Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * High memory handling common code and variables.
  4 *
  5 * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
  6 *          Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
  7 *
  8 *
  9 * Redesigned the x86 32-bit VM architecture to deal with
 10 * 64-bit physical space. With current x86 CPUs this
 11 * means up to 64 Gigabytes physical RAM.
 12 *
 13 * Rewrote high memory support to move the page cache into
 14 * high memory. Implemented permanent (schedulable) kmaps
 15 * based on Linus' idea.
 16 *
 17 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
 18 */
 19
 20#include <linux/mm.h>
 21#include <linux/export.h>
 22#include <linux/swap.h>
 23#include <linux/bio.h>
 24#include <linux/pagemap.h>
 25#include <linux/mempool.h>
 26#include <linux/blkdev.h>
 27#include <linux/init.h>
 28#include <linux/hash.h>
 29#include <linux/highmem.h>
 30#include <linux/kgdb.h>
 31#include <asm/tlbflush.h>
 32#include <linux/vmalloc.h>
 33
 34#if defined(CONFIG_HIGHMEM) || defined(CONFIG_X86_32)
 35DEFINE_PER_CPU(int, __kmap_atomic_idx);
 36#endif
 37
 38/*
 39 * Virtual_count is not a pure "count".
 40 *  0 means that it is not mapped, and has not been mapped
 41 *    since a TLB flush - it is usable.
 42 *  1 means that there are no users, but it has been mapped
 43 *    since the last TLB flush - so we can't use it.
 44 *  n means that there are (n-1) current users of it.
 45 */
 46#ifdef CONFIG_HIGHMEM
 47
 48/*
 49 * Architecture with aliasing data cache may define the following family of
 50 * helper functions in its asm/highmem.h to control cache color of virtual
 51 * addresses where physical memory pages are mapped by kmap.
 52 */
 53#ifndef get_pkmap_color
 54
 55/*
 56 * Determine color of virtual address where the page should be mapped.
 57 */
 58static inline unsigned int get_pkmap_color(struct page *page)
 59{
 60	return 0;
 61}
 62#define get_pkmap_color get_pkmap_color
 63
 64/*
 65 * Get next index for mapping inside PKMAP region for page with given color.
 66 */
 67static inline unsigned int get_next_pkmap_nr(unsigned int color)
 68{
 69	static unsigned int last_pkmap_nr;
 70
 71	last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
 72	return last_pkmap_nr;
 73}
 74
 75/*
 76 * Determine if page index inside PKMAP region (pkmap_nr) of given color
 77 * has wrapped around PKMAP region end. When this happens an attempt to
 78 * flush all unused PKMAP slots is made.
 79 */
 80static inline int no_more_pkmaps(unsigned int pkmap_nr, unsigned int color)
 81{
 82	return pkmap_nr == 0;
 83}
 84
 85/*
 86 * Get the number of PKMAP entries of the given color. If no free slot is
 87 * found after checking that many entries, kmap will sleep waiting for
 88 * someone to call kunmap and free PKMAP slot.
 89 */
 90static inline int get_pkmap_entries_count(unsigned int color)
 91{
 92	return LAST_PKMAP;
 93}
 94
 95/*
 96 * Get head of a wait queue for PKMAP entries of the given color.
 97 * Wait queues for different mapping colors should be independent to avoid
 98 * unnecessary wakeups caused by freeing of slots of other colors.
 99 */
100static inline wait_queue_head_t *get_pkmap_wait_queue_head(unsigned int color)
101{
102	static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
103
104	return &pkmap_map_wait;
105}
106#endif
107
108atomic_long_t _totalhigh_pages __read_mostly;
109EXPORT_SYMBOL(_totalhigh_pages);
110
111EXPORT_PER_CPU_SYMBOL(__kmap_atomic_idx);
112
113unsigned int nr_free_highpages (void)
114{
115	struct zone *zone;
116	unsigned int pages = 0;
117
118	for_each_populated_zone(zone) {
119		if (is_highmem(zone))
120			pages += zone_page_state(zone, NR_FREE_PAGES);
121	}
122
123	return pages;
124}
125
126static int pkmap_count[LAST_PKMAP];
127static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
128
129pte_t * pkmap_page_table;
130
131/*
132 * Most architectures have no use for kmap_high_get(), so let's abstract
133 * the disabling of IRQ out of the locking in that case to save on a
134 * potential useless overhead.
135 */
136#ifdef ARCH_NEEDS_KMAP_HIGH_GET
137#define lock_kmap()             spin_lock_irq(&kmap_lock)
138#define unlock_kmap()           spin_unlock_irq(&kmap_lock)
139#define lock_kmap_any(flags)    spin_lock_irqsave(&kmap_lock, flags)
140#define unlock_kmap_any(flags)  spin_unlock_irqrestore(&kmap_lock, flags)
141#else
142#define lock_kmap()             spin_lock(&kmap_lock)
143#define unlock_kmap()           spin_unlock(&kmap_lock)
144#define lock_kmap_any(flags)    \
145		do { spin_lock(&kmap_lock); (void)(flags); } while (0)
146#define unlock_kmap_any(flags)  \
147		do { spin_unlock(&kmap_lock); (void)(flags); } while (0)
148#endif
149
150struct page *kmap_to_page(void *vaddr)
151{
152	unsigned long addr = (unsigned long)vaddr;
153
154	if (addr >= PKMAP_ADDR(0) && addr < PKMAP_ADDR(LAST_PKMAP)) {
155		int i = PKMAP_NR(addr);
 
156		return pte_page(pkmap_page_table[i]);
157	}
158
159	return virt_to_page(addr);
160}
161EXPORT_SYMBOL(kmap_to_page);
162
163static void flush_all_zero_pkmaps(void)
164{
165	int i;
166	int need_flush = 0;
167
168	flush_cache_kmaps();
169
170	for (i = 0; i < LAST_PKMAP; i++) {
171		struct page *page;
172
173		/*
174		 * zero means we don't have anything to do,
175		 * >1 means that it is still in use. Only
176		 * a count of 1 means that it is free but
177		 * needs to be unmapped
178		 */
179		if (pkmap_count[i] != 1)
180			continue;
181		pkmap_count[i] = 0;
182
183		/* sanity check */
184		BUG_ON(pte_none(pkmap_page_table[i]));
185
186		/*
187		 * Don't need an atomic fetch-and-clear op here;
188		 * no-one has the page mapped, and cannot get at
189		 * its virtual address (and hence PTE) without first
190		 * getting the kmap_lock (which is held here).
191		 * So no dangers, even with speculative execution.
192		 */
193		page = pte_page(pkmap_page_table[i]);
194		pte_clear(&init_mm, PKMAP_ADDR(i), &pkmap_page_table[i]);
195
196		set_page_address(page, NULL);
197		need_flush = 1;
198	}
199	if (need_flush)
200		flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
201}
202
203/**
204 * kmap_flush_unused - flush all unused kmap mappings in order to remove stray mappings
205 */
206void kmap_flush_unused(void)
207{
208	lock_kmap();
209	flush_all_zero_pkmaps();
210	unlock_kmap();
211}
212
213static inline unsigned long map_new_virtual(struct page *page)
214{
215	unsigned long vaddr;
216	int count;
217	unsigned int last_pkmap_nr;
218	unsigned int color = get_pkmap_color(page);
219
220start:
221	count = get_pkmap_entries_count(color);
222	/* Find an empty entry */
223	for (;;) {
224		last_pkmap_nr = get_next_pkmap_nr(color);
225		if (no_more_pkmaps(last_pkmap_nr, color)) {
226			flush_all_zero_pkmaps();
227			count = get_pkmap_entries_count(color);
228		}
229		if (!pkmap_count[last_pkmap_nr])
230			break;	/* Found a usable entry */
231		if (--count)
232			continue;
233
234		/*
235		 * Sleep for somebody else to unmap their entries
236		 */
237		{
238			DECLARE_WAITQUEUE(wait, current);
239			wait_queue_head_t *pkmap_map_wait =
240				get_pkmap_wait_queue_head(color);
241
242			__set_current_state(TASK_UNINTERRUPTIBLE);
243			add_wait_queue(pkmap_map_wait, &wait);
244			unlock_kmap();
245			schedule();
246			remove_wait_queue(pkmap_map_wait, &wait);
247			lock_kmap();
248
249			/* Somebody else might have mapped it while we slept */
250			if (page_address(page))
251				return (unsigned long)page_address(page);
252
253			/* Re-start */
254			goto start;
255		}
256	}
257	vaddr = PKMAP_ADDR(last_pkmap_nr);
258	set_pte_at(&init_mm, vaddr,
259		   &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
260
261	pkmap_count[last_pkmap_nr] = 1;
262	set_page_address(page, (void *)vaddr);
263
264	return vaddr;
265}
266
267/**
268 * kmap_high - map a highmem page into memory
269 * @page: &struct page to map
270 *
271 * Returns the page's virtual memory address.
272 *
273 * We cannot call this from interrupts, as it may block.
274 */
275void *kmap_high(struct page *page)
276{
277	unsigned long vaddr;
278
279	/*
280	 * For highmem pages, we can't trust "virtual" until
281	 * after we have the lock.
282	 */
283	lock_kmap();
284	vaddr = (unsigned long)page_address(page);
285	if (!vaddr)
286		vaddr = map_new_virtual(page);
287	pkmap_count[PKMAP_NR(vaddr)]++;
288	BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2);
289	unlock_kmap();
290	return (void*) vaddr;
291}
292
293EXPORT_SYMBOL(kmap_high);
294
295#ifdef ARCH_NEEDS_KMAP_HIGH_GET
296/**
297 * kmap_high_get - pin a highmem page into memory
298 * @page: &struct page to pin
299 *
300 * Returns the page's current virtual memory address, or NULL if no mapping
301 * exists.  If and only if a non null address is returned then a
302 * matching call to kunmap_high() is necessary.
303 *
304 * This can be called from any context.
305 */
306void *kmap_high_get(struct page *page)
307{
308	unsigned long vaddr, flags;
309
310	lock_kmap_any(flags);
311	vaddr = (unsigned long)page_address(page);
312	if (vaddr) {
313		BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 1);
314		pkmap_count[PKMAP_NR(vaddr)]++;
315	}
316	unlock_kmap_any(flags);
317	return (void*) vaddr;
318}
319#endif
320
321/**
322 * kunmap_high - unmap a highmem page into memory
323 * @page: &struct page to unmap
324 *
325 * If ARCH_NEEDS_KMAP_HIGH_GET is not defined then this may be called
326 * only from user context.
327 */
328void kunmap_high(struct page *page)
329{
330	unsigned long vaddr;
331	unsigned long nr;
332	unsigned long flags;
333	int need_wakeup;
334	unsigned int color = get_pkmap_color(page);
335	wait_queue_head_t *pkmap_map_wait;
336
337	lock_kmap_any(flags);
338	vaddr = (unsigned long)page_address(page);
339	BUG_ON(!vaddr);
340	nr = PKMAP_NR(vaddr);
341
342	/*
343	 * A count must never go down to zero
344	 * without a TLB flush!
345	 */
346	need_wakeup = 0;
347	switch (--pkmap_count[nr]) {
348	case 0:
349		BUG();
350	case 1:
351		/*
352		 * Avoid an unnecessary wake_up() function call.
353		 * The common case is pkmap_count[] == 1, but
354		 * no waiters.
355		 * The tasks queued in the wait-queue are guarded
356		 * by both the lock in the wait-queue-head and by
357		 * the kmap_lock.  As the kmap_lock is held here,
358		 * no need for the wait-queue-head's lock.  Simply
359		 * test if the queue is empty.
360		 */
361		pkmap_map_wait = get_pkmap_wait_queue_head(color);
362		need_wakeup = waitqueue_active(pkmap_map_wait);
363	}
364	unlock_kmap_any(flags);
365
366	/* do wake-up, if needed, race-free outside of the spin lock */
367	if (need_wakeup)
368		wake_up(pkmap_map_wait);
369}
370
371EXPORT_SYMBOL(kunmap_high);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
372#endif
373
374#if defined(HASHED_PAGE_VIRTUAL)
375
376#define PA_HASH_ORDER	7
377
378/*
379 * Describes one page->virtual association
380 */
381struct page_address_map {
382	struct page *page;
383	void *virtual;
384	struct list_head list;
385};
386
387static struct page_address_map page_address_maps[LAST_PKMAP];
388
389/*
390 * Hash table bucket
391 */
392static struct page_address_slot {
393	struct list_head lh;			/* List of page_address_maps */
394	spinlock_t lock;			/* Protect this bucket's list */
395} ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
396
397static struct page_address_slot *page_slot(const struct page *page)
398{
399	return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
400}
401
402/**
403 * page_address - get the mapped virtual address of a page
404 * @page: &struct page to get the virtual address of
405 *
406 * Returns the page's virtual address.
407 */
408void *page_address(const struct page *page)
409{
410	unsigned long flags;
411	void *ret;
412	struct page_address_slot *pas;
413
414	if (!PageHighMem(page))
415		return lowmem_page_address(page);
416
417	pas = page_slot(page);
418	ret = NULL;
419	spin_lock_irqsave(&pas->lock, flags);
420	if (!list_empty(&pas->lh)) {
421		struct page_address_map *pam;
422
423		list_for_each_entry(pam, &pas->lh, list) {
424			if (pam->page == page) {
425				ret = pam->virtual;
426				goto done;
427			}
428		}
429	}
430done:
431	spin_unlock_irqrestore(&pas->lock, flags);
432	return ret;
433}
434
435EXPORT_SYMBOL(page_address);
436
437/**
438 * set_page_address - set a page's virtual address
439 * @page: &struct page to set
440 * @virtual: virtual address to use
441 */
442void set_page_address(struct page *page, void *virtual)
443{
444	unsigned long flags;
445	struct page_address_slot *pas;
446	struct page_address_map *pam;
447
448	BUG_ON(!PageHighMem(page));
449
450	pas = page_slot(page);
451	if (virtual) {		/* Add */
452		pam = &page_address_maps[PKMAP_NR((unsigned long)virtual)];
453		pam->page = page;
454		pam->virtual = virtual;
455
456		spin_lock_irqsave(&pas->lock, flags);
457		list_add_tail(&pam->list, &pas->lh);
458		spin_unlock_irqrestore(&pas->lock, flags);
459	} else {		/* Remove */
460		spin_lock_irqsave(&pas->lock, flags);
461		list_for_each_entry(pam, &pas->lh, list) {
462			if (pam->page == page) {
463				list_del(&pam->list);
464				spin_unlock_irqrestore(&pas->lock, flags);
465				goto done;
466			}
467		}
468		spin_unlock_irqrestore(&pas->lock, flags);
469	}
470done:
471	return;
472}
473
474void __init page_address_init(void)
475{
476	int i;
477
478	for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
479		INIT_LIST_HEAD(&page_address_htable[i].lh);
480		spin_lock_init(&page_address_htable[i].lock);
481	}
482}
483
484#endif	/* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * High memory handling common code and variables.
  4 *
  5 * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
  6 *          Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
  7 *
  8 *
  9 * Redesigned the x86 32-bit VM architecture to deal with
 10 * 64-bit physical space. With current x86 CPUs this
 11 * means up to 64 Gigabytes physical RAM.
 12 *
 13 * Rewrote high memory support to move the page cache into
 14 * high memory. Implemented permanent (schedulable) kmaps
 15 * based on Linus' idea.
 16 *
 17 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
 18 */
 19
 20#include <linux/mm.h>
 21#include <linux/export.h>
 22#include <linux/swap.h>
 23#include <linux/bio.h>
 24#include <linux/pagemap.h>
 25#include <linux/mempool.h>
 26#include <linux/blkdev.h>
 27#include <linux/init.h>
 28#include <linux/hash.h>
 29#include <linux/highmem.h>
 30#include <linux/kgdb.h>
 31#include <asm/tlbflush.h>
 32#include <linux/vmalloc.h>
 33
 
 
 
 
 34/*
 35 * Virtual_count is not a pure "count".
 36 *  0 means that it is not mapped, and has not been mapped
 37 *    since a TLB flush - it is usable.
 38 *  1 means that there are no users, but it has been mapped
 39 *    since the last TLB flush - so we can't use it.
 40 *  n means that there are (n-1) current users of it.
 41 */
 42#ifdef CONFIG_HIGHMEM
 43
 44/*
 45 * Architecture with aliasing data cache may define the following family of
 46 * helper functions in its asm/highmem.h to control cache color of virtual
 47 * addresses where physical memory pages are mapped by kmap.
 48 */
 49#ifndef get_pkmap_color
 50
 51/*
 52 * Determine color of virtual address where the page should be mapped.
 53 */
 54static inline unsigned int get_pkmap_color(struct page *page)
 55{
 56	return 0;
 57}
 58#define get_pkmap_color get_pkmap_color
 59
 60/*
 61 * Get next index for mapping inside PKMAP region for page with given color.
 62 */
 63static inline unsigned int get_next_pkmap_nr(unsigned int color)
 64{
 65	static unsigned int last_pkmap_nr;
 66
 67	last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
 68	return last_pkmap_nr;
 69}
 70
 71/*
 72 * Determine if page index inside PKMAP region (pkmap_nr) of given color
 73 * has wrapped around PKMAP region end. When this happens an attempt to
 74 * flush all unused PKMAP slots is made.
 75 */
 76static inline int no_more_pkmaps(unsigned int pkmap_nr, unsigned int color)
 77{
 78	return pkmap_nr == 0;
 79}
 80
 81/*
 82 * Get the number of PKMAP entries of the given color. If no free slot is
 83 * found after checking that many entries, kmap will sleep waiting for
 84 * someone to call kunmap and free PKMAP slot.
 85 */
 86static inline int get_pkmap_entries_count(unsigned int color)
 87{
 88	return LAST_PKMAP;
 89}
 90
 91/*
 92 * Get head of a wait queue for PKMAP entries of the given color.
 93 * Wait queues for different mapping colors should be independent to avoid
 94 * unnecessary wakeups caused by freeing of slots of other colors.
 95 */
 96static inline wait_queue_head_t *get_pkmap_wait_queue_head(unsigned int color)
 97{
 98	static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
 99
100	return &pkmap_map_wait;
101}
102#endif
103
104atomic_long_t _totalhigh_pages __read_mostly;
105EXPORT_SYMBOL(_totalhigh_pages);
106
107unsigned int __nr_free_highpages(void)
 
 
108{
109	struct zone *zone;
110	unsigned int pages = 0;
111
112	for_each_populated_zone(zone) {
113		if (is_highmem(zone))
114			pages += zone_page_state(zone, NR_FREE_PAGES);
115	}
116
117	return pages;
118}
119
120static int pkmap_count[LAST_PKMAP];
121static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
122
123pte_t *pkmap_page_table;
124
125/*
126 * Most architectures have no use for kmap_high_get(), so let's abstract
127 * the disabling of IRQ out of the locking in that case to save on a
128 * potential useless overhead.
129 */
130#ifdef ARCH_NEEDS_KMAP_HIGH_GET
131#define lock_kmap()             spin_lock_irq(&kmap_lock)
132#define unlock_kmap()           spin_unlock_irq(&kmap_lock)
133#define lock_kmap_any(flags)    spin_lock_irqsave(&kmap_lock, flags)
134#define unlock_kmap_any(flags)  spin_unlock_irqrestore(&kmap_lock, flags)
135#else
136#define lock_kmap()             spin_lock(&kmap_lock)
137#define unlock_kmap()           spin_unlock(&kmap_lock)
138#define lock_kmap_any(flags)    \
139		do { spin_lock(&kmap_lock); (void)(flags); } while (0)
140#define unlock_kmap_any(flags)  \
141		do { spin_unlock(&kmap_lock); (void)(flags); } while (0)
142#endif
143
144struct page *__kmap_to_page(void *vaddr)
145{
146	unsigned long addr = (unsigned long)vaddr;
147
148	if (addr >= PKMAP_ADDR(0) && addr < PKMAP_ADDR(LAST_PKMAP)) {
149		int i = PKMAP_NR(addr);
150
151		return pte_page(pkmap_page_table[i]);
152	}
153
154	return virt_to_page(addr);
155}
156EXPORT_SYMBOL(__kmap_to_page);
157
158static void flush_all_zero_pkmaps(void)
159{
160	int i;
161	int need_flush = 0;
162
163	flush_cache_kmaps();
164
165	for (i = 0; i < LAST_PKMAP; i++) {
166		struct page *page;
167
168		/*
169		 * zero means we don't have anything to do,
170		 * >1 means that it is still in use. Only
171		 * a count of 1 means that it is free but
172		 * needs to be unmapped
173		 */
174		if (pkmap_count[i] != 1)
175			continue;
176		pkmap_count[i] = 0;
177
178		/* sanity check */
179		BUG_ON(pte_none(pkmap_page_table[i]));
180
181		/*
182		 * Don't need an atomic fetch-and-clear op here;
183		 * no-one has the page mapped, and cannot get at
184		 * its virtual address (and hence PTE) without first
185		 * getting the kmap_lock (which is held here).
186		 * So no dangers, even with speculative execution.
187		 */
188		page = pte_page(pkmap_page_table[i]);
189		pte_clear(&init_mm, PKMAP_ADDR(i), &pkmap_page_table[i]);
190
191		set_page_address(page, NULL);
192		need_flush = 1;
193	}
194	if (need_flush)
195		flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
196}
197
198void __kmap_flush_unused(void)
 
 
 
199{
200	lock_kmap();
201	flush_all_zero_pkmaps();
202	unlock_kmap();
203}
204
205static inline unsigned long map_new_virtual(struct page *page)
206{
207	unsigned long vaddr;
208	int count;
209	unsigned int last_pkmap_nr;
210	unsigned int color = get_pkmap_color(page);
211
212start:
213	count = get_pkmap_entries_count(color);
214	/* Find an empty entry */
215	for (;;) {
216		last_pkmap_nr = get_next_pkmap_nr(color);
217		if (no_more_pkmaps(last_pkmap_nr, color)) {
218			flush_all_zero_pkmaps();
219			count = get_pkmap_entries_count(color);
220		}
221		if (!pkmap_count[last_pkmap_nr])
222			break;	/* Found a usable entry */
223		if (--count)
224			continue;
225
226		/*
227		 * Sleep for somebody else to unmap their entries
228		 */
229		{
230			DECLARE_WAITQUEUE(wait, current);
231			wait_queue_head_t *pkmap_map_wait =
232				get_pkmap_wait_queue_head(color);
233
234			__set_current_state(TASK_UNINTERRUPTIBLE);
235			add_wait_queue(pkmap_map_wait, &wait);
236			unlock_kmap();
237			schedule();
238			remove_wait_queue(pkmap_map_wait, &wait);
239			lock_kmap();
240
241			/* Somebody else might have mapped it while we slept */
242			if (page_address(page))
243				return (unsigned long)page_address(page);
244
245			/* Re-start */
246			goto start;
247		}
248	}
249	vaddr = PKMAP_ADDR(last_pkmap_nr);
250	set_pte_at(&init_mm, vaddr,
251		   &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
252
253	pkmap_count[last_pkmap_nr] = 1;
254	set_page_address(page, (void *)vaddr);
255
256	return vaddr;
257}
258
259/**
260 * kmap_high - map a highmem page into memory
261 * @page: &struct page to map
262 *
263 * Returns the page's virtual memory address.
264 *
265 * We cannot call this from interrupts, as it may block.
266 */
267void *kmap_high(struct page *page)
268{
269	unsigned long vaddr;
270
271	/*
272	 * For highmem pages, we can't trust "virtual" until
273	 * after we have the lock.
274	 */
275	lock_kmap();
276	vaddr = (unsigned long)page_address(page);
277	if (!vaddr)
278		vaddr = map_new_virtual(page);
279	pkmap_count[PKMAP_NR(vaddr)]++;
280	BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2);
281	unlock_kmap();
282	return (void *) vaddr;
283}
 
284EXPORT_SYMBOL(kmap_high);
285
286#ifdef ARCH_NEEDS_KMAP_HIGH_GET
287/**
288 * kmap_high_get - pin a highmem page into memory
289 * @page: &struct page to pin
290 *
291 * Returns the page's current virtual memory address, or NULL if no mapping
292 * exists.  If and only if a non null address is returned then a
293 * matching call to kunmap_high() is necessary.
294 *
295 * This can be called from any context.
296 */
297void *kmap_high_get(struct page *page)
298{
299	unsigned long vaddr, flags;
300
301	lock_kmap_any(flags);
302	vaddr = (unsigned long)page_address(page);
303	if (vaddr) {
304		BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 1);
305		pkmap_count[PKMAP_NR(vaddr)]++;
306	}
307	unlock_kmap_any(flags);
308	return (void *) vaddr;
309}
310#endif
311
312/**
313 * kunmap_high - unmap a highmem page into memory
314 * @page: &struct page to unmap
315 *
316 * If ARCH_NEEDS_KMAP_HIGH_GET is not defined then this may be called
317 * only from user context.
318 */
319void kunmap_high(struct page *page)
320{
321	unsigned long vaddr;
322	unsigned long nr;
323	unsigned long flags;
324	int need_wakeup;
325	unsigned int color = get_pkmap_color(page);
326	wait_queue_head_t *pkmap_map_wait;
327
328	lock_kmap_any(flags);
329	vaddr = (unsigned long)page_address(page);
330	BUG_ON(!vaddr);
331	nr = PKMAP_NR(vaddr);
332
333	/*
334	 * A count must never go down to zero
335	 * without a TLB flush!
336	 */
337	need_wakeup = 0;
338	switch (--pkmap_count[nr]) {
339	case 0:
340		BUG();
341	case 1:
342		/*
343		 * Avoid an unnecessary wake_up() function call.
344		 * The common case is pkmap_count[] == 1, but
345		 * no waiters.
346		 * The tasks queued in the wait-queue are guarded
347		 * by both the lock in the wait-queue-head and by
348		 * the kmap_lock.  As the kmap_lock is held here,
349		 * no need for the wait-queue-head's lock.  Simply
350		 * test if the queue is empty.
351		 */
352		pkmap_map_wait = get_pkmap_wait_queue_head(color);
353		need_wakeup = waitqueue_active(pkmap_map_wait);
354	}
355	unlock_kmap_any(flags);
356
357	/* do wake-up, if needed, race-free outside of the spin lock */
358	if (need_wakeup)
359		wake_up(pkmap_map_wait);
360}
 
361EXPORT_SYMBOL(kunmap_high);
362
363#ifdef CONFIG_TRANSPARENT_HUGEPAGE
364void zero_user_segments(struct page *page, unsigned start1, unsigned end1,
365		unsigned start2, unsigned end2)
366{
367	unsigned int i;
368
369	BUG_ON(end1 > page_size(page) || end2 > page_size(page));
370
371	if (start1 >= end1)
372		start1 = end1 = 0;
373	if (start2 >= end2)
374		start2 = end2 = 0;
375
376	for (i = 0; i < compound_nr(page); i++) {
377		void *kaddr = NULL;
378
379		if (start1 >= PAGE_SIZE) {
380			start1 -= PAGE_SIZE;
381			end1 -= PAGE_SIZE;
382		} else {
383			unsigned this_end = min_t(unsigned, end1, PAGE_SIZE);
384
385			if (end1 > start1) {
386				kaddr = kmap_atomic(page + i);
387				memset(kaddr + start1, 0, this_end - start1);
388			}
389			end1 -= this_end;
390			start1 = 0;
391		}
392
393		if (start2 >= PAGE_SIZE) {
394			start2 -= PAGE_SIZE;
395			end2 -= PAGE_SIZE;
396		} else {
397			unsigned this_end = min_t(unsigned, end2, PAGE_SIZE);
398
399			if (end2 > start2) {
400				if (!kaddr)
401					kaddr = kmap_atomic(page + i);
402				memset(kaddr + start2, 0, this_end - start2);
403			}
404			end2 -= this_end;
405			start2 = 0;
406		}
407
408		if (kaddr) {
409			kunmap_atomic(kaddr);
410			flush_dcache_page(page + i);
411		}
412
413		if (!end1 && !end2)
414			break;
415	}
416
417	BUG_ON((start1 | start2 | end1 | end2) != 0);
418}
419EXPORT_SYMBOL(zero_user_segments);
420#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
421#endif /* CONFIG_HIGHMEM */
422
423#ifdef CONFIG_KMAP_LOCAL
424
425#include <asm/kmap_size.h>
426
427/*
428 * With DEBUG_KMAP_LOCAL the stack depth is doubled and every second
429 * slot is unused which acts as a guard page
430 */
431#ifdef CONFIG_DEBUG_KMAP_LOCAL
432# define KM_INCR	2
433#else
434# define KM_INCR	1
435#endif
436
437static inline int kmap_local_idx_push(void)
438{
439	WARN_ON_ONCE(in_irq() && !irqs_disabled());
440	current->kmap_ctrl.idx += KM_INCR;
441	BUG_ON(current->kmap_ctrl.idx >= KM_MAX_IDX);
442	return current->kmap_ctrl.idx - 1;
443}
444
445static inline int kmap_local_idx(void)
446{
447	return current->kmap_ctrl.idx - 1;
448}
449
450static inline void kmap_local_idx_pop(void)
451{
452	current->kmap_ctrl.idx -= KM_INCR;
453	BUG_ON(current->kmap_ctrl.idx < 0);
454}
455
456#ifndef arch_kmap_local_post_map
457# define arch_kmap_local_post_map(vaddr, pteval)	do { } while (0)
458#endif
459
460#ifndef arch_kmap_local_pre_unmap
461# define arch_kmap_local_pre_unmap(vaddr)		do { } while (0)
462#endif
463
464#ifndef arch_kmap_local_post_unmap
465# define arch_kmap_local_post_unmap(vaddr)		do { } while (0)
466#endif
467
468#ifndef arch_kmap_local_map_idx
469#define arch_kmap_local_map_idx(idx, pfn)	kmap_local_calc_idx(idx)
470#endif
471
472#ifndef arch_kmap_local_unmap_idx
473#define arch_kmap_local_unmap_idx(idx, vaddr)	kmap_local_calc_idx(idx)
474#endif
475
476#ifndef arch_kmap_local_high_get
477static inline void *arch_kmap_local_high_get(struct page *page)
478{
479	return NULL;
480}
481#endif
482
483#ifndef arch_kmap_local_set_pte
484#define arch_kmap_local_set_pte(mm, vaddr, ptep, ptev)	\
485	set_pte_at(mm, vaddr, ptep, ptev)
486#endif
487
488/* Unmap a local mapping which was obtained by kmap_high_get() */
489static inline bool kmap_high_unmap_local(unsigned long vaddr)
490{
491#ifdef ARCH_NEEDS_KMAP_HIGH_GET
492	if (vaddr >= PKMAP_ADDR(0) && vaddr < PKMAP_ADDR(LAST_PKMAP)) {
493		kunmap_high(pte_page(pkmap_page_table[PKMAP_NR(vaddr)]));
494		return true;
495	}
496#endif
497	return false;
498}
499
500static inline int kmap_local_calc_idx(int idx)
501{
502	return idx + KM_MAX_IDX * smp_processor_id();
503}
504
505static pte_t *__kmap_pte;
506
507static pte_t *kmap_get_pte(void)
508{
509	if (!__kmap_pte)
510		__kmap_pte = virt_to_kpte(__fix_to_virt(FIX_KMAP_BEGIN));
511	return __kmap_pte;
512}
513
514void *__kmap_local_pfn_prot(unsigned long pfn, pgprot_t prot)
515{
516	pte_t pteval, *kmap_pte = kmap_get_pte();
517	unsigned long vaddr;
518	int idx;
519
520	/*
521	 * Disable migration so resulting virtual address is stable
522	 * across preemption.
523	 */
524	migrate_disable();
525	preempt_disable();
526	idx = arch_kmap_local_map_idx(kmap_local_idx_push(), pfn);
527	vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
528	BUG_ON(!pte_none(*(kmap_pte - idx)));
529	pteval = pfn_pte(pfn, prot);
530	arch_kmap_local_set_pte(&init_mm, vaddr, kmap_pte - idx, pteval);
531	arch_kmap_local_post_map(vaddr, pteval);
532	current->kmap_ctrl.pteval[kmap_local_idx()] = pteval;
533	preempt_enable();
534
535	return (void *)vaddr;
536}
537EXPORT_SYMBOL_GPL(__kmap_local_pfn_prot);
538
539void *__kmap_local_page_prot(struct page *page, pgprot_t prot)
540{
541	void *kmap;
542
543	/*
544	 * To broaden the usage of the actual kmap_local() machinery always map
545	 * pages when debugging is enabled and the architecture has no problems
546	 * with alias mappings.
547	 */
548	if (!IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) && !PageHighMem(page))
549		return page_address(page);
550
551	/* Try kmap_high_get() if architecture has it enabled */
552	kmap = arch_kmap_local_high_get(page);
553	if (kmap)
554		return kmap;
555
556	return __kmap_local_pfn_prot(page_to_pfn(page), prot);
557}
558EXPORT_SYMBOL(__kmap_local_page_prot);
559
560void kunmap_local_indexed(void *vaddr)
561{
562	unsigned long addr = (unsigned long) vaddr & PAGE_MASK;
563	pte_t *kmap_pte = kmap_get_pte();
564	int idx;
565
566	if (addr < __fix_to_virt(FIX_KMAP_END) ||
567	    addr > __fix_to_virt(FIX_KMAP_BEGIN)) {
568		if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP)) {
569			/* This _should_ never happen! See above. */
570			WARN_ON_ONCE(1);
571			return;
572		}
573		/*
574		 * Handle mappings which were obtained by kmap_high_get()
575		 * first as the virtual address of such mappings is below
576		 * PAGE_OFFSET. Warn for all other addresses which are in
577		 * the user space part of the virtual address space.
578		 */
579		if (!kmap_high_unmap_local(addr))
580			WARN_ON_ONCE(addr < PAGE_OFFSET);
581		return;
582	}
583
584	preempt_disable();
585	idx = arch_kmap_local_unmap_idx(kmap_local_idx(), addr);
586	WARN_ON_ONCE(addr != __fix_to_virt(FIX_KMAP_BEGIN + idx));
587
588	arch_kmap_local_pre_unmap(addr);
589	pte_clear(&init_mm, addr, kmap_pte - idx);
590	arch_kmap_local_post_unmap(addr);
591	current->kmap_ctrl.pteval[kmap_local_idx()] = __pte(0);
592	kmap_local_idx_pop();
593	preempt_enable();
594	migrate_enable();
595}
596EXPORT_SYMBOL(kunmap_local_indexed);
597
598/*
599 * Invoked before switch_to(). This is safe even when during or after
600 * clearing the maps an interrupt which needs a kmap_local happens because
601 * the task::kmap_ctrl.idx is not modified by the unmapping code so a
602 * nested kmap_local will use the next unused index and restore the index
603 * on unmap. The already cleared kmaps of the outgoing task are irrelevant
604 * because the interrupt context does not know about them. The same applies
605 * when scheduling back in for an interrupt which happens before the
606 * restore is complete.
607 */
608void __kmap_local_sched_out(void)
609{
610	struct task_struct *tsk = current;
611	pte_t *kmap_pte = kmap_get_pte();
612	int i;
613
614	/* Clear kmaps */
615	for (i = 0; i < tsk->kmap_ctrl.idx; i++) {
616		pte_t pteval = tsk->kmap_ctrl.pteval[i];
617		unsigned long addr;
618		int idx;
619
620		/* With debug all even slots are unmapped and act as guard */
621		if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL) && !(i & 0x01)) {
622			WARN_ON_ONCE(!pte_none(pteval));
623			continue;
624		}
625		if (WARN_ON_ONCE(pte_none(pteval)))
626			continue;
627
628		/*
629		 * This is a horrible hack for XTENSA to calculate the
630		 * coloured PTE index. Uses the PFN encoded into the pteval
631		 * and the map index calculation because the actual mapped
632		 * virtual address is not stored in task::kmap_ctrl.
633		 * For any sane architecture this is optimized out.
634		 */
635		idx = arch_kmap_local_map_idx(i, pte_pfn(pteval));
636
637		addr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
638		arch_kmap_local_pre_unmap(addr);
639		pte_clear(&init_mm, addr, kmap_pte - idx);
640		arch_kmap_local_post_unmap(addr);
641	}
642}
643
644void __kmap_local_sched_in(void)
645{
646	struct task_struct *tsk = current;
647	pte_t *kmap_pte = kmap_get_pte();
648	int i;
649
650	/* Restore kmaps */
651	for (i = 0; i < tsk->kmap_ctrl.idx; i++) {
652		pte_t pteval = tsk->kmap_ctrl.pteval[i];
653		unsigned long addr;
654		int idx;
655
656		/* With debug all even slots are unmapped and act as guard */
657		if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL) && !(i & 0x01)) {
658			WARN_ON_ONCE(!pte_none(pteval));
659			continue;
660		}
661		if (WARN_ON_ONCE(pte_none(pteval)))
662			continue;
663
664		/* See comment in __kmap_local_sched_out() */
665		idx = arch_kmap_local_map_idx(i, pte_pfn(pteval));
666		addr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
667		set_pte_at(&init_mm, addr, kmap_pte - idx, pteval);
668		arch_kmap_local_post_map(addr, pteval);
669	}
670}
671
672void kmap_local_fork(struct task_struct *tsk)
673{
674	if (WARN_ON_ONCE(tsk->kmap_ctrl.idx))
675		memset(&tsk->kmap_ctrl, 0, sizeof(tsk->kmap_ctrl));
676}
677
678#endif
679
680#if defined(HASHED_PAGE_VIRTUAL)
681
682#define PA_HASH_ORDER	7
683
684/*
685 * Describes one page->virtual association
686 */
687struct page_address_map {
688	struct page *page;
689	void *virtual;
690	struct list_head list;
691};
692
693static struct page_address_map page_address_maps[LAST_PKMAP];
694
695/*
696 * Hash table bucket
697 */
698static struct page_address_slot {
699	struct list_head lh;			/* List of page_address_maps */
700	spinlock_t lock;			/* Protect this bucket's list */
701} ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
702
703static struct page_address_slot *page_slot(const struct page *page)
704{
705	return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
706}
707
708/**
709 * page_address - get the mapped virtual address of a page
710 * @page: &struct page to get the virtual address of
711 *
712 * Returns the page's virtual address.
713 */
714void *page_address(const struct page *page)
715{
716	unsigned long flags;
717	void *ret;
718	struct page_address_slot *pas;
719
720	if (!PageHighMem(page))
721		return lowmem_page_address(page);
722
723	pas = page_slot(page);
724	ret = NULL;
725	spin_lock_irqsave(&pas->lock, flags);
726	if (!list_empty(&pas->lh)) {
727		struct page_address_map *pam;
728
729		list_for_each_entry(pam, &pas->lh, list) {
730			if (pam->page == page) {
731				ret = pam->virtual;
732				goto done;
733			}
734		}
735	}
736done:
737	spin_unlock_irqrestore(&pas->lock, flags);
738	return ret;
739}
 
740EXPORT_SYMBOL(page_address);
741
742/**
743 * set_page_address - set a page's virtual address
744 * @page: &struct page to set
745 * @virtual: virtual address to use
746 */
747void set_page_address(struct page *page, void *virtual)
748{
749	unsigned long flags;
750	struct page_address_slot *pas;
751	struct page_address_map *pam;
752
753	BUG_ON(!PageHighMem(page));
754
755	pas = page_slot(page);
756	if (virtual) {		/* Add */
757		pam = &page_address_maps[PKMAP_NR((unsigned long)virtual)];
758		pam->page = page;
759		pam->virtual = virtual;
760
761		spin_lock_irqsave(&pas->lock, flags);
762		list_add_tail(&pam->list, &pas->lh);
763		spin_unlock_irqrestore(&pas->lock, flags);
764	} else {		/* Remove */
765		spin_lock_irqsave(&pas->lock, flags);
766		list_for_each_entry(pam, &pas->lh, list) {
767			if (pam->page == page) {
768				list_del(&pam->list);
769				spin_unlock_irqrestore(&pas->lock, flags);
770				goto done;
771			}
772		}
773		spin_unlock_irqrestore(&pas->lock, flags);
774	}
775done:
776	return;
777}
778
779void __init page_address_init(void)
780{
781	int i;
782
783	for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
784		INIT_LIST_HEAD(&page_address_htable[i].lh);
785		spin_lock_init(&page_address_htable[i].lock);
786	}
787}
788
789#endif	/* defined(HASHED_PAGE_VIRTUAL) */