Linux Audio

Check our new training course

Loading...
v5.9
   1/*
   2 * drm_irq.c IRQ and vblank support
   3 *
   4 * \author Rickard E. (Rik) Faith <faith@valinux.com>
   5 * \author Gareth Hughes <gareth@valinux.com>
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the "Software"),
   9 * to deal in the Software without restriction, including without limitation
  10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  11 * and/or sell copies of the Software, and to permit persons to whom the
  12 * Software is furnished to do so, subject to the following conditions:
  13 *
  14 * The above copyright notice and this permission notice (including the next
  15 * paragraph) shall be included in all copies or substantial portions of the
  16 * Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
  22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  24 * OTHER DEALINGS IN THE SOFTWARE.
  25 */
  26
  27#include <linux/export.h>
  28#include <linux/kthread.h>
  29#include <linux/moduleparam.h>
  30
  31#include <drm/drm_crtc.h>
  32#include <drm/drm_drv.h>
  33#include <drm/drm_framebuffer.h>
  34#include <drm/drm_managed.h>
  35#include <drm/drm_modeset_helper_vtables.h>
  36#include <drm/drm_print.h>
  37#include <drm/drm_vblank.h>
  38
  39#include "drm_internal.h"
  40#include "drm_trace.h"
  41
  42/**
  43 * DOC: vblank handling
  44 *
  45 * From the computer's perspective, every time the monitor displays
  46 * a new frame the scanout engine has "scanned out" the display image
  47 * from top to bottom, one row of pixels at a time. The current row
  48 * of pixels is referred to as the current scanline.
  49 *
  50 * In addition to the display's visible area, there's usually a couple of
  51 * extra scanlines which aren't actually displayed on the screen.
  52 * These extra scanlines don't contain image data and are occasionally used
  53 * for features like audio and infoframes. The region made up of these
  54 * scanlines is referred to as the vertical blanking region, or vblank for
  55 * short.
  56 *
  57 * For historical reference, the vertical blanking period was designed to
  58 * give the electron gun (on CRTs) enough time to move back to the top of
  59 * the screen to start scanning out the next frame. Similar for horizontal
  60 * blanking periods. They were designed to give the electron gun enough
  61 * time to move back to the other side of the screen to start scanning the
  62 * next scanline.
  63 *
  64 * ::
  65 *
  66 *
  67 *    physical →   ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
  68 *    top of      |                                        |
  69 *    display     |                                        |
  70 *                |               New frame                |
  71 *                |                                        |
  72 *                |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|
  73 *                |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline,
  74 *                |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|   updates the
  75 *                |                                        |   frame as it
  76 *                |                                        |   travels down
  77 *                |                                        |   ("sacn out")
  78 *                |               Old frame                |
  79 *                |                                        |
  80 *                |                                        |
  81 *                |                                        |
  82 *                |                                        |   physical
  83 *                |                                        |   bottom of
  84 *    vertical    |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display
  85 *    blanking    ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
  86 *    region   →  ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
  87 *                ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
  88 *    start of →   ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
  89 *    new frame
  90 *
  91 * "Physical top of display" is the reference point for the high-precision/
  92 * corrected timestamp.
  93 *
  94 * On a lot of display hardware, programming needs to take effect during the
  95 * vertical blanking period so that settings like gamma, the image buffer
  96 * buffer to be scanned out, etc. can safely be changed without showing
  97 * any visual artifacts on the screen. In some unforgiving hardware, some of
  98 * this programming has to both start and end in the same vblank. To help
  99 * with the timing of the hardware programming, an interrupt is usually
 100 * available to notify the driver when it can start the updating of registers.
 101 * The interrupt is in this context named the vblank interrupt.
 102 *
 103 * The vblank interrupt may be fired at different points depending on the
 104 * hardware. Some hardware implementations will fire the interrupt when the
 105 * new frame start, other implementations will fire the interrupt at different
 106 * points in time.
 107 *
 108 * Vertical blanking plays a major role in graphics rendering. To achieve
 109 * tear-free display, users must synchronize page flips and/or rendering to
 110 * vertical blanking. The DRM API offers ioctls to perform page flips
 111 * synchronized to vertical blanking and wait for vertical blanking.
 112 *
 113 * The DRM core handles most of the vertical blanking management logic, which
 114 * involves filtering out spurious interrupts, keeping race-free blanking
 115 * counters, coping with counter wrap-around and resets and keeping use counts.
 116 * It relies on the driver to generate vertical blanking interrupts and
 117 * optionally provide a hardware vertical blanking counter.
 118 *
 119 * Drivers must initialize the vertical blanking handling core with a call to
 120 * drm_vblank_init(). Minimally, a driver needs to implement
 121 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
 122 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
 123 * support.
 124 *
 125 * Vertical blanking interrupts can be enabled by the DRM core or by drivers
 126 * themselves (for instance to handle page flipping operations).  The DRM core
 127 * maintains a vertical blanking use count to ensure that the interrupts are not
 128 * disabled while a user still needs them. To increment the use count, drivers
 129 * call drm_crtc_vblank_get() and release the vblank reference again with
 130 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
 131 * guaranteed to be enabled.
 132 *
 133 * On many hardware disabling the vblank interrupt cannot be done in a race-free
 134 * manner, see &drm_driver.vblank_disable_immediate and
 135 * &drm_driver.max_vblank_count. In that case the vblank core only disables the
 136 * vblanks after a timer has expired, which can be configured through the
 137 * ``vblankoffdelay`` module parameter.
 138 *
 139 * Drivers for hardware without support for vertical-blanking interrupts
 140 * must not call drm_vblank_init(). For such drivers, atomic helpers will
 141 * automatically generate fake vblank events as part of the display update.
 142 * This functionality also can be controlled by the driver by enabling and
 143 * disabling struct drm_crtc_state.no_vblank.
 144 */
 145
 146/* Retry timestamp calculation up to 3 times to satisfy
 147 * drm_timestamp_precision before giving up.
 148 */
 149#define DRM_TIMESTAMP_MAXRETRIES 3
 150
 151/* Threshold in nanoseconds for detection of redundant
 152 * vblank irq in drm_handle_vblank(). 1 msec should be ok.
 153 */
 154#define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
 155
 156static bool
 157drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
 158			  ktime_t *tvblank, bool in_vblank_irq);
 159
 160static unsigned int drm_timestamp_precision = 20;  /* Default to 20 usecs. */
 161
 162static int drm_vblank_offdelay = 5000;    /* Default to 5000 msecs. */
 163
 164module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
 165module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
 166MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
 167MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
 168
 169static void store_vblank(struct drm_device *dev, unsigned int pipe,
 170			 u32 vblank_count_inc,
 171			 ktime_t t_vblank, u32 last)
 172{
 173	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 174
 175	assert_spin_locked(&dev->vblank_time_lock);
 176
 177	vblank->last = last;
 178
 179	write_seqlock(&vblank->seqlock);
 180	vblank->time = t_vblank;
 181	atomic64_add(vblank_count_inc, &vblank->count);
 182	write_sequnlock(&vblank->seqlock);
 183}
 184
 185static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
 186{
 187	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 188
 189	return vblank->max_vblank_count ?: dev->max_vblank_count;
 190}
 191
 192/*
 193 * "No hw counter" fallback implementation of .get_vblank_counter() hook,
 194 * if there is no useable hardware frame counter available.
 195 */
 196static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
 197{
 198	drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0);
 199	return 0;
 200}
 201
 202static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
 203{
 204	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
 205		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
 206
 207		if (drm_WARN_ON(dev, !crtc))
 208			return 0;
 209
 210		if (crtc->funcs->get_vblank_counter)
 211			return crtc->funcs->get_vblank_counter(crtc);
 212	} else if (dev->driver->get_vblank_counter) {
 
 
 213		return dev->driver->get_vblank_counter(dev, pipe);
 214	}
 
 215
 216	return drm_vblank_no_hw_counter(dev, pipe);
 217}
 218
 219/*
 220 * Reset the stored timestamp for the current vblank count to correspond
 221 * to the last vblank occurred.
 222 *
 223 * Only to be called from drm_crtc_vblank_on().
 224 *
 225 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
 226 * device vblank fields.
 227 */
 228static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
 229{
 230	u32 cur_vblank;
 231	bool rc;
 232	ktime_t t_vblank;
 233	int count = DRM_TIMESTAMP_MAXRETRIES;
 234
 235	spin_lock(&dev->vblank_time_lock);
 236
 237	/*
 238	 * sample the current counter to avoid random jumps
 239	 * when drm_vblank_enable() applies the diff
 240	 */
 241	do {
 242		cur_vblank = __get_vblank_counter(dev, pipe);
 243		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
 244	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
 245
 246	/*
 247	 * Only reinitialize corresponding vblank timestamp if high-precision query
 248	 * available and didn't fail. Otherwise reinitialize delayed at next vblank
 249	 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
 250	 */
 251	if (!rc)
 252		t_vblank = 0;
 253
 254	/*
 255	 * +1 to make sure user will never see the same
 256	 * vblank counter value before and after a modeset
 257	 */
 258	store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
 259
 260	spin_unlock(&dev->vblank_time_lock);
 261}
 262
 263/*
 264 * Call back into the driver to update the appropriate vblank counter
 265 * (specified by @pipe).  Deal with wraparound, if it occurred, and
 266 * update the last read value so we can deal with wraparound on the next
 267 * call if necessary.
 268 *
 269 * Only necessary when going from off->on, to account for frames we
 270 * didn't get an interrupt for.
 271 *
 272 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
 273 * device vblank fields.
 274 */
 275static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
 276				    bool in_vblank_irq)
 277{
 278	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 279	u32 cur_vblank, diff;
 280	bool rc;
 281	ktime_t t_vblank;
 282	int count = DRM_TIMESTAMP_MAXRETRIES;
 283	int framedur_ns = vblank->framedur_ns;
 284	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
 285
 286	/*
 287	 * Interrupts were disabled prior to this call, so deal with counter
 288	 * wrap if needed.
 289	 * NOTE!  It's possible we lost a full dev->max_vblank_count + 1 events
 290	 * here if the register is small or we had vblank interrupts off for
 291	 * a long time.
 292	 *
 293	 * We repeat the hardware vblank counter & timestamp query until
 294	 * we get consistent results. This to prevent races between gpu
 295	 * updating its hardware counter while we are retrieving the
 296	 * corresponding vblank timestamp.
 297	 */
 298	do {
 299		cur_vblank = __get_vblank_counter(dev, pipe);
 300		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
 301	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
 302
 303	if (max_vblank_count) {
 304		/* trust the hw counter when it's around */
 305		diff = (cur_vblank - vblank->last) & max_vblank_count;
 306	} else if (rc && framedur_ns) {
 307		u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
 308
 309		/*
 310		 * Figure out how many vblanks we've missed based
 311		 * on the difference in the timestamps and the
 312		 * frame/field duration.
 313		 */
 314
 315		drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks."
 316			    " diff_ns = %lld, framedur_ns = %d)\n",
 317			    pipe, (long long)diff_ns, framedur_ns);
 318
 319		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
 320
 321		if (diff == 0 && in_vblank_irq)
 322			drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n",
 323				    pipe);
 324	} else {
 325		/* some kind of default for drivers w/o accurate vbl timestamping */
 326		diff = in_vblank_irq ? 1 : 0;
 327	}
 328
 329	/*
 330	 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
 331	 * interval? If so then vblank irqs keep running and it will likely
 332	 * happen that the hardware vblank counter is not trustworthy as it
 333	 * might reset at some point in that interval and vblank timestamps
 334	 * are not trustworthy either in that interval. Iow. this can result
 335	 * in a bogus diff >> 1 which must be avoided as it would cause
 336	 * random large forward jumps of the software vblank counter.
 337	 */
 338	if (diff > 1 && (vblank->inmodeset & 0x2)) {
 339		drm_dbg_vbl(dev,
 340			    "clamping vblank bump to 1 on crtc %u: diffr=%u"
 341			    " due to pre-modeset.\n", pipe, diff);
 342		diff = 1;
 343	}
 344
 345	drm_dbg_vbl(dev, "updating vblank count on crtc %u:"
 346		    " current=%llu, diff=%u, hw=%u hw_last=%u\n",
 347		    pipe, (unsigned long long)atomic64_read(&vblank->count),
 348		    diff, cur_vblank, vblank->last);
 349
 350	if (diff == 0) {
 351		drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last);
 352		return;
 353	}
 354
 355	/*
 356	 * Only reinitialize corresponding vblank timestamp if high-precision query
 357	 * available and didn't fail, or we were called from the vblank interrupt.
 358	 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
 359	 * for now, to mark the vblanktimestamp as invalid.
 360	 */
 361	if (!rc && !in_vblank_irq)
 362		t_vblank = 0;
 363
 364	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
 365}
 366
 367u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
 368{
 369	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 370	u64 count;
 371
 372	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
 373		return 0;
 374
 375	count = atomic64_read(&vblank->count);
 376
 377	/*
 378	 * This read barrier corresponds to the implicit write barrier of the
 379	 * write seqlock in store_vblank(). Note that this is the only place
 380	 * where we need an explicit barrier, since all other access goes
 381	 * through drm_vblank_count_and_time(), which already has the required
 382	 * read barrier curtesy of the read seqlock.
 383	 */
 384	smp_rmb();
 385
 386	return count;
 387}
 388
 389/**
 390 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
 391 * @crtc: which counter to retrieve
 392 *
 393 * This function is similar to drm_crtc_vblank_count() but this function
 394 * interpolates to handle a race with vblank interrupts using the high precision
 395 * timestamping support.
 396 *
 397 * This is mostly useful for hardware that can obtain the scanout position, but
 398 * doesn't have a hardware frame counter.
 399 */
 400u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
 401{
 402	struct drm_device *dev = crtc->dev;
 403	unsigned int pipe = drm_crtc_index(crtc);
 404	u64 vblank;
 405	unsigned long flags;
 406
 407	drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) &&
 408		      !crtc->funcs->get_vblank_timestamp,
 409		      "This function requires support for accurate vblank timestamps.");
 410
 411	spin_lock_irqsave(&dev->vblank_time_lock, flags);
 412
 413	drm_update_vblank_count(dev, pipe, false);
 414	vblank = drm_vblank_count(dev, pipe);
 415
 416	spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
 417
 418	return vblank;
 419}
 420EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
 421
 422static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
 423{
 424	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
 425		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
 426
 427		if (drm_WARN_ON(dev, !crtc))
 428			return;
 429
 430		if (crtc->funcs->disable_vblank)
 431			crtc->funcs->disable_vblank(crtc);
 432	} else {
 
 
 433		dev->driver->disable_vblank(dev, pipe);
 434	}
 
 435}
 436
 437/*
 438 * Disable vblank irq's on crtc, make sure that last vblank count
 439 * of hardware and corresponding consistent software vblank counter
 440 * are preserved, even if there are any spurious vblank irq's after
 441 * disable.
 442 */
 443void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
 444{
 445	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 446	unsigned long irqflags;
 447
 448	assert_spin_locked(&dev->vbl_lock);
 449
 450	/* Prevent vblank irq processing while disabling vblank irqs,
 451	 * so no updates of timestamps or count can happen after we've
 452	 * disabled. Needed to prevent races in case of delayed irq's.
 453	 */
 454	spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
 455
 456	/*
 457	 * Update vblank count and disable vblank interrupts only if the
 458	 * interrupts were enabled. This avoids calling the ->disable_vblank()
 459	 * operation in atomic context with the hardware potentially runtime
 460	 * suspended.
 461	 */
 462	if (!vblank->enabled)
 463		goto out;
 464
 465	/*
 466	 * Update the count and timestamp to maintain the
 467	 * appearance that the counter has been ticking all along until
 468	 * this time. This makes the count account for the entire time
 469	 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
 470	 */
 471	drm_update_vblank_count(dev, pipe, false);
 472	__disable_vblank(dev, pipe);
 473	vblank->enabled = false;
 474
 475out:
 476	spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
 477}
 478
 479static void vblank_disable_fn(struct timer_list *t)
 480{
 481	struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
 482	struct drm_device *dev = vblank->dev;
 483	unsigned int pipe = vblank->pipe;
 484	unsigned long irqflags;
 485
 486	spin_lock_irqsave(&dev->vbl_lock, irqflags);
 487	if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
 488		drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe);
 489		drm_vblank_disable_and_save(dev, pipe);
 490	}
 491	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
 492}
 493
 494static void drm_vblank_init_release(struct drm_device *dev, void *ptr)
 495{
 496	struct drm_vblank_crtc *vblank = ptr;
 497
 498	drm_WARN_ON(dev, READ_ONCE(vblank->enabled) &&
 499		    drm_core_check_feature(dev, DRIVER_MODESET));
 500
 501	drm_vblank_destroy_worker(vblank);
 502	del_timer_sync(&vblank->disable_timer);
 503}
 504
 505/**
 506 * drm_vblank_init - initialize vblank support
 507 * @dev: DRM device
 508 * @num_crtcs: number of CRTCs supported by @dev
 509 *
 510 * This function initializes vblank support for @num_crtcs display pipelines.
 511 * Cleanup is handled automatically through a cleanup function added with
 512 * drmm_add_action_or_reset().
 513 *
 514 * Returns:
 515 * Zero on success or a negative error code on failure.
 516 */
 517int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
 518{
 519	int ret;
 520	unsigned int i;
 521
 522	spin_lock_init(&dev->vbl_lock);
 523	spin_lock_init(&dev->vblank_time_lock);
 524
 525	dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
 526	if (!dev->vblank)
 527		return -ENOMEM;
 528
 529	dev->num_crtcs = num_crtcs;
 530
 531	for (i = 0; i < num_crtcs; i++) {
 532		struct drm_vblank_crtc *vblank = &dev->vblank[i];
 533
 534		vblank->dev = dev;
 535		vblank->pipe = i;
 536		init_waitqueue_head(&vblank->queue);
 537		timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
 538		seqlock_init(&vblank->seqlock);
 539
 540		ret = drmm_add_action_or_reset(dev, drm_vblank_init_release,
 541					       vblank);
 542		if (ret)
 543			return ret;
 544
 545		ret = drm_vblank_worker_init(vblank);
 546		if (ret)
 547			return ret;
 548	}
 549
 550	return 0;
 551}
 552EXPORT_SYMBOL(drm_vblank_init);
 553
 554/**
 555 * drm_dev_has_vblank - test if vblanking has been initialized for
 556 *                      a device
 557 * @dev: the device
 558 *
 559 * Drivers may call this function to test if vblank support is
 560 * initialized for a device. For most hardware this means that vblanking
 561 * can also be enabled.
 562 *
 563 * Atomic helpers use this function to initialize
 564 * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset().
 565 *
 566 * Returns:
 567 * True if vblanking has been initialized for the given device, false
 568 * otherwise.
 569 */
 570bool drm_dev_has_vblank(const struct drm_device *dev)
 571{
 572	return dev->num_crtcs != 0;
 573}
 574EXPORT_SYMBOL(drm_dev_has_vblank);
 575
 576/**
 577 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
 578 * @crtc: which CRTC's vblank waitqueue to retrieve
 579 *
 580 * This function returns a pointer to the vblank waitqueue for the CRTC.
 581 * Drivers can use this to implement vblank waits using wait_event() and related
 582 * functions.
 583 */
 584wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
 585{
 586	return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
 587}
 588EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
 589
 590
 591/**
 592 * drm_calc_timestamping_constants - calculate vblank timestamp constants
 593 * @crtc: drm_crtc whose timestamp constants should be updated.
 594 * @mode: display mode containing the scanout timings
 595 *
 596 * Calculate and store various constants which are later needed by vblank and
 597 * swap-completion timestamping, e.g, by
 598 * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from
 599 * CRTC's true scanout timing, so they take things like panel scaling or
 600 * other adjustments into account.
 601 */
 602void drm_calc_timestamping_constants(struct drm_crtc *crtc,
 603				     const struct drm_display_mode *mode)
 604{
 605	struct drm_device *dev = crtc->dev;
 606	unsigned int pipe = drm_crtc_index(crtc);
 607	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 608	int linedur_ns = 0, framedur_ns = 0;
 609	int dotclock = mode->crtc_clock;
 610
 611	if (!drm_dev_has_vblank(dev))
 612		return;
 613
 614	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
 615		return;
 616
 617	/* Valid dotclock? */
 618	if (dotclock > 0) {
 619		int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
 620
 621		/*
 622		 * Convert scanline length in pixels and video
 623		 * dot clock to line duration and frame duration
 624		 * in nanoseconds:
 625		 */
 626		linedur_ns  = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
 627		framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
 628
 629		/*
 630		 * Fields of interlaced scanout modes are only half a frame duration.
 631		 */
 632		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 633			framedur_ns /= 2;
 634	} else {
 635		drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n",
 636			crtc->base.id);
 637	}
 638
 639	vblank->linedur_ns  = linedur_ns;
 640	vblank->framedur_ns = framedur_ns;
 641	vblank->hwmode = *mode;
 642
 643	drm_dbg_core(dev,
 644		     "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
 645		     crtc->base.id, mode->crtc_htotal,
 646		     mode->crtc_vtotal, mode->crtc_vdisplay);
 647	drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n",
 648		     crtc->base.id, dotclock, framedur_ns, linedur_ns);
 649}
 650EXPORT_SYMBOL(drm_calc_timestamping_constants);
 651
 652/**
 653 * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank
 654 *                                                        timestamp helper
 655 * @crtc: CRTC whose vblank timestamp to retrieve
 656 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
 657 *             On return contains true maximum error of timestamp
 658 * @vblank_time: Pointer to time which should receive the timestamp
 659 * @in_vblank_irq:
 660 *     True when called from drm_crtc_handle_vblank().  Some drivers
 661 *     need to apply some workarounds for gpu-specific vblank irq quirks
 662 *     if flag is set.
 663 * @get_scanout_position:
 664 *     Callback function to retrieve the scanout position. See
 665 *     @struct drm_crtc_helper_funcs.get_scanout_position.
 666 *
 667 * Implements calculation of exact vblank timestamps from given drm_display_mode
 668 * timings and current video scanout position of a CRTC.
 669 *
 670 * The current implementation only handles standard video modes. For double scan
 671 * and interlaced modes the driver is supposed to adjust the hardware mode
 672 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
 673 * match the scanout position reported.
 674 *
 675 * Note that atomic drivers must call drm_calc_timestamping_constants() before
 676 * enabling a CRTC. The atomic helpers already take care of that in
 677 * drm_atomic_helper_update_legacy_modeset_state().
 678 *
 679 * Returns:
 680 *
 681 * Returns true on success, and false on failure, i.e. when no accurate
 682 * timestamp could be acquired.
 683 */
 684bool
 685drm_crtc_vblank_helper_get_vblank_timestamp_internal(
 686	struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time,
 687	bool in_vblank_irq,
 688	drm_vblank_get_scanout_position_func get_scanout_position)
 689{
 690	struct drm_device *dev = crtc->dev;
 691	unsigned int pipe = crtc->index;
 692	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 693	struct timespec64 ts_etime, ts_vblank_time;
 694	ktime_t stime, etime;
 695	bool vbl_status;
 696	const struct drm_display_mode *mode;
 697	int vpos, hpos, i;
 698	int delta_ns, duration_ns;
 699
 700	if (pipe >= dev->num_crtcs) {
 701		drm_err(dev, "Invalid crtc %u\n", pipe);
 702		return false;
 703	}
 704
 705	/* Scanout position query not supported? Should not happen. */
 706	if (!get_scanout_position) {
 707		drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n");
 708		return false;
 709	}
 710
 711	if (drm_drv_uses_atomic_modeset(dev))
 712		mode = &vblank->hwmode;
 713	else
 714		mode = &crtc->hwmode;
 715
 716	/* If mode timing undefined, just return as no-op:
 717	 * Happens during initial modesetting of a crtc.
 718	 */
 719	if (mode->crtc_clock == 0) {
 720		drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n",
 721			     pipe);
 722		drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev));
 723		return false;
 724	}
 725
 726	/* Get current scanout position with system timestamp.
 727	 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
 728	 * if single query takes longer than max_error nanoseconds.
 729	 *
 730	 * This guarantees a tight bound on maximum error if
 731	 * code gets preempted or delayed for some reason.
 732	 */
 733	for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
 734		/*
 735		 * Get vertical and horizontal scanout position vpos, hpos,
 736		 * and bounding timestamps stime, etime, pre/post query.
 737		 */
 738		vbl_status = get_scanout_position(crtc, in_vblank_irq,
 739						  &vpos, &hpos,
 740						  &stime, &etime,
 741						  mode);
 742
 743		/* Return as no-op if scanout query unsupported or failed. */
 744		if (!vbl_status) {
 745			drm_dbg_core(dev,
 746				     "crtc %u : scanoutpos query failed.\n",
 747				     pipe);
 748			return false;
 749		}
 750
 751		/* Compute uncertainty in timestamp of scanout position query. */
 752		duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
 753
 754		/* Accept result with <  max_error nsecs timing uncertainty. */
 755		if (duration_ns <= *max_error)
 756			break;
 757	}
 758
 759	/* Noisy system timing? */
 760	if (i == DRM_TIMESTAMP_MAXRETRIES) {
 761		drm_dbg_core(dev,
 762			     "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
 763			     pipe, duration_ns / 1000, *max_error / 1000, i);
 764	}
 765
 766	/* Return upper bound of timestamp precision error. */
 767	*max_error = duration_ns;
 768
 769	/* Convert scanout position into elapsed time at raw_time query
 770	 * since start of scanout at first display scanline. delta_ns
 771	 * can be negative if start of scanout hasn't happened yet.
 772	 */
 773	delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
 774			   mode->crtc_clock);
 775
 776	/* Subtract time delta from raw timestamp to get final
 777	 * vblank_time timestamp for end of vblank.
 778	 */
 779	*vblank_time = ktime_sub_ns(etime, delta_ns);
 780
 781	if (!drm_debug_enabled(DRM_UT_VBL))
 782		return true;
 783
 784	ts_etime = ktime_to_timespec64(etime);
 785	ts_vblank_time = ktime_to_timespec64(*vblank_time);
 786
 787	drm_dbg_vbl(dev,
 788		    "crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n",
 789		    pipe, hpos, vpos,
 790		    (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
 791		    (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
 792		    duration_ns / 1000, i);
 793
 794	return true;
 795}
 796EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal);
 797
 798/**
 799 * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp
 800 *                                               helper
 801 * @crtc: CRTC whose vblank timestamp to retrieve
 802 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
 803 *             On return contains true maximum error of timestamp
 804 * @vblank_time: Pointer to time which should receive the timestamp
 805 * @in_vblank_irq:
 806 *     True when called from drm_crtc_handle_vblank().  Some drivers
 807 *     need to apply some workarounds for gpu-specific vblank irq quirks
 808 *     if flag is set.
 809 *
 810 * Implements calculation of exact vblank timestamps from given drm_display_mode
 811 * timings and current video scanout position of a CRTC. This can be directly
 812 * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms
 813 * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented.
 814 *
 815 * The current implementation only handles standard video modes. For double scan
 816 * and interlaced modes the driver is supposed to adjust the hardware mode
 817 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
 818 * match the scanout position reported.
 819 *
 820 * Note that atomic drivers must call drm_calc_timestamping_constants() before
 821 * enabling a CRTC. The atomic helpers already take care of that in
 822 * drm_atomic_helper_update_legacy_modeset_state().
 823 *
 824 * Returns:
 825 *
 826 * Returns true on success, and false on failure, i.e. when no accurate
 827 * timestamp could be acquired.
 828 */
 829bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc,
 830						 int *max_error,
 831						 ktime_t *vblank_time,
 832						 bool in_vblank_irq)
 833{
 834	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
 835		crtc, max_error, vblank_time, in_vblank_irq,
 836		crtc->helper_private->get_scanout_position);
 837}
 838EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp);
 839
 840/**
 841 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
 842 *                             vblank interval
 843 * @dev: DRM device
 844 * @pipe: index of CRTC whose vblank timestamp to retrieve
 845 * @tvblank: Pointer to target time which should receive the timestamp
 846 * @in_vblank_irq:
 847 *     True when called from drm_crtc_handle_vblank().  Some drivers
 848 *     need to apply some workarounds for gpu-specific vblank irq quirks
 849 *     if flag is set.
 850 *
 851 * Fetches the system timestamp corresponding to the time of the most recent
 852 * vblank interval on specified CRTC. May call into kms-driver to
 853 * compute the timestamp with a high-precision GPU specific method.
 854 *
 855 * Returns zero if timestamp originates from uncorrected do_gettimeofday()
 856 * call, i.e., it isn't very precisely locked to the true vblank.
 857 *
 858 * Returns:
 859 * True if timestamp is considered to be very precise, false otherwise.
 860 */
 861static bool
 862drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
 863			  ktime_t *tvblank, bool in_vblank_irq)
 864{
 865	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
 866	bool ret = false;
 867
 868	/* Define requested maximum error on timestamps (nanoseconds). */
 869	int max_error = (int) drm_timestamp_precision * 1000;
 870
 871	/* Query driver if possible and precision timestamping enabled. */
 872	if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) {
 873		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
 874
 875		ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error,
 876							tvblank, in_vblank_irq);
 877	}
 878
 879	/* GPU high precision timestamp query unsupported or failed.
 880	 * Return current monotonic/gettimeofday timestamp as best estimate.
 881	 */
 882	if (!ret)
 883		*tvblank = ktime_get();
 884
 885	return ret;
 886}
 887
 888/**
 889 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
 890 * @crtc: which counter to retrieve
 891 *
 892 * Fetches the "cooked" vblank count value that represents the number of
 893 * vblank events since the system was booted, including lost events due to
 894 * modesetting activity. Note that this timer isn't correct against a racing
 895 * vblank interrupt (since it only reports the software vblank counter), see
 896 * drm_crtc_accurate_vblank_count() for such use-cases.
 897 *
 898 * Note that for a given vblank counter value drm_crtc_handle_vblank()
 899 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
 900 * provide a barrier: Any writes done before calling
 901 * drm_crtc_handle_vblank() will be visible to callers of the later
 902 * functions, iff the vblank count is the same or a later one.
 903 *
 904 * See also &drm_vblank_crtc.count.
 905 *
 906 * Returns:
 907 * The software vblank counter.
 908 */
 909u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
 910{
 911	return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
 912}
 913EXPORT_SYMBOL(drm_crtc_vblank_count);
 914
 915/**
 916 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
 917 *     system timestamp corresponding to that vblank counter value.
 918 * @dev: DRM device
 919 * @pipe: index of CRTC whose counter to retrieve
 920 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
 921 *
 922 * Fetches the "cooked" vblank count value that represents the number of
 923 * vblank events since the system was booted, including lost events due to
 924 * modesetting activity. Returns corresponding system timestamp of the time
 925 * of the vblank interval that corresponds to the current vblank counter value.
 926 *
 927 * This is the legacy version of drm_crtc_vblank_count_and_time().
 928 */
 929static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
 930				     ktime_t *vblanktime)
 931{
 932	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 933	u64 vblank_count;
 934	unsigned int seq;
 935
 936	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) {
 937		*vblanktime = 0;
 938		return 0;
 939	}
 940
 941	do {
 942		seq = read_seqbegin(&vblank->seqlock);
 943		vblank_count = atomic64_read(&vblank->count);
 944		*vblanktime = vblank->time;
 945	} while (read_seqretry(&vblank->seqlock, seq));
 946
 947	return vblank_count;
 948}
 949
 950/**
 951 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
 952 *     and the system timestamp corresponding to that vblank counter value
 953 * @crtc: which counter to retrieve
 954 * @vblanktime: Pointer to time to receive the vblank timestamp.
 955 *
 956 * Fetches the "cooked" vblank count value that represents the number of
 957 * vblank events since the system was booted, including lost events due to
 958 * modesetting activity. Returns corresponding system timestamp of the time
 959 * of the vblank interval that corresponds to the current vblank counter value.
 960 *
 961 * Note that for a given vblank counter value drm_crtc_handle_vblank()
 962 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
 963 * provide a barrier: Any writes done before calling
 964 * drm_crtc_handle_vblank() will be visible to callers of the later
 965 * functions, iff the vblank count is the same or a later one.
 966 *
 967 * See also &drm_vblank_crtc.count.
 968 */
 969u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
 970				   ktime_t *vblanktime)
 971{
 972	return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
 973					 vblanktime);
 974}
 975EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
 976
 977static void send_vblank_event(struct drm_device *dev,
 978		struct drm_pending_vblank_event *e,
 979		u64 seq, ktime_t now)
 980{
 981	struct timespec64 tv;
 982
 983	switch (e->event.base.type) {
 984	case DRM_EVENT_VBLANK:
 985	case DRM_EVENT_FLIP_COMPLETE:
 986		tv = ktime_to_timespec64(now);
 987		e->event.vbl.sequence = seq;
 988		/*
 989		 * e->event is a user space structure, with hardcoded unsigned
 990		 * 32-bit seconds/microseconds. This is safe as we always use
 991		 * monotonic timestamps since linux-4.15
 992		 */
 993		e->event.vbl.tv_sec = tv.tv_sec;
 994		e->event.vbl.tv_usec = tv.tv_nsec / 1000;
 995		break;
 996	case DRM_EVENT_CRTC_SEQUENCE:
 997		if (seq)
 998			e->event.seq.sequence = seq;
 999		e->event.seq.time_ns = ktime_to_ns(now);
1000		break;
1001	}
1002	trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
1003	drm_send_event_locked(dev, &e->base);
 
 
 
 
 
 
 
1004}
1005
1006/**
1007 * drm_crtc_arm_vblank_event - arm vblank event after pageflip
1008 * @crtc: the source CRTC of the vblank event
1009 * @e: the event to send
1010 *
1011 * A lot of drivers need to generate vblank events for the very next vblank
1012 * interrupt. For example when the page flip interrupt happens when the page
1013 * flip gets armed, but not when it actually executes within the next vblank
1014 * period. This helper function implements exactly the required vblank arming
1015 * behaviour.
1016 *
1017 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
1018 * atomic commit must ensure that the next vblank happens at exactly the same
1019 * time as the atomic commit is committed to the hardware. This function itself
1020 * does **not** protect against the next vblank interrupt racing with either this
1021 * function call or the atomic commit operation. A possible sequence could be:
1022 *
1023 * 1. Driver commits new hardware state into vblank-synchronized registers.
1024 * 2. A vblank happens, committing the hardware state. Also the corresponding
1025 *    vblank interrupt is fired off and fully processed by the interrupt
1026 *    handler.
1027 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
1028 * 4. The event is only send out for the next vblank, which is wrong.
1029 *
1030 * An equivalent race can happen when the driver calls
1031 * drm_crtc_arm_vblank_event() before writing out the new hardware state.
1032 *
1033 * The only way to make this work safely is to prevent the vblank from firing
1034 * (and the hardware from committing anything else) until the entire atomic
1035 * commit sequence has run to completion. If the hardware does not have such a
1036 * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
1037 * Instead drivers need to manually send out the event from their interrupt
1038 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
1039 * possible race with the hardware committing the atomic update.
1040 *
1041 * Caller must hold a vblank reference for the event @e acquired by a
1042 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
1043 */
1044void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
1045			       struct drm_pending_vblank_event *e)
1046{
1047	struct drm_device *dev = crtc->dev;
1048	unsigned int pipe = drm_crtc_index(crtc);
1049
1050	assert_spin_locked(&dev->event_lock);
1051
1052	e->pipe = pipe;
1053	e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
1054	list_add_tail(&e->base.link, &dev->vblank_event_list);
1055}
1056EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
1057
1058/**
1059 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
1060 * @crtc: the source CRTC of the vblank event
1061 * @e: the event to send
1062 *
1063 * Updates sequence # and timestamp on event for the most recently processed
1064 * vblank, and sends it to userspace.  Caller must hold event lock.
1065 *
1066 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
1067 * situation, especially to send out events for atomic commit operations.
1068 */
1069void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
1070				struct drm_pending_vblank_event *e)
1071{
1072	struct drm_device *dev = crtc->dev;
1073	u64 seq;
1074	unsigned int pipe = drm_crtc_index(crtc);
1075	ktime_t now;
1076
1077	if (drm_dev_has_vblank(dev)) {
1078		seq = drm_vblank_count_and_time(dev, pipe, &now);
1079	} else {
1080		seq = 0;
1081
1082		now = ktime_get();
1083	}
1084	e->pipe = pipe;
1085	send_vblank_event(dev, e, seq, now);
1086}
1087EXPORT_SYMBOL(drm_crtc_send_vblank_event);
1088
1089static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
1090{
1091	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1092		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1093
1094		if (drm_WARN_ON(dev, !crtc))
1095			return 0;
1096
1097		if (crtc->funcs->enable_vblank)
1098			return crtc->funcs->enable_vblank(crtc);
1099	} else if (dev->driver->enable_vblank) {
 
 
1100		return dev->driver->enable_vblank(dev, pipe);
1101	}
 
1102
1103	return -EINVAL;
1104}
1105
1106static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
1107{
1108	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1109	int ret = 0;
1110
1111	assert_spin_locked(&dev->vbl_lock);
1112
1113	spin_lock(&dev->vblank_time_lock);
1114
1115	if (!vblank->enabled) {
1116		/*
1117		 * Enable vblank irqs under vblank_time_lock protection.
1118		 * All vblank count & timestamp updates are held off
1119		 * until we are done reinitializing master counter and
1120		 * timestamps. Filtercode in drm_handle_vblank() will
1121		 * prevent double-accounting of same vblank interval.
1122		 */
1123		ret = __enable_vblank(dev, pipe);
1124		drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n",
1125			     pipe, ret);
1126		if (ret) {
1127			atomic_dec(&vblank->refcount);
1128		} else {
1129			drm_update_vblank_count(dev, pipe, 0);
1130			/* drm_update_vblank_count() includes a wmb so we just
1131			 * need to ensure that the compiler emits the write
1132			 * to mark the vblank as enabled after the call
1133			 * to drm_update_vblank_count().
1134			 */
1135			WRITE_ONCE(vblank->enabled, true);
1136		}
1137	}
1138
1139	spin_unlock(&dev->vblank_time_lock);
1140
1141	return ret;
1142}
1143
1144int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
1145{
1146	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1147	unsigned long irqflags;
1148	int ret = 0;
1149
1150	if (!drm_dev_has_vblank(dev))
1151		return -EINVAL;
1152
1153	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1154		return -EINVAL;
1155
1156	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1157	/* Going from 0->1 means we have to enable interrupts again */
1158	if (atomic_add_return(1, &vblank->refcount) == 1) {
1159		ret = drm_vblank_enable(dev, pipe);
1160	} else {
1161		if (!vblank->enabled) {
1162			atomic_dec(&vblank->refcount);
1163			ret = -EINVAL;
1164		}
1165	}
1166	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1167
1168	return ret;
1169}
1170
1171/**
1172 * drm_crtc_vblank_get - get a reference count on vblank events
1173 * @crtc: which CRTC to own
1174 *
1175 * Acquire a reference count on vblank events to avoid having them disabled
1176 * while in use.
1177 *
1178 * Returns:
1179 * Zero on success or a negative error code on failure.
1180 */
1181int drm_crtc_vblank_get(struct drm_crtc *crtc)
1182{
1183	return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1184}
1185EXPORT_SYMBOL(drm_crtc_vblank_get);
1186
1187void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1188{
1189	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1190
1191	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1192		return;
1193
1194	if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0))
1195		return;
1196
1197	/* Last user schedules interrupt disable */
1198	if (atomic_dec_and_test(&vblank->refcount)) {
1199		if (drm_vblank_offdelay == 0)
1200			return;
1201		else if (drm_vblank_offdelay < 0)
1202			vblank_disable_fn(&vblank->disable_timer);
1203		else if (!dev->vblank_disable_immediate)
1204			mod_timer(&vblank->disable_timer,
1205				  jiffies + ((drm_vblank_offdelay * HZ)/1000));
1206	}
1207}
1208
1209/**
1210 * drm_crtc_vblank_put - give up ownership of vblank events
1211 * @crtc: which counter to give up
1212 *
1213 * Release ownership of a given vblank counter, turning off interrupts
1214 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1215 */
1216void drm_crtc_vblank_put(struct drm_crtc *crtc)
1217{
1218	drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1219}
1220EXPORT_SYMBOL(drm_crtc_vblank_put);
1221
1222/**
1223 * drm_wait_one_vblank - wait for one vblank
1224 * @dev: DRM device
1225 * @pipe: CRTC index
1226 *
1227 * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1228 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1229 * due to lack of driver support or because the crtc is off.
1230 *
1231 * This is the legacy version of drm_crtc_wait_one_vblank().
1232 */
1233void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1234{
1235	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1236	int ret;
1237	u64 last;
1238
1239	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1240		return;
1241
1242	ret = drm_vblank_get(dev, pipe);
1243	if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n",
1244		     pipe, ret))
1245		return;
1246
1247	last = drm_vblank_count(dev, pipe);
1248
1249	ret = wait_event_timeout(vblank->queue,
1250				 last != drm_vblank_count(dev, pipe),
1251				 msecs_to_jiffies(100));
1252
1253	drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1254
1255	drm_vblank_put(dev, pipe);
1256}
1257EXPORT_SYMBOL(drm_wait_one_vblank);
1258
1259/**
1260 * drm_crtc_wait_one_vblank - wait for one vblank
1261 * @crtc: DRM crtc
1262 *
1263 * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1264 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1265 * due to lack of driver support or because the crtc is off.
1266 */
1267void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1268{
1269	drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1270}
1271EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1272
1273/**
1274 * drm_crtc_vblank_off - disable vblank events on a CRTC
1275 * @crtc: CRTC in question
1276 *
1277 * Drivers can use this function to shut down the vblank interrupt handling when
1278 * disabling a crtc. This function ensures that the latest vblank frame count is
1279 * stored so that drm_vblank_on can restore it again.
1280 *
1281 * Drivers must use this function when the hardware vblank counter can get
1282 * reset, e.g. when suspending or disabling the @crtc in general.
1283 */
1284void drm_crtc_vblank_off(struct drm_crtc *crtc)
1285{
1286	struct drm_device *dev = crtc->dev;
1287	unsigned int pipe = drm_crtc_index(crtc);
1288	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1289	struct drm_pending_vblank_event *e, *t;
1290	ktime_t now;
1291	u64 seq;
1292
1293	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1294		return;
1295
1296	/*
1297	 * Grab event_lock early to prevent vblank work from being scheduled
1298	 * while we're in the middle of shutting down vblank interrupts
1299	 */
1300	spin_lock_irq(&dev->event_lock);
1301
1302	spin_lock(&dev->vbl_lock);
1303	drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1304		    pipe, vblank->enabled, vblank->inmodeset);
1305
1306	/* Avoid redundant vblank disables without previous
1307	 * drm_crtc_vblank_on(). */
1308	if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1309		drm_vblank_disable_and_save(dev, pipe);
1310
1311	wake_up(&vblank->queue);
1312
1313	/*
1314	 * Prevent subsequent drm_vblank_get() from re-enabling
1315	 * the vblank interrupt by bumping the refcount.
1316	 */
1317	if (!vblank->inmodeset) {
1318		atomic_inc(&vblank->refcount);
1319		vblank->inmodeset = 1;
1320	}
1321	spin_unlock(&dev->vbl_lock);
1322
1323	/* Send any queued vblank events, lest the natives grow disquiet */
1324	seq = drm_vblank_count_and_time(dev, pipe, &now);
1325
1326	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1327		if (e->pipe != pipe)
1328			continue;
1329		drm_dbg_core(dev, "Sending premature vblank event on disable: "
1330			     "wanted %llu, current %llu\n",
1331			     e->sequence, seq);
1332		list_del(&e->base.link);
1333		drm_vblank_put(dev, pipe);
1334		send_vblank_event(dev, e, seq, now);
1335	}
1336
1337	/* Cancel any leftover pending vblank work */
1338	drm_vblank_cancel_pending_works(vblank);
1339
1340	spin_unlock_irq(&dev->event_lock);
1341
1342	/* Will be reset by the modeset helpers when re-enabling the crtc by
1343	 * calling drm_calc_timestamping_constants(). */
1344	vblank->hwmode.crtc_clock = 0;
1345
1346	/* Wait for any vblank work that's still executing to finish */
1347	drm_vblank_flush_worker(vblank);
1348}
1349EXPORT_SYMBOL(drm_crtc_vblank_off);
1350
1351/**
1352 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1353 * @crtc: CRTC in question
1354 *
1355 * Drivers can use this function to reset the vblank state to off at load time.
1356 * Drivers should use this together with the drm_crtc_vblank_off() and
1357 * drm_crtc_vblank_on() functions. The difference compared to
1358 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1359 * and hence doesn't need to call any driver hooks.
1360 *
1361 * This is useful for recovering driver state e.g. on driver load, or on resume.
1362 */
1363void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1364{
1365	struct drm_device *dev = crtc->dev;
1366	unsigned int pipe = drm_crtc_index(crtc);
1367	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1368
1369	spin_lock_irq(&dev->vbl_lock);
1370	/*
1371	 * Prevent subsequent drm_vblank_get() from enabling the vblank
1372	 * interrupt by bumping the refcount.
1373	 */
1374	if (!vblank->inmodeset) {
1375		atomic_inc(&vblank->refcount);
1376		vblank->inmodeset = 1;
1377	}
1378	spin_unlock_irq(&dev->vbl_lock);
1379
1380	drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list));
1381	drm_WARN_ON(dev, !list_empty(&vblank->pending_work));
1382}
1383EXPORT_SYMBOL(drm_crtc_vblank_reset);
1384
1385/**
1386 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
1387 * @crtc: CRTC in question
1388 * @max_vblank_count: max hardware vblank counter value
1389 *
1390 * Update the maximum hardware vblank counter value for @crtc
1391 * at runtime. Useful for hardware where the operation of the
1392 * hardware vblank counter depends on the currently active
1393 * display configuration.
1394 *
1395 * For example, if the hardware vblank counter does not work
1396 * when a specific connector is active the maximum can be set
1397 * to zero. And when that specific connector isn't active the
1398 * maximum can again be set to the appropriate non-zero value.
1399 *
1400 * If used, must be called before drm_vblank_on().
1401 */
1402void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
1403				   u32 max_vblank_count)
1404{
1405	struct drm_device *dev = crtc->dev;
1406	unsigned int pipe = drm_crtc_index(crtc);
1407	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1408
1409	drm_WARN_ON(dev, dev->max_vblank_count);
1410	drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset));
1411
1412	vblank->max_vblank_count = max_vblank_count;
1413}
1414EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
1415
1416/**
1417 * drm_crtc_vblank_on - enable vblank events on a CRTC
1418 * @crtc: CRTC in question
1419 *
1420 * This functions restores the vblank interrupt state captured with
1421 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1422 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1423 * unbalanced and so can also be unconditionally called in driver load code to
1424 * reflect the current hardware state of the crtc.
1425 */
1426void drm_crtc_vblank_on(struct drm_crtc *crtc)
1427{
1428	struct drm_device *dev = crtc->dev;
1429	unsigned int pipe = drm_crtc_index(crtc);
1430	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1431
1432	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1433		return;
1434
1435	spin_lock_irq(&dev->vbl_lock);
1436	drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1437		    pipe, vblank->enabled, vblank->inmodeset);
1438
1439	/* Drop our private "prevent drm_vblank_get" refcount */
1440	if (vblank->inmodeset) {
1441		atomic_dec(&vblank->refcount);
1442		vblank->inmodeset = 0;
1443	}
1444
1445	drm_reset_vblank_timestamp(dev, pipe);
1446
1447	/*
1448	 * re-enable interrupts if there are users left, or the
1449	 * user wishes vblank interrupts to be enabled all the time.
1450	 */
1451	if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1452		drm_WARN_ON(dev, drm_vblank_enable(dev, pipe));
1453	spin_unlock_irq(&dev->vbl_lock);
1454}
1455EXPORT_SYMBOL(drm_crtc_vblank_on);
1456
1457/**
1458 * drm_vblank_restore - estimate missed vblanks and update vblank count.
1459 * @dev: DRM device
1460 * @pipe: CRTC index
1461 *
1462 * Power manamement features can cause frame counter resets between vblank
1463 * disable and enable. Drivers can use this function in their
1464 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1465 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1466 * vblank counter.
1467 *
1468 * This function is the legacy version of drm_crtc_vblank_restore().
1469 */
1470void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
1471{
1472	ktime_t t_vblank;
1473	struct drm_vblank_crtc *vblank;
1474	int framedur_ns;
1475	u64 diff_ns;
1476	u32 cur_vblank, diff = 1;
1477	int count = DRM_TIMESTAMP_MAXRETRIES;
 
1478
1479	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1480		return;
1481
1482	assert_spin_locked(&dev->vbl_lock);
1483	assert_spin_locked(&dev->vblank_time_lock);
1484
1485	vblank = &dev->vblank[pipe];
1486	drm_WARN_ONCE(dev,
1487		      drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
1488		      "Cannot compute missed vblanks without frame duration\n");
1489	framedur_ns = vblank->framedur_ns;
1490
1491	do {
1492		cur_vblank = __get_vblank_counter(dev, pipe);
1493		drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1494	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1495
1496	diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1497	if (framedur_ns)
1498		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1499
1500
1501	drm_dbg_vbl(dev,
1502		    "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n",
1503		    diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1504	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
1505}
1506EXPORT_SYMBOL(drm_vblank_restore);
1507
1508/**
1509 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1510 * @crtc: CRTC in question
1511 *
1512 * Power manamement features can cause frame counter resets between vblank
1513 * disable and enable. Drivers can use this function in their
1514 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1515 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1516 * vblank counter.
 
 
 
 
 
 
1517 */
1518void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1519{
 
 
 
1520	drm_vblank_restore(crtc->dev, drm_crtc_index(crtc));
1521}
1522EXPORT_SYMBOL(drm_crtc_vblank_restore);
1523
1524static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
1525					  unsigned int pipe)
1526{
1527	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1528
1529	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1530	if (!drm_dev_has_vblank(dev))
1531		return;
1532
1533	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1534		return;
1535
1536	/*
1537	 * To avoid all the problems that might happen if interrupts
1538	 * were enabled/disabled around or between these calls, we just
1539	 * have the kernel take a reference on the CRTC (just once though
1540	 * to avoid corrupting the count if multiple, mismatch calls occur),
1541	 * so that interrupts remain enabled in the interim.
1542	 */
1543	if (!vblank->inmodeset) {
1544		vblank->inmodeset = 0x1;
1545		if (drm_vblank_get(dev, pipe) == 0)
1546			vblank->inmodeset |= 0x2;
1547	}
1548}
1549
1550static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
1551					   unsigned int pipe)
1552{
1553	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1554
1555	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1556	if (!drm_dev_has_vblank(dev))
1557		return;
1558
1559	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1560		return;
1561
1562	if (vblank->inmodeset) {
1563		spin_lock_irq(&dev->vbl_lock);
1564		drm_reset_vblank_timestamp(dev, pipe);
1565		spin_unlock_irq(&dev->vbl_lock);
1566
1567		if (vblank->inmodeset & 0x2)
1568			drm_vblank_put(dev, pipe);
1569
1570		vblank->inmodeset = 0;
1571	}
1572}
1573
1574int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
1575				 struct drm_file *file_priv)
1576{
1577	struct drm_modeset_ctl *modeset = data;
1578	unsigned int pipe;
1579
1580	/* If drm_vblank_init() hasn't been called yet, just no-op */
1581	if (!drm_dev_has_vblank(dev))
1582		return 0;
1583
1584	/* KMS drivers handle this internally */
1585	if (!drm_core_check_feature(dev, DRIVER_LEGACY))
1586		return 0;
1587
1588	pipe = modeset->crtc;
1589	if (pipe >= dev->num_crtcs)
1590		return -EINVAL;
1591
1592	switch (modeset->cmd) {
1593	case _DRM_PRE_MODESET:
1594		drm_legacy_vblank_pre_modeset(dev, pipe);
1595		break;
1596	case _DRM_POST_MODESET:
1597		drm_legacy_vblank_post_modeset(dev, pipe);
1598		break;
1599	default:
1600		return -EINVAL;
1601	}
1602
1603	return 0;
1604}
1605
1606static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1607				  u64 req_seq,
1608				  union drm_wait_vblank *vblwait,
1609				  struct drm_file *file_priv)
1610{
1611	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1612	struct drm_pending_vblank_event *e;
1613	ktime_t now;
1614	u64 seq;
1615	int ret;
1616
1617	e = kzalloc(sizeof(*e), GFP_KERNEL);
1618	if (e == NULL) {
1619		ret = -ENOMEM;
1620		goto err_put;
1621	}
1622
1623	e->pipe = pipe;
1624	e->event.base.type = DRM_EVENT_VBLANK;
1625	e->event.base.length = sizeof(e->event.vbl);
1626	e->event.vbl.user_data = vblwait->request.signal;
1627	e->event.vbl.crtc_id = 0;
1628	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1629		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1630
1631		if (crtc)
1632			e->event.vbl.crtc_id = crtc->base.id;
1633	}
1634
1635	spin_lock_irq(&dev->event_lock);
1636
1637	/*
1638	 * drm_crtc_vblank_off() might have been called after we called
1639	 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1640	 * vblank disable, so no need for further locking.  The reference from
1641	 * drm_vblank_get() protects against vblank disable from another source.
1642	 */
1643	if (!READ_ONCE(vblank->enabled)) {
1644		ret = -EINVAL;
1645		goto err_unlock;
1646	}
1647
1648	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1649					    &e->event.base);
1650
1651	if (ret)
1652		goto err_unlock;
1653
1654	seq = drm_vblank_count_and_time(dev, pipe, &now);
1655
1656	drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n",
1657		     req_seq, seq, pipe);
1658
1659	trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1660
1661	e->sequence = req_seq;
1662	if (drm_vblank_passed(seq, req_seq)) {
1663		drm_vblank_put(dev, pipe);
1664		send_vblank_event(dev, e, seq, now);
1665		vblwait->reply.sequence = seq;
1666	} else {
1667		/* drm_handle_vblank_events will call drm_vblank_put */
1668		list_add_tail(&e->base.link, &dev->vblank_event_list);
1669		vblwait->reply.sequence = req_seq;
1670	}
1671
1672	spin_unlock_irq(&dev->event_lock);
1673
1674	return 0;
1675
1676err_unlock:
1677	spin_unlock_irq(&dev->event_lock);
1678	kfree(e);
1679err_put:
1680	drm_vblank_put(dev, pipe);
1681	return ret;
1682}
1683
1684static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1685{
1686	if (vblwait->request.sequence)
1687		return false;
1688
1689	return _DRM_VBLANK_RELATIVE ==
1690		(vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1691					  _DRM_VBLANK_EVENT |
1692					  _DRM_VBLANK_NEXTONMISS));
1693}
1694
1695/*
1696 * Widen a 32-bit param to 64-bits.
1697 *
1698 * \param narrow 32-bit value (missing upper 32 bits)
1699 * \param near 64-bit value that should be 'close' to near
1700 *
1701 * This function returns a 64-bit value using the lower 32-bits from
1702 * 'narrow' and constructing the upper 32-bits so that the result is
1703 * as close as possible to 'near'.
1704 */
1705
1706static u64 widen_32_to_64(u32 narrow, u64 near)
1707{
1708	return near + (s32) (narrow - near);
1709}
1710
1711static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1712				  struct drm_wait_vblank_reply *reply)
1713{
1714	ktime_t now;
1715	struct timespec64 ts;
1716
1717	/*
1718	 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1719	 * to store the seconds. This is safe as we always use monotonic
1720	 * timestamps since linux-4.15.
1721	 */
1722	reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1723	ts = ktime_to_timespec64(now);
1724	reply->tval_sec = (u32)ts.tv_sec;
1725	reply->tval_usec = ts.tv_nsec / 1000;
1726}
1727
1728int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1729			  struct drm_file *file_priv)
1730{
1731	struct drm_crtc *crtc;
1732	struct drm_vblank_crtc *vblank;
1733	union drm_wait_vblank *vblwait = data;
1734	int ret;
1735	u64 req_seq, seq;
1736	unsigned int pipe_index;
1737	unsigned int flags, pipe, high_pipe;
1738
1739	if (!dev->irq_enabled)
1740		return -EOPNOTSUPP;
1741
1742	if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1743		return -EINVAL;
1744
1745	if (vblwait->request.type &
1746	    ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1747	      _DRM_VBLANK_HIGH_CRTC_MASK)) {
1748		drm_dbg_core(dev,
1749			     "Unsupported type value 0x%x, supported mask 0x%x\n",
1750			     vblwait->request.type,
1751			     (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1752			      _DRM_VBLANK_HIGH_CRTC_MASK));
1753		return -EINVAL;
1754	}
1755
1756	flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1757	high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1758	if (high_pipe)
1759		pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1760	else
1761		pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1762
1763	/* Convert lease-relative crtc index into global crtc index */
1764	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1765		pipe = 0;
1766		drm_for_each_crtc(crtc, dev) {
1767			if (drm_lease_held(file_priv, crtc->base.id)) {
1768				if (pipe_index == 0)
1769					break;
1770				pipe_index--;
1771			}
1772			pipe++;
1773		}
1774	} else {
1775		pipe = pipe_index;
1776	}
1777
1778	if (pipe >= dev->num_crtcs)
1779		return -EINVAL;
1780
1781	vblank = &dev->vblank[pipe];
1782
1783	/* If the counter is currently enabled and accurate, short-circuit
1784	 * queries to return the cached timestamp of the last vblank.
1785	 */
1786	if (dev->vblank_disable_immediate &&
1787	    drm_wait_vblank_is_query(vblwait) &&
1788	    READ_ONCE(vblank->enabled)) {
1789		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1790		return 0;
1791	}
1792
1793	ret = drm_vblank_get(dev, pipe);
1794	if (ret) {
1795		drm_dbg_core(dev,
1796			     "crtc %d failed to acquire vblank counter, %d\n",
1797			     pipe, ret);
1798		return ret;
1799	}
1800	seq = drm_vblank_count(dev, pipe);
1801
1802	switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1803	case _DRM_VBLANK_RELATIVE:
1804		req_seq = seq + vblwait->request.sequence;
1805		vblwait->request.sequence = req_seq;
1806		vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1807		break;
1808	case _DRM_VBLANK_ABSOLUTE:
1809		req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1810		break;
1811	default:
1812		ret = -EINVAL;
1813		goto done;
1814	}
1815
1816	if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1817	    drm_vblank_passed(seq, req_seq)) {
1818		req_seq = seq + 1;
1819		vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1820		vblwait->request.sequence = req_seq;
1821	}
1822
1823	if (flags & _DRM_VBLANK_EVENT) {
1824		/* must hold on to the vblank ref until the event fires
1825		 * drm_vblank_put will be called asynchronously
1826		 */
1827		return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1828	}
1829
1830	if (req_seq != seq) {
1831		int wait;
1832
1833		drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n",
1834			     req_seq, pipe);
1835		wait = wait_event_interruptible_timeout(vblank->queue,
1836			drm_vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1837				      !READ_ONCE(vblank->enabled),
1838			msecs_to_jiffies(3000));
1839
1840		switch (wait) {
1841		case 0:
1842			/* timeout */
1843			ret = -EBUSY;
1844			break;
1845		case -ERESTARTSYS:
1846			/* interrupted by signal */
1847			ret = -EINTR;
1848			break;
1849		default:
1850			ret = 0;
1851			break;
1852		}
1853	}
1854
1855	if (ret != -EINTR) {
1856		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1857
1858		drm_dbg_core(dev, "crtc %d returning %u to client\n",
1859			     pipe, vblwait->reply.sequence);
1860	} else {
1861		drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n",
1862			     pipe);
1863	}
1864
1865done:
1866	drm_vblank_put(dev, pipe);
1867	return ret;
1868}
1869
1870static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1871{
1872	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1873	bool high_prec = false;
1874	struct drm_pending_vblank_event *e, *t;
1875	ktime_t now;
1876	u64 seq;
1877
1878	assert_spin_locked(&dev->event_lock);
1879
1880	seq = drm_vblank_count_and_time(dev, pipe, &now);
1881
1882	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1883		if (e->pipe != pipe)
1884			continue;
1885		if (!drm_vblank_passed(seq, e->sequence))
1886			continue;
1887
1888		drm_dbg_core(dev, "vblank event on %llu, current %llu\n",
1889			     e->sequence, seq);
1890
1891		list_del(&e->base.link);
1892		drm_vblank_put(dev, pipe);
1893		send_vblank_event(dev, e, seq, now);
1894	}
1895
1896	if (crtc && crtc->funcs->get_vblank_timestamp)
1897		high_prec = true;
1898
1899	trace_drm_vblank_event(pipe, seq, now, high_prec);
1900}
1901
1902/**
1903 * drm_handle_vblank - handle a vblank event
1904 * @dev: DRM device
1905 * @pipe: index of CRTC where this event occurred
1906 *
1907 * Drivers should call this routine in their vblank interrupt handlers to
1908 * update the vblank counter and send any signals that may be pending.
1909 *
1910 * This is the legacy version of drm_crtc_handle_vblank().
1911 */
1912bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1913{
1914	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1915	unsigned long irqflags;
1916	bool disable_irq;
1917
1918	if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev)))
1919		return false;
1920
1921	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1922		return false;
1923
1924	spin_lock_irqsave(&dev->event_lock, irqflags);
1925
1926	/* Need timestamp lock to prevent concurrent execution with
1927	 * vblank enable/disable, as this would cause inconsistent
1928	 * or corrupted timestamps and vblank counts.
1929	 */
1930	spin_lock(&dev->vblank_time_lock);
1931
1932	/* Vblank irq handling disabled. Nothing to do. */
1933	if (!vblank->enabled) {
1934		spin_unlock(&dev->vblank_time_lock);
1935		spin_unlock_irqrestore(&dev->event_lock, irqflags);
1936		return false;
1937	}
1938
1939	drm_update_vblank_count(dev, pipe, true);
1940
1941	spin_unlock(&dev->vblank_time_lock);
1942
1943	wake_up(&vblank->queue);
1944
1945	/* With instant-off, we defer disabling the interrupt until after
1946	 * we finish processing the following vblank after all events have
1947	 * been signaled. The disable has to be last (after
1948	 * drm_handle_vblank_events) so that the timestamp is always accurate.
1949	 */
1950	disable_irq = (dev->vblank_disable_immediate &&
1951		       drm_vblank_offdelay > 0 &&
1952		       !atomic_read(&vblank->refcount));
1953
1954	drm_handle_vblank_events(dev, pipe);
1955	drm_handle_vblank_works(vblank);
1956
1957	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1958
1959	if (disable_irq)
1960		vblank_disable_fn(&vblank->disable_timer);
1961
1962	return true;
1963}
1964EXPORT_SYMBOL(drm_handle_vblank);
1965
1966/**
1967 * drm_crtc_handle_vblank - handle a vblank event
1968 * @crtc: where this event occurred
1969 *
1970 * Drivers should call this routine in their vblank interrupt handlers to
1971 * update the vblank counter and send any signals that may be pending.
1972 *
1973 * This is the native KMS version of drm_handle_vblank().
1974 *
1975 * Note that for a given vblank counter value drm_crtc_handle_vblank()
1976 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
1977 * provide a barrier: Any writes done before calling
1978 * drm_crtc_handle_vblank() will be visible to callers of the later
1979 * functions, iff the vblank count is the same or a later one.
1980 *
1981 * See also &drm_vblank_crtc.count.
1982 *
1983 * Returns:
1984 * True if the event was successfully handled, false on failure.
1985 */
1986bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1987{
1988	return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
1989}
1990EXPORT_SYMBOL(drm_crtc_handle_vblank);
1991
1992/*
1993 * Get crtc VBLANK count.
1994 *
1995 * \param dev DRM device
1996 * \param data user arguement, pointing to a drm_crtc_get_sequence structure.
1997 * \param file_priv drm file private for the user's open file descriptor
1998 */
1999
2000int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
2001				struct drm_file *file_priv)
2002{
2003	struct drm_crtc *crtc;
2004	struct drm_vblank_crtc *vblank;
2005	int pipe;
2006	struct drm_crtc_get_sequence *get_seq = data;
2007	ktime_t now;
2008	bool vblank_enabled;
2009	int ret;
2010
2011	if (!drm_core_check_feature(dev, DRIVER_MODESET))
2012		return -EOPNOTSUPP;
2013
2014	if (!dev->irq_enabled)
2015		return -EOPNOTSUPP;
2016
2017	crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
2018	if (!crtc)
2019		return -ENOENT;
2020
2021	pipe = drm_crtc_index(crtc);
2022
2023	vblank = &dev->vblank[pipe];
2024	vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
2025
2026	if (!vblank_enabled) {
2027		ret = drm_crtc_vblank_get(crtc);
2028		if (ret) {
2029			drm_dbg_core(dev,
2030				     "crtc %d failed to acquire vblank counter, %d\n",
2031				     pipe, ret);
2032			return ret;
2033		}
2034	}
2035	drm_modeset_lock(&crtc->mutex, NULL);
2036	if (crtc->state)
2037		get_seq->active = crtc->state->enable;
2038	else
2039		get_seq->active = crtc->enabled;
2040	drm_modeset_unlock(&crtc->mutex);
2041	get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
2042	get_seq->sequence_ns = ktime_to_ns(now);
2043	if (!vblank_enabled)
2044		drm_crtc_vblank_put(crtc);
2045	return 0;
2046}
2047
2048/*
2049 * Queue a event for VBLANK sequence
2050 *
2051 * \param dev DRM device
2052 * \param data user arguement, pointing to a drm_crtc_queue_sequence structure.
2053 * \param file_priv drm file private for the user's open file descriptor
2054 */
2055
2056int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
2057				  struct drm_file *file_priv)
2058{
2059	struct drm_crtc *crtc;
2060	struct drm_vblank_crtc *vblank;
2061	int pipe;
2062	struct drm_crtc_queue_sequence *queue_seq = data;
2063	ktime_t now;
2064	struct drm_pending_vblank_event *e;
2065	u32 flags;
2066	u64 seq;
2067	u64 req_seq;
2068	int ret;
2069
2070	if (!drm_core_check_feature(dev, DRIVER_MODESET))
2071		return -EOPNOTSUPP;
2072
2073	if (!dev->irq_enabled)
2074		return -EOPNOTSUPP;
2075
2076	crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
2077	if (!crtc)
2078		return -ENOENT;
2079
2080	flags = queue_seq->flags;
2081	/* Check valid flag bits */
2082	if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
2083		      DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
2084		return -EINVAL;
2085
2086	pipe = drm_crtc_index(crtc);
2087
2088	vblank = &dev->vblank[pipe];
2089
2090	e = kzalloc(sizeof(*e), GFP_KERNEL);
2091	if (e == NULL)
2092		return -ENOMEM;
2093
2094	ret = drm_crtc_vblank_get(crtc);
2095	if (ret) {
2096		drm_dbg_core(dev,
2097			     "crtc %d failed to acquire vblank counter, %d\n",
2098			     pipe, ret);
2099		goto err_free;
2100	}
2101
2102	seq = drm_vblank_count_and_time(dev, pipe, &now);
2103	req_seq = queue_seq->sequence;
2104
2105	if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
2106		req_seq += seq;
2107
2108	if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && drm_vblank_passed(seq, req_seq))
2109		req_seq = seq + 1;
2110
2111	e->pipe = pipe;
2112	e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
2113	e->event.base.length = sizeof(e->event.seq);
2114	e->event.seq.user_data = queue_seq->user_data;
2115
2116	spin_lock_irq(&dev->event_lock);
2117
2118	/*
2119	 * drm_crtc_vblank_off() might have been called after we called
2120	 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
2121	 * vblank disable, so no need for further locking.  The reference from
2122	 * drm_crtc_vblank_get() protects against vblank disable from another source.
2123	 */
2124	if (!READ_ONCE(vblank->enabled)) {
2125		ret = -EINVAL;
2126		goto err_unlock;
2127	}
2128
2129	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
2130					    &e->event.base);
2131
2132	if (ret)
2133		goto err_unlock;
2134
2135	e->sequence = req_seq;
2136
2137	if (drm_vblank_passed(seq, req_seq)) {
2138		drm_crtc_vblank_put(crtc);
2139		send_vblank_event(dev, e, seq, now);
2140		queue_seq->sequence = seq;
2141	} else {
2142		/* drm_handle_vblank_events will call drm_vblank_put */
2143		list_add_tail(&e->base.link, &dev->vblank_event_list);
2144		queue_seq->sequence = req_seq;
2145	}
2146
2147	spin_unlock_irq(&dev->event_lock);
2148	return 0;
2149
2150err_unlock:
2151	spin_unlock_irq(&dev->event_lock);
2152	drm_crtc_vblank_put(crtc);
2153err_free:
2154	kfree(e);
2155	return ret;
2156}
2157
v5.14.15
   1/*
   2 * drm_irq.c IRQ and vblank support
   3 *
   4 * \author Rickard E. (Rik) Faith <faith@valinux.com>
   5 * \author Gareth Hughes <gareth@valinux.com>
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the "Software"),
   9 * to deal in the Software without restriction, including without limitation
  10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  11 * and/or sell copies of the Software, and to permit persons to whom the
  12 * Software is furnished to do so, subject to the following conditions:
  13 *
  14 * The above copyright notice and this permission notice (including the next
  15 * paragraph) shall be included in all copies or substantial portions of the
  16 * Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
  22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  24 * OTHER DEALINGS IN THE SOFTWARE.
  25 */
  26
  27#include <linux/export.h>
  28#include <linux/kthread.h>
  29#include <linux/moduleparam.h>
  30
  31#include <drm/drm_crtc.h>
  32#include <drm/drm_drv.h>
  33#include <drm/drm_framebuffer.h>
  34#include <drm/drm_managed.h>
  35#include <drm/drm_modeset_helper_vtables.h>
  36#include <drm/drm_print.h>
  37#include <drm/drm_vblank.h>
  38
  39#include "drm_internal.h"
  40#include "drm_trace.h"
  41
  42/**
  43 * DOC: vblank handling
  44 *
  45 * From the computer's perspective, every time the monitor displays
  46 * a new frame the scanout engine has "scanned out" the display image
  47 * from top to bottom, one row of pixels at a time. The current row
  48 * of pixels is referred to as the current scanline.
  49 *
  50 * In addition to the display's visible area, there's usually a couple of
  51 * extra scanlines which aren't actually displayed on the screen.
  52 * These extra scanlines don't contain image data and are occasionally used
  53 * for features like audio and infoframes. The region made up of these
  54 * scanlines is referred to as the vertical blanking region, or vblank for
  55 * short.
  56 *
  57 * For historical reference, the vertical blanking period was designed to
  58 * give the electron gun (on CRTs) enough time to move back to the top of
  59 * the screen to start scanning out the next frame. Similar for horizontal
  60 * blanking periods. They were designed to give the electron gun enough
  61 * time to move back to the other side of the screen to start scanning the
  62 * next scanline.
  63 *
  64 * ::
  65 *
  66 *
  67 *    physical →   ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
  68 *    top of      |                                        |
  69 *    display     |                                        |
  70 *                |               New frame                |
  71 *                |                                        |
  72 *                |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|
  73 *                |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline,
  74 *                |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|   updates the
  75 *                |                                        |   frame as it
  76 *                |                                        |   travels down
  77 *                |                                        |   ("scan out")
  78 *                |               Old frame                |
  79 *                |                                        |
  80 *                |                                        |
  81 *                |                                        |
  82 *                |                                        |   physical
  83 *                |                                        |   bottom of
  84 *    vertical    |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display
  85 *    blanking    ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
  86 *    region   →  ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
  87 *                ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
  88 *    start of →   ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
  89 *    new frame
  90 *
  91 * "Physical top of display" is the reference point for the high-precision/
  92 * corrected timestamp.
  93 *
  94 * On a lot of display hardware, programming needs to take effect during the
  95 * vertical blanking period so that settings like gamma, the image buffer
  96 * buffer to be scanned out, etc. can safely be changed without showing
  97 * any visual artifacts on the screen. In some unforgiving hardware, some of
  98 * this programming has to both start and end in the same vblank. To help
  99 * with the timing of the hardware programming, an interrupt is usually
 100 * available to notify the driver when it can start the updating of registers.
 101 * The interrupt is in this context named the vblank interrupt.
 102 *
 103 * The vblank interrupt may be fired at different points depending on the
 104 * hardware. Some hardware implementations will fire the interrupt when the
 105 * new frame start, other implementations will fire the interrupt at different
 106 * points in time.
 107 *
 108 * Vertical blanking plays a major role in graphics rendering. To achieve
 109 * tear-free display, users must synchronize page flips and/or rendering to
 110 * vertical blanking. The DRM API offers ioctls to perform page flips
 111 * synchronized to vertical blanking and wait for vertical blanking.
 112 *
 113 * The DRM core handles most of the vertical blanking management logic, which
 114 * involves filtering out spurious interrupts, keeping race-free blanking
 115 * counters, coping with counter wrap-around and resets and keeping use counts.
 116 * It relies on the driver to generate vertical blanking interrupts and
 117 * optionally provide a hardware vertical blanking counter.
 118 *
 119 * Drivers must initialize the vertical blanking handling core with a call to
 120 * drm_vblank_init(). Minimally, a driver needs to implement
 121 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
 122 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
 123 * support.
 124 *
 125 * Vertical blanking interrupts can be enabled by the DRM core or by drivers
 126 * themselves (for instance to handle page flipping operations).  The DRM core
 127 * maintains a vertical blanking use count to ensure that the interrupts are not
 128 * disabled while a user still needs them. To increment the use count, drivers
 129 * call drm_crtc_vblank_get() and release the vblank reference again with
 130 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
 131 * guaranteed to be enabled.
 132 *
 133 * On many hardware disabling the vblank interrupt cannot be done in a race-free
 134 * manner, see &drm_driver.vblank_disable_immediate and
 135 * &drm_driver.max_vblank_count. In that case the vblank core only disables the
 136 * vblanks after a timer has expired, which can be configured through the
 137 * ``vblankoffdelay`` module parameter.
 138 *
 139 * Drivers for hardware without support for vertical-blanking interrupts
 140 * must not call drm_vblank_init(). For such drivers, atomic helpers will
 141 * automatically generate fake vblank events as part of the display update.
 142 * This functionality also can be controlled by the driver by enabling and
 143 * disabling struct drm_crtc_state.no_vblank.
 144 */
 145
 146/* Retry timestamp calculation up to 3 times to satisfy
 147 * drm_timestamp_precision before giving up.
 148 */
 149#define DRM_TIMESTAMP_MAXRETRIES 3
 150
 151/* Threshold in nanoseconds for detection of redundant
 152 * vblank irq in drm_handle_vblank(). 1 msec should be ok.
 153 */
 154#define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
 155
 156static bool
 157drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
 158			  ktime_t *tvblank, bool in_vblank_irq);
 159
 160static unsigned int drm_timestamp_precision = 20;  /* Default to 20 usecs. */
 161
 162static int drm_vblank_offdelay = 5000;    /* Default to 5000 msecs. */
 163
 164module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
 165module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
 166MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
 167MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
 168
 169static void store_vblank(struct drm_device *dev, unsigned int pipe,
 170			 u32 vblank_count_inc,
 171			 ktime_t t_vblank, u32 last)
 172{
 173	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 174
 175	assert_spin_locked(&dev->vblank_time_lock);
 176
 177	vblank->last = last;
 178
 179	write_seqlock(&vblank->seqlock);
 180	vblank->time = t_vblank;
 181	atomic64_add(vblank_count_inc, &vblank->count);
 182	write_sequnlock(&vblank->seqlock);
 183}
 184
 185static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
 186{
 187	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 188
 189	return vblank->max_vblank_count ?: dev->max_vblank_count;
 190}
 191
 192/*
 193 * "No hw counter" fallback implementation of .get_vblank_counter() hook,
 194 * if there is no useable hardware frame counter available.
 195 */
 196static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
 197{
 198	drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0);
 199	return 0;
 200}
 201
 202static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
 203{
 204	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
 205		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
 206
 207		if (drm_WARN_ON(dev, !crtc))
 208			return 0;
 209
 210		if (crtc->funcs->get_vblank_counter)
 211			return crtc->funcs->get_vblank_counter(crtc);
 212	}
 213#ifdef CONFIG_DRM_LEGACY
 214	else if (dev->driver->get_vblank_counter) {
 215		return dev->driver->get_vblank_counter(dev, pipe);
 216	}
 217#endif
 218
 219	return drm_vblank_no_hw_counter(dev, pipe);
 220}
 221
 222/*
 223 * Reset the stored timestamp for the current vblank count to correspond
 224 * to the last vblank occurred.
 225 *
 226 * Only to be called from drm_crtc_vblank_on().
 227 *
 228 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
 229 * device vblank fields.
 230 */
 231static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
 232{
 233	u32 cur_vblank;
 234	bool rc;
 235	ktime_t t_vblank;
 236	int count = DRM_TIMESTAMP_MAXRETRIES;
 237
 238	spin_lock(&dev->vblank_time_lock);
 239
 240	/*
 241	 * sample the current counter to avoid random jumps
 242	 * when drm_vblank_enable() applies the diff
 243	 */
 244	do {
 245		cur_vblank = __get_vblank_counter(dev, pipe);
 246		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
 247	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
 248
 249	/*
 250	 * Only reinitialize corresponding vblank timestamp if high-precision query
 251	 * available and didn't fail. Otherwise reinitialize delayed at next vblank
 252	 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
 253	 */
 254	if (!rc)
 255		t_vblank = 0;
 256
 257	/*
 258	 * +1 to make sure user will never see the same
 259	 * vblank counter value before and after a modeset
 260	 */
 261	store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
 262
 263	spin_unlock(&dev->vblank_time_lock);
 264}
 265
 266/*
 267 * Call back into the driver to update the appropriate vblank counter
 268 * (specified by @pipe).  Deal with wraparound, if it occurred, and
 269 * update the last read value so we can deal with wraparound on the next
 270 * call if necessary.
 271 *
 272 * Only necessary when going from off->on, to account for frames we
 273 * didn't get an interrupt for.
 274 *
 275 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
 276 * device vblank fields.
 277 */
 278static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
 279				    bool in_vblank_irq)
 280{
 281	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 282	u32 cur_vblank, diff;
 283	bool rc;
 284	ktime_t t_vblank;
 285	int count = DRM_TIMESTAMP_MAXRETRIES;
 286	int framedur_ns = vblank->framedur_ns;
 287	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
 288
 289	/*
 290	 * Interrupts were disabled prior to this call, so deal with counter
 291	 * wrap if needed.
 292	 * NOTE!  It's possible we lost a full dev->max_vblank_count + 1 events
 293	 * here if the register is small or we had vblank interrupts off for
 294	 * a long time.
 295	 *
 296	 * We repeat the hardware vblank counter & timestamp query until
 297	 * we get consistent results. This to prevent races between gpu
 298	 * updating its hardware counter while we are retrieving the
 299	 * corresponding vblank timestamp.
 300	 */
 301	do {
 302		cur_vblank = __get_vblank_counter(dev, pipe);
 303		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
 304	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
 305
 306	if (max_vblank_count) {
 307		/* trust the hw counter when it's around */
 308		diff = (cur_vblank - vblank->last) & max_vblank_count;
 309	} else if (rc && framedur_ns) {
 310		u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
 311
 312		/*
 313		 * Figure out how many vblanks we've missed based
 314		 * on the difference in the timestamps and the
 315		 * frame/field duration.
 316		 */
 317
 318		drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks."
 319			    " diff_ns = %lld, framedur_ns = %d)\n",
 320			    pipe, (long long)diff_ns, framedur_ns);
 321
 322		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
 323
 324		if (diff == 0 && in_vblank_irq)
 325			drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n",
 326				    pipe);
 327	} else {
 328		/* some kind of default for drivers w/o accurate vbl timestamping */
 329		diff = in_vblank_irq ? 1 : 0;
 330	}
 331
 332	/*
 333	 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
 334	 * interval? If so then vblank irqs keep running and it will likely
 335	 * happen that the hardware vblank counter is not trustworthy as it
 336	 * might reset at some point in that interval and vblank timestamps
 337	 * are not trustworthy either in that interval. Iow. this can result
 338	 * in a bogus diff >> 1 which must be avoided as it would cause
 339	 * random large forward jumps of the software vblank counter.
 340	 */
 341	if (diff > 1 && (vblank->inmodeset & 0x2)) {
 342		drm_dbg_vbl(dev,
 343			    "clamping vblank bump to 1 on crtc %u: diffr=%u"
 344			    " due to pre-modeset.\n", pipe, diff);
 345		diff = 1;
 346	}
 347
 348	drm_dbg_vbl(dev, "updating vblank count on crtc %u:"
 349		    " current=%llu, diff=%u, hw=%u hw_last=%u\n",
 350		    pipe, (unsigned long long)atomic64_read(&vblank->count),
 351		    diff, cur_vblank, vblank->last);
 352
 353	if (diff == 0) {
 354		drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last);
 355		return;
 356	}
 357
 358	/*
 359	 * Only reinitialize corresponding vblank timestamp if high-precision query
 360	 * available and didn't fail, or we were called from the vblank interrupt.
 361	 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
 362	 * for now, to mark the vblanktimestamp as invalid.
 363	 */
 364	if (!rc && !in_vblank_irq)
 365		t_vblank = 0;
 366
 367	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
 368}
 369
 370u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
 371{
 372	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 373	u64 count;
 374
 375	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
 376		return 0;
 377
 378	count = atomic64_read(&vblank->count);
 379
 380	/*
 381	 * This read barrier corresponds to the implicit write barrier of the
 382	 * write seqlock in store_vblank(). Note that this is the only place
 383	 * where we need an explicit barrier, since all other access goes
 384	 * through drm_vblank_count_and_time(), which already has the required
 385	 * read barrier curtesy of the read seqlock.
 386	 */
 387	smp_rmb();
 388
 389	return count;
 390}
 391
 392/**
 393 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
 394 * @crtc: which counter to retrieve
 395 *
 396 * This function is similar to drm_crtc_vblank_count() but this function
 397 * interpolates to handle a race with vblank interrupts using the high precision
 398 * timestamping support.
 399 *
 400 * This is mostly useful for hardware that can obtain the scanout position, but
 401 * doesn't have a hardware frame counter.
 402 */
 403u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
 404{
 405	struct drm_device *dev = crtc->dev;
 406	unsigned int pipe = drm_crtc_index(crtc);
 407	u64 vblank;
 408	unsigned long flags;
 409
 410	drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) &&
 411		      !crtc->funcs->get_vblank_timestamp,
 412		      "This function requires support for accurate vblank timestamps.");
 413
 414	spin_lock_irqsave(&dev->vblank_time_lock, flags);
 415
 416	drm_update_vblank_count(dev, pipe, false);
 417	vblank = drm_vblank_count(dev, pipe);
 418
 419	spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
 420
 421	return vblank;
 422}
 423EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
 424
 425static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
 426{
 427	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
 428		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
 429
 430		if (drm_WARN_ON(dev, !crtc))
 431			return;
 432
 433		if (crtc->funcs->disable_vblank)
 434			crtc->funcs->disable_vblank(crtc);
 435	}
 436#ifdef CONFIG_DRM_LEGACY
 437	else {
 438		dev->driver->disable_vblank(dev, pipe);
 439	}
 440#endif
 441}
 442
 443/*
 444 * Disable vblank irq's on crtc, make sure that last vblank count
 445 * of hardware and corresponding consistent software vblank counter
 446 * are preserved, even if there are any spurious vblank irq's after
 447 * disable.
 448 */
 449void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
 450{
 451	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 452	unsigned long irqflags;
 453
 454	assert_spin_locked(&dev->vbl_lock);
 455
 456	/* Prevent vblank irq processing while disabling vblank irqs,
 457	 * so no updates of timestamps or count can happen after we've
 458	 * disabled. Needed to prevent races in case of delayed irq's.
 459	 */
 460	spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
 461
 462	/*
 463	 * Update vblank count and disable vblank interrupts only if the
 464	 * interrupts were enabled. This avoids calling the ->disable_vblank()
 465	 * operation in atomic context with the hardware potentially runtime
 466	 * suspended.
 467	 */
 468	if (!vblank->enabled)
 469		goto out;
 470
 471	/*
 472	 * Update the count and timestamp to maintain the
 473	 * appearance that the counter has been ticking all along until
 474	 * this time. This makes the count account for the entire time
 475	 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
 476	 */
 477	drm_update_vblank_count(dev, pipe, false);
 478	__disable_vblank(dev, pipe);
 479	vblank->enabled = false;
 480
 481out:
 482	spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
 483}
 484
 485static void vblank_disable_fn(struct timer_list *t)
 486{
 487	struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
 488	struct drm_device *dev = vblank->dev;
 489	unsigned int pipe = vblank->pipe;
 490	unsigned long irqflags;
 491
 492	spin_lock_irqsave(&dev->vbl_lock, irqflags);
 493	if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
 494		drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe);
 495		drm_vblank_disable_and_save(dev, pipe);
 496	}
 497	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
 498}
 499
 500static void drm_vblank_init_release(struct drm_device *dev, void *ptr)
 501{
 502	struct drm_vblank_crtc *vblank = ptr;
 503
 504	drm_WARN_ON(dev, READ_ONCE(vblank->enabled) &&
 505		    drm_core_check_feature(dev, DRIVER_MODESET));
 506
 507	drm_vblank_destroy_worker(vblank);
 508	del_timer_sync(&vblank->disable_timer);
 509}
 510
 511/**
 512 * drm_vblank_init - initialize vblank support
 513 * @dev: DRM device
 514 * @num_crtcs: number of CRTCs supported by @dev
 515 *
 516 * This function initializes vblank support for @num_crtcs display pipelines.
 517 * Cleanup is handled automatically through a cleanup function added with
 518 * drmm_add_action_or_reset().
 519 *
 520 * Returns:
 521 * Zero on success or a negative error code on failure.
 522 */
 523int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
 524{
 525	int ret;
 526	unsigned int i;
 527
 528	spin_lock_init(&dev->vbl_lock);
 529	spin_lock_init(&dev->vblank_time_lock);
 530
 531	dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
 532	if (!dev->vblank)
 533		return -ENOMEM;
 534
 535	dev->num_crtcs = num_crtcs;
 536
 537	for (i = 0; i < num_crtcs; i++) {
 538		struct drm_vblank_crtc *vblank = &dev->vblank[i];
 539
 540		vblank->dev = dev;
 541		vblank->pipe = i;
 542		init_waitqueue_head(&vblank->queue);
 543		timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
 544		seqlock_init(&vblank->seqlock);
 545
 546		ret = drmm_add_action_or_reset(dev, drm_vblank_init_release,
 547					       vblank);
 548		if (ret)
 549			return ret;
 550
 551		ret = drm_vblank_worker_init(vblank);
 552		if (ret)
 553			return ret;
 554	}
 555
 556	return 0;
 557}
 558EXPORT_SYMBOL(drm_vblank_init);
 559
 560/**
 561 * drm_dev_has_vblank - test if vblanking has been initialized for
 562 *                      a device
 563 * @dev: the device
 564 *
 565 * Drivers may call this function to test if vblank support is
 566 * initialized for a device. For most hardware this means that vblanking
 567 * can also be enabled.
 568 *
 569 * Atomic helpers use this function to initialize
 570 * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset().
 571 *
 572 * Returns:
 573 * True if vblanking has been initialized for the given device, false
 574 * otherwise.
 575 */
 576bool drm_dev_has_vblank(const struct drm_device *dev)
 577{
 578	return dev->num_crtcs != 0;
 579}
 580EXPORT_SYMBOL(drm_dev_has_vblank);
 581
 582/**
 583 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
 584 * @crtc: which CRTC's vblank waitqueue to retrieve
 585 *
 586 * This function returns a pointer to the vblank waitqueue for the CRTC.
 587 * Drivers can use this to implement vblank waits using wait_event() and related
 588 * functions.
 589 */
 590wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
 591{
 592	return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
 593}
 594EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
 595
 596
 597/**
 598 * drm_calc_timestamping_constants - calculate vblank timestamp constants
 599 * @crtc: drm_crtc whose timestamp constants should be updated.
 600 * @mode: display mode containing the scanout timings
 601 *
 602 * Calculate and store various constants which are later needed by vblank and
 603 * swap-completion timestamping, e.g, by
 604 * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from
 605 * CRTC's true scanout timing, so they take things like panel scaling or
 606 * other adjustments into account.
 607 */
 608void drm_calc_timestamping_constants(struct drm_crtc *crtc,
 609				     const struct drm_display_mode *mode)
 610{
 611	struct drm_device *dev = crtc->dev;
 612	unsigned int pipe = drm_crtc_index(crtc);
 613	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 614	int linedur_ns = 0, framedur_ns = 0;
 615	int dotclock = mode->crtc_clock;
 616
 617	if (!drm_dev_has_vblank(dev))
 618		return;
 619
 620	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
 621		return;
 622
 623	/* Valid dotclock? */
 624	if (dotclock > 0) {
 625		int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
 626
 627		/*
 628		 * Convert scanline length in pixels and video
 629		 * dot clock to line duration and frame duration
 630		 * in nanoseconds:
 631		 */
 632		linedur_ns  = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
 633		framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
 634
 635		/*
 636		 * Fields of interlaced scanout modes are only half a frame duration.
 637		 */
 638		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 639			framedur_ns /= 2;
 640	} else {
 641		drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n",
 642			crtc->base.id);
 643	}
 644
 645	vblank->linedur_ns  = linedur_ns;
 646	vblank->framedur_ns = framedur_ns;
 647	vblank->hwmode = *mode;
 648
 649	drm_dbg_core(dev,
 650		     "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
 651		     crtc->base.id, mode->crtc_htotal,
 652		     mode->crtc_vtotal, mode->crtc_vdisplay);
 653	drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n",
 654		     crtc->base.id, dotclock, framedur_ns, linedur_ns);
 655}
 656EXPORT_SYMBOL(drm_calc_timestamping_constants);
 657
 658/**
 659 * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank
 660 *                                                        timestamp helper
 661 * @crtc: CRTC whose vblank timestamp to retrieve
 662 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
 663 *             On return contains true maximum error of timestamp
 664 * @vblank_time: Pointer to time which should receive the timestamp
 665 * @in_vblank_irq:
 666 *     True when called from drm_crtc_handle_vblank().  Some drivers
 667 *     need to apply some workarounds for gpu-specific vblank irq quirks
 668 *     if flag is set.
 669 * @get_scanout_position:
 670 *     Callback function to retrieve the scanout position. See
 671 *     @struct drm_crtc_helper_funcs.get_scanout_position.
 672 *
 673 * Implements calculation of exact vblank timestamps from given drm_display_mode
 674 * timings and current video scanout position of a CRTC.
 675 *
 676 * The current implementation only handles standard video modes. For double scan
 677 * and interlaced modes the driver is supposed to adjust the hardware mode
 678 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
 679 * match the scanout position reported.
 680 *
 681 * Note that atomic drivers must call drm_calc_timestamping_constants() before
 682 * enabling a CRTC. The atomic helpers already take care of that in
 683 * drm_atomic_helper_calc_timestamping_constants().
 684 *
 685 * Returns:
 686 *
 687 * Returns true on success, and false on failure, i.e. when no accurate
 688 * timestamp could be acquired.
 689 */
 690bool
 691drm_crtc_vblank_helper_get_vblank_timestamp_internal(
 692	struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time,
 693	bool in_vblank_irq,
 694	drm_vblank_get_scanout_position_func get_scanout_position)
 695{
 696	struct drm_device *dev = crtc->dev;
 697	unsigned int pipe = crtc->index;
 698	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 699	struct timespec64 ts_etime, ts_vblank_time;
 700	ktime_t stime, etime;
 701	bool vbl_status;
 702	const struct drm_display_mode *mode;
 703	int vpos, hpos, i;
 704	int delta_ns, duration_ns;
 705
 706	if (pipe >= dev->num_crtcs) {
 707		drm_err(dev, "Invalid crtc %u\n", pipe);
 708		return false;
 709	}
 710
 711	/* Scanout position query not supported? Should not happen. */
 712	if (!get_scanout_position) {
 713		drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n");
 714		return false;
 715	}
 716
 717	if (drm_drv_uses_atomic_modeset(dev))
 718		mode = &vblank->hwmode;
 719	else
 720		mode = &crtc->hwmode;
 721
 722	/* If mode timing undefined, just return as no-op:
 723	 * Happens during initial modesetting of a crtc.
 724	 */
 725	if (mode->crtc_clock == 0) {
 726		drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n",
 727			     pipe);
 728		drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev));
 729		return false;
 730	}
 731
 732	/* Get current scanout position with system timestamp.
 733	 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
 734	 * if single query takes longer than max_error nanoseconds.
 735	 *
 736	 * This guarantees a tight bound on maximum error if
 737	 * code gets preempted or delayed for some reason.
 738	 */
 739	for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
 740		/*
 741		 * Get vertical and horizontal scanout position vpos, hpos,
 742		 * and bounding timestamps stime, etime, pre/post query.
 743		 */
 744		vbl_status = get_scanout_position(crtc, in_vblank_irq,
 745						  &vpos, &hpos,
 746						  &stime, &etime,
 747						  mode);
 748
 749		/* Return as no-op if scanout query unsupported or failed. */
 750		if (!vbl_status) {
 751			drm_dbg_core(dev,
 752				     "crtc %u : scanoutpos query failed.\n",
 753				     pipe);
 754			return false;
 755		}
 756
 757		/* Compute uncertainty in timestamp of scanout position query. */
 758		duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
 759
 760		/* Accept result with <  max_error nsecs timing uncertainty. */
 761		if (duration_ns <= *max_error)
 762			break;
 763	}
 764
 765	/* Noisy system timing? */
 766	if (i == DRM_TIMESTAMP_MAXRETRIES) {
 767		drm_dbg_core(dev,
 768			     "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
 769			     pipe, duration_ns / 1000, *max_error / 1000, i);
 770	}
 771
 772	/* Return upper bound of timestamp precision error. */
 773	*max_error = duration_ns;
 774
 775	/* Convert scanout position into elapsed time at raw_time query
 776	 * since start of scanout at first display scanline. delta_ns
 777	 * can be negative if start of scanout hasn't happened yet.
 778	 */
 779	delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
 780			   mode->crtc_clock);
 781
 782	/* Subtract time delta from raw timestamp to get final
 783	 * vblank_time timestamp for end of vblank.
 784	 */
 785	*vblank_time = ktime_sub_ns(etime, delta_ns);
 786
 787	if (!drm_debug_enabled(DRM_UT_VBL))
 788		return true;
 789
 790	ts_etime = ktime_to_timespec64(etime);
 791	ts_vblank_time = ktime_to_timespec64(*vblank_time);
 792
 793	drm_dbg_vbl(dev,
 794		    "crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n",
 795		    pipe, hpos, vpos,
 796		    (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
 797		    (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
 798		    duration_ns / 1000, i);
 799
 800	return true;
 801}
 802EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal);
 803
 804/**
 805 * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp
 806 *                                               helper
 807 * @crtc: CRTC whose vblank timestamp to retrieve
 808 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
 809 *             On return contains true maximum error of timestamp
 810 * @vblank_time: Pointer to time which should receive the timestamp
 811 * @in_vblank_irq:
 812 *     True when called from drm_crtc_handle_vblank().  Some drivers
 813 *     need to apply some workarounds for gpu-specific vblank irq quirks
 814 *     if flag is set.
 815 *
 816 * Implements calculation of exact vblank timestamps from given drm_display_mode
 817 * timings and current video scanout position of a CRTC. This can be directly
 818 * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms
 819 * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented.
 820 *
 821 * The current implementation only handles standard video modes. For double scan
 822 * and interlaced modes the driver is supposed to adjust the hardware mode
 823 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
 824 * match the scanout position reported.
 825 *
 826 * Note that atomic drivers must call drm_calc_timestamping_constants() before
 827 * enabling a CRTC. The atomic helpers already take care of that in
 828 * drm_atomic_helper_calc_timestamping_constants().
 829 *
 830 * Returns:
 831 *
 832 * Returns true on success, and false on failure, i.e. when no accurate
 833 * timestamp could be acquired.
 834 */
 835bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc,
 836						 int *max_error,
 837						 ktime_t *vblank_time,
 838						 bool in_vblank_irq)
 839{
 840	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
 841		crtc, max_error, vblank_time, in_vblank_irq,
 842		crtc->helper_private->get_scanout_position);
 843}
 844EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp);
 845
 846/**
 847 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
 848 *                             vblank interval
 849 * @dev: DRM device
 850 * @pipe: index of CRTC whose vblank timestamp to retrieve
 851 * @tvblank: Pointer to target time which should receive the timestamp
 852 * @in_vblank_irq:
 853 *     True when called from drm_crtc_handle_vblank().  Some drivers
 854 *     need to apply some workarounds for gpu-specific vblank irq quirks
 855 *     if flag is set.
 856 *
 857 * Fetches the system timestamp corresponding to the time of the most recent
 858 * vblank interval on specified CRTC. May call into kms-driver to
 859 * compute the timestamp with a high-precision GPU specific method.
 860 *
 861 * Returns zero if timestamp originates from uncorrected do_gettimeofday()
 862 * call, i.e., it isn't very precisely locked to the true vblank.
 863 *
 864 * Returns:
 865 * True if timestamp is considered to be very precise, false otherwise.
 866 */
 867static bool
 868drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
 869			  ktime_t *tvblank, bool in_vblank_irq)
 870{
 871	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
 872	bool ret = false;
 873
 874	/* Define requested maximum error on timestamps (nanoseconds). */
 875	int max_error = (int) drm_timestamp_precision * 1000;
 876
 877	/* Query driver if possible and precision timestamping enabled. */
 878	if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) {
 879		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
 880
 881		ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error,
 882							tvblank, in_vblank_irq);
 883	}
 884
 885	/* GPU high precision timestamp query unsupported or failed.
 886	 * Return current monotonic/gettimeofday timestamp as best estimate.
 887	 */
 888	if (!ret)
 889		*tvblank = ktime_get();
 890
 891	return ret;
 892}
 893
 894/**
 895 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
 896 * @crtc: which counter to retrieve
 897 *
 898 * Fetches the "cooked" vblank count value that represents the number of
 899 * vblank events since the system was booted, including lost events due to
 900 * modesetting activity. Note that this timer isn't correct against a racing
 901 * vblank interrupt (since it only reports the software vblank counter), see
 902 * drm_crtc_accurate_vblank_count() for such use-cases.
 903 *
 904 * Note that for a given vblank counter value drm_crtc_handle_vblank()
 905 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
 906 * provide a barrier: Any writes done before calling
 907 * drm_crtc_handle_vblank() will be visible to callers of the later
 908 * functions, iff the vblank count is the same or a later one.
 909 *
 910 * See also &drm_vblank_crtc.count.
 911 *
 912 * Returns:
 913 * The software vblank counter.
 914 */
 915u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
 916{
 917	return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
 918}
 919EXPORT_SYMBOL(drm_crtc_vblank_count);
 920
 921/**
 922 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
 923 *     system timestamp corresponding to that vblank counter value.
 924 * @dev: DRM device
 925 * @pipe: index of CRTC whose counter to retrieve
 926 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
 927 *
 928 * Fetches the "cooked" vblank count value that represents the number of
 929 * vblank events since the system was booted, including lost events due to
 930 * modesetting activity. Returns corresponding system timestamp of the time
 931 * of the vblank interval that corresponds to the current vblank counter value.
 932 *
 933 * This is the legacy version of drm_crtc_vblank_count_and_time().
 934 */
 935static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
 936				     ktime_t *vblanktime)
 937{
 938	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
 939	u64 vblank_count;
 940	unsigned int seq;
 941
 942	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) {
 943		*vblanktime = 0;
 944		return 0;
 945	}
 946
 947	do {
 948		seq = read_seqbegin(&vblank->seqlock);
 949		vblank_count = atomic64_read(&vblank->count);
 950		*vblanktime = vblank->time;
 951	} while (read_seqretry(&vblank->seqlock, seq));
 952
 953	return vblank_count;
 954}
 955
 956/**
 957 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
 958 *     and the system timestamp corresponding to that vblank counter value
 959 * @crtc: which counter to retrieve
 960 * @vblanktime: Pointer to time to receive the vblank timestamp.
 961 *
 962 * Fetches the "cooked" vblank count value that represents the number of
 963 * vblank events since the system was booted, including lost events due to
 964 * modesetting activity. Returns corresponding system timestamp of the time
 965 * of the vblank interval that corresponds to the current vblank counter value.
 966 *
 967 * Note that for a given vblank counter value drm_crtc_handle_vblank()
 968 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
 969 * provide a barrier: Any writes done before calling
 970 * drm_crtc_handle_vblank() will be visible to callers of the later
 971 * functions, iff the vblank count is the same or a later one.
 972 *
 973 * See also &drm_vblank_crtc.count.
 974 */
 975u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
 976				   ktime_t *vblanktime)
 977{
 978	return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
 979					 vblanktime);
 980}
 981EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
 982
 983static void send_vblank_event(struct drm_device *dev,
 984		struct drm_pending_vblank_event *e,
 985		u64 seq, ktime_t now)
 986{
 987	struct timespec64 tv;
 988
 989	switch (e->event.base.type) {
 990	case DRM_EVENT_VBLANK:
 991	case DRM_EVENT_FLIP_COMPLETE:
 992		tv = ktime_to_timespec64(now);
 993		e->event.vbl.sequence = seq;
 994		/*
 995		 * e->event is a user space structure, with hardcoded unsigned
 996		 * 32-bit seconds/microseconds. This is safe as we always use
 997		 * monotonic timestamps since linux-4.15
 998		 */
 999		e->event.vbl.tv_sec = tv.tv_sec;
1000		e->event.vbl.tv_usec = tv.tv_nsec / 1000;
1001		break;
1002	case DRM_EVENT_CRTC_SEQUENCE:
1003		if (seq)
1004			e->event.seq.sequence = seq;
1005		e->event.seq.time_ns = ktime_to_ns(now);
1006		break;
1007	}
1008	trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
1009	/*
1010	 * Use the same timestamp for any associated fence signal to avoid
1011	 * mismatch in timestamps for vsync & fence events triggered by the
1012	 * same HW event. Frameworks like SurfaceFlinger in Android expects the
1013	 * retire-fence timestamp to match exactly with HW vsync as it uses it
1014	 * for its software vsync modeling.
1015	 */
1016	drm_send_event_timestamp_locked(dev, &e->base, now);
1017}
1018
1019/**
1020 * drm_crtc_arm_vblank_event - arm vblank event after pageflip
1021 * @crtc: the source CRTC of the vblank event
1022 * @e: the event to send
1023 *
1024 * A lot of drivers need to generate vblank events for the very next vblank
1025 * interrupt. For example when the page flip interrupt happens when the page
1026 * flip gets armed, but not when it actually executes within the next vblank
1027 * period. This helper function implements exactly the required vblank arming
1028 * behaviour.
1029 *
1030 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
1031 * atomic commit must ensure that the next vblank happens at exactly the same
1032 * time as the atomic commit is committed to the hardware. This function itself
1033 * does **not** protect against the next vblank interrupt racing with either this
1034 * function call or the atomic commit operation. A possible sequence could be:
1035 *
1036 * 1. Driver commits new hardware state into vblank-synchronized registers.
1037 * 2. A vblank happens, committing the hardware state. Also the corresponding
1038 *    vblank interrupt is fired off and fully processed by the interrupt
1039 *    handler.
1040 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
1041 * 4. The event is only send out for the next vblank, which is wrong.
1042 *
1043 * An equivalent race can happen when the driver calls
1044 * drm_crtc_arm_vblank_event() before writing out the new hardware state.
1045 *
1046 * The only way to make this work safely is to prevent the vblank from firing
1047 * (and the hardware from committing anything else) until the entire atomic
1048 * commit sequence has run to completion. If the hardware does not have such a
1049 * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
1050 * Instead drivers need to manually send out the event from their interrupt
1051 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
1052 * possible race with the hardware committing the atomic update.
1053 *
1054 * Caller must hold a vblank reference for the event @e acquired by a
1055 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
1056 */
1057void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
1058			       struct drm_pending_vblank_event *e)
1059{
1060	struct drm_device *dev = crtc->dev;
1061	unsigned int pipe = drm_crtc_index(crtc);
1062
1063	assert_spin_locked(&dev->event_lock);
1064
1065	e->pipe = pipe;
1066	e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
1067	list_add_tail(&e->base.link, &dev->vblank_event_list);
1068}
1069EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
1070
1071/**
1072 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
1073 * @crtc: the source CRTC of the vblank event
1074 * @e: the event to send
1075 *
1076 * Updates sequence # and timestamp on event for the most recently processed
1077 * vblank, and sends it to userspace.  Caller must hold event lock.
1078 *
1079 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
1080 * situation, especially to send out events for atomic commit operations.
1081 */
1082void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
1083				struct drm_pending_vblank_event *e)
1084{
1085	struct drm_device *dev = crtc->dev;
1086	u64 seq;
1087	unsigned int pipe = drm_crtc_index(crtc);
1088	ktime_t now;
1089
1090	if (drm_dev_has_vblank(dev)) {
1091		seq = drm_vblank_count_and_time(dev, pipe, &now);
1092	} else {
1093		seq = 0;
1094
1095		now = ktime_get();
1096	}
1097	e->pipe = pipe;
1098	send_vblank_event(dev, e, seq, now);
1099}
1100EXPORT_SYMBOL(drm_crtc_send_vblank_event);
1101
1102static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
1103{
1104	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1105		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1106
1107		if (drm_WARN_ON(dev, !crtc))
1108			return 0;
1109
1110		if (crtc->funcs->enable_vblank)
1111			return crtc->funcs->enable_vblank(crtc);
1112	}
1113#ifdef CONFIG_DRM_LEGACY
1114	else if (dev->driver->enable_vblank) {
1115		return dev->driver->enable_vblank(dev, pipe);
1116	}
1117#endif
1118
1119	return -EINVAL;
1120}
1121
1122static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
1123{
1124	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1125	int ret = 0;
1126
1127	assert_spin_locked(&dev->vbl_lock);
1128
1129	spin_lock(&dev->vblank_time_lock);
1130
1131	if (!vblank->enabled) {
1132		/*
1133		 * Enable vblank irqs under vblank_time_lock protection.
1134		 * All vblank count & timestamp updates are held off
1135		 * until we are done reinitializing master counter and
1136		 * timestamps. Filtercode in drm_handle_vblank() will
1137		 * prevent double-accounting of same vblank interval.
1138		 */
1139		ret = __enable_vblank(dev, pipe);
1140		drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n",
1141			     pipe, ret);
1142		if (ret) {
1143			atomic_dec(&vblank->refcount);
1144		} else {
1145			drm_update_vblank_count(dev, pipe, 0);
1146			/* drm_update_vblank_count() includes a wmb so we just
1147			 * need to ensure that the compiler emits the write
1148			 * to mark the vblank as enabled after the call
1149			 * to drm_update_vblank_count().
1150			 */
1151			WRITE_ONCE(vblank->enabled, true);
1152		}
1153	}
1154
1155	spin_unlock(&dev->vblank_time_lock);
1156
1157	return ret;
1158}
1159
1160int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
1161{
1162	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1163	unsigned long irqflags;
1164	int ret = 0;
1165
1166	if (!drm_dev_has_vblank(dev))
1167		return -EINVAL;
1168
1169	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1170		return -EINVAL;
1171
1172	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1173	/* Going from 0->1 means we have to enable interrupts again */
1174	if (atomic_add_return(1, &vblank->refcount) == 1) {
1175		ret = drm_vblank_enable(dev, pipe);
1176	} else {
1177		if (!vblank->enabled) {
1178			atomic_dec(&vblank->refcount);
1179			ret = -EINVAL;
1180		}
1181	}
1182	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1183
1184	return ret;
1185}
1186
1187/**
1188 * drm_crtc_vblank_get - get a reference count on vblank events
1189 * @crtc: which CRTC to own
1190 *
1191 * Acquire a reference count on vblank events to avoid having them disabled
1192 * while in use.
1193 *
1194 * Returns:
1195 * Zero on success or a negative error code on failure.
1196 */
1197int drm_crtc_vblank_get(struct drm_crtc *crtc)
1198{
1199	return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1200}
1201EXPORT_SYMBOL(drm_crtc_vblank_get);
1202
1203void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1204{
1205	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1206
1207	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1208		return;
1209
1210	if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0))
1211		return;
1212
1213	/* Last user schedules interrupt disable */
1214	if (atomic_dec_and_test(&vblank->refcount)) {
1215		if (drm_vblank_offdelay == 0)
1216			return;
1217		else if (drm_vblank_offdelay < 0)
1218			vblank_disable_fn(&vblank->disable_timer);
1219		else if (!dev->vblank_disable_immediate)
1220			mod_timer(&vblank->disable_timer,
1221				  jiffies + ((drm_vblank_offdelay * HZ)/1000));
1222	}
1223}
1224
1225/**
1226 * drm_crtc_vblank_put - give up ownership of vblank events
1227 * @crtc: which counter to give up
1228 *
1229 * Release ownership of a given vblank counter, turning off interrupts
1230 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1231 */
1232void drm_crtc_vblank_put(struct drm_crtc *crtc)
1233{
1234	drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1235}
1236EXPORT_SYMBOL(drm_crtc_vblank_put);
1237
1238/**
1239 * drm_wait_one_vblank - wait for one vblank
1240 * @dev: DRM device
1241 * @pipe: CRTC index
1242 *
1243 * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1244 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1245 * due to lack of driver support or because the crtc is off.
1246 *
1247 * This is the legacy version of drm_crtc_wait_one_vblank().
1248 */
1249void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1250{
1251	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1252	int ret;
1253	u64 last;
1254
1255	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1256		return;
1257
1258	ret = drm_vblank_get(dev, pipe);
1259	if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n",
1260		     pipe, ret))
1261		return;
1262
1263	last = drm_vblank_count(dev, pipe);
1264
1265	ret = wait_event_timeout(vblank->queue,
1266				 last != drm_vblank_count(dev, pipe),
1267				 msecs_to_jiffies(100));
1268
1269	drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1270
1271	drm_vblank_put(dev, pipe);
1272}
1273EXPORT_SYMBOL(drm_wait_one_vblank);
1274
1275/**
1276 * drm_crtc_wait_one_vblank - wait for one vblank
1277 * @crtc: DRM crtc
1278 *
1279 * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1280 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1281 * due to lack of driver support or because the crtc is off.
1282 */
1283void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1284{
1285	drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1286}
1287EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1288
1289/**
1290 * drm_crtc_vblank_off - disable vblank events on a CRTC
1291 * @crtc: CRTC in question
1292 *
1293 * Drivers can use this function to shut down the vblank interrupt handling when
1294 * disabling a crtc. This function ensures that the latest vblank frame count is
1295 * stored so that drm_vblank_on can restore it again.
1296 *
1297 * Drivers must use this function when the hardware vblank counter can get
1298 * reset, e.g. when suspending or disabling the @crtc in general.
1299 */
1300void drm_crtc_vblank_off(struct drm_crtc *crtc)
1301{
1302	struct drm_device *dev = crtc->dev;
1303	unsigned int pipe = drm_crtc_index(crtc);
1304	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1305	struct drm_pending_vblank_event *e, *t;
1306	ktime_t now;
1307	u64 seq;
1308
1309	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1310		return;
1311
1312	/*
1313	 * Grab event_lock early to prevent vblank work from being scheduled
1314	 * while we're in the middle of shutting down vblank interrupts
1315	 */
1316	spin_lock_irq(&dev->event_lock);
1317
1318	spin_lock(&dev->vbl_lock);
1319	drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1320		    pipe, vblank->enabled, vblank->inmodeset);
1321
1322	/* Avoid redundant vblank disables without previous
1323	 * drm_crtc_vblank_on(). */
1324	if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1325		drm_vblank_disable_and_save(dev, pipe);
1326
1327	wake_up(&vblank->queue);
1328
1329	/*
1330	 * Prevent subsequent drm_vblank_get() from re-enabling
1331	 * the vblank interrupt by bumping the refcount.
1332	 */
1333	if (!vblank->inmodeset) {
1334		atomic_inc(&vblank->refcount);
1335		vblank->inmodeset = 1;
1336	}
1337	spin_unlock(&dev->vbl_lock);
1338
1339	/* Send any queued vblank events, lest the natives grow disquiet */
1340	seq = drm_vblank_count_and_time(dev, pipe, &now);
1341
1342	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1343		if (e->pipe != pipe)
1344			continue;
1345		drm_dbg_core(dev, "Sending premature vblank event on disable: "
1346			     "wanted %llu, current %llu\n",
1347			     e->sequence, seq);
1348		list_del(&e->base.link);
1349		drm_vblank_put(dev, pipe);
1350		send_vblank_event(dev, e, seq, now);
1351	}
1352
1353	/* Cancel any leftover pending vblank work */
1354	drm_vblank_cancel_pending_works(vblank);
1355
1356	spin_unlock_irq(&dev->event_lock);
1357
1358	/* Will be reset by the modeset helpers when re-enabling the crtc by
1359	 * calling drm_calc_timestamping_constants(). */
1360	vblank->hwmode.crtc_clock = 0;
1361
1362	/* Wait for any vblank work that's still executing to finish */
1363	drm_vblank_flush_worker(vblank);
1364}
1365EXPORT_SYMBOL(drm_crtc_vblank_off);
1366
1367/**
1368 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1369 * @crtc: CRTC in question
1370 *
1371 * Drivers can use this function to reset the vblank state to off at load time.
1372 * Drivers should use this together with the drm_crtc_vblank_off() and
1373 * drm_crtc_vblank_on() functions. The difference compared to
1374 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1375 * and hence doesn't need to call any driver hooks.
1376 *
1377 * This is useful for recovering driver state e.g. on driver load, or on resume.
1378 */
1379void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1380{
1381	struct drm_device *dev = crtc->dev;
1382	unsigned int pipe = drm_crtc_index(crtc);
1383	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1384
1385	spin_lock_irq(&dev->vbl_lock);
1386	/*
1387	 * Prevent subsequent drm_vblank_get() from enabling the vblank
1388	 * interrupt by bumping the refcount.
1389	 */
1390	if (!vblank->inmodeset) {
1391		atomic_inc(&vblank->refcount);
1392		vblank->inmodeset = 1;
1393	}
1394	spin_unlock_irq(&dev->vbl_lock);
1395
1396	drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list));
1397	drm_WARN_ON(dev, !list_empty(&vblank->pending_work));
1398}
1399EXPORT_SYMBOL(drm_crtc_vblank_reset);
1400
1401/**
1402 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
1403 * @crtc: CRTC in question
1404 * @max_vblank_count: max hardware vblank counter value
1405 *
1406 * Update the maximum hardware vblank counter value for @crtc
1407 * at runtime. Useful for hardware where the operation of the
1408 * hardware vblank counter depends on the currently active
1409 * display configuration.
1410 *
1411 * For example, if the hardware vblank counter does not work
1412 * when a specific connector is active the maximum can be set
1413 * to zero. And when that specific connector isn't active the
1414 * maximum can again be set to the appropriate non-zero value.
1415 *
1416 * If used, must be called before drm_vblank_on().
1417 */
1418void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
1419				   u32 max_vblank_count)
1420{
1421	struct drm_device *dev = crtc->dev;
1422	unsigned int pipe = drm_crtc_index(crtc);
1423	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1424
1425	drm_WARN_ON(dev, dev->max_vblank_count);
1426	drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset));
1427
1428	vblank->max_vblank_count = max_vblank_count;
1429}
1430EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
1431
1432/**
1433 * drm_crtc_vblank_on - enable vblank events on a CRTC
1434 * @crtc: CRTC in question
1435 *
1436 * This functions restores the vblank interrupt state captured with
1437 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1438 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1439 * unbalanced and so can also be unconditionally called in driver load code to
1440 * reflect the current hardware state of the crtc.
1441 */
1442void drm_crtc_vblank_on(struct drm_crtc *crtc)
1443{
1444	struct drm_device *dev = crtc->dev;
1445	unsigned int pipe = drm_crtc_index(crtc);
1446	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1447
1448	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1449		return;
1450
1451	spin_lock_irq(&dev->vbl_lock);
1452	drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1453		    pipe, vblank->enabled, vblank->inmodeset);
1454
1455	/* Drop our private "prevent drm_vblank_get" refcount */
1456	if (vblank->inmodeset) {
1457		atomic_dec(&vblank->refcount);
1458		vblank->inmodeset = 0;
1459	}
1460
1461	drm_reset_vblank_timestamp(dev, pipe);
1462
1463	/*
1464	 * re-enable interrupts if there are users left, or the
1465	 * user wishes vblank interrupts to be enabled all the time.
1466	 */
1467	if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1468		drm_WARN_ON(dev, drm_vblank_enable(dev, pipe));
1469	spin_unlock_irq(&dev->vbl_lock);
1470}
1471EXPORT_SYMBOL(drm_crtc_vblank_on);
1472
1473static void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
 
 
 
 
 
 
 
 
 
 
 
 
 
1474{
1475	ktime_t t_vblank;
1476	struct drm_vblank_crtc *vblank;
1477	int framedur_ns;
1478	u64 diff_ns;
1479	u32 cur_vblank, diff = 1;
1480	int count = DRM_TIMESTAMP_MAXRETRIES;
1481	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
1482
1483	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1484		return;
1485
1486	assert_spin_locked(&dev->vbl_lock);
1487	assert_spin_locked(&dev->vblank_time_lock);
1488
1489	vblank = &dev->vblank[pipe];
1490	drm_WARN_ONCE(dev,
1491		      drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
1492		      "Cannot compute missed vblanks without frame duration\n");
1493	framedur_ns = vblank->framedur_ns;
1494
1495	do {
1496		cur_vblank = __get_vblank_counter(dev, pipe);
1497		drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1498	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1499
1500	diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1501	if (framedur_ns)
1502		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1503
1504
1505	drm_dbg_vbl(dev,
1506		    "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n",
1507		    diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1508	vblank->last = (cur_vblank - diff) & max_vblank_count;
1509}
 
1510
1511/**
1512 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1513 * @crtc: CRTC in question
1514 *
1515 * Power manamement features can cause frame counter resets between vblank
1516 * disable and enable. Drivers can use this function in their
1517 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1518 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1519 * vblank counter.
1520 *
1521 * Note that drivers must have race-free high-precision timestamping support,
1522 * i.e.  &drm_crtc_funcs.get_vblank_timestamp must be hooked up and
1523 * &drm_driver.vblank_disable_immediate must be set to indicate the
1524 * time-stamping functions are race-free against vblank hardware counter
1525 * increments.
1526 */
1527void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1528{
1529	WARN_ON_ONCE(!crtc->funcs->get_vblank_timestamp);
1530	WARN_ON_ONCE(!crtc->dev->vblank_disable_immediate);
1531
1532	drm_vblank_restore(crtc->dev, drm_crtc_index(crtc));
1533}
1534EXPORT_SYMBOL(drm_crtc_vblank_restore);
1535
1536static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
1537					  unsigned int pipe)
1538{
1539	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1540
1541	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1542	if (!drm_dev_has_vblank(dev))
1543		return;
1544
1545	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1546		return;
1547
1548	/*
1549	 * To avoid all the problems that might happen if interrupts
1550	 * were enabled/disabled around or between these calls, we just
1551	 * have the kernel take a reference on the CRTC (just once though
1552	 * to avoid corrupting the count if multiple, mismatch calls occur),
1553	 * so that interrupts remain enabled in the interim.
1554	 */
1555	if (!vblank->inmodeset) {
1556		vblank->inmodeset = 0x1;
1557		if (drm_vblank_get(dev, pipe) == 0)
1558			vblank->inmodeset |= 0x2;
1559	}
1560}
1561
1562static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
1563					   unsigned int pipe)
1564{
1565	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1566
1567	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1568	if (!drm_dev_has_vblank(dev))
1569		return;
1570
1571	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1572		return;
1573
1574	if (vblank->inmodeset) {
1575		spin_lock_irq(&dev->vbl_lock);
1576		drm_reset_vblank_timestamp(dev, pipe);
1577		spin_unlock_irq(&dev->vbl_lock);
1578
1579		if (vblank->inmodeset & 0x2)
1580			drm_vblank_put(dev, pipe);
1581
1582		vblank->inmodeset = 0;
1583	}
1584}
1585
1586int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
1587				 struct drm_file *file_priv)
1588{
1589	struct drm_modeset_ctl *modeset = data;
1590	unsigned int pipe;
1591
1592	/* If drm_vblank_init() hasn't been called yet, just no-op */
1593	if (!drm_dev_has_vblank(dev))
1594		return 0;
1595
1596	/* KMS drivers handle this internally */
1597	if (!drm_core_check_feature(dev, DRIVER_LEGACY))
1598		return 0;
1599
1600	pipe = modeset->crtc;
1601	if (pipe >= dev->num_crtcs)
1602		return -EINVAL;
1603
1604	switch (modeset->cmd) {
1605	case _DRM_PRE_MODESET:
1606		drm_legacy_vblank_pre_modeset(dev, pipe);
1607		break;
1608	case _DRM_POST_MODESET:
1609		drm_legacy_vblank_post_modeset(dev, pipe);
1610		break;
1611	default:
1612		return -EINVAL;
1613	}
1614
1615	return 0;
1616}
1617
1618static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1619				  u64 req_seq,
1620				  union drm_wait_vblank *vblwait,
1621				  struct drm_file *file_priv)
1622{
1623	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1624	struct drm_pending_vblank_event *e;
1625	ktime_t now;
1626	u64 seq;
1627	int ret;
1628
1629	e = kzalloc(sizeof(*e), GFP_KERNEL);
1630	if (e == NULL) {
1631		ret = -ENOMEM;
1632		goto err_put;
1633	}
1634
1635	e->pipe = pipe;
1636	e->event.base.type = DRM_EVENT_VBLANK;
1637	e->event.base.length = sizeof(e->event.vbl);
1638	e->event.vbl.user_data = vblwait->request.signal;
1639	e->event.vbl.crtc_id = 0;
1640	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1641		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1642
1643		if (crtc)
1644			e->event.vbl.crtc_id = crtc->base.id;
1645	}
1646
1647	spin_lock_irq(&dev->event_lock);
1648
1649	/*
1650	 * drm_crtc_vblank_off() might have been called after we called
1651	 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1652	 * vblank disable, so no need for further locking.  The reference from
1653	 * drm_vblank_get() protects against vblank disable from another source.
1654	 */
1655	if (!READ_ONCE(vblank->enabled)) {
1656		ret = -EINVAL;
1657		goto err_unlock;
1658	}
1659
1660	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1661					    &e->event.base);
1662
1663	if (ret)
1664		goto err_unlock;
1665
1666	seq = drm_vblank_count_and_time(dev, pipe, &now);
1667
1668	drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n",
1669		     req_seq, seq, pipe);
1670
1671	trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1672
1673	e->sequence = req_seq;
1674	if (drm_vblank_passed(seq, req_seq)) {
1675		drm_vblank_put(dev, pipe);
1676		send_vblank_event(dev, e, seq, now);
1677		vblwait->reply.sequence = seq;
1678	} else {
1679		/* drm_handle_vblank_events will call drm_vblank_put */
1680		list_add_tail(&e->base.link, &dev->vblank_event_list);
1681		vblwait->reply.sequence = req_seq;
1682	}
1683
1684	spin_unlock_irq(&dev->event_lock);
1685
1686	return 0;
1687
1688err_unlock:
1689	spin_unlock_irq(&dev->event_lock);
1690	kfree(e);
1691err_put:
1692	drm_vblank_put(dev, pipe);
1693	return ret;
1694}
1695
1696static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1697{
1698	if (vblwait->request.sequence)
1699		return false;
1700
1701	return _DRM_VBLANK_RELATIVE ==
1702		(vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1703					  _DRM_VBLANK_EVENT |
1704					  _DRM_VBLANK_NEXTONMISS));
1705}
1706
1707/*
1708 * Widen a 32-bit param to 64-bits.
1709 *
1710 * \param narrow 32-bit value (missing upper 32 bits)
1711 * \param near 64-bit value that should be 'close' to near
1712 *
1713 * This function returns a 64-bit value using the lower 32-bits from
1714 * 'narrow' and constructing the upper 32-bits so that the result is
1715 * as close as possible to 'near'.
1716 */
1717
1718static u64 widen_32_to_64(u32 narrow, u64 near)
1719{
1720	return near + (s32) (narrow - near);
1721}
1722
1723static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1724				  struct drm_wait_vblank_reply *reply)
1725{
1726	ktime_t now;
1727	struct timespec64 ts;
1728
1729	/*
1730	 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1731	 * to store the seconds. This is safe as we always use monotonic
1732	 * timestamps since linux-4.15.
1733	 */
1734	reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1735	ts = ktime_to_timespec64(now);
1736	reply->tval_sec = (u32)ts.tv_sec;
1737	reply->tval_usec = ts.tv_nsec / 1000;
1738}
1739
1740int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1741			  struct drm_file *file_priv)
1742{
1743	struct drm_crtc *crtc;
1744	struct drm_vblank_crtc *vblank;
1745	union drm_wait_vblank *vblwait = data;
1746	int ret;
1747	u64 req_seq, seq;
1748	unsigned int pipe_index;
1749	unsigned int flags, pipe, high_pipe;
1750
1751	if (!dev->irq_enabled)
1752		return -EOPNOTSUPP;
1753
1754	if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1755		return -EINVAL;
1756
1757	if (vblwait->request.type &
1758	    ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1759	      _DRM_VBLANK_HIGH_CRTC_MASK)) {
1760		drm_dbg_core(dev,
1761			     "Unsupported type value 0x%x, supported mask 0x%x\n",
1762			     vblwait->request.type,
1763			     (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1764			      _DRM_VBLANK_HIGH_CRTC_MASK));
1765		return -EINVAL;
1766	}
1767
1768	flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1769	high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1770	if (high_pipe)
1771		pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1772	else
1773		pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1774
1775	/* Convert lease-relative crtc index into global crtc index */
1776	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1777		pipe = 0;
1778		drm_for_each_crtc(crtc, dev) {
1779			if (drm_lease_held(file_priv, crtc->base.id)) {
1780				if (pipe_index == 0)
1781					break;
1782				pipe_index--;
1783			}
1784			pipe++;
1785		}
1786	} else {
1787		pipe = pipe_index;
1788	}
1789
1790	if (pipe >= dev->num_crtcs)
1791		return -EINVAL;
1792
1793	vblank = &dev->vblank[pipe];
1794
1795	/* If the counter is currently enabled and accurate, short-circuit
1796	 * queries to return the cached timestamp of the last vblank.
1797	 */
1798	if (dev->vblank_disable_immediate &&
1799	    drm_wait_vblank_is_query(vblwait) &&
1800	    READ_ONCE(vblank->enabled)) {
1801		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1802		return 0;
1803	}
1804
1805	ret = drm_vblank_get(dev, pipe);
1806	if (ret) {
1807		drm_dbg_core(dev,
1808			     "crtc %d failed to acquire vblank counter, %d\n",
1809			     pipe, ret);
1810		return ret;
1811	}
1812	seq = drm_vblank_count(dev, pipe);
1813
1814	switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1815	case _DRM_VBLANK_RELATIVE:
1816		req_seq = seq + vblwait->request.sequence;
1817		vblwait->request.sequence = req_seq;
1818		vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1819		break;
1820	case _DRM_VBLANK_ABSOLUTE:
1821		req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1822		break;
1823	default:
1824		ret = -EINVAL;
1825		goto done;
1826	}
1827
1828	if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1829	    drm_vblank_passed(seq, req_seq)) {
1830		req_seq = seq + 1;
1831		vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1832		vblwait->request.sequence = req_seq;
1833	}
1834
1835	if (flags & _DRM_VBLANK_EVENT) {
1836		/* must hold on to the vblank ref until the event fires
1837		 * drm_vblank_put will be called asynchronously
1838		 */
1839		return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1840	}
1841
1842	if (req_seq != seq) {
1843		int wait;
1844
1845		drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n",
1846			     req_seq, pipe);
1847		wait = wait_event_interruptible_timeout(vblank->queue,
1848			drm_vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1849				      !READ_ONCE(vblank->enabled),
1850			msecs_to_jiffies(3000));
1851
1852		switch (wait) {
1853		case 0:
1854			/* timeout */
1855			ret = -EBUSY;
1856			break;
1857		case -ERESTARTSYS:
1858			/* interrupted by signal */
1859			ret = -EINTR;
1860			break;
1861		default:
1862			ret = 0;
1863			break;
1864		}
1865	}
1866
1867	if (ret != -EINTR) {
1868		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1869
1870		drm_dbg_core(dev, "crtc %d returning %u to client\n",
1871			     pipe, vblwait->reply.sequence);
1872	} else {
1873		drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n",
1874			     pipe);
1875	}
1876
1877done:
1878	drm_vblank_put(dev, pipe);
1879	return ret;
1880}
1881
1882static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1883{
1884	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1885	bool high_prec = false;
1886	struct drm_pending_vblank_event *e, *t;
1887	ktime_t now;
1888	u64 seq;
1889
1890	assert_spin_locked(&dev->event_lock);
1891
1892	seq = drm_vblank_count_and_time(dev, pipe, &now);
1893
1894	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1895		if (e->pipe != pipe)
1896			continue;
1897		if (!drm_vblank_passed(seq, e->sequence))
1898			continue;
1899
1900		drm_dbg_core(dev, "vblank event on %llu, current %llu\n",
1901			     e->sequence, seq);
1902
1903		list_del(&e->base.link);
1904		drm_vblank_put(dev, pipe);
1905		send_vblank_event(dev, e, seq, now);
1906	}
1907
1908	if (crtc && crtc->funcs->get_vblank_timestamp)
1909		high_prec = true;
1910
1911	trace_drm_vblank_event(pipe, seq, now, high_prec);
1912}
1913
1914/**
1915 * drm_handle_vblank - handle a vblank event
1916 * @dev: DRM device
1917 * @pipe: index of CRTC where this event occurred
1918 *
1919 * Drivers should call this routine in their vblank interrupt handlers to
1920 * update the vblank counter and send any signals that may be pending.
1921 *
1922 * This is the legacy version of drm_crtc_handle_vblank().
1923 */
1924bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1925{
1926	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1927	unsigned long irqflags;
1928	bool disable_irq;
1929
1930	if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev)))
1931		return false;
1932
1933	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1934		return false;
1935
1936	spin_lock_irqsave(&dev->event_lock, irqflags);
1937
1938	/* Need timestamp lock to prevent concurrent execution with
1939	 * vblank enable/disable, as this would cause inconsistent
1940	 * or corrupted timestamps and vblank counts.
1941	 */
1942	spin_lock(&dev->vblank_time_lock);
1943
1944	/* Vblank irq handling disabled. Nothing to do. */
1945	if (!vblank->enabled) {
1946		spin_unlock(&dev->vblank_time_lock);
1947		spin_unlock_irqrestore(&dev->event_lock, irqflags);
1948		return false;
1949	}
1950
1951	drm_update_vblank_count(dev, pipe, true);
1952
1953	spin_unlock(&dev->vblank_time_lock);
1954
1955	wake_up(&vblank->queue);
1956
1957	/* With instant-off, we defer disabling the interrupt until after
1958	 * we finish processing the following vblank after all events have
1959	 * been signaled. The disable has to be last (after
1960	 * drm_handle_vblank_events) so that the timestamp is always accurate.
1961	 */
1962	disable_irq = (dev->vblank_disable_immediate &&
1963		       drm_vblank_offdelay > 0 &&
1964		       !atomic_read(&vblank->refcount));
1965
1966	drm_handle_vblank_events(dev, pipe);
1967	drm_handle_vblank_works(vblank);
1968
1969	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1970
1971	if (disable_irq)
1972		vblank_disable_fn(&vblank->disable_timer);
1973
1974	return true;
1975}
1976EXPORT_SYMBOL(drm_handle_vblank);
1977
1978/**
1979 * drm_crtc_handle_vblank - handle a vblank event
1980 * @crtc: where this event occurred
1981 *
1982 * Drivers should call this routine in their vblank interrupt handlers to
1983 * update the vblank counter and send any signals that may be pending.
1984 *
1985 * This is the native KMS version of drm_handle_vblank().
1986 *
1987 * Note that for a given vblank counter value drm_crtc_handle_vblank()
1988 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
1989 * provide a barrier: Any writes done before calling
1990 * drm_crtc_handle_vblank() will be visible to callers of the later
1991 * functions, iff the vblank count is the same or a later one.
1992 *
1993 * See also &drm_vblank_crtc.count.
1994 *
1995 * Returns:
1996 * True if the event was successfully handled, false on failure.
1997 */
1998bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1999{
2000	return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
2001}
2002EXPORT_SYMBOL(drm_crtc_handle_vblank);
2003
2004/*
2005 * Get crtc VBLANK count.
2006 *
2007 * \param dev DRM device
2008 * \param data user arguement, pointing to a drm_crtc_get_sequence structure.
2009 * \param file_priv drm file private for the user's open file descriptor
2010 */
2011
2012int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
2013				struct drm_file *file_priv)
2014{
2015	struct drm_crtc *crtc;
2016	struct drm_vblank_crtc *vblank;
2017	int pipe;
2018	struct drm_crtc_get_sequence *get_seq = data;
2019	ktime_t now;
2020	bool vblank_enabled;
2021	int ret;
2022
2023	if (!drm_core_check_feature(dev, DRIVER_MODESET))
2024		return -EOPNOTSUPP;
2025
2026	if (!dev->irq_enabled)
2027		return -EOPNOTSUPP;
2028
2029	crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
2030	if (!crtc)
2031		return -ENOENT;
2032
2033	pipe = drm_crtc_index(crtc);
2034
2035	vblank = &dev->vblank[pipe];
2036	vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
2037
2038	if (!vblank_enabled) {
2039		ret = drm_crtc_vblank_get(crtc);
2040		if (ret) {
2041			drm_dbg_core(dev,
2042				     "crtc %d failed to acquire vblank counter, %d\n",
2043				     pipe, ret);
2044			return ret;
2045		}
2046	}
2047	drm_modeset_lock(&crtc->mutex, NULL);
2048	if (crtc->state)
2049		get_seq->active = crtc->state->enable;
2050	else
2051		get_seq->active = crtc->enabled;
2052	drm_modeset_unlock(&crtc->mutex);
2053	get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
2054	get_seq->sequence_ns = ktime_to_ns(now);
2055	if (!vblank_enabled)
2056		drm_crtc_vblank_put(crtc);
2057	return 0;
2058}
2059
2060/*
2061 * Queue a event for VBLANK sequence
2062 *
2063 * \param dev DRM device
2064 * \param data user arguement, pointing to a drm_crtc_queue_sequence structure.
2065 * \param file_priv drm file private for the user's open file descriptor
2066 */
2067
2068int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
2069				  struct drm_file *file_priv)
2070{
2071	struct drm_crtc *crtc;
2072	struct drm_vblank_crtc *vblank;
2073	int pipe;
2074	struct drm_crtc_queue_sequence *queue_seq = data;
2075	ktime_t now;
2076	struct drm_pending_vblank_event *e;
2077	u32 flags;
2078	u64 seq;
2079	u64 req_seq;
2080	int ret;
2081
2082	if (!drm_core_check_feature(dev, DRIVER_MODESET))
2083		return -EOPNOTSUPP;
2084
2085	if (!dev->irq_enabled)
2086		return -EOPNOTSUPP;
2087
2088	crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
2089	if (!crtc)
2090		return -ENOENT;
2091
2092	flags = queue_seq->flags;
2093	/* Check valid flag bits */
2094	if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
2095		      DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
2096		return -EINVAL;
2097
2098	pipe = drm_crtc_index(crtc);
2099
2100	vblank = &dev->vblank[pipe];
2101
2102	e = kzalloc(sizeof(*e), GFP_KERNEL);
2103	if (e == NULL)
2104		return -ENOMEM;
2105
2106	ret = drm_crtc_vblank_get(crtc);
2107	if (ret) {
2108		drm_dbg_core(dev,
2109			     "crtc %d failed to acquire vblank counter, %d\n",
2110			     pipe, ret);
2111		goto err_free;
2112	}
2113
2114	seq = drm_vblank_count_and_time(dev, pipe, &now);
2115	req_seq = queue_seq->sequence;
2116
2117	if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
2118		req_seq += seq;
2119
2120	if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && drm_vblank_passed(seq, req_seq))
2121		req_seq = seq + 1;
2122
2123	e->pipe = pipe;
2124	e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
2125	e->event.base.length = sizeof(e->event.seq);
2126	e->event.seq.user_data = queue_seq->user_data;
2127
2128	spin_lock_irq(&dev->event_lock);
2129
2130	/*
2131	 * drm_crtc_vblank_off() might have been called after we called
2132	 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
2133	 * vblank disable, so no need for further locking.  The reference from
2134	 * drm_crtc_vblank_get() protects against vblank disable from another source.
2135	 */
2136	if (!READ_ONCE(vblank->enabled)) {
2137		ret = -EINVAL;
2138		goto err_unlock;
2139	}
2140
2141	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
2142					    &e->event.base);
2143
2144	if (ret)
2145		goto err_unlock;
2146
2147	e->sequence = req_seq;
2148
2149	if (drm_vblank_passed(seq, req_seq)) {
2150		drm_crtc_vblank_put(crtc);
2151		send_vblank_event(dev, e, seq, now);
2152		queue_seq->sequence = seq;
2153	} else {
2154		/* drm_handle_vblank_events will call drm_vblank_put */
2155		list_add_tail(&e->base.link, &dev->vblank_event_list);
2156		queue_seq->sequence = req_seq;
2157	}
2158
2159	spin_unlock_irq(&dev->event_lock);
2160	return 0;
2161
2162err_unlock:
2163	spin_unlock_irq(&dev->event_lock);
2164	drm_crtc_vblank_put(crtc);
2165err_free:
2166	kfree(e);
2167	return ret;
2168}
2169