) {
 806		xfs_warn(mp, "Failed dir/attr init: %d", error);
 807		goto out_remove_uuid;
 808	}
 809
 810	/*
 811	 * Initialize the precomputed transaction reservations values.
 812	 */
 813	xfs_trans_init(mp);
 814
 815	/*
 816	 * Allocate and initialize the per-ag data.
 817	 */
 818	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
 819	if (error) {
 820		xfs_warn(mp, "Failed per-ag init: %d", error);
 821		goto out_free_dir;
 822	}
 823
 824	if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
 825		xfs_warn(mp, "no log defined");
 826		error = -EFSCORRUPTED;
 827		goto out_free_perag;
 828	}
 829
 830	/*
 831	 * Log's mount-time initialization. The first part of recovery can place
 832	 * some items on the AIL, to be handled when recovery is finished or
 833	 * cancelled.
 834	 */
 835	error = xfs_log_mount(mp, mp->m_logdev_targp,
 836			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
 837			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
 838	if (error) {
 839		xfs_warn(mp, "log mount failed");
 840		goto out_fail_wait;
 841	}
 842
 843	/* Make sure the summary counts are ok. */
 844	error = xfs_check_summary_counts(mp);
 845	if (error)
 846		goto out_log_dealloc;
 847
 848	/*
 849	 * Get and sanity-check the root inode.
 850	 * Save the pointer to it in the mount structure.
 851	 */
 852	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
 853			 XFS_ILOCK_EXCL, &rip);
 854	if (error) {
 855		xfs_warn(mp,
 856			"Failed to read root inode 0x%llx, error %d",
 857			sbp->sb_rootino, -error);
 858		goto out_log_dealloc;
 859	}
 860
 861	ASSERT(rip != NULL);
 862
 863	if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
 864		xfs_warn(mp, "corrupted root inode %llu: not a directory",
 865			(unsigned long long)rip->i_ino);
 866		xfs_iunlock(rip, XFS_ILOCK_EXCL);
 867		error = -EFSCORRUPTED;
 868		goto out_rele_rip;
 869	}
 870	mp->m_rootip = rip;	/* save it */
 871
 872	xfs_iunlock(rip, XFS_ILOCK_EXCL);
 873
 874	/*
 875	 * Initialize realtime inode pointers in the mount structure
 876	 */
 877	error = xfs_rtmount_inodes(mp);
 878	if (error) {
 879		/*
 880		 * Free up the root inode.
 881		 */
 882		xfs_warn(mp, "failed to read RT inodes");
 883		goto out_rele_rip;
 884	}
 885
 886	/*
 887	 * If this is a read-only mount defer the superblock updates until
 888	 * the next remount into writeable mode.  Otherwise we would never
 889	 * perform the update e.g. for the root filesystem.
 890	 */
 891	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
 892		error = xfs_sync_sb(mp, false);
 893		if (error) {
 894			xfs_warn(mp, "failed to write sb changes");
 895			goto out_rtunmount;
 896		}
 897	}
 898
 899	/*
 900	 * Initialise the XFS quota management subsystem for this mount
 901	 */
 902	if (XFS_IS_QUOTA_RUNNING(mp)) {
 903		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
 904		if (error)
 905			goto out_rtunmount;
 906	} else {
 907		ASSERT(!XFS_IS_QUOTA_ON(mp));
 908
 909		/*
 910		 * If a file system had quotas running earlier, but decided to
 911		 * mount without -o uquota/pquota/gquota options, revoke the
 912		 * quotachecked license.
 913		 */
 914		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
 915			xfs_notice(mp, "resetting quota flags");
 916			error = xfs_mount_reset_sbqflags(mp);
 917			if (error)
 918				goto out_rtunmount;
 919		}
 920	}
 921
 922	/*
 923	 * Finish recovering the file system.  This part needed to be delayed
 924	 * until after the root and real-time bitmap inodes were consistently
 925	 * read in.
 
 
 
 926	 */
 
 
 
 
 927	error = xfs_log_mount_finish(mp);
 
 928	if (error) {
 929		xfs_warn(mp, "log mount finish failed");
 930		goto out_rtunmount;
 931	}
 932
 933	/*
 934	 * Now the log is fully replayed, we can transition to full read-only
 935	 * mode for read-only mounts. This will sync all the metadata and clean
 936	 * the log so that the recovery we just performed does not have to be
 937	 * replayed again on the next mount.
 938	 *
 939	 * We use the same quiesce mechanism as the rw->ro remount, as they are
 940	 * semantically identical operations.
 941	 */
 942	if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
 943							XFS_MOUNT_RDONLY) {
 944		xfs_quiesce_attr(mp);
 945	}
 946
 947	/*
 948	 * Complete the quota initialisation, post-log-replay component.
 949	 */
 950	if (quotamount) {
 951		ASSERT(mp->m_qflags == 0);
 952		mp->m_qflags = quotaflags;
 953
 954		xfs_qm_mount_quotas(mp);
 955	}
 956
 957	/*
 958	 * Now we are mounted, reserve a small amount of unused space for
 959	 * privileged transactions. This is needed so that transaction
 960	 * space required for critical operations can dip into this pool
 961	 * when at ENOSPC. This is needed for operations like create with
 962	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
 963	 * are not allowed to use this reserved space.
 964	 *
 965	 * This may drive us straight to ENOSPC on mount, but that implies
 966	 * we were already there on the last unmount. Warn if this occurs.
 967	 */
 968	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
 969		resblks = xfs_default_resblks(mp);
 970		error = xfs_reserve_blocks(mp, &resblks, NULL);
 971		if (error)
 972			xfs_warn(mp,
 973	"Unable to allocate reserve blocks. Continuing without reserve pool.");
 974
 975		/* Recover any CoW blocks that never got remapped. */
 976		error = xfs_reflink_recover_cow(mp);
 977		if (error) {
 978			xfs_err(mp,
 979	"Error %d recovering leftover CoW allocations.", error);
 980			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
 981			goto out_quota;
 982		}
 983
 984		/* Reserve AG blocks for future btree expansion. */
 985		error = xfs_fs_reserve_ag_blocks(mp);
 986		if (error && error != -ENOSPC)
 987			goto out_agresv;
 988	}
 989
 990	return 0;
 991
 992 out_agresv:
 993	xfs_fs_unreserve_ag_blocks(mp);
 994 out_quota:
 995	xfs_qm_unmount_quotas(mp);
 996 out_rtunmount:
 997	xfs_rtunmount_inodes(mp);
 998 out_rele_rip:
 999	xfs_irele(rip);
1000	/* Clean out dquots that might be in memory after quotacheck. */
1001	xfs_qm_unmount(mp);
1002	/*
1003	 * Cancel all delayed reclaim work and reclaim the inodes directly.
1004	 * We have to do this /after/ rtunmount and qm_unmount because those
1005	 * two will have scheduled delayed reclaim for the rt/quota inodes.
1006	 *
1007	 * This is slightly different from the unmountfs call sequence
1008	 * because we could be tearing down a partially set up mount.  In
1009	 * particular, if log_mount_finish fails we bail out without calling
1010	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1011	 * quota inodes.
1012	 */
1013	cancel_delayed_work_sync(&mp->m_reclaim_work);
1014	xfs_reclaim_inodes(mp);
1015	xfs_health_unmount(mp);
1016 out_log_dealloc:
1017	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1018	xfs_log_mount_cancel(mp);
1019 out_fail_wait:
1020	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1021		xfs_wait_buftarg(mp->m_logdev_targp);
1022	xfs_wait_buftarg(mp->m_ddev_targp);
1023 out_free_perag:
1024	xfs_free_perag(mp);
1025 out_free_dir:
1026	xfs_da_unmount(mp);
1027 out_remove_uuid:
1028	xfs_uuid_unmount(mp);
1029 out_remove_errortag:
1030	xfs_errortag_del(mp);
1031 out_remove_error_sysfs:
1032	xfs_error_sysfs_del(mp);
1033 out_del_stats:
1034	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1035 out_remove_sysfs:
1036	xfs_sysfs_del(&mp->m_kobj);
1037 out:
1038	return error;
1039}
1040
1041/*
1042 * This flushes out the inodes,dquots and the superblock, unmounts the
1043 * log and makes sure that incore structures are freed.
1044 */
1045void
1046xfs_unmountfs(
1047	struct xfs_mount	*mp)
1048{
1049	uint64_t		resblks;
1050	int			error;
1051
1052	xfs_stop_block_reaping(mp);
1053	xfs_fs_unreserve_ag_blocks(mp);
1054	xfs_qm_unmount_quotas(mp);
1055	xfs_rtunmount_inodes(mp);
1056	xfs_irele(mp->m_rootip);
1057
1058	/*
1059	 * We can potentially deadlock here if we have an inode cluster
1060	 * that has been freed has its buffer still pinned in memory because
1061	 * the transaction is still sitting in a iclog. The stale inodes
1062	 * on that buffer will have their flush locks held until the
1063	 * transaction hits the disk and the callbacks run. the inode
1064	 * flush takes the flush lock unconditionally and with nothing to
1065	 * push out the iclog we will never get that unlocked. hence we
1066	 * need to force the log first.
1067	 */
1068	xfs_log_force(mp, XFS_LOG_SYNC);
1069
1070	/*
1071	 * Wait for all busy extents to be freed, including completion of
1072	 * any discard operation.
1073	 */
1074	xfs_extent_busy_wait_all(mp);
1075	flush_workqueue(xfs_discard_wq);
1076
1077	/*
1078	 * We now need to tell the world we are unmounting. This will allow
1079	 * us to detect that the filesystem is going away and we should error
1080	 * out anything that we have been retrying in the background. This will
1081	 * prevent neverending retries in AIL pushing from hanging the unmount.
1082	 */
1083	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1084
1085	/*
1086	 * Flush all pending changes from the AIL.
1087	 */
1088	xfs_ail_push_all_sync(mp->m_ail);
1089
1090	/*
1091	 * Reclaim all inodes. At this point there should be no dirty inodes and
1092	 * none should be pinned or locked. Stop background inode reclaim here
1093	 * if it is still running.
1094	 */
1095	cancel_delayed_work_sync(&mp->m_reclaim_work);
1096	xfs_reclaim_inodes(mp);
1097	xfs_health_unmount(mp);
1098
1099	xfs_qm_unmount(mp);
1100
1101	/*
1102	 * Unreserve any blocks we have so that when we unmount we don't account
1103	 * the reserved free space as used. This is really only necessary for
1104	 * lazy superblock counting because it trusts the incore superblock
1105	 * counters to be absolutely correct on clean unmount.
1106	 *
1107	 * We don't bother correcting this elsewhere for lazy superblock
1108	 * counting because on mount of an unclean filesystem we reconstruct the
1109	 * correct counter value and this is irrelevant.
1110	 *
1111	 * For non-lazy counter filesystems, this doesn't matter at all because
1112	 * we only every apply deltas to the superblock and hence the incore
1113	 * value does not matter....
1114	 */
1115	resblks = 0;
1116	error = xfs_reserve_blocks(mp, &resblks, NULL);
1117	if (error)
1118		xfs_warn(mp, "Unable to free reserved block pool. "
1119				"Freespace may not be correct on next mount.");
1120
1121	error = xfs_log_sbcount(mp);
1122	if (error)
1123		xfs_warn(mp, "Unable to update superblock counters. "
1124				"Freespace may not be correct on next mount.");
1125
1126
1127	xfs_log_unmount(mp);
1128	xfs_da_unmount(mp);
1129	xfs_uuid_unmount(mp);
1130
1131#if defined(DEBUG)
1132	xfs_errortag_clearall(mp);
1133#endif
1134	xfs_free_perag(mp);
1135
1136	xfs_errortag_del(mp);
1137	xfs_error_sysfs_del(mp);
1138	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1139	xfs_sysfs_del(&mp->m_kobj);
1140}
1141
1142/*
1143 * Determine whether modifications can proceed. The caller specifies the minimum
1144 * freeze level for which modifications should not be allowed. This allows
1145 * certain operations to proceed while the freeze sequence is in progress, if
1146 * necessary.
1147 */
1148bool
1149xfs_fs_writable(
1150	struct xfs_mount	*mp,
1151	int			level)
1152{
1153	ASSERT(level > SB_UNFROZEN);
1154	if ((mp->m_super->s_writers.frozen >= level) ||
1155	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1156		return false;
1157
1158	return true;
1159}
1160
1161/*
1162 * xfs_log_sbcount
1163 *
1164 * Sync the superblock counters to disk.
1165 *
1166 * Note this code can be called during the process of freezing, so we use the
1167 * transaction allocator that does not block when the transaction subsystem is
1168 * in its frozen state.
1169 */
1170int
1171xfs_log_sbcount(xfs_mount_t *mp)
1172{
1173	/* allow this to proceed during the freeze sequence... */
1174	if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1175		return 0;
1176
1177	/*
1178	 * we don't need to do this if we are updating the superblock
1179	 * counters on every modification.
1180	 */
1181	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1182		return 0;
1183
1184	return xfs_sync_sb(mp, true);
1185}
1186
1187/*
1188 * Deltas for the block count can vary from 1 to very large, but lock contention
1189 * only occurs on frequent small block count updates such as in the delayed
1190 * allocation path for buffered writes (page a time updates). Hence we set
1191 * a large batch count (1024) to minimise global counter updates except when
1192 * we get near to ENOSPC and we have to be very accurate with our updates.
1193 */
1194#define XFS_FDBLOCKS_BATCH	1024
1195int
1196xfs_mod_fdblocks(
1197	struct xfs_mount	*mp,
1198	int64_t			delta,
1199	bool			rsvd)
1200{
1201	int64_t			lcounter;
1202	long long		res_used;
1203	s32			batch;
 
1204
1205	if (delta > 0) {
1206		/*
1207		 * If the reserve pool is depleted, put blocks back into it
1208		 * first. Most of the time the pool is full.
1209		 */
1210		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1211			percpu_counter_add(&mp->m_fdblocks, delta);
1212			return 0;
1213		}
1214
1215		spin_lock(&mp->m_sb_lock);
1216		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1217
1218		if (res_used > delta) {
1219			mp->m_resblks_avail += delta;
1220		} else {
1221			delta -= res_used;
1222			mp->m_resblks_avail = mp->m_resblks;
1223			percpu_counter_add(&mp->m_fdblocks, delta);
1224		}
1225		spin_unlock(&mp->m_sb_lock);
1226		return 0;
1227	}
1228
1229	/*
1230	 * Taking blocks away, need to be more accurate the closer we
1231	 * are to zero.
1232	 *
1233	 * If the counter has a value of less than 2 * max batch size,
1234	 * then make everything serialise as we are real close to
1235	 * ENOSPC.
1236	 */
1237	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1238				     XFS_FDBLOCKS_BATCH) < 0)
1239		batch = 1;
1240	else
1241		batch = XFS_FDBLOCKS_BATCH;
1242
 
 
 
 
 
 
 
 
 
 
 
 
1243	percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1244	if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1245				     XFS_FDBLOCKS_BATCH) >= 0) {
1246		/* we had space! */
1247		return 0;
1248	}
1249
1250	/*
1251	 * lock up the sb for dipping into reserves before releasing the space
1252	 * that took us to ENOSPC.
1253	 */
1254	spin_lock(&mp->m_sb_lock);
1255	percpu_counter_add(&mp->m_fdblocks, -delta);
1256	if (!rsvd)
1257		goto fdblocks_enospc;
1258
1259	lcounter = (long long)mp->m_resblks_avail + delta;
1260	if (lcounter >= 0) {
1261		mp->m_resblks_avail = lcounter;
1262		spin_unlock(&mp->m_sb_lock);
1263		return 0;
1264	}
1265	xfs_warn_once(mp,
1266"Reserve blocks depleted! Consider increasing reserve pool size.");
1267
1268fdblocks_enospc:
1269	spin_unlock(&mp->m_sb_lock);
1270	return -ENOSPC;
1271}
1272
1273int
1274xfs_mod_frextents(
1275	struct xfs_mount	*mp,
1276	int64_t			delta)
1277{
1278	int64_t			lcounter;
1279	int			ret = 0;
1280
1281	spin_lock(&mp->m_sb_lock);
1282	lcounter = mp->m_sb.sb_frextents + delta;
1283	if (lcounter < 0)
1284		ret = -ENOSPC;
1285	else
1286		mp->m_sb.sb_frextents = lcounter;
1287	spin_unlock(&mp->m_sb_lock);
1288	return ret;
1289}
1290
1291/*
1292 * xfs_getsb() is called to obtain the buffer for the superblock.
1293 * The buffer is returned locked and read in from disk.
1294 * The buffer should be released with a call to xfs_brelse().
1295 */
1296struct xfs_buf *
1297xfs_getsb(
1298	struct xfs_mount	*mp)
1299{
1300	struct xfs_buf		*bp = mp->m_sb_bp;
1301
1302	xfs_buf_lock(bp);
1303	xfs_buf_hold(bp);
1304	ASSERT(bp->b_flags & XBF_DONE);
1305	return bp;
1306}
1307
1308/*
1309 * Used to free the superblock along various error paths.
1310 */
1311void
1312xfs_freesb(
1313	struct xfs_mount	*mp)
1314{
1315	struct xfs_buf		*bp = mp->m_sb_bp;
1316
1317	xfs_buf_lock(bp);
1318	mp->m_sb_bp = NULL;
1319	xfs_buf_relse(bp);
1320}
1321
1322/*
1323 * If the underlying (data/log/rt) device is readonly, there are some
1324 * operations that cannot proceed.
1325 */
1326int
1327xfs_dev_is_read_only(
1328	struct xfs_mount	*mp,
1329	char			*message)
1330{
1331	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1332	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1333	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1334		xfs_notice(mp, "%s required on read-only device.", message);
1335		xfs_notice(mp, "write access unavailable, cannot proceed.");
1336		return -EROFS;
1337	}
1338	return 0;
1339}
1340
1341/* Force the summary counters to be recalculated at next mount. */
1342void
1343xfs_force_summary_recalc(
1344	struct xfs_mount	*mp)
1345{
1346	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1347		return;
1348
1349	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1350}
1351
1352/*
1353 * Update the in-core delayed block counter.
1354 *
1355 * We prefer to update the counter without having to take a spinlock for every
1356 * counter update (i.e. batching).  Each change to delayed allocation
1357 * reservations can change can easily exceed the default percpu counter
1358 * batching, so we use a larger batch factor here.
1359 *
1360 * Note that we don't currently have any callers requiring fast summation
1361 * (e.g. percpu_counter_read) so we can use a big batch value here.
1362 */
1363#define XFS_DELALLOC_BATCH	(4096)
1364void
1365xfs_mod_delalloc(
1366	struct xfs_mount	*mp,
1367	int64_t			delta)
1368{
1369	percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1370			XFS_DELALLOC_BATCH);
1371}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_sb.h"
  14#include "xfs_mount.h"
  15#include "xfs_inode.h"
  16#include "xfs_dir2.h"
  17#include "xfs_ialloc.h"
  18#include "xfs_alloc.h"
  19#include "xfs_rtalloc.h"
  20#include "xfs_bmap.h"
  21#include "xfs_trans.h"
  22#include "xfs_trans_priv.h"
  23#include "xfs_log.h"
  24#include "xfs_error.h"
  25#include "xfs_quota.h"
  26#include "xfs_fsops.h"
  27#include "xfs_icache.h"
  28#include "xfs_sysfs.h"
  29#include "xfs_rmap_btree.h"
  30#include "xfs_refcount_btree.h"
  31#include "xfs_reflink.h"
  32#include "xfs_extent_busy.h"
  33#include "xfs_health.h"
  34#include "xfs_trace.h"
  35#include "xfs_ag.h"
  36
  37static DEFINE_MUTEX(xfs_uuid_table_mutex);
  38static int xfs_uuid_table_size;
  39static uuid_t *xfs_uuid_table;
  40
  41void
  42xfs_uuid_table_free(void)
  43{
  44	if (xfs_uuid_table_size == 0)
  45		return;
  46	kmem_free(xfs_uuid_table);
  47	xfs_uuid_table = NULL;
  48	xfs_uuid_table_size = 0;
  49}
  50
  51/*
  52 * See if the UUID is unique among mounted XFS filesystems.
  53 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
  54 */
  55STATIC int
  56xfs_uuid_mount(
  57	struct xfs_mount	*mp)
  58{
  59	uuid_t			*uuid = &mp->m_sb.sb_uuid;
  60	int			hole, i;
  61
  62	/* Publish UUID in struct super_block */
  63	uuid_copy(&mp->m_super->s_uuid, uuid);
  64
  65	if (mp->m_flags & XFS_MOUNT_NOUUID)
  66		return 0;
  67
  68	if (uuid_is_null(uuid)) {
  69		xfs_warn(mp, "Filesystem has null UUID - can't mount");
  70		return -EINVAL;
  71	}
  72
  73	mutex_lock(&xfs_uuid_table_mutex);
  74	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
  75		if (uuid_is_null(&xfs_uuid_table[i])) {
  76			hole = i;
  77			continue;
  78		}
  79		if (uuid_equal(uuid, &xfs_uuid_table[i]))
  80			goto out_duplicate;
  81	}
  82
  83	if (hole < 0) {
  84		xfs_uuid_table = krealloc(xfs_uuid_table,
  85			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
  86			GFP_KERNEL | __GFP_NOFAIL);
  87		hole = xfs_uuid_table_size++;
  88	}
  89	xfs_uuid_table[hole] = *uuid;
  90	mutex_unlock(&xfs_uuid_table_mutex);
  91
  92	return 0;
  93
  94 out_duplicate:
  95	mutex_unlock(&xfs_uuid_table_mutex);
  96	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
  97	return -EINVAL;
  98}
  99
 100STATIC void
 101xfs_uuid_unmount(
 102	struct xfs_mount	*mp)
 103{
 104	uuid_t			*uuid = &mp->m_sb.sb_uuid;
 105	int			i;
 106
 107	if (mp->m_flags & XFS_MOUNT_NOUUID)
 108		return;
 109
 110	mutex_lock(&xfs_uuid_table_mutex);
 111	for (i = 0; i < xfs_uuid_table_size; i++) {
 112		if (uuid_is_null(&xfs_uuid_table[i]))
 113			continue;
 114		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
 115			continue;
 116		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
 117		break;
 118	}
 119	ASSERT(i < xfs_uuid_table_size);
 120	mutex_unlock(&xfs_uuid_table_mutex);
 121}
 122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 123/*
 124 * Check size of device based on the (data/realtime) block count.
 125 * Note: this check is used by the growfs code as well as mount.
 126 */
 127int
 128xfs_sb_validate_fsb_count(
 129	xfs_sb_t	*sbp,
 130	uint64_t	nblocks)
 131{
 132	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
 133	ASSERT(sbp->sb_blocklog >= BBSHIFT);
 134
 135	/* Limited by ULONG_MAX of page cache index */
 136	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
 137		return -EFBIG;
 138	return 0;
 139}
 140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 141/*
 142 * xfs_readsb
 143 *
 144 * Does the initial read of the superblock.
 145 */
 146int
 147xfs_readsb(
 148	struct xfs_mount *mp,
 149	int		flags)
 150{
 151	unsigned int	sector_size;
 152	struct xfs_buf	*bp;
 153	struct xfs_sb	*sbp = &mp->m_sb;
 154	int		error;
 155	int		loud = !(flags & XFS_MFSI_QUIET);
 156	const struct xfs_buf_ops *buf_ops;
 157
 158	ASSERT(mp->m_sb_bp == NULL);
 159	ASSERT(mp->m_ddev_targp != NULL);
 160
 161	/*
 162	 * For the initial read, we must guess at the sector
 163	 * size based on the block device.  It's enough to
 164	 * get the sb_sectsize out of the superblock and
 165	 * then reread with the proper length.
 166	 * We don't verify it yet, because it may not be complete.
 167	 */
 168	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
 169	buf_ops = NULL;
 170
 171	/*
 172	 * Allocate a (locked) buffer to hold the superblock. This will be kept
 173	 * around at all times to optimize access to the superblock. Therefore,
 174	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
 175	 * elevated.
 176	 */
 177reread:
 178	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
 179				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
 180				      buf_ops);
 181	if (error) {
 182		if (loud)
 183			xfs_warn(mp, "SB validate failed with error %d.", error);
 184		/* bad CRC means corrupted metadata */
 185		if (error == -EFSBADCRC)
 186			error = -EFSCORRUPTED;
 187		return error;
 188	}
 189
 190	/*
 191	 * Initialize the mount structure from the superblock.
 192	 */
 193	xfs_sb_from_disk(sbp, bp->b_addr);
 194
 195	/*
 196	 * If we haven't validated the superblock, do so now before we try
 197	 * to check the sector size and reread the superblock appropriately.
 198	 */
 199	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
 200		if (loud)
 201			xfs_warn(mp, "Invalid superblock magic number");
 202		error = -EINVAL;
 203		goto release_buf;
 204	}
 205
 206	/*
 207	 * We must be able to do sector-sized and sector-aligned IO.
 208	 */
 209	if (sector_size > sbp->sb_sectsize) {
 210		if (loud)
 211			xfs_warn(mp, "device supports %u byte sectors (not %u)",
 212				sector_size, sbp->sb_sectsize);
 213		error = -ENOSYS;
 214		goto release_buf;
 215	}
 216
 217	if (buf_ops == NULL) {
 218		/*
 219		 * Re-read the superblock so the buffer is correctly sized,
 220		 * and properly verified.
 221		 */
 222		xfs_buf_relse(bp);
 223		sector_size = sbp->sb_sectsize;
 224		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
 225		goto reread;
 226	}
 227
 228	xfs_reinit_percpu_counters(mp);
 229
 230	/* no need to be quiet anymore, so reset the buf ops */
 231	bp->b_ops = &xfs_sb_buf_ops;
 232
 233	mp->m_sb_bp = bp;
 234	xfs_buf_unlock(bp);
 235	return 0;
 236
 237release_buf:
 238	xfs_buf_relse(bp);
 239	return error;
 240}
 241
 242/*
 243 * If the sunit/swidth change would move the precomputed root inode value, we
 244 * must reject the ondisk change because repair will stumble over that.
 245 * However, we allow the mount to proceed because we never rejected this
 246 * combination before.  Returns true to update the sb, false otherwise.
 247 */
 248static inline int
 249xfs_check_new_dalign(
 250	struct xfs_mount	*mp,
 251	int			new_dalign,
 252	bool			*update_sb)
 253{
 254	struct xfs_sb		*sbp = &mp->m_sb;
 255	xfs_ino_t		calc_ino;
 256
 257	calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
 258	trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
 259
 260	if (sbp->sb_rootino == calc_ino) {
 261		*update_sb = true;
 262		return 0;
 263	}
 264
 265	xfs_warn(mp,
 266"Cannot change stripe alignment; would require moving root inode.");
 267
 268	/*
 269	 * XXX: Next time we add a new incompat feature, this should start
 270	 * returning -EINVAL to fail the mount.  Until then, spit out a warning
 271	 * that we're ignoring the administrator's instructions.
 272	 */
 273	xfs_warn(mp, "Skipping superblock stripe alignment update.");
 274	*update_sb = false;
 275	return 0;
 276}
 277
 278/*
 279 * If we were provided with new sunit/swidth values as mount options, make sure
 280 * that they pass basic alignment and superblock feature checks, and convert
 281 * them into the same units (FSB) that everything else expects.  This step
 282 * /must/ be done before computing the inode geometry.
 283 */
 284STATIC int
 285xfs_validate_new_dalign(
 286	struct xfs_mount	*mp)
 287{
 288	if (mp->m_dalign == 0)
 289		return 0;
 290
 291	/*
 292	 * If stripe unit and stripe width are not multiples
 293	 * of the fs blocksize turn off alignment.
 294	 */
 295	if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
 296	    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
 297		xfs_warn(mp,
 298	"alignment check failed: sunit/swidth vs. blocksize(%d)",
 299			mp->m_sb.sb_blocksize);
 300		return -EINVAL;
 301	} else {
 302		/*
 303		 * Convert the stripe unit and width to FSBs.
 304		 */
 305		mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
 306		if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
 307			xfs_warn(mp,
 308		"alignment check failed: sunit/swidth vs. agsize(%d)",
 309				 mp->m_sb.sb_agblocks);
 310			return -EINVAL;
 311		} else if (mp->m_dalign) {
 312			mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
 313		} else {
 314			xfs_warn(mp,
 315		"alignment check failed: sunit(%d) less than bsize(%d)",
 316				 mp->m_dalign, mp->m_sb.sb_blocksize);
 317			return -EINVAL;
 318		}
 319	}
 320
 321	if (!xfs_sb_version_hasdalign(&mp->m_sb)) {
 322		xfs_warn(mp,
 323"cannot change alignment: superblock does not support data alignment");
 324		return -EINVAL;
 325	}
 326
 327	return 0;
 328}
 329
 330/* Update alignment values based on mount options and sb values. */
 331STATIC int
 332xfs_update_alignment(
 333	struct xfs_mount	*mp)
 334{
 335	struct xfs_sb		*sbp = &mp->m_sb;
 336
 337	if (mp->m_dalign) {
 338		bool		update_sb;
 339		int		error;
 340
 341		if (sbp->sb_unit == mp->m_dalign &&
 342		    sbp->sb_width == mp->m_swidth)
 343			return 0;
 344
 345		error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
 346		if (error || !update_sb)
 347			return error;
 348
 349		sbp->sb_unit = mp->m_dalign;
 350		sbp->sb_width = mp->m_swidth;
 351		mp->m_update_sb = true;
 352	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
 353		    xfs_sb_version_hasdalign(&mp->m_sb)) {
 354		mp->m_dalign = sbp->sb_unit;
 355		mp->m_swidth = sbp->sb_width;
 356	}
 357
 358	return 0;
 359}
 360
 361/*
 362 * precalculate the low space thresholds for dynamic speculative preallocation.
 363 */
 364void
 365xfs_set_low_space_thresholds(
 366	struct xfs_mount	*mp)
 367{
 368	int i;
 369
 370	for (i = 0; i < XFS_LOWSP_MAX; i++) {
 371		uint64_t space = mp->m_sb.sb_dblocks;
 372
 373		do_div(space, 100);
 374		mp->m_low_space[i] = space * (i + 1);
 375	}
 376}
 377
 378/*
 379 * Check that the data (and log if separate) is an ok size.
 380 */
 381STATIC int
 382xfs_check_sizes(
 383	struct xfs_mount *mp)
 384{
 385	struct xfs_buf	*bp;
 386	xfs_daddr_t	d;
 387	int		error;
 388
 389	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
 390	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
 391		xfs_warn(mp, "filesystem size mismatch detected");
 392		return -EFBIG;
 393	}
 394	error = xfs_buf_read_uncached(mp->m_ddev_targp,
 395					d - XFS_FSS_TO_BB(mp, 1),
 396					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
 397	if (error) {
 398		xfs_warn(mp, "last sector read failed");
 399		return error;
 400	}
 401	xfs_buf_relse(bp);
 402
 403	if (mp->m_logdev_targp == mp->m_ddev_targp)
 404		return 0;
 405
 406	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
 407	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
 408		xfs_warn(mp, "log size mismatch detected");
 409		return -EFBIG;
 410	}
 411	error = xfs_buf_read_uncached(mp->m_logdev_targp,
 412					d - XFS_FSB_TO_BB(mp, 1),
 413					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
 414	if (error) {
 415		xfs_warn(mp, "log device read failed");
 416		return error;
 417	}
 418	xfs_buf_relse(bp);
 419	return 0;
 420}
 421
 422/*
 423 * Clear the quotaflags in memory and in the superblock.
 424 */
 425int
 426xfs_mount_reset_sbqflags(
 427	struct xfs_mount	*mp)
 428{
 429	mp->m_qflags = 0;
 430
 431	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
 432	if (mp->m_sb.sb_qflags == 0)
 433		return 0;
 434	spin_lock(&mp->m_sb_lock);
 435	mp->m_sb.sb_qflags = 0;
 436	spin_unlock(&mp->m_sb_lock);
 437
 438	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
 439		return 0;
 440
 441	return xfs_sync_sb(mp, false);
 442}
 443
 444uint64_t
 445xfs_default_resblks(xfs_mount_t *mp)
 446{
 447	uint64_t resblks;
 448
 449	/*
 450	 * We default to 5% or 8192 fsbs of space reserved, whichever is
 451	 * smaller.  This is intended to cover concurrent allocation
 452	 * transactions when we initially hit enospc. These each require a 4
 453	 * block reservation. Hence by default we cover roughly 2000 concurrent
 454	 * allocation reservations.
 455	 */
 456	resblks = mp->m_sb.sb_dblocks;
 457	do_div(resblks, 20);
 458	resblks = min_t(uint64_t, resblks, 8192);
 459	return resblks;
 460}
 461
 462/* Ensure the summary counts are correct. */
 463STATIC int
 464xfs_check_summary_counts(
 465	struct xfs_mount	*mp)
 466{
 467	/*
 468	 * The AG0 superblock verifier rejects in-progress filesystems,
 469	 * so we should never see the flag set this far into mounting.
 470	 */
 471	if (mp->m_sb.sb_inprogress) {
 472		xfs_err(mp, "sb_inprogress set after log recovery??");
 473		WARN_ON(1);
 474		return -EFSCORRUPTED;
 475	}
 476
 477	/*
 478	 * Now the log is mounted, we know if it was an unclean shutdown or
 479	 * not. If it was, with the first phase of recovery has completed, we
 480	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
 481	 * but they are recovered transactionally in the second recovery phase
 482	 * later.
 483	 *
 484	 * If the log was clean when we mounted, we can check the summary
 485	 * counters.  If any of them are obviously incorrect, we can recompute
 486	 * them from the AGF headers in the next step.
 487	 */
 488	if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
 489	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
 490	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
 491	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
 492		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
 493
 494	/*
 495	 * We can safely re-initialise incore superblock counters from the
 496	 * per-ag data. These may not be correct if the filesystem was not
 497	 * cleanly unmounted, so we waited for recovery to finish before doing
 498	 * this.
 499	 *
 500	 * If the filesystem was cleanly unmounted or the previous check did
 501	 * not flag anything weird, then we can trust the values in the
 502	 * superblock to be correct and we don't need to do anything here.
 503	 * Otherwise, recalculate the summary counters.
 504	 */
 505	if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
 506	     XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
 507	    !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
 508		return 0;
 509
 510	return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
 511}
 512
 513/*
 514 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
 515 * internal inode structures can be sitting in the CIL and AIL at this point,
 516 * so we need to unpin them, write them back and/or reclaim them before unmount
 517 * can proceed.
 518 *
 519 * An inode cluster that has been freed can have its buffer still pinned in
 520 * memory because the transaction is still sitting in a iclog. The stale inodes
 521 * on that buffer will be pinned to the buffer until the transaction hits the
 522 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
 523 * may never see the pinned buffer, so nothing will push out the iclog and
 524 * unpin the buffer.
 525 *
 526 * Hence we need to force the log to unpin everything first. However, log
 527 * forces don't wait for the discards they issue to complete, so we have to
 528 * explicitly wait for them to complete here as well.
 529 *
 530 * Then we can tell the world we are unmounting so that error handling knows
 531 * that the filesystem is going away and we should error out anything that we
 532 * have been retrying in the background.  This will prevent never-ending
 533 * retries in AIL pushing from hanging the unmount.
 534 *
 535 * Finally, we can push the AIL to clean all the remaining dirty objects, then
 536 * reclaim the remaining inodes that are still in memory at this point in time.
 537 */
 538static void
 539xfs_unmount_flush_inodes(
 540	struct xfs_mount	*mp)
 541{
 542	xfs_log_force(mp, XFS_LOG_SYNC);
 543	xfs_extent_busy_wait_all(mp);
 544	flush_workqueue(xfs_discard_wq);
 545
 546	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
 547
 548	xfs_ail_push_all_sync(mp->m_ail);
 549	cancel_delayed_work_sync(&mp->m_reclaim_work);
 550	xfs_reclaim_inodes(mp);
 551	xfs_health_unmount(mp);
 552}
 553
 554static void
 555xfs_mount_setup_inode_geom(
 556	struct xfs_mount	*mp)
 557{
 558	struct xfs_ino_geometry *igeo = M_IGEO(mp);
 559
 560	igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
 561	ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
 562
 563	xfs_ialloc_setup_geometry(mp);
 564}
 565
 566/*
 567 * This function does the following on an initial mount of a file system:
 568 *	- reads the superblock from disk and init the mount struct
 569 *	- if we're a 32-bit kernel, do a size check on the superblock
 570 *		so we don't mount terabyte filesystems
 571 *	- init mount struct realtime fields
 572 *	- allocate inode hash table for fs
 573 *	- init directory manager
 574 *	- perform recovery and init the log manager
 575 */
 576int
 577xfs_mountfs(
 578	struct xfs_mount	*mp)
 579{
 580	struct xfs_sb		*sbp = &(mp->m_sb);
 581	struct xfs_inode	*rip;
 582	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
 583	uint64_t		resblks;
 584	uint			quotamount = 0;
 585	uint			quotaflags = 0;
 586	int			error = 0;
 587
 588	xfs_sb_mount_common(mp, sbp);
 589
 590	/*
 591	 * Check for a mismatched features2 values.  Older kernels read & wrote
 592	 * into the wrong sb offset for sb_features2 on some platforms due to
 593	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
 594	 * which made older superblock reading/writing routines swap it as a
 595	 * 64-bit value.
 596	 *
 597	 * For backwards compatibility, we make both slots equal.
 598	 *
 599	 * If we detect a mismatched field, we OR the set bits into the existing
 600	 * features2 field in case it has already been modified; we don't want
 601	 * to lose any features.  We then update the bad location with the ORed
 602	 * value so that older kernels will see any features2 flags. The
 603	 * superblock writeback code ensures the new sb_features2 is copied to
 604	 * sb_bad_features2 before it is logged or written to disk.
 605	 */
 606	if (xfs_sb_has_mismatched_features2(sbp)) {
 607		xfs_warn(mp, "correcting sb_features alignment problem");
 608		sbp->sb_features2 |= sbp->sb_bad_features2;
 609		mp->m_update_sb = true;
 610
 611		/*
 612		 * Re-check for ATTR2 in case it was found in bad_features2
 613		 * slot.
 614		 */
 615		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 616		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
 617			mp->m_flags |= XFS_MOUNT_ATTR2;
 618	}
 619
 620	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 621	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
 622		xfs_sb_version_removeattr2(&mp->m_sb);
 623		mp->m_update_sb = true;
 624
 625		/* update sb_versionnum for the clearing of the morebits */
 626		if (!sbp->sb_features2)
 627			mp->m_update_sb = true;
 628	}
 629
 630	/* always use v2 inodes by default now */
 631	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
 632		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
 633		mp->m_update_sb = true;
 634	}
 635
 636	/*
 637	 * If we were given new sunit/swidth options, do some basic validation
 638	 * checks and convert the incore dalign and swidth values to the
 639	 * same units (FSB) that everything else uses.  This /must/ happen
 640	 * before computing the inode geometry.
 641	 */
 642	error = xfs_validate_new_dalign(mp);
 643	if (error)
 644		goto out;
 645
 646	xfs_alloc_compute_maxlevels(mp);
 647	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
 648	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
 649	xfs_mount_setup_inode_geom(mp);
 650	xfs_rmapbt_compute_maxlevels(mp);
 651	xfs_refcountbt_compute_maxlevels(mp);
 652
 653	/*
 654	 * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
 655	 * is NOT aligned turn off m_dalign since allocator alignment is within
 656	 * an ag, therefore ag has to be aligned at stripe boundary.  Note that
 657	 * we must compute the free space and rmap btree geometry before doing
 658	 * this.
 659	 */
 660	error = xfs_update_alignment(mp);
 661	if (error)
 662		goto out;
 663
 664	/* enable fail_at_unmount as default */
 665	mp->m_fail_unmount = true;
 666
 667	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
 668			       NULL, mp->m_super->s_id);
 669	if (error)
 670		goto out;
 671
 672	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
 673			       &mp->m_kobj, "stats");
 674	if (error)
 675		goto out_remove_sysfs;
 676
 677	error = xfs_error_sysfs_init(mp);
 678	if (error)
 679		goto out_del_stats;
 680
 681	error = xfs_errortag_init(mp);
 682	if (error)
 683		goto out_remove_error_sysfs;
 684
 685	error = xfs_uuid_mount(mp);
 686	if (error)
 687		goto out_remove_errortag;
 688
 689	/*
 690	 * Update the preferred write size based on the information from the
 691	 * on-disk superblock.
 692	 */
 693	mp->m_allocsize_log =
 694		max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
 695	mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
 696
 697	/* set the low space thresholds for dynamic preallocation */
 698	xfs_set_low_space_thresholds(mp);
 699
 700	/*
 701	 * If enabled, sparse inode chunk alignment is expected to match the
 702	 * cluster size. Full inode chunk alignment must match the chunk size,
 703	 * but that is checked on sb read verification...
 704	 */
 705	if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
 706	    mp->m_sb.sb_spino_align !=
 707			XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
 708		xfs_warn(mp,
 709	"Sparse inode block alignment (%u) must match cluster size (%llu).",
 710			 mp->m_sb.sb_spino_align,
 711			 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
 712		error = -EINVAL;
 713		goto out_remove_uuid;
 714	}
 715
 716	/*
 717	 * Check that the data (and log if separate) is an ok size.
 718	 */
 719	error = xfs_check_sizes(mp);
 720	if (error)
 721		goto out_remove_uuid;
 722
 723	/*
 724	 * Initialize realtime fields in the mount structure
 725	 */
 726	error = xfs_rtmount_init(mp);
 727	if (error) {
 728		xfs_warn(mp, "RT mount failed");
 729		goto out_remove_uuid;
 730	}
 731
 732	/*
 733	 *  Copies the low order bits of the timestamp and the randomly
 734	 *  set "sequence" number out of a UUID.
 735	 */
 736	mp->m_fixedfsid[0] =
 737		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
 738		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
 739	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
 740
 741	error = xfs_da_mount(mp);
 742	if (error) {
 743		xfs_warn(mp, "Failed dir/attr init: %d", error);
 744		goto out_remove_uuid;
 745	}
 746
 747	/*
 748	 * Initialize the precomputed transaction reservations values.
 749	 */
 750	xfs_trans_init(mp);
 751
 752	/*
 753	 * Allocate and initialize the per-ag data.
 754	 */
 755	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
 756	if (error) {
 757		xfs_warn(mp, "Failed per-ag init: %d", error);
 758		goto out_free_dir;
 759	}
 760
 761	if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
 762		xfs_warn(mp, "no log defined");
 763		error = -EFSCORRUPTED;
 764		goto out_free_perag;
 765	}
 766
 767	/*
 768	 * Log's mount-time initialization. The first part of recovery can place
 769	 * some items on the AIL, to be handled when recovery is finished or
 770	 * cancelled.
 771	 */
 772	error = xfs_log_mount(mp, mp->m_logdev_targp,
 773			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
 774			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
 775	if (error) {
 776		xfs_warn(mp, "log mount failed");
 777		goto out_fail_wait;
 778	}
 779
 780	/* Make sure the summary counts are ok. */
 781	error = xfs_check_summary_counts(mp);
 782	if (error)
 783		goto out_log_dealloc;
 784
 785	/*
 786	 * Get and sanity-check the root inode.
 787	 * Save the pointer to it in the mount structure.
 788	 */
 789	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
 790			 XFS_ILOCK_EXCL, &rip);
 791	if (error) {
 792		xfs_warn(mp,
 793			"Failed to read root inode 0x%llx, error %d",
 794			sbp->sb_rootino, -error);
 795		goto out_log_dealloc;
 796	}
 797
 798	ASSERT(rip != NULL);
 799
 800	if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
 801		xfs_warn(mp, "corrupted root inode %llu: not a directory",
 802			(unsigned long long)rip->i_ino);
 803		xfs_iunlock(rip, XFS_ILOCK_EXCL);
 804		error = -EFSCORRUPTED;
 805		goto out_rele_rip;
 806	}
 807	mp->m_rootip = rip;	/* save it */
 808
 809	xfs_iunlock(rip, XFS_ILOCK_EXCL);
 810
 811	/*
 812	 * Initialize realtime inode pointers in the mount structure
 813	 */
 814	error = xfs_rtmount_inodes(mp);
 815	if (error) {
 816		/*
 817		 * Free up the root inode.
 818		 */
 819		xfs_warn(mp, "failed to read RT inodes");
 820		goto out_rele_rip;
 821	}
 822
 823	/*
 824	 * If this is a read-only mount defer the superblock updates until
 825	 * the next remount into writeable mode.  Otherwise we would never
 826	 * perform the update e.g. for the root filesystem.
 827	 */
 828	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
 829		error = xfs_sync_sb(mp, false);
 830		if (error) {
 831			xfs_warn(mp, "failed to write sb changes");
 832			goto out_rtunmount;
 833		}
 834	}
 835
 836	/*
 837	 * Initialise the XFS quota management subsystem for this mount
 838	 */
 839	if (XFS_IS_QUOTA_RUNNING(mp)) {
 840		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
 841		if (error)
 842			goto out_rtunmount;
 843	} else {
 844		ASSERT(!XFS_IS_QUOTA_ON(mp));
 845
 846		/*
 847		 * If a file system had quotas running earlier, but decided to
 848		 * mount without -o uquota/pquota/gquota options, revoke the
 849		 * quotachecked license.
 850		 */
 851		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
 852			xfs_notice(mp, "resetting quota flags");
 853			error = xfs_mount_reset_sbqflags(mp);
 854			if (error)
 855				goto out_rtunmount;
 856		}
 857	}
 858
 859	/*
 860	 * Finish recovering the file system.  This part needed to be delayed
 861	 * until after the root and real-time bitmap inodes were consistently
 862	 * read in.  Temporarily create per-AG space reservations for metadata
 863	 * btree shape changes because space freeing transactions (for inode
 864	 * inactivation) require the per-AG reservation in lieu of reserving
 865	 * blocks.
 866	 */
 867	error = xfs_fs_reserve_ag_blocks(mp);
 868	if (error && error == -ENOSPC)
 869		xfs_warn(mp,
 870	"ENOSPC reserving per-AG metadata pool, log recovery may fail.");
 871	error = xfs_log_mount_finish(mp);
 872	xfs_fs_unreserve_ag_blocks(mp);
 873	if (error) {
 874		xfs_warn(mp, "log mount finish failed");
 875		goto out_rtunmount;
 876	}
 877
 878	/*
 879	 * Now the log is fully replayed, we can transition to full read-only
 880	 * mode for read-only mounts. This will sync all the metadata and clean
 881	 * the log so that the recovery we just performed does not have to be
 882	 * replayed again on the next mount.
 883	 *
 884	 * We use the same quiesce mechanism as the rw->ro remount, as they are
 885	 * semantically identical operations.
 886	 */
 887	if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
 888							XFS_MOUNT_RDONLY) {
 889		xfs_log_clean(mp);
 890	}
 891
 892	/*
 893	 * Complete the quota initialisation, post-log-replay component.
 894	 */
 895	if (quotamount) {
 896		ASSERT(mp->m_qflags == 0);
 897		mp->m_qflags = quotaflags;
 898
 899		xfs_qm_mount_quotas(mp);
 900	}
 901
 902	/*
 903	 * Now we are mounted, reserve a small amount of unused space for
 904	 * privileged transactions. This is needed so that transaction
 905	 * space required for critical operations can dip into this pool
 906	 * when at ENOSPC. This is needed for operations like create with
 907	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
 908	 * are not allowed to use this reserved space.
 909	 *
 910	 * This may drive us straight to ENOSPC on mount, but that implies
 911	 * we were already there on the last unmount. Warn if this occurs.
 912	 */
 913	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
 914		resblks = xfs_default_resblks(mp);
 915		error = xfs_reserve_blocks(mp, &resblks, NULL);
 916		if (error)
 917			xfs_warn(mp,
 918	"Unable to allocate reserve blocks. Continuing without reserve pool.");
 919
 920		/* Recover any CoW blocks that never got remapped. */
 921		error = xfs_reflink_recover_cow(mp);
 922		if (error) {
 923			xfs_err(mp,
 924	"Error %d recovering leftover CoW allocations.", error);
 925			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
 926			goto out_quota;
 927		}
 928
 929		/* Reserve AG blocks for future btree expansion. */
 930		error = xfs_fs_reserve_ag_blocks(mp);
 931		if (error && error != -ENOSPC)
 932			goto out_agresv;
 933	}
 934
 935	return 0;
 936
 937 out_agresv:
 938	xfs_fs_unreserve_ag_blocks(mp);
 939 out_quota:
 940	xfs_qm_unmount_quotas(mp);
 941 out_rtunmount:
 942	xfs_rtunmount_inodes(mp);
 943 out_rele_rip:
 944	xfs_irele(rip);
 945	/* Clean out dquots that might be in memory after quotacheck. */
 946	xfs_qm_unmount(mp);
 947	/*
 948	 * Flush all inode reclamation work and flush the log.
 949	 * We have to do this /after/ rtunmount and qm_unmount because those
 950	 * two will have scheduled delayed reclaim for the rt/quota inodes.
 951	 *
 952	 * This is slightly different from the unmountfs call sequence
 953	 * because we could be tearing down a partially set up mount.  In
 954	 * particular, if log_mount_finish fails we bail out without calling
 955	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
 956	 * quota inodes.
 957	 */
 958	xfs_unmount_flush_inodes(mp);
 
 
 959 out_log_dealloc:
 
 960	xfs_log_mount_cancel(mp);
 961 out_fail_wait:
 962	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
 963		xfs_buftarg_drain(mp->m_logdev_targp);
 964	xfs_buftarg_drain(mp->m_ddev_targp);
 965 out_free_perag:
 966	xfs_free_perag(mp);
 967 out_free_dir:
 968	xfs_da_unmount(mp);
 969 out_remove_uuid:
 970	xfs_uuid_unmount(mp);
 971 out_remove_errortag:
 972	xfs_errortag_del(mp);
 973 out_remove_error_sysfs:
 974	xfs_error_sysfs_del(mp);
 975 out_del_stats:
 976	xfs_sysfs_del(&mp->m_stats.xs_kobj);
 977 out_remove_sysfs:
 978	xfs_sysfs_del(&mp->m_kobj);
 979 out:
 980	return error;
 981}
 982
 983/*
 984 * This flushes out the inodes,dquots and the superblock, unmounts the
 985 * log and makes sure that incore structures are freed.
 986 */
 987void
 988xfs_unmountfs(
 989	struct xfs_mount	*mp)
 990{
 991	uint64_t		resblks;
 992	int			error;
 993
 994	xfs_blockgc_stop(mp);
 995	xfs_fs_unreserve_ag_blocks(mp);
 996	xfs_qm_unmount_quotas(mp);
 997	xfs_rtunmount_inodes(mp);
 998	xfs_irele(mp->m_rootip);
 999
1000	xfs_unmount_flush_inodes(mp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1001
1002	xfs_qm_unmount(mp);
1003
1004	/*
1005	 * Unreserve any blocks we have so that when we unmount we don't account
1006	 * the reserved free space as used. This is really only necessary for
1007	 * lazy superblock counting because it trusts the incore superblock
1008	 * counters to be absolutely correct on clean unmount.
1009	 *
1010	 * We don't bother correcting this elsewhere for lazy superblock
1011	 * counting because on mount of an unclean filesystem we reconstruct the
1012	 * correct counter value and this is irrelevant.
1013	 *
1014	 * For non-lazy counter filesystems, this doesn't matter at all because
1015	 * we only every apply deltas to the superblock and hence the incore
1016	 * value does not matter....
1017	 */
1018	resblks = 0;
1019	error = xfs_reserve_blocks(mp, &resblks, NULL);
1020	if (error)
1021		xfs_warn(mp, "Unable to free reserved block pool. "
1022				"Freespace may not be correct on next mount.");
1023
 
 
 
 
 
 
1024	xfs_log_unmount(mp);
1025	xfs_da_unmount(mp);
1026	xfs_uuid_unmount(mp);
1027
1028#if defined(DEBUG)
1029	xfs_errortag_clearall(mp);
1030#endif
1031	xfs_free_perag(mp);
1032
1033	xfs_errortag_del(mp);
1034	xfs_error_sysfs_del(mp);
1035	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1036	xfs_sysfs_del(&mp->m_kobj);
1037}
1038
1039/*
1040 * Determine whether modifications can proceed. The caller specifies the minimum
1041 * freeze level for which modifications should not be allowed. This allows
1042 * certain operations to proceed while the freeze sequence is in progress, if
1043 * necessary.
1044 */
1045bool
1046xfs_fs_writable(
1047	struct xfs_mount	*mp,
1048	int			level)
1049{
1050	ASSERT(level > SB_UNFROZEN);
1051	if ((mp->m_super->s_writers.frozen >= level) ||
1052	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1053		return false;
1054
1055	return true;
1056}
1057
1058/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1059 * Deltas for the block count can vary from 1 to very large, but lock contention
1060 * only occurs on frequent small block count updates such as in the delayed
1061 * allocation path for buffered writes (page a time updates). Hence we set
1062 * a large batch count (1024) to minimise global counter updates except when
1063 * we get near to ENOSPC and we have to be very accurate with our updates.
1064 */
1065#define XFS_FDBLOCKS_BATCH	1024
1066int
1067xfs_mod_fdblocks(
1068	struct xfs_mount	*mp,
1069	int64_t			delta,
1070	bool			rsvd)
1071{
1072	int64_t			lcounter;
1073	long long		res_used;
1074	s32			batch;
1075	uint64_t		set_aside;
1076
1077	if (delta > 0) {
1078		/*
1079		 * If the reserve pool is depleted, put blocks back into it
1080		 * first. Most of the time the pool is full.
1081		 */
1082		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1083			percpu_counter_add(&mp->m_fdblocks, delta);
1084			return 0;
1085		}
1086
1087		spin_lock(&mp->m_sb_lock);
1088		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1089
1090		if (res_used > delta) {
1091			mp->m_resblks_avail += delta;
1092		} else {
1093			delta -= res_used;
1094			mp->m_resblks_avail = mp->m_resblks;
1095			percpu_counter_add(&mp->m_fdblocks, delta);
1096		}
1097		spin_unlock(&mp->m_sb_lock);
1098		return 0;
1099	}
1100
1101	/*
1102	 * Taking blocks away, need to be more accurate the closer we
1103	 * are to zero.
1104	 *
1105	 * If the counter has a value of less than 2 * max batch size,
1106	 * then make everything serialise as we are real close to
1107	 * ENOSPC.
1108	 */
1109	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1110				     XFS_FDBLOCKS_BATCH) < 0)
1111		batch = 1;
1112	else
1113		batch = XFS_FDBLOCKS_BATCH;
1114
1115	/*
1116	 * Set aside allocbt blocks because these blocks are tracked as free
1117	 * space but not available for allocation. Technically this means that a
1118	 * single reservation cannot consume all remaining free space, but the
1119	 * ratio of allocbt blocks to usable free blocks should be rather small.
1120	 * The tradeoff without this is that filesystems that maintain high
1121	 * perag block reservations can over reserve physical block availability
1122	 * and fail physical allocation, which leads to much more serious
1123	 * problems (i.e. transaction abort, pagecache discards, etc.) than
1124	 * slightly premature -ENOSPC.
1125	 */
1126	set_aside = mp->m_alloc_set_aside + atomic64_read(&mp->m_allocbt_blks);
1127	percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1128	if (__percpu_counter_compare(&mp->m_fdblocks, set_aside,
1129				     XFS_FDBLOCKS_BATCH) >= 0) {
1130		/* we had space! */
1131		return 0;
1132	}
1133
1134	/*
1135	 * lock up the sb for dipping into reserves before releasing the space
1136	 * that took us to ENOSPC.
1137	 */
1138	spin_lock(&mp->m_sb_lock);
1139	percpu_counter_add(&mp->m_fdblocks, -delta);
1140	if (!rsvd)
1141		goto fdblocks_enospc;
1142
1143	lcounter = (long long)mp->m_resblks_avail + delta;
1144	if (lcounter >= 0) {
1145		mp->m_resblks_avail = lcounter;
1146		spin_unlock(&mp->m_sb_lock);
1147		return 0;
1148	}
1149	xfs_warn_once(mp,
1150"Reserve blocks depleted! Consider increasing reserve pool size.");
1151
1152fdblocks_enospc:
1153	spin_unlock(&mp->m_sb_lock);
1154	return -ENOSPC;
1155}
1156
1157int
1158xfs_mod_frextents(
1159	struct xfs_mount	*mp,
1160	int64_t			delta)
1161{
1162	int64_t			lcounter;
1163	int			ret = 0;
1164
1165	spin_lock(&mp->m_sb_lock);
1166	lcounter = mp->m_sb.sb_frextents + delta;
1167	if (lcounter < 0)
1168		ret = -ENOSPC;
1169	else
1170		mp->m_sb.sb_frextents = lcounter;
1171	spin_unlock(&mp->m_sb_lock);
1172	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1173}
1174
1175/*
1176 * Used to free the superblock along various error paths.
1177 */
1178void
1179xfs_freesb(
1180	struct xfs_mount	*mp)
1181{
1182	struct xfs_buf		*bp = mp->m_sb_bp;
1183
1184	xfs_buf_lock(bp);
1185	mp->m_sb_bp = NULL;
1186	xfs_buf_relse(bp);
1187}
1188
1189/*
1190 * If the underlying (data/log/rt) device is readonly, there are some
1191 * operations that cannot proceed.
1192 */
1193int
1194xfs_dev_is_read_only(
1195	struct xfs_mount	*mp,
1196	char			*message)
1197{
1198	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1199	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1200	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1201		xfs_notice(mp, "%s required on read-only device.", message);
1202		xfs_notice(mp, "write access unavailable, cannot proceed.");
1203		return -EROFS;
1204	}
1205	return 0;
1206}
1207
1208/* Force the summary counters to be recalculated at next mount. */
1209void
1210xfs_force_summary_recalc(
1211	struct xfs_mount	*mp)
1212{
1213	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1214		return;
1215
1216	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1217}
1218
1219/*
1220 * Update the in-core delayed block counter.
1221 *
1222 * We prefer to update the counter without having to take a spinlock for every
1223 * counter update (i.e. batching).  Each change to delayed allocation
1224 * reservations can change can easily exceed the default percpu counter
1225 * batching, so we use a larger batch factor here.
1226 *
1227 * Note that we don't currently have any callers requiring fast summation
1228 * (e.g. percpu_counter_read) so we can use a big batch value here.
1229 */
1230#define XFS_DELALLOC_BATCH	(4096)
1231void
1232xfs_mod_delalloc(
1233	struct xfs_mount	*mp,
1234	int64_t			delta)
1235{
1236	percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1237			XFS_DELALLOC_BATCH);
1238}