Linux Audio

Check our new training course

Loading...
v5.9
   1/*
   2 * Copyright 2009 Jerome Glisse.
   3 * All Rights Reserved.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the
   7 * "Software"), to deal in the Software without restriction, including
   8 * without limitation the rights to use, copy, modify, merge, publish,
   9 * distribute, sub license, and/or sell copies of the Software, and to
  10 * permit persons to whom the Software is furnished to do so, subject to
  11 * the following conditions:
  12 *
  13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  20 *
  21 * The above copyright notice and this permission notice (including the
  22 * next paragraph) shall be included in all copies or substantial portions
  23 * of the Software.
  24 *
  25 */
  26/*
  27 * Authors:
  28 *    Jerome Glisse <glisse@freedesktop.org>
  29 *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
  30 *    Dave Airlie
  31 */
  32
  33#include <linux/dma-mapping.h>
  34#include <linux/iommu.h>
  35#include <linux/hmm.h>
  36#include <linux/pagemap.h>
  37#include <linux/sched/task.h>
  38#include <linux/sched/mm.h>
  39#include <linux/seq_file.h>
  40#include <linux/slab.h>
  41#include <linux/swap.h>
  42#include <linux/swiotlb.h>
  43#include <linux/dma-buf.h>
  44#include <linux/sizes.h>
  45
  46#include <drm/ttm/ttm_bo_api.h>
  47#include <drm/ttm/ttm_bo_driver.h>
  48#include <drm/ttm/ttm_placement.h>
  49#include <drm/ttm/ttm_module.h>
  50#include <drm/ttm/ttm_page_alloc.h>
  51
  52#include <drm/drm_debugfs.h>
  53#include <drm/amdgpu_drm.h>
  54
  55#include "amdgpu.h"
  56#include "amdgpu_object.h"
  57#include "amdgpu_trace.h"
  58#include "amdgpu_amdkfd.h"
  59#include "amdgpu_sdma.h"
  60#include "amdgpu_ras.h"
  61#include "amdgpu_atomfirmware.h"
 
  62#include "bif/bif_4_1_d.h"
  63
  64#define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
  65
  66
  67/**
  68 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
  69 * memory request.
  70 *
  71 * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
  72 * @type: The type of memory requested
  73 * @man: The memory type manager for each domain
  74 *
  75 * This is called by ttm_bo_init_mm() when a buffer object is being
  76 * initialized.
  77 */
  78static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
  79				struct ttm_mem_type_manager *man)
  80{
  81	struct amdgpu_device *adev;
  82
  83	adev = amdgpu_ttm_adev(bdev);
  84
  85	switch (type) {
  86	case TTM_PL_SYSTEM:
  87		/* System memory */
  88		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
  89		man->available_caching = TTM_PL_MASK_CACHING;
  90		man->default_caching = TTM_PL_FLAG_CACHED;
  91		break;
  92	case TTM_PL_TT:
  93		/* GTT memory  */
  94		man->func = &amdgpu_gtt_mgr_func;
  95		man->available_caching = TTM_PL_MASK_CACHING;
  96		man->default_caching = TTM_PL_FLAG_CACHED;
  97		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
  98		break;
  99	case TTM_PL_VRAM:
 100		/* "On-card" video ram */
 101		man->func = &amdgpu_vram_mgr_func;
 102		man->flags = TTM_MEMTYPE_FLAG_FIXED |
 103			     TTM_MEMTYPE_FLAG_MAPPABLE;
 104		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
 105		man->default_caching = TTM_PL_FLAG_WC;
 106		break;
 107	case AMDGPU_PL_GDS:
 108	case AMDGPU_PL_GWS:
 109	case AMDGPU_PL_OA:
 110		/* On-chip GDS memory*/
 111		man->func = &ttm_bo_manager_func;
 112		man->flags = TTM_MEMTYPE_FLAG_FIXED;
 113		man->available_caching = TTM_PL_FLAG_UNCACHED;
 114		man->default_caching = TTM_PL_FLAG_UNCACHED;
 115		break;
 116	default:
 117		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
 118		return -EINVAL;
 119	}
 120	return 0;
 121}
 122
 123/**
 124 * amdgpu_evict_flags - Compute placement flags
 125 *
 126 * @bo: The buffer object to evict
 127 * @placement: Possible destination(s) for evicted BO
 128 *
 129 * Fill in placement data when ttm_bo_evict() is called
 130 */
 131static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
 132				struct ttm_placement *placement)
 133{
 134	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 135	struct amdgpu_bo *abo;
 136	static const struct ttm_place placements = {
 137		.fpfn = 0,
 138		.lpfn = 0,
 139		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
 
 140	};
 141
 142	/* Don't handle scatter gather BOs */
 143	if (bo->type == ttm_bo_type_sg) {
 144		placement->num_placement = 0;
 145		placement->num_busy_placement = 0;
 146		return;
 147	}
 148
 149	/* Object isn't an AMDGPU object so ignore */
 150	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
 151		placement->placement = &placements;
 152		placement->busy_placement = &placements;
 153		placement->num_placement = 1;
 154		placement->num_busy_placement = 1;
 155		return;
 156	}
 157
 158	abo = ttm_to_amdgpu_bo(bo);
 159	switch (bo->mem.mem_type) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160	case AMDGPU_PL_GDS:
 161	case AMDGPU_PL_GWS:
 162	case AMDGPU_PL_OA:
 163		placement->num_placement = 0;
 164		placement->num_busy_placement = 0;
 165		return;
 166
 167	case TTM_PL_VRAM:
 168		if (!adev->mman.buffer_funcs_enabled) {
 169			/* Move to system memory */
 170			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 171		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
 172			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
 173			   amdgpu_bo_in_cpu_visible_vram(abo)) {
 174
 175			/* Try evicting to the CPU inaccessible part of VRAM
 176			 * first, but only set GTT as busy placement, so this
 177			 * BO will be evicted to GTT rather than causing other
 178			 * BOs to be evicted from VRAM
 179			 */
 180			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
 181							 AMDGPU_GEM_DOMAIN_GTT);
 182			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
 183			abo->placements[0].lpfn = 0;
 184			abo->placement.busy_placement = &abo->placements[1];
 185			abo->placement.num_busy_placement = 1;
 186		} else {
 187			/* Move to GTT memory */
 188			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
 189		}
 190		break;
 191	case TTM_PL_TT:
 
 192	default:
 193		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 194		break;
 195	}
 196	*placement = abo->placement;
 197}
 198
 199/**
 200 * amdgpu_verify_access - Verify access for a mmap call
 201 *
 202 * @bo:	The buffer object to map
 203 * @filp: The file pointer from the process performing the mmap
 204 *
 205 * This is called by ttm_bo_mmap() to verify whether a process
 206 * has the right to mmap a BO to their process space.
 207 */
 208static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
 209{
 210	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
 211
 212	/*
 213	 * Don't verify access for KFD BOs. They don't have a GEM
 214	 * object associated with them.
 215	 */
 216	if (abo->kfd_bo)
 217		return 0;
 218
 219	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
 220		return -EPERM;
 221	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
 222					  filp->private_data);
 223}
 224
 225/**
 226 * amdgpu_move_null - Register memory for a buffer object
 227 *
 228 * @bo: The bo to assign the memory to
 229 * @new_mem: The memory to be assigned.
 230 *
 231 * Assign the memory from new_mem to the memory of the buffer object bo.
 232 */
 233static void amdgpu_move_null(struct ttm_buffer_object *bo,
 234			     struct ttm_mem_reg *new_mem)
 235{
 236	struct ttm_mem_reg *old_mem = &bo->mem;
 237
 238	BUG_ON(old_mem->mm_node != NULL);
 239	*old_mem = *new_mem;
 240	new_mem->mm_node = NULL;
 241}
 242
 243/**
 244 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
 245 *
 246 * @bo: The bo to assign the memory to.
 247 * @mm_node: Memory manager node for drm allocator.
 248 * @mem: The region where the bo resides.
 249 *
 250 */
 251static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
 252				    struct drm_mm_node *mm_node,
 253				    struct ttm_mem_reg *mem)
 254{
 255	uint64_t addr = 0;
 256
 257	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
 258		addr = mm_node->start << PAGE_SHIFT;
 259		addr += amdgpu_ttm_domain_start(amdgpu_ttm_adev(bo->bdev),
 260						mem->mem_type);
 261	}
 262	return addr;
 263}
 264
 265/**
 266 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
 267 * @offset. It also modifies the offset to be within the drm_mm_node returned
 268 *
 269 * @mem: The region where the bo resides.
 270 * @offset: The offset that drm_mm_node is used for finding.
 271 *
 272 */
 273static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
 274					       uint64_t *offset)
 275{
 276	struct drm_mm_node *mm_node = mem->mm_node;
 277
 278	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
 279		*offset -= (mm_node->size << PAGE_SHIFT);
 280		++mm_node;
 281	}
 282	return mm_node;
 283}
 284
 285/**
 286 * amdgpu_ttm_map_buffer - Map memory into the GART windows
 287 * @bo: buffer object to map
 288 * @mem: memory object to map
 289 * @mm_node: drm_mm node object to map
 290 * @num_pages: number of pages to map
 291 * @offset: offset into @mm_node where to start
 292 * @window: which GART window to use
 293 * @ring: DMA ring to use for the copy
 294 * @tmz: if we should setup a TMZ enabled mapping
 295 * @addr: resulting address inside the MC address space
 296 *
 297 * Setup one of the GART windows to access a specific piece of memory or return
 298 * the physical address for local memory.
 299 */
 300static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
 301				 struct ttm_mem_reg *mem,
 302				 struct drm_mm_node *mm_node,
 303				 unsigned num_pages, uint64_t offset,
 304				 unsigned window, struct amdgpu_ring *ring,
 305				 bool tmz, uint64_t *addr)
 306{
 307	struct amdgpu_device *adev = ring->adev;
 308	struct amdgpu_job *job;
 309	unsigned num_dw, num_bytes;
 310	struct dma_fence *fence;
 311	uint64_t src_addr, dst_addr;
 312	void *cpu_addr;
 313	uint64_t flags;
 314	unsigned int i;
 315	int r;
 316
 317	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
 318	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
 
 319
 320	/* Map only what can't be accessed directly */
 321	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
 322		*addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset;
 
 323		return 0;
 324	}
 325
 326	*addr = adev->gmc.gart_start;
 327	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
 328		AMDGPU_GPU_PAGE_SIZE;
 329	*addr += offset & ~PAGE_MASK;
 330
 331	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
 332	num_bytes = num_pages * 8;
 333
 334	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
 335				     AMDGPU_IB_POOL_DELAYED, &job);
 336	if (r)
 337		return r;
 338
 339	src_addr = num_dw * 4;
 340	src_addr += job->ibs[0].gpu_addr;
 341
 342	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
 343	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
 344	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
 345				dst_addr, num_bytes, false);
 346
 347	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
 348	WARN_ON(job->ibs[0].length_dw > num_dw);
 349
 350	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
 351	if (tmz)
 352		flags |= AMDGPU_PTE_TMZ;
 353
 354	cpu_addr = &job->ibs[0].ptr[num_dw];
 355
 356	if (mem->mem_type == TTM_PL_TT) {
 357		struct ttm_dma_tt *dma;
 358		dma_addr_t *dma_address;
 359
 360		dma = container_of(bo->ttm, struct ttm_dma_tt, ttm);
 361		dma_address = &dma->dma_address[offset >> PAGE_SHIFT];
 362		r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
 363				    cpu_addr);
 364		if (r)
 365			goto error_free;
 366	} else {
 367		dma_addr_t dma_address;
 368
 369		dma_address = (mm_node->start << PAGE_SHIFT) + offset;
 370		dma_address += adev->vm_manager.vram_base_offset;
 371
 372		for (i = 0; i < num_pages; ++i) {
 373			r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
 374					    &dma_address, flags, cpu_addr);
 375			if (r)
 376				goto error_free;
 377
 378			dma_address += PAGE_SIZE;
 379		}
 380	}
 381
 382	r = amdgpu_job_submit(job, &adev->mman.entity,
 383			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
 384	if (r)
 385		goto error_free;
 386
 387	dma_fence_put(fence);
 388
 389	return r;
 390
 391error_free:
 392	amdgpu_job_free(job);
 393	return r;
 394}
 395
 396/**
 397 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
 398 * @adev: amdgpu device
 399 * @src: buffer/address where to read from
 400 * @dst: buffer/address where to write to
 401 * @size: number of bytes to copy
 402 * @tmz: if a secure copy should be used
 403 * @resv: resv object to sync to
 404 * @f: Returns the last fence if multiple jobs are submitted.
 405 *
 406 * The function copies @size bytes from {src->mem + src->offset} to
 407 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
 408 * move and different for a BO to BO copy.
 409 *
 410 */
 411int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
 412			       const struct amdgpu_copy_mem *src,
 413			       const struct amdgpu_copy_mem *dst,
 414			       uint64_t size, bool tmz,
 415			       struct dma_resv *resv,
 416			       struct dma_fence **f)
 417{
 418	const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
 419					AMDGPU_GPU_PAGE_SIZE);
 420
 421	uint64_t src_node_size, dst_node_size, src_offset, dst_offset;
 422	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
 423	struct drm_mm_node *src_mm, *dst_mm;
 424	struct dma_fence *fence = NULL;
 425	int r = 0;
 426
 427	if (!adev->mman.buffer_funcs_enabled) {
 428		DRM_ERROR("Trying to move memory with ring turned off.\n");
 429		return -EINVAL;
 430	}
 431
 432	src_offset = src->offset;
 433	if (src->mem->mm_node) {
 434		src_mm = amdgpu_find_mm_node(src->mem, &src_offset);
 435		src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset;
 436	} else {
 437		src_mm = NULL;
 438		src_node_size = ULLONG_MAX;
 439	}
 440
 441	dst_offset = dst->offset;
 442	if (dst->mem->mm_node) {
 443		dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset);
 444		dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset;
 445	} else {
 446		dst_mm = NULL;
 447		dst_node_size = ULLONG_MAX;
 448	}
 449
 450	mutex_lock(&adev->mman.gtt_window_lock);
 451
 452	while (size) {
 453		uint32_t src_page_offset = src_offset & ~PAGE_MASK;
 454		uint32_t dst_page_offset = dst_offset & ~PAGE_MASK;
 455		struct dma_fence *next;
 456		uint32_t cur_size;
 457		uint64_t from, to;
 458
 459		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
 460		 * begins at an offset, then adjust the size accordingly
 461		 */
 462		cur_size = max(src_page_offset, dst_page_offset);
 463		cur_size = min(min3(src_node_size, dst_node_size, size),
 464			       (uint64_t)(GTT_MAX_BYTES - cur_size));
 465
 466		/* Map src to window 0 and dst to window 1. */
 467		r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm,
 468					  PFN_UP(cur_size + src_page_offset),
 469					  src_offset, 0, ring, tmz, &from);
 470		if (r)
 471			goto error;
 472
 473		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm,
 474					  PFN_UP(cur_size + dst_page_offset),
 475					  dst_offset, 1, ring, tmz, &to);
 476		if (r)
 477			goto error;
 478
 479		r = amdgpu_copy_buffer(ring, from, to, cur_size,
 480				       resv, &next, false, true, tmz);
 481		if (r)
 482			goto error;
 483
 484		dma_fence_put(fence);
 485		fence = next;
 486
 487		size -= cur_size;
 488		if (!size)
 489			break;
 490
 491		src_node_size -= cur_size;
 492		if (!src_node_size) {
 493			++src_mm;
 494			src_node_size = src_mm->size << PAGE_SHIFT;
 495			src_offset = 0;
 496		} else {
 497			src_offset += cur_size;
 498		}
 499
 500		dst_node_size -= cur_size;
 501		if (!dst_node_size) {
 502			++dst_mm;
 503			dst_node_size = dst_mm->size << PAGE_SHIFT;
 504			dst_offset = 0;
 505		} else {
 506			dst_offset += cur_size;
 507		}
 508	}
 509error:
 510	mutex_unlock(&adev->mman.gtt_window_lock);
 511	if (f)
 512		*f = dma_fence_get(fence);
 513	dma_fence_put(fence);
 514	return r;
 515}
 516
 517/**
 518 * amdgpu_move_blit - Copy an entire buffer to another buffer
 519 *
 520 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
 521 * help move buffers to and from VRAM.
 522 */
 523static int amdgpu_move_blit(struct ttm_buffer_object *bo,
 524			    bool evict, bool no_wait_gpu,
 525			    struct ttm_mem_reg *new_mem,
 526			    struct ttm_mem_reg *old_mem)
 527{
 528	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 529	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
 530	struct amdgpu_copy_mem src, dst;
 531	struct dma_fence *fence = NULL;
 532	int r;
 533
 534	src.bo = bo;
 535	dst.bo = bo;
 536	src.mem = old_mem;
 537	dst.mem = new_mem;
 538	src.offset = 0;
 539	dst.offset = 0;
 540
 541	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
 542				       new_mem->num_pages << PAGE_SHIFT,
 543				       amdgpu_bo_encrypted(abo),
 544				       bo->base.resv, &fence);
 545	if (r)
 546		goto error;
 547
 548	/* clear the space being freed */
 549	if (old_mem->mem_type == TTM_PL_VRAM &&
 550	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
 551		struct dma_fence *wipe_fence = NULL;
 552
 553		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
 554				       NULL, &wipe_fence);
 555		if (r) {
 556			goto error;
 557		} else if (wipe_fence) {
 558			dma_fence_put(fence);
 559			fence = wipe_fence;
 560		}
 561	}
 562
 563	/* Always block for VM page tables before committing the new location */
 564	if (bo->type == ttm_bo_type_kernel)
 565		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
 566	else
 567		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
 568	dma_fence_put(fence);
 569	return r;
 570
 571error:
 572	if (fence)
 573		dma_fence_wait(fence, false);
 574	dma_fence_put(fence);
 575	return r;
 576}
 577
 578/**
 579 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
 580 *
 581 * Called by amdgpu_bo_move().
 582 */
 583static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
 584				struct ttm_operation_ctx *ctx,
 585				struct ttm_mem_reg *new_mem)
 586{
 587	struct ttm_mem_reg *old_mem = &bo->mem;
 588	struct ttm_mem_reg tmp_mem;
 589	struct ttm_place placements;
 590	struct ttm_placement placement;
 591	int r;
 592
 593	/* create space/pages for new_mem in GTT space */
 594	tmp_mem = *new_mem;
 595	tmp_mem.mm_node = NULL;
 596	placement.num_placement = 1;
 597	placement.placement = &placements;
 598	placement.num_busy_placement = 1;
 599	placement.busy_placement = &placements;
 600	placements.fpfn = 0;
 601	placements.lpfn = 0;
 602	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
 603	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
 604	if (unlikely(r)) {
 605		pr_err("Failed to find GTT space for blit from VRAM\n");
 606		return r;
 607	}
 608
 609	/* set caching flags */
 610	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
 611	if (unlikely(r)) {
 612		goto out_cleanup;
 613	}
 614
 615	/* Bind the memory to the GTT space */
 616	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
 617	if (unlikely(r)) {
 618		goto out_cleanup;
 619	}
 620
 621	/* blit VRAM to GTT */
 622	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
 623	if (unlikely(r)) {
 624		goto out_cleanup;
 625	}
 626
 627	/* move BO (in tmp_mem) to new_mem */
 628	r = ttm_bo_move_ttm(bo, ctx, new_mem);
 629out_cleanup:
 630	ttm_bo_mem_put(bo, &tmp_mem);
 631	return r;
 632}
 633
 634/**
 635 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
 636 *
 637 * Called by amdgpu_bo_move().
 638 */
 639static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
 640				struct ttm_operation_ctx *ctx,
 641				struct ttm_mem_reg *new_mem)
 642{
 643	struct ttm_mem_reg *old_mem = &bo->mem;
 644	struct ttm_mem_reg tmp_mem;
 645	struct ttm_placement placement;
 646	struct ttm_place placements;
 647	int r;
 648
 649	/* make space in GTT for old_mem buffer */
 650	tmp_mem = *new_mem;
 651	tmp_mem.mm_node = NULL;
 652	placement.num_placement = 1;
 653	placement.placement = &placements;
 654	placement.num_busy_placement = 1;
 655	placement.busy_placement = &placements;
 656	placements.fpfn = 0;
 657	placements.lpfn = 0;
 658	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
 659	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
 660	if (unlikely(r)) {
 661		pr_err("Failed to find GTT space for blit to VRAM\n");
 662		return r;
 663	}
 664
 665	/* move/bind old memory to GTT space */
 666	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
 667	if (unlikely(r)) {
 668		goto out_cleanup;
 669	}
 670
 671	/* copy to VRAM */
 672	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
 673	if (unlikely(r)) {
 674		goto out_cleanup;
 675	}
 676out_cleanup:
 677	ttm_bo_mem_put(bo, &tmp_mem);
 678	return r;
 679}
 680
 681/**
 682 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
 683 *
 684 * Called by amdgpu_bo_move()
 685 */
 686static bool amdgpu_mem_visible(struct amdgpu_device *adev,
 687			       struct ttm_mem_reg *mem)
 688{
 689	struct drm_mm_node *nodes = mem->mm_node;
 
 690
 691	if (mem->mem_type == TTM_PL_SYSTEM ||
 692	    mem->mem_type == TTM_PL_TT)
 693		return true;
 694	if (mem->mem_type != TTM_PL_VRAM)
 695		return false;
 696
 697	/* ttm_mem_reg_ioremap only supports contiguous memory */
 698	if (nodes->size != mem->num_pages)
 
 
 699		return false;
 700
 701	return ((nodes->start + nodes->size) << PAGE_SHIFT)
 702		<= adev->gmc.visible_vram_size;
 703}
 704
 705/**
 706 * amdgpu_bo_move - Move a buffer object to a new memory location
 707 *
 708 * Called by ttm_bo_handle_move_mem()
 709 */
 710static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
 711			  struct ttm_operation_ctx *ctx,
 712			  struct ttm_mem_reg *new_mem)
 
 713{
 714	struct amdgpu_device *adev;
 715	struct amdgpu_bo *abo;
 716	struct ttm_mem_reg *old_mem = &bo->mem;
 717	int r;
 718
 
 
 
 
 
 
 
 719	/* Can't move a pinned BO */
 720	abo = ttm_to_amdgpu_bo(bo);
 721	if (WARN_ON_ONCE(abo->pin_count > 0))
 722		return -EINVAL;
 723
 724	adev = amdgpu_ttm_adev(bo->bdev);
 725
 726	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
 727		amdgpu_move_null(bo, new_mem);
 728		return 0;
 729	}
 730	if ((old_mem->mem_type == TTM_PL_TT &&
 731	     new_mem->mem_type == TTM_PL_SYSTEM) ||
 732	    (old_mem->mem_type == TTM_PL_SYSTEM &&
 733	     new_mem->mem_type == TTM_PL_TT)) {
 734		/* bind is enough */
 735		amdgpu_move_null(bo, new_mem);
 736		return 0;
 
 
 
 
 
 
 
 
 
 
 737	}
 
 738	if (old_mem->mem_type == AMDGPU_PL_GDS ||
 739	    old_mem->mem_type == AMDGPU_PL_GWS ||
 740	    old_mem->mem_type == AMDGPU_PL_OA ||
 741	    new_mem->mem_type == AMDGPU_PL_GDS ||
 742	    new_mem->mem_type == AMDGPU_PL_GWS ||
 743	    new_mem->mem_type == AMDGPU_PL_OA) {
 744		/* Nothing to save here */
 745		amdgpu_move_null(bo, new_mem);
 746		return 0;
 747	}
 748
 749	if (!adev->mman.buffer_funcs_enabled) {
 750		r = -ENODEV;
 751		goto memcpy;
 
 
 
 
 752	}
 753
 754	if (old_mem->mem_type == TTM_PL_VRAM &&
 755	    new_mem->mem_type == TTM_PL_SYSTEM) {
 756		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
 757	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
 758		   new_mem->mem_type == TTM_PL_VRAM) {
 759		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
 
 
 
 
 
 
 
 760	} else {
 761		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
 762				     new_mem, old_mem);
 763	}
 764
 765	if (r) {
 766memcpy:
 767		/* Check that all memory is CPU accessible */
 768		if (!amdgpu_mem_visible(adev, old_mem) ||
 769		    !amdgpu_mem_visible(adev, new_mem)) {
 770			pr_err("Move buffer fallback to memcpy unavailable\n");
 771			return r;
 772		}
 773
 774		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
 775		if (r)
 776			return r;
 777	}
 778
 779	if (bo->type == ttm_bo_type_device &&
 780	    new_mem->mem_type == TTM_PL_VRAM &&
 781	    old_mem->mem_type != TTM_PL_VRAM) {
 782		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
 783		 * accesses the BO after it's moved.
 784		 */
 785		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
 786	}
 787
 788	/* update statistics */
 789	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
 
 790	return 0;
 791}
 792
 793/**
 794 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
 795 *
 796 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
 797 */
 798static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
 
 799{
 800	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
 801	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 802	struct drm_mm_node *mm_node = mem->mm_node;
 803
 804	mem->bus.addr = NULL;
 805	mem->bus.offset = 0;
 806	mem->bus.size = mem->num_pages << PAGE_SHIFT;
 807	mem->bus.base = 0;
 808	mem->bus.is_iomem = false;
 809	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
 810		return -EINVAL;
 811	switch (mem->mem_type) {
 812	case TTM_PL_SYSTEM:
 813		/* system memory */
 814		return 0;
 815	case TTM_PL_TT:
 
 816		break;
 817	case TTM_PL_VRAM:
 818		mem->bus.offset = mem->start << PAGE_SHIFT;
 819		/* check if it's visible */
 820		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
 821			return -EINVAL;
 822		/* Only physically contiguous buffers apply. In a contiguous
 823		 * buffer, size of the first mm_node would match the number of
 824		 * pages in ttm_mem_reg.
 825		 */
 826		if (adev->mman.aper_base_kaddr &&
 827		    (mm_node->size == mem->num_pages))
 828			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
 829					mem->bus.offset;
 830
 831		mem->bus.base = adev->gmc.aper_base;
 832		mem->bus.is_iomem = true;
 833		break;
 834	default:
 835		return -EINVAL;
 836	}
 837	return 0;
 838}
 839
 840static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
 841					   unsigned long page_offset)
 842{
 843	uint64_t offset = (page_offset << PAGE_SHIFT);
 844	struct drm_mm_node *mm;
 845
 846	mm = amdgpu_find_mm_node(&bo->mem, &offset);
 847	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
 848		(offset >> PAGE_SHIFT);
 849}
 850
 851/**
 852 * amdgpu_ttm_domain_start - Returns GPU start address
 853 * @adev: amdgpu device object
 854 * @type: type of the memory
 855 *
 856 * Returns:
 857 * GPU start address of a memory domain
 858 */
 859
 860uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
 861{
 862	switch (type) {
 863	case TTM_PL_TT:
 864		return adev->gmc.gart_start;
 865	case TTM_PL_VRAM:
 866		return adev->gmc.vram_start;
 867	}
 868
 869	return 0;
 870}
 871
 872/*
 873 * TTM backend functions.
 874 */
 875struct amdgpu_ttm_tt {
 876	struct ttm_dma_tt	ttm;
 877	struct drm_gem_object	*gobj;
 878	u64			offset;
 879	uint64_t		userptr;
 880	struct task_struct	*usertask;
 881	uint32_t		userflags;
 
 882#if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
 883	struct hmm_range	*range;
 884#endif
 885};
 886
 887#ifdef CONFIG_DRM_AMDGPU_USERPTR
 888/**
 889 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
 890 * memory and start HMM tracking CPU page table update
 891 *
 892 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
 893 * once afterwards to stop HMM tracking
 894 */
 895int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
 896{
 897	struct ttm_tt *ttm = bo->tbo.ttm;
 898	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 899	unsigned long start = gtt->userptr;
 900	struct vm_area_struct *vma;
 901	struct hmm_range *range;
 902	unsigned long timeout;
 903	struct mm_struct *mm;
 904	unsigned long i;
 905	int r = 0;
 906
 907	mm = bo->notifier.mm;
 908	if (unlikely(!mm)) {
 909		DRM_DEBUG_DRIVER("BO is not registered?\n");
 910		return -EFAULT;
 911	}
 912
 913	/* Another get_user_pages is running at the same time?? */
 914	if (WARN_ON(gtt->range))
 915		return -EFAULT;
 916
 917	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
 918		return -ESRCH;
 919
 920	range = kzalloc(sizeof(*range), GFP_KERNEL);
 921	if (unlikely(!range)) {
 922		r = -ENOMEM;
 923		goto out;
 924	}
 925	range->notifier = &bo->notifier;
 926	range->start = bo->notifier.interval_tree.start;
 927	range->end = bo->notifier.interval_tree.last + 1;
 928	range->default_flags = HMM_PFN_REQ_FAULT;
 929	if (!amdgpu_ttm_tt_is_readonly(ttm))
 930		range->default_flags |= HMM_PFN_REQ_WRITE;
 931
 932	range->hmm_pfns = kvmalloc_array(ttm->num_pages,
 933					 sizeof(*range->hmm_pfns), GFP_KERNEL);
 934	if (unlikely(!range->hmm_pfns)) {
 935		r = -ENOMEM;
 936		goto out_free_ranges;
 937	}
 938
 939	mmap_read_lock(mm);
 940	vma = find_vma(mm, start);
 941	if (unlikely(!vma || start < vma->vm_start)) {
 942		r = -EFAULT;
 943		goto out_unlock;
 944	}
 945	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
 946		vma->vm_file)) {
 947		r = -EPERM;
 948		goto out_unlock;
 949	}
 950	mmap_read_unlock(mm);
 951	timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
 952
 953retry:
 954	range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
 955
 956	mmap_read_lock(mm);
 957	r = hmm_range_fault(range);
 958	mmap_read_unlock(mm);
 959	if (unlikely(r)) {
 960		/*
 961		 * FIXME: This timeout should encompass the retry from
 962		 * mmu_interval_read_retry() as well.
 963		 */
 964		if (r == -EBUSY && !time_after(jiffies, timeout))
 965			goto retry;
 966		goto out_free_pfns;
 967	}
 968
 969	/*
 970	 * Due to default_flags, all pages are HMM_PFN_VALID or
 971	 * hmm_range_fault() fails. FIXME: The pages cannot be touched outside
 972	 * the notifier_lock, and mmu_interval_read_retry() must be done first.
 973	 */
 974	for (i = 0; i < ttm->num_pages; i++)
 975		pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]);
 976
 977	gtt->range = range;
 978	mmput(mm);
 979
 980	return 0;
 981
 
 
 
 
 982out_unlock:
 983	mmap_read_unlock(mm);
 984out_free_pfns:
 985	kvfree(range->hmm_pfns);
 986out_free_ranges:
 987	kfree(range);
 988out:
 989	mmput(mm);
 
 990	return r;
 991}
 992
 993/**
 994 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
 995 * Check if the pages backing this ttm range have been invalidated
 996 *
 997 * Returns: true if pages are still valid
 998 */
 999bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
1000{
1001	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1002	bool r = false;
1003
1004	if (!gtt || !gtt->userptr)
1005		return false;
1006
1007	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
1008		gtt->userptr, ttm->num_pages);
1009
1010	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
1011		"No user pages to check\n");
1012
1013	if (gtt->range) {
1014		/*
1015		 * FIXME: Must always hold notifier_lock for this, and must
1016		 * not ignore the return code.
1017		 */
1018		r = mmu_interval_read_retry(gtt->range->notifier,
1019					 gtt->range->notifier_seq);
1020		kvfree(gtt->range->hmm_pfns);
1021		kfree(gtt->range);
1022		gtt->range = NULL;
1023	}
1024
1025	return !r;
1026}
1027#endif
1028
1029/**
1030 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
1031 *
1032 * Called by amdgpu_cs_list_validate(). This creates the page list
1033 * that backs user memory and will ultimately be mapped into the device
1034 * address space.
1035 */
1036void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
1037{
1038	unsigned long i;
1039
1040	for (i = 0; i < ttm->num_pages; ++i)
1041		ttm->pages[i] = pages ? pages[i] : NULL;
1042}
1043
1044/**
1045 * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
1046 *
1047 * Called by amdgpu_ttm_backend_bind()
1048 **/
1049static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
 
1050{
1051	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1052	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1053	int r;
1054
1055	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1056	enum dma_data_direction direction = write ?
1057		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
 
1058
1059	/* Allocate an SG array and squash pages into it */
1060	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
1061				      ttm->num_pages << PAGE_SHIFT,
1062				      GFP_KERNEL);
1063	if (r)
1064		goto release_sg;
1065
1066	/* Map SG to device */
1067	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
1068	if (r)
1069		goto release_sg;
1070
1071	/* convert SG to linear array of pages and dma addresses */
1072	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1073					 gtt->ttm.dma_address, ttm->num_pages);
1074
1075	return 0;
1076
1077release_sg:
1078	kfree(ttm->sg);
1079	ttm->sg = NULL;
1080	return r;
1081}
1082
1083/**
1084 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
1085 */
1086static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
 
1087{
1088	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1089	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1090
1091	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1092	enum dma_data_direction direction = write ?
1093		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1094
1095	/* double check that we don't free the table twice */
1096	if (!ttm->sg->sgl)
1097		return;
1098
1099	/* unmap the pages mapped to the device */
1100	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
1101	sg_free_table(ttm->sg);
1102
1103#if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1104	if (gtt->range) {
1105		unsigned long i;
1106
1107		for (i = 0; i < ttm->num_pages; i++) {
1108			if (ttm->pages[i] !=
1109			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
1110				break;
1111		}
1112
1113		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1114	}
1115#endif
1116}
1117
1118static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1119				struct ttm_buffer_object *tbo,
1120				uint64_t flags)
1121{
1122	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1123	struct ttm_tt *ttm = tbo->ttm;
1124	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1125	int r;
1126
1127	if (amdgpu_bo_encrypted(abo))
1128		flags |= AMDGPU_PTE_TMZ;
1129
1130	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
1131		uint64_t page_idx = 1;
1132
1133		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1134				ttm->pages, gtt->ttm.dma_address, flags);
1135		if (r)
1136			goto gart_bind_fail;
1137
1138		/* The memory type of the first page defaults to UC. Now
1139		 * modify the memory type to NC from the second page of
1140		 * the BO onward.
1141		 */
1142		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1143		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1144
1145		r = amdgpu_gart_bind(adev,
1146				gtt->offset + (page_idx << PAGE_SHIFT),
1147				ttm->num_pages - page_idx,
1148				&ttm->pages[page_idx],
1149				&(gtt->ttm.dma_address[page_idx]), flags);
1150	} else {
1151		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1152				     ttm->pages, gtt->ttm.dma_address, flags);
1153	}
1154
1155gart_bind_fail:
1156	if (r)
1157		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1158			  ttm->num_pages, gtt->offset);
1159
1160	return r;
1161}
1162
1163/**
1164 * amdgpu_ttm_backend_bind - Bind GTT memory
1165 *
1166 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1167 * This handles binding GTT memory to the device address space.
1168 */
1169static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1170				   struct ttm_mem_reg *bo_mem)
 
1171{
1172	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1173	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1174	uint64_t flags;
1175	int r = 0;
1176
 
 
 
 
 
 
1177	if (gtt->userptr) {
1178		r = amdgpu_ttm_tt_pin_userptr(ttm);
1179		if (r) {
1180			DRM_ERROR("failed to pin userptr\n");
1181			return r;
1182		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1183	}
 
1184	if (!ttm->num_pages) {
1185		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1186		     ttm->num_pages, bo_mem, ttm);
1187	}
1188
1189	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1190	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1191	    bo_mem->mem_type == AMDGPU_PL_OA)
1192		return -EINVAL;
1193
1194	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
 
1195		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1196		return 0;
1197	}
1198
1199	/* compute PTE flags relevant to this BO memory */
1200	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1201
1202	/* bind pages into GART page tables */
1203	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1204	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1205		ttm->pages, gtt->ttm.dma_address, flags);
1206
1207	if (r)
1208		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1209			  ttm->num_pages, gtt->offset);
 
1210	return r;
1211}
1212
1213/**
1214 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
 
 
 
 
 
1215 */
1216int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1217{
1218	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1219	struct ttm_operation_ctx ctx = { false, false };
1220	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1221	struct ttm_mem_reg tmp;
1222	struct ttm_placement placement;
1223	struct ttm_place placements;
 
1224	uint64_t addr, flags;
1225	int r;
1226
1227	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1228		return 0;
1229
1230	addr = amdgpu_gmc_agp_addr(bo);
1231	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1232		bo->mem.start = addr >> PAGE_SHIFT;
1233	} else {
 
1234
1235		/* allocate GART space */
1236		tmp = bo->mem;
1237		tmp.mm_node = NULL;
1238		placement.num_placement = 1;
1239		placement.placement = &placements;
1240		placement.num_busy_placement = 1;
1241		placement.busy_placement = &placements;
1242		placements.fpfn = 0;
1243		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1244		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1245			TTM_PL_FLAG_TT;
1246
1247		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1248		if (unlikely(r))
1249			return r;
1250
1251		/* compute PTE flags for this buffer object */
1252		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1253
1254		/* Bind pages */
1255		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1256		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1257		if (unlikely(r)) {
1258			ttm_bo_mem_put(bo, &tmp);
1259			return r;
1260		}
1261
1262		ttm_bo_mem_put(bo, &bo->mem);
1263		bo->mem = tmp;
1264	}
1265
 
 
 
 
1266	return 0;
1267}
1268
1269/**
1270 * amdgpu_ttm_recover_gart - Rebind GTT pages
1271 *
1272 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1273 * rebind GTT pages during a GPU reset.
1274 */
1275int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1276{
1277	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1278	uint64_t flags;
1279	int r;
1280
1281	if (!tbo->ttm)
1282		return 0;
1283
1284	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1285	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1286
1287	return r;
1288}
1289
1290/**
1291 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1292 *
1293 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1294 * ttm_tt_destroy().
1295 */
1296static void amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
 
1297{
1298	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1299	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1300	int r;
1301
1302	/* if the pages have userptr pinning then clear that first */
1303	if (gtt->userptr)
1304		amdgpu_ttm_tt_unpin_userptr(ttm);
 
 
 
 
 
 
 
 
 
 
1305
1306	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1307		return;
1308
1309	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1310	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1311	if (r)
1312		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1313			  gtt->ttm.ttm.num_pages, gtt->offset);
 
1314}
1315
1316static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
 
1317{
1318	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1319
 
 
1320	if (gtt->usertask)
1321		put_task_struct(gtt->usertask);
1322
1323	ttm_dma_tt_fini(&gtt->ttm);
1324	kfree(gtt);
1325}
1326
1327static struct ttm_backend_func amdgpu_backend_func = {
1328	.bind = &amdgpu_ttm_backend_bind,
1329	.unbind = &amdgpu_ttm_backend_unbind,
1330	.destroy = &amdgpu_ttm_backend_destroy,
1331};
1332
1333/**
1334 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1335 *
1336 * @bo: The buffer object to create a GTT ttm_tt object around
 
1337 *
1338 * Called by ttm_tt_create().
1339 */
1340static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1341					   uint32_t page_flags)
1342{
 
1343	struct amdgpu_ttm_tt *gtt;
 
1344
1345	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1346	if (gtt == NULL) {
1347		return NULL;
1348	}
1349	gtt->ttm.ttm.func = &amdgpu_backend_func;
1350	gtt->gobj = &bo->base;
1351
 
 
 
 
 
1352	/* allocate space for the uninitialized page entries */
1353	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1354		kfree(gtt);
1355		return NULL;
1356	}
1357	return &gtt->ttm.ttm;
1358}
1359
1360/**
1361 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1362 *
1363 * Map the pages of a ttm_tt object to an address space visible
1364 * to the underlying device.
1365 */
1366static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1367			struct ttm_operation_ctx *ctx)
 
1368{
1369	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1370	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1371
1372	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1373	if (gtt && gtt->userptr) {
1374		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1375		if (!ttm->sg)
1376			return -ENOMEM;
1377
1378		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1379		ttm->state = tt_unbound;
1380		return 0;
1381	}
1382
1383	if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1384		if (!ttm->sg) {
1385			struct dma_buf_attachment *attach;
1386			struct sg_table *sgt;
1387
1388			attach = gtt->gobj->import_attach;
1389			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1390			if (IS_ERR(sgt))
1391				return PTR_ERR(sgt);
1392
1393			ttm->sg = sgt;
1394		}
1395
1396		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1397						 gtt->ttm.dma_address,
1398						 ttm->num_pages);
1399		ttm->state = tt_unbound;
1400		return 0;
1401	}
1402
1403#ifdef CONFIG_SWIOTLB
1404	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1405		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1406	}
1407#endif
1408
1409	/* fall back to generic helper to populate the page array
1410	 * and map them to the device */
1411	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1412}
1413
1414/**
1415 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1416 *
1417 * Unmaps pages of a ttm_tt object from the device address space and
1418 * unpopulates the page array backing it.
1419 */
1420static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
 
1421{
1422	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1423	struct amdgpu_device *adev;
1424
1425	if (gtt && gtt->userptr) {
1426		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1427		kfree(ttm->sg);
1428		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1429		return;
1430	}
1431
1432	if (ttm->sg && gtt->gobj->import_attach) {
1433		struct dma_buf_attachment *attach;
1434
1435		attach = gtt->gobj->import_attach;
1436		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1437		ttm->sg = NULL;
1438		return;
1439	}
1440
1441	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1442		return;
1443
1444	adev = amdgpu_ttm_adev(ttm->bdev);
1445
1446#ifdef CONFIG_SWIOTLB
1447	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1448		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1449		return;
1450	}
1451#endif
1452
1453	/* fall back to generic helper to unmap and unpopulate array */
1454	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1455}
1456
1457/**
1458 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1459 * task
1460 *
1461 * @ttm: The ttm_tt object to bind this userptr object to
1462 * @addr:  The address in the current tasks VM space to use
1463 * @flags: Requirements of userptr object.
1464 *
1465 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1466 * to current task
1467 */
1468int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1469			      uint32_t flags)
1470{
1471	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1472
1473	if (gtt == NULL)
1474		return -EINVAL;
 
 
 
 
 
 
 
1475
 
1476	gtt->userptr = addr;
1477	gtt->userflags = flags;
1478
1479	if (gtt->usertask)
1480		put_task_struct(gtt->usertask);
1481	gtt->usertask = current->group_leader;
1482	get_task_struct(gtt->usertask);
1483
1484	return 0;
1485}
1486
1487/**
1488 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1489 */
1490struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1491{
1492	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1493
1494	if (gtt == NULL)
1495		return NULL;
1496
1497	if (gtt->usertask == NULL)
1498		return NULL;
1499
1500	return gtt->usertask->mm;
1501}
1502
1503/**
1504 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1505 * address range for the current task.
1506 *
1507 */
1508bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1509				  unsigned long end)
1510{
1511	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1512	unsigned long size;
1513
1514	if (gtt == NULL || !gtt->userptr)
1515		return false;
1516
1517	/* Return false if no part of the ttm_tt object lies within
1518	 * the range
1519	 */
1520	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1521	if (gtt->userptr > end || gtt->userptr + size <= start)
1522		return false;
1523
1524	return true;
1525}
1526
1527/**
1528 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1529 */
1530bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1531{
1532	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1533
1534	if (gtt == NULL || !gtt->userptr)
1535		return false;
1536
1537	return true;
1538}
1539
1540/**
1541 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1542 */
1543bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1544{
1545	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1546
1547	if (gtt == NULL)
1548		return false;
1549
1550	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1551}
1552
1553/**
1554 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1555 *
1556 * @ttm: The ttm_tt object to compute the flags for
1557 * @mem: The memory registry backing this ttm_tt object
1558 *
1559 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1560 */
1561uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1562{
1563	uint64_t flags = 0;
1564
1565	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1566		flags |= AMDGPU_PTE_VALID;
1567
1568	if (mem && mem->mem_type == TTM_PL_TT) {
 
1569		flags |= AMDGPU_PTE_SYSTEM;
1570
1571		if (ttm->caching_state == tt_cached)
1572			flags |= AMDGPU_PTE_SNOOPED;
1573	}
1574
 
 
 
 
1575	return flags;
1576}
1577
1578/**
1579 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1580 *
 
1581 * @ttm: The ttm_tt object to compute the flags for
1582 * @mem: The memory registry backing this ttm_tt object
1583
1584 * Figure out the flags to use for a VM PTE (Page Table Entry).
1585 */
1586uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1587				 struct ttm_mem_reg *mem)
1588{
1589	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1590
1591	flags |= adev->gart.gart_pte_flags;
1592	flags |= AMDGPU_PTE_READABLE;
1593
1594	if (!amdgpu_ttm_tt_is_readonly(ttm))
1595		flags |= AMDGPU_PTE_WRITEABLE;
1596
1597	return flags;
1598}
1599
1600/**
1601 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1602 * object.
1603 *
1604 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1605 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1606 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1607 * used to clean out a memory space.
1608 */
1609static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1610					    const struct ttm_place *place)
1611{
1612	unsigned long num_pages = bo->mem.num_pages;
1613	struct drm_mm_node *node = bo->mem.mm_node;
1614	struct dma_resv_list *flist;
1615	struct dma_fence *f;
1616	int i;
1617
 
 
 
 
1618	if (bo->type == ttm_bo_type_kernel &&
1619	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1620		return false;
1621
1622	/* If bo is a KFD BO, check if the bo belongs to the current process.
1623	 * If true, then return false as any KFD process needs all its BOs to
1624	 * be resident to run successfully
1625	 */
1626	flist = dma_resv_get_list(bo->base.resv);
1627	if (flist) {
1628		for (i = 0; i < flist->shared_count; ++i) {
1629			f = rcu_dereference_protected(flist->shared[i],
1630				dma_resv_held(bo->base.resv));
1631			if (amdkfd_fence_check_mm(f, current->mm))
1632				return false;
1633		}
1634	}
1635
1636	switch (bo->mem.mem_type) {
 
 
 
 
 
 
 
 
 
1637	case TTM_PL_TT:
1638		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1639		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1640			return false;
1641		return true;
1642
1643	case TTM_PL_VRAM:
1644		/* Check each drm MM node individually */
1645		while (num_pages) {
1646			if (place->fpfn < (node->start + node->size) &&
1647			    !(place->lpfn && place->lpfn <= node->start))
 
 
 
1648				return true;
1649
1650			num_pages -= node->size;
1651			++node;
1652		}
1653		return false;
1654
1655	default:
1656		break;
1657	}
1658
1659	return ttm_bo_eviction_valuable(bo, place);
1660}
1661
1662/**
1663 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1664 *
1665 * @bo:  The buffer object to read/write
1666 * @offset:  Offset into buffer object
1667 * @buf:  Secondary buffer to write/read from
1668 * @len: Length in bytes of access
1669 * @write:  true if writing
1670 *
1671 * This is used to access VRAM that backs a buffer object via MMIO
1672 * access for debugging purposes.
1673 */
1674static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1675				    unsigned long offset,
1676				    void *buf, int len, int write)
1677{
1678	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1679	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1680	struct drm_mm_node *nodes;
 
1681	uint32_t value = 0;
1682	int ret = 0;
1683	uint64_t pos;
1684	unsigned long flags;
1685
1686	if (bo->mem.mem_type != TTM_PL_VRAM)
1687		return -EIO;
1688
1689	pos = offset;
1690	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos);
1691	pos += (nodes->start << PAGE_SHIFT);
1692
1693	while (len && pos < adev->gmc.mc_vram_size) {
1694		uint64_t aligned_pos = pos & ~(uint64_t)3;
1695		uint64_t bytes = 4 - (pos & 3);
1696		uint32_t shift = (pos & 3) * 8;
1697		uint32_t mask = 0xffffffff << shift;
1698
1699		if (len < bytes) {
1700			mask &= 0xffffffff >> (bytes - len) * 8;
1701			bytes = len;
1702		}
1703
1704		if (mask != 0xffffffff) {
1705			spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1706			WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1707			WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1708			if (!write || mask != 0xffffffff)
1709				value = RREG32_NO_KIQ(mmMM_DATA);
1710			if (write) {
1711				value &= ~mask;
1712				value |= (*(uint32_t *)buf << shift) & mask;
1713				WREG32_NO_KIQ(mmMM_DATA, value);
1714			}
1715			spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1716			if (!write) {
1717				value = (value & mask) >> shift;
1718				memcpy(buf, &value, bytes);
1719			}
1720		} else {
1721			bytes = (nodes->start + nodes->size) << PAGE_SHIFT;
1722			bytes = min(bytes - pos, (uint64_t)len & ~0x3ull);
1723
1724			amdgpu_device_vram_access(adev, pos, (uint32_t *)buf,
1725						  bytes, write);
1726		}
1727
1728		ret += bytes;
1729		buf = (uint8_t *)buf + bytes;
1730		pos += bytes;
1731		len -= bytes;
1732		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1733			++nodes;
1734			pos = (nodes->start << PAGE_SHIFT);
1735		}
1736	}
1737
1738	return ret;
1739}
1740
1741static struct ttm_bo_driver amdgpu_bo_driver = {
 
 
 
 
 
 
1742	.ttm_tt_create = &amdgpu_ttm_tt_create,
1743	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1744	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1745	.init_mem_type = &amdgpu_init_mem_type,
1746	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1747	.evict_flags = &amdgpu_evict_flags,
1748	.move = &amdgpu_bo_move,
1749	.verify_access = &amdgpu_verify_access,
1750	.move_notify = &amdgpu_bo_move_notify,
1751	.release_notify = &amdgpu_bo_release_notify,
1752	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1753	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1754	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1755	.access_memory = &amdgpu_ttm_access_memory,
1756	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1757};
1758
1759/*
1760 * Firmware Reservation functions
1761 */
1762/**
1763 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1764 *
1765 * @adev: amdgpu_device pointer
1766 *
1767 * free fw reserved vram if it has been reserved.
1768 */
1769static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1770{
1771	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1772		NULL, &adev->fw_vram_usage.va);
1773}
1774
1775/**
1776 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1777 *
1778 * @adev: amdgpu_device pointer
1779 *
1780 * create bo vram reservation from fw.
1781 */
1782static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1783{
1784	uint64_t vram_size = adev->gmc.visible_vram_size;
1785
1786	adev->fw_vram_usage.va = NULL;
1787	adev->fw_vram_usage.reserved_bo = NULL;
1788
1789	if (adev->fw_vram_usage.size == 0 ||
1790	    adev->fw_vram_usage.size > vram_size)
1791		return 0;
1792
1793	return amdgpu_bo_create_kernel_at(adev,
1794					  adev->fw_vram_usage.start_offset,
1795					  adev->fw_vram_usage.size,
1796					  AMDGPU_GEM_DOMAIN_VRAM,
1797					  &adev->fw_vram_usage.reserved_bo,
1798					  &adev->fw_vram_usage.va);
1799}
1800
1801/*
1802 * Memoy training reservation functions
1803 */
1804
1805/**
1806 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1807 *
1808 * @adev: amdgpu_device pointer
1809 *
1810 * free memory training reserved vram if it has been reserved.
1811 */
1812static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1813{
1814	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1815
1816	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1817	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1818	ctx->c2p_bo = NULL;
1819
1820	return 0;
1821}
1822
1823static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1824{
1825	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1826
1827	memset(ctx, 0, sizeof(*ctx));
1828
1829	ctx->c2p_train_data_offset =
1830		ALIGN((adev->gmc.mc_vram_size - adev->discovery_tmr_size - SZ_1M), SZ_1M);
1831	ctx->p2c_train_data_offset =
1832		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1833	ctx->train_data_size =
1834		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1835	
1836	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1837			ctx->train_data_size,
1838			ctx->p2c_train_data_offset,
1839			ctx->c2p_train_data_offset);
1840}
1841
1842/*
1843 * reserve TMR memory at the top of VRAM which holds
1844 * IP Discovery data and is protected by PSP.
1845 */
1846static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1847{
1848	int ret;
1849	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1850	bool mem_train_support = false;
1851
1852	if (!amdgpu_sriov_vf(adev)) {
1853		ret = amdgpu_mem_train_support(adev);
1854		if (ret == 1)
1855			mem_train_support = true;
1856		else if (ret == -1)
1857			return -EINVAL;
1858		else
1859			DRM_DEBUG("memory training does not support!\n");
1860	}
1861
1862	/*
1863	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1864	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1865	 *
1866	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1867	 * discovery data and G6 memory training data respectively
1868	 */
1869	adev->discovery_tmr_size =
1870		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1871	if (!adev->discovery_tmr_size)
1872		adev->discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1873
1874	if (mem_train_support) {
1875		/* reserve vram for mem train according to TMR location */
1876		amdgpu_ttm_training_data_block_init(adev);
1877		ret = amdgpu_bo_create_kernel_at(adev,
1878					 ctx->c2p_train_data_offset,
1879					 ctx->train_data_size,
1880					 AMDGPU_GEM_DOMAIN_VRAM,
1881					 &ctx->c2p_bo,
1882					 NULL);
1883		if (ret) {
1884			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1885			amdgpu_ttm_training_reserve_vram_fini(adev);
1886			return ret;
1887		}
1888		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1889	}
1890
1891	ret = amdgpu_bo_create_kernel_at(adev,
1892				adev->gmc.real_vram_size - adev->discovery_tmr_size,
1893				adev->discovery_tmr_size,
1894				AMDGPU_GEM_DOMAIN_VRAM,
1895				&adev->discovery_memory,
1896				NULL);
1897	if (ret) {
1898		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1899		amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
1900		return ret;
1901	}
1902
1903	return 0;
1904}
1905
1906/**
1907 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1908 * gtt/vram related fields.
1909 *
1910 * This initializes all of the memory space pools that the TTM layer
1911 * will need such as the GTT space (system memory mapped to the device),
1912 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1913 * can be mapped per VMID.
1914 */
1915int amdgpu_ttm_init(struct amdgpu_device *adev)
1916{
1917	uint64_t gtt_size;
1918	int r;
1919	u64 vis_vram_limit;
1920	void *stolen_vga_buf;
1921
1922	mutex_init(&adev->mman.gtt_window_lock);
1923
1924	/* No others user of address space so set it to 0 */
1925	r = ttm_bo_device_init(&adev->mman.bdev,
1926			       &amdgpu_bo_driver,
1927			       adev->ddev->anon_inode->i_mapping,
1928			       adev->ddev->vma_offset_manager,
1929			       dma_addressing_limited(adev->dev));
1930	if (r) {
1931		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1932		return r;
1933	}
1934	adev->mman.initialized = true;
1935
1936	/* We opt to avoid OOM on system pages allocations */
1937	adev->mman.bdev.no_retry = true;
1938
1939	/* Initialize VRAM pool with all of VRAM divided into pages */
1940	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1941				adev->gmc.real_vram_size >> PAGE_SHIFT);
1942	if (r) {
1943		DRM_ERROR("Failed initializing VRAM heap.\n");
1944		return r;
1945	}
1946
1947	/* Reduce size of CPU-visible VRAM if requested */
1948	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1949	if (amdgpu_vis_vram_limit > 0 &&
1950	    vis_vram_limit <= adev->gmc.visible_vram_size)
1951		adev->gmc.visible_vram_size = vis_vram_limit;
1952
1953	/* Change the size here instead of the init above so only lpfn is affected */
1954	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1955#ifdef CONFIG_64BIT
1956	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1957						adev->gmc.visible_vram_size);
 
 
 
 
 
 
 
1958#endif
1959
1960	/*
1961	 *The reserved vram for firmware must be pinned to the specified
1962	 *place on the VRAM, so reserve it early.
1963	 */
1964	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1965	if (r) {
1966		return r;
1967	}
1968
1969	/*
1970	 * only NAVI10 and onwards ASIC support for IP discovery.
1971	 * If IP discovery enabled, a block of memory should be
1972	 * reserved for IP discovey.
1973	 */
1974	if (adev->discovery_bin) {
1975		r = amdgpu_ttm_reserve_tmr(adev);
1976		if (r)
1977			return r;
1978	}
1979
1980	/* allocate memory as required for VGA
1981	 * This is used for VGA emulation and pre-OS scanout buffers to
1982	 * avoid display artifacts while transitioning between pre-OS
1983	 * and driver.  */
1984	r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1985				    AMDGPU_GEM_DOMAIN_VRAM,
1986				    &adev->stolen_vga_memory,
1987				    NULL, &stolen_vga_buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1988	if (r)
1989		return r;
1990
1991	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1992		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1993
1994	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1995	 * or whatever the user passed on module init */
1996	if (amdgpu_gtt_size == -1) {
1997		struct sysinfo si;
1998
1999		si_meminfo(&si);
2000		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
2001			       adev->gmc.mc_vram_size),
2002			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
2003	}
2004	else
2005		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
2006
2007	/* Initialize GTT memory pool */
2008	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
2009	if (r) {
2010		DRM_ERROR("Failed initializing GTT heap.\n");
2011		return r;
2012	}
2013	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
2014		 (unsigned)(gtt_size / (1024 * 1024)));
2015
 
 
 
 
 
 
 
2016	/* Initialize various on-chip memory pools */
2017	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
2018			   adev->gds.gds_size);
2019	if (r) {
2020		DRM_ERROR("Failed initializing GDS heap.\n");
2021		return r;
2022	}
2023
2024	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
2025			   adev->gds.gws_size);
2026	if (r) {
2027		DRM_ERROR("Failed initializing gws heap.\n");
2028		return r;
2029	}
2030
2031	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
2032			   adev->gds.oa_size);
2033	if (r) {
2034		DRM_ERROR("Failed initializing oa heap.\n");
2035		return r;
2036	}
2037
2038	return 0;
2039}
2040
2041/**
2042 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
2043 */
2044void amdgpu_ttm_late_init(struct amdgpu_device *adev)
2045{
2046	void *stolen_vga_buf;
2047	/* return the VGA stolen memory (if any) back to VRAM */
2048	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
2049}
2050
2051/**
2052 * amdgpu_ttm_fini - De-initialize the TTM memory pools
2053 */
2054void amdgpu_ttm_fini(struct amdgpu_device *adev)
2055{
2056	if (!adev->mman.initialized)
2057		return;
2058
2059	amdgpu_ttm_training_reserve_vram_fini(adev);
 
 
 
2060	/* return the IP Discovery TMR memory back to VRAM */
2061	amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
 
 
 
2062	amdgpu_ttm_fw_reserve_vram_fini(adev);
2063
2064	if (adev->mman.aper_base_kaddr)
2065		iounmap(adev->mman.aper_base_kaddr);
2066	adev->mman.aper_base_kaddr = NULL;
2067
2068	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
2069	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
2070	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
2071	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
2072	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
2073	ttm_bo_device_release(&adev->mman.bdev);
2074	adev->mman.initialized = false;
2075	DRM_INFO("amdgpu: ttm finalized\n");
2076}
2077
2078/**
2079 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2080 *
2081 * @adev: amdgpu_device pointer
2082 * @enable: true when we can use buffer functions.
2083 *
2084 * Enable/disable use of buffer functions during suspend/resume. This should
2085 * only be called at bootup or when userspace isn't running.
2086 */
2087void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2088{
2089	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
2090	uint64_t size;
2091	int r;
2092
2093	if (!adev->mman.initialized || adev->in_gpu_reset ||
2094	    adev->mman.buffer_funcs_enabled == enable)
2095		return;
2096
2097	if (enable) {
2098		struct amdgpu_ring *ring;
2099		struct drm_gpu_scheduler *sched;
2100
2101		ring = adev->mman.buffer_funcs_ring;
2102		sched = &ring->sched;
2103		r = drm_sched_entity_init(&adev->mman.entity,
2104				          DRM_SCHED_PRIORITY_KERNEL, &sched,
2105					  1, NULL);
2106		if (r) {
2107			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2108				  r);
2109			return;
2110		}
2111	} else {
2112		drm_sched_entity_destroy(&adev->mman.entity);
2113		dma_fence_put(man->move);
2114		man->move = NULL;
2115	}
2116
2117	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2118	if (enable)
2119		size = adev->gmc.real_vram_size;
2120	else
2121		size = adev->gmc.visible_vram_size;
2122	man->size = size >> PAGE_SHIFT;
2123	adev->mman.buffer_funcs_enabled = enable;
2124}
2125
2126int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2127{
2128	struct drm_file *file_priv = filp->private_data;
2129	struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
2130
2131	if (adev == NULL)
2132		return -EINVAL;
2133
2134	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2135}
2136
2137int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2138		       uint64_t dst_offset, uint32_t byte_count,
2139		       struct dma_resv *resv,
2140		       struct dma_fence **fence, bool direct_submit,
2141		       bool vm_needs_flush, bool tmz)
2142{
2143	enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
2144		AMDGPU_IB_POOL_DELAYED;
2145	struct amdgpu_device *adev = ring->adev;
2146	struct amdgpu_job *job;
2147
2148	uint32_t max_bytes;
2149	unsigned num_loops, num_dw;
2150	unsigned i;
2151	int r;
2152
2153	if (direct_submit && !ring->sched.ready) {
2154		DRM_ERROR("Trying to move memory with ring turned off.\n");
2155		return -EINVAL;
2156	}
2157
2158	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2159	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2160	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2161
2162	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
2163	if (r)
2164		return r;
2165
2166	if (vm_needs_flush) {
2167		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
 
2168		job->vm_needs_flush = true;
2169	}
2170	if (resv) {
2171		r = amdgpu_sync_resv(adev, &job->sync, resv,
2172				     AMDGPU_SYNC_ALWAYS,
2173				     AMDGPU_FENCE_OWNER_UNDEFINED);
2174		if (r) {
2175			DRM_ERROR("sync failed (%d).\n", r);
2176			goto error_free;
2177		}
2178	}
2179
2180	for (i = 0; i < num_loops; i++) {
2181		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2182
2183		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2184					dst_offset, cur_size_in_bytes, tmz);
2185
2186		src_offset += cur_size_in_bytes;
2187		dst_offset += cur_size_in_bytes;
2188		byte_count -= cur_size_in_bytes;
2189	}
2190
2191	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2192	WARN_ON(job->ibs[0].length_dw > num_dw);
2193	if (direct_submit)
2194		r = amdgpu_job_submit_direct(job, ring, fence);
2195	else
2196		r = amdgpu_job_submit(job, &adev->mman.entity,
2197				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2198	if (r)
2199		goto error_free;
2200
2201	return r;
2202
2203error_free:
2204	amdgpu_job_free(job);
2205	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2206	return r;
2207}
2208
2209int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2210		       uint32_t src_data,
2211		       struct dma_resv *resv,
2212		       struct dma_fence **fence)
2213{
2214	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2215	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2216	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2217
2218	struct drm_mm_node *mm_node;
2219	unsigned long num_pages;
2220	unsigned int num_loops, num_dw;
 
2221
2222	struct amdgpu_job *job;
2223	int r;
2224
2225	if (!adev->mman.buffer_funcs_enabled) {
2226		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2227		return -EINVAL;
2228	}
2229
2230	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
 
 
 
 
 
2231		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2232		if (r)
2233			return r;
2234	}
2235
2236	num_pages = bo->tbo.num_pages;
2237	mm_node = bo->tbo.mem.mm_node;
2238	num_loops = 0;
2239	while (num_pages) {
2240		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2241
2242		num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2243		num_pages -= mm_node->size;
2244		++mm_node;
 
2245	}
2246	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2247
2248	/* for IB padding */
2249	num_dw += 64;
2250
2251	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2252				     &job);
2253	if (r)
2254		return r;
2255
2256	if (resv) {
2257		r = amdgpu_sync_resv(adev, &job->sync, resv,
2258				     AMDGPU_SYNC_ALWAYS,
2259				     AMDGPU_FENCE_OWNER_UNDEFINED);
2260		if (r) {
2261			DRM_ERROR("sync failed (%d).\n", r);
2262			goto error_free;
2263		}
2264	}
2265
2266	num_pages = bo->tbo.num_pages;
2267	mm_node = bo->tbo.mem.mm_node;
2268
2269	while (num_pages) {
2270		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2271		uint64_t dst_addr;
2272
2273		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2274		while (byte_count) {
2275			uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2276							   max_bytes);
2277
2278			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2279						dst_addr, cur_size_in_bytes);
2280
2281			dst_addr += cur_size_in_bytes;
2282			byte_count -= cur_size_in_bytes;
2283		}
2284
2285		num_pages -= mm_node->size;
2286		++mm_node;
2287	}
2288
2289	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2290	WARN_ON(job->ibs[0].length_dw > num_dw);
2291	r = amdgpu_job_submit(job, &adev->mman.entity,
2292			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2293	if (r)
2294		goto error_free;
2295
2296	return 0;
2297
2298error_free:
2299	amdgpu_job_free(job);
2300	return r;
2301}
2302
2303#if defined(CONFIG_DEBUG_FS)
2304
2305static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2306{
2307	struct drm_info_node *node = (struct drm_info_node *)m->private;
2308	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2309	struct drm_device *dev = node->minor->dev;
2310	struct amdgpu_device *adev = dev->dev_private;
2311	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2312	struct drm_printer p = drm_seq_file_printer(m);
2313
2314	man->func->debug(man, &p);
2315	return 0;
2316}
2317
2318static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2319	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2320	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2321	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2322	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2323	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2324	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2325#ifdef CONFIG_SWIOTLB
2326	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2327#endif
2328};
2329
2330/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2331 * amdgpu_ttm_vram_read - Linear read access to VRAM
2332 *
2333 * Accesses VRAM via MMIO for debugging purposes.
2334 */
2335static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2336				    size_t size, loff_t *pos)
2337{
2338	struct amdgpu_device *adev = file_inode(f)->i_private;
2339	ssize_t result = 0;
2340
2341	if (size & 0x3 || *pos & 0x3)
2342		return -EINVAL;
2343
2344	if (*pos >= adev->gmc.mc_vram_size)
2345		return -ENXIO;
2346
2347	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2348	while (size) {
2349		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2350		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2351
2352		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2353		if (copy_to_user(buf, value, bytes))
2354			return -EFAULT;
2355
2356		result += bytes;
2357		buf += bytes;
2358		*pos += bytes;
2359		size -= bytes;
2360	}
2361
2362	return result;
2363}
2364
2365/**
2366 * amdgpu_ttm_vram_write - Linear write access to VRAM
2367 *
2368 * Accesses VRAM via MMIO for debugging purposes.
2369 */
2370static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2371				    size_t size, loff_t *pos)
2372{
2373	struct amdgpu_device *adev = file_inode(f)->i_private;
2374	ssize_t result = 0;
2375	int r;
2376
2377	if (size & 0x3 || *pos & 0x3)
2378		return -EINVAL;
2379
2380	if (*pos >= adev->gmc.mc_vram_size)
2381		return -ENXIO;
2382
2383	while (size) {
2384		unsigned long flags;
2385		uint32_t value;
2386
2387		if (*pos >= adev->gmc.mc_vram_size)
2388			return result;
2389
2390		r = get_user(value, (uint32_t *)buf);
2391		if (r)
2392			return r;
2393
2394		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2395		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2396		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2397		WREG32_NO_KIQ(mmMM_DATA, value);
2398		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2399
2400		result += 4;
2401		buf += 4;
2402		*pos += 4;
2403		size -= 4;
2404	}
2405
2406	return result;
2407}
2408
2409static const struct file_operations amdgpu_ttm_vram_fops = {
2410	.owner = THIS_MODULE,
2411	.read = amdgpu_ttm_vram_read,
2412	.write = amdgpu_ttm_vram_write,
2413	.llseek = default_llseek,
2414};
2415
2416#ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2417
2418/**
2419 * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2420 */
2421static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2422				   size_t size, loff_t *pos)
2423{
2424	struct amdgpu_device *adev = file_inode(f)->i_private;
2425	ssize_t result = 0;
2426	int r;
2427
2428	while (size) {
2429		loff_t p = *pos / PAGE_SIZE;
2430		unsigned off = *pos & ~PAGE_MASK;
2431		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2432		struct page *page;
2433		void *ptr;
2434
2435		if (p >= adev->gart.num_cpu_pages)
2436			return result;
2437
2438		page = adev->gart.pages[p];
2439		if (page) {
2440			ptr = kmap(page);
2441			ptr += off;
2442
2443			r = copy_to_user(buf, ptr, cur_size);
2444			kunmap(adev->gart.pages[p]);
2445		} else
2446			r = clear_user(buf, cur_size);
2447
2448		if (r)
2449			return -EFAULT;
2450
2451		result += cur_size;
2452		buf += cur_size;
2453		*pos += cur_size;
2454		size -= cur_size;
2455	}
2456
2457	return result;
2458}
2459
2460static const struct file_operations amdgpu_ttm_gtt_fops = {
2461	.owner = THIS_MODULE,
2462	.read = amdgpu_ttm_gtt_read,
2463	.llseek = default_llseek
2464};
2465
2466#endif
2467
2468/**
2469 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2470 *
2471 * This function is used to read memory that has been mapped to the
2472 * GPU and the known addresses are not physical addresses but instead
2473 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2474 */
2475static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2476				 size_t size, loff_t *pos)
2477{
2478	struct amdgpu_device *adev = file_inode(f)->i_private;
2479	struct iommu_domain *dom;
2480	ssize_t result = 0;
2481	int r;
2482
2483	/* retrieve the IOMMU domain if any for this device */
2484	dom = iommu_get_domain_for_dev(adev->dev);
2485
2486	while (size) {
2487		phys_addr_t addr = *pos & PAGE_MASK;
2488		loff_t off = *pos & ~PAGE_MASK;
2489		size_t bytes = PAGE_SIZE - off;
2490		unsigned long pfn;
2491		struct page *p;
2492		void *ptr;
2493
2494		bytes = bytes < size ? bytes : size;
2495
2496		/* Translate the bus address to a physical address.  If
2497		 * the domain is NULL it means there is no IOMMU active
2498		 * and the address translation is the identity
2499		 */
2500		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2501
2502		pfn = addr >> PAGE_SHIFT;
2503		if (!pfn_valid(pfn))
2504			return -EPERM;
2505
2506		p = pfn_to_page(pfn);
2507		if (p->mapping != adev->mman.bdev.dev_mapping)
2508			return -EPERM;
2509
2510		ptr = kmap(p);
2511		r = copy_to_user(buf, ptr + off, bytes);
2512		kunmap(p);
2513		if (r)
2514			return -EFAULT;
2515
2516		size -= bytes;
2517		*pos += bytes;
2518		result += bytes;
2519	}
2520
2521	return result;
2522}
2523
2524/**
2525 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2526 *
2527 * This function is used to write memory that has been mapped to the
2528 * GPU and the known addresses are not physical addresses but instead
2529 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2530 */
2531static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2532				 size_t size, loff_t *pos)
2533{
2534	struct amdgpu_device *adev = file_inode(f)->i_private;
2535	struct iommu_domain *dom;
2536	ssize_t result = 0;
2537	int r;
2538
2539	dom = iommu_get_domain_for_dev(adev->dev);
2540
2541	while (size) {
2542		phys_addr_t addr = *pos & PAGE_MASK;
2543		loff_t off = *pos & ~PAGE_MASK;
2544		size_t bytes = PAGE_SIZE - off;
2545		unsigned long pfn;
2546		struct page *p;
2547		void *ptr;
2548
2549		bytes = bytes < size ? bytes : size;
2550
2551		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2552
2553		pfn = addr >> PAGE_SHIFT;
2554		if (!pfn_valid(pfn))
2555			return -EPERM;
2556
2557		p = pfn_to_page(pfn);
2558		if (p->mapping != adev->mman.bdev.dev_mapping)
2559			return -EPERM;
2560
2561		ptr = kmap(p);
2562		r = copy_from_user(ptr + off, buf, bytes);
2563		kunmap(p);
2564		if (r)
2565			return -EFAULT;
2566
2567		size -= bytes;
2568		*pos += bytes;
2569		result += bytes;
2570	}
2571
2572	return result;
2573}
2574
2575static const struct file_operations amdgpu_ttm_iomem_fops = {
2576	.owner = THIS_MODULE,
2577	.read = amdgpu_iomem_read,
2578	.write = amdgpu_iomem_write,
2579	.llseek = default_llseek
2580};
2581
2582static const struct {
2583	char *name;
2584	const struct file_operations *fops;
2585	int domain;
2586} ttm_debugfs_entries[] = {
2587	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2588#ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2589	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2590#endif
2591	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2592};
2593
2594#endif
2595
2596int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2597{
2598#if defined(CONFIG_DEBUG_FS)
2599	unsigned count;
2600
2601	struct drm_minor *minor = adev->ddev->primary;
2602	struct dentry *ent, *root = minor->debugfs_root;
2603
2604	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2605		ent = debugfs_create_file(
2606				ttm_debugfs_entries[count].name,
2607				S_IFREG | S_IRUGO, root,
2608				adev,
2609				ttm_debugfs_entries[count].fops);
2610		if (IS_ERR(ent))
2611			return PTR_ERR(ent);
2612		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2613			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2614		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2615			i_size_write(ent->d_inode, adev->gmc.gart_size);
2616		adev->mman.debugfs_entries[count] = ent;
2617	}
2618
2619	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2620
2621#ifdef CONFIG_SWIOTLB
2622	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2623		--count;
2624#endif
2625
2626	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2627#else
2628	return 0;
2629#endif
2630}
v5.14.15
   1/*
   2 * Copyright 2009 Jerome Glisse.
   3 * All Rights Reserved.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the
   7 * "Software"), to deal in the Software without restriction, including
   8 * without limitation the rights to use, copy, modify, merge, publish,
   9 * distribute, sub license, and/or sell copies of the Software, and to
  10 * permit persons to whom the Software is furnished to do so, subject to
  11 * the following conditions:
  12 *
  13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  20 *
  21 * The above copyright notice and this permission notice (including the
  22 * next paragraph) shall be included in all copies or substantial portions
  23 * of the Software.
  24 *
  25 */
  26/*
  27 * Authors:
  28 *    Jerome Glisse <glisse@freedesktop.org>
  29 *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
  30 *    Dave Airlie
  31 */
  32
  33#include <linux/dma-mapping.h>
  34#include <linux/iommu.h>
 
  35#include <linux/pagemap.h>
  36#include <linux/sched/task.h>
  37#include <linux/sched/mm.h>
  38#include <linux/seq_file.h>
  39#include <linux/slab.h>
  40#include <linux/swap.h>
  41#include <linux/swiotlb.h>
  42#include <linux/dma-buf.h>
  43#include <linux/sizes.h>
  44
  45#include <drm/ttm/ttm_bo_api.h>
  46#include <drm/ttm/ttm_bo_driver.h>
  47#include <drm/ttm/ttm_placement.h>
  48#include <drm/ttm/ttm_range_manager.h>
 
  49
 
  50#include <drm/amdgpu_drm.h>
  51
  52#include "amdgpu.h"
  53#include "amdgpu_object.h"
  54#include "amdgpu_trace.h"
  55#include "amdgpu_amdkfd.h"
  56#include "amdgpu_sdma.h"
  57#include "amdgpu_ras.h"
  58#include "amdgpu_atomfirmware.h"
  59#include "amdgpu_res_cursor.h"
  60#include "bif/bif_4_1_d.h"
  61
  62#define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
  63
  64static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
  65				   struct ttm_tt *ttm,
  66				   struct ttm_resource *bo_mem);
  67static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
  68				      struct ttm_tt *ttm);
  69
  70static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
  71				    unsigned int type,
  72				    uint64_t size_in_page)
 
 
 
 
 
  73{
  74	return ttm_range_man_init(&adev->mman.bdev, type,
  75				  false, size_in_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76}
  77
  78/**
  79 * amdgpu_evict_flags - Compute placement flags
  80 *
  81 * @bo: The buffer object to evict
  82 * @placement: Possible destination(s) for evicted BO
  83 *
  84 * Fill in placement data when ttm_bo_evict() is called
  85 */
  86static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
  87				struct ttm_placement *placement)
  88{
  89	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
  90	struct amdgpu_bo *abo;
  91	static const struct ttm_place placements = {
  92		.fpfn = 0,
  93		.lpfn = 0,
  94		.mem_type = TTM_PL_SYSTEM,
  95		.flags = 0
  96	};
  97
  98	/* Don't handle scatter gather BOs */
  99	if (bo->type == ttm_bo_type_sg) {
 100		placement->num_placement = 0;
 101		placement->num_busy_placement = 0;
 102		return;
 103	}
 104
 105	/* Object isn't an AMDGPU object so ignore */
 106	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
 107		placement->placement = &placements;
 108		placement->busy_placement = &placements;
 109		placement->num_placement = 1;
 110		placement->num_busy_placement = 1;
 111		return;
 112	}
 113
 114	abo = ttm_to_amdgpu_bo(bo);
 115	if (abo->flags & AMDGPU_AMDKFD_CREATE_SVM_BO) {
 116		struct dma_fence *fence;
 117		struct dma_resv *resv = &bo->base._resv;
 118
 119		rcu_read_lock();
 120		fence = rcu_dereference(resv->fence_excl);
 121		if (fence && !fence->ops->signaled)
 122			dma_fence_enable_sw_signaling(fence);
 123
 124		placement->num_placement = 0;
 125		placement->num_busy_placement = 0;
 126		rcu_read_unlock();
 127		return;
 128	}
 129
 130	switch (bo->resource->mem_type) {
 131	case AMDGPU_PL_GDS:
 132	case AMDGPU_PL_GWS:
 133	case AMDGPU_PL_OA:
 134		placement->num_placement = 0;
 135		placement->num_busy_placement = 0;
 136		return;
 137
 138	case TTM_PL_VRAM:
 139		if (!adev->mman.buffer_funcs_enabled) {
 140			/* Move to system memory */
 141			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 142		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
 143			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
 144			   amdgpu_bo_in_cpu_visible_vram(abo)) {
 145
 146			/* Try evicting to the CPU inaccessible part of VRAM
 147			 * first, but only set GTT as busy placement, so this
 148			 * BO will be evicted to GTT rather than causing other
 149			 * BOs to be evicted from VRAM
 150			 */
 151			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
 152							 AMDGPU_GEM_DOMAIN_GTT);
 153			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
 154			abo->placements[0].lpfn = 0;
 155			abo->placement.busy_placement = &abo->placements[1];
 156			abo->placement.num_busy_placement = 1;
 157		} else {
 158			/* Move to GTT memory */
 159			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
 160		}
 161		break;
 162	case TTM_PL_TT:
 163	case AMDGPU_PL_PREEMPT:
 164	default:
 165		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 166		break;
 167	}
 168	*placement = abo->placement;
 169}
 170
 171/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172 * amdgpu_ttm_map_buffer - Map memory into the GART windows
 173 * @bo: buffer object to map
 174 * @mem: memory object to map
 175 * @mm_cur: range to map
 176 * @num_pages: number of pages to map
 
 177 * @window: which GART window to use
 178 * @ring: DMA ring to use for the copy
 179 * @tmz: if we should setup a TMZ enabled mapping
 180 * @addr: resulting address inside the MC address space
 181 *
 182 * Setup one of the GART windows to access a specific piece of memory or return
 183 * the physical address for local memory.
 184 */
 185static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
 186				 struct ttm_resource *mem,
 187				 struct amdgpu_res_cursor *mm_cur,
 188				 unsigned num_pages, unsigned window,
 189				 struct amdgpu_ring *ring, bool tmz,
 190				 uint64_t *addr)
 191{
 192	struct amdgpu_device *adev = ring->adev;
 193	struct amdgpu_job *job;
 194	unsigned num_dw, num_bytes;
 195	struct dma_fence *fence;
 196	uint64_t src_addr, dst_addr;
 197	void *cpu_addr;
 198	uint64_t flags;
 199	unsigned int i;
 200	int r;
 201
 202	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
 203	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
 204	BUG_ON(mem->mem_type == AMDGPU_PL_PREEMPT);
 205
 206	/* Map only what can't be accessed directly */
 207	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
 208		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
 209			mm_cur->start;
 210		return 0;
 211	}
 212
 213	*addr = adev->gmc.gart_start;
 214	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
 215		AMDGPU_GPU_PAGE_SIZE;
 216	*addr += mm_cur->start & ~PAGE_MASK;
 217
 218	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
 219	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
 220
 221	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
 222				     AMDGPU_IB_POOL_DELAYED, &job);
 223	if (r)
 224		return r;
 225
 226	src_addr = num_dw * 4;
 227	src_addr += job->ibs[0].gpu_addr;
 228
 229	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
 230	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
 231	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
 232				dst_addr, num_bytes, false);
 233
 234	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
 235	WARN_ON(job->ibs[0].length_dw > num_dw);
 236
 237	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
 238	if (tmz)
 239		flags |= AMDGPU_PTE_TMZ;
 240
 241	cpu_addr = &job->ibs[0].ptr[num_dw];
 242
 243	if (mem->mem_type == TTM_PL_TT) {
 244		dma_addr_t *dma_addr;
 
 245
 246		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
 247		r = amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags,
 
 248				    cpu_addr);
 249		if (r)
 250			goto error_free;
 251	} else {
 252		dma_addr_t dma_address;
 253
 254		dma_address = mm_cur->start;
 255		dma_address += adev->vm_manager.vram_base_offset;
 256
 257		for (i = 0; i < num_pages; ++i) {
 258			r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
 259					    &dma_address, flags, cpu_addr);
 260			if (r)
 261				goto error_free;
 262
 263			dma_address += PAGE_SIZE;
 264		}
 265	}
 266
 267	r = amdgpu_job_submit(job, &adev->mman.entity,
 268			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
 269	if (r)
 270		goto error_free;
 271
 272	dma_fence_put(fence);
 273
 274	return r;
 275
 276error_free:
 277	amdgpu_job_free(job);
 278	return r;
 279}
 280
 281/**
 282 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
 283 * @adev: amdgpu device
 284 * @src: buffer/address where to read from
 285 * @dst: buffer/address where to write to
 286 * @size: number of bytes to copy
 287 * @tmz: if a secure copy should be used
 288 * @resv: resv object to sync to
 289 * @f: Returns the last fence if multiple jobs are submitted.
 290 *
 291 * The function copies @size bytes from {src->mem + src->offset} to
 292 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
 293 * move and different for a BO to BO copy.
 294 *
 295 */
 296int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
 297			       const struct amdgpu_copy_mem *src,
 298			       const struct amdgpu_copy_mem *dst,
 299			       uint64_t size, bool tmz,
 300			       struct dma_resv *resv,
 301			       struct dma_fence **f)
 302{
 303	const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
 304					AMDGPU_GPU_PAGE_SIZE);
 305
 
 306	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
 307	struct amdgpu_res_cursor src_mm, dst_mm;
 308	struct dma_fence *fence = NULL;
 309	int r = 0;
 310
 311	if (!adev->mman.buffer_funcs_enabled) {
 312		DRM_ERROR("Trying to move memory with ring turned off.\n");
 313		return -EINVAL;
 314	}
 315
 316	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
 317	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 318
 319	mutex_lock(&adev->mman.gtt_window_lock);
 320	while (src_mm.remaining) {
 321		uint32_t src_page_offset = src_mm.start & ~PAGE_MASK;
 322		uint32_t dst_page_offset = dst_mm.start & ~PAGE_MASK;
 
 323		struct dma_fence *next;
 324		uint32_t cur_size;
 325		uint64_t from, to;
 326
 327		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
 328		 * begins at an offset, then adjust the size accordingly
 329		 */
 330		cur_size = max(src_page_offset, dst_page_offset);
 331		cur_size = min(min3(src_mm.size, dst_mm.size, size),
 332			       (uint64_t)(GTT_MAX_BYTES - cur_size));
 333
 334		/* Map src to window 0 and dst to window 1. */
 335		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
 336					  PFN_UP(cur_size + src_page_offset),
 337					  0, ring, tmz, &from);
 338		if (r)
 339			goto error;
 340
 341		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
 342					  PFN_UP(cur_size + dst_page_offset),
 343					  1, ring, tmz, &to);
 344		if (r)
 345			goto error;
 346
 347		r = amdgpu_copy_buffer(ring, from, to, cur_size,
 348				       resv, &next, false, true, tmz);
 349		if (r)
 350			goto error;
 351
 352		dma_fence_put(fence);
 353		fence = next;
 354
 355		amdgpu_res_next(&src_mm, cur_size);
 356		amdgpu_res_next(&dst_mm, cur_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 357	}
 358error:
 359	mutex_unlock(&adev->mman.gtt_window_lock);
 360	if (f)
 361		*f = dma_fence_get(fence);
 362	dma_fence_put(fence);
 363	return r;
 364}
 365
 366/*
 367 * amdgpu_move_blit - Copy an entire buffer to another buffer
 368 *
 369 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
 370 * help move buffers to and from VRAM.
 371 */
 372static int amdgpu_move_blit(struct ttm_buffer_object *bo,
 373			    bool evict,
 374			    struct ttm_resource *new_mem,
 375			    struct ttm_resource *old_mem)
 376{
 377	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 378	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
 379	struct amdgpu_copy_mem src, dst;
 380	struct dma_fence *fence = NULL;
 381	int r;
 382
 383	src.bo = bo;
 384	dst.bo = bo;
 385	src.mem = old_mem;
 386	dst.mem = new_mem;
 387	src.offset = 0;
 388	dst.offset = 0;
 389
 390	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
 391				       new_mem->num_pages << PAGE_SHIFT,
 392				       amdgpu_bo_encrypted(abo),
 393				       bo->base.resv, &fence);
 394	if (r)
 395		goto error;
 396
 397	/* clear the space being freed */
 398	if (old_mem->mem_type == TTM_PL_VRAM &&
 399	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
 400		struct dma_fence *wipe_fence = NULL;
 401
 402		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
 403				       NULL, &wipe_fence);
 404		if (r) {
 405			goto error;
 406		} else if (wipe_fence) {
 407			dma_fence_put(fence);
 408			fence = wipe_fence;
 409		}
 410	}
 411
 412	/* Always block for VM page tables before committing the new location */
 413	if (bo->type == ttm_bo_type_kernel)
 414		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
 415	else
 416		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
 417	dma_fence_put(fence);
 418	return r;
 419
 420error:
 421	if (fence)
 422		dma_fence_wait(fence, false);
 423	dma_fence_put(fence);
 424	return r;
 425}
 426
 427/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
 429 *
 430 * Called by amdgpu_bo_move()
 431 */
 432static bool amdgpu_mem_visible(struct amdgpu_device *adev,
 433			       struct ttm_resource *mem)
 434{
 435	uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
 436	struct amdgpu_res_cursor cursor;
 437
 438	if (mem->mem_type == TTM_PL_SYSTEM ||
 439	    mem->mem_type == TTM_PL_TT)
 440		return true;
 441	if (mem->mem_type != TTM_PL_VRAM)
 442		return false;
 443
 444	amdgpu_res_first(mem, 0, mem_size, &cursor);
 445
 446	/* ttm_resource_ioremap only supports contiguous memory */
 447	if (cursor.size != mem_size)
 448		return false;
 449
 450	return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
 
 451}
 452
 453/*
 454 * amdgpu_bo_move - Move a buffer object to a new memory location
 455 *
 456 * Called by ttm_bo_handle_move_mem()
 457 */
 458static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
 459			  struct ttm_operation_ctx *ctx,
 460			  struct ttm_resource *new_mem,
 461			  struct ttm_place *hop)
 462{
 463	struct amdgpu_device *adev;
 464	struct amdgpu_bo *abo;
 465	struct ttm_resource *old_mem = bo->resource;
 466	int r;
 467
 468	if (new_mem->mem_type == TTM_PL_TT ||
 469	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
 470		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
 471		if (r)
 472			return r;
 473	}
 474
 475	/* Can't move a pinned BO */
 476	abo = ttm_to_amdgpu_bo(bo);
 477	if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
 478		return -EINVAL;
 479
 480	adev = amdgpu_ttm_adev(bo->bdev);
 481
 482	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
 483		ttm_bo_move_null(bo, new_mem);
 484		goto out;
 485	}
 486	if (old_mem->mem_type == TTM_PL_SYSTEM &&
 487	    (new_mem->mem_type == TTM_PL_TT ||
 488	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
 489		ttm_bo_move_null(bo, new_mem);
 490		goto out;
 491	}
 492	if ((old_mem->mem_type == TTM_PL_TT ||
 493	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
 494	    new_mem->mem_type == TTM_PL_SYSTEM) {
 495		r = ttm_bo_wait_ctx(bo, ctx);
 496		if (r)
 497			return r;
 498
 499		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
 500		ttm_resource_free(bo, &bo->resource);
 501		ttm_bo_assign_mem(bo, new_mem);
 502		goto out;
 503	}
 504
 505	if (old_mem->mem_type == AMDGPU_PL_GDS ||
 506	    old_mem->mem_type == AMDGPU_PL_GWS ||
 507	    old_mem->mem_type == AMDGPU_PL_OA ||
 508	    new_mem->mem_type == AMDGPU_PL_GDS ||
 509	    new_mem->mem_type == AMDGPU_PL_GWS ||
 510	    new_mem->mem_type == AMDGPU_PL_OA) {
 511		/* Nothing to save here */
 512		ttm_bo_move_null(bo, new_mem);
 513		goto out;
 514	}
 515
 516	if (bo->type == ttm_bo_type_device &&
 517	    new_mem->mem_type == TTM_PL_VRAM &&
 518	    old_mem->mem_type != TTM_PL_VRAM) {
 519		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
 520		 * accesses the BO after it's moved.
 521		 */
 522		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
 523	}
 524
 525	if (adev->mman.buffer_funcs_enabled) {
 526		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
 527		      new_mem->mem_type == TTM_PL_VRAM) ||
 528		     (old_mem->mem_type == TTM_PL_VRAM &&
 529		      new_mem->mem_type == TTM_PL_SYSTEM))) {
 530			hop->fpfn = 0;
 531			hop->lpfn = 0;
 532			hop->mem_type = TTM_PL_TT;
 533			hop->flags = 0;
 534			return -EMULTIHOP;
 535		}
 536
 537		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
 538	} else {
 539		r = -ENODEV;
 
 540	}
 541
 542	if (r) {
 
 543		/* Check that all memory is CPU accessible */
 544		if (!amdgpu_mem_visible(adev, old_mem) ||
 545		    !amdgpu_mem_visible(adev, new_mem)) {
 546			pr_err("Move buffer fallback to memcpy unavailable\n");
 547			return r;
 548		}
 549
 550		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
 551		if (r)
 552			return r;
 553	}
 554
 555out:
 
 
 
 
 
 
 
 
 556	/* update statistics */
 557	atomic64_add(bo->base.size, &adev->num_bytes_moved);
 558	amdgpu_bo_move_notify(bo, evict, new_mem);
 559	return 0;
 560}
 561
 562/*
 563 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
 564 *
 565 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
 566 */
 567static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
 568				     struct ttm_resource *mem)
 569{
 
 570	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 571	size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
 572
 
 
 
 
 
 
 
 573	switch (mem->mem_type) {
 574	case TTM_PL_SYSTEM:
 575		/* system memory */
 576		return 0;
 577	case TTM_PL_TT:
 578	case AMDGPU_PL_PREEMPT:
 579		break;
 580	case TTM_PL_VRAM:
 581		mem->bus.offset = mem->start << PAGE_SHIFT;
 582		/* check if it's visible */
 583		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
 584			return -EINVAL;
 585
 
 
 
 586		if (adev->mman.aper_base_kaddr &&
 587		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
 588			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
 589					mem->bus.offset;
 590
 591		mem->bus.offset += adev->gmc.aper_base;
 592		mem->bus.is_iomem = true;
 593		break;
 594	default:
 595		return -EINVAL;
 596	}
 597	return 0;
 598}
 599
 600static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
 601					   unsigned long page_offset)
 602{
 603	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 604	struct amdgpu_res_cursor cursor;
 605
 606	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
 607			 &cursor);
 608	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
 609}
 610
 611/**
 612 * amdgpu_ttm_domain_start - Returns GPU start address
 613 * @adev: amdgpu device object
 614 * @type: type of the memory
 615 *
 616 * Returns:
 617 * GPU start address of a memory domain
 618 */
 619
 620uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
 621{
 622	switch (type) {
 623	case TTM_PL_TT:
 624		return adev->gmc.gart_start;
 625	case TTM_PL_VRAM:
 626		return adev->gmc.vram_start;
 627	}
 628
 629	return 0;
 630}
 631
 632/*
 633 * TTM backend functions.
 634 */
 635struct amdgpu_ttm_tt {
 636	struct ttm_tt	ttm;
 637	struct drm_gem_object	*gobj;
 638	u64			offset;
 639	uint64_t		userptr;
 640	struct task_struct	*usertask;
 641	uint32_t		userflags;
 642	bool			bound;
 643#if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
 644	struct hmm_range	*range;
 645#endif
 646};
 647
 648#ifdef CONFIG_DRM_AMDGPU_USERPTR
 649/*
 650 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
 651 * memory and start HMM tracking CPU page table update
 652 *
 653 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
 654 * once afterwards to stop HMM tracking
 655 */
 656int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
 657{
 658	struct ttm_tt *ttm = bo->tbo.ttm;
 659	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 660	unsigned long start = gtt->userptr;
 661	struct vm_area_struct *vma;
 
 
 662	struct mm_struct *mm;
 663	bool readonly;
 664	int r = 0;
 665
 666	mm = bo->notifier.mm;
 667	if (unlikely(!mm)) {
 668		DRM_DEBUG_DRIVER("BO is not registered?\n");
 669		return -EFAULT;
 670	}
 671
 672	/* Another get_user_pages is running at the same time?? */
 673	if (WARN_ON(gtt->range))
 674		return -EFAULT;
 675
 676	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
 677		return -ESRCH;
 678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 679	mmap_read_lock(mm);
 680	vma = vma_lookup(mm, start);
 681	if (unlikely(!vma)) {
 682		r = -EFAULT;
 683		goto out_unlock;
 684	}
 685	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
 686		vma->vm_file)) {
 687		r = -EPERM;
 688		goto out_unlock;
 689	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 690
 691	readonly = amdgpu_ttm_tt_is_readonly(ttm);
 692	r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
 693				       ttm->num_pages, &gtt->range, readonly,
 694				       true, NULL);
 695out_unlock:
 696	mmap_read_unlock(mm);
 
 
 
 
 
 697	mmput(mm);
 698
 699	return r;
 700}
 701
 702/*
 703 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
 704 * Check if the pages backing this ttm range have been invalidated
 705 *
 706 * Returns: true if pages are still valid
 707 */
 708bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
 709{
 710	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 711	bool r = false;
 712
 713	if (!gtt || !gtt->userptr)
 714		return false;
 715
 716	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
 717		gtt->userptr, ttm->num_pages);
 718
 719	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
 720		"No user pages to check\n");
 721
 722	if (gtt->range) {
 723		/*
 724		 * FIXME: Must always hold notifier_lock for this, and must
 725		 * not ignore the return code.
 726		 */
 727		r = amdgpu_hmm_range_get_pages_done(gtt->range);
 
 
 
 728		gtt->range = NULL;
 729	}
 730
 731	return !r;
 732}
 733#endif
 734
 735/*
 736 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
 737 *
 738 * Called by amdgpu_cs_list_validate(). This creates the page list
 739 * that backs user memory and will ultimately be mapped into the device
 740 * address space.
 741 */
 742void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
 743{
 744	unsigned long i;
 745
 746	for (i = 0; i < ttm->num_pages; ++i)
 747		ttm->pages[i] = pages ? pages[i] : NULL;
 748}
 749
 750/*
 751 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
 752 *
 753 * Called by amdgpu_ttm_backend_bind()
 754 **/
 755static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
 756				     struct ttm_tt *ttm)
 757{
 758	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 759	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 
 
 760	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
 761	enum dma_data_direction direction = write ?
 762		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
 763	int r;
 764
 765	/* Allocate an SG array and squash pages into it */
 766	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
 767				      (u64)ttm->num_pages << PAGE_SHIFT,
 768				      GFP_KERNEL);
 769	if (r)
 770		goto release_sg;
 771
 772	/* Map SG to device */
 773	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
 774	if (r)
 775		goto release_sg;
 776
 777	/* convert SG to linear array of pages and dma addresses */
 778	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
 779				       ttm->num_pages);
 780
 781	return 0;
 782
 783release_sg:
 784	kfree(ttm->sg);
 785	ttm->sg = NULL;
 786	return r;
 787}
 788
 789/*
 790 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
 791 */
 792static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
 793					struct ttm_tt *ttm)
 794{
 795	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 796	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 
 797	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
 798	enum dma_data_direction direction = write ?
 799		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
 800
 801	/* double check that we don't free the table twice */
 802	if (!ttm->sg || !ttm->sg->sgl)
 803		return;
 804
 805	/* unmap the pages mapped to the device */
 806	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
 807	sg_free_table(ttm->sg);
 808
 809#if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
 810	if (gtt->range) {
 811		unsigned long i;
 812
 813		for (i = 0; i < ttm->num_pages; i++) {
 814			if (ttm->pages[i] !=
 815			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
 816				break;
 817		}
 818
 819		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
 820	}
 821#endif
 822}
 823
 824static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
 825				struct ttm_buffer_object *tbo,
 826				uint64_t flags)
 827{
 828	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
 829	struct ttm_tt *ttm = tbo->ttm;
 830	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 831	int r;
 832
 833	if (amdgpu_bo_encrypted(abo))
 834		flags |= AMDGPU_PTE_TMZ;
 835
 836	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
 837		uint64_t page_idx = 1;
 838
 839		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
 840				gtt->ttm.dma_address, flags);
 841		if (r)
 842			goto gart_bind_fail;
 843
 844		/* The memory type of the first page defaults to UC. Now
 845		 * modify the memory type to NC from the second page of
 846		 * the BO onward.
 847		 */
 848		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
 849		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
 850
 851		r = amdgpu_gart_bind(adev,
 852				gtt->offset + (page_idx << PAGE_SHIFT),
 853				ttm->num_pages - page_idx,
 
 854				&(gtt->ttm.dma_address[page_idx]), flags);
 855	} else {
 856		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
 857				     gtt->ttm.dma_address, flags);
 858	}
 859
 860gart_bind_fail:
 861	if (r)
 862		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
 863			  ttm->num_pages, gtt->offset);
 864
 865	return r;
 866}
 867
 868/*
 869 * amdgpu_ttm_backend_bind - Bind GTT memory
 870 *
 871 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
 872 * This handles binding GTT memory to the device address space.
 873 */
 874static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
 875				   struct ttm_tt *ttm,
 876				   struct ttm_resource *bo_mem)
 877{
 878	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 879	struct amdgpu_ttm_tt *gtt = (void*)ttm;
 880	uint64_t flags;
 881	int r = 0;
 882
 883	if (!bo_mem)
 884		return -EINVAL;
 885
 886	if (gtt->bound)
 887		return 0;
 888
 889	if (gtt->userptr) {
 890		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
 891		if (r) {
 892			DRM_ERROR("failed to pin userptr\n");
 893			return r;
 894		}
 895	} else if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
 896		if (!ttm->sg) {
 897			struct dma_buf_attachment *attach;
 898			struct sg_table *sgt;
 899
 900			attach = gtt->gobj->import_attach;
 901			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
 902			if (IS_ERR(sgt))
 903				return PTR_ERR(sgt);
 904
 905			ttm->sg = sgt;
 906		}
 907
 908		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
 909					       ttm->num_pages);
 910	}
 911
 912	if (!ttm->num_pages) {
 913		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
 914		     ttm->num_pages, bo_mem, ttm);
 915	}
 916
 917	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
 918	    bo_mem->mem_type == AMDGPU_PL_GWS ||
 919	    bo_mem->mem_type == AMDGPU_PL_OA)
 920		return -EINVAL;
 921
 922	if (bo_mem->mem_type != TTM_PL_TT ||
 923	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
 924		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
 925		return 0;
 926	}
 927
 928	/* compute PTE flags relevant to this BO memory */
 929	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
 930
 931	/* bind pages into GART page tables */
 932	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
 933	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
 934		gtt->ttm.dma_address, flags);
 935
 936	if (r)
 937		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
 938			  ttm->num_pages, gtt->offset);
 939	gtt->bound = true;
 940	return r;
 941}
 942
 943/*
 944 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
 945 * through AGP or GART aperture.
 946 *
 947 * If bo is accessible through AGP aperture, then use AGP aperture
 948 * to access bo; otherwise allocate logical space in GART aperture
 949 * and map bo to GART aperture.
 950 */
 951int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
 952{
 953	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 954	struct ttm_operation_ctx ctx = { false, false };
 955	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
 
 956	struct ttm_placement placement;
 957	struct ttm_place placements;
 958	struct ttm_resource *tmp;
 959	uint64_t addr, flags;
 960	int r;
 961
 962	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
 963		return 0;
 964
 965	addr = amdgpu_gmc_agp_addr(bo);
 966	if (addr != AMDGPU_BO_INVALID_OFFSET) {
 967		bo->resource->start = addr >> PAGE_SHIFT;
 968		return 0;
 969	}
 970
 971	/* allocate GART space */
 972	placement.num_placement = 1;
 973	placement.placement = &placements;
 974	placement.num_busy_placement = 1;
 975	placement.busy_placement = &placements;
 976	placements.fpfn = 0;
 977	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
 978	placements.mem_type = TTM_PL_TT;
 979	placements.flags = bo->resource->placement;
 
 
 980
 981	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
 982	if (unlikely(r))
 983		return r;
 984
 985	/* compute PTE flags for this buffer object */
 986	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
 987
 988	/* Bind pages */
 989	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
 990	r = amdgpu_ttm_gart_bind(adev, bo, flags);
 991	if (unlikely(r)) {
 992		ttm_resource_free(bo, &tmp);
 993		return r;
 
 
 
 
 994	}
 995
 996	amdgpu_gart_invalidate_tlb(adev);
 997	ttm_resource_free(bo, &bo->resource);
 998	ttm_bo_assign_mem(bo, tmp);
 999
1000	return 0;
1001}
1002
1003/*
1004 * amdgpu_ttm_recover_gart - Rebind GTT pages
1005 *
1006 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1007 * rebind GTT pages during a GPU reset.
1008 */
1009int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1010{
1011	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1012	uint64_t flags;
1013	int r;
1014
1015	if (!tbo->ttm)
1016		return 0;
1017
1018	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1019	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1020
1021	return r;
1022}
1023
1024/*
1025 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1026 *
1027 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1028 * ttm_tt_destroy().
1029 */
1030static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1031				      struct ttm_tt *ttm)
1032{
1033	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1034	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1035	int r;
1036
1037	/* if the pages have userptr pinning then clear that first */
1038	if (gtt->userptr) {
1039		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1040	} else if (ttm->sg && gtt->gobj->import_attach) {
1041		struct dma_buf_attachment *attach;
1042
1043		attach = gtt->gobj->import_attach;
1044		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1045		ttm->sg = NULL;
1046	}
1047
1048	if (!gtt->bound)
1049		return;
1050
1051	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1052		return;
1053
1054	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1055	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1056	if (r)
1057		DRM_ERROR("failed to unbind %u pages at 0x%08llX\n",
1058			  gtt->ttm.num_pages, gtt->offset);
1059	gtt->bound = false;
1060}
1061
1062static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1063				       struct ttm_tt *ttm)
1064{
1065	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1066
1067	amdgpu_ttm_backend_unbind(bdev, ttm);
1068	ttm_tt_destroy_common(bdev, ttm);
1069	if (gtt->usertask)
1070		put_task_struct(gtt->usertask);
1071
1072	ttm_tt_fini(&gtt->ttm);
1073	kfree(gtt);
1074}
1075
 
 
 
 
 
 
1076/**
1077 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1078 *
1079 * @bo: The buffer object to create a GTT ttm_tt object around
1080 * @page_flags: Page flags to be added to the ttm_tt object
1081 *
1082 * Called by ttm_tt_create().
1083 */
1084static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1085					   uint32_t page_flags)
1086{
1087	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1088	struct amdgpu_ttm_tt *gtt;
1089	enum ttm_caching caching;
1090
1091	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1092	if (gtt == NULL) {
1093		return NULL;
1094	}
 
1095	gtt->gobj = &bo->base;
1096
1097	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1098		caching = ttm_write_combined;
1099	else
1100		caching = ttm_cached;
1101
1102	/* allocate space for the uninitialized page entries */
1103	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1104		kfree(gtt);
1105		return NULL;
1106	}
1107	return &gtt->ttm;
1108}
1109
1110/*
1111 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1112 *
1113 * Map the pages of a ttm_tt object to an address space visible
1114 * to the underlying device.
1115 */
1116static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1117				  struct ttm_tt *ttm,
1118				  struct ttm_operation_ctx *ctx)
1119{
1120	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1121	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1122
1123	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1124	if (gtt && gtt->userptr) {
1125		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1126		if (!ttm->sg)
1127			return -ENOMEM;
 
 
 
1128		return 0;
1129	}
1130
1131	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1132		return 0;
 
 
 
 
 
 
 
1133
1134	return ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
 
 
1135}
1136
1137/*
1138 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1139 *
1140 * Unmaps pages of a ttm_tt object from the device address space and
1141 * unpopulates the page array backing it.
1142 */
1143static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1144				     struct ttm_tt *ttm)
1145{
1146	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1147	struct amdgpu_device *adev;
1148
1149	if (gtt && gtt->userptr) {
1150		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1151		kfree(ttm->sg);
 
 
 
 
 
 
 
 
 
1152		ttm->sg = NULL;
1153		return;
1154	}
1155
1156	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1157		return;
1158
1159	adev = amdgpu_ttm_adev(bdev);
1160	return ttm_pool_free(&adev->mman.bdev.pool, ttm);
 
 
 
 
 
 
 
 
 
1161}
1162
1163/**
1164 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1165 * task
1166 *
1167 * @bo: The ttm_buffer_object to bind this userptr to
1168 * @addr:  The address in the current tasks VM space to use
1169 * @flags: Requirements of userptr object.
1170 *
1171 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1172 * to current task
1173 */
1174int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1175			      uint64_t addr, uint32_t flags)
1176{
1177	struct amdgpu_ttm_tt *gtt;
1178
1179	if (!bo->ttm) {
1180		/* TODO: We want a separate TTM object type for userptrs */
1181		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1182		if (bo->ttm == NULL)
1183			return -ENOMEM;
1184	}
1185
1186	/* Set TTM_PAGE_FLAG_SG before populate but after create. */
1187	bo->ttm->page_flags |= TTM_PAGE_FLAG_SG;
1188
1189	gtt = (void *)bo->ttm;
1190	gtt->userptr = addr;
1191	gtt->userflags = flags;
1192
1193	if (gtt->usertask)
1194		put_task_struct(gtt->usertask);
1195	gtt->usertask = current->group_leader;
1196	get_task_struct(gtt->usertask);
1197
1198	return 0;
1199}
1200
1201/*
1202 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1203 */
1204struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1205{
1206	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1207
1208	if (gtt == NULL)
1209		return NULL;
1210
1211	if (gtt->usertask == NULL)
1212		return NULL;
1213
1214	return gtt->usertask->mm;
1215}
1216
1217/*
1218 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1219 * address range for the current task.
1220 *
1221 */
1222bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1223				  unsigned long end)
1224{
1225	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1226	unsigned long size;
1227
1228	if (gtt == NULL || !gtt->userptr)
1229		return false;
1230
1231	/* Return false if no part of the ttm_tt object lies within
1232	 * the range
1233	 */
1234	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1235	if (gtt->userptr > end || gtt->userptr + size <= start)
1236		return false;
1237
1238	return true;
1239}
1240
1241/*
1242 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1243 */
1244bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1245{
1246	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1247
1248	if (gtt == NULL || !gtt->userptr)
1249		return false;
1250
1251	return true;
1252}
1253
1254/*
1255 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1256 */
1257bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1258{
1259	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1260
1261	if (gtt == NULL)
1262		return false;
1263
1264	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1265}
1266
1267/**
1268 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1269 *
1270 * @ttm: The ttm_tt object to compute the flags for
1271 * @mem: The memory registry backing this ttm_tt object
1272 *
1273 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1274 */
1275uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1276{
1277	uint64_t flags = 0;
1278
1279	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1280		flags |= AMDGPU_PTE_VALID;
1281
1282	if (mem && (mem->mem_type == TTM_PL_TT ||
1283		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1284		flags |= AMDGPU_PTE_SYSTEM;
1285
1286		if (ttm->caching == ttm_cached)
1287			flags |= AMDGPU_PTE_SNOOPED;
1288	}
1289
1290	if (mem && mem->mem_type == TTM_PL_VRAM &&
1291			mem->bus.caching == ttm_cached)
1292		flags |= AMDGPU_PTE_SNOOPED;
1293
1294	return flags;
1295}
1296
1297/**
1298 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1299 *
1300 * @adev: amdgpu_device pointer
1301 * @ttm: The ttm_tt object to compute the flags for
1302 * @mem: The memory registry backing this ttm_tt object
1303 *
1304 * Figure out the flags to use for a VM PTE (Page Table Entry).
1305 */
1306uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1307				 struct ttm_resource *mem)
1308{
1309	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1310
1311	flags |= adev->gart.gart_pte_flags;
1312	flags |= AMDGPU_PTE_READABLE;
1313
1314	if (!amdgpu_ttm_tt_is_readonly(ttm))
1315		flags |= AMDGPU_PTE_WRITEABLE;
1316
1317	return flags;
1318}
1319
1320/*
1321 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1322 * object.
1323 *
1324 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1325 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1326 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1327 * used to clean out a memory space.
1328 */
1329static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1330					    const struct ttm_place *place)
1331{
1332	unsigned long num_pages = bo->resource->num_pages;
1333	struct amdgpu_res_cursor cursor;
1334	struct dma_resv_list *flist;
1335	struct dma_fence *f;
1336	int i;
1337
1338	/* Swapout? */
1339	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1340		return true;
1341
1342	if (bo->type == ttm_bo_type_kernel &&
1343	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1344		return false;
1345
1346	/* If bo is a KFD BO, check if the bo belongs to the current process.
1347	 * If true, then return false as any KFD process needs all its BOs to
1348	 * be resident to run successfully
1349	 */
1350	flist = dma_resv_shared_list(bo->base.resv);
1351	if (flist) {
1352		for (i = 0; i < flist->shared_count; ++i) {
1353			f = rcu_dereference_protected(flist->shared[i],
1354				dma_resv_held(bo->base.resv));
1355			if (amdkfd_fence_check_mm(f, current->mm))
1356				return false;
1357		}
1358	}
1359
1360	switch (bo->resource->mem_type) {
1361	case AMDGPU_PL_PREEMPT:
1362		/* Preemptible BOs don't own system resources managed by the
1363		 * driver (pages, VRAM, GART space). They point to resources
1364		 * owned by someone else (e.g. pageable memory in user mode
1365		 * or a DMABuf). They are used in a preemptible context so we
1366		 * can guarantee no deadlocks and good QoS in case of MMU
1367		 * notifiers or DMABuf move notifiers from the resource owner.
1368		 */
1369		return false;
1370	case TTM_PL_TT:
1371		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1372		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1373			return false;
1374		return true;
1375
1376	case TTM_PL_VRAM:
1377		/* Check each drm MM node individually */
1378		amdgpu_res_first(bo->resource, 0, (u64)num_pages << PAGE_SHIFT,
1379				 &cursor);
1380		while (cursor.remaining) {
1381			if (place->fpfn < PFN_DOWN(cursor.start + cursor.size)
1382			    && !(place->lpfn &&
1383				 place->lpfn <= PFN_DOWN(cursor.start)))
1384				return true;
1385
1386			amdgpu_res_next(&cursor, cursor.size);
 
1387		}
1388		return false;
1389
1390	default:
1391		break;
1392	}
1393
1394	return ttm_bo_eviction_valuable(bo, place);
1395}
1396
1397/**
1398 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1399 *
1400 * @bo:  The buffer object to read/write
1401 * @offset:  Offset into buffer object
1402 * @buf:  Secondary buffer to write/read from
1403 * @len: Length in bytes of access
1404 * @write:  true if writing
1405 *
1406 * This is used to access VRAM that backs a buffer object via MMIO
1407 * access for debugging purposes.
1408 */
1409static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1410				    unsigned long offset, void *buf, int len,
1411				    int write)
1412{
1413	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1414	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1415	struct amdgpu_res_cursor cursor;
1416	unsigned long flags;
1417	uint32_t value = 0;
1418	int ret = 0;
 
 
1419
1420	if (bo->resource->mem_type != TTM_PL_VRAM)
1421		return -EIO;
1422
1423	amdgpu_res_first(bo->resource, offset, len, &cursor);
1424	while (cursor.remaining) {
1425		uint64_t aligned_pos = cursor.start & ~(uint64_t)3;
1426		uint64_t bytes = 4 - (cursor.start & 3);
1427		uint32_t shift = (cursor.start & 3) * 8;
 
 
 
1428		uint32_t mask = 0xffffffff << shift;
1429
1430		if (cursor.size < bytes) {
1431			mask &= 0xffffffff >> (bytes - cursor.size) * 8;
1432			bytes = cursor.size;
1433		}
1434
1435		if (mask != 0xffffffff) {
1436			spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1437			WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1438			WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1439			value = RREG32_NO_KIQ(mmMM_DATA);
 
1440			if (write) {
1441				value &= ~mask;
1442				value |= (*(uint32_t *)buf << shift) & mask;
1443				WREG32_NO_KIQ(mmMM_DATA, value);
1444			}
1445			spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1446			if (!write) {
1447				value = (value & mask) >> shift;
1448				memcpy(buf, &value, bytes);
1449			}
1450		} else {
1451			bytes = cursor.size & ~0x3ULL;
1452			amdgpu_device_vram_access(adev, cursor.start,
1453						  (uint32_t *)buf, bytes,
1454						  write);
 
1455		}
1456
1457		ret += bytes;
1458		buf = (uint8_t *)buf + bytes;
1459		amdgpu_res_next(&cursor, bytes);
 
 
 
 
 
1460	}
1461
1462	return ret;
1463}
1464
1465static void
1466amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1467{
1468	amdgpu_bo_move_notify(bo, false, NULL);
1469}
1470
1471static struct ttm_device_funcs amdgpu_bo_driver = {
1472	.ttm_tt_create = &amdgpu_ttm_tt_create,
1473	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1474	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1475	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1476	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1477	.evict_flags = &amdgpu_evict_flags,
1478	.move = &amdgpu_bo_move,
1479	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
 
1480	.release_notify = &amdgpu_bo_release_notify,
 
1481	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1482	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1483	.access_memory = &amdgpu_ttm_access_memory,
1484	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1485};
1486
1487/*
1488 * Firmware Reservation functions
1489 */
1490/**
1491 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1492 *
1493 * @adev: amdgpu_device pointer
1494 *
1495 * free fw reserved vram if it has been reserved.
1496 */
1497static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1498{
1499	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1500		NULL, &adev->mman.fw_vram_usage_va);
1501}
1502
1503/**
1504 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1505 *
1506 * @adev: amdgpu_device pointer
1507 *
1508 * create bo vram reservation from fw.
1509 */
1510static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1511{
1512	uint64_t vram_size = adev->gmc.visible_vram_size;
1513
1514	adev->mman.fw_vram_usage_va = NULL;
1515	adev->mman.fw_vram_usage_reserved_bo = NULL;
1516
1517	if (adev->mman.fw_vram_usage_size == 0 ||
1518	    adev->mman.fw_vram_usage_size > vram_size)
1519		return 0;
1520
1521	return amdgpu_bo_create_kernel_at(adev,
1522					  adev->mman.fw_vram_usage_start_offset,
1523					  adev->mman.fw_vram_usage_size,
1524					  AMDGPU_GEM_DOMAIN_VRAM,
1525					  &adev->mman.fw_vram_usage_reserved_bo,
1526					  &adev->mman.fw_vram_usage_va);
1527}
1528
1529/*
1530 * Memoy training reservation functions
1531 */
1532
1533/**
1534 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1535 *
1536 * @adev: amdgpu_device pointer
1537 *
1538 * free memory training reserved vram if it has been reserved.
1539 */
1540static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1541{
1542	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1543
1544	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1545	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1546	ctx->c2p_bo = NULL;
1547
1548	return 0;
1549}
1550
1551static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1552{
1553	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1554
1555	memset(ctx, 0, sizeof(*ctx));
1556
1557	ctx->c2p_train_data_offset =
1558		ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1559	ctx->p2c_train_data_offset =
1560		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1561	ctx->train_data_size =
1562		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1563
1564	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1565			ctx->train_data_size,
1566			ctx->p2c_train_data_offset,
1567			ctx->c2p_train_data_offset);
1568}
1569
1570/*
1571 * reserve TMR memory at the top of VRAM which holds
1572 * IP Discovery data and is protected by PSP.
1573 */
1574static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1575{
1576	int ret;
1577	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1578	bool mem_train_support = false;
1579
1580	if (!amdgpu_sriov_vf(adev)) {
1581		if (amdgpu_atomfirmware_mem_training_supported(adev))
 
1582			mem_train_support = true;
 
 
1583		else
1584			DRM_DEBUG("memory training does not support!\n");
1585	}
1586
1587	/*
1588	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1589	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1590	 *
1591	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1592	 * discovery data and G6 memory training data respectively
1593	 */
1594	adev->mman.discovery_tmr_size =
1595		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1596	if (!adev->mman.discovery_tmr_size)
1597		adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1598
1599	if (mem_train_support) {
1600		/* reserve vram for mem train according to TMR location */
1601		amdgpu_ttm_training_data_block_init(adev);
1602		ret = amdgpu_bo_create_kernel_at(adev,
1603					 ctx->c2p_train_data_offset,
1604					 ctx->train_data_size,
1605					 AMDGPU_GEM_DOMAIN_VRAM,
1606					 &ctx->c2p_bo,
1607					 NULL);
1608		if (ret) {
1609			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1610			amdgpu_ttm_training_reserve_vram_fini(adev);
1611			return ret;
1612		}
1613		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1614	}
1615
1616	ret = amdgpu_bo_create_kernel_at(adev,
1617				adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1618				adev->mman.discovery_tmr_size,
1619				AMDGPU_GEM_DOMAIN_VRAM,
1620				&adev->mman.discovery_memory,
1621				NULL);
1622	if (ret) {
1623		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1624		amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1625		return ret;
1626	}
1627
1628	return 0;
1629}
1630
1631/*
1632 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1633 * gtt/vram related fields.
1634 *
1635 * This initializes all of the memory space pools that the TTM layer
1636 * will need such as the GTT space (system memory mapped to the device),
1637 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1638 * can be mapped per VMID.
1639 */
1640int amdgpu_ttm_init(struct amdgpu_device *adev)
1641{
1642	uint64_t gtt_size;
1643	int r;
1644	u64 vis_vram_limit;
 
1645
1646	mutex_init(&adev->mman.gtt_window_lock);
1647
1648	/* No others user of address space so set it to 0 */
1649	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1650			       adev_to_drm(adev)->anon_inode->i_mapping,
1651			       adev_to_drm(adev)->vma_offset_manager,
1652			       adev->need_swiotlb,
1653			       dma_addressing_limited(adev->dev));
1654	if (r) {
1655		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1656		return r;
1657	}
1658	adev->mman.initialized = true;
1659
 
 
 
1660	/* Initialize VRAM pool with all of VRAM divided into pages */
1661	r = amdgpu_vram_mgr_init(adev);
 
1662	if (r) {
1663		DRM_ERROR("Failed initializing VRAM heap.\n");
1664		return r;
1665	}
1666
1667	/* Reduce size of CPU-visible VRAM if requested */
1668	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1669	if (amdgpu_vis_vram_limit > 0 &&
1670	    vis_vram_limit <= adev->gmc.visible_vram_size)
1671		adev->gmc.visible_vram_size = vis_vram_limit;
1672
1673	/* Change the size here instead of the init above so only lpfn is affected */
1674	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1675#ifdef CONFIG_64BIT
1676#ifdef CONFIG_X86
1677	if (adev->gmc.xgmi.connected_to_cpu)
1678		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1679				adev->gmc.visible_vram_size);
1680
1681	else
1682#endif
1683		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1684				adev->gmc.visible_vram_size);
1685#endif
1686
1687	/*
1688	 *The reserved vram for firmware must be pinned to the specified
1689	 *place on the VRAM, so reserve it early.
1690	 */
1691	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1692	if (r) {
1693		return r;
1694	}
1695
1696	/*
1697	 * only NAVI10 and onwards ASIC support for IP discovery.
1698	 * If IP discovery enabled, a block of memory should be
1699	 * reserved for IP discovey.
1700	 */
1701	if (adev->mman.discovery_bin) {
1702		r = amdgpu_ttm_reserve_tmr(adev);
1703		if (r)
1704			return r;
1705	}
1706
1707	/* allocate memory as required for VGA
1708	 * This is used for VGA emulation and pre-OS scanout buffers to
1709	 * avoid display artifacts while transitioning between pre-OS
1710	 * and driver.  */
1711	r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1712				       AMDGPU_GEM_DOMAIN_VRAM,
1713				       &adev->mman.stolen_vga_memory,
1714				       NULL);
1715	if (r)
1716		return r;
1717	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1718				       adev->mman.stolen_extended_size,
1719				       AMDGPU_GEM_DOMAIN_VRAM,
1720				       &adev->mman.stolen_extended_memory,
1721				       NULL);
1722	if (r)
1723		return r;
1724	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1725				       adev->mman.stolen_reserved_size,
1726				       AMDGPU_GEM_DOMAIN_VRAM,
1727				       &adev->mman.stolen_reserved_memory,
1728				       NULL);
1729	if (r)
1730		return r;
1731
1732	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1733		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1734
1735	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1736	 * or whatever the user passed on module init */
1737	if (amdgpu_gtt_size == -1) {
1738		struct sysinfo si;
1739
1740		si_meminfo(&si);
1741		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1742			       adev->gmc.mc_vram_size),
1743			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1744	}
1745	else
1746		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1747
1748	/* Initialize GTT memory pool */
1749	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1750	if (r) {
1751		DRM_ERROR("Failed initializing GTT heap.\n");
1752		return r;
1753	}
1754	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1755		 (unsigned)(gtt_size / (1024 * 1024)));
1756
1757	/* Initialize preemptible memory pool */
1758	r = amdgpu_preempt_mgr_init(adev);
1759	if (r) {
1760		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1761		return r;
1762	}
1763
1764	/* Initialize various on-chip memory pools */
1765	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
 
1766	if (r) {
1767		DRM_ERROR("Failed initializing GDS heap.\n");
1768		return r;
1769	}
1770
1771	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
 
1772	if (r) {
1773		DRM_ERROR("Failed initializing gws heap.\n");
1774		return r;
1775	}
1776
1777	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
 
1778	if (r) {
1779		DRM_ERROR("Failed initializing oa heap.\n");
1780		return r;
1781	}
1782
1783	return 0;
1784}
1785
1786/*
 
 
 
 
 
 
 
 
 
 
1787 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1788 */
1789void amdgpu_ttm_fini(struct amdgpu_device *adev)
1790{
1791	if (!adev->mman.initialized)
1792		return;
1793
1794	amdgpu_ttm_training_reserve_vram_fini(adev);
1795	/* return the stolen vga memory back to VRAM */
1796	amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1797	amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1798	/* return the IP Discovery TMR memory back to VRAM */
1799	amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1800	if (adev->mman.stolen_reserved_size)
1801		amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1802				      NULL, NULL);
1803	amdgpu_ttm_fw_reserve_vram_fini(adev);
1804
1805	amdgpu_vram_mgr_fini(adev);
1806	amdgpu_gtt_mgr_fini(adev);
1807	amdgpu_preempt_mgr_fini(adev);
1808	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1809	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1810	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1811	ttm_device_fini(&adev->mman.bdev);
 
 
 
1812	adev->mman.initialized = false;
1813	DRM_INFO("amdgpu: ttm finalized\n");
1814}
1815
1816/**
1817 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1818 *
1819 * @adev: amdgpu_device pointer
1820 * @enable: true when we can use buffer functions.
1821 *
1822 * Enable/disable use of buffer functions during suspend/resume. This should
1823 * only be called at bootup or when userspace isn't running.
1824 */
1825void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1826{
1827	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1828	uint64_t size;
1829	int r;
1830
1831	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1832	    adev->mman.buffer_funcs_enabled == enable)
1833		return;
1834
1835	if (enable) {
1836		struct amdgpu_ring *ring;
1837		struct drm_gpu_scheduler *sched;
1838
1839		ring = adev->mman.buffer_funcs_ring;
1840		sched = &ring->sched;
1841		r = drm_sched_entity_init(&adev->mman.entity,
1842					  DRM_SCHED_PRIORITY_KERNEL, &sched,
1843					  1, NULL);
1844		if (r) {
1845			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1846				  r);
1847			return;
1848		}
1849	} else {
1850		drm_sched_entity_destroy(&adev->mman.entity);
1851		dma_fence_put(man->move);
1852		man->move = NULL;
1853	}
1854
1855	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1856	if (enable)
1857		size = adev->gmc.real_vram_size;
1858	else
1859		size = adev->gmc.visible_vram_size;
1860	man->size = size >> PAGE_SHIFT;
1861	adev->mman.buffer_funcs_enabled = enable;
1862}
1863
 
 
 
 
 
 
 
 
 
 
 
1864int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1865		       uint64_t dst_offset, uint32_t byte_count,
1866		       struct dma_resv *resv,
1867		       struct dma_fence **fence, bool direct_submit,
1868		       bool vm_needs_flush, bool tmz)
1869{
1870	enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
1871		AMDGPU_IB_POOL_DELAYED;
1872	struct amdgpu_device *adev = ring->adev;
1873	struct amdgpu_job *job;
1874
1875	uint32_t max_bytes;
1876	unsigned num_loops, num_dw;
1877	unsigned i;
1878	int r;
1879
1880	if (direct_submit && !ring->sched.ready) {
1881		DRM_ERROR("Trying to move memory with ring turned off.\n");
1882		return -EINVAL;
1883	}
1884
1885	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1886	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1887	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
1888
1889	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
1890	if (r)
1891		return r;
1892
1893	if (vm_needs_flush) {
1894		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1895					adev->gmc.pdb0_bo : adev->gart.bo);
1896		job->vm_needs_flush = true;
1897	}
1898	if (resv) {
1899		r = amdgpu_sync_resv(adev, &job->sync, resv,
1900				     AMDGPU_SYNC_ALWAYS,
1901				     AMDGPU_FENCE_OWNER_UNDEFINED);
1902		if (r) {
1903			DRM_ERROR("sync failed (%d).\n", r);
1904			goto error_free;
1905		}
1906	}
1907
1908	for (i = 0; i < num_loops; i++) {
1909		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
1910
1911		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
1912					dst_offset, cur_size_in_bytes, tmz);
1913
1914		src_offset += cur_size_in_bytes;
1915		dst_offset += cur_size_in_bytes;
1916		byte_count -= cur_size_in_bytes;
1917	}
1918
1919	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1920	WARN_ON(job->ibs[0].length_dw > num_dw);
1921	if (direct_submit)
1922		r = amdgpu_job_submit_direct(job, ring, fence);
1923	else
1924		r = amdgpu_job_submit(job, &adev->mman.entity,
1925				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
1926	if (r)
1927		goto error_free;
1928
1929	return r;
1930
1931error_free:
1932	amdgpu_job_free(job);
1933	DRM_ERROR("Error scheduling IBs (%d)\n", r);
1934	return r;
1935}
1936
1937int amdgpu_fill_buffer(struct amdgpu_bo *bo,
1938		       uint32_t src_data,
1939		       struct dma_resv *resv,
1940		       struct dma_fence **fence)
1941{
1942	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
1943	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
1944	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
1945
1946	struct amdgpu_res_cursor cursor;
 
1947	unsigned int num_loops, num_dw;
1948	uint64_t num_bytes;
1949
1950	struct amdgpu_job *job;
1951	int r;
1952
1953	if (!adev->mman.buffer_funcs_enabled) {
1954		DRM_ERROR("Trying to clear memory with ring turned off.\n");
1955		return -EINVAL;
1956	}
1957
1958	if (bo->tbo.resource->mem_type == AMDGPU_PL_PREEMPT) {
1959		DRM_ERROR("Trying to clear preemptible memory.\n");
1960		return -EINVAL;
1961	}
1962
1963	if (bo->tbo.resource->mem_type == TTM_PL_TT) {
1964		r = amdgpu_ttm_alloc_gart(&bo->tbo);
1965		if (r)
1966			return r;
1967	}
1968
1969	num_bytes = bo->tbo.resource->num_pages << PAGE_SHIFT;
 
1970	num_loops = 0;
 
 
1971
1972	amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
1973	while (cursor.remaining) {
1974		num_loops += DIV_ROUND_UP_ULL(cursor.size, max_bytes);
1975		amdgpu_res_next(&cursor, cursor.size);
1976	}
1977	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
1978
1979	/* for IB padding */
1980	num_dw += 64;
1981
1982	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1983				     &job);
1984	if (r)
1985		return r;
1986
1987	if (resv) {
1988		r = amdgpu_sync_resv(adev, &job->sync, resv,
1989				     AMDGPU_SYNC_ALWAYS,
1990				     AMDGPU_FENCE_OWNER_UNDEFINED);
1991		if (r) {
1992			DRM_ERROR("sync failed (%d).\n", r);
1993			goto error_free;
1994		}
1995	}
1996
1997	amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
1998	while (cursor.remaining) {
1999		uint32_t cur_size = min_t(uint64_t, cursor.size, max_bytes);
2000		uint64_t dst_addr = cursor.start;
2001
2002		dst_addr += amdgpu_ttm_domain_start(adev,
2003						    bo->tbo.resource->mem_type);
2004		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2005					cur_size);
 
 
 
 
 
2006
2007		amdgpu_res_next(&cursor, cur_size);
 
 
 
 
 
2008	}
2009
2010	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2011	WARN_ON(job->ibs[0].length_dw > num_dw);
2012	r = amdgpu_job_submit(job, &adev->mman.entity,
2013			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2014	if (r)
2015		goto error_free;
2016
2017	return 0;
2018
2019error_free:
2020	amdgpu_job_free(job);
2021	return r;
2022}
2023
2024#if defined(CONFIG_DEBUG_FS)
2025
2026static int amdgpu_mm_vram_table_show(struct seq_file *m, void *unused)
2027{
2028	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2029	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2030							    TTM_PL_VRAM);
 
 
2031	struct drm_printer p = drm_seq_file_printer(m);
2032
2033	man->func->debug(man, &p);
2034	return 0;
2035}
2036
2037static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2038{
2039	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
 
 
 
 
 
 
 
 
2040
2041	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2042}
2043
2044static int amdgpu_mm_tt_table_show(struct seq_file *m, void *unused)
2045{
2046	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2047	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2048							    TTM_PL_TT);
2049	struct drm_printer p = drm_seq_file_printer(m);
2050
2051	man->func->debug(man, &p);
2052	return 0;
2053}
2054
2055static int amdgpu_mm_gds_table_show(struct seq_file *m, void *unused)
2056{
2057	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2058	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2059							    AMDGPU_PL_GDS);
2060	struct drm_printer p = drm_seq_file_printer(m);
2061
2062	man->func->debug(man, &p);
2063	return 0;
2064}
2065
2066static int amdgpu_mm_gws_table_show(struct seq_file *m, void *unused)
2067{
2068	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2069	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2070							    AMDGPU_PL_GWS);
2071	struct drm_printer p = drm_seq_file_printer(m);
2072
2073	man->func->debug(man, &p);
2074	return 0;
2075}
2076
2077static int amdgpu_mm_oa_table_show(struct seq_file *m, void *unused)
2078{
2079	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2080	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2081							    AMDGPU_PL_OA);
2082	struct drm_printer p = drm_seq_file_printer(m);
2083
2084	man->func->debug(man, &p);
2085	return 0;
2086}
2087
2088DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_vram_table);
2089DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_tt_table);
2090DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gds_table);
2091DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gws_table);
2092DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_oa_table);
2093DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2094
2095/*
2096 * amdgpu_ttm_vram_read - Linear read access to VRAM
2097 *
2098 * Accesses VRAM via MMIO for debugging purposes.
2099 */
2100static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2101				    size_t size, loff_t *pos)
2102{
2103	struct amdgpu_device *adev = file_inode(f)->i_private;
2104	ssize_t result = 0;
2105
2106	if (size & 0x3 || *pos & 0x3)
2107		return -EINVAL;
2108
2109	if (*pos >= adev->gmc.mc_vram_size)
2110		return -ENXIO;
2111
2112	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2113	while (size) {
2114		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2115		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2116
2117		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2118		if (copy_to_user(buf, value, bytes))
2119			return -EFAULT;
2120
2121		result += bytes;
2122		buf += bytes;
2123		*pos += bytes;
2124		size -= bytes;
2125	}
2126
2127	return result;
2128}
2129
2130/*
2131 * amdgpu_ttm_vram_write - Linear write access to VRAM
2132 *
2133 * Accesses VRAM via MMIO for debugging purposes.
2134 */
2135static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2136				    size_t size, loff_t *pos)
2137{
2138	struct amdgpu_device *adev = file_inode(f)->i_private;
2139	ssize_t result = 0;
2140	int r;
2141
2142	if (size & 0x3 || *pos & 0x3)
2143		return -EINVAL;
2144
2145	if (*pos >= adev->gmc.mc_vram_size)
2146		return -ENXIO;
2147
2148	while (size) {
2149		unsigned long flags;
2150		uint32_t value;
2151
2152		if (*pos >= adev->gmc.mc_vram_size)
2153			return result;
2154
2155		r = get_user(value, (uint32_t *)buf);
2156		if (r)
2157			return r;
2158
2159		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2160		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2161		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2162		WREG32_NO_KIQ(mmMM_DATA, value);
2163		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2164
2165		result += 4;
2166		buf += 4;
2167		*pos += 4;
2168		size -= 4;
2169	}
2170
2171	return result;
2172}
2173
2174static const struct file_operations amdgpu_ttm_vram_fops = {
2175	.owner = THIS_MODULE,
2176	.read = amdgpu_ttm_vram_read,
2177	.write = amdgpu_ttm_vram_write,
2178	.llseek = default_llseek,
2179};
2180
2181/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2182 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2183 *
2184 * This function is used to read memory that has been mapped to the
2185 * GPU and the known addresses are not physical addresses but instead
2186 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2187 */
2188static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2189				 size_t size, loff_t *pos)
2190{
2191	struct amdgpu_device *adev = file_inode(f)->i_private;
2192	struct iommu_domain *dom;
2193	ssize_t result = 0;
2194	int r;
2195
2196	/* retrieve the IOMMU domain if any for this device */
2197	dom = iommu_get_domain_for_dev(adev->dev);
2198
2199	while (size) {
2200		phys_addr_t addr = *pos & PAGE_MASK;
2201		loff_t off = *pos & ~PAGE_MASK;
2202		size_t bytes = PAGE_SIZE - off;
2203		unsigned long pfn;
2204		struct page *p;
2205		void *ptr;
2206
2207		bytes = bytes < size ? bytes : size;
2208
2209		/* Translate the bus address to a physical address.  If
2210		 * the domain is NULL it means there is no IOMMU active
2211		 * and the address translation is the identity
2212		 */
2213		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2214
2215		pfn = addr >> PAGE_SHIFT;
2216		if (!pfn_valid(pfn))
2217			return -EPERM;
2218
2219		p = pfn_to_page(pfn);
2220		if (p->mapping != adev->mman.bdev.dev_mapping)
2221			return -EPERM;
2222
2223		ptr = kmap(p);
2224		r = copy_to_user(buf, ptr + off, bytes);
2225		kunmap(p);
2226		if (r)
2227			return -EFAULT;
2228
2229		size -= bytes;
2230		*pos += bytes;
2231		result += bytes;
2232	}
2233
2234	return result;
2235}
2236
2237/*
2238 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2239 *
2240 * This function is used to write memory that has been mapped to the
2241 * GPU and the known addresses are not physical addresses but instead
2242 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2243 */
2244static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2245				 size_t size, loff_t *pos)
2246{
2247	struct amdgpu_device *adev = file_inode(f)->i_private;
2248	struct iommu_domain *dom;
2249	ssize_t result = 0;
2250	int r;
2251
2252	dom = iommu_get_domain_for_dev(adev->dev);
2253
2254	while (size) {
2255		phys_addr_t addr = *pos & PAGE_MASK;
2256		loff_t off = *pos & ~PAGE_MASK;
2257		size_t bytes = PAGE_SIZE - off;
2258		unsigned long pfn;
2259		struct page *p;
2260		void *ptr;
2261
2262		bytes = bytes < size ? bytes : size;
2263
2264		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2265
2266		pfn = addr >> PAGE_SHIFT;
2267		if (!pfn_valid(pfn))
2268			return -EPERM;
2269
2270		p = pfn_to_page(pfn);
2271		if (p->mapping != adev->mman.bdev.dev_mapping)
2272			return -EPERM;
2273
2274		ptr = kmap(p);
2275		r = copy_from_user(ptr + off, buf, bytes);
2276		kunmap(p);
2277		if (r)
2278			return -EFAULT;
2279
2280		size -= bytes;
2281		*pos += bytes;
2282		result += bytes;
2283	}
2284
2285	return result;
2286}
2287
2288static const struct file_operations amdgpu_ttm_iomem_fops = {
2289	.owner = THIS_MODULE,
2290	.read = amdgpu_iomem_read,
2291	.write = amdgpu_iomem_write,
2292	.llseek = default_llseek
2293};
2294
 
 
 
 
 
 
 
 
 
 
 
 
2295#endif
2296
2297void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2298{
2299#if defined(CONFIG_DEBUG_FS)
2300	struct drm_minor *minor = adev_to_drm(adev)->primary;
2301	struct dentry *root = minor->debugfs_root;
 
 
2302
2303	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2304				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2305	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2306			    &amdgpu_ttm_iomem_fops);
2307	debugfs_create_file("amdgpu_vram_mm", 0444, root, adev,
2308			    &amdgpu_mm_vram_table_fops);
2309	debugfs_create_file("amdgpu_gtt_mm", 0444, root, adev,
2310			    &amdgpu_mm_tt_table_fops);
2311	debugfs_create_file("amdgpu_gds_mm", 0444, root, adev,
2312			    &amdgpu_mm_gds_table_fops);
2313	debugfs_create_file("amdgpu_gws_mm", 0444, root, adev,
2314			    &amdgpu_mm_gws_table_fops);
2315	debugfs_create_file("amdgpu_oa_mm", 0444, root, adev,
2316			    &amdgpu_mm_oa_table_fops);
2317	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2318			    &amdgpu_ttm_page_pool_fops);
 
 
 
 
 
 
 
 
 
2319#endif
2320}