Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  3
  4#include <linux/errno.h>
  5#include <linux/kernel.h>
  6#include <linux/mm.h>
  7#include <linux/smp.h>
  8#include <linux/prctl.h>
  9#include <linux/slab.h>
 10#include <linux/sched.h>
 11#include <linux/sched/idle.h>
 12#include <linux/sched/debug.h>
 13#include <linux/sched/task.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/init.h>
 16#include <linux/export.h>
 17#include <linux/pm.h>
 18#include <linux/tick.h>
 19#include <linux/random.h>
 20#include <linux/user-return-notifier.h>
 21#include <linux/dmi.h>
 22#include <linux/utsname.h>
 23#include <linux/stackprotector.h>
 24#include <linux/cpuidle.h>
 25#include <linux/acpi.h>
 26#include <linux/elf-randomize.h>
 27#include <trace/events/power.h>
 28#include <linux/hw_breakpoint.h>
 29#include <asm/cpu.h>
 30#include <asm/apic.h>
 31#include <linux/uaccess.h>
 32#include <asm/mwait.h>
 33#include <asm/fpu/internal.h>
 34#include <asm/debugreg.h>
 35#include <asm/nmi.h>
 36#include <asm/tlbflush.h>
 37#include <asm/mce.h>
 38#include <asm/vm86.h>
 39#include <asm/switch_to.h>
 40#include <asm/desc.h>
 41#include <asm/prctl.h>
 42#include <asm/spec-ctrl.h>
 43#include <asm/io_bitmap.h>
 44#include <asm/proto.h>
 45#include <asm/frame.h>
 46
 47#include "process.h"
 48
 49/*
 50 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 51 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 52 * so they are allowed to end up in the .data..cacheline_aligned
 53 * section. Since TSS's are completely CPU-local, we want them
 54 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 55 */
 56__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
 57	.x86_tss = {
 58		/*
 59		 * .sp0 is only used when entering ring 0 from a lower
 60		 * privilege level.  Since the init task never runs anything
 61		 * but ring 0 code, there is no need for a valid value here.
 62		 * Poison it.
 63		 */
 64		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
 65
 66		/*
 67		 * .sp1 is cpu_current_top_of_stack.  The init task never
 68		 * runs user code, but cpu_current_top_of_stack should still
 69		 * be well defined before the first context switch.
 70		 */
 71		.sp1 = TOP_OF_INIT_STACK,
 72
 73#ifdef CONFIG_X86_32
 74		.ss0 = __KERNEL_DS,
 75		.ss1 = __KERNEL_CS,
 76#endif
 77		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
 78	 },
 79};
 80EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
 81
 82DEFINE_PER_CPU(bool, __tss_limit_invalid);
 83EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
 84
 85/*
 86 * this gets called so that we can store lazy state into memory and copy the
 87 * current task into the new thread.
 88 */
 89int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 90{
 91	memcpy(dst, src, arch_task_struct_size);
 92#ifdef CONFIG_VM86
 93	dst->thread.vm86 = NULL;
 94#endif
 95
 96	return fpu__copy(dst, src);
 97}
 98
 99/*
100 * Free thread data structures etc..
101 */
102void exit_thread(struct task_struct *tsk)
103{
104	struct thread_struct *t = &tsk->thread;
105	struct fpu *fpu = &t->fpu;
106
107	if (test_thread_flag(TIF_IO_BITMAP))
108		io_bitmap_exit(tsk);
109
110	free_vm86(t);
111
112	fpu__drop(fpu);
113}
114
115static int set_new_tls(struct task_struct *p, unsigned long tls)
116{
117	struct user_desc __user *utls = (struct user_desc __user *)tls;
118
119	if (in_ia32_syscall())
120		return do_set_thread_area(p, -1, utls, 0);
121	else
122		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
123}
124
125int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg,
126		struct task_struct *p, unsigned long tls)
127{
128	struct inactive_task_frame *frame;
129	struct fork_frame *fork_frame;
130	struct pt_regs *childregs;
131	int ret = 0;
132
133	childregs = task_pt_regs(p);
134	fork_frame = container_of(childregs, struct fork_frame, regs);
135	frame = &fork_frame->frame;
136
137	frame->bp = encode_frame_pointer(childregs);
138	frame->ret_addr = (unsigned long) ret_from_fork;
139	p->thread.sp = (unsigned long) fork_frame;
140	p->thread.io_bitmap = NULL;
141	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
142
143#ifdef CONFIG_X86_64
144	current_save_fsgs();
145	p->thread.fsindex = current->thread.fsindex;
146	p->thread.fsbase = current->thread.fsbase;
147	p->thread.gsindex = current->thread.gsindex;
148	p->thread.gsbase = current->thread.gsbase;
149
150	savesegment(es, p->thread.es);
151	savesegment(ds, p->thread.ds);
152#else
153	p->thread.sp0 = (unsigned long) (childregs + 1);
154	/*
155	 * Clear all status flags including IF and set fixed bit. 64bit
156	 * does not have this initialization as the frame does not contain
157	 * flags. The flags consistency (especially vs. AC) is there
158	 * ensured via objtool, which lacks 32bit support.
159	 */
160	frame->flags = X86_EFLAGS_FIXED;
161#endif
162
163	/* Kernel thread ? */
164	if (unlikely(p->flags & PF_KTHREAD)) {
 
165		memset(childregs, 0, sizeof(struct pt_regs));
166		kthread_frame_init(frame, sp, arg);
167		return 0;
168	}
169
 
 
 
 
 
 
170	frame->bx = 0;
171	*childregs = *current_pt_regs();
172	childregs->ax = 0;
173	if (sp)
174		childregs->sp = sp;
175
176#ifdef CONFIG_X86_32
177	task_user_gs(p) = get_user_gs(current_pt_regs());
178#endif
179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
180	/* Set a new TLS for the child thread? */
181	if (clone_flags & CLONE_SETTLS)
182		ret = set_new_tls(p, tls);
183
184	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
185		io_bitmap_share(p);
186
187	return ret;
188}
189
 
 
 
 
 
 
 
 
 
190void flush_thread(void)
191{
192	struct task_struct *tsk = current;
193
194	flush_ptrace_hw_breakpoint(tsk);
195	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
196
197	fpu__clear_all(&tsk->thread.fpu);
 
198}
199
200void disable_TSC(void)
201{
202	preempt_disable();
203	if (!test_and_set_thread_flag(TIF_NOTSC))
204		/*
205		 * Must flip the CPU state synchronously with
206		 * TIF_NOTSC in the current running context.
207		 */
208		cr4_set_bits(X86_CR4_TSD);
209	preempt_enable();
210}
211
212static void enable_TSC(void)
213{
214	preempt_disable();
215	if (test_and_clear_thread_flag(TIF_NOTSC))
216		/*
217		 * Must flip the CPU state synchronously with
218		 * TIF_NOTSC in the current running context.
219		 */
220		cr4_clear_bits(X86_CR4_TSD);
221	preempt_enable();
222}
223
224int get_tsc_mode(unsigned long adr)
225{
226	unsigned int val;
227
228	if (test_thread_flag(TIF_NOTSC))
229		val = PR_TSC_SIGSEGV;
230	else
231		val = PR_TSC_ENABLE;
232
233	return put_user(val, (unsigned int __user *)adr);
234}
235
236int set_tsc_mode(unsigned int val)
237{
238	if (val == PR_TSC_SIGSEGV)
239		disable_TSC();
240	else if (val == PR_TSC_ENABLE)
241		enable_TSC();
242	else
243		return -EINVAL;
244
245	return 0;
246}
247
248DEFINE_PER_CPU(u64, msr_misc_features_shadow);
249
250static void set_cpuid_faulting(bool on)
251{
252	u64 msrval;
253
254	msrval = this_cpu_read(msr_misc_features_shadow);
255	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
256	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
257	this_cpu_write(msr_misc_features_shadow, msrval);
258	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
259}
260
261static void disable_cpuid(void)
262{
263	preempt_disable();
264	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
265		/*
266		 * Must flip the CPU state synchronously with
267		 * TIF_NOCPUID in the current running context.
268		 */
269		set_cpuid_faulting(true);
270	}
271	preempt_enable();
272}
273
274static void enable_cpuid(void)
275{
276	preempt_disable();
277	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
278		/*
279		 * Must flip the CPU state synchronously with
280		 * TIF_NOCPUID in the current running context.
281		 */
282		set_cpuid_faulting(false);
283	}
284	preempt_enable();
285}
286
287static int get_cpuid_mode(void)
288{
289	return !test_thread_flag(TIF_NOCPUID);
290}
291
292static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
293{
294	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
295		return -ENODEV;
296
297	if (cpuid_enabled)
298		enable_cpuid();
299	else
300		disable_cpuid();
301
302	return 0;
303}
304
305/*
306 * Called immediately after a successful exec.
307 */
308void arch_setup_new_exec(void)
309{
310	/* If cpuid was previously disabled for this task, re-enable it. */
311	if (test_thread_flag(TIF_NOCPUID))
312		enable_cpuid();
313
314	/*
315	 * Don't inherit TIF_SSBD across exec boundary when
316	 * PR_SPEC_DISABLE_NOEXEC is used.
317	 */
318	if (test_thread_flag(TIF_SSBD) &&
319	    task_spec_ssb_noexec(current)) {
320		clear_thread_flag(TIF_SSBD);
321		task_clear_spec_ssb_disable(current);
322		task_clear_spec_ssb_noexec(current);
323		speculation_ctrl_update(task_thread_info(current)->flags);
324	}
325}
326
327#ifdef CONFIG_X86_IOPL_IOPERM
328static inline void switch_to_bitmap(unsigned long tifp)
329{
330	/*
331	 * Invalidate I/O bitmap if the previous task used it. This prevents
332	 * any possible leakage of an active I/O bitmap.
333	 *
334	 * If the next task has an I/O bitmap it will handle it on exit to
335	 * user mode.
336	 */
337	if (tifp & _TIF_IO_BITMAP)
338		tss_invalidate_io_bitmap();
339}
340
341static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
342{
343	/*
344	 * Copy at least the byte range of the incoming tasks bitmap which
345	 * covers the permitted I/O ports.
346	 *
347	 * If the previous task which used an I/O bitmap had more bits
348	 * permitted, then the copy needs to cover those as well so they
349	 * get turned off.
350	 */
351	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
352	       max(tss->io_bitmap.prev_max, iobm->max));
353
354	/*
355	 * Store the new max and the sequence number of this bitmap
356	 * and a pointer to the bitmap itself.
357	 */
358	tss->io_bitmap.prev_max = iobm->max;
359	tss->io_bitmap.prev_sequence = iobm->sequence;
360}
361
362/**
363 * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode
364 */
365void native_tss_update_io_bitmap(void)
366{
367	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
368	struct thread_struct *t = &current->thread;
369	u16 *base = &tss->x86_tss.io_bitmap_base;
370
371	if (!test_thread_flag(TIF_IO_BITMAP)) {
372		native_tss_invalidate_io_bitmap();
373		return;
374	}
375
376	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
377		*base = IO_BITMAP_OFFSET_VALID_ALL;
378	} else {
379		struct io_bitmap *iobm = t->io_bitmap;
380
381		/*
382		 * Only copy bitmap data when the sequence number differs. The
383		 * update time is accounted to the incoming task.
384		 */
385		if (tss->io_bitmap.prev_sequence != iobm->sequence)
386			tss_copy_io_bitmap(tss, iobm);
387
388		/* Enable the bitmap */
389		*base = IO_BITMAP_OFFSET_VALID_MAP;
390	}
391
392	/*
393	 * Make sure that the TSS limit is covering the IO bitmap. It might have
394	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
395	 * access from user space to trigger a #GP because tbe bitmap is outside
396	 * the TSS limit.
397	 */
398	refresh_tss_limit();
399}
400#else /* CONFIG_X86_IOPL_IOPERM */
401static inline void switch_to_bitmap(unsigned long tifp) { }
402#endif
403
404#ifdef CONFIG_SMP
405
406struct ssb_state {
407	struct ssb_state	*shared_state;
408	raw_spinlock_t		lock;
409	unsigned int		disable_state;
410	unsigned long		local_state;
411};
412
413#define LSTATE_SSB	0
414
415static DEFINE_PER_CPU(struct ssb_state, ssb_state);
416
417void speculative_store_bypass_ht_init(void)
418{
419	struct ssb_state *st = this_cpu_ptr(&ssb_state);
420	unsigned int this_cpu = smp_processor_id();
421	unsigned int cpu;
422
423	st->local_state = 0;
424
425	/*
426	 * Shared state setup happens once on the first bringup
427	 * of the CPU. It's not destroyed on CPU hotunplug.
428	 */
429	if (st->shared_state)
430		return;
431
432	raw_spin_lock_init(&st->lock);
433
434	/*
435	 * Go over HT siblings and check whether one of them has set up the
436	 * shared state pointer already.
437	 */
438	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
439		if (cpu == this_cpu)
440			continue;
441
442		if (!per_cpu(ssb_state, cpu).shared_state)
443			continue;
444
445		/* Link it to the state of the sibling: */
446		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
447		return;
448	}
449
450	/*
451	 * First HT sibling to come up on the core.  Link shared state of
452	 * the first HT sibling to itself. The siblings on the same core
453	 * which come up later will see the shared state pointer and link
454	 * themself to the state of this CPU.
455	 */
456	st->shared_state = st;
457}
458
459/*
460 * Logic is: First HT sibling enables SSBD for both siblings in the core
461 * and last sibling to disable it, disables it for the whole core. This how
462 * MSR_SPEC_CTRL works in "hardware":
463 *
464 *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
465 */
466static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
467{
468	struct ssb_state *st = this_cpu_ptr(&ssb_state);
469	u64 msr = x86_amd_ls_cfg_base;
470
471	if (!static_cpu_has(X86_FEATURE_ZEN)) {
472		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
473		wrmsrl(MSR_AMD64_LS_CFG, msr);
474		return;
475	}
476
477	if (tifn & _TIF_SSBD) {
478		/*
479		 * Since this can race with prctl(), block reentry on the
480		 * same CPU.
481		 */
482		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
483			return;
484
485		msr |= x86_amd_ls_cfg_ssbd_mask;
486
487		raw_spin_lock(&st->shared_state->lock);
488		/* First sibling enables SSBD: */
489		if (!st->shared_state->disable_state)
490			wrmsrl(MSR_AMD64_LS_CFG, msr);
491		st->shared_state->disable_state++;
492		raw_spin_unlock(&st->shared_state->lock);
493	} else {
494		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
495			return;
496
497		raw_spin_lock(&st->shared_state->lock);
498		st->shared_state->disable_state--;
499		if (!st->shared_state->disable_state)
500			wrmsrl(MSR_AMD64_LS_CFG, msr);
501		raw_spin_unlock(&st->shared_state->lock);
502	}
503}
504#else
505static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
506{
507	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
508
509	wrmsrl(MSR_AMD64_LS_CFG, msr);
510}
511#endif
512
513static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
514{
515	/*
516	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
517	 * so ssbd_tif_to_spec_ctrl() just works.
518	 */
519	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
520}
521
522/*
523 * Update the MSRs managing speculation control, during context switch.
524 *
525 * tifp: Previous task's thread flags
526 * tifn: Next task's thread flags
527 */
528static __always_inline void __speculation_ctrl_update(unsigned long tifp,
529						      unsigned long tifn)
530{
531	unsigned long tif_diff = tifp ^ tifn;
532	u64 msr = x86_spec_ctrl_base;
533	bool updmsr = false;
534
535	lockdep_assert_irqs_disabled();
536
537	/* Handle change of TIF_SSBD depending on the mitigation method. */
538	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
539		if (tif_diff & _TIF_SSBD)
540			amd_set_ssb_virt_state(tifn);
541	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
542		if (tif_diff & _TIF_SSBD)
543			amd_set_core_ssb_state(tifn);
544	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
545		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
546		updmsr |= !!(tif_diff & _TIF_SSBD);
547		msr |= ssbd_tif_to_spec_ctrl(tifn);
548	}
549
550	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
551	if (IS_ENABLED(CONFIG_SMP) &&
552	    static_branch_unlikely(&switch_to_cond_stibp)) {
553		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
554		msr |= stibp_tif_to_spec_ctrl(tifn);
555	}
556
557	if (updmsr)
558		wrmsrl(MSR_IA32_SPEC_CTRL, msr);
559}
560
561static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
562{
563	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
564		if (task_spec_ssb_disable(tsk))
565			set_tsk_thread_flag(tsk, TIF_SSBD);
566		else
567			clear_tsk_thread_flag(tsk, TIF_SSBD);
568
569		if (task_spec_ib_disable(tsk))
570			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
571		else
572			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
573	}
574	/* Return the updated threadinfo flags*/
575	return task_thread_info(tsk)->flags;
576}
577
578void speculation_ctrl_update(unsigned long tif)
579{
580	unsigned long flags;
581
582	/* Forced update. Make sure all relevant TIF flags are different */
583	local_irq_save(flags);
584	__speculation_ctrl_update(~tif, tif);
585	local_irq_restore(flags);
586}
587
588/* Called from seccomp/prctl update */
589void speculation_ctrl_update_current(void)
590{
591	preempt_disable();
592	speculation_ctrl_update(speculation_ctrl_update_tif(current));
593	preempt_enable();
594}
595
596static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
597{
598	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
599
600	newval = cr4 ^ mask;
601	if (newval != cr4) {
602		this_cpu_write(cpu_tlbstate.cr4, newval);
603		__write_cr4(newval);
604	}
605}
606
607void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
608{
609	unsigned long tifp, tifn;
610
611	tifn = READ_ONCE(task_thread_info(next_p)->flags);
612	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
613
614	switch_to_bitmap(tifp);
615
616	propagate_user_return_notify(prev_p, next_p);
617
618	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
619	    arch_has_block_step()) {
620		unsigned long debugctl, msk;
621
622		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
623		debugctl &= ~DEBUGCTLMSR_BTF;
624		msk = tifn & _TIF_BLOCKSTEP;
625		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
626		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
627	}
628
629	if ((tifp ^ tifn) & _TIF_NOTSC)
630		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
631
632	if ((tifp ^ tifn) & _TIF_NOCPUID)
633		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
634
635	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
636		__speculation_ctrl_update(tifp, tifn);
637	} else {
638		speculation_ctrl_update_tif(prev_p);
639		tifn = speculation_ctrl_update_tif(next_p);
640
641		/* Enforce MSR update to ensure consistent state */
642		__speculation_ctrl_update(~tifn, tifn);
643	}
644
645	if ((tifp ^ tifn) & _TIF_SLD)
646		switch_to_sld(tifn);
647}
648
649/*
650 * Idle related variables and functions
651 */
652unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
653EXPORT_SYMBOL(boot_option_idle_override);
654
655static void (*x86_idle)(void);
656
657#ifndef CONFIG_SMP
658static inline void play_dead(void)
659{
660	BUG();
661}
662#endif
663
664void arch_cpu_idle_enter(void)
665{
666	tsc_verify_tsc_adjust(false);
667	local_touch_nmi();
668}
669
670void arch_cpu_idle_dead(void)
671{
672	play_dead();
673}
674
675/*
676 * Called from the generic idle code.
677 */
678void arch_cpu_idle(void)
679{
680	x86_idle();
681}
682
683/*
684 * We use this if we don't have any better idle routine..
685 */
686void __cpuidle default_idle(void)
687{
688	safe_halt();
689}
690#if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
691EXPORT_SYMBOL(default_idle);
692#endif
693
694#ifdef CONFIG_XEN
695bool xen_set_default_idle(void)
696{
697	bool ret = !!x86_idle;
698
699	x86_idle = default_idle;
700
701	return ret;
702}
703#endif
704
705void stop_this_cpu(void *dummy)
706{
707	local_irq_disable();
708	/*
709	 * Remove this CPU:
710	 */
711	set_cpu_online(smp_processor_id(), false);
712	disable_local_APIC();
713	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
714
715	/*
716	 * Use wbinvd on processors that support SME. This provides support
717	 * for performing a successful kexec when going from SME inactive
718	 * to SME active (or vice-versa). The cache must be cleared so that
719	 * if there are entries with the same physical address, both with and
720	 * without the encryption bit, they don't race each other when flushed
721	 * and potentially end up with the wrong entry being committed to
722	 * memory.
723	 */
724	if (boot_cpu_has(X86_FEATURE_SME))
725		native_wbinvd();
726	for (;;) {
727		/*
728		 * Use native_halt() so that memory contents don't change
729		 * (stack usage and variables) after possibly issuing the
730		 * native_wbinvd() above.
731		 */
732		native_halt();
733	}
734}
735
736/*
737 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
738 * states (local apic timer and TSC stop).
 
 
739 */
740static void amd_e400_idle(void)
741{
742	/*
743	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
744	 * gets set after static_cpu_has() places have been converted via
745	 * alternatives.
746	 */
747	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
748		default_idle();
749		return;
750	}
751
752	tick_broadcast_enter();
753
754	default_idle();
755
756	/*
757	 * The switch back from broadcast mode needs to be called with
758	 * interrupts disabled.
759	 */
760	local_irq_disable();
761	tick_broadcast_exit();
762	local_irq_enable();
763}
764
765/*
766 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
767 * We can't rely on cpuidle installing MWAIT, because it will not load
768 * on systems that support only C1 -- so the boot default must be MWAIT.
769 *
770 * Some AMD machines are the opposite, they depend on using HALT.
771 *
772 * So for default C1, which is used during boot until cpuidle loads,
773 * use MWAIT-C1 on Intel HW that has it, else use HALT.
774 */
775static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
776{
777	if (c->x86_vendor != X86_VENDOR_INTEL)
778		return 0;
779
780	if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
781		return 0;
782
783	return 1;
784}
785
786/*
787 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
788 * with interrupts enabled and no flags, which is backwards compatible with the
789 * original MWAIT implementation.
790 */
791static __cpuidle void mwait_idle(void)
792{
793	if (!current_set_polling_and_test()) {
794		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
795			mb(); /* quirk */
796			clflush((void *)&current_thread_info()->flags);
797			mb(); /* quirk */
798		}
799
800		__monitor((void *)&current_thread_info()->flags, 0, 0);
801		if (!need_resched())
802			__sti_mwait(0, 0);
803		else
804			local_irq_enable();
805	} else {
806		local_irq_enable();
807	}
808	__current_clr_polling();
809}
810
811void select_idle_routine(const struct cpuinfo_x86 *c)
812{
813#ifdef CONFIG_SMP
814	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
815		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
816#endif
817	if (x86_idle || boot_option_idle_override == IDLE_POLL)
818		return;
819
820	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
821		pr_info("using AMD E400 aware idle routine\n");
822		x86_idle = amd_e400_idle;
823	} else if (prefer_mwait_c1_over_halt(c)) {
824		pr_info("using mwait in idle threads\n");
825		x86_idle = mwait_idle;
826	} else
827		x86_idle = default_idle;
828}
829
830void amd_e400_c1e_apic_setup(void)
831{
832	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
833		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
834		local_irq_disable();
835		tick_broadcast_force();
836		local_irq_enable();
837	}
838}
839
840void __init arch_post_acpi_subsys_init(void)
841{
842	u32 lo, hi;
843
844	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
845		return;
846
847	/*
848	 * AMD E400 detection needs to happen after ACPI has been enabled. If
849	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
850	 * MSR_K8_INT_PENDING_MSG.
851	 */
852	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
853	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
854		return;
855
856	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
857
858	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
859		mark_tsc_unstable("TSC halt in AMD C1E");
860	pr_info("System has AMD C1E enabled\n");
861}
862
863static int __init idle_setup(char *str)
864{
865	if (!str)
866		return -EINVAL;
867
868	if (!strcmp(str, "poll")) {
869		pr_info("using polling idle threads\n");
870		boot_option_idle_override = IDLE_POLL;
871		cpu_idle_poll_ctrl(true);
872	} else if (!strcmp(str, "halt")) {
873		/*
874		 * When the boot option of idle=halt is added, halt is
875		 * forced to be used for CPU idle. In such case CPU C2/C3
876		 * won't be used again.
877		 * To continue to load the CPU idle driver, don't touch
878		 * the boot_option_idle_override.
879		 */
880		x86_idle = default_idle;
881		boot_option_idle_override = IDLE_HALT;
882	} else if (!strcmp(str, "nomwait")) {
883		/*
884		 * If the boot option of "idle=nomwait" is added,
885		 * it means that mwait will be disabled for CPU C2/C3
886		 * states. In such case it won't touch the variable
887		 * of boot_option_idle_override.
888		 */
889		boot_option_idle_override = IDLE_NOMWAIT;
890	} else
891		return -1;
892
893	return 0;
894}
895early_param("idle", idle_setup);
896
897unsigned long arch_align_stack(unsigned long sp)
898{
899	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
900		sp -= get_random_int() % 8192;
901	return sp & ~0xf;
902}
903
904unsigned long arch_randomize_brk(struct mm_struct *mm)
905{
906	return randomize_page(mm->brk, 0x02000000);
907}
908
909/*
910 * Called from fs/proc with a reference on @p to find the function
911 * which called into schedule(). This needs to be done carefully
912 * because the task might wake up and we might look at a stack
913 * changing under us.
914 */
915unsigned long get_wchan(struct task_struct *p)
916{
917	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
918	int count = 0;
919
920	if (p == current || p->state == TASK_RUNNING)
921		return 0;
922
923	if (!try_get_task_stack(p))
924		return 0;
925
926	start = (unsigned long)task_stack_page(p);
927	if (!start)
928		goto out;
929
930	/*
931	 * Layout of the stack page:
932	 *
933	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
934	 * PADDING
935	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
936	 * stack
937	 * ----------- bottom = start
938	 *
939	 * The tasks stack pointer points at the location where the
940	 * framepointer is stored. The data on the stack is:
941	 * ... IP FP ... IP FP
942	 *
943	 * We need to read FP and IP, so we need to adjust the upper
944	 * bound by another unsigned long.
945	 */
946	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
947	top -= 2 * sizeof(unsigned long);
948	bottom = start;
949
950	sp = READ_ONCE(p->thread.sp);
951	if (sp < bottom || sp > top)
952		goto out;
953
954	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
955	do {
956		if (fp < bottom || fp > top)
957			goto out;
958		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
959		if (!in_sched_functions(ip)) {
960			ret = ip;
961			goto out;
962		}
963		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
964	} while (count++ < 16 && p->state != TASK_RUNNING);
965
966out:
967	put_task_stack(p);
968	return ret;
969}
970
971long do_arch_prctl_common(struct task_struct *task, int option,
972			  unsigned long cpuid_enabled)
973{
974	switch (option) {
975	case ARCH_GET_CPUID:
976		return get_cpuid_mode();
977	case ARCH_SET_CPUID:
978		return set_cpuid_mode(task, cpuid_enabled);
979	}
980
981	return -EINVAL;
982}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   3
   4#include <linux/errno.h>
   5#include <linux/kernel.h>
   6#include <linux/mm.h>
   7#include <linux/smp.h>
   8#include <linux/prctl.h>
   9#include <linux/slab.h>
  10#include <linux/sched.h>
  11#include <linux/sched/idle.h>
  12#include <linux/sched/debug.h>
  13#include <linux/sched/task.h>
  14#include <linux/sched/task_stack.h>
  15#include <linux/init.h>
  16#include <linux/export.h>
  17#include <linux/pm.h>
  18#include <linux/tick.h>
  19#include <linux/random.h>
  20#include <linux/user-return-notifier.h>
  21#include <linux/dmi.h>
  22#include <linux/utsname.h>
  23#include <linux/stackprotector.h>
  24#include <linux/cpuidle.h>
  25#include <linux/acpi.h>
  26#include <linux/elf-randomize.h>
  27#include <trace/events/power.h>
  28#include <linux/hw_breakpoint.h>
  29#include <asm/cpu.h>
  30#include <asm/apic.h>
  31#include <linux/uaccess.h>
  32#include <asm/mwait.h>
  33#include <asm/fpu/internal.h>
  34#include <asm/debugreg.h>
  35#include <asm/nmi.h>
  36#include <asm/tlbflush.h>
  37#include <asm/mce.h>
  38#include <asm/vm86.h>
  39#include <asm/switch_to.h>
  40#include <asm/desc.h>
  41#include <asm/prctl.h>
  42#include <asm/spec-ctrl.h>
  43#include <asm/io_bitmap.h>
  44#include <asm/proto.h>
  45#include <asm/frame.h>
  46
  47#include "process.h"
  48
  49/*
  50 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  51 * no more per-task TSS's. The TSS size is kept cacheline-aligned
  52 * so they are allowed to end up in the .data..cacheline_aligned
  53 * section. Since TSS's are completely CPU-local, we want them
  54 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  55 */
  56__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
  57	.x86_tss = {
  58		/*
  59		 * .sp0 is only used when entering ring 0 from a lower
  60		 * privilege level.  Since the init task never runs anything
  61		 * but ring 0 code, there is no need for a valid value here.
  62		 * Poison it.
  63		 */
  64		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
  65
  66#ifdef CONFIG_X86_32
 
 
 
 
  67		.sp1 = TOP_OF_INIT_STACK,
  68
 
  69		.ss0 = __KERNEL_DS,
  70		.ss1 = __KERNEL_CS,
  71#endif
  72		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
  73	 },
  74};
  75EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
  76
  77DEFINE_PER_CPU(bool, __tss_limit_invalid);
  78EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
  79
  80/*
  81 * this gets called so that we can store lazy state into memory and copy the
  82 * current task into the new thread.
  83 */
  84int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  85{
  86	memcpy(dst, src, arch_task_struct_size);
  87#ifdef CONFIG_VM86
  88	dst->thread.vm86 = NULL;
  89#endif
  90	return fpu_clone(dst);
 
  91}
  92
  93/*
  94 * Free thread data structures etc..
  95 */
  96void exit_thread(struct task_struct *tsk)
  97{
  98	struct thread_struct *t = &tsk->thread;
  99	struct fpu *fpu = &t->fpu;
 100
 101	if (test_thread_flag(TIF_IO_BITMAP))
 102		io_bitmap_exit(tsk);
 103
 104	free_vm86(t);
 105
 106	fpu__drop(fpu);
 107}
 108
 109static int set_new_tls(struct task_struct *p, unsigned long tls)
 110{
 111	struct user_desc __user *utls = (struct user_desc __user *)tls;
 112
 113	if (in_ia32_syscall())
 114		return do_set_thread_area(p, -1, utls, 0);
 115	else
 116		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
 117}
 118
 119int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg,
 120		struct task_struct *p, unsigned long tls)
 121{
 122	struct inactive_task_frame *frame;
 123	struct fork_frame *fork_frame;
 124	struct pt_regs *childregs;
 125	int ret = 0;
 126
 127	childregs = task_pt_regs(p);
 128	fork_frame = container_of(childregs, struct fork_frame, regs);
 129	frame = &fork_frame->frame;
 130
 131	frame->bp = encode_frame_pointer(childregs);
 132	frame->ret_addr = (unsigned long) ret_from_fork;
 133	p->thread.sp = (unsigned long) fork_frame;
 134	p->thread.io_bitmap = NULL;
 135	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
 136
 137#ifdef CONFIG_X86_64
 138	current_save_fsgs();
 139	p->thread.fsindex = current->thread.fsindex;
 140	p->thread.fsbase = current->thread.fsbase;
 141	p->thread.gsindex = current->thread.gsindex;
 142	p->thread.gsbase = current->thread.gsbase;
 143
 144	savesegment(es, p->thread.es);
 145	savesegment(ds, p->thread.ds);
 146#else
 147	p->thread.sp0 = (unsigned long) (childregs + 1);
 148	/*
 149	 * Clear all status flags including IF and set fixed bit. 64bit
 150	 * does not have this initialization as the frame does not contain
 151	 * flags. The flags consistency (especially vs. AC) is there
 152	 * ensured via objtool, which lacks 32bit support.
 153	 */
 154	frame->flags = X86_EFLAGS_FIXED;
 155#endif
 156
 157	/* Kernel thread ? */
 158	if (unlikely(p->flags & PF_KTHREAD)) {
 159		p->thread.pkru = pkru_get_init_value();
 160		memset(childregs, 0, sizeof(struct pt_regs));
 161		kthread_frame_init(frame, sp, arg);
 162		return 0;
 163	}
 164
 165	/*
 166	 * Clone current's PKRU value from hardware. tsk->thread.pkru
 167	 * is only valid when scheduled out.
 168	 */
 169	p->thread.pkru = read_pkru();
 170
 171	frame->bx = 0;
 172	*childregs = *current_pt_regs();
 173	childregs->ax = 0;
 174	if (sp)
 175		childregs->sp = sp;
 176
 177#ifdef CONFIG_X86_32
 178	task_user_gs(p) = get_user_gs(current_pt_regs());
 179#endif
 180
 181	if (unlikely(p->flags & PF_IO_WORKER)) {
 182		/*
 183		 * An IO thread is a user space thread, but it doesn't
 184		 * return to ret_after_fork().
 185		 *
 186		 * In order to indicate that to tools like gdb,
 187		 * we reset the stack and instruction pointers.
 188		 *
 189		 * It does the same kernel frame setup to return to a kernel
 190		 * function that a kernel thread does.
 191		 */
 192		childregs->sp = 0;
 193		childregs->ip = 0;
 194		kthread_frame_init(frame, sp, arg);
 195		return 0;
 196	}
 197
 198	/* Set a new TLS for the child thread? */
 199	if (clone_flags & CLONE_SETTLS)
 200		ret = set_new_tls(p, tls);
 201
 202	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
 203		io_bitmap_share(p);
 204
 205	return ret;
 206}
 207
 208static void pkru_flush_thread(void)
 209{
 210	/*
 211	 * If PKRU is enabled the default PKRU value has to be loaded into
 212	 * the hardware right here (similar to context switch).
 213	 */
 214	pkru_write_default();
 215}
 216
 217void flush_thread(void)
 218{
 219	struct task_struct *tsk = current;
 220
 221	flush_ptrace_hw_breakpoint(tsk);
 222	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
 223
 224	fpu_flush_thread();
 225	pkru_flush_thread();
 226}
 227
 228void disable_TSC(void)
 229{
 230	preempt_disable();
 231	if (!test_and_set_thread_flag(TIF_NOTSC))
 232		/*
 233		 * Must flip the CPU state synchronously with
 234		 * TIF_NOTSC in the current running context.
 235		 */
 236		cr4_set_bits(X86_CR4_TSD);
 237	preempt_enable();
 238}
 239
 240static void enable_TSC(void)
 241{
 242	preempt_disable();
 243	if (test_and_clear_thread_flag(TIF_NOTSC))
 244		/*
 245		 * Must flip the CPU state synchronously with
 246		 * TIF_NOTSC in the current running context.
 247		 */
 248		cr4_clear_bits(X86_CR4_TSD);
 249	preempt_enable();
 250}
 251
 252int get_tsc_mode(unsigned long adr)
 253{
 254	unsigned int val;
 255
 256	if (test_thread_flag(TIF_NOTSC))
 257		val = PR_TSC_SIGSEGV;
 258	else
 259		val = PR_TSC_ENABLE;
 260
 261	return put_user(val, (unsigned int __user *)adr);
 262}
 263
 264int set_tsc_mode(unsigned int val)
 265{
 266	if (val == PR_TSC_SIGSEGV)
 267		disable_TSC();
 268	else if (val == PR_TSC_ENABLE)
 269		enable_TSC();
 270	else
 271		return -EINVAL;
 272
 273	return 0;
 274}
 275
 276DEFINE_PER_CPU(u64, msr_misc_features_shadow);
 277
 278static void set_cpuid_faulting(bool on)
 279{
 280	u64 msrval;
 281
 282	msrval = this_cpu_read(msr_misc_features_shadow);
 283	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
 284	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
 285	this_cpu_write(msr_misc_features_shadow, msrval);
 286	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
 287}
 288
 289static void disable_cpuid(void)
 290{
 291	preempt_disable();
 292	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
 293		/*
 294		 * Must flip the CPU state synchronously with
 295		 * TIF_NOCPUID in the current running context.
 296		 */
 297		set_cpuid_faulting(true);
 298	}
 299	preempt_enable();
 300}
 301
 302static void enable_cpuid(void)
 303{
 304	preempt_disable();
 305	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
 306		/*
 307		 * Must flip the CPU state synchronously with
 308		 * TIF_NOCPUID in the current running context.
 309		 */
 310		set_cpuid_faulting(false);
 311	}
 312	preempt_enable();
 313}
 314
 315static int get_cpuid_mode(void)
 316{
 317	return !test_thread_flag(TIF_NOCPUID);
 318}
 319
 320static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
 321{
 322	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
 323		return -ENODEV;
 324
 325	if (cpuid_enabled)
 326		enable_cpuid();
 327	else
 328		disable_cpuid();
 329
 330	return 0;
 331}
 332
 333/*
 334 * Called immediately after a successful exec.
 335 */
 336void arch_setup_new_exec(void)
 337{
 338	/* If cpuid was previously disabled for this task, re-enable it. */
 339	if (test_thread_flag(TIF_NOCPUID))
 340		enable_cpuid();
 341
 342	/*
 343	 * Don't inherit TIF_SSBD across exec boundary when
 344	 * PR_SPEC_DISABLE_NOEXEC is used.
 345	 */
 346	if (test_thread_flag(TIF_SSBD) &&
 347	    task_spec_ssb_noexec(current)) {
 348		clear_thread_flag(TIF_SSBD);
 349		task_clear_spec_ssb_disable(current);
 350		task_clear_spec_ssb_noexec(current);
 351		speculation_ctrl_update(task_thread_info(current)->flags);
 352	}
 353}
 354
 355#ifdef CONFIG_X86_IOPL_IOPERM
 356static inline void switch_to_bitmap(unsigned long tifp)
 357{
 358	/*
 359	 * Invalidate I/O bitmap if the previous task used it. This prevents
 360	 * any possible leakage of an active I/O bitmap.
 361	 *
 362	 * If the next task has an I/O bitmap it will handle it on exit to
 363	 * user mode.
 364	 */
 365	if (tifp & _TIF_IO_BITMAP)
 366		tss_invalidate_io_bitmap();
 367}
 368
 369static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
 370{
 371	/*
 372	 * Copy at least the byte range of the incoming tasks bitmap which
 373	 * covers the permitted I/O ports.
 374	 *
 375	 * If the previous task which used an I/O bitmap had more bits
 376	 * permitted, then the copy needs to cover those as well so they
 377	 * get turned off.
 378	 */
 379	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
 380	       max(tss->io_bitmap.prev_max, iobm->max));
 381
 382	/*
 383	 * Store the new max and the sequence number of this bitmap
 384	 * and a pointer to the bitmap itself.
 385	 */
 386	tss->io_bitmap.prev_max = iobm->max;
 387	tss->io_bitmap.prev_sequence = iobm->sequence;
 388}
 389
 390/**
 391 * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode
 392 */
 393void native_tss_update_io_bitmap(void)
 394{
 395	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
 396	struct thread_struct *t = &current->thread;
 397	u16 *base = &tss->x86_tss.io_bitmap_base;
 398
 399	if (!test_thread_flag(TIF_IO_BITMAP)) {
 400		native_tss_invalidate_io_bitmap();
 401		return;
 402	}
 403
 404	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
 405		*base = IO_BITMAP_OFFSET_VALID_ALL;
 406	} else {
 407		struct io_bitmap *iobm = t->io_bitmap;
 408
 409		/*
 410		 * Only copy bitmap data when the sequence number differs. The
 411		 * update time is accounted to the incoming task.
 412		 */
 413		if (tss->io_bitmap.prev_sequence != iobm->sequence)
 414			tss_copy_io_bitmap(tss, iobm);
 415
 416		/* Enable the bitmap */
 417		*base = IO_BITMAP_OFFSET_VALID_MAP;
 418	}
 419
 420	/*
 421	 * Make sure that the TSS limit is covering the IO bitmap. It might have
 422	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
 423	 * access from user space to trigger a #GP because tbe bitmap is outside
 424	 * the TSS limit.
 425	 */
 426	refresh_tss_limit();
 427}
 428#else /* CONFIG_X86_IOPL_IOPERM */
 429static inline void switch_to_bitmap(unsigned long tifp) { }
 430#endif
 431
 432#ifdef CONFIG_SMP
 433
 434struct ssb_state {
 435	struct ssb_state	*shared_state;
 436	raw_spinlock_t		lock;
 437	unsigned int		disable_state;
 438	unsigned long		local_state;
 439};
 440
 441#define LSTATE_SSB	0
 442
 443static DEFINE_PER_CPU(struct ssb_state, ssb_state);
 444
 445void speculative_store_bypass_ht_init(void)
 446{
 447	struct ssb_state *st = this_cpu_ptr(&ssb_state);
 448	unsigned int this_cpu = smp_processor_id();
 449	unsigned int cpu;
 450
 451	st->local_state = 0;
 452
 453	/*
 454	 * Shared state setup happens once on the first bringup
 455	 * of the CPU. It's not destroyed on CPU hotunplug.
 456	 */
 457	if (st->shared_state)
 458		return;
 459
 460	raw_spin_lock_init(&st->lock);
 461
 462	/*
 463	 * Go over HT siblings and check whether one of them has set up the
 464	 * shared state pointer already.
 465	 */
 466	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
 467		if (cpu == this_cpu)
 468			continue;
 469
 470		if (!per_cpu(ssb_state, cpu).shared_state)
 471			continue;
 472
 473		/* Link it to the state of the sibling: */
 474		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
 475		return;
 476	}
 477
 478	/*
 479	 * First HT sibling to come up on the core.  Link shared state of
 480	 * the first HT sibling to itself. The siblings on the same core
 481	 * which come up later will see the shared state pointer and link
 482	 * themselves to the state of this CPU.
 483	 */
 484	st->shared_state = st;
 485}
 486
 487/*
 488 * Logic is: First HT sibling enables SSBD for both siblings in the core
 489 * and last sibling to disable it, disables it for the whole core. This how
 490 * MSR_SPEC_CTRL works in "hardware":
 491 *
 492 *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
 493 */
 494static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
 495{
 496	struct ssb_state *st = this_cpu_ptr(&ssb_state);
 497	u64 msr = x86_amd_ls_cfg_base;
 498
 499	if (!static_cpu_has(X86_FEATURE_ZEN)) {
 500		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
 501		wrmsrl(MSR_AMD64_LS_CFG, msr);
 502		return;
 503	}
 504
 505	if (tifn & _TIF_SSBD) {
 506		/*
 507		 * Since this can race with prctl(), block reentry on the
 508		 * same CPU.
 509		 */
 510		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
 511			return;
 512
 513		msr |= x86_amd_ls_cfg_ssbd_mask;
 514
 515		raw_spin_lock(&st->shared_state->lock);
 516		/* First sibling enables SSBD: */
 517		if (!st->shared_state->disable_state)
 518			wrmsrl(MSR_AMD64_LS_CFG, msr);
 519		st->shared_state->disable_state++;
 520		raw_spin_unlock(&st->shared_state->lock);
 521	} else {
 522		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
 523			return;
 524
 525		raw_spin_lock(&st->shared_state->lock);
 526		st->shared_state->disable_state--;
 527		if (!st->shared_state->disable_state)
 528			wrmsrl(MSR_AMD64_LS_CFG, msr);
 529		raw_spin_unlock(&st->shared_state->lock);
 530	}
 531}
 532#else
 533static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
 534{
 535	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
 536
 537	wrmsrl(MSR_AMD64_LS_CFG, msr);
 538}
 539#endif
 540
 541static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
 542{
 543	/*
 544	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
 545	 * so ssbd_tif_to_spec_ctrl() just works.
 546	 */
 547	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
 548}
 549
 550/*
 551 * Update the MSRs managing speculation control, during context switch.
 552 *
 553 * tifp: Previous task's thread flags
 554 * tifn: Next task's thread flags
 555 */
 556static __always_inline void __speculation_ctrl_update(unsigned long tifp,
 557						      unsigned long tifn)
 558{
 559	unsigned long tif_diff = tifp ^ tifn;
 560	u64 msr = x86_spec_ctrl_base;
 561	bool updmsr = false;
 562
 563	lockdep_assert_irqs_disabled();
 564
 565	/* Handle change of TIF_SSBD depending on the mitigation method. */
 566	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
 567		if (tif_diff & _TIF_SSBD)
 568			amd_set_ssb_virt_state(tifn);
 569	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
 570		if (tif_diff & _TIF_SSBD)
 571			amd_set_core_ssb_state(tifn);
 572	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
 573		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
 574		updmsr |= !!(tif_diff & _TIF_SSBD);
 575		msr |= ssbd_tif_to_spec_ctrl(tifn);
 576	}
 577
 578	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
 579	if (IS_ENABLED(CONFIG_SMP) &&
 580	    static_branch_unlikely(&switch_to_cond_stibp)) {
 581		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
 582		msr |= stibp_tif_to_spec_ctrl(tifn);
 583	}
 584
 585	if (updmsr)
 586		wrmsrl(MSR_IA32_SPEC_CTRL, msr);
 587}
 588
 589static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
 590{
 591	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
 592		if (task_spec_ssb_disable(tsk))
 593			set_tsk_thread_flag(tsk, TIF_SSBD);
 594		else
 595			clear_tsk_thread_flag(tsk, TIF_SSBD);
 596
 597		if (task_spec_ib_disable(tsk))
 598			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
 599		else
 600			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
 601	}
 602	/* Return the updated threadinfo flags*/
 603	return task_thread_info(tsk)->flags;
 604}
 605
 606void speculation_ctrl_update(unsigned long tif)
 607{
 608	unsigned long flags;
 609
 610	/* Forced update. Make sure all relevant TIF flags are different */
 611	local_irq_save(flags);
 612	__speculation_ctrl_update(~tif, tif);
 613	local_irq_restore(flags);
 614}
 615
 616/* Called from seccomp/prctl update */
 617void speculation_ctrl_update_current(void)
 618{
 619	preempt_disable();
 620	speculation_ctrl_update(speculation_ctrl_update_tif(current));
 621	preempt_enable();
 622}
 623
 624static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
 625{
 626	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
 627
 628	newval = cr4 ^ mask;
 629	if (newval != cr4) {
 630		this_cpu_write(cpu_tlbstate.cr4, newval);
 631		__write_cr4(newval);
 632	}
 633}
 634
 635void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
 636{
 637	unsigned long tifp, tifn;
 638
 639	tifn = READ_ONCE(task_thread_info(next_p)->flags);
 640	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
 641
 642	switch_to_bitmap(tifp);
 643
 644	propagate_user_return_notify(prev_p, next_p);
 645
 646	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
 647	    arch_has_block_step()) {
 648		unsigned long debugctl, msk;
 649
 650		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 651		debugctl &= ~DEBUGCTLMSR_BTF;
 652		msk = tifn & _TIF_BLOCKSTEP;
 653		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
 654		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 655	}
 656
 657	if ((tifp ^ tifn) & _TIF_NOTSC)
 658		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
 659
 660	if ((tifp ^ tifn) & _TIF_NOCPUID)
 661		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
 662
 663	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
 664		__speculation_ctrl_update(tifp, tifn);
 665	} else {
 666		speculation_ctrl_update_tif(prev_p);
 667		tifn = speculation_ctrl_update_tif(next_p);
 668
 669		/* Enforce MSR update to ensure consistent state */
 670		__speculation_ctrl_update(~tifn, tifn);
 671	}
 672
 673	if ((tifp ^ tifn) & _TIF_SLD)
 674		switch_to_sld(tifn);
 675}
 676
 677/*
 678 * Idle related variables and functions
 679 */
 680unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
 681EXPORT_SYMBOL(boot_option_idle_override);
 682
 683static void (*x86_idle)(void);
 684
 685#ifndef CONFIG_SMP
 686static inline void play_dead(void)
 687{
 688	BUG();
 689}
 690#endif
 691
 692void arch_cpu_idle_enter(void)
 693{
 694	tsc_verify_tsc_adjust(false);
 695	local_touch_nmi();
 696}
 697
 698void arch_cpu_idle_dead(void)
 699{
 700	play_dead();
 701}
 702
 703/*
 704 * Called from the generic idle code.
 705 */
 706void arch_cpu_idle(void)
 707{
 708	x86_idle();
 709}
 710
 711/*
 712 * We use this if we don't have any better idle routine..
 713 */
 714void __cpuidle default_idle(void)
 715{
 716	raw_safe_halt();
 717}
 718#if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
 719EXPORT_SYMBOL(default_idle);
 720#endif
 721
 722#ifdef CONFIG_XEN
 723bool xen_set_default_idle(void)
 724{
 725	bool ret = !!x86_idle;
 726
 727	x86_idle = default_idle;
 728
 729	return ret;
 730}
 731#endif
 732
 733void stop_this_cpu(void *dummy)
 734{
 735	local_irq_disable();
 736	/*
 737	 * Remove this CPU:
 738	 */
 739	set_cpu_online(smp_processor_id(), false);
 740	disable_local_APIC();
 741	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
 742
 743	/*
 744	 * Use wbinvd on processors that support SME. This provides support
 745	 * for performing a successful kexec when going from SME inactive
 746	 * to SME active (or vice-versa). The cache must be cleared so that
 747	 * if there are entries with the same physical address, both with and
 748	 * without the encryption bit, they don't race each other when flushed
 749	 * and potentially end up with the wrong entry being committed to
 750	 * memory.
 751	 */
 752	if (boot_cpu_has(X86_FEATURE_SME))
 753		native_wbinvd();
 754	for (;;) {
 755		/*
 756		 * Use native_halt() so that memory contents don't change
 757		 * (stack usage and variables) after possibly issuing the
 758		 * native_wbinvd() above.
 759		 */
 760		native_halt();
 761	}
 762}
 763
 764/*
 765 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
 766 * states (local apic timer and TSC stop).
 767 *
 768 * XXX this function is completely buggered vs RCU and tracing.
 769 */
 770static void amd_e400_idle(void)
 771{
 772	/*
 773	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
 774	 * gets set after static_cpu_has() places have been converted via
 775	 * alternatives.
 776	 */
 777	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
 778		default_idle();
 779		return;
 780	}
 781
 782	tick_broadcast_enter();
 783
 784	default_idle();
 785
 786	/*
 787	 * The switch back from broadcast mode needs to be called with
 788	 * interrupts disabled.
 789	 */
 790	raw_local_irq_disable();
 791	tick_broadcast_exit();
 792	raw_local_irq_enable();
 793}
 794
 795/*
 796 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
 797 * We can't rely on cpuidle installing MWAIT, because it will not load
 798 * on systems that support only C1 -- so the boot default must be MWAIT.
 799 *
 800 * Some AMD machines are the opposite, they depend on using HALT.
 801 *
 802 * So for default C1, which is used during boot until cpuidle loads,
 803 * use MWAIT-C1 on Intel HW that has it, else use HALT.
 804 */
 805static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
 806{
 807	if (c->x86_vendor != X86_VENDOR_INTEL)
 808		return 0;
 809
 810	if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
 811		return 0;
 812
 813	return 1;
 814}
 815
 816/*
 817 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
 818 * with interrupts enabled and no flags, which is backwards compatible with the
 819 * original MWAIT implementation.
 820 */
 821static __cpuidle void mwait_idle(void)
 822{
 823	if (!current_set_polling_and_test()) {
 824		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
 825			mb(); /* quirk */
 826			clflush((void *)&current_thread_info()->flags);
 827			mb(); /* quirk */
 828		}
 829
 830		__monitor((void *)&current_thread_info()->flags, 0, 0);
 831		if (!need_resched())
 832			__sti_mwait(0, 0);
 833		else
 834			raw_local_irq_enable();
 835	} else {
 836		raw_local_irq_enable();
 837	}
 838	__current_clr_polling();
 839}
 840
 841void select_idle_routine(const struct cpuinfo_x86 *c)
 842{
 843#ifdef CONFIG_SMP
 844	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
 845		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
 846#endif
 847	if (x86_idle || boot_option_idle_override == IDLE_POLL)
 848		return;
 849
 850	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
 851		pr_info("using AMD E400 aware idle routine\n");
 852		x86_idle = amd_e400_idle;
 853	} else if (prefer_mwait_c1_over_halt(c)) {
 854		pr_info("using mwait in idle threads\n");
 855		x86_idle = mwait_idle;
 856	} else
 857		x86_idle = default_idle;
 858}
 859
 860void amd_e400_c1e_apic_setup(void)
 861{
 862	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
 863		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
 864		local_irq_disable();
 865		tick_broadcast_force();
 866		local_irq_enable();
 867	}
 868}
 869
 870void __init arch_post_acpi_subsys_init(void)
 871{
 872	u32 lo, hi;
 873
 874	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
 875		return;
 876
 877	/*
 878	 * AMD E400 detection needs to happen after ACPI has been enabled. If
 879	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
 880	 * MSR_K8_INT_PENDING_MSG.
 881	 */
 882	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
 883	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
 884		return;
 885
 886	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
 887
 888	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 889		mark_tsc_unstable("TSC halt in AMD C1E");
 890	pr_info("System has AMD C1E enabled\n");
 891}
 892
 893static int __init idle_setup(char *str)
 894{
 895	if (!str)
 896		return -EINVAL;
 897
 898	if (!strcmp(str, "poll")) {
 899		pr_info("using polling idle threads\n");
 900		boot_option_idle_override = IDLE_POLL;
 901		cpu_idle_poll_ctrl(true);
 902	} else if (!strcmp(str, "halt")) {
 903		/*
 904		 * When the boot option of idle=halt is added, halt is
 905		 * forced to be used for CPU idle. In such case CPU C2/C3
 906		 * won't be used again.
 907		 * To continue to load the CPU idle driver, don't touch
 908		 * the boot_option_idle_override.
 909		 */
 910		x86_idle = default_idle;
 911		boot_option_idle_override = IDLE_HALT;
 912	} else if (!strcmp(str, "nomwait")) {
 913		/*
 914		 * If the boot option of "idle=nomwait" is added,
 915		 * it means that mwait will be disabled for CPU C2/C3
 916		 * states. In such case it won't touch the variable
 917		 * of boot_option_idle_override.
 918		 */
 919		boot_option_idle_override = IDLE_NOMWAIT;
 920	} else
 921		return -1;
 922
 923	return 0;
 924}
 925early_param("idle", idle_setup);
 926
 927unsigned long arch_align_stack(unsigned long sp)
 928{
 929	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 930		sp -= get_random_int() % 8192;
 931	return sp & ~0xf;
 932}
 933
 934unsigned long arch_randomize_brk(struct mm_struct *mm)
 935{
 936	return randomize_page(mm->brk, 0x02000000);
 937}
 938
 939/*
 940 * Called from fs/proc with a reference on @p to find the function
 941 * which called into schedule(). This needs to be done carefully
 942 * because the task might wake up and we might look at a stack
 943 * changing under us.
 944 */
 945unsigned long get_wchan(struct task_struct *p)
 946{
 947	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
 948	int count = 0;
 949
 950	if (p == current || task_is_running(p))
 951		return 0;
 952
 953	if (!try_get_task_stack(p))
 954		return 0;
 955
 956	start = (unsigned long)task_stack_page(p);
 957	if (!start)
 958		goto out;
 959
 960	/*
 961	 * Layout of the stack page:
 962	 *
 963	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
 964	 * PADDING
 965	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
 966	 * stack
 967	 * ----------- bottom = start
 968	 *
 969	 * The tasks stack pointer points at the location where the
 970	 * framepointer is stored. The data on the stack is:
 971	 * ... IP FP ... IP FP
 972	 *
 973	 * We need to read FP and IP, so we need to adjust the upper
 974	 * bound by another unsigned long.
 975	 */
 976	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
 977	top -= 2 * sizeof(unsigned long);
 978	bottom = start;
 979
 980	sp = READ_ONCE(p->thread.sp);
 981	if (sp < bottom || sp > top)
 982		goto out;
 983
 984	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
 985	do {
 986		if (fp < bottom || fp > top)
 987			goto out;
 988		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
 989		if (!in_sched_functions(ip)) {
 990			ret = ip;
 991			goto out;
 992		}
 993		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
 994	} while (count++ < 16 && !task_is_running(p));
 995
 996out:
 997	put_task_stack(p);
 998	return ret;
 999}
1000
1001long do_arch_prctl_common(struct task_struct *task, int option,
1002			  unsigned long cpuid_enabled)
1003{
1004	switch (option) {
1005	case ARCH_GET_CPUID:
1006		return get_cpuid_mode();
1007	case ARCH_SET_CPUID:
1008		return set_cpuid_mode(task, cpuid_enabled);
1009	}
1010
1011	return -EINVAL;
1012}