Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Thunderbolt driver - NHI driver
   4 *
   5 * The NHI (native host interface) is the pci device that allows us to send and
   6 * receive frames from the thunderbolt bus.
   7 *
   8 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
   9 * Copyright (C) 2018, Intel Corporation
  10 */
  11
  12#include <linux/pm_runtime.h>
  13#include <linux/slab.h>
  14#include <linux/errno.h>
  15#include <linux/pci.h>
  16#include <linux/interrupt.h>
  17#include <linux/module.h>
  18#include <linux/delay.h>
  19#include <linux/property.h>
  20
  21#include "nhi.h"
  22#include "nhi_regs.h"
  23#include "tb.h"
  24
  25#define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
  26
  27#define RING_FIRST_USABLE_HOPID	1
  28
  29/*
  30 * Minimal number of vectors when we use MSI-X. Two for control channel
  31 * Rx/Tx and the rest four are for cross domain DMA paths.
  32 */
  33#define MSIX_MIN_VECS		6
  34#define MSIX_MAX_VECS		16
  35
  36#define NHI_MAILBOX_TIMEOUT	500 /* ms */
  37
  38static int ring_interrupt_index(struct tb_ring *ring)
  39{
  40	int bit = ring->hop;
  41	if (!ring->is_tx)
  42		bit += ring->nhi->hop_count;
  43	return bit;
  44}
  45
  46/**
  47 * ring_interrupt_active() - activate/deactivate interrupts for a single ring
  48 *
  49 * ring->nhi->lock must be held.
  50 */
  51static void ring_interrupt_active(struct tb_ring *ring, bool active)
  52{
  53	int reg = REG_RING_INTERRUPT_BASE +
  54		  ring_interrupt_index(ring) / 32 * 4;
  55	int bit = ring_interrupt_index(ring) & 31;
  56	int mask = 1 << bit;
  57	u32 old, new;
  58
  59	if (ring->irq > 0) {
  60		u32 step, shift, ivr, misc;
  61		void __iomem *ivr_base;
  62		int index;
  63
  64		if (ring->is_tx)
  65			index = ring->hop;
  66		else
  67			index = ring->hop + ring->nhi->hop_count;
  68
  69		/*
  70		 * Ask the hardware to clear interrupt status bits automatically
  71		 * since we already know which interrupt was triggered.
  72		 */
  73		misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
  74		if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
  75			misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
  76			iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
  77		}
  78
  79		ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
  80		step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
  81		shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
  82		ivr = ioread32(ivr_base + step);
  83		ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
  84		if (active)
  85			ivr |= ring->vector << shift;
  86		iowrite32(ivr, ivr_base + step);
  87	}
  88
  89	old = ioread32(ring->nhi->iobase + reg);
  90	if (active)
  91		new = old | mask;
  92	else
  93		new = old & ~mask;
  94
  95	dev_dbg(&ring->nhi->pdev->dev,
  96		"%s interrupt at register %#x bit %d (%#x -> %#x)\n",
  97		active ? "enabling" : "disabling", reg, bit, old, new);
  98
  99	if (new == old)
 100		dev_WARN(&ring->nhi->pdev->dev,
 101					 "interrupt for %s %d is already %s\n",
 102					 RING_TYPE(ring), ring->hop,
 103					 active ? "enabled" : "disabled");
 104	iowrite32(new, ring->nhi->iobase + reg);
 105}
 106
 107/**
 108 * nhi_disable_interrupts() - disable interrupts for all rings
 109 *
 110 * Use only during init and shutdown.
 111 */
 112static void nhi_disable_interrupts(struct tb_nhi *nhi)
 113{
 114	int i = 0;
 115	/* disable interrupts */
 116	for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
 117		iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
 118
 119	/* clear interrupt status bits */
 120	for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
 121		ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
 122}
 123
 124/* ring helper methods */
 125
 126static void __iomem *ring_desc_base(struct tb_ring *ring)
 127{
 128	void __iomem *io = ring->nhi->iobase;
 129	io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
 130	io += ring->hop * 16;
 131	return io;
 132}
 133
 134static void __iomem *ring_options_base(struct tb_ring *ring)
 135{
 136	void __iomem *io = ring->nhi->iobase;
 137	io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
 138	io += ring->hop * 32;
 139	return io;
 140}
 141
 142static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
 143{
 144	/*
 145	 * The other 16-bits in the register is read-only and writes to it
 146	 * are ignored by the hardware so we can save one ioread32() by
 147	 * filling the read-only bits with zeroes.
 148	 */
 149	iowrite32(cons, ring_desc_base(ring) + 8);
 150}
 151
 152static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
 153{
 154	/* See ring_iowrite_cons() above for explanation */
 155	iowrite32(prod << 16, ring_desc_base(ring) + 8);
 156}
 157
 158static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
 159{
 160	iowrite32(value, ring_desc_base(ring) + offset);
 161}
 162
 163static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
 164{
 165	iowrite32(value, ring_desc_base(ring) + offset);
 166	iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
 167}
 168
 169static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
 170{
 171	iowrite32(value, ring_options_base(ring) + offset);
 172}
 173
 174static bool ring_full(struct tb_ring *ring)
 175{
 176	return ((ring->head + 1) % ring->size) == ring->tail;
 177}
 178
 179static bool ring_empty(struct tb_ring *ring)
 180{
 181	return ring->head == ring->tail;
 182}
 183
 184/**
 185 * ring_write_descriptors() - post frames from ring->queue to the controller
 186 *
 187 * ring->lock is held.
 188 */
 189static void ring_write_descriptors(struct tb_ring *ring)
 190{
 191	struct ring_frame *frame, *n;
 192	struct ring_desc *descriptor;
 193	list_for_each_entry_safe(frame, n, &ring->queue, list) {
 194		if (ring_full(ring))
 195			break;
 196		list_move_tail(&frame->list, &ring->in_flight);
 197		descriptor = &ring->descriptors[ring->head];
 198		descriptor->phys = frame->buffer_phy;
 199		descriptor->time = 0;
 200		descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
 201		if (ring->is_tx) {
 202			descriptor->length = frame->size;
 203			descriptor->eof = frame->eof;
 204			descriptor->sof = frame->sof;
 205		}
 206		ring->head = (ring->head + 1) % ring->size;
 207		if (ring->is_tx)
 208			ring_iowrite_prod(ring, ring->head);
 209		else
 210			ring_iowrite_cons(ring, ring->head);
 211	}
 212}
 213
 214/**
 215 * ring_work() - progress completed frames
 216 *
 217 * If the ring is shutting down then all frames are marked as canceled and
 218 * their callbacks are invoked.
 219 *
 220 * Otherwise we collect all completed frame from the ring buffer, write new
 221 * frame to the ring buffer and invoke the callbacks for the completed frames.
 222 */
 223static void ring_work(struct work_struct *work)
 224{
 225	struct tb_ring *ring = container_of(work, typeof(*ring), work);
 226	struct ring_frame *frame;
 227	bool canceled = false;
 228	unsigned long flags;
 229	LIST_HEAD(done);
 230
 231	spin_lock_irqsave(&ring->lock, flags);
 232
 233	if (!ring->running) {
 234		/*  Move all frames to done and mark them as canceled. */
 235		list_splice_tail_init(&ring->in_flight, &done);
 236		list_splice_tail_init(&ring->queue, &done);
 237		canceled = true;
 238		goto invoke_callback;
 239	}
 240
 241	while (!ring_empty(ring)) {
 242		if (!(ring->descriptors[ring->tail].flags
 243				& RING_DESC_COMPLETED))
 244			break;
 245		frame = list_first_entry(&ring->in_flight, typeof(*frame),
 246					 list);
 247		list_move_tail(&frame->list, &done);
 248		if (!ring->is_tx) {
 249			frame->size = ring->descriptors[ring->tail].length;
 250			frame->eof = ring->descriptors[ring->tail].eof;
 251			frame->sof = ring->descriptors[ring->tail].sof;
 252			frame->flags = ring->descriptors[ring->tail].flags;
 253		}
 254		ring->tail = (ring->tail + 1) % ring->size;
 255	}
 256	ring_write_descriptors(ring);
 257
 258invoke_callback:
 259	/* allow callbacks to schedule new work */
 260	spin_unlock_irqrestore(&ring->lock, flags);
 261	while (!list_empty(&done)) {
 262		frame = list_first_entry(&done, typeof(*frame), list);
 263		/*
 264		 * The callback may reenqueue or delete frame.
 265		 * Do not hold on to it.
 266		 */
 267		list_del_init(&frame->list);
 268		if (frame->callback)
 269			frame->callback(ring, frame, canceled);
 270	}
 271}
 272
 273int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
 274{
 275	unsigned long flags;
 276	int ret = 0;
 277
 278	spin_lock_irqsave(&ring->lock, flags);
 279	if (ring->running) {
 280		list_add_tail(&frame->list, &ring->queue);
 281		ring_write_descriptors(ring);
 282	} else {
 283		ret = -ESHUTDOWN;
 284	}
 285	spin_unlock_irqrestore(&ring->lock, flags);
 286	return ret;
 287}
 288EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
 289
 290/**
 291 * tb_ring_poll() - Poll one completed frame from the ring
 292 * @ring: Ring to poll
 293 *
 294 * This function can be called when @start_poll callback of the @ring
 295 * has been called. It will read one completed frame from the ring and
 296 * return it to the caller. Returns %NULL if there is no more completed
 297 * frames.
 298 */
 299struct ring_frame *tb_ring_poll(struct tb_ring *ring)
 300{
 301	struct ring_frame *frame = NULL;
 302	unsigned long flags;
 303
 304	spin_lock_irqsave(&ring->lock, flags);
 305	if (!ring->running)
 306		goto unlock;
 307	if (ring_empty(ring))
 308		goto unlock;
 309
 310	if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
 311		frame = list_first_entry(&ring->in_flight, typeof(*frame),
 312					 list);
 313		list_del_init(&frame->list);
 314
 315		if (!ring->is_tx) {
 316			frame->size = ring->descriptors[ring->tail].length;
 317			frame->eof = ring->descriptors[ring->tail].eof;
 318			frame->sof = ring->descriptors[ring->tail].sof;
 319			frame->flags = ring->descriptors[ring->tail].flags;
 320		}
 321
 322		ring->tail = (ring->tail + 1) % ring->size;
 323	}
 324
 325unlock:
 326	spin_unlock_irqrestore(&ring->lock, flags);
 327	return frame;
 328}
 329EXPORT_SYMBOL_GPL(tb_ring_poll);
 330
 331static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
 332{
 333	int idx = ring_interrupt_index(ring);
 334	int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
 335	int bit = idx % 32;
 336	u32 val;
 337
 338	val = ioread32(ring->nhi->iobase + reg);
 339	if (mask)
 340		val &= ~BIT(bit);
 341	else
 342		val |= BIT(bit);
 343	iowrite32(val, ring->nhi->iobase + reg);
 344}
 345
 346/* Both @nhi->lock and @ring->lock should be held */
 347static void __ring_interrupt(struct tb_ring *ring)
 348{
 349	if (!ring->running)
 350		return;
 351
 352	if (ring->start_poll) {
 353		__ring_interrupt_mask(ring, true);
 354		ring->start_poll(ring->poll_data);
 355	} else {
 356		schedule_work(&ring->work);
 357	}
 358}
 359
 360/**
 361 * tb_ring_poll_complete() - Re-start interrupt for the ring
 362 * @ring: Ring to re-start the interrupt
 363 *
 364 * This will re-start (unmask) the ring interrupt once the user is done
 365 * with polling.
 366 */
 367void tb_ring_poll_complete(struct tb_ring *ring)
 368{
 369	unsigned long flags;
 370
 371	spin_lock_irqsave(&ring->nhi->lock, flags);
 372	spin_lock(&ring->lock);
 373	if (ring->start_poll)
 374		__ring_interrupt_mask(ring, false);
 375	spin_unlock(&ring->lock);
 376	spin_unlock_irqrestore(&ring->nhi->lock, flags);
 377}
 378EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
 379
 380static irqreturn_t ring_msix(int irq, void *data)
 381{
 382	struct tb_ring *ring = data;
 383
 384	spin_lock(&ring->nhi->lock);
 385	spin_lock(&ring->lock);
 386	__ring_interrupt(ring);
 387	spin_unlock(&ring->lock);
 388	spin_unlock(&ring->nhi->lock);
 389
 390	return IRQ_HANDLED;
 391}
 392
 393static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
 394{
 395	struct tb_nhi *nhi = ring->nhi;
 396	unsigned long irqflags;
 397	int ret;
 398
 399	if (!nhi->pdev->msix_enabled)
 400		return 0;
 401
 402	ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
 403	if (ret < 0)
 404		return ret;
 405
 406	ring->vector = ret;
 407
 408	ring->irq = pci_irq_vector(ring->nhi->pdev, ring->vector);
 409	if (ring->irq < 0)
 410		return ring->irq;
 
 
 411
 412	irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
 413	return request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
 
 
 
 
 
 
 
 
 
 414}
 415
 416static void ring_release_msix(struct tb_ring *ring)
 417{
 418	if (ring->irq <= 0)
 419		return;
 420
 421	free_irq(ring->irq, ring);
 422	ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
 423	ring->vector = 0;
 424	ring->irq = 0;
 425}
 426
 427static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
 428{
 429	int ret = 0;
 430
 431	spin_lock_irq(&nhi->lock);
 432
 433	if (ring->hop < 0) {
 434		unsigned int i;
 435
 436		/*
 437		 * Automatically allocate HopID from the non-reserved
 438		 * range 1 .. hop_count - 1.
 439		 */
 440		for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
 441			if (ring->is_tx) {
 442				if (!nhi->tx_rings[i]) {
 443					ring->hop = i;
 444					break;
 445				}
 446			} else {
 447				if (!nhi->rx_rings[i]) {
 448					ring->hop = i;
 449					break;
 450				}
 451			}
 452		}
 453	}
 454
 455	if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
 456		dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
 457		ret = -EINVAL;
 458		goto err_unlock;
 459	}
 460	if (ring->is_tx && nhi->tx_rings[ring->hop]) {
 461		dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
 462			 ring->hop);
 463		ret = -EBUSY;
 464		goto err_unlock;
 465	} else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
 466		dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
 467			 ring->hop);
 468		ret = -EBUSY;
 469		goto err_unlock;
 470	}
 471
 472	if (ring->is_tx)
 473		nhi->tx_rings[ring->hop] = ring;
 474	else
 475		nhi->rx_rings[ring->hop] = ring;
 476
 477err_unlock:
 478	spin_unlock_irq(&nhi->lock);
 479
 480	return ret;
 481}
 482
 483static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
 484				     bool transmit, unsigned int flags,
 485				     u16 sof_mask, u16 eof_mask,
 486				     void (*start_poll)(void *),
 487				     void *poll_data)
 488{
 489	struct tb_ring *ring = NULL;
 490
 491	dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
 492		transmit ? "TX" : "RX", hop, size);
 493
 494	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
 495	if (!ring)
 496		return NULL;
 497
 498	spin_lock_init(&ring->lock);
 499	INIT_LIST_HEAD(&ring->queue);
 500	INIT_LIST_HEAD(&ring->in_flight);
 501	INIT_WORK(&ring->work, ring_work);
 502
 503	ring->nhi = nhi;
 504	ring->hop = hop;
 505	ring->is_tx = transmit;
 506	ring->size = size;
 507	ring->flags = flags;
 
 508	ring->sof_mask = sof_mask;
 509	ring->eof_mask = eof_mask;
 510	ring->head = 0;
 511	ring->tail = 0;
 512	ring->running = false;
 513	ring->start_poll = start_poll;
 514	ring->poll_data = poll_data;
 515
 516	ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
 517			size * sizeof(*ring->descriptors),
 518			&ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
 519	if (!ring->descriptors)
 520		goto err_free_ring;
 521
 522	if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
 523		goto err_free_descs;
 524
 525	if (nhi_alloc_hop(nhi, ring))
 526		goto err_release_msix;
 527
 528	return ring;
 529
 530err_release_msix:
 531	ring_release_msix(ring);
 532err_free_descs:
 533	dma_free_coherent(&ring->nhi->pdev->dev,
 534			  ring->size * sizeof(*ring->descriptors),
 535			  ring->descriptors, ring->descriptors_dma);
 536err_free_ring:
 537	kfree(ring);
 538
 539	return NULL;
 540}
 541
 542/**
 543 * tb_ring_alloc_tx() - Allocate DMA ring for transmit
 544 * @nhi: Pointer to the NHI the ring is to be allocated
 545 * @hop: HopID (ring) to allocate
 546 * @size: Number of entries in the ring
 547 * @flags: Flags for the ring
 548 */
 549struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
 550				 unsigned int flags)
 551{
 552	return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, NULL, NULL);
 553}
 554EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
 555
 556/**
 557 * tb_ring_alloc_rx() - Allocate DMA ring for receive
 558 * @nhi: Pointer to the NHI the ring is to be allocated
 559 * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
 560 * @size: Number of entries in the ring
 561 * @flags: Flags for the ring
 
 562 * @sof_mask: Mask of PDF values that start a frame
 563 * @eof_mask: Mask of PDF values that end a frame
 564 * @start_poll: If not %NULL the ring will call this function when an
 565 *		interrupt is triggered and masked, instead of callback
 566 *		in each Rx frame.
 567 * @poll_data: Optional data passed to @start_poll
 568 */
 569struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
 570				 unsigned int flags, u16 sof_mask, u16 eof_mask,
 
 571				 void (*start_poll)(void *), void *poll_data)
 572{
 573	return tb_ring_alloc(nhi, hop, size, false, flags, sof_mask, eof_mask,
 574			     start_poll, poll_data);
 575}
 576EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
 577
 578/**
 579 * tb_ring_start() - enable a ring
 
 580 *
 581 * Must not be invoked in parallel with tb_ring_stop().
 582 */
 583void tb_ring_start(struct tb_ring *ring)
 584{
 585	u16 frame_size;
 586	u32 flags;
 587
 588	spin_lock_irq(&ring->nhi->lock);
 589	spin_lock(&ring->lock);
 590	if (ring->nhi->going_away)
 591		goto err;
 592	if (ring->running) {
 593		dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
 594		goto err;
 595	}
 596	dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
 597		RING_TYPE(ring), ring->hop);
 598
 599	if (ring->flags & RING_FLAG_FRAME) {
 600		/* Means 4096 */
 601		frame_size = 0;
 602		flags = RING_FLAG_ENABLE;
 603	} else {
 604		frame_size = TB_FRAME_SIZE;
 605		flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
 606	}
 607
 608	ring_iowrite64desc(ring, ring->descriptors_dma, 0);
 609	if (ring->is_tx) {
 610		ring_iowrite32desc(ring, ring->size, 12);
 611		ring_iowrite32options(ring, 0, 4); /* time releated ? */
 612		ring_iowrite32options(ring, flags, 0);
 613	} else {
 614		u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
 615
 616		ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
 617		ring_iowrite32options(ring, sof_eof_mask, 4);
 618		ring_iowrite32options(ring, flags, 0);
 619	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 620	ring_interrupt_active(ring, true);
 621	ring->running = true;
 622err:
 623	spin_unlock(&ring->lock);
 624	spin_unlock_irq(&ring->nhi->lock);
 625}
 626EXPORT_SYMBOL_GPL(tb_ring_start);
 627
 628/**
 629 * tb_ring_stop() - shutdown a ring
 
 630 *
 631 * Must not be invoked from a callback.
 632 *
 633 * This method will disable the ring. Further calls to
 634 * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
 635 * called.
 636 *
 637 * All enqueued frames will be canceled and their callbacks will be executed
 638 * with frame->canceled set to true (on the callback thread). This method
 639 * returns only after all callback invocations have finished.
 640 */
 641void tb_ring_stop(struct tb_ring *ring)
 642{
 643	spin_lock_irq(&ring->nhi->lock);
 644	spin_lock(&ring->lock);
 645	dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
 646		RING_TYPE(ring), ring->hop);
 647	if (ring->nhi->going_away)
 648		goto err;
 649	if (!ring->running) {
 650		dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
 651			 RING_TYPE(ring), ring->hop);
 652		goto err;
 653	}
 654	ring_interrupt_active(ring, false);
 655
 656	ring_iowrite32options(ring, 0, 0);
 657	ring_iowrite64desc(ring, 0, 0);
 658	ring_iowrite32desc(ring, 0, 8);
 659	ring_iowrite32desc(ring, 0, 12);
 660	ring->head = 0;
 661	ring->tail = 0;
 662	ring->running = false;
 663
 664err:
 665	spin_unlock(&ring->lock);
 666	spin_unlock_irq(&ring->nhi->lock);
 667
 668	/*
 669	 * schedule ring->work to invoke callbacks on all remaining frames.
 670	 */
 671	schedule_work(&ring->work);
 672	flush_work(&ring->work);
 673}
 674EXPORT_SYMBOL_GPL(tb_ring_stop);
 675
 676/*
 677 * tb_ring_free() - free ring
 678 *
 679 * When this method returns all invocations of ring->callback will have
 680 * finished.
 681 *
 682 * Ring must be stopped.
 683 *
 684 * Must NOT be called from ring_frame->callback!
 685 */
 686void tb_ring_free(struct tb_ring *ring)
 687{
 688	spin_lock_irq(&ring->nhi->lock);
 689	/*
 690	 * Dissociate the ring from the NHI. This also ensures that
 691	 * nhi_interrupt_work cannot reschedule ring->work.
 692	 */
 693	if (ring->is_tx)
 694		ring->nhi->tx_rings[ring->hop] = NULL;
 695	else
 696		ring->nhi->rx_rings[ring->hop] = NULL;
 697
 698	if (ring->running) {
 699		dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
 700			 RING_TYPE(ring), ring->hop);
 701	}
 702	spin_unlock_irq(&ring->nhi->lock);
 703
 704	ring_release_msix(ring);
 705
 706	dma_free_coherent(&ring->nhi->pdev->dev,
 707			  ring->size * sizeof(*ring->descriptors),
 708			  ring->descriptors, ring->descriptors_dma);
 709
 710	ring->descriptors = NULL;
 711	ring->descriptors_dma = 0;
 712
 713
 714	dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
 715		ring->hop);
 716
 717	/**
 718	 * ring->work can no longer be scheduled (it is scheduled only
 719	 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
 720	 * to finish before freeing the ring.
 721	 */
 722	flush_work(&ring->work);
 723	kfree(ring);
 724}
 725EXPORT_SYMBOL_GPL(tb_ring_free);
 726
 727/**
 728 * nhi_mailbox_cmd() - Send a command through NHI mailbox
 729 * @nhi: Pointer to the NHI structure
 730 * @cmd: Command to send
 731 * @data: Data to be send with the command
 732 *
 733 * Sends mailbox command to the firmware running on NHI. Returns %0 in
 734 * case of success and negative errno in case of failure.
 735 */
 736int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
 737{
 738	ktime_t timeout;
 739	u32 val;
 740
 741	iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
 742
 743	val = ioread32(nhi->iobase + REG_INMAIL_CMD);
 744	val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
 745	val |= REG_INMAIL_OP_REQUEST | cmd;
 746	iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
 747
 748	timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
 749	do {
 750		val = ioread32(nhi->iobase + REG_INMAIL_CMD);
 751		if (!(val & REG_INMAIL_OP_REQUEST))
 752			break;
 753		usleep_range(10, 20);
 754	} while (ktime_before(ktime_get(), timeout));
 755
 756	if (val & REG_INMAIL_OP_REQUEST)
 757		return -ETIMEDOUT;
 758	if (val & REG_INMAIL_ERROR)
 759		return -EIO;
 760
 761	return 0;
 762}
 763
 764/**
 765 * nhi_mailbox_mode() - Return current firmware operation mode
 766 * @nhi: Pointer to the NHI structure
 767 *
 768 * The function reads current firmware operation mode using NHI mailbox
 769 * registers and returns it to the caller.
 770 */
 771enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
 772{
 773	u32 val;
 774
 775	val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
 776	val &= REG_OUTMAIL_CMD_OPMODE_MASK;
 777	val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
 778
 779	return (enum nhi_fw_mode)val;
 780}
 781
 782static void nhi_interrupt_work(struct work_struct *work)
 783{
 784	struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
 785	int value = 0; /* Suppress uninitialized usage warning. */
 786	int bit;
 787	int hop = -1;
 788	int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
 789	struct tb_ring *ring;
 790
 791	spin_lock_irq(&nhi->lock);
 792
 793	/*
 794	 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
 795	 * (TX, RX, RX overflow). We iterate over the bits and read a new
 796	 * dwords as required. The registers are cleared on read.
 797	 */
 798	for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
 799		if (bit % 32 == 0)
 800			value = ioread32(nhi->iobase
 801					 + REG_RING_NOTIFY_BASE
 802					 + 4 * (bit / 32));
 803		if (++hop == nhi->hop_count) {
 804			hop = 0;
 805			type++;
 806		}
 807		if ((value & (1 << (bit % 32))) == 0)
 808			continue;
 809		if (type == 2) {
 810			dev_warn(&nhi->pdev->dev,
 811				 "RX overflow for ring %d\n",
 812				 hop);
 813			continue;
 814		}
 815		if (type == 0)
 816			ring = nhi->tx_rings[hop];
 817		else
 818			ring = nhi->rx_rings[hop];
 819		if (ring == NULL) {
 820			dev_warn(&nhi->pdev->dev,
 821				 "got interrupt for inactive %s ring %d\n",
 822				 type ? "RX" : "TX",
 823				 hop);
 824			continue;
 825		}
 826
 827		spin_lock(&ring->lock);
 828		__ring_interrupt(ring);
 829		spin_unlock(&ring->lock);
 830	}
 831	spin_unlock_irq(&nhi->lock);
 832}
 833
 834static irqreturn_t nhi_msi(int irq, void *data)
 835{
 836	struct tb_nhi *nhi = data;
 837	schedule_work(&nhi->interrupt_work);
 838	return IRQ_HANDLED;
 839}
 840
 841static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
 842{
 843	struct pci_dev *pdev = to_pci_dev(dev);
 844	struct tb *tb = pci_get_drvdata(pdev);
 845	struct tb_nhi *nhi = tb->nhi;
 846	int ret;
 847
 848	ret = tb_domain_suspend_noirq(tb);
 849	if (ret)
 850		return ret;
 851
 852	if (nhi->ops && nhi->ops->suspend_noirq) {
 853		ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
 854		if (ret)
 855			return ret;
 856	}
 857
 858	return 0;
 859}
 860
 861static int nhi_suspend_noirq(struct device *dev)
 862{
 863	return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
 864}
 865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 866static bool nhi_wake_supported(struct pci_dev *pdev)
 867{
 868	u8 val;
 869
 870	/*
 871	 * If power rails are sustainable for wakeup from S4 this
 872	 * property is set by the BIOS.
 873	 */
 874	if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
 875		return !!val;
 876
 877	return true;
 878}
 879
 880static int nhi_poweroff_noirq(struct device *dev)
 881{
 882	struct pci_dev *pdev = to_pci_dev(dev);
 883	bool wakeup;
 884
 885	wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
 886	return __nhi_suspend_noirq(dev, wakeup);
 887}
 888
 889static void nhi_enable_int_throttling(struct tb_nhi *nhi)
 890{
 891	/* Throttling is specified in 256ns increments */
 892	u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
 893	unsigned int i;
 894
 895	/*
 896	 * Configure interrupt throttling for all vectors even if we
 897	 * only use few.
 898	 */
 899	for (i = 0; i < MSIX_MAX_VECS; i++) {
 900		u32 reg = REG_INT_THROTTLING_RATE + i * 4;
 901		iowrite32(throttle, nhi->iobase + reg);
 902	}
 903}
 904
 905static int nhi_resume_noirq(struct device *dev)
 906{
 907	struct pci_dev *pdev = to_pci_dev(dev);
 908	struct tb *tb = pci_get_drvdata(pdev);
 909	struct tb_nhi *nhi = tb->nhi;
 910	int ret;
 911
 912	/*
 913	 * Check that the device is still there. It may be that the user
 914	 * unplugged last device which causes the host controller to go
 915	 * away on PCs.
 916	 */
 917	if (!pci_device_is_present(pdev)) {
 918		nhi->going_away = true;
 919	} else {
 920		if (nhi->ops && nhi->ops->resume_noirq) {
 921			ret = nhi->ops->resume_noirq(nhi);
 922			if (ret)
 923				return ret;
 924		}
 925		nhi_enable_int_throttling(tb->nhi);
 926	}
 927
 928	return tb_domain_resume_noirq(tb);
 929}
 930
 931static int nhi_suspend(struct device *dev)
 932{
 933	struct pci_dev *pdev = to_pci_dev(dev);
 934	struct tb *tb = pci_get_drvdata(pdev);
 935
 936	return tb_domain_suspend(tb);
 937}
 938
 939static void nhi_complete(struct device *dev)
 940{
 941	struct pci_dev *pdev = to_pci_dev(dev);
 942	struct tb *tb = pci_get_drvdata(pdev);
 943
 944	/*
 945	 * If we were runtime suspended when system suspend started,
 946	 * schedule runtime resume now. It should bring the domain back
 947	 * to functional state.
 948	 */
 949	if (pm_runtime_suspended(&pdev->dev))
 950		pm_runtime_resume(&pdev->dev);
 951	else
 952		tb_domain_complete(tb);
 953}
 954
 955static int nhi_runtime_suspend(struct device *dev)
 956{
 957	struct pci_dev *pdev = to_pci_dev(dev);
 958	struct tb *tb = pci_get_drvdata(pdev);
 959	struct tb_nhi *nhi = tb->nhi;
 960	int ret;
 961
 962	ret = tb_domain_runtime_suspend(tb);
 963	if (ret)
 964		return ret;
 965
 966	if (nhi->ops && nhi->ops->runtime_suspend) {
 967		ret = nhi->ops->runtime_suspend(tb->nhi);
 968		if (ret)
 969			return ret;
 970	}
 971	return 0;
 972}
 973
 974static int nhi_runtime_resume(struct device *dev)
 975{
 976	struct pci_dev *pdev = to_pci_dev(dev);
 977	struct tb *tb = pci_get_drvdata(pdev);
 978	struct tb_nhi *nhi = tb->nhi;
 979	int ret;
 980
 981	if (nhi->ops && nhi->ops->runtime_resume) {
 982		ret = nhi->ops->runtime_resume(nhi);
 983		if (ret)
 984			return ret;
 985	}
 986
 987	nhi_enable_int_throttling(nhi);
 988	return tb_domain_runtime_resume(tb);
 989}
 990
 991static void nhi_shutdown(struct tb_nhi *nhi)
 992{
 993	int i;
 994
 995	dev_dbg(&nhi->pdev->dev, "shutdown\n");
 996
 997	for (i = 0; i < nhi->hop_count; i++) {
 998		if (nhi->tx_rings[i])
 999			dev_WARN(&nhi->pdev->dev,
1000				 "TX ring %d is still active\n", i);
1001		if (nhi->rx_rings[i])
1002			dev_WARN(&nhi->pdev->dev,
1003				 "RX ring %d is still active\n", i);
1004	}
1005	nhi_disable_interrupts(nhi);
1006	/*
1007	 * We have to release the irq before calling flush_work. Otherwise an
1008	 * already executing IRQ handler could call schedule_work again.
1009	 */
1010	if (!nhi->pdev->msix_enabled) {
1011		devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1012		flush_work(&nhi->interrupt_work);
1013	}
1014	ida_destroy(&nhi->msix_ida);
1015
1016	if (nhi->ops && nhi->ops->shutdown)
1017		nhi->ops->shutdown(nhi);
1018}
1019
1020static int nhi_init_msi(struct tb_nhi *nhi)
1021{
1022	struct pci_dev *pdev = nhi->pdev;
1023	int res, irq, nvec;
1024
1025	/* In case someone left them on. */
1026	nhi_disable_interrupts(nhi);
1027
1028	nhi_enable_int_throttling(nhi);
1029
1030	ida_init(&nhi->msix_ida);
1031
1032	/*
1033	 * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1034	 * get all MSI-X vectors and if we succeed, each ring will have
1035	 * one MSI-X. If for some reason that does not work out, we
1036	 * fallback to a single MSI.
1037	 */
1038	nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1039				     PCI_IRQ_MSIX);
1040	if (nvec < 0) {
1041		nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1042		if (nvec < 0)
1043			return nvec;
1044
1045		INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1046
1047		irq = pci_irq_vector(nhi->pdev, 0);
1048		if (irq < 0)
1049			return irq;
1050
1051		res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1052				       IRQF_NO_SUSPEND, "thunderbolt", nhi);
1053		if (res) {
1054			dev_err(&pdev->dev, "request_irq failed, aborting\n");
1055			return res;
1056		}
1057	}
1058
1059	return 0;
1060}
1061
1062static bool nhi_imr_valid(struct pci_dev *pdev)
1063{
1064	u8 val;
1065
1066	if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1067		return !!val;
1068
1069	return true;
1070}
1071
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1073{
1074	struct tb_nhi *nhi;
1075	struct tb *tb;
1076	int res;
1077
1078	if (!nhi_imr_valid(pdev)) {
1079		dev_warn(&pdev->dev, "firmware image not valid, aborting\n");
1080		return -ENODEV;
1081	}
1082
1083	res = pcim_enable_device(pdev);
1084	if (res) {
1085		dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1086		return res;
1087	}
1088
1089	res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1090	if (res) {
1091		dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1092		return res;
1093	}
1094
1095	nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1096	if (!nhi)
1097		return -ENOMEM;
1098
1099	nhi->pdev = pdev;
1100	nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1101	/* cannot fail - table is allocated bin pcim_iomap_regions */
1102	nhi->iobase = pcim_iomap_table(pdev)[0];
1103	nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1104	dev_dbg(&pdev->dev, "total paths: %d\n", nhi->hop_count);
1105
1106	nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1107				     sizeof(*nhi->tx_rings), GFP_KERNEL);
1108	nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1109				     sizeof(*nhi->rx_rings), GFP_KERNEL);
1110	if (!nhi->tx_rings || !nhi->rx_rings)
1111		return -ENOMEM;
1112
1113	res = nhi_init_msi(nhi);
1114	if (res) {
1115		dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1116		return res;
1117	}
1118
1119	spin_lock_init(&nhi->lock);
1120
1121	res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1122	if (res)
1123		res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1124	if (res) {
1125		dev_err(&pdev->dev, "failed to set DMA mask\n");
1126		return res;
1127	}
1128
1129	pci_set_master(pdev);
1130
1131	if (nhi->ops && nhi->ops->init) {
1132		res = nhi->ops->init(nhi);
1133		if (res)
1134			return res;
1135	}
1136
1137	tb = icm_probe(nhi);
1138	if (!tb)
1139		tb = tb_probe(nhi);
1140	if (!tb) {
1141		dev_err(&nhi->pdev->dev,
1142			"failed to determine connection manager, aborting\n");
1143		return -ENODEV;
1144	}
1145
1146	dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1147
1148	res = tb_domain_add(tb);
1149	if (res) {
1150		/*
1151		 * At this point the RX/TX rings might already have been
1152		 * activated. Do a proper shutdown.
1153		 */
1154		tb_domain_put(tb);
1155		nhi_shutdown(nhi);
1156		return res;
1157	}
1158	pci_set_drvdata(pdev, tb);
1159
 
 
1160	pm_runtime_allow(&pdev->dev);
1161	pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1162	pm_runtime_use_autosuspend(&pdev->dev);
1163	pm_runtime_put_autosuspend(&pdev->dev);
1164
1165	return 0;
1166}
1167
1168static void nhi_remove(struct pci_dev *pdev)
1169{
1170	struct tb *tb = pci_get_drvdata(pdev);
1171	struct tb_nhi *nhi = tb->nhi;
1172
1173	pm_runtime_get_sync(&pdev->dev);
1174	pm_runtime_dont_use_autosuspend(&pdev->dev);
1175	pm_runtime_forbid(&pdev->dev);
1176
1177	tb_domain_remove(tb);
1178	nhi_shutdown(nhi);
1179}
1180
1181/*
1182 * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1183 * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1184 * resume_noirq until we are done.
1185 */
1186static const struct dev_pm_ops nhi_pm_ops = {
1187	.suspend_noirq = nhi_suspend_noirq,
1188	.resume_noirq = nhi_resume_noirq,
1189	.freeze_noirq = nhi_suspend_noirq, /*
1190					    * we just disable hotplug, the
1191					    * pci-tunnels stay alive.
1192					    */
1193	.thaw_noirq = nhi_resume_noirq,
1194	.restore_noirq = nhi_resume_noirq,
1195	.suspend = nhi_suspend,
1196	.freeze = nhi_suspend,
1197	.poweroff_noirq = nhi_poweroff_noirq,
1198	.poweroff = nhi_suspend,
1199	.complete = nhi_complete,
1200	.runtime_suspend = nhi_runtime_suspend,
1201	.runtime_resume = nhi_runtime_resume,
1202};
1203
1204static struct pci_device_id nhi_ids[] = {
1205	/*
1206	 * We have to specify class, the TB bridges use the same device and
1207	 * vendor (sub)id on gen 1 and gen 2 controllers.
1208	 */
1209	{
1210		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1211		.vendor = PCI_VENDOR_ID_INTEL,
1212		.device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1213		.subvendor = 0x2222, .subdevice = 0x1111,
1214	},
1215	{
1216		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1217		.vendor = PCI_VENDOR_ID_INTEL,
1218		.device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1219		.subvendor = 0x2222, .subdevice = 0x1111,
1220	},
1221	{
1222		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1223		.vendor = PCI_VENDOR_ID_INTEL,
1224		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1225		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1226	},
1227	{
1228		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1229		.vendor = PCI_VENDOR_ID_INTEL,
1230		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1231		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1232	},
1233
1234	/* Thunderbolt 3 */
1235	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1236	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1237	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1238	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1239	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1240	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1241	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1242	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1243	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1244	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1245	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1246	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1247	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1248	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1249	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0),
1250	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1251	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1),
 
 
 
 
 
 
 
 
1252	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1253
1254	/* Any USB4 compliant host */
1255	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) },
1256
1257	{ 0,}
1258};
1259
1260MODULE_DEVICE_TABLE(pci, nhi_ids);
1261MODULE_LICENSE("GPL");
1262
1263static struct pci_driver nhi_driver = {
1264	.name = "thunderbolt",
1265	.id_table = nhi_ids,
1266	.probe = nhi_probe,
1267	.remove = nhi_remove,
1268	.shutdown = nhi_remove,
1269	.driver.pm = &nhi_pm_ops,
1270};
1271
1272static int __init nhi_init(void)
1273{
1274	int ret;
1275
1276	ret = tb_domain_init();
1277	if (ret)
1278		return ret;
1279	ret = pci_register_driver(&nhi_driver);
1280	if (ret)
1281		tb_domain_exit();
1282	return ret;
1283}
1284
1285static void __exit nhi_unload(void)
1286{
1287	pci_unregister_driver(&nhi_driver);
1288	tb_domain_exit();
1289}
1290
1291rootfs_initcall(nhi_init);
1292module_exit(nhi_unload);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Thunderbolt driver - NHI driver
   4 *
   5 * The NHI (native host interface) is the pci device that allows us to send and
   6 * receive frames from the thunderbolt bus.
   7 *
   8 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
   9 * Copyright (C) 2018, Intel Corporation
  10 */
  11
  12#include <linux/pm_runtime.h>
  13#include <linux/slab.h>
  14#include <linux/errno.h>
  15#include <linux/pci.h>
  16#include <linux/interrupt.h>
  17#include <linux/module.h>
  18#include <linux/delay.h>
  19#include <linux/property.h>
  20
  21#include "nhi.h"
  22#include "nhi_regs.h"
  23#include "tb.h"
  24
  25#define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
  26
  27#define RING_FIRST_USABLE_HOPID	1
  28
  29/*
  30 * Minimal number of vectors when we use MSI-X. Two for control channel
  31 * Rx/Tx and the rest four are for cross domain DMA paths.
  32 */
  33#define MSIX_MIN_VECS		6
  34#define MSIX_MAX_VECS		16
  35
  36#define NHI_MAILBOX_TIMEOUT	500 /* ms */
  37
  38static int ring_interrupt_index(struct tb_ring *ring)
  39{
  40	int bit = ring->hop;
  41	if (!ring->is_tx)
  42		bit += ring->nhi->hop_count;
  43	return bit;
  44}
  45
  46/*
  47 * ring_interrupt_active() - activate/deactivate interrupts for a single ring
  48 *
  49 * ring->nhi->lock must be held.
  50 */
  51static void ring_interrupt_active(struct tb_ring *ring, bool active)
  52{
  53	int reg = REG_RING_INTERRUPT_BASE +
  54		  ring_interrupt_index(ring) / 32 * 4;
  55	int bit = ring_interrupt_index(ring) & 31;
  56	int mask = 1 << bit;
  57	u32 old, new;
  58
  59	if (ring->irq > 0) {
  60		u32 step, shift, ivr, misc;
  61		void __iomem *ivr_base;
  62		int index;
  63
  64		if (ring->is_tx)
  65			index = ring->hop;
  66		else
  67			index = ring->hop + ring->nhi->hop_count;
  68
  69		/*
  70		 * Ask the hardware to clear interrupt status bits automatically
  71		 * since we already know which interrupt was triggered.
  72		 */
  73		misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
  74		if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
  75			misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
  76			iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
  77		}
  78
  79		ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
  80		step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
  81		shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
  82		ivr = ioread32(ivr_base + step);
  83		ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
  84		if (active)
  85			ivr |= ring->vector << shift;
  86		iowrite32(ivr, ivr_base + step);
  87	}
  88
  89	old = ioread32(ring->nhi->iobase + reg);
  90	if (active)
  91		new = old | mask;
  92	else
  93		new = old & ~mask;
  94
  95	dev_dbg(&ring->nhi->pdev->dev,
  96		"%s interrupt at register %#x bit %d (%#x -> %#x)\n",
  97		active ? "enabling" : "disabling", reg, bit, old, new);
  98
  99	if (new == old)
 100		dev_WARN(&ring->nhi->pdev->dev,
 101					 "interrupt for %s %d is already %s\n",
 102					 RING_TYPE(ring), ring->hop,
 103					 active ? "enabled" : "disabled");
 104	iowrite32(new, ring->nhi->iobase + reg);
 105}
 106
 107/*
 108 * nhi_disable_interrupts() - disable interrupts for all rings
 109 *
 110 * Use only during init and shutdown.
 111 */
 112static void nhi_disable_interrupts(struct tb_nhi *nhi)
 113{
 114	int i = 0;
 115	/* disable interrupts */
 116	for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
 117		iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
 118
 119	/* clear interrupt status bits */
 120	for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
 121		ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
 122}
 123
 124/* ring helper methods */
 125
 126static void __iomem *ring_desc_base(struct tb_ring *ring)
 127{
 128	void __iomem *io = ring->nhi->iobase;
 129	io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
 130	io += ring->hop * 16;
 131	return io;
 132}
 133
 134static void __iomem *ring_options_base(struct tb_ring *ring)
 135{
 136	void __iomem *io = ring->nhi->iobase;
 137	io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
 138	io += ring->hop * 32;
 139	return io;
 140}
 141
 142static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
 143{
 144	/*
 145	 * The other 16-bits in the register is read-only and writes to it
 146	 * are ignored by the hardware so we can save one ioread32() by
 147	 * filling the read-only bits with zeroes.
 148	 */
 149	iowrite32(cons, ring_desc_base(ring) + 8);
 150}
 151
 152static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
 153{
 154	/* See ring_iowrite_cons() above for explanation */
 155	iowrite32(prod << 16, ring_desc_base(ring) + 8);
 156}
 157
 158static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
 159{
 160	iowrite32(value, ring_desc_base(ring) + offset);
 161}
 162
 163static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
 164{
 165	iowrite32(value, ring_desc_base(ring) + offset);
 166	iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
 167}
 168
 169static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
 170{
 171	iowrite32(value, ring_options_base(ring) + offset);
 172}
 173
 174static bool ring_full(struct tb_ring *ring)
 175{
 176	return ((ring->head + 1) % ring->size) == ring->tail;
 177}
 178
 179static bool ring_empty(struct tb_ring *ring)
 180{
 181	return ring->head == ring->tail;
 182}
 183
 184/*
 185 * ring_write_descriptors() - post frames from ring->queue to the controller
 186 *
 187 * ring->lock is held.
 188 */
 189static void ring_write_descriptors(struct tb_ring *ring)
 190{
 191	struct ring_frame *frame, *n;
 192	struct ring_desc *descriptor;
 193	list_for_each_entry_safe(frame, n, &ring->queue, list) {
 194		if (ring_full(ring))
 195			break;
 196		list_move_tail(&frame->list, &ring->in_flight);
 197		descriptor = &ring->descriptors[ring->head];
 198		descriptor->phys = frame->buffer_phy;
 199		descriptor->time = 0;
 200		descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
 201		if (ring->is_tx) {
 202			descriptor->length = frame->size;
 203			descriptor->eof = frame->eof;
 204			descriptor->sof = frame->sof;
 205		}
 206		ring->head = (ring->head + 1) % ring->size;
 207		if (ring->is_tx)
 208			ring_iowrite_prod(ring, ring->head);
 209		else
 210			ring_iowrite_cons(ring, ring->head);
 211	}
 212}
 213
 214/*
 215 * ring_work() - progress completed frames
 216 *
 217 * If the ring is shutting down then all frames are marked as canceled and
 218 * their callbacks are invoked.
 219 *
 220 * Otherwise we collect all completed frame from the ring buffer, write new
 221 * frame to the ring buffer and invoke the callbacks for the completed frames.
 222 */
 223static void ring_work(struct work_struct *work)
 224{
 225	struct tb_ring *ring = container_of(work, typeof(*ring), work);
 226	struct ring_frame *frame;
 227	bool canceled = false;
 228	unsigned long flags;
 229	LIST_HEAD(done);
 230
 231	spin_lock_irqsave(&ring->lock, flags);
 232
 233	if (!ring->running) {
 234		/*  Move all frames to done and mark them as canceled. */
 235		list_splice_tail_init(&ring->in_flight, &done);
 236		list_splice_tail_init(&ring->queue, &done);
 237		canceled = true;
 238		goto invoke_callback;
 239	}
 240
 241	while (!ring_empty(ring)) {
 242		if (!(ring->descriptors[ring->tail].flags
 243				& RING_DESC_COMPLETED))
 244			break;
 245		frame = list_first_entry(&ring->in_flight, typeof(*frame),
 246					 list);
 247		list_move_tail(&frame->list, &done);
 248		if (!ring->is_tx) {
 249			frame->size = ring->descriptors[ring->tail].length;
 250			frame->eof = ring->descriptors[ring->tail].eof;
 251			frame->sof = ring->descriptors[ring->tail].sof;
 252			frame->flags = ring->descriptors[ring->tail].flags;
 253		}
 254		ring->tail = (ring->tail + 1) % ring->size;
 255	}
 256	ring_write_descriptors(ring);
 257
 258invoke_callback:
 259	/* allow callbacks to schedule new work */
 260	spin_unlock_irqrestore(&ring->lock, flags);
 261	while (!list_empty(&done)) {
 262		frame = list_first_entry(&done, typeof(*frame), list);
 263		/*
 264		 * The callback may reenqueue or delete frame.
 265		 * Do not hold on to it.
 266		 */
 267		list_del_init(&frame->list);
 268		if (frame->callback)
 269			frame->callback(ring, frame, canceled);
 270	}
 271}
 272
 273int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
 274{
 275	unsigned long flags;
 276	int ret = 0;
 277
 278	spin_lock_irqsave(&ring->lock, flags);
 279	if (ring->running) {
 280		list_add_tail(&frame->list, &ring->queue);
 281		ring_write_descriptors(ring);
 282	} else {
 283		ret = -ESHUTDOWN;
 284	}
 285	spin_unlock_irqrestore(&ring->lock, flags);
 286	return ret;
 287}
 288EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
 289
 290/**
 291 * tb_ring_poll() - Poll one completed frame from the ring
 292 * @ring: Ring to poll
 293 *
 294 * This function can be called when @start_poll callback of the @ring
 295 * has been called. It will read one completed frame from the ring and
 296 * return it to the caller. Returns %NULL if there is no more completed
 297 * frames.
 298 */
 299struct ring_frame *tb_ring_poll(struct tb_ring *ring)
 300{
 301	struct ring_frame *frame = NULL;
 302	unsigned long flags;
 303
 304	spin_lock_irqsave(&ring->lock, flags);
 305	if (!ring->running)
 306		goto unlock;
 307	if (ring_empty(ring))
 308		goto unlock;
 309
 310	if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
 311		frame = list_first_entry(&ring->in_flight, typeof(*frame),
 312					 list);
 313		list_del_init(&frame->list);
 314
 315		if (!ring->is_tx) {
 316			frame->size = ring->descriptors[ring->tail].length;
 317			frame->eof = ring->descriptors[ring->tail].eof;
 318			frame->sof = ring->descriptors[ring->tail].sof;
 319			frame->flags = ring->descriptors[ring->tail].flags;
 320		}
 321
 322		ring->tail = (ring->tail + 1) % ring->size;
 323	}
 324
 325unlock:
 326	spin_unlock_irqrestore(&ring->lock, flags);
 327	return frame;
 328}
 329EXPORT_SYMBOL_GPL(tb_ring_poll);
 330
 331static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
 332{
 333	int idx = ring_interrupt_index(ring);
 334	int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
 335	int bit = idx % 32;
 336	u32 val;
 337
 338	val = ioread32(ring->nhi->iobase + reg);
 339	if (mask)
 340		val &= ~BIT(bit);
 341	else
 342		val |= BIT(bit);
 343	iowrite32(val, ring->nhi->iobase + reg);
 344}
 345
 346/* Both @nhi->lock and @ring->lock should be held */
 347static void __ring_interrupt(struct tb_ring *ring)
 348{
 349	if (!ring->running)
 350		return;
 351
 352	if (ring->start_poll) {
 353		__ring_interrupt_mask(ring, true);
 354		ring->start_poll(ring->poll_data);
 355	} else {
 356		schedule_work(&ring->work);
 357	}
 358}
 359
 360/**
 361 * tb_ring_poll_complete() - Re-start interrupt for the ring
 362 * @ring: Ring to re-start the interrupt
 363 *
 364 * This will re-start (unmask) the ring interrupt once the user is done
 365 * with polling.
 366 */
 367void tb_ring_poll_complete(struct tb_ring *ring)
 368{
 369	unsigned long flags;
 370
 371	spin_lock_irqsave(&ring->nhi->lock, flags);
 372	spin_lock(&ring->lock);
 373	if (ring->start_poll)
 374		__ring_interrupt_mask(ring, false);
 375	spin_unlock(&ring->lock);
 376	spin_unlock_irqrestore(&ring->nhi->lock, flags);
 377}
 378EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
 379
 380static irqreturn_t ring_msix(int irq, void *data)
 381{
 382	struct tb_ring *ring = data;
 383
 384	spin_lock(&ring->nhi->lock);
 385	spin_lock(&ring->lock);
 386	__ring_interrupt(ring);
 387	spin_unlock(&ring->lock);
 388	spin_unlock(&ring->nhi->lock);
 389
 390	return IRQ_HANDLED;
 391}
 392
 393static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
 394{
 395	struct tb_nhi *nhi = ring->nhi;
 396	unsigned long irqflags;
 397	int ret;
 398
 399	if (!nhi->pdev->msix_enabled)
 400		return 0;
 401
 402	ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
 403	if (ret < 0)
 404		return ret;
 405
 406	ring->vector = ret;
 407
 408	ret = pci_irq_vector(ring->nhi->pdev, ring->vector);
 409	if (ret < 0)
 410		goto err_ida_remove;
 411
 412	ring->irq = ret;
 413
 414	irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
 415	ret = request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
 416	if (ret)
 417		goto err_ida_remove;
 418
 419	return 0;
 420
 421err_ida_remove:
 422	ida_simple_remove(&nhi->msix_ida, ring->vector);
 423
 424	return ret;
 425}
 426
 427static void ring_release_msix(struct tb_ring *ring)
 428{
 429	if (ring->irq <= 0)
 430		return;
 431
 432	free_irq(ring->irq, ring);
 433	ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
 434	ring->vector = 0;
 435	ring->irq = 0;
 436}
 437
 438static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
 439{
 440	int ret = 0;
 441
 442	spin_lock_irq(&nhi->lock);
 443
 444	if (ring->hop < 0) {
 445		unsigned int i;
 446
 447		/*
 448		 * Automatically allocate HopID from the non-reserved
 449		 * range 1 .. hop_count - 1.
 450		 */
 451		for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
 452			if (ring->is_tx) {
 453				if (!nhi->tx_rings[i]) {
 454					ring->hop = i;
 455					break;
 456				}
 457			} else {
 458				if (!nhi->rx_rings[i]) {
 459					ring->hop = i;
 460					break;
 461				}
 462			}
 463		}
 464	}
 465
 466	if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
 467		dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
 468		ret = -EINVAL;
 469		goto err_unlock;
 470	}
 471	if (ring->is_tx && nhi->tx_rings[ring->hop]) {
 472		dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
 473			 ring->hop);
 474		ret = -EBUSY;
 475		goto err_unlock;
 476	} else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
 477		dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
 478			 ring->hop);
 479		ret = -EBUSY;
 480		goto err_unlock;
 481	}
 482
 483	if (ring->is_tx)
 484		nhi->tx_rings[ring->hop] = ring;
 485	else
 486		nhi->rx_rings[ring->hop] = ring;
 487
 488err_unlock:
 489	spin_unlock_irq(&nhi->lock);
 490
 491	return ret;
 492}
 493
 494static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
 495				     bool transmit, unsigned int flags,
 496				     int e2e_tx_hop, u16 sof_mask, u16 eof_mask,
 497				     void (*start_poll)(void *),
 498				     void *poll_data)
 499{
 500	struct tb_ring *ring = NULL;
 501
 502	dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
 503		transmit ? "TX" : "RX", hop, size);
 504
 505	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
 506	if (!ring)
 507		return NULL;
 508
 509	spin_lock_init(&ring->lock);
 510	INIT_LIST_HEAD(&ring->queue);
 511	INIT_LIST_HEAD(&ring->in_flight);
 512	INIT_WORK(&ring->work, ring_work);
 513
 514	ring->nhi = nhi;
 515	ring->hop = hop;
 516	ring->is_tx = transmit;
 517	ring->size = size;
 518	ring->flags = flags;
 519	ring->e2e_tx_hop = e2e_tx_hop;
 520	ring->sof_mask = sof_mask;
 521	ring->eof_mask = eof_mask;
 522	ring->head = 0;
 523	ring->tail = 0;
 524	ring->running = false;
 525	ring->start_poll = start_poll;
 526	ring->poll_data = poll_data;
 527
 528	ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
 529			size * sizeof(*ring->descriptors),
 530			&ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
 531	if (!ring->descriptors)
 532		goto err_free_ring;
 533
 534	if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
 535		goto err_free_descs;
 536
 537	if (nhi_alloc_hop(nhi, ring))
 538		goto err_release_msix;
 539
 540	return ring;
 541
 542err_release_msix:
 543	ring_release_msix(ring);
 544err_free_descs:
 545	dma_free_coherent(&ring->nhi->pdev->dev,
 546			  ring->size * sizeof(*ring->descriptors),
 547			  ring->descriptors, ring->descriptors_dma);
 548err_free_ring:
 549	kfree(ring);
 550
 551	return NULL;
 552}
 553
 554/**
 555 * tb_ring_alloc_tx() - Allocate DMA ring for transmit
 556 * @nhi: Pointer to the NHI the ring is to be allocated
 557 * @hop: HopID (ring) to allocate
 558 * @size: Number of entries in the ring
 559 * @flags: Flags for the ring
 560 */
 561struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
 562				 unsigned int flags)
 563{
 564	return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, 0, NULL, NULL);
 565}
 566EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
 567
 568/**
 569 * tb_ring_alloc_rx() - Allocate DMA ring for receive
 570 * @nhi: Pointer to the NHI the ring is to be allocated
 571 * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
 572 * @size: Number of entries in the ring
 573 * @flags: Flags for the ring
 574 * @e2e_tx_hop: Transmit HopID when E2E is enabled in @flags
 575 * @sof_mask: Mask of PDF values that start a frame
 576 * @eof_mask: Mask of PDF values that end a frame
 577 * @start_poll: If not %NULL the ring will call this function when an
 578 *		interrupt is triggered and masked, instead of callback
 579 *		in each Rx frame.
 580 * @poll_data: Optional data passed to @start_poll
 581 */
 582struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
 583				 unsigned int flags, int e2e_tx_hop,
 584				 u16 sof_mask, u16 eof_mask,
 585				 void (*start_poll)(void *), void *poll_data)
 586{
 587	return tb_ring_alloc(nhi, hop, size, false, flags, e2e_tx_hop, sof_mask, eof_mask,
 588			     start_poll, poll_data);
 589}
 590EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
 591
 592/**
 593 * tb_ring_start() - enable a ring
 594 * @ring: Ring to start
 595 *
 596 * Must not be invoked in parallel with tb_ring_stop().
 597 */
 598void tb_ring_start(struct tb_ring *ring)
 599{
 600	u16 frame_size;
 601	u32 flags;
 602
 603	spin_lock_irq(&ring->nhi->lock);
 604	spin_lock(&ring->lock);
 605	if (ring->nhi->going_away)
 606		goto err;
 607	if (ring->running) {
 608		dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
 609		goto err;
 610	}
 611	dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
 612		RING_TYPE(ring), ring->hop);
 613
 614	if (ring->flags & RING_FLAG_FRAME) {
 615		/* Means 4096 */
 616		frame_size = 0;
 617		flags = RING_FLAG_ENABLE;
 618	} else {
 619		frame_size = TB_FRAME_SIZE;
 620		flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
 621	}
 622
 623	ring_iowrite64desc(ring, ring->descriptors_dma, 0);
 624	if (ring->is_tx) {
 625		ring_iowrite32desc(ring, ring->size, 12);
 626		ring_iowrite32options(ring, 0, 4); /* time releated ? */
 627		ring_iowrite32options(ring, flags, 0);
 628	} else {
 629		u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
 630
 631		ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
 632		ring_iowrite32options(ring, sof_eof_mask, 4);
 633		ring_iowrite32options(ring, flags, 0);
 634	}
 635
 636	/*
 637	 * Now that the ring valid bit is set we can configure E2E if
 638	 * enabled for the ring.
 639	 */
 640	if (ring->flags & RING_FLAG_E2E) {
 641		if (!ring->is_tx) {
 642			u32 hop;
 643
 644			hop = ring->e2e_tx_hop << REG_RX_OPTIONS_E2E_HOP_SHIFT;
 645			hop &= REG_RX_OPTIONS_E2E_HOP_MASK;
 646			flags |= hop;
 647
 648			dev_dbg(&ring->nhi->pdev->dev,
 649				"enabling E2E for %s %d with TX HopID %d\n",
 650				RING_TYPE(ring), ring->hop, ring->e2e_tx_hop);
 651		} else {
 652			dev_dbg(&ring->nhi->pdev->dev, "enabling E2E for %s %d\n",
 653				RING_TYPE(ring), ring->hop);
 654		}
 655
 656		flags |= RING_FLAG_E2E_FLOW_CONTROL;
 657		ring_iowrite32options(ring, flags, 0);
 658	}
 659
 660	ring_interrupt_active(ring, true);
 661	ring->running = true;
 662err:
 663	spin_unlock(&ring->lock);
 664	spin_unlock_irq(&ring->nhi->lock);
 665}
 666EXPORT_SYMBOL_GPL(tb_ring_start);
 667
 668/**
 669 * tb_ring_stop() - shutdown a ring
 670 * @ring: Ring to stop
 671 *
 672 * Must not be invoked from a callback.
 673 *
 674 * This method will disable the ring. Further calls to
 675 * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
 676 * called.
 677 *
 678 * All enqueued frames will be canceled and their callbacks will be executed
 679 * with frame->canceled set to true (on the callback thread). This method
 680 * returns only after all callback invocations have finished.
 681 */
 682void tb_ring_stop(struct tb_ring *ring)
 683{
 684	spin_lock_irq(&ring->nhi->lock);
 685	spin_lock(&ring->lock);
 686	dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
 687		RING_TYPE(ring), ring->hop);
 688	if (ring->nhi->going_away)
 689		goto err;
 690	if (!ring->running) {
 691		dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
 692			 RING_TYPE(ring), ring->hop);
 693		goto err;
 694	}
 695	ring_interrupt_active(ring, false);
 696
 697	ring_iowrite32options(ring, 0, 0);
 698	ring_iowrite64desc(ring, 0, 0);
 699	ring_iowrite32desc(ring, 0, 8);
 700	ring_iowrite32desc(ring, 0, 12);
 701	ring->head = 0;
 702	ring->tail = 0;
 703	ring->running = false;
 704
 705err:
 706	spin_unlock(&ring->lock);
 707	spin_unlock_irq(&ring->nhi->lock);
 708
 709	/*
 710	 * schedule ring->work to invoke callbacks on all remaining frames.
 711	 */
 712	schedule_work(&ring->work);
 713	flush_work(&ring->work);
 714}
 715EXPORT_SYMBOL_GPL(tb_ring_stop);
 716
 717/*
 718 * tb_ring_free() - free ring
 719 *
 720 * When this method returns all invocations of ring->callback will have
 721 * finished.
 722 *
 723 * Ring must be stopped.
 724 *
 725 * Must NOT be called from ring_frame->callback!
 726 */
 727void tb_ring_free(struct tb_ring *ring)
 728{
 729	spin_lock_irq(&ring->nhi->lock);
 730	/*
 731	 * Dissociate the ring from the NHI. This also ensures that
 732	 * nhi_interrupt_work cannot reschedule ring->work.
 733	 */
 734	if (ring->is_tx)
 735		ring->nhi->tx_rings[ring->hop] = NULL;
 736	else
 737		ring->nhi->rx_rings[ring->hop] = NULL;
 738
 739	if (ring->running) {
 740		dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
 741			 RING_TYPE(ring), ring->hop);
 742	}
 743	spin_unlock_irq(&ring->nhi->lock);
 744
 745	ring_release_msix(ring);
 746
 747	dma_free_coherent(&ring->nhi->pdev->dev,
 748			  ring->size * sizeof(*ring->descriptors),
 749			  ring->descriptors, ring->descriptors_dma);
 750
 751	ring->descriptors = NULL;
 752	ring->descriptors_dma = 0;
 753
 754
 755	dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
 756		ring->hop);
 757
 758	/*
 759	 * ring->work can no longer be scheduled (it is scheduled only
 760	 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
 761	 * to finish before freeing the ring.
 762	 */
 763	flush_work(&ring->work);
 764	kfree(ring);
 765}
 766EXPORT_SYMBOL_GPL(tb_ring_free);
 767
 768/**
 769 * nhi_mailbox_cmd() - Send a command through NHI mailbox
 770 * @nhi: Pointer to the NHI structure
 771 * @cmd: Command to send
 772 * @data: Data to be send with the command
 773 *
 774 * Sends mailbox command to the firmware running on NHI. Returns %0 in
 775 * case of success and negative errno in case of failure.
 776 */
 777int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
 778{
 779	ktime_t timeout;
 780	u32 val;
 781
 782	iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
 783
 784	val = ioread32(nhi->iobase + REG_INMAIL_CMD);
 785	val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
 786	val |= REG_INMAIL_OP_REQUEST | cmd;
 787	iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
 788
 789	timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
 790	do {
 791		val = ioread32(nhi->iobase + REG_INMAIL_CMD);
 792		if (!(val & REG_INMAIL_OP_REQUEST))
 793			break;
 794		usleep_range(10, 20);
 795	} while (ktime_before(ktime_get(), timeout));
 796
 797	if (val & REG_INMAIL_OP_REQUEST)
 798		return -ETIMEDOUT;
 799	if (val & REG_INMAIL_ERROR)
 800		return -EIO;
 801
 802	return 0;
 803}
 804
 805/**
 806 * nhi_mailbox_mode() - Return current firmware operation mode
 807 * @nhi: Pointer to the NHI structure
 808 *
 809 * The function reads current firmware operation mode using NHI mailbox
 810 * registers and returns it to the caller.
 811 */
 812enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
 813{
 814	u32 val;
 815
 816	val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
 817	val &= REG_OUTMAIL_CMD_OPMODE_MASK;
 818	val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
 819
 820	return (enum nhi_fw_mode)val;
 821}
 822
 823static void nhi_interrupt_work(struct work_struct *work)
 824{
 825	struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
 826	int value = 0; /* Suppress uninitialized usage warning. */
 827	int bit;
 828	int hop = -1;
 829	int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
 830	struct tb_ring *ring;
 831
 832	spin_lock_irq(&nhi->lock);
 833
 834	/*
 835	 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
 836	 * (TX, RX, RX overflow). We iterate over the bits and read a new
 837	 * dwords as required. The registers are cleared on read.
 838	 */
 839	for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
 840		if (bit % 32 == 0)
 841			value = ioread32(nhi->iobase
 842					 + REG_RING_NOTIFY_BASE
 843					 + 4 * (bit / 32));
 844		if (++hop == nhi->hop_count) {
 845			hop = 0;
 846			type++;
 847		}
 848		if ((value & (1 << (bit % 32))) == 0)
 849			continue;
 850		if (type == 2) {
 851			dev_warn(&nhi->pdev->dev,
 852				 "RX overflow for ring %d\n",
 853				 hop);
 854			continue;
 855		}
 856		if (type == 0)
 857			ring = nhi->tx_rings[hop];
 858		else
 859			ring = nhi->rx_rings[hop];
 860		if (ring == NULL) {
 861			dev_warn(&nhi->pdev->dev,
 862				 "got interrupt for inactive %s ring %d\n",
 863				 type ? "RX" : "TX",
 864				 hop);
 865			continue;
 866		}
 867
 868		spin_lock(&ring->lock);
 869		__ring_interrupt(ring);
 870		spin_unlock(&ring->lock);
 871	}
 872	spin_unlock_irq(&nhi->lock);
 873}
 874
 875static irqreturn_t nhi_msi(int irq, void *data)
 876{
 877	struct tb_nhi *nhi = data;
 878	schedule_work(&nhi->interrupt_work);
 879	return IRQ_HANDLED;
 880}
 881
 882static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
 883{
 884	struct pci_dev *pdev = to_pci_dev(dev);
 885	struct tb *tb = pci_get_drvdata(pdev);
 886	struct tb_nhi *nhi = tb->nhi;
 887	int ret;
 888
 889	ret = tb_domain_suspend_noirq(tb);
 890	if (ret)
 891		return ret;
 892
 893	if (nhi->ops && nhi->ops->suspend_noirq) {
 894		ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
 895		if (ret)
 896			return ret;
 897	}
 898
 899	return 0;
 900}
 901
 902static int nhi_suspend_noirq(struct device *dev)
 903{
 904	return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
 905}
 906
 907static int nhi_freeze_noirq(struct device *dev)
 908{
 909	struct pci_dev *pdev = to_pci_dev(dev);
 910	struct tb *tb = pci_get_drvdata(pdev);
 911
 912	return tb_domain_freeze_noirq(tb);
 913}
 914
 915static int nhi_thaw_noirq(struct device *dev)
 916{
 917	struct pci_dev *pdev = to_pci_dev(dev);
 918	struct tb *tb = pci_get_drvdata(pdev);
 919
 920	return tb_domain_thaw_noirq(tb);
 921}
 922
 923static bool nhi_wake_supported(struct pci_dev *pdev)
 924{
 925	u8 val;
 926
 927	/*
 928	 * If power rails are sustainable for wakeup from S4 this
 929	 * property is set by the BIOS.
 930	 */
 931	if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
 932		return !!val;
 933
 934	return true;
 935}
 936
 937static int nhi_poweroff_noirq(struct device *dev)
 938{
 939	struct pci_dev *pdev = to_pci_dev(dev);
 940	bool wakeup;
 941
 942	wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
 943	return __nhi_suspend_noirq(dev, wakeup);
 944}
 945
 946static void nhi_enable_int_throttling(struct tb_nhi *nhi)
 947{
 948	/* Throttling is specified in 256ns increments */
 949	u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
 950	unsigned int i;
 951
 952	/*
 953	 * Configure interrupt throttling for all vectors even if we
 954	 * only use few.
 955	 */
 956	for (i = 0; i < MSIX_MAX_VECS; i++) {
 957		u32 reg = REG_INT_THROTTLING_RATE + i * 4;
 958		iowrite32(throttle, nhi->iobase + reg);
 959	}
 960}
 961
 962static int nhi_resume_noirq(struct device *dev)
 963{
 964	struct pci_dev *pdev = to_pci_dev(dev);
 965	struct tb *tb = pci_get_drvdata(pdev);
 966	struct tb_nhi *nhi = tb->nhi;
 967	int ret;
 968
 969	/*
 970	 * Check that the device is still there. It may be that the user
 971	 * unplugged last device which causes the host controller to go
 972	 * away on PCs.
 973	 */
 974	if (!pci_device_is_present(pdev)) {
 975		nhi->going_away = true;
 976	} else {
 977		if (nhi->ops && nhi->ops->resume_noirq) {
 978			ret = nhi->ops->resume_noirq(nhi);
 979			if (ret)
 980				return ret;
 981		}
 982		nhi_enable_int_throttling(tb->nhi);
 983	}
 984
 985	return tb_domain_resume_noirq(tb);
 986}
 987
 988static int nhi_suspend(struct device *dev)
 989{
 990	struct pci_dev *pdev = to_pci_dev(dev);
 991	struct tb *tb = pci_get_drvdata(pdev);
 992
 993	return tb_domain_suspend(tb);
 994}
 995
 996static void nhi_complete(struct device *dev)
 997{
 998	struct pci_dev *pdev = to_pci_dev(dev);
 999	struct tb *tb = pci_get_drvdata(pdev);
1000
1001	/*
1002	 * If we were runtime suspended when system suspend started,
1003	 * schedule runtime resume now. It should bring the domain back
1004	 * to functional state.
1005	 */
1006	if (pm_runtime_suspended(&pdev->dev))
1007		pm_runtime_resume(&pdev->dev);
1008	else
1009		tb_domain_complete(tb);
1010}
1011
1012static int nhi_runtime_suspend(struct device *dev)
1013{
1014	struct pci_dev *pdev = to_pci_dev(dev);
1015	struct tb *tb = pci_get_drvdata(pdev);
1016	struct tb_nhi *nhi = tb->nhi;
1017	int ret;
1018
1019	ret = tb_domain_runtime_suspend(tb);
1020	if (ret)
1021		return ret;
1022
1023	if (nhi->ops && nhi->ops->runtime_suspend) {
1024		ret = nhi->ops->runtime_suspend(tb->nhi);
1025		if (ret)
1026			return ret;
1027	}
1028	return 0;
1029}
1030
1031static int nhi_runtime_resume(struct device *dev)
1032{
1033	struct pci_dev *pdev = to_pci_dev(dev);
1034	struct tb *tb = pci_get_drvdata(pdev);
1035	struct tb_nhi *nhi = tb->nhi;
1036	int ret;
1037
1038	if (nhi->ops && nhi->ops->runtime_resume) {
1039		ret = nhi->ops->runtime_resume(nhi);
1040		if (ret)
1041			return ret;
1042	}
1043
1044	nhi_enable_int_throttling(nhi);
1045	return tb_domain_runtime_resume(tb);
1046}
1047
1048static void nhi_shutdown(struct tb_nhi *nhi)
1049{
1050	int i;
1051
1052	dev_dbg(&nhi->pdev->dev, "shutdown\n");
1053
1054	for (i = 0; i < nhi->hop_count; i++) {
1055		if (nhi->tx_rings[i])
1056			dev_WARN(&nhi->pdev->dev,
1057				 "TX ring %d is still active\n", i);
1058		if (nhi->rx_rings[i])
1059			dev_WARN(&nhi->pdev->dev,
1060				 "RX ring %d is still active\n", i);
1061	}
1062	nhi_disable_interrupts(nhi);
1063	/*
1064	 * We have to release the irq before calling flush_work. Otherwise an
1065	 * already executing IRQ handler could call schedule_work again.
1066	 */
1067	if (!nhi->pdev->msix_enabled) {
1068		devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1069		flush_work(&nhi->interrupt_work);
1070	}
1071	ida_destroy(&nhi->msix_ida);
1072
1073	if (nhi->ops && nhi->ops->shutdown)
1074		nhi->ops->shutdown(nhi);
1075}
1076
1077static int nhi_init_msi(struct tb_nhi *nhi)
1078{
1079	struct pci_dev *pdev = nhi->pdev;
1080	int res, irq, nvec;
1081
1082	/* In case someone left them on. */
1083	nhi_disable_interrupts(nhi);
1084
1085	nhi_enable_int_throttling(nhi);
1086
1087	ida_init(&nhi->msix_ida);
1088
1089	/*
1090	 * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1091	 * get all MSI-X vectors and if we succeed, each ring will have
1092	 * one MSI-X. If for some reason that does not work out, we
1093	 * fallback to a single MSI.
1094	 */
1095	nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1096				     PCI_IRQ_MSIX);
1097	if (nvec < 0) {
1098		nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1099		if (nvec < 0)
1100			return nvec;
1101
1102		INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1103
1104		irq = pci_irq_vector(nhi->pdev, 0);
1105		if (irq < 0)
1106			return irq;
1107
1108		res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1109				       IRQF_NO_SUSPEND, "thunderbolt", nhi);
1110		if (res) {
1111			dev_err(&pdev->dev, "request_irq failed, aborting\n");
1112			return res;
1113		}
1114	}
1115
1116	return 0;
1117}
1118
1119static bool nhi_imr_valid(struct pci_dev *pdev)
1120{
1121	u8 val;
1122
1123	if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1124		return !!val;
1125
1126	return true;
1127}
1128
1129static struct tb *nhi_select_cm(struct tb_nhi *nhi)
1130{
1131	struct tb *tb;
1132
1133	/*
1134	 * USB4 case is simple. If we got control of any of the
1135	 * capabilities, we use software CM.
1136	 */
1137	if (tb_acpi_is_native())
1138		return tb_probe(nhi);
1139
1140	/*
1141	 * Either firmware based CM is running (we did not get control
1142	 * from the firmware) or this is pre-USB4 PC so try first
1143	 * firmware CM and then fallback to software CM.
1144	 */
1145	tb = icm_probe(nhi);
1146	if (!tb)
1147		tb = tb_probe(nhi);
1148
1149	return tb;
1150}
1151
1152static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1153{
1154	struct tb_nhi *nhi;
1155	struct tb *tb;
1156	int res;
1157
1158	if (!nhi_imr_valid(pdev)) {
1159		dev_warn(&pdev->dev, "firmware image not valid, aborting\n");
1160		return -ENODEV;
1161	}
1162
1163	res = pcim_enable_device(pdev);
1164	if (res) {
1165		dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1166		return res;
1167	}
1168
1169	res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1170	if (res) {
1171		dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1172		return res;
1173	}
1174
1175	nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1176	if (!nhi)
1177		return -ENOMEM;
1178
1179	nhi->pdev = pdev;
1180	nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1181	/* cannot fail - table is allocated bin pcim_iomap_regions */
1182	nhi->iobase = pcim_iomap_table(pdev)[0];
1183	nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1184	dev_dbg(&pdev->dev, "total paths: %d\n", nhi->hop_count);
1185
1186	nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1187				     sizeof(*nhi->tx_rings), GFP_KERNEL);
1188	nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1189				     sizeof(*nhi->rx_rings), GFP_KERNEL);
1190	if (!nhi->tx_rings || !nhi->rx_rings)
1191		return -ENOMEM;
1192
1193	res = nhi_init_msi(nhi);
1194	if (res) {
1195		dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1196		return res;
1197	}
1198
1199	spin_lock_init(&nhi->lock);
1200
1201	res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1202	if (res)
1203		res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1204	if (res) {
1205		dev_err(&pdev->dev, "failed to set DMA mask\n");
1206		return res;
1207	}
1208
1209	pci_set_master(pdev);
1210
1211	if (nhi->ops && nhi->ops->init) {
1212		res = nhi->ops->init(nhi);
1213		if (res)
1214			return res;
1215	}
1216
1217	tb = nhi_select_cm(nhi);
 
 
1218	if (!tb) {
1219		dev_err(&nhi->pdev->dev,
1220			"failed to determine connection manager, aborting\n");
1221		return -ENODEV;
1222	}
1223
1224	dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1225
1226	res = tb_domain_add(tb);
1227	if (res) {
1228		/*
1229		 * At this point the RX/TX rings might already have been
1230		 * activated. Do a proper shutdown.
1231		 */
1232		tb_domain_put(tb);
1233		nhi_shutdown(nhi);
1234		return res;
1235	}
1236	pci_set_drvdata(pdev, tb);
1237
1238	device_wakeup_enable(&pdev->dev);
1239
1240	pm_runtime_allow(&pdev->dev);
1241	pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1242	pm_runtime_use_autosuspend(&pdev->dev);
1243	pm_runtime_put_autosuspend(&pdev->dev);
1244
1245	return 0;
1246}
1247
1248static void nhi_remove(struct pci_dev *pdev)
1249{
1250	struct tb *tb = pci_get_drvdata(pdev);
1251	struct tb_nhi *nhi = tb->nhi;
1252
1253	pm_runtime_get_sync(&pdev->dev);
1254	pm_runtime_dont_use_autosuspend(&pdev->dev);
1255	pm_runtime_forbid(&pdev->dev);
1256
1257	tb_domain_remove(tb);
1258	nhi_shutdown(nhi);
1259}
1260
1261/*
1262 * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1263 * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1264 * resume_noirq until we are done.
1265 */
1266static const struct dev_pm_ops nhi_pm_ops = {
1267	.suspend_noirq = nhi_suspend_noirq,
1268	.resume_noirq = nhi_resume_noirq,
1269	.freeze_noirq = nhi_freeze_noirq,  /*
1270					    * we just disable hotplug, the
1271					    * pci-tunnels stay alive.
1272					    */
1273	.thaw_noirq = nhi_thaw_noirq,
1274	.restore_noirq = nhi_resume_noirq,
1275	.suspend = nhi_suspend,
 
1276	.poweroff_noirq = nhi_poweroff_noirq,
1277	.poweroff = nhi_suspend,
1278	.complete = nhi_complete,
1279	.runtime_suspend = nhi_runtime_suspend,
1280	.runtime_resume = nhi_runtime_resume,
1281};
1282
1283static struct pci_device_id nhi_ids[] = {
1284	/*
1285	 * We have to specify class, the TB bridges use the same device and
1286	 * vendor (sub)id on gen 1 and gen 2 controllers.
1287	 */
1288	{
1289		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1290		.vendor = PCI_VENDOR_ID_INTEL,
1291		.device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1292		.subvendor = 0x2222, .subdevice = 0x1111,
1293	},
1294	{
1295		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1296		.vendor = PCI_VENDOR_ID_INTEL,
1297		.device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1298		.subvendor = 0x2222, .subdevice = 0x1111,
1299	},
1300	{
1301		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1302		.vendor = PCI_VENDOR_ID_INTEL,
1303		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1304		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1305	},
1306	{
1307		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1308		.vendor = PCI_VENDOR_ID_INTEL,
1309		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1310		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1311	},
1312
1313	/* Thunderbolt 3 */
1314	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1315	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1316	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1317	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1318	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1319	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1320	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1321	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1322	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1323	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1324	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1325	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1326	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1327	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1328	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0),
1329	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1330	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1),
1331	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1332	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI0),
1333	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1334	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI1),
1335	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1336	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI0),
1337	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1338	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI1),
1339	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1340
1341	/* Any USB4 compliant host */
1342	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) },
1343
1344	{ 0,}
1345};
1346
1347MODULE_DEVICE_TABLE(pci, nhi_ids);
1348MODULE_LICENSE("GPL");
1349
1350static struct pci_driver nhi_driver = {
1351	.name = "thunderbolt",
1352	.id_table = nhi_ids,
1353	.probe = nhi_probe,
1354	.remove = nhi_remove,
1355	.shutdown = nhi_remove,
1356	.driver.pm = &nhi_pm_ops,
1357};
1358
1359static int __init nhi_init(void)
1360{
1361	int ret;
1362
1363	ret = tb_domain_init();
1364	if (ret)
1365		return ret;
1366	ret = pci_register_driver(&nhi_driver);
1367	if (ret)
1368		tb_domain_exit();
1369	return ret;
1370}
1371
1372static void __exit nhi_unload(void)
1373{
1374	pci_unregister_driver(&nhi_driver);
1375	tb_domain_exit();
1376}
1377
1378rootfs_initcall(nhi_init);
1379module_exit(nhi_unload);