Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Volume Management Device driver
  4 * Copyright (c) 2015, Intel Corporation.
  5 */
  6
  7#include <linux/device.h>
  8#include <linux/interrupt.h>
  9#include <linux/irq.h>
 10#include <linux/kernel.h>
 11#include <linux/module.h>
 12#include <linux/msi.h>
 13#include <linux/pci.h>
 
 14#include <linux/srcu.h>
 15#include <linux/rculist.h>
 16#include <linux/rcupdate.h>
 17
 18#include <asm/irqdomain.h>
 19#include <asm/device.h>
 20#include <asm/msi.h>
 21#include <asm/msidef.h>
 22
 23#define VMD_CFGBAR	0
 24#define VMD_MEMBAR1	2
 25#define VMD_MEMBAR2	4
 26
 27#define PCI_REG_VMCAP		0x40
 28#define BUS_RESTRICT_CAP(vmcap)	(vmcap & 0x1)
 29#define PCI_REG_VMCONFIG	0x44
 30#define BUS_RESTRICT_CFG(vmcfg)	((vmcfg >> 8) & 0x3)
 
 31#define PCI_REG_VMLOCK		0x70
 32#define MB2_SHADOW_EN(vmlock)	(vmlock & 0x2)
 33
 34#define MB2_SHADOW_OFFSET	0x2000
 35#define MB2_SHADOW_SIZE		16
 36
 37enum vmd_features {
 38	/*
 39	 * Device may contain registers which hint the physical location of the
 40	 * membars, in order to allow proper address translation during
 41	 * resource assignment to enable guest virtualization
 42	 */
 43	VMD_FEAT_HAS_MEMBAR_SHADOW		= (1 << 0),
 44
 45	/*
 46	 * Device may provide root port configuration information which limits
 47	 * bus numbering
 48	 */
 49	VMD_FEAT_HAS_BUS_RESTRICTIONS		= (1 << 1),
 50
 51	/*
 52	 * Device contains physical location shadow registers in
 53	 * vendor-specific capability space
 54	 */
 55	VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP	= (1 << 2),
 
 
 
 
 
 
 
 
 
 
 
 
 
 56};
 57
 58/*
 59 * Lock for manipulating VMD IRQ lists.
 60 */
 61static DEFINE_RAW_SPINLOCK(list_lock);
 62
 63/**
 64 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
 65 * @node:	list item for parent traversal.
 66 * @irq:	back pointer to parent.
 67 * @enabled:	true if driver enabled IRQ
 68 * @virq:	the virtual IRQ value provided to the requesting driver.
 69 *
 70 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
 71 * a VMD IRQ using this structure.
 72 */
 73struct vmd_irq {
 74	struct list_head	node;
 75	struct vmd_irq_list	*irq;
 76	bool			enabled;
 77	unsigned int		virq;
 78};
 79
 80/**
 81 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
 82 * @irq_list:	the list of irq's the VMD one demuxes to.
 83 * @srcu:	SRCU struct for local synchronization.
 84 * @count:	number of child IRQs assigned to this vector; used to track
 85 *		sharing.
 86 */
 87struct vmd_irq_list {
 88	struct list_head	irq_list;
 89	struct srcu_struct	srcu;
 90	unsigned int		count;
 91};
 92
 93struct vmd_dev {
 94	struct pci_dev		*dev;
 95
 96	spinlock_t		cfg_lock;
 97	char __iomem		*cfgbar;
 98
 99	int msix_count;
100	struct vmd_irq_list	*irqs;
101
102	struct pci_sysdata	sysdata;
103	struct resource		resources[3];
104	struct irq_domain	*irq_domain;
105	struct pci_bus		*bus;
106	u8			busn_start;
 
107};
108
109static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
110{
111	return container_of(bus->sysdata, struct vmd_dev, sysdata);
112}
113
114static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
115					   struct vmd_irq_list *irqs)
116{
117	return irqs - vmd->irqs;
118}
119
120/*
121 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
122 * but the MSI entry for the hardware it's driving will be programmed with a
123 * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
124 * domain into one of its own, and the VMD driver de-muxes these for the
125 * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
126 * and irq_chip to set this up.
127 */
128static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
129{
130	struct vmd_irq *vmdirq = data->chip_data;
131	struct vmd_irq_list *irq = vmdirq->irq;
132	struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
133
134	msg->address_hi = MSI_ADDR_BASE_HI;
135	msg->address_lo = MSI_ADDR_BASE_LO |
136			  MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
137	msg->data = 0;
138}
139
140/*
141 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
142 */
143static void vmd_irq_enable(struct irq_data *data)
144{
145	struct vmd_irq *vmdirq = data->chip_data;
146	unsigned long flags;
147
148	raw_spin_lock_irqsave(&list_lock, flags);
149	WARN_ON(vmdirq->enabled);
150	list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
151	vmdirq->enabled = true;
152	raw_spin_unlock_irqrestore(&list_lock, flags);
153
154	data->chip->irq_unmask(data);
155}
156
157static void vmd_irq_disable(struct irq_data *data)
158{
159	struct vmd_irq *vmdirq = data->chip_data;
160	unsigned long flags;
161
162	data->chip->irq_mask(data);
163
164	raw_spin_lock_irqsave(&list_lock, flags);
165	if (vmdirq->enabled) {
166		list_del_rcu(&vmdirq->node);
167		vmdirq->enabled = false;
168	}
169	raw_spin_unlock_irqrestore(&list_lock, flags);
170}
171
172/*
173 * XXX: Stubbed until we develop acceptable way to not create conflicts with
174 * other devices sharing the same vector.
175 */
176static int vmd_irq_set_affinity(struct irq_data *data,
177				const struct cpumask *dest, bool force)
178{
179	return -EINVAL;
180}
181
182static struct irq_chip vmd_msi_controller = {
183	.name			= "VMD-MSI",
184	.irq_enable		= vmd_irq_enable,
185	.irq_disable		= vmd_irq_disable,
186	.irq_compose_msi_msg	= vmd_compose_msi_msg,
187	.irq_set_affinity	= vmd_irq_set_affinity,
188};
189
190static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
191				     msi_alloc_info_t *arg)
192{
193	return 0;
194}
195
196/*
197 * XXX: We can be even smarter selecting the best IRQ once we solve the
198 * affinity problem.
199 */
200static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
201{
202	int i, best = 1;
203	unsigned long flags;
 
204
205	if (vmd->msix_count == 1)
206		return &vmd->irqs[0];
207
208	/*
209	 * White list for fast-interrupt handlers. All others will share the
210	 * "slow" interrupt vector.
211	 */
212	switch (msi_desc_to_pci_dev(desc)->class) {
213	case PCI_CLASS_STORAGE_EXPRESS:
214		break;
215	default:
216		return &vmd->irqs[0];
217	}
218
219	raw_spin_lock_irqsave(&list_lock, flags);
220	for (i = 1; i < vmd->msix_count; i++)
 
221		if (vmd->irqs[i].count < vmd->irqs[best].count)
222			best = i;
223	vmd->irqs[best].count++;
224	raw_spin_unlock_irqrestore(&list_lock, flags);
225
226	return &vmd->irqs[best];
227}
228
229static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
230			unsigned int virq, irq_hw_number_t hwirq,
231			msi_alloc_info_t *arg)
232{
233	struct msi_desc *desc = arg->desc;
234	struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
235	struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
236	unsigned int index, vector;
237
238	if (!vmdirq)
239		return -ENOMEM;
240
241	INIT_LIST_HEAD(&vmdirq->node);
242	vmdirq->irq = vmd_next_irq(vmd, desc);
243	vmdirq->virq = virq;
244	index = index_from_irqs(vmd, vmdirq->irq);
245	vector = pci_irq_vector(vmd->dev, index);
246
247	irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
248			    handle_untracked_irq, vmd, NULL);
249	return 0;
250}
251
252static void vmd_msi_free(struct irq_domain *domain,
253			struct msi_domain_info *info, unsigned int virq)
254{
255	struct vmd_irq *vmdirq = irq_get_chip_data(virq);
256	unsigned long flags;
257
258	synchronize_srcu(&vmdirq->irq->srcu);
259
260	/* XXX: Potential optimization to rebalance */
261	raw_spin_lock_irqsave(&list_lock, flags);
262	vmdirq->irq->count--;
263	raw_spin_unlock_irqrestore(&list_lock, flags);
264
265	kfree(vmdirq);
266}
267
268static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
269			   int nvec, msi_alloc_info_t *arg)
270{
271	struct pci_dev *pdev = to_pci_dev(dev);
272	struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
273
274	if (nvec > vmd->msix_count)
275		return vmd->msix_count;
276
277	memset(arg, 0, sizeof(*arg));
278	return 0;
279}
280
281static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
282{
283	arg->desc = desc;
284}
285
286static struct msi_domain_ops vmd_msi_domain_ops = {
287	.get_hwirq	= vmd_get_hwirq,
288	.msi_init	= vmd_msi_init,
289	.msi_free	= vmd_msi_free,
290	.msi_prepare	= vmd_msi_prepare,
291	.set_desc	= vmd_set_desc,
292};
293
294static struct msi_domain_info vmd_msi_domain_info = {
295	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
296			  MSI_FLAG_PCI_MSIX,
297	.ops		= &vmd_msi_domain_ops,
298	.chip		= &vmd_msi_controller,
299};
300
301static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302				  unsigned int devfn, int reg, int len)
303{
304	char __iomem *addr = vmd->cfgbar +
305			     ((bus->number - vmd->busn_start) << 20) +
306			     (devfn << 12) + reg;
307
308	if ((addr - vmd->cfgbar) + len >=
309	    resource_size(&vmd->dev->resource[VMD_CFGBAR]))
310		return NULL;
311
312	return addr;
313}
314
315/*
316 * CPU may deadlock if config space is not serialized on some versions of this
317 * hardware, so all config space access is done under a spinlock.
318 */
319static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
320			int len, u32 *value)
321{
322	struct vmd_dev *vmd = vmd_from_bus(bus);
323	char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
324	unsigned long flags;
325	int ret = 0;
326
327	if (!addr)
328		return -EFAULT;
329
330	spin_lock_irqsave(&vmd->cfg_lock, flags);
331	switch (len) {
332	case 1:
333		*value = readb(addr);
334		break;
335	case 2:
336		*value = readw(addr);
337		break;
338	case 4:
339		*value = readl(addr);
340		break;
341	default:
342		ret = -EINVAL;
343		break;
344	}
345	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
346	return ret;
347}
348
349/*
350 * VMD h/w converts non-posted config writes to posted memory writes. The
351 * read-back in this function forces the completion so it returns only after
352 * the config space was written, as expected.
353 */
354static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
355			 int len, u32 value)
356{
357	struct vmd_dev *vmd = vmd_from_bus(bus);
358	char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
359	unsigned long flags;
360	int ret = 0;
361
362	if (!addr)
363		return -EFAULT;
364
365	spin_lock_irqsave(&vmd->cfg_lock, flags);
366	switch (len) {
367	case 1:
368		writeb(value, addr);
369		readb(addr);
370		break;
371	case 2:
372		writew(value, addr);
373		readw(addr);
374		break;
375	case 4:
376		writel(value, addr);
377		readl(addr);
378		break;
379	default:
380		ret = -EINVAL;
381		break;
382	}
383	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
384	return ret;
385}
386
387static struct pci_ops vmd_ops = {
388	.read		= vmd_pci_read,
389	.write		= vmd_pci_write,
390};
391
392static void vmd_attach_resources(struct vmd_dev *vmd)
393{
394	vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
395	vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
396}
397
398static void vmd_detach_resources(struct vmd_dev *vmd)
399{
400	vmd->dev->resource[VMD_MEMBAR1].child = NULL;
401	vmd->dev->resource[VMD_MEMBAR2].child = NULL;
402}
403
404/*
405 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
406 * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
407 * 16 bits are the PCI Segment Group (domain) number.  Other bits are
408 * currently reserved.
409 */
410static int vmd_find_free_domain(void)
411{
412	int domain = 0xffff;
413	struct pci_bus *bus = NULL;
414
415	while ((bus = pci_find_next_bus(bus)) != NULL)
416		domain = max_t(int, domain, pci_domain_nr(bus));
417	return domain + 1;
418}
419
420static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
 
 
421{
422	struct pci_sysdata *sd = &vmd->sysdata;
423	struct fwnode_handle *fn;
424	struct resource *res;
425	u32 upper_bits;
426	unsigned long flags;
427	LIST_HEAD(resources);
428	resource_size_t offset[2] = {0};
429	resource_size_t membar2_offset = 0x2000;
430	struct pci_bus *child;
431
432	/*
433	 * Shadow registers may exist in certain VMD device ids which allow
434	 * guests to correctly assign host physical addresses to the root ports
435	 * and child devices. These registers will either return the host value
436	 * or 0, depending on an enable bit in the VMD device.
437	 */
438	if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
439		u32 vmlock;
440		int ret;
441
442		membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
443		ret = pci_read_config_dword(vmd->dev, PCI_REG_VMLOCK, &vmlock);
444		if (ret || vmlock == ~0)
445			return -ENODEV;
446
447		if (MB2_SHADOW_EN(vmlock)) {
448			void __iomem *membar2;
449
450			membar2 = pci_iomap(vmd->dev, VMD_MEMBAR2, 0);
451			if (!membar2)
452				return -ENOMEM;
453			offset[0] = vmd->dev->resource[VMD_MEMBAR1].start -
454					(readq(membar2 + MB2_SHADOW_OFFSET) &
455					 PCI_BASE_ADDRESS_MEM_MASK);
456			offset[1] = vmd->dev->resource[VMD_MEMBAR2].start -
457					(readq(membar2 + MB2_SHADOW_OFFSET + 8) &
458					 PCI_BASE_ADDRESS_MEM_MASK);
459			pci_iounmap(vmd->dev, membar2);
460		}
461	}
462
463	if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
464		int pos = pci_find_capability(vmd->dev, PCI_CAP_ID_VNDR);
465		u32 reg, regu;
466
467		pci_read_config_dword(vmd->dev, pos + 4, &reg);
468
469		/* "SHDW" */
470		if (pos && reg == 0x53484457) {
471			pci_read_config_dword(vmd->dev, pos + 8, &reg);
472			pci_read_config_dword(vmd->dev, pos + 12, &regu);
473			offset[0] = vmd->dev->resource[VMD_MEMBAR1].start -
474					(((u64) regu << 32 | reg) &
475					 PCI_BASE_ADDRESS_MEM_MASK);
476
477			pci_read_config_dword(vmd->dev, pos + 16, &reg);
478			pci_read_config_dword(vmd->dev, pos + 20, &regu);
479			offset[1] = vmd->dev->resource[VMD_MEMBAR2].start -
480					(((u64) regu << 32 | reg) &
481					 PCI_BASE_ADDRESS_MEM_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
482		}
483	}
484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
485	/*
486	 * Certain VMD devices may have a root port configuration option which
487	 * limits the bus range to between 0-127, 128-255, or 224-255
488	 */
489	if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
490		u16 reg16;
491
492		pci_read_config_word(vmd->dev, PCI_REG_VMCAP, &reg16);
493		if (BUS_RESTRICT_CAP(reg16)) {
494			pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG,
495					     &reg16);
496
497			switch (BUS_RESTRICT_CFG(reg16)) {
498			case 1:
499				vmd->busn_start = 128;
500				break;
501			case 2:
502				vmd->busn_start = 224;
503				break;
504			case 3:
505				pci_err(vmd->dev, "Unknown Bus Offset Setting\n");
506				return -ENODEV;
507			default:
508				break;
509			}
510		}
511	}
512
513	res = &vmd->dev->resource[VMD_CFGBAR];
514	vmd->resources[0] = (struct resource) {
515		.name  = "VMD CFGBAR",
516		.start = vmd->busn_start,
517		.end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
518		.flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
519	};
520
521	/*
522	 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
523	 * put 32-bit resources in the window.
524	 *
525	 * There's no hardware reason why a 64-bit window *couldn't*
526	 * contain a 32-bit resource, but pbus_size_mem() computes the
527	 * bridge window size assuming a 64-bit window will contain no
528	 * 32-bit resources.  __pci_assign_resource() enforces that
529	 * artificial restriction to make sure everything will fit.
530	 *
531	 * The only way we could use a 64-bit non-prefetchable MEMBAR is
532	 * if its address is <4GB so that we can convert it to a 32-bit
533	 * resource.  To be visible to the host OS, all VMD endpoints must
534	 * be initially configured by platform BIOS, which includes setting
535	 * up these resources.  We can assume the device is configured
536	 * according to the platform needs.
537	 */
538	res = &vmd->dev->resource[VMD_MEMBAR1];
539	upper_bits = upper_32_bits(res->end);
540	flags = res->flags & ~IORESOURCE_SIZEALIGN;
541	if (!upper_bits)
542		flags &= ~IORESOURCE_MEM_64;
543	vmd->resources[1] = (struct resource) {
544		.name  = "VMD MEMBAR1",
545		.start = res->start,
546		.end   = res->end,
547		.flags = flags,
548		.parent = res,
549	};
550
551	res = &vmd->dev->resource[VMD_MEMBAR2];
552	upper_bits = upper_32_bits(res->end);
553	flags = res->flags & ~IORESOURCE_SIZEALIGN;
554	if (!upper_bits)
555		flags &= ~IORESOURCE_MEM_64;
556	vmd->resources[2] = (struct resource) {
557		.name  = "VMD MEMBAR2",
558		.start = res->start + membar2_offset,
559		.end   = res->end,
560		.flags = flags,
561		.parent = res,
562	};
563
564	sd->vmd_dev = vmd->dev;
565	sd->domain = vmd_find_free_domain();
566	if (sd->domain < 0)
567		return sd->domain;
568
569	sd->node = pcibus_to_node(vmd->dev->bus);
570
571	fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
572	if (!fn)
573		return -ENODEV;
574
575	vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info,
576						    x86_vector_domain);
577	if (!vmd->irq_domain) {
578		irq_domain_free_fwnode(fn);
579		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
580	}
581
582	pci_add_resource(&resources, &vmd->resources[0]);
583	pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
584	pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
585
586	vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
587				       &vmd_ops, sd, &resources);
588	if (!vmd->bus) {
589		pci_free_resource_list(&resources);
590		irq_domain_remove(vmd->irq_domain);
591		irq_domain_free_fwnode(fn);
592		return -ENODEV;
593	}
594
595	vmd_attach_resources(vmd);
596	dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
 
597
598	pci_scan_child_bus(vmd->bus);
599	pci_assign_unassigned_bus_resources(vmd->bus);
600
601	/*
602	 * VMD root buses are virtual and don't return true on pci_is_pcie()
603	 * and will fail pcie_bus_configure_settings() early. It can instead be
604	 * run on each of the real root ports.
605	 */
606	list_for_each_entry(child, &vmd->bus->children, node)
607		pcie_bus_configure_settings(child);
608
609	pci_bus_add_devices(vmd->bus);
610
611	WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
612			       "domain"), "Can't create symlink to domain\n");
613	return 0;
614}
615
616static irqreturn_t vmd_irq(int irq, void *data)
617{
618	struct vmd_irq_list *irqs = data;
619	struct vmd_irq *vmdirq;
620	int idx;
621
622	idx = srcu_read_lock(&irqs->srcu);
623	list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
624		generic_handle_irq(vmdirq->virq);
625	srcu_read_unlock(&irqs->srcu, idx);
626
627	return IRQ_HANDLED;
628}
629
630static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
631{
 
632	struct vmd_dev *vmd;
633	int i, err;
634
635	if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
636		return -ENOMEM;
637
638	vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
639	if (!vmd)
640		return -ENOMEM;
641
642	vmd->dev = dev;
643	err = pcim_enable_device(dev);
644	if (err < 0)
645		return err;
646
647	vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
648	if (!vmd->cfgbar)
649		return -ENOMEM;
650
651	pci_set_master(dev);
652	if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
653	    dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
654		return -ENODEV;
655
656	vmd->msix_count = pci_msix_vec_count(dev);
657	if (vmd->msix_count < 0)
658		return -ENODEV;
659
660	vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
661					PCI_IRQ_MSIX);
662	if (vmd->msix_count < 0)
663		return vmd->msix_count;
664
665	vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
666				 GFP_KERNEL);
667	if (!vmd->irqs)
668		return -ENOMEM;
669
670	for (i = 0; i < vmd->msix_count; i++) {
671		err = init_srcu_struct(&vmd->irqs[i].srcu);
672		if (err)
673			return err;
674
675		INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
676		err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
677				       vmd_irq, IRQF_NO_THREAD,
678				       "vmd", &vmd->irqs[i]);
679		if (err)
680			return err;
681	}
682
683	spin_lock_init(&vmd->cfg_lock);
684	pci_set_drvdata(dev, vmd);
685	err = vmd_enable_domain(vmd, (unsigned long) id->driver_data);
686	if (err)
687		return err;
688
689	dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
690		 vmd->sysdata.domain);
691	return 0;
692}
693
694static void vmd_cleanup_srcu(struct vmd_dev *vmd)
695{
696	int i;
697
698	for (i = 0; i < vmd->msix_count; i++)
699		cleanup_srcu_struct(&vmd->irqs[i].srcu);
700}
701
702static void vmd_remove(struct pci_dev *dev)
703{
704	struct vmd_dev *vmd = pci_get_drvdata(dev);
705	struct fwnode_handle *fn = vmd->irq_domain->fwnode;
706
707	sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
708	pci_stop_root_bus(vmd->bus);
709	pci_remove_root_bus(vmd->bus);
710	vmd_cleanup_srcu(vmd);
711	vmd_detach_resources(vmd);
712	irq_domain_remove(vmd->irq_domain);
713	irq_domain_free_fwnode(fn);
714}
715
716#ifdef CONFIG_PM_SLEEP
717static int vmd_suspend(struct device *dev)
718{
719	struct pci_dev *pdev = to_pci_dev(dev);
720	struct vmd_dev *vmd = pci_get_drvdata(pdev);
721	int i;
722
723	for (i = 0; i < vmd->msix_count; i++)
724		devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
725
726	pci_save_state(pdev);
727	return 0;
728}
729
730static int vmd_resume(struct device *dev)
731{
732	struct pci_dev *pdev = to_pci_dev(dev);
733	struct vmd_dev *vmd = pci_get_drvdata(pdev);
734	int err, i;
735
736	for (i = 0; i < vmd->msix_count; i++) {
737		err = devm_request_irq(dev, pci_irq_vector(pdev, i),
738				       vmd_irq, IRQF_NO_THREAD,
739				       "vmd", &vmd->irqs[i]);
740		if (err)
741			return err;
742	}
743
744	pci_restore_state(pdev);
745	return 0;
746}
747#endif
748static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
749
750static const struct pci_device_id vmd_ids[] = {
751	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
752		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
753	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
754		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
755				VMD_FEAT_HAS_BUS_RESTRICTIONS,},
 
756	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f),
757		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
758				VMD_FEAT_HAS_BUS_RESTRICTIONS,},
 
759	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d),
760		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
761				VMD_FEAT_HAS_BUS_RESTRICTIONS,},
 
762	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
763		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
764				VMD_FEAT_HAS_BUS_RESTRICTIONS,},
 
765	{0,}
766};
767MODULE_DEVICE_TABLE(pci, vmd_ids);
768
769static struct pci_driver vmd_drv = {
770	.name		= "vmd",
771	.id_table	= vmd_ids,
772	.probe		= vmd_probe,
773	.remove		= vmd_remove,
774	.driver		= {
775		.pm	= &vmd_dev_pm_ops,
776	},
777};
778module_pci_driver(vmd_drv);
779
780MODULE_AUTHOR("Intel Corporation");
781MODULE_LICENSE("GPL v2");
782MODULE_VERSION("0.6");
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Volume Management Device driver
  4 * Copyright (c) 2015, Intel Corporation.
  5 */
  6
  7#include <linux/device.h>
  8#include <linux/interrupt.h>
  9#include <linux/irq.h>
 10#include <linux/kernel.h>
 11#include <linux/module.h>
 12#include <linux/msi.h>
 13#include <linux/pci.h>
 14#include <linux/pci-ecam.h>
 15#include <linux/srcu.h>
 16#include <linux/rculist.h>
 17#include <linux/rcupdate.h>
 18
 19#include <asm/irqdomain.h>
 20#include <asm/device.h>
 21#include <asm/msi.h>
 
 22
 23#define VMD_CFGBAR	0
 24#define VMD_MEMBAR1	2
 25#define VMD_MEMBAR2	4
 26
 27#define PCI_REG_VMCAP		0x40
 28#define BUS_RESTRICT_CAP(vmcap)	(vmcap & 0x1)
 29#define PCI_REG_VMCONFIG	0x44
 30#define BUS_RESTRICT_CFG(vmcfg)	((vmcfg >> 8) & 0x3)
 31#define VMCONFIG_MSI_REMAP	0x2
 32#define PCI_REG_VMLOCK		0x70
 33#define MB2_SHADOW_EN(vmlock)	(vmlock & 0x2)
 34
 35#define MB2_SHADOW_OFFSET	0x2000
 36#define MB2_SHADOW_SIZE		16
 37
 38enum vmd_features {
 39	/*
 40	 * Device may contain registers which hint the physical location of the
 41	 * membars, in order to allow proper address translation during
 42	 * resource assignment to enable guest virtualization
 43	 */
 44	VMD_FEAT_HAS_MEMBAR_SHADOW		= (1 << 0),
 45
 46	/*
 47	 * Device may provide root port configuration information which limits
 48	 * bus numbering
 49	 */
 50	VMD_FEAT_HAS_BUS_RESTRICTIONS		= (1 << 1),
 51
 52	/*
 53	 * Device contains physical location shadow registers in
 54	 * vendor-specific capability space
 55	 */
 56	VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP	= (1 << 2),
 57
 58	/*
 59	 * Device may use MSI-X vector 0 for software triggering and will not
 60	 * be used for MSI remapping
 61	 */
 62	VMD_FEAT_OFFSET_FIRST_VECTOR		= (1 << 3),
 63
 64	/*
 65	 * Device can bypass remapping MSI-X transactions into its MSI-X table,
 66	 * avoiding the requirement of a VMD MSI domain for child device
 67	 * interrupt handling.
 68	 */
 69	VMD_FEAT_CAN_BYPASS_MSI_REMAP		= (1 << 4),
 70};
 71
 72/*
 73 * Lock for manipulating VMD IRQ lists.
 74 */
 75static DEFINE_RAW_SPINLOCK(list_lock);
 76
 77/**
 78 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
 79 * @node:	list item for parent traversal.
 80 * @irq:	back pointer to parent.
 81 * @enabled:	true if driver enabled IRQ
 82 * @virq:	the virtual IRQ value provided to the requesting driver.
 83 *
 84 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
 85 * a VMD IRQ using this structure.
 86 */
 87struct vmd_irq {
 88	struct list_head	node;
 89	struct vmd_irq_list	*irq;
 90	bool			enabled;
 91	unsigned int		virq;
 92};
 93
 94/**
 95 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
 96 * @irq_list:	the list of irq's the VMD one demuxes to.
 97 * @srcu:	SRCU struct for local synchronization.
 98 * @count:	number of child IRQs assigned to this vector; used to track
 99 *		sharing.
100 */
101struct vmd_irq_list {
102	struct list_head	irq_list;
103	struct srcu_struct	srcu;
104	unsigned int		count;
105};
106
107struct vmd_dev {
108	struct pci_dev		*dev;
109
110	spinlock_t		cfg_lock;
111	void __iomem		*cfgbar;
112
113	int msix_count;
114	struct vmd_irq_list	*irqs;
115
116	struct pci_sysdata	sysdata;
117	struct resource		resources[3];
118	struct irq_domain	*irq_domain;
119	struct pci_bus		*bus;
120	u8			busn_start;
121	u8			first_vec;
122};
123
124static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
125{
126	return container_of(bus->sysdata, struct vmd_dev, sysdata);
127}
128
129static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
130					   struct vmd_irq_list *irqs)
131{
132	return irqs - vmd->irqs;
133}
134
135/*
136 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
137 * but the MSI entry for the hardware it's driving will be programmed with a
138 * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
139 * domain into one of its own, and the VMD driver de-muxes these for the
140 * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
141 * and irq_chip to set this up.
142 */
143static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
144{
145	struct vmd_irq *vmdirq = data->chip_data;
146	struct vmd_irq_list *irq = vmdirq->irq;
147	struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
148
149	memset(msg, 0, sizeof(*msg));
150	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
151	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
152	msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
153}
154
155/*
156 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
157 */
158static void vmd_irq_enable(struct irq_data *data)
159{
160	struct vmd_irq *vmdirq = data->chip_data;
161	unsigned long flags;
162
163	raw_spin_lock_irqsave(&list_lock, flags);
164	WARN_ON(vmdirq->enabled);
165	list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
166	vmdirq->enabled = true;
167	raw_spin_unlock_irqrestore(&list_lock, flags);
168
169	data->chip->irq_unmask(data);
170}
171
172static void vmd_irq_disable(struct irq_data *data)
173{
174	struct vmd_irq *vmdirq = data->chip_data;
175	unsigned long flags;
176
177	data->chip->irq_mask(data);
178
179	raw_spin_lock_irqsave(&list_lock, flags);
180	if (vmdirq->enabled) {
181		list_del_rcu(&vmdirq->node);
182		vmdirq->enabled = false;
183	}
184	raw_spin_unlock_irqrestore(&list_lock, flags);
185}
186
187/*
188 * XXX: Stubbed until we develop acceptable way to not create conflicts with
189 * other devices sharing the same vector.
190 */
191static int vmd_irq_set_affinity(struct irq_data *data,
192				const struct cpumask *dest, bool force)
193{
194	return -EINVAL;
195}
196
197static struct irq_chip vmd_msi_controller = {
198	.name			= "VMD-MSI",
199	.irq_enable		= vmd_irq_enable,
200	.irq_disable		= vmd_irq_disable,
201	.irq_compose_msi_msg	= vmd_compose_msi_msg,
202	.irq_set_affinity	= vmd_irq_set_affinity,
203};
204
205static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
206				     msi_alloc_info_t *arg)
207{
208	return 0;
209}
210
211/*
212 * XXX: We can be even smarter selecting the best IRQ once we solve the
213 * affinity problem.
214 */
215static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
216{
 
217	unsigned long flags;
218	int i, best;
219
220	if (vmd->msix_count == 1 + vmd->first_vec)
221		return &vmd->irqs[vmd->first_vec];
222
223	/*
224	 * White list for fast-interrupt handlers. All others will share the
225	 * "slow" interrupt vector.
226	 */
227	switch (msi_desc_to_pci_dev(desc)->class) {
228	case PCI_CLASS_STORAGE_EXPRESS:
229		break;
230	default:
231		return &vmd->irqs[vmd->first_vec];
232	}
233
234	raw_spin_lock_irqsave(&list_lock, flags);
235	best = vmd->first_vec + 1;
236	for (i = best; i < vmd->msix_count; i++)
237		if (vmd->irqs[i].count < vmd->irqs[best].count)
238			best = i;
239	vmd->irqs[best].count++;
240	raw_spin_unlock_irqrestore(&list_lock, flags);
241
242	return &vmd->irqs[best];
243}
244
245static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
246			unsigned int virq, irq_hw_number_t hwirq,
247			msi_alloc_info_t *arg)
248{
249	struct msi_desc *desc = arg->desc;
250	struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
251	struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
252	unsigned int index, vector;
253
254	if (!vmdirq)
255		return -ENOMEM;
256
257	INIT_LIST_HEAD(&vmdirq->node);
258	vmdirq->irq = vmd_next_irq(vmd, desc);
259	vmdirq->virq = virq;
260	index = index_from_irqs(vmd, vmdirq->irq);
261	vector = pci_irq_vector(vmd->dev, index);
262
263	irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
264			    handle_untracked_irq, vmd, NULL);
265	return 0;
266}
267
268static void vmd_msi_free(struct irq_domain *domain,
269			struct msi_domain_info *info, unsigned int virq)
270{
271	struct vmd_irq *vmdirq = irq_get_chip_data(virq);
272	unsigned long flags;
273
274	synchronize_srcu(&vmdirq->irq->srcu);
275
276	/* XXX: Potential optimization to rebalance */
277	raw_spin_lock_irqsave(&list_lock, flags);
278	vmdirq->irq->count--;
279	raw_spin_unlock_irqrestore(&list_lock, flags);
280
281	kfree(vmdirq);
282}
283
284static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
285			   int nvec, msi_alloc_info_t *arg)
286{
287	struct pci_dev *pdev = to_pci_dev(dev);
288	struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
289
290	if (nvec > vmd->msix_count)
291		return vmd->msix_count;
292
293	memset(arg, 0, sizeof(*arg));
294	return 0;
295}
296
297static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
298{
299	arg->desc = desc;
300}
301
302static struct msi_domain_ops vmd_msi_domain_ops = {
303	.get_hwirq	= vmd_get_hwirq,
304	.msi_init	= vmd_msi_init,
305	.msi_free	= vmd_msi_free,
306	.msi_prepare	= vmd_msi_prepare,
307	.set_desc	= vmd_set_desc,
308};
309
310static struct msi_domain_info vmd_msi_domain_info = {
311	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
312			  MSI_FLAG_PCI_MSIX,
313	.ops		= &vmd_msi_domain_ops,
314	.chip		= &vmd_msi_controller,
315};
316
317static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable)
318{
319	u16 reg;
320
321	pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, &reg);
322	reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) :
323		       (reg | VMCONFIG_MSI_REMAP);
324	pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg);
325}
326
327static int vmd_create_irq_domain(struct vmd_dev *vmd)
328{
329	struct fwnode_handle *fn;
330
331	fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
332	if (!fn)
333		return -ENODEV;
334
335	vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
336	if (!vmd->irq_domain) {
337		irq_domain_free_fwnode(fn);
338		return -ENODEV;
339	}
340
341	return 0;
342}
343
344static void vmd_remove_irq_domain(struct vmd_dev *vmd)
345{
346	/*
347	 * Some production BIOS won't enable remapping between soft reboots.
348	 * Ensure remapping is restored before unloading the driver.
349	 */
350	if (!vmd->msix_count)
351		vmd_set_msi_remapping(vmd, true);
352
353	if (vmd->irq_domain) {
354		struct fwnode_handle *fn = vmd->irq_domain->fwnode;
355
356		irq_domain_remove(vmd->irq_domain);
357		irq_domain_free_fwnode(fn);
358	}
359}
360
361static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
362				  unsigned int devfn, int reg, int len)
363{
364	unsigned int busnr_ecam = bus->number - vmd->busn_start;
365	u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
 
366
367	if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
 
368		return NULL;
369
370	return vmd->cfgbar + offset;
371}
372
373/*
374 * CPU may deadlock if config space is not serialized on some versions of this
375 * hardware, so all config space access is done under a spinlock.
376 */
377static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
378			int len, u32 *value)
379{
380	struct vmd_dev *vmd = vmd_from_bus(bus);
381	void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
382	unsigned long flags;
383	int ret = 0;
384
385	if (!addr)
386		return -EFAULT;
387
388	spin_lock_irqsave(&vmd->cfg_lock, flags);
389	switch (len) {
390	case 1:
391		*value = readb(addr);
392		break;
393	case 2:
394		*value = readw(addr);
395		break;
396	case 4:
397		*value = readl(addr);
398		break;
399	default:
400		ret = -EINVAL;
401		break;
402	}
403	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
404	return ret;
405}
406
407/*
408 * VMD h/w converts non-posted config writes to posted memory writes. The
409 * read-back in this function forces the completion so it returns only after
410 * the config space was written, as expected.
411 */
412static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
413			 int len, u32 value)
414{
415	struct vmd_dev *vmd = vmd_from_bus(bus);
416	void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
417	unsigned long flags;
418	int ret = 0;
419
420	if (!addr)
421		return -EFAULT;
422
423	spin_lock_irqsave(&vmd->cfg_lock, flags);
424	switch (len) {
425	case 1:
426		writeb(value, addr);
427		readb(addr);
428		break;
429	case 2:
430		writew(value, addr);
431		readw(addr);
432		break;
433	case 4:
434		writel(value, addr);
435		readl(addr);
436		break;
437	default:
438		ret = -EINVAL;
439		break;
440	}
441	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
442	return ret;
443}
444
445static struct pci_ops vmd_ops = {
446	.read		= vmd_pci_read,
447	.write		= vmd_pci_write,
448};
449
450static void vmd_attach_resources(struct vmd_dev *vmd)
451{
452	vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
453	vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
454}
455
456static void vmd_detach_resources(struct vmd_dev *vmd)
457{
458	vmd->dev->resource[VMD_MEMBAR1].child = NULL;
459	vmd->dev->resource[VMD_MEMBAR2].child = NULL;
460}
461
462/*
463 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
464 * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
465 * 16 bits are the PCI Segment Group (domain) number.  Other bits are
466 * currently reserved.
467 */
468static int vmd_find_free_domain(void)
469{
470	int domain = 0xffff;
471	struct pci_bus *bus = NULL;
472
473	while ((bus = pci_find_next_bus(bus)) != NULL)
474		domain = max_t(int, domain, pci_domain_nr(bus));
475	return domain + 1;
476}
477
478static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
479				resource_size_t *offset1,
480				resource_size_t *offset2)
481{
482	struct pci_dev *dev = vmd->dev;
483	u64 phys1, phys2;
 
 
 
 
 
 
 
484
485	if (native_hint) {
 
 
 
 
 
 
486		u32 vmlock;
487		int ret;
488
489		ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
 
490		if (ret || vmlock == ~0)
491			return -ENODEV;
492
493		if (MB2_SHADOW_EN(vmlock)) {
494			void __iomem *membar2;
495
496			membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
497			if (!membar2)
498				return -ENOMEM;
499			phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
500			phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
501			pci_iounmap(dev, membar2);
502		} else
503			return 0;
504	} else {
505		/* Hypervisor-Emulated Vendor-Specific Capability */
506		int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
 
 
 
 
507		u32 reg, regu;
508
509		pci_read_config_dword(dev, pos + 4, &reg);
510
511		/* "SHDW" */
512		if (pos && reg == 0x53484457) {
513			pci_read_config_dword(dev, pos + 8, &reg);
514			pci_read_config_dword(dev, pos + 12, &regu);
515			phys1 = (u64) regu << 32 | reg;
516
517			pci_read_config_dword(dev, pos + 16, &reg);
518			pci_read_config_dword(dev, pos + 20, &regu);
519			phys2 = (u64) regu << 32 | reg;
520		} else
521			return 0;
522	}
523
524	*offset1 = dev->resource[VMD_MEMBAR1].start -
525			(phys1 & PCI_BASE_ADDRESS_MEM_MASK);
526	*offset2 = dev->resource[VMD_MEMBAR2].start -
527			(phys2 & PCI_BASE_ADDRESS_MEM_MASK);
528
529	return 0;
530}
531
532static int vmd_get_bus_number_start(struct vmd_dev *vmd)
533{
534	struct pci_dev *dev = vmd->dev;
535	u16 reg;
536
537	pci_read_config_word(dev, PCI_REG_VMCAP, &reg);
538	if (BUS_RESTRICT_CAP(reg)) {
539		pci_read_config_word(dev, PCI_REG_VMCONFIG, &reg);
540
541		switch (BUS_RESTRICT_CFG(reg)) {
542		case 0:
543			vmd->busn_start = 0;
544			break;
545		case 1:
546			vmd->busn_start = 128;
547			break;
548		case 2:
549			vmd->busn_start = 224;
550			break;
551		default:
552			pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
553				BUS_RESTRICT_CFG(reg));
554			return -ENODEV;
555		}
556	}
557
558	return 0;
559}
560
561static irqreturn_t vmd_irq(int irq, void *data)
562{
563	struct vmd_irq_list *irqs = data;
564	struct vmd_irq *vmdirq;
565	int idx;
566
567	idx = srcu_read_lock(&irqs->srcu);
568	list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
569		generic_handle_irq(vmdirq->virq);
570	srcu_read_unlock(&irqs->srcu, idx);
571
572	return IRQ_HANDLED;
573}
574
575static int vmd_alloc_irqs(struct vmd_dev *vmd)
576{
577	struct pci_dev *dev = vmd->dev;
578	int i, err;
579
580	vmd->msix_count = pci_msix_vec_count(dev);
581	if (vmd->msix_count < 0)
582		return -ENODEV;
583
584	vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
585						vmd->msix_count, PCI_IRQ_MSIX);
586	if (vmd->msix_count < 0)
587		return vmd->msix_count;
588
589	vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
590				 GFP_KERNEL);
591	if (!vmd->irqs)
592		return -ENOMEM;
593
594	for (i = 0; i < vmd->msix_count; i++) {
595		err = init_srcu_struct(&vmd->irqs[i].srcu);
596		if (err)
597			return err;
598
599		INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
600		err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
601				       vmd_irq, IRQF_NO_THREAD,
602				       "vmd", &vmd->irqs[i]);
603		if (err)
604			return err;
605	}
606
607	return 0;
608}
609
610static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
611{
612	struct pci_sysdata *sd = &vmd->sysdata;
613	struct resource *res;
614	u32 upper_bits;
615	unsigned long flags;
616	LIST_HEAD(resources);
617	resource_size_t offset[2] = {0};
618	resource_size_t membar2_offset = 0x2000;
619	struct pci_bus *child;
620	int ret;
621
622	/*
623	 * Shadow registers may exist in certain VMD device ids which allow
624	 * guests to correctly assign host physical addresses to the root ports
625	 * and child devices. These registers will either return the host value
626	 * or 0, depending on an enable bit in the VMD device.
627	 */
628	if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
629		membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
630		ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
631		if (ret)
632			return ret;
633	} else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
634		ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
635		if (ret)
636			return ret;
637	}
638
639	/*
640	 * Certain VMD devices may have a root port configuration option which
641	 * limits the bus range to between 0-127, 128-255, or 224-255
642	 */
643	if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
644		ret = vmd_get_bus_number_start(vmd);
645		if (ret)
646			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
647	}
648
649	res = &vmd->dev->resource[VMD_CFGBAR];
650	vmd->resources[0] = (struct resource) {
651		.name  = "VMD CFGBAR",
652		.start = vmd->busn_start,
653		.end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
654		.flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
655	};
656
657	/*
658	 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
659	 * put 32-bit resources in the window.
660	 *
661	 * There's no hardware reason why a 64-bit window *couldn't*
662	 * contain a 32-bit resource, but pbus_size_mem() computes the
663	 * bridge window size assuming a 64-bit window will contain no
664	 * 32-bit resources.  __pci_assign_resource() enforces that
665	 * artificial restriction to make sure everything will fit.
666	 *
667	 * The only way we could use a 64-bit non-prefetchable MEMBAR is
668	 * if its address is <4GB so that we can convert it to a 32-bit
669	 * resource.  To be visible to the host OS, all VMD endpoints must
670	 * be initially configured by platform BIOS, which includes setting
671	 * up these resources.  We can assume the device is configured
672	 * according to the platform needs.
673	 */
674	res = &vmd->dev->resource[VMD_MEMBAR1];
675	upper_bits = upper_32_bits(res->end);
676	flags = res->flags & ~IORESOURCE_SIZEALIGN;
677	if (!upper_bits)
678		flags &= ~IORESOURCE_MEM_64;
679	vmd->resources[1] = (struct resource) {
680		.name  = "VMD MEMBAR1",
681		.start = res->start,
682		.end   = res->end,
683		.flags = flags,
684		.parent = res,
685	};
686
687	res = &vmd->dev->resource[VMD_MEMBAR2];
688	upper_bits = upper_32_bits(res->end);
689	flags = res->flags & ~IORESOURCE_SIZEALIGN;
690	if (!upper_bits)
691		flags &= ~IORESOURCE_MEM_64;
692	vmd->resources[2] = (struct resource) {
693		.name  = "VMD MEMBAR2",
694		.start = res->start + membar2_offset,
695		.end   = res->end,
696		.flags = flags,
697		.parent = res,
698	};
699
700	sd->vmd_dev = vmd->dev;
701	sd->domain = vmd_find_free_domain();
702	if (sd->domain < 0)
703		return sd->domain;
704
705	sd->node = pcibus_to_node(vmd->dev->bus);
706
707	/*
708	 * Currently MSI remapping must be enabled in guest passthrough mode
709	 * due to some missing interrupt remapping plumbing. This is probably
710	 * acceptable because the guest is usually CPU-limited and MSI
711	 * remapping doesn't become a performance bottleneck.
712	 */
713	if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) ||
714	    offset[0] || offset[1]) {
715		ret = vmd_alloc_irqs(vmd);
716		if (ret)
717			return ret;
718
719		vmd_set_msi_remapping(vmd, true);
720
721		ret = vmd_create_irq_domain(vmd);
722		if (ret)
723			return ret;
724
725		/*
726		 * Override the IRQ domain bus token so the domain can be
727		 * distinguished from a regular PCI/MSI domain.
728		 */
729		irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
730	} else {
731		vmd_set_msi_remapping(vmd, false);
732	}
733
734	pci_add_resource(&resources, &vmd->resources[0]);
735	pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
736	pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
737
738	vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
739				       &vmd_ops, sd, &resources);
740	if (!vmd->bus) {
741		pci_free_resource_list(&resources);
742		vmd_remove_irq_domain(vmd);
 
743		return -ENODEV;
744	}
745
746	vmd_attach_resources(vmd);
747	if (vmd->irq_domain)
748		dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
749
750	pci_scan_child_bus(vmd->bus);
751	pci_assign_unassigned_bus_resources(vmd->bus);
752
753	/*
754	 * VMD root buses are virtual and don't return true on pci_is_pcie()
755	 * and will fail pcie_bus_configure_settings() early. It can instead be
756	 * run on each of the real root ports.
757	 */
758	list_for_each_entry(child, &vmd->bus->children, node)
759		pcie_bus_configure_settings(child);
760
761	pci_bus_add_devices(vmd->bus);
762
763	WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
764			       "domain"), "Can't create symlink to domain\n");
765	return 0;
766}
767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
768static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
769{
770	unsigned long features = (unsigned long) id->driver_data;
771	struct vmd_dev *vmd;
772	int err;
773
774	if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
775		return -ENOMEM;
776
777	vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
778	if (!vmd)
779		return -ENOMEM;
780
781	vmd->dev = dev;
782	err = pcim_enable_device(dev);
783	if (err < 0)
784		return err;
785
786	vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
787	if (!vmd->cfgbar)
788		return -ENOMEM;
789
790	pci_set_master(dev);
791	if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
792	    dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
793		return -ENODEV;
794
795	if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
796		vmd->first_vec = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
797
798	spin_lock_init(&vmd->cfg_lock);
799	pci_set_drvdata(dev, vmd);
800	err = vmd_enable_domain(vmd, features);
801	if (err)
802		return err;
803
804	dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
805		 vmd->sysdata.domain);
806	return 0;
807}
808
809static void vmd_cleanup_srcu(struct vmd_dev *vmd)
810{
811	int i;
812
813	for (i = 0; i < vmd->msix_count; i++)
814		cleanup_srcu_struct(&vmd->irqs[i].srcu);
815}
816
817static void vmd_remove(struct pci_dev *dev)
818{
819	struct vmd_dev *vmd = pci_get_drvdata(dev);
 
820
821	sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
822	pci_stop_root_bus(vmd->bus);
823	pci_remove_root_bus(vmd->bus);
824	vmd_cleanup_srcu(vmd);
825	vmd_detach_resources(vmd);
826	vmd_remove_irq_domain(vmd);
 
827}
828
829#ifdef CONFIG_PM_SLEEP
830static int vmd_suspend(struct device *dev)
831{
832	struct pci_dev *pdev = to_pci_dev(dev);
833	struct vmd_dev *vmd = pci_get_drvdata(pdev);
834	int i;
835
836	for (i = 0; i < vmd->msix_count; i++)
837		devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
838
 
839	return 0;
840}
841
842static int vmd_resume(struct device *dev)
843{
844	struct pci_dev *pdev = to_pci_dev(dev);
845	struct vmd_dev *vmd = pci_get_drvdata(pdev);
846	int err, i;
847
848	for (i = 0; i < vmd->msix_count; i++) {
849		err = devm_request_irq(dev, pci_irq_vector(pdev, i),
850				       vmd_irq, IRQF_NO_THREAD,
851				       "vmd", &vmd->irqs[i]);
852		if (err)
853			return err;
854	}
855
 
856	return 0;
857}
858#endif
859static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
860
861static const struct pci_device_id vmd_ids[] = {
862	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
863		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
864	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
865		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
866				VMD_FEAT_HAS_BUS_RESTRICTIONS |
867				VMD_FEAT_CAN_BYPASS_MSI_REMAP,},
868	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f),
869		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
870				VMD_FEAT_HAS_BUS_RESTRICTIONS |
871				VMD_FEAT_OFFSET_FIRST_VECTOR,},
872	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d),
873		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
874				VMD_FEAT_HAS_BUS_RESTRICTIONS |
875				VMD_FEAT_OFFSET_FIRST_VECTOR,},
876	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
877		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
878				VMD_FEAT_HAS_BUS_RESTRICTIONS |
879				VMD_FEAT_OFFSET_FIRST_VECTOR,},
880	{0,}
881};
882MODULE_DEVICE_TABLE(pci, vmd_ids);
883
884static struct pci_driver vmd_drv = {
885	.name		= "vmd",
886	.id_table	= vmd_ids,
887	.probe		= vmd_probe,
888	.remove		= vmd_remove,
889	.driver		= {
890		.pm	= &vmd_dev_pm_ops,
891	},
892};
893module_pci_driver(vmd_drv);
894
895MODULE_AUTHOR("Intel Corporation");
896MODULE_LICENSE("GPL v2");
897MODULE_VERSION("0.6");