Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * mm/mremap.c
4 *
5 * (C) Copyright 1996 Linus Torvalds
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved
9 */
10
11#include <linux/mm.h>
12#include <linux/hugetlb.h>
13#include <linux/shm.h>
14#include <linux/ksm.h>
15#include <linux/mman.h>
16#include <linux/swap.h>
17#include <linux/capability.h>
18#include <linux/fs.h>
19#include <linux/swapops.h>
20#include <linux/highmem.h>
21#include <linux/security.h>
22#include <linux/syscalls.h>
23#include <linux/mmu_notifier.h>
24#include <linux/uaccess.h>
25#include <linux/mm-arch-hooks.h>
26#include <linux/userfaultfd_k.h>
27
28#include <asm/cacheflush.h>
29#include <asm/tlbflush.h>
30
31#include "internal.h"
32
33static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
34{
35 pgd_t *pgd;
36 p4d_t *p4d;
37 pud_t *pud;
38 pmd_t *pmd;
39
40 pgd = pgd_offset(mm, addr);
41 if (pgd_none_or_clear_bad(pgd))
42 return NULL;
43
44 p4d = p4d_offset(pgd, addr);
45 if (p4d_none_or_clear_bad(p4d))
46 return NULL;
47
48 pud = pud_offset(p4d, addr);
49 if (pud_none_or_clear_bad(pud))
50 return NULL;
51
52 pmd = pmd_offset(pud, addr);
53 if (pmd_none(*pmd))
54 return NULL;
55
56 return pmd;
57}
58
59static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
60 unsigned long addr)
61{
62 pgd_t *pgd;
63 p4d_t *p4d;
64 pud_t *pud;
65 pmd_t *pmd;
66
67 pgd = pgd_offset(mm, addr);
68 p4d = p4d_alloc(mm, pgd, addr);
69 if (!p4d)
70 return NULL;
71 pud = pud_alloc(mm, p4d, addr);
72 if (!pud)
73 return NULL;
74
75 pmd = pmd_alloc(mm, pud, addr);
76 if (!pmd)
77 return NULL;
78
79 VM_BUG_ON(pmd_trans_huge(*pmd));
80
81 return pmd;
82}
83
84static void take_rmap_locks(struct vm_area_struct *vma)
85{
86 if (vma->vm_file)
87 i_mmap_lock_write(vma->vm_file->f_mapping);
88 if (vma->anon_vma)
89 anon_vma_lock_write(vma->anon_vma);
90}
91
92static void drop_rmap_locks(struct vm_area_struct *vma)
93{
94 if (vma->anon_vma)
95 anon_vma_unlock_write(vma->anon_vma);
96 if (vma->vm_file)
97 i_mmap_unlock_write(vma->vm_file->f_mapping);
98}
99
100static pte_t move_soft_dirty_pte(pte_t pte)
101{
102 /*
103 * Set soft dirty bit so we can notice
104 * in userspace the ptes were moved.
105 */
106#ifdef CONFIG_MEM_SOFT_DIRTY
107 if (pte_present(pte))
108 pte = pte_mksoft_dirty(pte);
109 else if (is_swap_pte(pte))
110 pte = pte_swp_mksoft_dirty(pte);
111#endif
112 return pte;
113}
114
115static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
116 unsigned long old_addr, unsigned long old_end,
117 struct vm_area_struct *new_vma, pmd_t *new_pmd,
118 unsigned long new_addr, bool need_rmap_locks)
119{
120 struct mm_struct *mm = vma->vm_mm;
121 pte_t *old_pte, *new_pte, pte;
122 spinlock_t *old_ptl, *new_ptl;
123 bool force_flush = false;
124 unsigned long len = old_end - old_addr;
125
126 /*
127 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma
128 * locks to ensure that rmap will always observe either the old or the
129 * new ptes. This is the easiest way to avoid races with
130 * truncate_pagecache(), page migration, etc...
131 *
132 * When need_rmap_locks is false, we use other ways to avoid
133 * such races:
134 *
135 * - During exec() shift_arg_pages(), we use a specially tagged vma
136 * which rmap call sites look for using vma_is_temporary_stack().
137 *
138 * - During mremap(), new_vma is often known to be placed after vma
139 * in rmap traversal order. This ensures rmap will always observe
140 * either the old pte, or the new pte, or both (the page table locks
141 * serialize access to individual ptes, but only rmap traversal
142 * order guarantees that we won't miss both the old and new ptes).
143 */
144 if (need_rmap_locks)
145 take_rmap_locks(vma);
146
147 /*
148 * We don't have to worry about the ordering of src and dst
149 * pte locks because exclusive mmap_lock prevents deadlock.
150 */
151 old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
152 new_pte = pte_offset_map(new_pmd, new_addr);
153 new_ptl = pte_lockptr(mm, new_pmd);
154 if (new_ptl != old_ptl)
155 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
156 flush_tlb_batched_pending(vma->vm_mm);
157 arch_enter_lazy_mmu_mode();
158
159 for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
160 new_pte++, new_addr += PAGE_SIZE) {
161 if (pte_none(*old_pte))
162 continue;
163
164 pte = ptep_get_and_clear(mm, old_addr, old_pte);
165 /*
166 * If we are remapping a valid PTE, make sure
167 * to flush TLB before we drop the PTL for the
168 * PTE.
169 *
170 * NOTE! Both old and new PTL matter: the old one
171 * for racing with page_mkclean(), the new one to
172 * make sure the physical page stays valid until
173 * the TLB entry for the old mapping has been
174 * flushed.
175 */
176 if (pte_present(pte))
177 force_flush = true;
178 pte = move_pte(pte, new_vma->vm_page_prot, old_addr, new_addr);
179 pte = move_soft_dirty_pte(pte);
180 set_pte_at(mm, new_addr, new_pte, pte);
181 }
182
183 arch_leave_lazy_mmu_mode();
184 if (force_flush)
185 flush_tlb_range(vma, old_end - len, old_end);
186 if (new_ptl != old_ptl)
187 spin_unlock(new_ptl);
188 pte_unmap(new_pte - 1);
189 pte_unmap_unlock(old_pte - 1, old_ptl);
190 if (need_rmap_locks)
191 drop_rmap_locks(vma);
192}
193
194#ifdef CONFIG_HAVE_MOVE_PMD
195static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr,
196 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
197{
198 spinlock_t *old_ptl, *new_ptl;
199 struct mm_struct *mm = vma->vm_mm;
200 pmd_t pmd;
201
202 /*
203 * The destination pmd shouldn't be established, free_pgtables()
204 * should have released it.
205 *
206 * However, there's a case during execve() where we use mremap
207 * to move the initial stack, and in that case the target area
208 * may overlap the source area (always moving down).
209 *
210 * If everything is PMD-aligned, that works fine, as moving
211 * each pmd down will clear the source pmd. But if we first
212 * have a few 4kB-only pages that get moved down, and then
213 * hit the "now the rest is PMD-aligned, let's do everything
214 * one pmd at a time", we will still have the old (now empty
215 * of any 4kB pages, but still there) PMD in the page table
216 * tree.
217 *
218 * Warn on it once - because we really should try to figure
219 * out how to do this better - but then say "I won't move
220 * this pmd".
221 *
222 * One alternative might be to just unmap the target pmd at
223 * this point, and verify that it really is empty. We'll see.
224 */
225 if (WARN_ON_ONCE(!pmd_none(*new_pmd)))
226 return false;
227
228 /*
229 * We don't have to worry about the ordering of src and dst
230 * ptlocks because exclusive mmap_lock prevents deadlock.
231 */
232 old_ptl = pmd_lock(vma->vm_mm, old_pmd);
233 new_ptl = pmd_lockptr(mm, new_pmd);
234 if (new_ptl != old_ptl)
235 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
236
237 /* Clear the pmd */
238 pmd = *old_pmd;
239 pmd_clear(old_pmd);
240
241 VM_BUG_ON(!pmd_none(*new_pmd));
242
243 /* Set the new pmd */
244 set_pmd_at(mm, new_addr, new_pmd, pmd);
245 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
246 if (new_ptl != old_ptl)
247 spin_unlock(new_ptl);
248 spin_unlock(old_ptl);
249
250 return true;
251}
252#endif
253
254unsigned long move_page_tables(struct vm_area_struct *vma,
255 unsigned long old_addr, struct vm_area_struct *new_vma,
256 unsigned long new_addr, unsigned long len,
257 bool need_rmap_locks)
258{
259 unsigned long extent, next, old_end;
260 struct mmu_notifier_range range;
261 pmd_t *old_pmd, *new_pmd;
262
263 old_end = old_addr + len;
264 flush_cache_range(vma, old_addr, old_end);
265
266 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
267 old_addr, old_end);
268 mmu_notifier_invalidate_range_start(&range);
269
270 for (; old_addr < old_end; old_addr += extent, new_addr += extent) {
271 cond_resched();
272 next = (old_addr + PMD_SIZE) & PMD_MASK;
273 /* even if next overflowed, extent below will be ok */
274 extent = next - old_addr;
275 if (extent > old_end - old_addr)
276 extent = old_end - old_addr;
277 next = (new_addr + PMD_SIZE) & PMD_MASK;
278 if (extent > next - new_addr)
279 extent = next - new_addr;
280 old_pmd = get_old_pmd(vma->vm_mm, old_addr);
281 if (!old_pmd)
282 continue;
283 new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr);
284 if (!new_pmd)
285 break;
286 if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) || pmd_devmap(*old_pmd)) {
287 if (extent == HPAGE_PMD_SIZE) {
288 bool moved;
289 /* See comment in move_ptes() */
290 if (need_rmap_locks)
291 take_rmap_locks(vma);
292 moved = move_huge_pmd(vma, old_addr, new_addr,
293 old_pmd, new_pmd);
294 if (need_rmap_locks)
295 drop_rmap_locks(vma);
296 if (moved)
297 continue;
298 }
299 split_huge_pmd(vma, old_pmd, old_addr);
300 if (pmd_trans_unstable(old_pmd))
301 continue;
302 } else if (extent == PMD_SIZE) {
303#ifdef CONFIG_HAVE_MOVE_PMD
304 /*
305 * If the extent is PMD-sized, try to speed the move by
306 * moving at the PMD level if possible.
307 */
308 bool moved;
309
310 if (need_rmap_locks)
311 take_rmap_locks(vma);
312 moved = move_normal_pmd(vma, old_addr, new_addr,
313 old_pmd, new_pmd);
314 if (need_rmap_locks)
315 drop_rmap_locks(vma);
316 if (moved)
317 continue;
318#endif
319 }
320
321 if (pte_alloc(new_vma->vm_mm, new_pmd))
322 break;
323 move_ptes(vma, old_pmd, old_addr, old_addr + extent, new_vma,
324 new_pmd, new_addr, need_rmap_locks);
325 }
326
327 mmu_notifier_invalidate_range_end(&range);
328
329 return len + old_addr - old_end; /* how much done */
330}
331
332static unsigned long move_vma(struct vm_area_struct *vma,
333 unsigned long old_addr, unsigned long old_len,
334 unsigned long new_len, unsigned long new_addr,
335 bool *locked, unsigned long flags,
336 struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap)
337{
338 struct mm_struct *mm = vma->vm_mm;
339 struct vm_area_struct *new_vma;
340 unsigned long vm_flags = vma->vm_flags;
341 unsigned long new_pgoff;
342 unsigned long moved_len;
343 unsigned long excess = 0;
344 unsigned long hiwater_vm;
345 int split = 0;
346 int err;
347 bool need_rmap_locks;
348
349 /*
350 * We'd prefer to avoid failure later on in do_munmap:
351 * which may split one vma into three before unmapping.
352 */
353 if (mm->map_count >= sysctl_max_map_count - 3)
354 return -ENOMEM;
355
356 /*
357 * Advise KSM to break any KSM pages in the area to be moved:
358 * it would be confusing if they were to turn up at the new
359 * location, where they happen to coincide with different KSM
360 * pages recently unmapped. But leave vma->vm_flags as it was,
361 * so KSM can come around to merge on vma and new_vma afterwards.
362 */
363 err = ksm_madvise(vma, old_addr, old_addr + old_len,
364 MADV_UNMERGEABLE, &vm_flags);
365 if (err)
366 return err;
367
368 new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT);
369 new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff,
370 &need_rmap_locks);
371 if (!new_vma)
372 return -ENOMEM;
373
374 moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len,
375 need_rmap_locks);
376 if (moved_len < old_len) {
377 err = -ENOMEM;
378 } else if (vma->vm_ops && vma->vm_ops->mremap) {
379 err = vma->vm_ops->mremap(new_vma);
380 }
381
382 if (unlikely(err)) {
383 /*
384 * On error, move entries back from new area to old,
385 * which will succeed since page tables still there,
386 * and then proceed to unmap new area instead of old.
387 */
388 move_page_tables(new_vma, new_addr, vma, old_addr, moved_len,
389 true);
390 vma = new_vma;
391 old_len = new_len;
392 old_addr = new_addr;
393 new_addr = err;
394 } else {
395 mremap_userfaultfd_prep(new_vma, uf);
396 arch_remap(mm, old_addr, old_addr + old_len,
397 new_addr, new_addr + new_len);
398 }
399
400 /* Conceal VM_ACCOUNT so old reservation is not undone */
401 if (vm_flags & VM_ACCOUNT) {
402 vma->vm_flags &= ~VM_ACCOUNT;
403 excess = vma->vm_end - vma->vm_start - old_len;
404 if (old_addr > vma->vm_start &&
405 old_addr + old_len < vma->vm_end)
406 split = 1;
407 }
408
409 /*
410 * If we failed to move page tables we still do total_vm increment
411 * since do_munmap() will decrement it by old_len == new_len.
412 *
413 * Since total_vm is about to be raised artificially high for a
414 * moment, we need to restore high watermark afterwards: if stats
415 * are taken meanwhile, total_vm and hiwater_vm appear too high.
416 * If this were a serious issue, we'd add a flag to do_munmap().
417 */
418 hiwater_vm = mm->hiwater_vm;
419 vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT);
420
421 /* Tell pfnmap has moved from this vma */
422 if (unlikely(vma->vm_flags & VM_PFNMAP))
423 untrack_pfn_moved(vma);
424
425 if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) {
426 if (vm_flags & VM_ACCOUNT) {
427 /* Always put back VM_ACCOUNT since we won't unmap */
428 vma->vm_flags |= VM_ACCOUNT;
429
430 vm_acct_memory(new_len >> PAGE_SHIFT);
431 }
432
433 /*
434 * VMAs can actually be merged back together in copy_vma
435 * calling merge_vma. This can happen with anonymous vmas
436 * which have not yet been faulted, so if we were to consider
437 * this VMA split we'll end up adding VM_ACCOUNT on the
438 * next VMA, which is completely unrelated if this VMA
439 * was re-merged.
440 */
441 if (split && new_vma == vma)
442 split = 0;
443
444 /* We always clear VM_LOCKED[ONFAULT] on the old vma */
445 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
446
447 /* Because we won't unmap we don't need to touch locked_vm */
448 goto out;
449 }
450
451 if (do_munmap(mm, old_addr, old_len, uf_unmap) < 0) {
452 /* OOM: unable to split vma, just get accounts right */
453 vm_unacct_memory(excess >> PAGE_SHIFT);
454 excess = 0;
455 }
456
457 if (vm_flags & VM_LOCKED) {
458 mm->locked_vm += new_len >> PAGE_SHIFT;
459 *locked = true;
460 }
461out:
462 mm->hiwater_vm = hiwater_vm;
463
464 /* Restore VM_ACCOUNT if one or two pieces of vma left */
465 if (excess) {
466 vma->vm_flags |= VM_ACCOUNT;
467 if (split)
468 vma->vm_next->vm_flags |= VM_ACCOUNT;
469 }
470
471 return new_addr;
472}
473
474static struct vm_area_struct *vma_to_resize(unsigned long addr,
475 unsigned long old_len, unsigned long new_len, unsigned long flags,
476 unsigned long *p)
477{
478 struct mm_struct *mm = current->mm;
479 struct vm_area_struct *vma = find_vma(mm, addr);
480 unsigned long pgoff;
481
482 if (!vma || vma->vm_start > addr)
483 return ERR_PTR(-EFAULT);
484
485 /*
486 * !old_len is a special case where an attempt is made to 'duplicate'
487 * a mapping. This makes no sense for private mappings as it will
488 * instead create a fresh/new mapping unrelated to the original. This
489 * is contrary to the basic idea of mremap which creates new mappings
490 * based on the original. There are no known use cases for this
491 * behavior. As a result, fail such attempts.
492 */
493 if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) {
494 pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n", current->comm, current->pid);
495 return ERR_PTR(-EINVAL);
496 }
497
498 if (flags & MREMAP_DONTUNMAP && (!vma_is_anonymous(vma) ||
499 vma->vm_flags & VM_SHARED))
500 return ERR_PTR(-EINVAL);
501
502 if (is_vm_hugetlb_page(vma))
503 return ERR_PTR(-EINVAL);
504
505 /* We can't remap across vm area boundaries */
506 if (old_len > vma->vm_end - addr)
507 return ERR_PTR(-EFAULT);
508
509 if (new_len == old_len)
510 return vma;
511
512 /* Need to be careful about a growing mapping */
513 pgoff = (addr - vma->vm_start) >> PAGE_SHIFT;
514 pgoff += vma->vm_pgoff;
515 if (pgoff + (new_len >> PAGE_SHIFT) < pgoff)
516 return ERR_PTR(-EINVAL);
517
518 if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))
519 return ERR_PTR(-EFAULT);
520
521 if (vma->vm_flags & VM_LOCKED) {
522 unsigned long locked, lock_limit;
523 locked = mm->locked_vm << PAGE_SHIFT;
524 lock_limit = rlimit(RLIMIT_MEMLOCK);
525 locked += new_len - old_len;
526 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
527 return ERR_PTR(-EAGAIN);
528 }
529
530 if (!may_expand_vm(mm, vma->vm_flags,
531 (new_len - old_len) >> PAGE_SHIFT))
532 return ERR_PTR(-ENOMEM);
533
534 if (vma->vm_flags & VM_ACCOUNT) {
535 unsigned long charged = (new_len - old_len) >> PAGE_SHIFT;
536 if (security_vm_enough_memory_mm(mm, charged))
537 return ERR_PTR(-ENOMEM);
538 *p = charged;
539 }
540
541 return vma;
542}
543
544static unsigned long mremap_to(unsigned long addr, unsigned long old_len,
545 unsigned long new_addr, unsigned long new_len, bool *locked,
546 unsigned long flags, struct vm_userfaultfd_ctx *uf,
547 struct list_head *uf_unmap_early,
548 struct list_head *uf_unmap)
549{
550 struct mm_struct *mm = current->mm;
551 struct vm_area_struct *vma;
552 unsigned long ret = -EINVAL;
553 unsigned long charged = 0;
554 unsigned long map_flags = 0;
555
556 if (offset_in_page(new_addr))
557 goto out;
558
559 if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len)
560 goto out;
561
562 /* Ensure the old/new locations do not overlap */
563 if (addr + old_len > new_addr && new_addr + new_len > addr)
564 goto out;
565
566 /*
567 * move_vma() need us to stay 4 maps below the threshold, otherwise
568 * it will bail out at the very beginning.
569 * That is a problem if we have already unmaped the regions here
570 * (new_addr, and old_addr), because userspace will not know the
571 * state of the vma's after it gets -ENOMEM.
572 * So, to avoid such scenario we can pre-compute if the whole
573 * operation has high chances to success map-wise.
574 * Worst-scenario case is when both vma's (new_addr and old_addr) get
575 * split in 3 before unmaping it.
576 * That means 2 more maps (1 for each) to the ones we already hold.
577 * Check whether current map count plus 2 still leads us to 4 maps below
578 * the threshold, otherwise return -ENOMEM here to be more safe.
579 */
580 if ((mm->map_count + 2) >= sysctl_max_map_count - 3)
581 return -ENOMEM;
582
583 if (flags & MREMAP_FIXED) {
584 ret = do_munmap(mm, new_addr, new_len, uf_unmap_early);
585 if (ret)
586 goto out;
587 }
588
589 if (old_len >= new_len) {
590 ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap);
591 if (ret && old_len != new_len)
592 goto out;
593 old_len = new_len;
594 }
595
596 vma = vma_to_resize(addr, old_len, new_len, flags, &charged);
597 if (IS_ERR(vma)) {
598 ret = PTR_ERR(vma);
599 goto out;
600 }
601
602 /* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */
603 if (flags & MREMAP_DONTUNMAP &&
604 !may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) {
605 ret = -ENOMEM;
606 goto out;
607 }
608
609 if (flags & MREMAP_FIXED)
610 map_flags |= MAP_FIXED;
611
612 if (vma->vm_flags & VM_MAYSHARE)
613 map_flags |= MAP_SHARED;
614
615 ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff +
616 ((addr - vma->vm_start) >> PAGE_SHIFT),
617 map_flags);
618 if (IS_ERR_VALUE(ret))
619 goto out1;
620
621 /* We got a new mapping */
622 if (!(flags & MREMAP_FIXED))
623 new_addr = ret;
624
625 ret = move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, uf,
626 uf_unmap);
627
628 if (!(offset_in_page(ret)))
629 goto out;
630
631out1:
632 vm_unacct_memory(charged);
633
634out:
635 return ret;
636}
637
638static int vma_expandable(struct vm_area_struct *vma, unsigned long delta)
639{
640 unsigned long end = vma->vm_end + delta;
641 if (end < vma->vm_end) /* overflow */
642 return 0;
643 if (vma->vm_next && vma->vm_next->vm_start < end) /* intersection */
644 return 0;
645 if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start,
646 0, MAP_FIXED) & ~PAGE_MASK)
647 return 0;
648 return 1;
649}
650
651/*
652 * Expand (or shrink) an existing mapping, potentially moving it at the
653 * same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
654 *
655 * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
656 * This option implies MREMAP_MAYMOVE.
657 */
658SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
659 unsigned long, new_len, unsigned long, flags,
660 unsigned long, new_addr)
661{
662 struct mm_struct *mm = current->mm;
663 struct vm_area_struct *vma;
664 unsigned long ret = -EINVAL;
665 unsigned long charged = 0;
666 bool locked = false;
667 bool downgraded = false;
668 struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX;
669 LIST_HEAD(uf_unmap_early);
670 LIST_HEAD(uf_unmap);
671
672 /*
673 * There is a deliberate asymmetry here: we strip the pointer tag
674 * from the old address but leave the new address alone. This is
675 * for consistency with mmap(), where we prevent the creation of
676 * aliasing mappings in userspace by leaving the tag bits of the
677 * mapping address intact. A non-zero tag will cause the subsequent
678 * range checks to reject the address as invalid.
679 *
680 * See Documentation/arm64/tagged-address-abi.rst for more information.
681 */
682 addr = untagged_addr(addr);
683
684 if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP))
685 return ret;
686
687 if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE))
688 return ret;
689
690 /*
691 * MREMAP_DONTUNMAP is always a move and it does not allow resizing
692 * in the process.
693 */
694 if (flags & MREMAP_DONTUNMAP &&
695 (!(flags & MREMAP_MAYMOVE) || old_len != new_len))
696 return ret;
697
698
699 if (offset_in_page(addr))
700 return ret;
701
702 old_len = PAGE_ALIGN(old_len);
703 new_len = PAGE_ALIGN(new_len);
704
705 /*
706 * We allow a zero old-len as a special case
707 * for DOS-emu "duplicate shm area" thing. But
708 * a zero new-len is nonsensical.
709 */
710 if (!new_len)
711 return ret;
712
713 if (mmap_write_lock_killable(current->mm))
714 return -EINTR;
715
716 if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) {
717 ret = mremap_to(addr, old_len, new_addr, new_len,
718 &locked, flags, &uf, &uf_unmap_early,
719 &uf_unmap);
720 goto out;
721 }
722
723 /*
724 * Always allow a shrinking remap: that just unmaps
725 * the unnecessary pages..
726 * __do_munmap does all the needed commit accounting, and
727 * downgrades mmap_lock to read if so directed.
728 */
729 if (old_len >= new_len) {
730 int retval;
731
732 retval = __do_munmap(mm, addr+new_len, old_len - new_len,
733 &uf_unmap, true);
734 if (retval < 0 && old_len != new_len) {
735 ret = retval;
736 goto out;
737 /* Returning 1 indicates mmap_lock is downgraded to read. */
738 } else if (retval == 1)
739 downgraded = true;
740 ret = addr;
741 goto out;
742 }
743
744 /*
745 * Ok, we need to grow..
746 */
747 vma = vma_to_resize(addr, old_len, new_len, flags, &charged);
748 if (IS_ERR(vma)) {
749 ret = PTR_ERR(vma);
750 goto out;
751 }
752
753 /* old_len exactly to the end of the area..
754 */
755 if (old_len == vma->vm_end - addr) {
756 /* can we just expand the current mapping? */
757 if (vma_expandable(vma, new_len - old_len)) {
758 int pages = (new_len - old_len) >> PAGE_SHIFT;
759
760 if (vma_adjust(vma, vma->vm_start, addr + new_len,
761 vma->vm_pgoff, NULL)) {
762 ret = -ENOMEM;
763 goto out;
764 }
765
766 vm_stat_account(mm, vma->vm_flags, pages);
767 if (vma->vm_flags & VM_LOCKED) {
768 mm->locked_vm += pages;
769 locked = true;
770 new_addr = addr;
771 }
772 ret = addr;
773 goto out;
774 }
775 }
776
777 /*
778 * We weren't able to just expand or shrink the area,
779 * we need to create a new one and move it..
780 */
781 ret = -ENOMEM;
782 if (flags & MREMAP_MAYMOVE) {
783 unsigned long map_flags = 0;
784 if (vma->vm_flags & VM_MAYSHARE)
785 map_flags |= MAP_SHARED;
786
787 new_addr = get_unmapped_area(vma->vm_file, 0, new_len,
788 vma->vm_pgoff +
789 ((addr - vma->vm_start) >> PAGE_SHIFT),
790 map_flags);
791 if (IS_ERR_VALUE(new_addr)) {
792 ret = new_addr;
793 goto out;
794 }
795
796 ret = move_vma(vma, addr, old_len, new_len, new_addr,
797 &locked, flags, &uf, &uf_unmap);
798 }
799out:
800 if (offset_in_page(ret)) {
801 vm_unacct_memory(charged);
802 locked = false;
803 }
804 if (downgraded)
805 mmap_read_unlock(current->mm);
806 else
807 mmap_write_unlock(current->mm);
808 if (locked && new_len > old_len)
809 mm_populate(new_addr + old_len, new_len - old_len);
810 userfaultfd_unmap_complete(mm, &uf_unmap_early);
811 mremap_userfaultfd_complete(&uf, addr, ret, old_len);
812 userfaultfd_unmap_complete(mm, &uf_unmap);
813 return ret;
814}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * mm/mremap.c
4 *
5 * (C) Copyright 1996 Linus Torvalds
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved
9 */
10
11#include <linux/mm.h>
12#include <linux/hugetlb.h>
13#include <linux/shm.h>
14#include <linux/ksm.h>
15#include <linux/mman.h>
16#include <linux/swap.h>
17#include <linux/capability.h>
18#include <linux/fs.h>
19#include <linux/swapops.h>
20#include <linux/highmem.h>
21#include <linux/security.h>
22#include <linux/syscalls.h>
23#include <linux/mmu_notifier.h>
24#include <linux/uaccess.h>
25#include <linux/userfaultfd_k.h>
26
27#include <asm/cacheflush.h>
28#include <asm/tlb.h>
29#include <asm/pgalloc.h>
30
31#include "internal.h"
32
33static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr)
34{
35 pgd_t *pgd;
36 p4d_t *p4d;
37 pud_t *pud;
38
39 pgd = pgd_offset(mm, addr);
40 if (pgd_none_or_clear_bad(pgd))
41 return NULL;
42
43 p4d = p4d_offset(pgd, addr);
44 if (p4d_none_or_clear_bad(p4d))
45 return NULL;
46
47 pud = pud_offset(p4d, addr);
48 if (pud_none_or_clear_bad(pud))
49 return NULL;
50
51 return pud;
52}
53
54static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
55{
56 pud_t *pud;
57 pmd_t *pmd;
58
59 pud = get_old_pud(mm, addr);
60 if (!pud)
61 return NULL;
62
63 pmd = pmd_offset(pud, addr);
64 if (pmd_none(*pmd))
65 return NULL;
66
67 return pmd;
68}
69
70static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma,
71 unsigned long addr)
72{
73 pgd_t *pgd;
74 p4d_t *p4d;
75
76 pgd = pgd_offset(mm, addr);
77 p4d = p4d_alloc(mm, pgd, addr);
78 if (!p4d)
79 return NULL;
80
81 return pud_alloc(mm, p4d, addr);
82}
83
84static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
85 unsigned long addr)
86{
87 pud_t *pud;
88 pmd_t *pmd;
89
90 pud = alloc_new_pud(mm, vma, addr);
91 if (!pud)
92 return NULL;
93
94 pmd = pmd_alloc(mm, pud, addr);
95 if (!pmd)
96 return NULL;
97
98 VM_BUG_ON(pmd_trans_huge(*pmd));
99
100 return pmd;
101}
102
103static void take_rmap_locks(struct vm_area_struct *vma)
104{
105 if (vma->vm_file)
106 i_mmap_lock_write(vma->vm_file->f_mapping);
107 if (vma->anon_vma)
108 anon_vma_lock_write(vma->anon_vma);
109}
110
111static void drop_rmap_locks(struct vm_area_struct *vma)
112{
113 if (vma->anon_vma)
114 anon_vma_unlock_write(vma->anon_vma);
115 if (vma->vm_file)
116 i_mmap_unlock_write(vma->vm_file->f_mapping);
117}
118
119static pte_t move_soft_dirty_pte(pte_t pte)
120{
121 /*
122 * Set soft dirty bit so we can notice
123 * in userspace the ptes were moved.
124 */
125#ifdef CONFIG_MEM_SOFT_DIRTY
126 if (pte_present(pte))
127 pte = pte_mksoft_dirty(pte);
128 else if (is_swap_pte(pte))
129 pte = pte_swp_mksoft_dirty(pte);
130#endif
131 return pte;
132}
133
134static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
135 unsigned long old_addr, unsigned long old_end,
136 struct vm_area_struct *new_vma, pmd_t *new_pmd,
137 unsigned long new_addr, bool need_rmap_locks)
138{
139 struct mm_struct *mm = vma->vm_mm;
140 pte_t *old_pte, *new_pte, pte;
141 spinlock_t *old_ptl, *new_ptl;
142 bool force_flush = false;
143 unsigned long len = old_end - old_addr;
144
145 /*
146 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma
147 * locks to ensure that rmap will always observe either the old or the
148 * new ptes. This is the easiest way to avoid races with
149 * truncate_pagecache(), page migration, etc...
150 *
151 * When need_rmap_locks is false, we use other ways to avoid
152 * such races:
153 *
154 * - During exec() shift_arg_pages(), we use a specially tagged vma
155 * which rmap call sites look for using vma_is_temporary_stack().
156 *
157 * - During mremap(), new_vma is often known to be placed after vma
158 * in rmap traversal order. This ensures rmap will always observe
159 * either the old pte, or the new pte, or both (the page table locks
160 * serialize access to individual ptes, but only rmap traversal
161 * order guarantees that we won't miss both the old and new ptes).
162 */
163 if (need_rmap_locks)
164 take_rmap_locks(vma);
165
166 /*
167 * We don't have to worry about the ordering of src and dst
168 * pte locks because exclusive mmap_lock prevents deadlock.
169 */
170 old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
171 new_pte = pte_offset_map(new_pmd, new_addr);
172 new_ptl = pte_lockptr(mm, new_pmd);
173 if (new_ptl != old_ptl)
174 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
175 flush_tlb_batched_pending(vma->vm_mm);
176 arch_enter_lazy_mmu_mode();
177
178 for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
179 new_pte++, new_addr += PAGE_SIZE) {
180 if (pte_none(*old_pte))
181 continue;
182
183 pte = ptep_get_and_clear(mm, old_addr, old_pte);
184 /*
185 * If we are remapping a valid PTE, make sure
186 * to flush TLB before we drop the PTL for the
187 * PTE.
188 *
189 * NOTE! Both old and new PTL matter: the old one
190 * for racing with page_mkclean(), the new one to
191 * make sure the physical page stays valid until
192 * the TLB entry for the old mapping has been
193 * flushed.
194 */
195 if (pte_present(pte))
196 force_flush = true;
197 pte = move_pte(pte, new_vma->vm_page_prot, old_addr, new_addr);
198 pte = move_soft_dirty_pte(pte);
199 set_pte_at(mm, new_addr, new_pte, pte);
200 }
201
202 arch_leave_lazy_mmu_mode();
203 if (force_flush)
204 flush_tlb_range(vma, old_end - len, old_end);
205 if (new_ptl != old_ptl)
206 spin_unlock(new_ptl);
207 pte_unmap(new_pte - 1);
208 pte_unmap_unlock(old_pte - 1, old_ptl);
209 if (need_rmap_locks)
210 drop_rmap_locks(vma);
211}
212
213#ifndef arch_supports_page_table_move
214#define arch_supports_page_table_move arch_supports_page_table_move
215static inline bool arch_supports_page_table_move(void)
216{
217 return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) ||
218 IS_ENABLED(CONFIG_HAVE_MOVE_PUD);
219}
220#endif
221
222#ifdef CONFIG_HAVE_MOVE_PMD
223static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr,
224 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
225{
226 spinlock_t *old_ptl, *new_ptl;
227 struct mm_struct *mm = vma->vm_mm;
228 pmd_t pmd;
229
230 if (!arch_supports_page_table_move())
231 return false;
232 /*
233 * The destination pmd shouldn't be established, free_pgtables()
234 * should have released it.
235 *
236 * However, there's a case during execve() where we use mremap
237 * to move the initial stack, and in that case the target area
238 * may overlap the source area (always moving down).
239 *
240 * If everything is PMD-aligned, that works fine, as moving
241 * each pmd down will clear the source pmd. But if we first
242 * have a few 4kB-only pages that get moved down, and then
243 * hit the "now the rest is PMD-aligned, let's do everything
244 * one pmd at a time", we will still have the old (now empty
245 * of any 4kB pages, but still there) PMD in the page table
246 * tree.
247 *
248 * Warn on it once - because we really should try to figure
249 * out how to do this better - but then say "I won't move
250 * this pmd".
251 *
252 * One alternative might be to just unmap the target pmd at
253 * this point, and verify that it really is empty. We'll see.
254 */
255 if (WARN_ON_ONCE(!pmd_none(*new_pmd)))
256 return false;
257
258 /*
259 * We don't have to worry about the ordering of src and dst
260 * ptlocks because exclusive mmap_lock prevents deadlock.
261 */
262 old_ptl = pmd_lock(vma->vm_mm, old_pmd);
263 new_ptl = pmd_lockptr(mm, new_pmd);
264 if (new_ptl != old_ptl)
265 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
266
267 /* Clear the pmd */
268 pmd = *old_pmd;
269 pmd_clear(old_pmd);
270
271 VM_BUG_ON(!pmd_none(*new_pmd));
272
273 pmd_populate(mm, new_pmd, pmd_pgtable(pmd));
274 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
275 if (new_ptl != old_ptl)
276 spin_unlock(new_ptl);
277 spin_unlock(old_ptl);
278
279 return true;
280}
281#else
282static inline bool move_normal_pmd(struct vm_area_struct *vma,
283 unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd,
284 pmd_t *new_pmd)
285{
286 return false;
287}
288#endif
289
290#if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD)
291static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr,
292 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
293{
294 spinlock_t *old_ptl, *new_ptl;
295 struct mm_struct *mm = vma->vm_mm;
296 pud_t pud;
297
298 if (!arch_supports_page_table_move())
299 return false;
300 /*
301 * The destination pud shouldn't be established, free_pgtables()
302 * should have released it.
303 */
304 if (WARN_ON_ONCE(!pud_none(*new_pud)))
305 return false;
306
307 /*
308 * We don't have to worry about the ordering of src and dst
309 * ptlocks because exclusive mmap_lock prevents deadlock.
310 */
311 old_ptl = pud_lock(vma->vm_mm, old_pud);
312 new_ptl = pud_lockptr(mm, new_pud);
313 if (new_ptl != old_ptl)
314 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
315
316 /* Clear the pud */
317 pud = *old_pud;
318 pud_clear(old_pud);
319
320 VM_BUG_ON(!pud_none(*new_pud));
321
322 pud_populate(mm, new_pud, pud_pgtable(pud));
323 flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE);
324 if (new_ptl != old_ptl)
325 spin_unlock(new_ptl);
326 spin_unlock(old_ptl);
327
328 return true;
329}
330#else
331static inline bool move_normal_pud(struct vm_area_struct *vma,
332 unsigned long old_addr, unsigned long new_addr, pud_t *old_pud,
333 pud_t *new_pud)
334{
335 return false;
336}
337#endif
338
339#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
340static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
341 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
342{
343 spinlock_t *old_ptl, *new_ptl;
344 struct mm_struct *mm = vma->vm_mm;
345 pud_t pud;
346
347 /*
348 * The destination pud shouldn't be established, free_pgtables()
349 * should have released it.
350 */
351 if (WARN_ON_ONCE(!pud_none(*new_pud)))
352 return false;
353
354 /*
355 * We don't have to worry about the ordering of src and dst
356 * ptlocks because exclusive mmap_lock prevents deadlock.
357 */
358 old_ptl = pud_lock(vma->vm_mm, old_pud);
359 new_ptl = pud_lockptr(mm, new_pud);
360 if (new_ptl != old_ptl)
361 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
362
363 /* Clear the pud */
364 pud = *old_pud;
365 pud_clear(old_pud);
366
367 VM_BUG_ON(!pud_none(*new_pud));
368
369 /* Set the new pud */
370 /* mark soft_ditry when we add pud level soft dirty support */
371 set_pud_at(mm, new_addr, new_pud, pud);
372 flush_pud_tlb_range(vma, old_addr, old_addr + HPAGE_PUD_SIZE);
373 if (new_ptl != old_ptl)
374 spin_unlock(new_ptl);
375 spin_unlock(old_ptl);
376
377 return true;
378}
379#else
380static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
381 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
382{
383 WARN_ON_ONCE(1);
384 return false;
385
386}
387#endif
388
389enum pgt_entry {
390 NORMAL_PMD,
391 HPAGE_PMD,
392 NORMAL_PUD,
393 HPAGE_PUD,
394};
395
396/*
397 * Returns an extent of the corresponding size for the pgt_entry specified if
398 * valid. Else returns a smaller extent bounded by the end of the source and
399 * destination pgt_entry.
400 */
401static __always_inline unsigned long get_extent(enum pgt_entry entry,
402 unsigned long old_addr, unsigned long old_end,
403 unsigned long new_addr)
404{
405 unsigned long next, extent, mask, size;
406
407 switch (entry) {
408 case HPAGE_PMD:
409 case NORMAL_PMD:
410 mask = PMD_MASK;
411 size = PMD_SIZE;
412 break;
413 case HPAGE_PUD:
414 case NORMAL_PUD:
415 mask = PUD_MASK;
416 size = PUD_SIZE;
417 break;
418 default:
419 BUILD_BUG();
420 break;
421 }
422
423 next = (old_addr + size) & mask;
424 /* even if next overflowed, extent below will be ok */
425 extent = next - old_addr;
426 if (extent > old_end - old_addr)
427 extent = old_end - old_addr;
428 next = (new_addr + size) & mask;
429 if (extent > next - new_addr)
430 extent = next - new_addr;
431 return extent;
432}
433
434/*
435 * Attempts to speedup the move by moving entry at the level corresponding to
436 * pgt_entry. Returns true if the move was successful, else false.
437 */
438static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma,
439 unsigned long old_addr, unsigned long new_addr,
440 void *old_entry, void *new_entry, bool need_rmap_locks)
441{
442 bool moved = false;
443
444 /* See comment in move_ptes() */
445 if (need_rmap_locks)
446 take_rmap_locks(vma);
447
448 switch (entry) {
449 case NORMAL_PMD:
450 moved = move_normal_pmd(vma, old_addr, new_addr, old_entry,
451 new_entry);
452 break;
453 case NORMAL_PUD:
454 moved = move_normal_pud(vma, old_addr, new_addr, old_entry,
455 new_entry);
456 break;
457 case HPAGE_PMD:
458 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
459 move_huge_pmd(vma, old_addr, new_addr, old_entry,
460 new_entry);
461 break;
462 case HPAGE_PUD:
463 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
464 move_huge_pud(vma, old_addr, new_addr, old_entry,
465 new_entry);
466 break;
467
468 default:
469 WARN_ON_ONCE(1);
470 break;
471 }
472
473 if (need_rmap_locks)
474 drop_rmap_locks(vma);
475
476 return moved;
477}
478
479unsigned long move_page_tables(struct vm_area_struct *vma,
480 unsigned long old_addr, struct vm_area_struct *new_vma,
481 unsigned long new_addr, unsigned long len,
482 bool need_rmap_locks)
483{
484 unsigned long extent, old_end;
485 struct mmu_notifier_range range;
486 pmd_t *old_pmd, *new_pmd;
487 pud_t *old_pud, *new_pud;
488
489 old_end = old_addr + len;
490 flush_cache_range(vma, old_addr, old_end);
491
492 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
493 old_addr, old_end);
494 mmu_notifier_invalidate_range_start(&range);
495
496 for (; old_addr < old_end; old_addr += extent, new_addr += extent) {
497 cond_resched();
498 /*
499 * If extent is PUD-sized try to speed up the move by moving at the
500 * PUD level if possible.
501 */
502 extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr);
503
504 old_pud = get_old_pud(vma->vm_mm, old_addr);
505 if (!old_pud)
506 continue;
507 new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr);
508 if (!new_pud)
509 break;
510 if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) {
511 if (extent == HPAGE_PUD_SIZE) {
512 move_pgt_entry(HPAGE_PUD, vma, old_addr, new_addr,
513 old_pud, new_pud, need_rmap_locks);
514 /* We ignore and continue on error? */
515 continue;
516 }
517 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) {
518
519 if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr,
520 old_pud, new_pud, true))
521 continue;
522 }
523
524 extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr);
525 old_pmd = get_old_pmd(vma->vm_mm, old_addr);
526 if (!old_pmd)
527 continue;
528 new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr);
529 if (!new_pmd)
530 break;
531 if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) ||
532 pmd_devmap(*old_pmd)) {
533 if (extent == HPAGE_PMD_SIZE &&
534 move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr,
535 old_pmd, new_pmd, need_rmap_locks))
536 continue;
537 split_huge_pmd(vma, old_pmd, old_addr);
538 if (pmd_trans_unstable(old_pmd))
539 continue;
540 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) &&
541 extent == PMD_SIZE) {
542 /*
543 * If the extent is PMD-sized, try to speed the move by
544 * moving at the PMD level if possible.
545 */
546 if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr,
547 old_pmd, new_pmd, true))
548 continue;
549 }
550
551 if (pte_alloc(new_vma->vm_mm, new_pmd))
552 break;
553 move_ptes(vma, old_pmd, old_addr, old_addr + extent, new_vma,
554 new_pmd, new_addr, need_rmap_locks);
555 }
556
557 mmu_notifier_invalidate_range_end(&range);
558
559 return len + old_addr - old_end; /* how much done */
560}
561
562static unsigned long move_vma(struct vm_area_struct *vma,
563 unsigned long old_addr, unsigned long old_len,
564 unsigned long new_len, unsigned long new_addr,
565 bool *locked, unsigned long flags,
566 struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap)
567{
568 struct mm_struct *mm = vma->vm_mm;
569 struct vm_area_struct *new_vma;
570 unsigned long vm_flags = vma->vm_flags;
571 unsigned long new_pgoff;
572 unsigned long moved_len;
573 unsigned long excess = 0;
574 unsigned long hiwater_vm;
575 int split = 0;
576 int err = 0;
577 bool need_rmap_locks;
578
579 /*
580 * We'd prefer to avoid failure later on in do_munmap:
581 * which may split one vma into three before unmapping.
582 */
583 if (mm->map_count >= sysctl_max_map_count - 3)
584 return -ENOMEM;
585
586 if (vma->vm_ops && vma->vm_ops->may_split) {
587 if (vma->vm_start != old_addr)
588 err = vma->vm_ops->may_split(vma, old_addr);
589 if (!err && vma->vm_end != old_addr + old_len)
590 err = vma->vm_ops->may_split(vma, old_addr + old_len);
591 if (err)
592 return err;
593 }
594
595 /*
596 * Advise KSM to break any KSM pages in the area to be moved:
597 * it would be confusing if they were to turn up at the new
598 * location, where they happen to coincide with different KSM
599 * pages recently unmapped. But leave vma->vm_flags as it was,
600 * so KSM can come around to merge on vma and new_vma afterwards.
601 */
602 err = ksm_madvise(vma, old_addr, old_addr + old_len,
603 MADV_UNMERGEABLE, &vm_flags);
604 if (err)
605 return err;
606
607 if (unlikely(flags & MREMAP_DONTUNMAP && vm_flags & VM_ACCOUNT)) {
608 if (security_vm_enough_memory_mm(mm, new_len >> PAGE_SHIFT))
609 return -ENOMEM;
610 }
611
612 new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT);
613 new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff,
614 &need_rmap_locks);
615 if (!new_vma) {
616 if (unlikely(flags & MREMAP_DONTUNMAP && vm_flags & VM_ACCOUNT))
617 vm_unacct_memory(new_len >> PAGE_SHIFT);
618 return -ENOMEM;
619 }
620
621 moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len,
622 need_rmap_locks);
623 if (moved_len < old_len) {
624 err = -ENOMEM;
625 } else if (vma->vm_ops && vma->vm_ops->mremap) {
626 err = vma->vm_ops->mremap(new_vma);
627 }
628
629 if (unlikely(err)) {
630 /*
631 * On error, move entries back from new area to old,
632 * which will succeed since page tables still there,
633 * and then proceed to unmap new area instead of old.
634 */
635 move_page_tables(new_vma, new_addr, vma, old_addr, moved_len,
636 true);
637 vma = new_vma;
638 old_len = new_len;
639 old_addr = new_addr;
640 new_addr = err;
641 } else {
642 mremap_userfaultfd_prep(new_vma, uf);
643 }
644
645 /* Conceal VM_ACCOUNT so old reservation is not undone */
646 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) {
647 vma->vm_flags &= ~VM_ACCOUNT;
648 excess = vma->vm_end - vma->vm_start - old_len;
649 if (old_addr > vma->vm_start &&
650 old_addr + old_len < vma->vm_end)
651 split = 1;
652 }
653
654 /*
655 * If we failed to move page tables we still do total_vm increment
656 * since do_munmap() will decrement it by old_len == new_len.
657 *
658 * Since total_vm is about to be raised artificially high for a
659 * moment, we need to restore high watermark afterwards: if stats
660 * are taken meanwhile, total_vm and hiwater_vm appear too high.
661 * If this were a serious issue, we'd add a flag to do_munmap().
662 */
663 hiwater_vm = mm->hiwater_vm;
664 vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT);
665
666 /* Tell pfnmap has moved from this vma */
667 if (unlikely(vma->vm_flags & VM_PFNMAP))
668 untrack_pfn_moved(vma);
669
670 if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) {
671 /* We always clear VM_LOCKED[ONFAULT] on the old vma */
672 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
673
674 /*
675 * anon_vma links of the old vma is no longer needed after its page
676 * table has been moved.
677 */
678 if (new_vma != vma && vma->vm_start == old_addr &&
679 vma->vm_end == (old_addr + old_len))
680 unlink_anon_vmas(vma);
681
682 /* Because we won't unmap we don't need to touch locked_vm */
683 return new_addr;
684 }
685
686 if (do_munmap(mm, old_addr, old_len, uf_unmap) < 0) {
687 /* OOM: unable to split vma, just get accounts right */
688 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP))
689 vm_acct_memory(new_len >> PAGE_SHIFT);
690 excess = 0;
691 }
692
693 if (vm_flags & VM_LOCKED) {
694 mm->locked_vm += new_len >> PAGE_SHIFT;
695 *locked = true;
696 }
697
698 mm->hiwater_vm = hiwater_vm;
699
700 /* Restore VM_ACCOUNT if one or two pieces of vma left */
701 if (excess) {
702 vma->vm_flags |= VM_ACCOUNT;
703 if (split)
704 vma->vm_next->vm_flags |= VM_ACCOUNT;
705 }
706
707 return new_addr;
708}
709
710static struct vm_area_struct *vma_to_resize(unsigned long addr,
711 unsigned long old_len, unsigned long new_len, unsigned long flags,
712 unsigned long *p)
713{
714 struct mm_struct *mm = current->mm;
715 struct vm_area_struct *vma;
716 unsigned long pgoff;
717
718 vma = vma_lookup(mm, addr);
719 if (!vma)
720 return ERR_PTR(-EFAULT);
721
722 /*
723 * !old_len is a special case where an attempt is made to 'duplicate'
724 * a mapping. This makes no sense for private mappings as it will
725 * instead create a fresh/new mapping unrelated to the original. This
726 * is contrary to the basic idea of mremap which creates new mappings
727 * based on the original. There are no known use cases for this
728 * behavior. As a result, fail such attempts.
729 */
730 if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) {
731 pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n", current->comm, current->pid);
732 return ERR_PTR(-EINVAL);
733 }
734
735 if ((flags & MREMAP_DONTUNMAP) &&
736 (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)))
737 return ERR_PTR(-EINVAL);
738
739 if (is_vm_hugetlb_page(vma))
740 return ERR_PTR(-EINVAL);
741
742 /* We can't remap across vm area boundaries */
743 if (old_len > vma->vm_end - addr)
744 return ERR_PTR(-EFAULT);
745
746 if (new_len == old_len)
747 return vma;
748
749 /* Need to be careful about a growing mapping */
750 pgoff = (addr - vma->vm_start) >> PAGE_SHIFT;
751 pgoff += vma->vm_pgoff;
752 if (pgoff + (new_len >> PAGE_SHIFT) < pgoff)
753 return ERR_PTR(-EINVAL);
754
755 if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))
756 return ERR_PTR(-EFAULT);
757
758 if (vma->vm_flags & VM_LOCKED) {
759 unsigned long locked, lock_limit;
760 locked = mm->locked_vm << PAGE_SHIFT;
761 lock_limit = rlimit(RLIMIT_MEMLOCK);
762 locked += new_len - old_len;
763 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
764 return ERR_PTR(-EAGAIN);
765 }
766
767 if (!may_expand_vm(mm, vma->vm_flags,
768 (new_len - old_len) >> PAGE_SHIFT))
769 return ERR_PTR(-ENOMEM);
770
771 if (vma->vm_flags & VM_ACCOUNT) {
772 unsigned long charged = (new_len - old_len) >> PAGE_SHIFT;
773 if (security_vm_enough_memory_mm(mm, charged))
774 return ERR_PTR(-ENOMEM);
775 *p = charged;
776 }
777
778 return vma;
779}
780
781static unsigned long mremap_to(unsigned long addr, unsigned long old_len,
782 unsigned long new_addr, unsigned long new_len, bool *locked,
783 unsigned long flags, struct vm_userfaultfd_ctx *uf,
784 struct list_head *uf_unmap_early,
785 struct list_head *uf_unmap)
786{
787 struct mm_struct *mm = current->mm;
788 struct vm_area_struct *vma;
789 unsigned long ret = -EINVAL;
790 unsigned long charged = 0;
791 unsigned long map_flags = 0;
792
793 if (offset_in_page(new_addr))
794 goto out;
795
796 if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len)
797 goto out;
798
799 /* Ensure the old/new locations do not overlap */
800 if (addr + old_len > new_addr && new_addr + new_len > addr)
801 goto out;
802
803 /*
804 * move_vma() need us to stay 4 maps below the threshold, otherwise
805 * it will bail out at the very beginning.
806 * That is a problem if we have already unmaped the regions here
807 * (new_addr, and old_addr), because userspace will not know the
808 * state of the vma's after it gets -ENOMEM.
809 * So, to avoid such scenario we can pre-compute if the whole
810 * operation has high chances to success map-wise.
811 * Worst-scenario case is when both vma's (new_addr and old_addr) get
812 * split in 3 before unmapping it.
813 * That means 2 more maps (1 for each) to the ones we already hold.
814 * Check whether current map count plus 2 still leads us to 4 maps below
815 * the threshold, otherwise return -ENOMEM here to be more safe.
816 */
817 if ((mm->map_count + 2) >= sysctl_max_map_count - 3)
818 return -ENOMEM;
819
820 if (flags & MREMAP_FIXED) {
821 ret = do_munmap(mm, new_addr, new_len, uf_unmap_early);
822 if (ret)
823 goto out;
824 }
825
826 if (old_len >= new_len) {
827 ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap);
828 if (ret && old_len != new_len)
829 goto out;
830 old_len = new_len;
831 }
832
833 vma = vma_to_resize(addr, old_len, new_len, flags, &charged);
834 if (IS_ERR(vma)) {
835 ret = PTR_ERR(vma);
836 goto out;
837 }
838
839 /* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */
840 if (flags & MREMAP_DONTUNMAP &&
841 !may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) {
842 ret = -ENOMEM;
843 goto out;
844 }
845
846 if (flags & MREMAP_FIXED)
847 map_flags |= MAP_FIXED;
848
849 if (vma->vm_flags & VM_MAYSHARE)
850 map_flags |= MAP_SHARED;
851
852 ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff +
853 ((addr - vma->vm_start) >> PAGE_SHIFT),
854 map_flags);
855 if (IS_ERR_VALUE(ret))
856 goto out1;
857
858 /* We got a new mapping */
859 if (!(flags & MREMAP_FIXED))
860 new_addr = ret;
861
862 ret = move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, uf,
863 uf_unmap);
864
865 if (!(offset_in_page(ret)))
866 goto out;
867
868out1:
869 vm_unacct_memory(charged);
870
871out:
872 return ret;
873}
874
875static int vma_expandable(struct vm_area_struct *vma, unsigned long delta)
876{
877 unsigned long end = vma->vm_end + delta;
878 if (end < vma->vm_end) /* overflow */
879 return 0;
880 if (vma->vm_next && vma->vm_next->vm_start < end) /* intersection */
881 return 0;
882 if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start,
883 0, MAP_FIXED) & ~PAGE_MASK)
884 return 0;
885 return 1;
886}
887
888/*
889 * Expand (or shrink) an existing mapping, potentially moving it at the
890 * same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
891 *
892 * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
893 * This option implies MREMAP_MAYMOVE.
894 */
895SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
896 unsigned long, new_len, unsigned long, flags,
897 unsigned long, new_addr)
898{
899 struct mm_struct *mm = current->mm;
900 struct vm_area_struct *vma;
901 unsigned long ret = -EINVAL;
902 unsigned long charged = 0;
903 bool locked = false;
904 bool downgraded = false;
905 struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX;
906 LIST_HEAD(uf_unmap_early);
907 LIST_HEAD(uf_unmap);
908
909 /*
910 * There is a deliberate asymmetry here: we strip the pointer tag
911 * from the old address but leave the new address alone. This is
912 * for consistency with mmap(), where we prevent the creation of
913 * aliasing mappings in userspace by leaving the tag bits of the
914 * mapping address intact. A non-zero tag will cause the subsequent
915 * range checks to reject the address as invalid.
916 *
917 * See Documentation/arm64/tagged-address-abi.rst for more information.
918 */
919 addr = untagged_addr(addr);
920
921 if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP))
922 return ret;
923
924 if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE))
925 return ret;
926
927 /*
928 * MREMAP_DONTUNMAP is always a move and it does not allow resizing
929 * in the process.
930 */
931 if (flags & MREMAP_DONTUNMAP &&
932 (!(flags & MREMAP_MAYMOVE) || old_len != new_len))
933 return ret;
934
935
936 if (offset_in_page(addr))
937 return ret;
938
939 old_len = PAGE_ALIGN(old_len);
940 new_len = PAGE_ALIGN(new_len);
941
942 /*
943 * We allow a zero old-len as a special case
944 * for DOS-emu "duplicate shm area" thing. But
945 * a zero new-len is nonsensical.
946 */
947 if (!new_len)
948 return ret;
949
950 if (mmap_write_lock_killable(current->mm))
951 return -EINTR;
952
953 if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) {
954 ret = mremap_to(addr, old_len, new_addr, new_len,
955 &locked, flags, &uf, &uf_unmap_early,
956 &uf_unmap);
957 goto out;
958 }
959
960 /*
961 * Always allow a shrinking remap: that just unmaps
962 * the unnecessary pages..
963 * __do_munmap does all the needed commit accounting, and
964 * downgrades mmap_lock to read if so directed.
965 */
966 if (old_len >= new_len) {
967 int retval;
968
969 retval = __do_munmap(mm, addr+new_len, old_len - new_len,
970 &uf_unmap, true);
971 if (retval < 0 && old_len != new_len) {
972 ret = retval;
973 goto out;
974 /* Returning 1 indicates mmap_lock is downgraded to read. */
975 } else if (retval == 1)
976 downgraded = true;
977 ret = addr;
978 goto out;
979 }
980
981 /*
982 * Ok, we need to grow..
983 */
984 vma = vma_to_resize(addr, old_len, new_len, flags, &charged);
985 if (IS_ERR(vma)) {
986 ret = PTR_ERR(vma);
987 goto out;
988 }
989
990 /* old_len exactly to the end of the area..
991 */
992 if (old_len == vma->vm_end - addr) {
993 /* can we just expand the current mapping? */
994 if (vma_expandable(vma, new_len - old_len)) {
995 int pages = (new_len - old_len) >> PAGE_SHIFT;
996
997 if (vma_adjust(vma, vma->vm_start, addr + new_len,
998 vma->vm_pgoff, NULL)) {
999 ret = -ENOMEM;
1000 goto out;
1001 }
1002
1003 vm_stat_account(mm, vma->vm_flags, pages);
1004 if (vma->vm_flags & VM_LOCKED) {
1005 mm->locked_vm += pages;
1006 locked = true;
1007 new_addr = addr;
1008 }
1009 ret = addr;
1010 goto out;
1011 }
1012 }
1013
1014 /*
1015 * We weren't able to just expand or shrink the area,
1016 * we need to create a new one and move it..
1017 */
1018 ret = -ENOMEM;
1019 if (flags & MREMAP_MAYMOVE) {
1020 unsigned long map_flags = 0;
1021 if (vma->vm_flags & VM_MAYSHARE)
1022 map_flags |= MAP_SHARED;
1023
1024 new_addr = get_unmapped_area(vma->vm_file, 0, new_len,
1025 vma->vm_pgoff +
1026 ((addr - vma->vm_start) >> PAGE_SHIFT),
1027 map_flags);
1028 if (IS_ERR_VALUE(new_addr)) {
1029 ret = new_addr;
1030 goto out;
1031 }
1032
1033 ret = move_vma(vma, addr, old_len, new_len, new_addr,
1034 &locked, flags, &uf, &uf_unmap);
1035 }
1036out:
1037 if (offset_in_page(ret)) {
1038 vm_unacct_memory(charged);
1039 locked = false;
1040 }
1041 if (downgraded)
1042 mmap_read_unlock(current->mm);
1043 else
1044 mmap_write_unlock(current->mm);
1045 if (locked && new_len > old_len)
1046 mm_populate(new_addr + old_len, new_len - old_len);
1047 userfaultfd_unmap_complete(mm, &uf_unmap_early);
1048 mremap_userfaultfd_complete(&uf, addr, ret, old_len);
1049 userfaultfd_unmap_complete(mm, &uf_unmap);
1050 return ret;
1051}