Linux Audio

Check our new training course

Loading...
v5.9
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   4 * Internal non-public definitions that provide either classic
   5 * or preemptible semantics.
   6 *
   7 * Copyright Red Hat, 2009
   8 * Copyright IBM Corporation, 2009
   9 *
  10 * Author: Ingo Molnar <mingo@elte.hu>
  11 *	   Paul E. McKenney <paulmck@linux.ibm.com>
  12 */
  13
  14#include "../locking/rtmutex_common.h"
  15
  16#ifdef CONFIG_RCU_NOCB_CPU
  17static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
  18static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  19#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  21/*
  22 * Check the RCU kernel configuration parameters and print informative
  23 * messages about anything out of the ordinary.
  24 */
  25static void __init rcu_bootup_announce_oddness(void)
  26{
  27	if (IS_ENABLED(CONFIG_RCU_TRACE))
  28		pr_info("\tRCU event tracing is enabled.\n");
  29	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
  30	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
  31		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
  32			RCU_FANOUT);
  33	if (rcu_fanout_exact)
  34		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
  35	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
  36		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  37	if (IS_ENABLED(CONFIG_PROVE_RCU))
  38		pr_info("\tRCU lockdep checking is enabled.\n");
 
 
  39	if (RCU_NUM_LVLS >= 4)
  40		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
  41	if (RCU_FANOUT_LEAF != 16)
  42		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
  43			RCU_FANOUT_LEAF);
  44	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
  45		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
  46			rcu_fanout_leaf);
  47	if (nr_cpu_ids != NR_CPUS)
  48		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
  49#ifdef CONFIG_RCU_BOOST
  50	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
  51		kthread_prio, CONFIG_RCU_BOOST_DELAY);
  52#endif
  53	if (blimit != DEFAULT_RCU_BLIMIT)
  54		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
  55	if (qhimark != DEFAULT_RCU_QHIMARK)
  56		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
  57	if (qlowmark != DEFAULT_RCU_QLOMARK)
  58		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
  59	if (qovld != DEFAULT_RCU_QOVLD)
  60		pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
  61	if (jiffies_till_first_fqs != ULONG_MAX)
  62		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
  63	if (jiffies_till_next_fqs != ULONG_MAX)
  64		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
  65	if (jiffies_till_sched_qs != ULONG_MAX)
  66		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
  67	if (rcu_kick_kthreads)
  68		pr_info("\tKick kthreads if too-long grace period.\n");
  69	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
  70		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
  71	if (gp_preinit_delay)
  72		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
  73	if (gp_init_delay)
  74		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
  75	if (gp_cleanup_delay)
  76		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
  77	if (!use_softirq)
  78		pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
  79	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
  80		pr_info("\tRCU debug extended QS entry/exit.\n");
  81	rcupdate_announce_bootup_oddness();
  82}
  83
  84#ifdef CONFIG_PREEMPT_RCU
  85
  86static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
  87static void rcu_read_unlock_special(struct task_struct *t);
  88
  89/*
  90 * Tell them what RCU they are running.
  91 */
  92static void __init rcu_bootup_announce(void)
  93{
  94	pr_info("Preemptible hierarchical RCU implementation.\n");
  95	rcu_bootup_announce_oddness();
  96}
  97
  98/* Flags for rcu_preempt_ctxt_queue() decision table. */
  99#define RCU_GP_TASKS	0x8
 100#define RCU_EXP_TASKS	0x4
 101#define RCU_GP_BLKD	0x2
 102#define RCU_EXP_BLKD	0x1
 103
 104/*
 105 * Queues a task preempted within an RCU-preempt read-side critical
 106 * section into the appropriate location within the ->blkd_tasks list,
 107 * depending on the states of any ongoing normal and expedited grace
 108 * periods.  The ->gp_tasks pointer indicates which element the normal
 109 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
 110 * indicates which element the expedited grace period is waiting on (again,
 111 * NULL if none).  If a grace period is waiting on a given element in the
 112 * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
 113 * adding a task to the tail of the list blocks any grace period that is
 114 * already waiting on one of the elements.  In contrast, adding a task
 115 * to the head of the list won't block any grace period that is already
 116 * waiting on one of the elements.
 117 *
 118 * This queuing is imprecise, and can sometimes make an ongoing grace
 119 * period wait for a task that is not strictly speaking blocking it.
 120 * Given the choice, we needlessly block a normal grace period rather than
 121 * blocking an expedited grace period.
 122 *
 123 * Note that an endless sequence of expedited grace periods still cannot
 124 * indefinitely postpone a normal grace period.  Eventually, all of the
 125 * fixed number of preempted tasks blocking the normal grace period that are
 126 * not also blocking the expedited grace period will resume and complete
 127 * their RCU read-side critical sections.  At that point, the ->gp_tasks
 128 * pointer will equal the ->exp_tasks pointer, at which point the end of
 129 * the corresponding expedited grace period will also be the end of the
 130 * normal grace period.
 131 */
 132static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
 133	__releases(rnp->lock) /* But leaves rrupts disabled. */
 134{
 135	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
 136			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
 137			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
 138			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
 139	struct task_struct *t = current;
 140
 141	raw_lockdep_assert_held_rcu_node(rnp);
 142	WARN_ON_ONCE(rdp->mynode != rnp);
 143	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
 144	/* RCU better not be waiting on newly onlined CPUs! */
 145	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
 146		     rdp->grpmask);
 147
 148	/*
 149	 * Decide where to queue the newly blocked task.  In theory,
 150	 * this could be an if-statement.  In practice, when I tried
 151	 * that, it was quite messy.
 152	 */
 153	switch (blkd_state) {
 154	case 0:
 155	case                RCU_EXP_TASKS:
 156	case                RCU_EXP_TASKS + RCU_GP_BLKD:
 157	case RCU_GP_TASKS:
 158	case RCU_GP_TASKS + RCU_EXP_TASKS:
 159
 160		/*
 161		 * Blocking neither GP, or first task blocking the normal
 162		 * GP but not blocking the already-waiting expedited GP.
 163		 * Queue at the head of the list to avoid unnecessarily
 164		 * blocking the already-waiting GPs.
 165		 */
 166		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
 167		break;
 168
 169	case                                              RCU_EXP_BLKD:
 170	case                                RCU_GP_BLKD:
 171	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
 172	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
 173	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
 174	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 175
 176		/*
 177		 * First task arriving that blocks either GP, or first task
 178		 * arriving that blocks the expedited GP (with the normal
 179		 * GP already waiting), or a task arriving that blocks
 180		 * both GPs with both GPs already waiting.  Queue at the
 181		 * tail of the list to avoid any GP waiting on any of the
 182		 * already queued tasks that are not blocking it.
 183		 */
 184		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
 185		break;
 186
 187	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
 188	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 189	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
 190
 191		/*
 192		 * Second or subsequent task blocking the expedited GP.
 193		 * The task either does not block the normal GP, or is the
 194		 * first task blocking the normal GP.  Queue just after
 195		 * the first task blocking the expedited GP.
 196		 */
 197		list_add(&t->rcu_node_entry, rnp->exp_tasks);
 198		break;
 199
 200	case RCU_GP_TASKS +                 RCU_GP_BLKD:
 201	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
 202
 203		/*
 204		 * Second or subsequent task blocking the normal GP.
 205		 * The task does not block the expedited GP. Queue just
 206		 * after the first task blocking the normal GP.
 207		 */
 208		list_add(&t->rcu_node_entry, rnp->gp_tasks);
 209		break;
 210
 211	default:
 212
 213		/* Yet another exercise in excessive paranoia. */
 214		WARN_ON_ONCE(1);
 215		break;
 216	}
 217
 218	/*
 219	 * We have now queued the task.  If it was the first one to
 220	 * block either grace period, update the ->gp_tasks and/or
 221	 * ->exp_tasks pointers, respectively, to reference the newly
 222	 * blocked tasks.
 223	 */
 224	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
 225		WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
 226		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
 227	}
 228	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
 229		WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
 230	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
 231		     !(rnp->qsmask & rdp->grpmask));
 232	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
 233		     !(rnp->expmask & rdp->grpmask));
 234	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
 235
 236	/*
 237	 * Report the quiescent state for the expedited GP.  This expedited
 238	 * GP should not be able to end until we report, so there should be
 239	 * no need to check for a subsequent expedited GP.  (Though we are
 240	 * still in a quiescent state in any case.)
 241	 */
 242	if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
 243		rcu_report_exp_rdp(rdp);
 244	else
 245		WARN_ON_ONCE(rdp->exp_deferred_qs);
 246}
 247
 248/*
 249 * Record a preemptible-RCU quiescent state for the specified CPU.
 250 * Note that this does not necessarily mean that the task currently running
 251 * on the CPU is in a quiescent state:  Instead, it means that the current
 252 * grace period need not wait on any RCU read-side critical section that
 253 * starts later on this CPU.  It also means that if the current task is
 254 * in an RCU read-side critical section, it has already added itself to
 255 * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
 256 * current task, there might be any number of other tasks blocked while
 257 * in an RCU read-side critical section.
 258 *
 259 * Callers to this function must disable preemption.
 260 */
 261static void rcu_qs(void)
 262{
 263	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
 264	if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
 265		trace_rcu_grace_period(TPS("rcu_preempt"),
 266				       __this_cpu_read(rcu_data.gp_seq),
 267				       TPS("cpuqs"));
 268		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
 269		barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
 270		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
 271	}
 272}
 273
 274/*
 275 * We have entered the scheduler, and the current task might soon be
 276 * context-switched away from.  If this task is in an RCU read-side
 277 * critical section, we will no longer be able to rely on the CPU to
 278 * record that fact, so we enqueue the task on the blkd_tasks list.
 279 * The task will dequeue itself when it exits the outermost enclosing
 280 * RCU read-side critical section.  Therefore, the current grace period
 281 * cannot be permitted to complete until the blkd_tasks list entries
 282 * predating the current grace period drain, in other words, until
 283 * rnp->gp_tasks becomes NULL.
 284 *
 285 * Caller must disable interrupts.
 286 */
 287void rcu_note_context_switch(bool preempt)
 288{
 289	struct task_struct *t = current;
 290	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 291	struct rcu_node *rnp;
 292
 293	trace_rcu_utilization(TPS("Start context switch"));
 294	lockdep_assert_irqs_disabled();
 295	WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
 296	if (rcu_preempt_depth() > 0 &&
 297	    !t->rcu_read_unlock_special.b.blocked) {
 298
 299		/* Possibly blocking in an RCU read-side critical section. */
 300		rnp = rdp->mynode;
 301		raw_spin_lock_rcu_node(rnp);
 302		t->rcu_read_unlock_special.b.blocked = true;
 303		t->rcu_blocked_node = rnp;
 304
 305		/*
 306		 * Verify the CPU's sanity, trace the preemption, and
 307		 * then queue the task as required based on the states
 308		 * of any ongoing and expedited grace periods.
 309		 */
 310		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
 311		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
 312		trace_rcu_preempt_task(rcu_state.name,
 313				       t->pid,
 314				       (rnp->qsmask & rdp->grpmask)
 315				       ? rnp->gp_seq
 316				       : rcu_seq_snap(&rnp->gp_seq));
 317		rcu_preempt_ctxt_queue(rnp, rdp);
 318	} else {
 319		rcu_preempt_deferred_qs(t);
 320	}
 321
 322	/*
 323	 * Either we were not in an RCU read-side critical section to
 324	 * begin with, or we have now recorded that critical section
 325	 * globally.  Either way, we can now note a quiescent state
 326	 * for this CPU.  Again, if we were in an RCU read-side critical
 327	 * section, and if that critical section was blocking the current
 328	 * grace period, then the fact that the task has been enqueued
 329	 * means that we continue to block the current grace period.
 330	 */
 331	rcu_qs();
 332	if (rdp->exp_deferred_qs)
 333		rcu_report_exp_rdp(rdp);
 334	rcu_tasks_qs(current, preempt);
 335	trace_rcu_utilization(TPS("End context switch"));
 336}
 337EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 338
 339/*
 340 * Check for preempted RCU readers blocking the current grace period
 341 * for the specified rcu_node structure.  If the caller needs a reliable
 342 * answer, it must hold the rcu_node's ->lock.
 343 */
 344static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 345{
 346	return READ_ONCE(rnp->gp_tasks) != NULL;
 347}
 348
 349/* limit value for ->rcu_read_lock_nesting. */
 350#define RCU_NEST_PMAX (INT_MAX / 2)
 351
 352static void rcu_preempt_read_enter(void)
 353{
 354	current->rcu_read_lock_nesting++;
 355}
 356
 357static int rcu_preempt_read_exit(void)
 358{
 359	return --current->rcu_read_lock_nesting;
 360}
 361
 362static void rcu_preempt_depth_set(int val)
 363{
 364	current->rcu_read_lock_nesting = val;
 365}
 366
 367/*
 368 * Preemptible RCU implementation for rcu_read_lock().
 369 * Just increment ->rcu_read_lock_nesting, shared state will be updated
 370 * if we block.
 371 */
 372void __rcu_read_lock(void)
 373{
 374	rcu_preempt_read_enter();
 375	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
 376		WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
 
 
 377	barrier();  /* critical section after entry code. */
 378}
 379EXPORT_SYMBOL_GPL(__rcu_read_lock);
 380
 381/*
 382 * Preemptible RCU implementation for rcu_read_unlock().
 383 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 384 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 385 * invoke rcu_read_unlock_special() to clean up after a context switch
 386 * in an RCU read-side critical section and other special cases.
 387 */
 388void __rcu_read_unlock(void)
 389{
 390	struct task_struct *t = current;
 391
 
 392	if (rcu_preempt_read_exit() == 0) {
 393		barrier();  /* critical section before exit code. */
 394		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
 395			rcu_read_unlock_special(t);
 396	}
 397	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
 398		int rrln = rcu_preempt_depth();
 399
 400		WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
 401	}
 402}
 403EXPORT_SYMBOL_GPL(__rcu_read_unlock);
 404
 405/*
 406 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 407 * returning NULL if at the end of the list.
 408 */
 409static struct list_head *rcu_next_node_entry(struct task_struct *t,
 410					     struct rcu_node *rnp)
 411{
 412	struct list_head *np;
 413
 414	np = t->rcu_node_entry.next;
 415	if (np == &rnp->blkd_tasks)
 416		np = NULL;
 417	return np;
 418}
 419
 420/*
 421 * Return true if the specified rcu_node structure has tasks that were
 422 * preempted within an RCU read-side critical section.
 423 */
 424static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 425{
 426	return !list_empty(&rnp->blkd_tasks);
 427}
 428
 429/*
 430 * Report deferred quiescent states.  The deferral time can
 431 * be quite short, for example, in the case of the call from
 432 * rcu_read_unlock_special().
 433 */
 434static void
 435rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
 436{
 437	bool empty_exp;
 438	bool empty_norm;
 439	bool empty_exp_now;
 440	struct list_head *np;
 441	bool drop_boost_mutex = false;
 442	struct rcu_data *rdp;
 443	struct rcu_node *rnp;
 444	union rcu_special special;
 445
 446	/*
 447	 * If RCU core is waiting for this CPU to exit its critical section,
 448	 * report the fact that it has exited.  Because irqs are disabled,
 449	 * t->rcu_read_unlock_special cannot change.
 450	 */
 451	special = t->rcu_read_unlock_special;
 452	rdp = this_cpu_ptr(&rcu_data);
 453	if (!special.s && !rdp->exp_deferred_qs) {
 454		local_irq_restore(flags);
 455		return;
 456	}
 457	t->rcu_read_unlock_special.s = 0;
 458	if (special.b.need_qs)
 459		rcu_qs();
 
 
 
 
 
 
 460
 461	/*
 462	 * Respond to a request by an expedited grace period for a
 463	 * quiescent state from this CPU.  Note that requests from
 464	 * tasks are handled when removing the task from the
 465	 * blocked-tasks list below.
 466	 */
 467	if (rdp->exp_deferred_qs)
 468		rcu_report_exp_rdp(rdp);
 469
 470	/* Clean up if blocked during RCU read-side critical section. */
 471	if (special.b.blocked) {
 472
 473		/*
 474		 * Remove this task from the list it blocked on.  The task
 475		 * now remains queued on the rcu_node corresponding to the
 476		 * CPU it first blocked on, so there is no longer any need
 477		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
 478		 */
 479		rnp = t->rcu_blocked_node;
 480		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
 481		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
 482		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
 483		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
 484		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
 485			     (!empty_norm || rnp->qsmask));
 486		empty_exp = sync_rcu_exp_done(rnp);
 487		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
 488		np = rcu_next_node_entry(t, rnp);
 489		list_del_init(&t->rcu_node_entry);
 490		t->rcu_blocked_node = NULL;
 491		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
 492						rnp->gp_seq, t->pid);
 493		if (&t->rcu_node_entry == rnp->gp_tasks)
 494			WRITE_ONCE(rnp->gp_tasks, np);
 495		if (&t->rcu_node_entry == rnp->exp_tasks)
 496			WRITE_ONCE(rnp->exp_tasks, np);
 497		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
 498			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
 499			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
 500			if (&t->rcu_node_entry == rnp->boost_tasks)
 501				WRITE_ONCE(rnp->boost_tasks, np);
 502		}
 503
 504		/*
 505		 * If this was the last task on the current list, and if
 506		 * we aren't waiting on any CPUs, report the quiescent state.
 507		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
 508		 * so we must take a snapshot of the expedited state.
 509		 */
 510		empty_exp_now = sync_rcu_exp_done(rnp);
 511		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
 512			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
 513							 rnp->gp_seq,
 514							 0, rnp->qsmask,
 515							 rnp->level,
 516							 rnp->grplo,
 517							 rnp->grphi,
 518							 !!rnp->gp_tasks);
 519			rcu_report_unblock_qs_rnp(rnp, flags);
 520		} else {
 521			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 522		}
 523
 524		/* Unboost if we were boosted. */
 525		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
 526			rt_mutex_futex_unlock(&rnp->boost_mtx);
 527
 528		/*
 529		 * If this was the last task on the expedited lists,
 530		 * then we need to report up the rcu_node hierarchy.
 531		 */
 532		if (!empty_exp && empty_exp_now)
 533			rcu_report_exp_rnp(rnp, true);
 534	} else {
 535		local_irq_restore(flags);
 536	}
 537}
 538
 539/*
 540 * Is a deferred quiescent-state pending, and are we also not in
 541 * an RCU read-side critical section?  It is the caller's responsibility
 542 * to ensure it is otherwise safe to report any deferred quiescent
 543 * states.  The reason for this is that it is safe to report a
 544 * quiescent state during context switch even though preemption
 545 * is disabled.  This function cannot be expected to understand these
 546 * nuances, so the caller must handle them.
 547 */
 548static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
 549{
 550	return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
 551		READ_ONCE(t->rcu_read_unlock_special.s)) &&
 552	       rcu_preempt_depth() == 0;
 553}
 554
 555/*
 556 * Report a deferred quiescent state if needed and safe to do so.
 557 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
 558 * not being in an RCU read-side critical section.  The caller must
 559 * evaluate safety in terms of interrupt, softirq, and preemption
 560 * disabling.
 561 */
 562static void rcu_preempt_deferred_qs(struct task_struct *t)
 563{
 564	unsigned long flags;
 565
 566	if (!rcu_preempt_need_deferred_qs(t))
 567		return;
 568	local_irq_save(flags);
 569	rcu_preempt_deferred_qs_irqrestore(t, flags);
 570}
 571
 572/*
 573 * Minimal handler to give the scheduler a chance to re-evaluate.
 574 */
 575static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
 576{
 577	struct rcu_data *rdp;
 578
 579	rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
 580	rdp->defer_qs_iw_pending = false;
 581}
 582
 583/*
 584 * Handle special cases during rcu_read_unlock(), such as needing to
 585 * notify RCU core processing or task having blocked during the RCU
 586 * read-side critical section.
 587 */
 588static void rcu_read_unlock_special(struct task_struct *t)
 589{
 590	unsigned long flags;
 
 591	bool preempt_bh_were_disabled =
 592			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
 593	bool irqs_were_disabled;
 594
 595	/* NMI handlers cannot block and cannot safely manipulate state. */
 596	if (in_nmi())
 597		return;
 598
 599	local_irq_save(flags);
 600	irqs_were_disabled = irqs_disabled_flags(flags);
 601	if (preempt_bh_were_disabled || irqs_were_disabled) {
 602		bool exp;
 603		struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 604		struct rcu_node *rnp = rdp->mynode;
 605
 606		exp = (t->rcu_blocked_node &&
 607		       READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
 608		      (rdp->grpmask & READ_ONCE(rnp->expmask));
 
 
 609		// Need to defer quiescent state until everything is enabled.
 610		if (use_softirq && (in_irq() || (exp && !irqs_were_disabled))) {
 611			// Using softirq, safe to awaken, and either the
 612			// wakeup is free or there is an expedited GP.
 
 613			raise_softirq_irqoff(RCU_SOFTIRQ);
 614		} else {
 615			// Enabling BH or preempt does reschedule, so...
 616			// Also if no expediting, slow is OK.
 617			// Plus nohz_full CPUs eventually get tick enabled.
 
 618			set_tsk_need_resched(current);
 619			set_preempt_need_resched();
 620			if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
 621			    !rdp->defer_qs_iw_pending && exp) {
 622				// Get scheduler to re-evaluate and call hooks.
 623				// If !IRQ_WORK, FQS scan will eventually IPI.
 624				init_irq_work(&rdp->defer_qs_iw,
 625					      rcu_preempt_deferred_qs_handler);
 626				rdp->defer_qs_iw_pending = true;
 627				irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
 628			}
 629		}
 630		local_irq_restore(flags);
 631		return;
 632	}
 633	rcu_preempt_deferred_qs_irqrestore(t, flags);
 634}
 635
 636/*
 637 * Check that the list of blocked tasks for the newly completed grace
 638 * period is in fact empty.  It is a serious bug to complete a grace
 639 * period that still has RCU readers blocked!  This function must be
 640 * invoked -before- updating this rnp's ->gp_seq.
 641 *
 642 * Also, if there are blocked tasks on the list, they automatically
 643 * block the newly created grace period, so set up ->gp_tasks accordingly.
 644 */
 645static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 646{
 647	struct task_struct *t;
 648
 649	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
 650	raw_lockdep_assert_held_rcu_node(rnp);
 651	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
 652		dump_blkd_tasks(rnp, 10);
 653	if (rcu_preempt_has_tasks(rnp) &&
 654	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
 655		WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
 656		t = container_of(rnp->gp_tasks, struct task_struct,
 657				 rcu_node_entry);
 658		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
 659						rnp->gp_seq, t->pid);
 660	}
 661	WARN_ON_ONCE(rnp->qsmask);
 662}
 663
 664/*
 665 * Check for a quiescent state from the current CPU, including voluntary
 666 * context switches for Tasks RCU.  When a task blocks, the task is
 667 * recorded in the corresponding CPU's rcu_node structure, which is checked
 668 * elsewhere, hence this function need only check for quiescent states
 669 * related to the current CPU, not to those related to tasks.
 670 */
 671static void rcu_flavor_sched_clock_irq(int user)
 672{
 673	struct task_struct *t = current;
 674
 
 675	if (user || rcu_is_cpu_rrupt_from_idle()) {
 676		rcu_note_voluntary_context_switch(current);
 677	}
 678	if (rcu_preempt_depth() > 0 ||
 679	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
 680		/* No QS, force context switch if deferred. */
 681		if (rcu_preempt_need_deferred_qs(t)) {
 682			set_tsk_need_resched(t);
 683			set_preempt_need_resched();
 684		}
 685	} else if (rcu_preempt_need_deferred_qs(t)) {
 686		rcu_preempt_deferred_qs(t); /* Report deferred QS. */
 687		return;
 688	} else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
 689		rcu_qs(); /* Report immediate QS. */
 690		return;
 691	}
 692
 693	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
 694	if (rcu_preempt_depth() > 0 &&
 695	    __this_cpu_read(rcu_data.core_needs_qs) &&
 696	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
 697	    !t->rcu_read_unlock_special.b.need_qs &&
 698	    time_after(jiffies, rcu_state.gp_start + HZ))
 699		t->rcu_read_unlock_special.b.need_qs = true;
 700}
 701
 702/*
 703 * Check for a task exiting while in a preemptible-RCU read-side
 704 * critical section, clean up if so.  No need to issue warnings, as
 705 * debug_check_no_locks_held() already does this if lockdep is enabled.
 706 * Besides, if this function does anything other than just immediately
 707 * return, there was a bug of some sort.  Spewing warnings from this
 708 * function is like as not to simply obscure important prior warnings.
 709 */
 710void exit_rcu(void)
 711{
 712	struct task_struct *t = current;
 713
 714	if (unlikely(!list_empty(&current->rcu_node_entry))) {
 715		rcu_preempt_depth_set(1);
 716		barrier();
 717		WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
 718	} else if (unlikely(rcu_preempt_depth())) {
 719		rcu_preempt_depth_set(1);
 720	} else {
 721		return;
 722	}
 723	__rcu_read_unlock();
 724	rcu_preempt_deferred_qs(current);
 725}
 726
 727/*
 728 * Dump the blocked-tasks state, but limit the list dump to the
 729 * specified number of elements.
 730 */
 731static void
 732dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
 733{
 734	int cpu;
 735	int i;
 736	struct list_head *lhp;
 737	bool onl;
 738	struct rcu_data *rdp;
 739	struct rcu_node *rnp1;
 740
 741	raw_lockdep_assert_held_rcu_node(rnp);
 742	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
 743		__func__, rnp->grplo, rnp->grphi, rnp->level,
 744		(long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
 745	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
 746		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
 747			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
 748	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
 749		__func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
 750		READ_ONCE(rnp->exp_tasks));
 751	pr_info("%s: ->blkd_tasks", __func__);
 752	i = 0;
 753	list_for_each(lhp, &rnp->blkd_tasks) {
 754		pr_cont(" %p", lhp);
 755		if (++i >= ncheck)
 756			break;
 757	}
 758	pr_cont("\n");
 759	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
 760		rdp = per_cpu_ptr(&rcu_data, cpu);
 761		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
 762		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
 763			cpu, ".o"[onl],
 764			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
 765			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
 766	}
 767}
 768
 769#else /* #ifdef CONFIG_PREEMPT_RCU */
 770
 771/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 772 * Tell them what RCU they are running.
 773 */
 774static void __init rcu_bootup_announce(void)
 775{
 776	pr_info("Hierarchical RCU implementation.\n");
 777	rcu_bootup_announce_oddness();
 778}
 779
 780/*
 781 * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
 782 * how many quiescent states passed, just if there was at least one since
 783 * the start of the grace period, this just sets a flag.  The caller must
 784 * have disabled preemption.
 785 */
 786static void rcu_qs(void)
 787{
 788	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
 789	if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
 790		return;
 791	trace_rcu_grace_period(TPS("rcu_sched"),
 792			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
 793	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
 794	if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
 795		return;
 796	__this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
 797	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
 798}
 799
 800/*
 801 * Register an urgently needed quiescent state.  If there is an
 802 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 803 * dyntick-idle quiescent state visible to other CPUs, which will in
 804 * some cases serve for expedited as well as normal grace periods.
 805 * Either way, register a lightweight quiescent state.
 806 */
 807void rcu_all_qs(void)
 808{
 809	unsigned long flags;
 810
 811	if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
 812		return;
 813	preempt_disable();
 814	/* Load rcu_urgent_qs before other flags. */
 815	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
 816		preempt_enable();
 817		return;
 818	}
 819	this_cpu_write(rcu_data.rcu_urgent_qs, false);
 820	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
 821		local_irq_save(flags);
 822		rcu_momentary_dyntick_idle();
 823		local_irq_restore(flags);
 824	}
 825	rcu_qs();
 826	preempt_enable();
 827}
 828EXPORT_SYMBOL_GPL(rcu_all_qs);
 829
 830/*
 831 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
 832 */
 833void rcu_note_context_switch(bool preempt)
 834{
 835	trace_rcu_utilization(TPS("Start context switch"));
 836	rcu_qs();
 837	/* Load rcu_urgent_qs before other flags. */
 838	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
 839		goto out;
 840	this_cpu_write(rcu_data.rcu_urgent_qs, false);
 841	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
 842		rcu_momentary_dyntick_idle();
 843	rcu_tasks_qs(current, preempt);
 844out:
 845	trace_rcu_utilization(TPS("End context switch"));
 846}
 847EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 848
 849/*
 850 * Because preemptible RCU does not exist, there are never any preempted
 851 * RCU readers.
 852 */
 853static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 854{
 855	return 0;
 856}
 857
 858/*
 859 * Because there is no preemptible RCU, there can be no readers blocked.
 860 */
 861static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 862{
 863	return false;
 864}
 865
 866/*
 867 * Because there is no preemptible RCU, there can be no deferred quiescent
 868 * states.
 869 */
 870static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
 871{
 872	return false;
 873}
 874static void rcu_preempt_deferred_qs(struct task_struct *t) { }
 875
 876/*
 877 * Because there is no preemptible RCU, there can be no readers blocked,
 878 * so there is no need to check for blocked tasks.  So check only for
 879 * bogus qsmask values.
 880 */
 881static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 882{
 883	WARN_ON_ONCE(rnp->qsmask);
 884}
 885
 886/*
 887 * Check to see if this CPU is in a non-context-switch quiescent state,
 888 * namely user mode and idle loop.
 889 */
 890static void rcu_flavor_sched_clock_irq(int user)
 891{
 892	if (user || rcu_is_cpu_rrupt_from_idle()) {
 893
 894		/*
 895		 * Get here if this CPU took its interrupt from user
 896		 * mode or from the idle loop, and if this is not a
 897		 * nested interrupt.  In this case, the CPU is in
 898		 * a quiescent state, so note it.
 899		 *
 900		 * No memory barrier is required here because rcu_qs()
 901		 * references only CPU-local variables that other CPUs
 902		 * neither access nor modify, at least not while the
 903		 * corresponding CPU is online.
 904		 */
 905
 906		rcu_qs();
 907	}
 908}
 909
 910/*
 911 * Because preemptible RCU does not exist, tasks cannot possibly exit
 912 * while in preemptible RCU read-side critical sections.
 913 */
 914void exit_rcu(void)
 915{
 916}
 917
 918/*
 919 * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
 920 */
 921static void
 922dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
 923{
 924	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
 925}
 926
 927#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 928
 929/*
 930 * If boosting, set rcuc kthreads to realtime priority.
 931 */
 932static void rcu_cpu_kthread_setup(unsigned int cpu)
 933{
 934#ifdef CONFIG_RCU_BOOST
 935	struct sched_param sp;
 936
 937	sp.sched_priority = kthread_prio;
 938	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
 939#endif /* #ifdef CONFIG_RCU_BOOST */
 940}
 941
 942#ifdef CONFIG_RCU_BOOST
 943
 944/*
 945 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 946 * or ->boost_tasks, advancing the pointer to the next task in the
 947 * ->blkd_tasks list.
 948 *
 949 * Note that irqs must be enabled: boosting the task can block.
 950 * Returns 1 if there are more tasks needing to be boosted.
 951 */
 952static int rcu_boost(struct rcu_node *rnp)
 953{
 954	unsigned long flags;
 955	struct task_struct *t;
 956	struct list_head *tb;
 957
 958	if (READ_ONCE(rnp->exp_tasks) == NULL &&
 959	    READ_ONCE(rnp->boost_tasks) == NULL)
 960		return 0;  /* Nothing left to boost. */
 961
 962	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 963
 964	/*
 965	 * Recheck under the lock: all tasks in need of boosting
 966	 * might exit their RCU read-side critical sections on their own.
 967	 */
 968	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
 969		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 970		return 0;
 971	}
 972
 973	/*
 974	 * Preferentially boost tasks blocking expedited grace periods.
 975	 * This cannot starve the normal grace periods because a second
 976	 * expedited grace period must boost all blocked tasks, including
 977	 * those blocking the pre-existing normal grace period.
 978	 */
 979	if (rnp->exp_tasks != NULL)
 980		tb = rnp->exp_tasks;
 981	else
 982		tb = rnp->boost_tasks;
 983
 984	/*
 985	 * We boost task t by manufacturing an rt_mutex that appears to
 986	 * be held by task t.  We leave a pointer to that rt_mutex where
 987	 * task t can find it, and task t will release the mutex when it
 988	 * exits its outermost RCU read-side critical section.  Then
 989	 * simply acquiring this artificial rt_mutex will boost task
 990	 * t's priority.  (Thanks to tglx for suggesting this approach!)
 991	 *
 992	 * Note that task t must acquire rnp->lock to remove itself from
 993	 * the ->blkd_tasks list, which it will do from exit() if from
 994	 * nowhere else.  We therefore are guaranteed that task t will
 995	 * stay around at least until we drop rnp->lock.  Note that
 996	 * rnp->lock also resolves races between our priority boosting
 997	 * and task t's exiting its outermost RCU read-side critical
 998	 * section.
 999	 */
1000	t = container_of(tb, struct task_struct, rcu_node_entry);
1001	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1002	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1003	/* Lock only for side effect: boosts task t's priority. */
1004	rt_mutex_lock(&rnp->boost_mtx);
1005	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
 
1006
1007	return READ_ONCE(rnp->exp_tasks) != NULL ||
1008	       READ_ONCE(rnp->boost_tasks) != NULL;
1009}
1010
1011/*
1012 * Priority-boosting kthread, one per leaf rcu_node.
1013 */
1014static int rcu_boost_kthread(void *arg)
1015{
1016	struct rcu_node *rnp = (struct rcu_node *)arg;
1017	int spincnt = 0;
1018	int more2boost;
1019
1020	trace_rcu_utilization(TPS("Start boost kthread@init"));
1021	for (;;) {
1022		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1023		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1024		rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1025			 READ_ONCE(rnp->exp_tasks));
1026		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1027		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1028		more2boost = rcu_boost(rnp);
1029		if (more2boost)
1030			spincnt++;
1031		else
1032			spincnt = 0;
1033		if (spincnt > 10) {
1034			WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1035			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1036			schedule_timeout_idle(2);
1037			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1038			spincnt = 0;
1039		}
1040	}
1041	/* NOTREACHED */
1042	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1043	return 0;
1044}
1045
1046/*
1047 * Check to see if it is time to start boosting RCU readers that are
1048 * blocking the current grace period, and, if so, tell the per-rcu_node
1049 * kthread to start boosting them.  If there is an expedited grace
1050 * period in progress, it is always time to boost.
1051 *
1052 * The caller must hold rnp->lock, which this function releases.
1053 * The ->boost_kthread_task is immortal, so we don't need to worry
1054 * about it going away.
1055 */
1056static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1057	__releases(rnp->lock)
1058{
1059	raw_lockdep_assert_held_rcu_node(rnp);
1060	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1061		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1062		return;
1063	}
1064	if (rnp->exp_tasks != NULL ||
1065	    (rnp->gp_tasks != NULL &&
1066	     rnp->boost_tasks == NULL &&
1067	     rnp->qsmask == 0 &&
1068	     (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) {
1069		if (rnp->exp_tasks == NULL)
1070			WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
1071		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1072		rcu_wake_cond(rnp->boost_kthread_task,
1073			      READ_ONCE(rnp->boost_kthread_status));
1074	} else {
1075		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1076	}
1077}
1078
1079/*
1080 * Is the current CPU running the RCU-callbacks kthread?
1081 * Caller must have preemption disabled.
1082 */
1083static bool rcu_is_callbacks_kthread(void)
1084{
1085	return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1086}
1087
1088#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1089
1090/*
1091 * Do priority-boost accounting for the start of a new grace period.
1092 */
1093static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1094{
1095	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1096}
1097
1098/*
1099 * Create an RCU-boost kthread for the specified node if one does not
1100 * already exist.  We only create this kthread for preemptible RCU.
1101 * Returns zero if all is well, a negated errno otherwise.
1102 */
1103static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1104{
1105	int rnp_index = rnp - rcu_get_root();
1106	unsigned long flags;
 
1107	struct sched_param sp;
1108	struct task_struct *t;
1109
1110	if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1111		return;
1112
1113	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1114		return;
1115
1116	rcu_state.boost = 1;
1117
1118	if (rnp->boost_kthread_task != NULL)
1119		return;
1120
1121	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1122			   "rcub/%d", rnp_index);
1123	if (WARN_ON_ONCE(IS_ERR(t)))
1124		return;
1125
1126	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1127	rnp->boost_kthread_task = t;
1128	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1129	sp.sched_priority = kthread_prio;
1130	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1131	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1132}
1133
1134/*
1135 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1136 * served by the rcu_node in question.  The CPU hotplug lock is still
1137 * held, so the value of rnp->qsmaskinit will be stable.
1138 *
1139 * We don't include outgoingcpu in the affinity set, use -1 if there is
1140 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1141 * this function allows the kthread to execute on any CPU.
1142 */
1143static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1144{
1145	struct task_struct *t = rnp->boost_kthread_task;
1146	unsigned long mask = rcu_rnp_online_cpus(rnp);
1147	cpumask_var_t cm;
1148	int cpu;
1149
1150	if (!t)
1151		return;
1152	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1153		return;
1154	for_each_leaf_node_possible_cpu(rnp, cpu)
1155		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1156		    cpu != outgoingcpu)
1157			cpumask_set_cpu(cpu, cm);
1158	if (cpumask_weight(cm) == 0)
1159		cpumask_setall(cm);
1160	set_cpus_allowed_ptr(t, cm);
1161	free_cpumask_var(cm);
1162}
1163
1164/*
1165 * Spawn boost kthreads -- called as soon as the scheduler is running.
1166 */
1167static void __init rcu_spawn_boost_kthreads(void)
1168{
1169	struct rcu_node *rnp;
1170
1171	rcu_for_each_leaf_node(rnp)
1172		rcu_spawn_one_boost_kthread(rnp);
1173}
1174
1175static void rcu_prepare_kthreads(int cpu)
1176{
1177	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1178	struct rcu_node *rnp = rdp->mynode;
1179
1180	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1181	if (rcu_scheduler_fully_active)
1182		rcu_spawn_one_boost_kthread(rnp);
1183}
1184
1185#else /* #ifdef CONFIG_RCU_BOOST */
1186
1187static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1188	__releases(rnp->lock)
1189{
1190	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1191}
1192
1193static bool rcu_is_callbacks_kthread(void)
1194{
1195	return false;
1196}
1197
1198static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1199{
1200}
1201
1202static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1203{
1204}
1205
1206static void __init rcu_spawn_boost_kthreads(void)
1207{
1208}
1209
1210static void rcu_prepare_kthreads(int cpu)
1211{
1212}
1213
1214#endif /* #else #ifdef CONFIG_RCU_BOOST */
1215
1216#if !defined(CONFIG_RCU_FAST_NO_HZ)
1217
1218/*
1219 * Check to see if any future non-offloaded RCU-related work will need
1220 * to be done by the current CPU, even if none need be done immediately,
1221 * returning 1 if so.  This function is part of the RCU implementation;
1222 * it is -not- an exported member of the RCU API.
1223 *
1224 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1225 * CPU has RCU callbacks queued.
1226 */
1227int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1228{
1229	*nextevt = KTIME_MAX;
1230	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1231	       !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
1232}
1233
1234/*
1235 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1236 * after it.
1237 */
1238static void rcu_cleanup_after_idle(void)
1239{
1240}
1241
1242/*
1243 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1244 * is nothing.
1245 */
1246static void rcu_prepare_for_idle(void)
1247{
1248}
1249
1250#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1251
1252/*
1253 * This code is invoked when a CPU goes idle, at which point we want
1254 * to have the CPU do everything required for RCU so that it can enter
1255 * the energy-efficient dyntick-idle mode.
1256 *
1257 * The following preprocessor symbol controls this:
1258 *
1259 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1260 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1261 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1262 *	benchmarkers who might otherwise be tempted to set this to a large
1263 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1264 *	system.  And if you are -that- concerned about energy efficiency,
1265 *	just power the system down and be done with it!
1266 *
1267 * The value below works well in practice.  If future workloads require
1268 * adjustment, they can be converted into kernel config parameters, though
1269 * making the state machine smarter might be a better option.
1270 */
1271#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1272
1273static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1274module_param(rcu_idle_gp_delay, int, 0644);
1275
1276/*
1277 * Try to advance callbacks on the current CPU, but only if it has been
1278 * awhile since the last time we did so.  Afterwards, if there are any
1279 * callbacks ready for immediate invocation, return true.
1280 */
1281static bool __maybe_unused rcu_try_advance_all_cbs(void)
1282{
1283	bool cbs_ready = false;
1284	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1285	struct rcu_node *rnp;
1286
1287	/* Exit early if we advanced recently. */
1288	if (jiffies == rdp->last_advance_all)
1289		return false;
1290	rdp->last_advance_all = jiffies;
1291
1292	rnp = rdp->mynode;
1293
1294	/*
1295	 * Don't bother checking unless a grace period has
1296	 * completed since we last checked and there are
1297	 * callbacks not yet ready to invoke.
1298	 */
1299	if ((rcu_seq_completed_gp(rdp->gp_seq,
1300				  rcu_seq_current(&rnp->gp_seq)) ||
1301	     unlikely(READ_ONCE(rdp->gpwrap))) &&
1302	    rcu_segcblist_pend_cbs(&rdp->cblist))
1303		note_gp_changes(rdp);
1304
1305	if (rcu_segcblist_ready_cbs(&rdp->cblist))
1306		cbs_ready = true;
1307	return cbs_ready;
1308}
1309
1310/*
1311 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1312 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1313 * caller about what to set the timeout.
1314 *
1315 * The caller must have disabled interrupts.
1316 */
1317int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1318{
1319	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1320	unsigned long dj;
1321
1322	lockdep_assert_irqs_disabled();
1323
1324	/* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1325	if (rcu_segcblist_empty(&rdp->cblist) ||
1326	    rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
1327		*nextevt = KTIME_MAX;
1328		return 0;
1329	}
1330
1331	/* Attempt to advance callbacks. */
1332	if (rcu_try_advance_all_cbs()) {
1333		/* Some ready to invoke, so initiate later invocation. */
1334		invoke_rcu_core();
1335		return 1;
1336	}
1337	rdp->last_accelerate = jiffies;
1338
1339	/* Request timer and round. */
1340	dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1341
1342	*nextevt = basemono + dj * TICK_NSEC;
1343	return 0;
1344}
1345
1346/*
1347 * Prepare a CPU for idle from an RCU perspective.  The first major task is to
1348 * sense whether nohz mode has been enabled or disabled via sysfs.  The second
1349 * major task is to accelerate (that is, assign grace-period numbers to) any
1350 * recently arrived callbacks.
1351 *
1352 * The caller must have disabled interrupts.
1353 */
1354static void rcu_prepare_for_idle(void)
1355{
1356	bool needwake;
1357	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1358	struct rcu_node *rnp;
1359	int tne;
1360
1361	lockdep_assert_irqs_disabled();
1362	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1363		return;
1364
1365	/* Handle nohz enablement switches conservatively. */
1366	tne = READ_ONCE(tick_nohz_active);
1367	if (tne != rdp->tick_nohz_enabled_snap) {
1368		if (!rcu_segcblist_empty(&rdp->cblist))
1369			invoke_rcu_core(); /* force nohz to see update. */
1370		rdp->tick_nohz_enabled_snap = tne;
1371		return;
1372	}
1373	if (!tne)
1374		return;
1375
1376	/*
1377	 * If we have not yet accelerated this jiffy, accelerate all
1378	 * callbacks on this CPU.
1379	 */
1380	if (rdp->last_accelerate == jiffies)
1381		return;
1382	rdp->last_accelerate = jiffies;
1383	if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1384		rnp = rdp->mynode;
1385		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1386		needwake = rcu_accelerate_cbs(rnp, rdp);
1387		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1388		if (needwake)
1389			rcu_gp_kthread_wake();
1390	}
1391}
1392
1393/*
1394 * Clean up for exit from idle.  Attempt to advance callbacks based on
1395 * any grace periods that elapsed while the CPU was idle, and if any
1396 * callbacks are now ready to invoke, initiate invocation.
1397 */
1398static void rcu_cleanup_after_idle(void)
1399{
1400	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1401
1402	lockdep_assert_irqs_disabled();
1403	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1404		return;
1405	if (rcu_try_advance_all_cbs())
1406		invoke_rcu_core();
1407}
1408
1409#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1410
1411#ifdef CONFIG_RCU_NOCB_CPU
1412
1413/*
1414 * Offload callback processing from the boot-time-specified set of CPUs
1415 * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
1416 * created that pull the callbacks from the corresponding CPU, wait for
1417 * a grace period to elapse, and invoke the callbacks.  These kthreads
1418 * are organized into GP kthreads, which manage incoming callbacks, wait for
1419 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1420 * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
1421 * do a wake_up() on their GP kthread when they insert a callback into any
1422 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1423 * in which case each kthread actively polls its CPU.  (Which isn't so great
1424 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1425 *
1426 * This is intended to be used in conjunction with Frederic Weisbecker's
1427 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1428 * running CPU-bound user-mode computations.
1429 *
1430 * Offloading of callbacks can also be used as an energy-efficiency
1431 * measure because CPUs with no RCU callbacks queued are more aggressive
1432 * about entering dyntick-idle mode.
1433 */
1434
1435
1436/*
1437 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1438 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1439 * comma-separated list of CPUs and/or CPU ranges.  If an invalid list is
1440 * given, a warning is emitted and all CPUs are offloaded.
1441 */
1442static int __init rcu_nocb_setup(char *str)
1443{
1444	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1445	if (!strcasecmp(str, "all"))
 
1446		cpumask_setall(rcu_nocb_mask);
1447	else
1448		if (cpulist_parse(str, rcu_nocb_mask)) {
1449			pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1450			cpumask_setall(rcu_nocb_mask);
1451		}
1452	return 1;
1453}
1454__setup("rcu_nocbs=", rcu_nocb_setup);
1455
1456static int __init parse_rcu_nocb_poll(char *arg)
1457{
1458	rcu_nocb_poll = true;
1459	return 0;
1460}
1461early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1462
1463/*
1464 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1465 * After all, the main point of bypassing is to avoid lock contention
1466 * on ->nocb_lock, which only can happen at high call_rcu() rates.
1467 */
1468int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1469module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1470
1471/*
1472 * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
1473 * lock isn't immediately available, increment ->nocb_lock_contended to
1474 * flag the contention.
1475 */
1476static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1477	__acquires(&rdp->nocb_bypass_lock)
1478{
1479	lockdep_assert_irqs_disabled();
1480	if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1481		return;
1482	atomic_inc(&rdp->nocb_lock_contended);
1483	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1484	smp_mb__after_atomic(); /* atomic_inc() before lock. */
1485	raw_spin_lock(&rdp->nocb_bypass_lock);
1486	smp_mb__before_atomic(); /* atomic_dec() after lock. */
1487	atomic_dec(&rdp->nocb_lock_contended);
1488}
1489
1490/*
1491 * Spinwait until the specified rcu_data structure's ->nocb_lock is
1492 * not contended.  Please note that this is extremely special-purpose,
1493 * relying on the fact that at most two kthreads and one CPU contend for
1494 * this lock, and also that the two kthreads are guaranteed to have frequent
1495 * grace-period-duration time intervals between successive acquisitions
1496 * of the lock.  This allows us to use an extremely simple throttling
1497 * mechanism, and further to apply it only to the CPU doing floods of
1498 * call_rcu() invocations.  Don't try this at home!
1499 */
1500static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1501{
1502	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1503	while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1504		cpu_relax();
1505}
1506
1507/*
1508 * Conditionally acquire the specified rcu_data structure's
1509 * ->nocb_bypass_lock.
1510 */
1511static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1512{
1513	lockdep_assert_irqs_disabled();
1514	return raw_spin_trylock(&rdp->nocb_bypass_lock);
1515}
1516
1517/*
1518 * Release the specified rcu_data structure's ->nocb_bypass_lock.
1519 */
1520static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1521	__releases(&rdp->nocb_bypass_lock)
1522{
1523	lockdep_assert_irqs_disabled();
1524	raw_spin_unlock(&rdp->nocb_bypass_lock);
1525}
1526
1527/*
1528 * Acquire the specified rcu_data structure's ->nocb_lock, but only
1529 * if it corresponds to a no-CBs CPU.
1530 */
1531static void rcu_nocb_lock(struct rcu_data *rdp)
1532{
1533	lockdep_assert_irqs_disabled();
1534	if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1535		return;
1536	raw_spin_lock(&rdp->nocb_lock);
1537}
1538
1539/*
1540 * Release the specified rcu_data structure's ->nocb_lock, but only
1541 * if it corresponds to a no-CBs CPU.
1542 */
1543static void rcu_nocb_unlock(struct rcu_data *rdp)
1544{
1545	if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1546		lockdep_assert_irqs_disabled();
1547		raw_spin_unlock(&rdp->nocb_lock);
1548	}
1549}
1550
1551/*
1552 * Release the specified rcu_data structure's ->nocb_lock and restore
1553 * interrupts, but only if it corresponds to a no-CBs CPU.
1554 */
1555static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1556				       unsigned long flags)
1557{
1558	if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1559		lockdep_assert_irqs_disabled();
1560		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1561	} else {
1562		local_irq_restore(flags);
1563	}
1564}
1565
1566/* Lockdep check that ->cblist may be safely accessed. */
1567static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1568{
1569	lockdep_assert_irqs_disabled();
1570	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1571		lockdep_assert_held(&rdp->nocb_lock);
1572}
1573
1574/*
1575 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1576 * grace period.
1577 */
1578static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1579{
1580	swake_up_all(sq);
1581}
1582
1583static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1584{
1585	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1586}
1587
1588static void rcu_init_one_nocb(struct rcu_node *rnp)
1589{
1590	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1591	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1592}
1593
1594/* Is the specified CPU a no-CBs CPU? */
1595bool rcu_is_nocb_cpu(int cpu)
1596{
1597	if (cpumask_available(rcu_nocb_mask))
1598		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1599	return false;
1600}
1601
1602/*
1603 * Kick the GP kthread for this NOCB group.  Caller holds ->nocb_lock
1604 * and this function releases it.
1605 */
1606static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1607			   unsigned long flags)
1608	__releases(rdp->nocb_lock)
1609{
1610	bool needwake = false;
1611	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1612
1613	lockdep_assert_held(&rdp->nocb_lock);
1614	if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
 
1615		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1616				    TPS("AlreadyAwake"));
1617		rcu_nocb_unlock_irqrestore(rdp, flags);
1618		return;
1619	}
1620	del_timer(&rdp->nocb_timer);
1621	rcu_nocb_unlock_irqrestore(rdp, flags);
1622	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
 
 
 
1623	if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1624		WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1625		needwake = true;
1626		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1627	}
1628	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1629	if (needwake)
 
1630		wake_up_process(rdp_gp->nocb_gp_kthread);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1631}
1632
1633/*
1634 * Arrange to wake the GP kthread for this NOCB group at some future
1635 * time when it is safe to do so.
1636 */
1637static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1638			       const char *reason)
1639{
1640	if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1641		mod_timer(&rdp->nocb_timer, jiffies + 1);
1642	if (rdp->nocb_defer_wakeup < waketype)
1643		WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1644	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1645}
1646
1647/*
1648 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1649 * However, if there is a callback to be enqueued and if ->nocb_bypass
1650 * proves to be initially empty, just return false because the no-CB GP
1651 * kthread may need to be awakened in this case.
1652 *
1653 * Note that this function always returns true if rhp is NULL.
1654 */
1655static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1656				     unsigned long j)
1657{
1658	struct rcu_cblist rcl;
1659
1660	WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1661	rcu_lockdep_assert_cblist_protected(rdp);
1662	lockdep_assert_held(&rdp->nocb_bypass_lock);
1663	if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1664		raw_spin_unlock(&rdp->nocb_bypass_lock);
1665		return false;
1666	}
1667	/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1668	if (rhp)
1669		rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1670	rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1671	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1672	WRITE_ONCE(rdp->nocb_bypass_first, j);
1673	rcu_nocb_bypass_unlock(rdp);
1674	return true;
1675}
1676
1677/*
1678 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1679 * However, if there is a callback to be enqueued and if ->nocb_bypass
1680 * proves to be initially empty, just return false because the no-CB GP
1681 * kthread may need to be awakened in this case.
1682 *
1683 * Note that this function always returns true if rhp is NULL.
1684 */
1685static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1686				  unsigned long j)
1687{
1688	if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1689		return true;
1690	rcu_lockdep_assert_cblist_protected(rdp);
1691	rcu_nocb_bypass_lock(rdp);
1692	return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1693}
1694
1695/*
1696 * If the ->nocb_bypass_lock is immediately available, flush the
1697 * ->nocb_bypass queue into ->cblist.
1698 */
1699static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1700{
1701	rcu_lockdep_assert_cblist_protected(rdp);
1702	if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1703	    !rcu_nocb_bypass_trylock(rdp))
1704		return;
1705	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1706}
1707
1708/*
1709 * See whether it is appropriate to use the ->nocb_bypass list in order
1710 * to control contention on ->nocb_lock.  A limited number of direct
1711 * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
1712 * is non-empty, further callbacks must be placed into ->nocb_bypass,
1713 * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
1714 * back to direct use of ->cblist.  However, ->nocb_bypass should not be
1715 * used if ->cblist is empty, because otherwise callbacks can be stranded
1716 * on ->nocb_bypass because we cannot count on the current CPU ever again
1717 * invoking call_rcu().  The general rule is that if ->nocb_bypass is
1718 * non-empty, the corresponding no-CBs grace-period kthread must not be
1719 * in an indefinite sleep state.
1720 *
1721 * Finally, it is not permitted to use the bypass during early boot,
1722 * as doing so would confuse the auto-initialization code.  Besides
1723 * which, there is no point in worrying about lock contention while
1724 * there is only one CPU in operation.
1725 */
1726static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1727				bool *was_alldone, unsigned long flags)
1728{
1729	unsigned long c;
1730	unsigned long cur_gp_seq;
1731	unsigned long j = jiffies;
1732	long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1733
1734	if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
 
 
 
 
 
 
 
 
 
 
 
 
1735		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1736		return false; /* Not offloaded, no bypassing. */
1737	}
1738	lockdep_assert_irqs_disabled();
1739
1740	// Don't use ->nocb_bypass during early boot.
1741	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1742		rcu_nocb_lock(rdp);
1743		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1744		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1745		return false;
1746	}
1747
1748	// If we have advanced to a new jiffy, reset counts to allow
1749	// moving back from ->nocb_bypass to ->cblist.
1750	if (j == rdp->nocb_nobypass_last) {
1751		c = rdp->nocb_nobypass_count + 1;
1752	} else {
1753		WRITE_ONCE(rdp->nocb_nobypass_last, j);
1754		c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1755		if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1756				 nocb_nobypass_lim_per_jiffy))
1757			c = 0;
1758		else if (c > nocb_nobypass_lim_per_jiffy)
1759			c = nocb_nobypass_lim_per_jiffy;
1760	}
1761	WRITE_ONCE(rdp->nocb_nobypass_count, c);
1762
1763	// If there hasn't yet been all that many ->cblist enqueues
1764	// this jiffy, tell the caller to enqueue onto ->cblist.  But flush
1765	// ->nocb_bypass first.
1766	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1767		rcu_nocb_lock(rdp);
1768		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1769		if (*was_alldone)
1770			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1771					    TPS("FirstQ"));
1772		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1773		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1774		return false; // Caller must enqueue the callback.
1775	}
1776
1777	// If ->nocb_bypass has been used too long or is too full,
1778	// flush ->nocb_bypass to ->cblist.
1779	if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1780	    ncbs >= qhimark) {
1781		rcu_nocb_lock(rdp);
1782		if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1783			*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1784			if (*was_alldone)
1785				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1786						    TPS("FirstQ"));
1787			WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1788			return false; // Caller must enqueue the callback.
1789		}
1790		if (j != rdp->nocb_gp_adv_time &&
1791		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1792		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1793			rcu_advance_cbs_nowake(rdp->mynode, rdp);
1794			rdp->nocb_gp_adv_time = j;
1795		}
1796		rcu_nocb_unlock_irqrestore(rdp, flags);
1797		return true; // Callback already enqueued.
1798	}
1799
1800	// We need to use the bypass.
1801	rcu_nocb_wait_contended(rdp);
1802	rcu_nocb_bypass_lock(rdp);
1803	ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1804	rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1805	rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1806	if (!ncbs) {
1807		WRITE_ONCE(rdp->nocb_bypass_first, j);
1808		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1809	}
1810	rcu_nocb_bypass_unlock(rdp);
1811	smp_mb(); /* Order enqueue before wake. */
1812	if (ncbs) {
1813		local_irq_restore(flags);
1814	} else {
1815		// No-CBs GP kthread might be indefinitely asleep, if so, wake.
1816		rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1817		if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1818			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1819					    TPS("FirstBQwake"));
1820			__call_rcu_nocb_wake(rdp, true, flags);
1821		} else {
1822			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1823					    TPS("FirstBQnoWake"));
1824			rcu_nocb_unlock_irqrestore(rdp, flags);
1825		}
1826	}
1827	return true; // Callback already enqueued.
1828}
1829
1830/*
1831 * Awaken the no-CBs grace-period kthead if needed, either due to it
1832 * legitimately being asleep or due to overload conditions.
1833 *
1834 * If warranted, also wake up the kthread servicing this CPUs queues.
1835 */
1836static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1837				 unsigned long flags)
1838				 __releases(rdp->nocb_lock)
1839{
1840	unsigned long cur_gp_seq;
1841	unsigned long j;
1842	long len;
1843	struct task_struct *t;
1844
1845	// If we are being polled or there is no kthread, just leave.
1846	t = READ_ONCE(rdp->nocb_gp_kthread);
1847	if (rcu_nocb_poll || !t) {
 
1848		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1849				    TPS("WakeNotPoll"));
1850		rcu_nocb_unlock_irqrestore(rdp, flags);
1851		return;
1852	}
1853	// Need to actually to a wakeup.
1854	len = rcu_segcblist_n_cbs(&rdp->cblist);
1855	if (was_alldone) {
1856		rdp->qlen_last_fqs_check = len;
1857		if (!irqs_disabled_flags(flags)) {
1858			/* ... if queue was empty ... */
1859			wake_nocb_gp(rdp, false, flags);
 
1860			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1861					    TPS("WakeEmpty"));
1862		} else {
 
1863			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1864					   TPS("WakeEmptyIsDeferred"));
1865			rcu_nocb_unlock_irqrestore(rdp, flags);
1866		}
1867	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1868		/* ... or if many callbacks queued. */
1869		rdp->qlen_last_fqs_check = len;
1870		j = jiffies;
1871		if (j != rdp->nocb_gp_adv_time &&
1872		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1873		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1874			rcu_advance_cbs_nowake(rdp->mynode, rdp);
1875			rdp->nocb_gp_adv_time = j;
1876		}
1877		smp_mb(); /* Enqueue before timer_pending(). */
1878		if ((rdp->nocb_cb_sleep ||
1879		     !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1880		    !timer_pending(&rdp->nocb_bypass_timer))
 
1881			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1882					   TPS("WakeOvfIsDeferred"));
1883		rcu_nocb_unlock_irqrestore(rdp, flags);
 
 
 
1884	} else {
1885		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1886		rcu_nocb_unlock_irqrestore(rdp, flags);
 
1887	}
1888	return;
1889}
1890
1891/* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1892static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1893{
1894	unsigned long flags;
1895	struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1896
1897	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1898	rcu_nocb_lock_irqsave(rdp, flags);
1899	smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1900	__call_rcu_nocb_wake(rdp, true, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1901}
1902
 
1903/*
1904 * No-CBs GP kthreads come here to wait for additional callbacks to show up
1905 * or for grace periods to end.
1906 */
1907static void nocb_gp_wait(struct rcu_data *my_rdp)
1908{
1909	bool bypass = false;
1910	long bypass_ncbs;
1911	int __maybe_unused cpu = my_rdp->cpu;
1912	unsigned long cur_gp_seq;
1913	unsigned long flags;
1914	bool gotcbs = false;
1915	unsigned long j = jiffies;
1916	bool needwait_gp = false; // This prevents actual uninitialized use.
1917	bool needwake;
1918	bool needwake_gp;
1919	struct rcu_data *rdp;
1920	struct rcu_node *rnp;
1921	unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
1922	bool wasempty = false;
1923
1924	/*
1925	 * Each pass through the following loop checks for CBs and for the
1926	 * nearest grace period (if any) to wait for next.  The CB kthreads
1927	 * and the global grace-period kthread are awakened if needed.
1928	 */
 
1929	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
 
 
 
 
1930		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1931		rcu_nocb_lock_irqsave(rdp, flags);
 
 
 
 
 
 
1932		bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1933		if (bypass_ncbs &&
1934		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1935		     bypass_ncbs > 2 * qhimark)) {
1936			// Bypass full or old, so flush it.
1937			(void)rcu_nocb_try_flush_bypass(rdp, j);
1938			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1939		} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1940			rcu_nocb_unlock_irqrestore(rdp, flags);
 
 
1941			continue; /* No callbacks here, try next. */
1942		}
1943		if (bypass_ncbs) {
1944			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1945					    TPS("Bypass"));
1946			bypass = true;
1947		}
1948		rnp = rdp->mynode;
1949		if (bypass) {  // Avoid race with first bypass CB.
1950			WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1951				   RCU_NOCB_WAKE_NOT);
1952			del_timer(&my_rdp->nocb_timer);
1953		}
1954		// Advance callbacks if helpful and low contention.
1955		needwake_gp = false;
1956		if (!rcu_segcblist_restempty(&rdp->cblist,
1957					     RCU_NEXT_READY_TAIL) ||
1958		    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1959		     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1960			raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1961			needwake_gp = rcu_advance_cbs(rnp, rdp);
1962			wasempty = rcu_segcblist_restempty(&rdp->cblist,
1963							   RCU_NEXT_READY_TAIL);
1964			raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1965		}
1966		// Need to wait on some grace period?
1967		WARN_ON_ONCE(wasempty &&
1968			     !rcu_segcblist_restempty(&rdp->cblist,
1969						      RCU_NEXT_READY_TAIL));
1970		if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
1971			if (!needwait_gp ||
1972			    ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
1973				wait_gp_seq = cur_gp_seq;
1974			needwait_gp = true;
1975			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1976					    TPS("NeedWaitGP"));
1977		}
1978		if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
1979			needwake = rdp->nocb_cb_sleep;
1980			WRITE_ONCE(rdp->nocb_cb_sleep, false);
1981			smp_mb(); /* CB invocation -after- GP end. */
1982		} else {
1983			needwake = false;
1984		}
1985		rcu_nocb_unlock_irqrestore(rdp, flags);
1986		if (needwake) {
1987			swake_up_one(&rdp->nocb_cb_wq);
1988			gotcbs = true;
1989		}
1990		if (needwake_gp)
1991			rcu_gp_kthread_wake();
 
 
1992	}
1993
1994	my_rdp->nocb_gp_bypass = bypass;
1995	my_rdp->nocb_gp_gp = needwait_gp;
1996	my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
 
1997	if (bypass && !rcu_nocb_poll) {
1998		// At least one child with non-empty ->nocb_bypass, so set
1999		// timer in order to avoid stranding its callbacks.
2000		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2001		mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2002		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2003	}
2004	if (rcu_nocb_poll) {
2005		/* Polling, so trace if first poll in the series. */
2006		if (gotcbs)
2007			trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2008		schedule_timeout_idle(1);
2009	} else if (!needwait_gp) {
2010		/* Wait for callbacks to appear. */
2011		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2012		swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2013				!READ_ONCE(my_rdp->nocb_gp_sleep));
2014		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2015	} else {
2016		rnp = my_rdp->mynode;
2017		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2018		swait_event_interruptible_exclusive(
2019			rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2020			rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2021			!READ_ONCE(my_rdp->nocb_gp_sleep));
2022		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2023	}
2024	if (!rcu_nocb_poll) {
2025		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2026		if (bypass)
2027			del_timer(&my_rdp->nocb_bypass_timer);
 
 
2028		WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2029		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2030	}
2031	my_rdp->nocb_gp_seq = -1;
2032	WARN_ON(signal_pending(current));
2033}
2034
2035/*
2036 * No-CBs grace-period-wait kthread.  There is one of these per group
2037 * of CPUs, but only once at least one CPU in that group has come online
2038 * at least once since boot.  This kthread checks for newly posted
2039 * callbacks from any of the CPUs it is responsible for, waits for a
2040 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2041 * that then have callback-invocation work to do.
2042 */
2043static int rcu_nocb_gp_kthread(void *arg)
2044{
2045	struct rcu_data *rdp = arg;
2046
2047	for (;;) {
2048		WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2049		nocb_gp_wait(rdp);
2050		cond_resched_tasks_rcu_qs();
2051	}
2052	return 0;
2053}
2054
 
 
 
 
 
 
 
 
 
 
 
2055/*
2056 * Invoke any ready callbacks from the corresponding no-CBs CPU,
2057 * then, if there are no more, wait for more to appear.
2058 */
2059static void nocb_cb_wait(struct rcu_data *rdp)
2060{
 
2061	unsigned long cur_gp_seq;
2062	unsigned long flags;
 
2063	bool needwake_gp = false;
 
2064	struct rcu_node *rnp = rdp->mynode;
2065
2066	local_irq_save(flags);
2067	rcu_momentary_dyntick_idle();
2068	local_irq_restore(flags);
 
 
 
 
 
 
2069	local_bh_disable();
2070	rcu_do_batch(rdp);
2071	local_bh_enable();
2072	lockdep_assert_irqs_enabled();
2073	rcu_nocb_lock_irqsave(rdp, flags);
2074	if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2075	    rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2076	    raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2077		needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2078		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2079	}
2080	if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2081		rcu_nocb_unlock_irqrestore(rdp, flags);
2082		if (needwake_gp)
2083			rcu_gp_kthread_wake();
2084		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2085	}
2086
2087	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2088	WRITE_ONCE(rdp->nocb_cb_sleep, true);
 
 
 
2089	rcu_nocb_unlock_irqrestore(rdp, flags);
2090	if (needwake_gp)
2091		rcu_gp_kthread_wake();
2092	swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2093				 !READ_ONCE(rdp->nocb_cb_sleep));
2094	if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2095		/* ^^^ Ensure CB invocation follows _sleep test. */
2096		return;
2097	}
2098	WARN_ON(signal_pending(current));
2099	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
 
 
 
 
 
 
2100}
2101
2102/*
2103 * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
2104 * nocb_cb_wait() to do the dirty work.
2105 */
2106static int rcu_nocb_cb_kthread(void *arg)
2107{
2108	struct rcu_data *rdp = arg;
2109
2110	// Each pass through this loop does one callback batch, and,
2111	// if there are no more ready callbacks, waits for them.
2112	for (;;) {
2113		nocb_cb_wait(rdp);
2114		cond_resched_tasks_rcu_qs();
2115	}
2116	return 0;
2117}
2118
2119/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2120static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2121{
2122	return READ_ONCE(rdp->nocb_defer_wakeup);
2123}
2124
2125/* Do a deferred wakeup of rcu_nocb_kthread(). */
2126static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
 
 
 
2127{
2128	unsigned long flags;
2129	int ndw;
 
2130
2131	rcu_nocb_lock_irqsave(rdp, flags);
2132	if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2133		rcu_nocb_unlock_irqrestore(rdp, flags);
2134		return;
2135	}
2136	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2137	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2138	wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2139	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
 
 
2140}
2141
2142/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2143static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2144{
 
2145	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2146
2147	do_nocb_deferred_wakeup_common(rdp);
 
 
 
 
 
2148}
2149
2150/*
2151 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2152 * This means we do an inexact common-case check.  Note that if
2153 * we miss, ->nocb_timer will eventually clean things up.
2154 */
2155static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
 
 
 
 
 
 
 
 
 
 
 
 
2156{
2157	if (rcu_nocb_need_deferred_wakeup(rdp))
2158		do_nocb_deferred_wakeup_common(rdp);
2159}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2160
2161void __init rcu_init_nohz(void)
2162{
2163	int cpu;
2164	bool need_rcu_nocb_mask = false;
2165	struct rcu_data *rdp;
2166
2167#if defined(CONFIG_NO_HZ_FULL)
2168	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2169		need_rcu_nocb_mask = true;
2170#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2171
2172	if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2173		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2174			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2175			return;
2176		}
2177	}
2178	if (!cpumask_available(rcu_nocb_mask))
2179		return;
2180
2181#if defined(CONFIG_NO_HZ_FULL)
2182	if (tick_nohz_full_running)
2183		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2184#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2185
2186	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2187		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2188		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2189			    rcu_nocb_mask);
2190	}
2191	if (cpumask_empty(rcu_nocb_mask))
2192		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2193	else
2194		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2195			cpumask_pr_args(rcu_nocb_mask));
2196	if (rcu_nocb_poll)
2197		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2198
2199	for_each_cpu(cpu, rcu_nocb_mask) {
2200		rdp = per_cpu_ptr(&rcu_data, cpu);
2201		if (rcu_segcblist_empty(&rdp->cblist))
2202			rcu_segcblist_init(&rdp->cblist);
2203		rcu_segcblist_offload(&rdp->cblist);
 
 
2204	}
2205	rcu_organize_nocb_kthreads();
2206}
2207
2208/* Initialize per-rcu_data variables for no-CBs CPUs. */
2209static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2210{
2211	init_swait_queue_head(&rdp->nocb_cb_wq);
2212	init_swait_queue_head(&rdp->nocb_gp_wq);
 
2213	raw_spin_lock_init(&rdp->nocb_lock);
2214	raw_spin_lock_init(&rdp->nocb_bypass_lock);
2215	raw_spin_lock_init(&rdp->nocb_gp_lock);
2216	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2217	timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2218	rcu_cblist_init(&rdp->nocb_bypass);
2219}
2220
2221/*
2222 * If the specified CPU is a no-CBs CPU that does not already have its
2223 * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
2224 * for this CPU's group has not yet been created, spawn it as well.
2225 */
2226static void rcu_spawn_one_nocb_kthread(int cpu)
2227{
2228	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2229	struct rcu_data *rdp_gp;
2230	struct task_struct *t;
2231
2232	/*
2233	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2234	 * then nothing to do.
2235	 */
2236	if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2237		return;
2238
2239	/* If we didn't spawn the GP kthread first, reorganize! */
2240	rdp_gp = rdp->nocb_gp_rdp;
2241	if (!rdp_gp->nocb_gp_kthread) {
2242		t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2243				"rcuog/%d", rdp_gp->cpu);
2244		if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2245			return;
2246		WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
2247	}
2248
2249	/* Spawn the kthread for this CPU. */
2250	t = kthread_run(rcu_nocb_cb_kthread, rdp,
2251			"rcuo%c/%d", rcu_state.abbr, cpu);
2252	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2253		return;
2254	WRITE_ONCE(rdp->nocb_cb_kthread, t);
2255	WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2256}
2257
2258/*
2259 * If the specified CPU is a no-CBs CPU that does not already have its
2260 * rcuo kthread, spawn it.
2261 */
2262static void rcu_spawn_cpu_nocb_kthread(int cpu)
2263{
2264	if (rcu_scheduler_fully_active)
2265		rcu_spawn_one_nocb_kthread(cpu);
2266}
2267
2268/*
2269 * Once the scheduler is running, spawn rcuo kthreads for all online
2270 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2271 * non-boot CPUs come online -- if this changes, we will need to add
2272 * some mutual exclusion.
2273 */
2274static void __init rcu_spawn_nocb_kthreads(void)
2275{
2276	int cpu;
2277
2278	for_each_online_cpu(cpu)
2279		rcu_spawn_cpu_nocb_kthread(cpu);
2280}
2281
2282/* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
2283static int rcu_nocb_gp_stride = -1;
2284module_param(rcu_nocb_gp_stride, int, 0444);
2285
2286/*
2287 * Initialize GP-CB relationships for all no-CBs CPU.
2288 */
2289static void __init rcu_organize_nocb_kthreads(void)
2290{
2291	int cpu;
2292	bool firsttime = true;
2293	bool gotnocbs = false;
2294	bool gotnocbscbs = true;
2295	int ls = rcu_nocb_gp_stride;
2296	int nl = 0;  /* Next GP kthread. */
2297	struct rcu_data *rdp;
2298	struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
2299	struct rcu_data *rdp_prev = NULL;
2300
2301	if (!cpumask_available(rcu_nocb_mask))
2302		return;
2303	if (ls == -1) {
2304		ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2305		rcu_nocb_gp_stride = ls;
2306	}
2307
2308	/*
2309	 * Each pass through this loop sets up one rcu_data structure.
2310	 * Should the corresponding CPU come online in the future, then
2311	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2312	 */
2313	for_each_cpu(cpu, rcu_nocb_mask) {
2314		rdp = per_cpu_ptr(&rcu_data, cpu);
2315		if (rdp->cpu >= nl) {
2316			/* New GP kthread, set up for CBs & next GP. */
2317			gotnocbs = true;
2318			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2319			rdp->nocb_gp_rdp = rdp;
2320			rdp_gp = rdp;
2321			if (dump_tree) {
2322				if (!firsttime)
2323					pr_cont("%s\n", gotnocbscbs
2324							? "" : " (self only)");
2325				gotnocbscbs = false;
2326				firsttime = false;
2327				pr_alert("%s: No-CB GP kthread CPU %d:",
2328					 __func__, cpu);
2329			}
2330		} else {
2331			/* Another CB kthread, link to previous GP kthread. */
2332			gotnocbscbs = true;
2333			rdp->nocb_gp_rdp = rdp_gp;
2334			rdp_prev->nocb_next_cb_rdp = rdp;
2335			if (dump_tree)
2336				pr_cont(" %d", cpu);
2337		}
2338		rdp_prev = rdp;
2339	}
2340	if (gotnocbs && dump_tree)
2341		pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
2342}
2343
2344/*
2345 * Bind the current task to the offloaded CPUs.  If there are no offloaded
2346 * CPUs, leave the task unbound.  Splat if the bind attempt fails.
2347 */
2348void rcu_bind_current_to_nocb(void)
2349{
2350	if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2351		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2352}
2353EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2354
 
 
 
 
 
 
 
 
 
 
 
 
 
2355/*
2356 * Dump out nocb grace-period kthread state for the specified rcu_data
2357 * structure.
2358 */
2359static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2360{
2361	struct rcu_node *rnp = rdp->mynode;
2362
2363	pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2364		rdp->cpu,
2365		"kK"[!!rdp->nocb_gp_kthread],
2366		"lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2367		"dD"[!!rdp->nocb_defer_wakeup],
2368		"tT"[timer_pending(&rdp->nocb_timer)],
2369		"bB"[timer_pending(&rdp->nocb_bypass_timer)],
2370		"sS"[!!rdp->nocb_gp_sleep],
2371		".W"[swait_active(&rdp->nocb_gp_wq)],
2372		".W"[swait_active(&rnp->nocb_gp_wq[0])],
2373		".W"[swait_active(&rnp->nocb_gp_wq[1])],
2374		".B"[!!rdp->nocb_gp_bypass],
2375		".G"[!!rdp->nocb_gp_gp],
2376		(long)rdp->nocb_gp_seq,
2377		rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
 
 
 
2378}
2379
2380/* Dump out nocb kthread state for the specified rcu_data structure. */
2381static void show_rcu_nocb_state(struct rcu_data *rdp)
2382{
 
 
2383	struct rcu_segcblist *rsclp = &rdp->cblist;
2384	bool waslocked;
2385	bool wastimer;
2386	bool wassleep;
2387
2388	if (rdp->nocb_gp_rdp == rdp)
2389		show_rcu_nocb_gp_state(rdp);
2390
2391	pr_info("   CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
 
 
2392		rdp->cpu, rdp->nocb_gp_rdp->cpu,
 
2393		"kK"[!!rdp->nocb_cb_kthread],
2394		"bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2395		"cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2396		"lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2397		"sS"[!!rdp->nocb_cb_sleep],
2398		".W"[swait_active(&rdp->nocb_cb_wq)],
2399		jiffies - rdp->nocb_bypass_first,
2400		jiffies - rdp->nocb_nobypass_last,
2401		rdp->nocb_nobypass_count,
2402		".D"[rcu_segcblist_ready_cbs(rsclp)],
2403		".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2404		".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2405		".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
 
 
2406		".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2407		rcu_segcblist_n_cbs(&rdp->cblist));
 
 
 
2408
2409	/* It is OK for GP kthreads to have GP state. */
2410	if (rdp->nocb_gp_rdp == rdp)
2411		return;
2412
2413	waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2414	wastimer = timer_pending(&rdp->nocb_timer);
2415	wassleep = swait_active(&rdp->nocb_gp_wq);
2416	if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep &&
2417	    !waslocked && !wastimer && !wassleep)
2418		return;  /* Nothing untowards. */
2419
2420	pr_info("   !!! %c%c%c%c %c\n",
2421		"lL"[waslocked],
2422		"dD"[!!rdp->nocb_defer_wakeup],
2423		"tT"[wastimer],
2424		"sS"[!!rdp->nocb_gp_sleep],
2425		".W"[wassleep]);
2426}
2427
2428#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2429
2430/* No ->nocb_lock to acquire.  */
2431static void rcu_nocb_lock(struct rcu_data *rdp)
2432{
2433}
2434
2435/* No ->nocb_lock to release.  */
2436static void rcu_nocb_unlock(struct rcu_data *rdp)
2437{
2438}
2439
2440/* No ->nocb_lock to release.  */
2441static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2442				       unsigned long flags)
2443{
2444	local_irq_restore(flags);
2445}
2446
2447/* Lockdep check that ->cblist may be safely accessed. */
2448static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2449{
2450	lockdep_assert_irqs_disabled();
2451}
2452
2453static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2454{
2455}
2456
2457static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2458{
2459	return NULL;
2460}
2461
2462static void rcu_init_one_nocb(struct rcu_node *rnp)
2463{
2464}
2465
2466static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2467				  unsigned long j)
2468{
2469	return true;
2470}
2471
2472static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2473				bool *was_alldone, unsigned long flags)
2474{
2475	return false;
2476}
2477
2478static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2479				 unsigned long flags)
2480{
2481	WARN_ON_ONCE(1);  /* Should be dead code! */
2482}
2483
2484static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2485{
2486}
2487
2488static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2489{
2490	return false;
2491}
2492
2493static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2494{
 
2495}
2496
2497static void rcu_spawn_cpu_nocb_kthread(int cpu)
2498{
2499}
2500
2501static void __init rcu_spawn_nocb_kthreads(void)
2502{
2503}
2504
2505static void show_rcu_nocb_state(struct rcu_data *rdp)
2506{
2507}
2508
2509#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2510
2511/*
2512 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2513 * grace-period kthread will do force_quiescent_state() processing?
2514 * The idea is to avoid waking up RCU core processing on such a
2515 * CPU unless the grace period has extended for too long.
2516 *
2517 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2518 * CONFIG_RCU_NOCB_CPU CPUs.
2519 */
2520static bool rcu_nohz_full_cpu(void)
2521{
2522#ifdef CONFIG_NO_HZ_FULL
2523	if (tick_nohz_full_cpu(smp_processor_id()) &&
2524	    (!rcu_gp_in_progress() ||
2525	     time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2526		return true;
2527#endif /* #ifdef CONFIG_NO_HZ_FULL */
2528	return false;
2529}
2530
2531/*
2532 * Bind the RCU grace-period kthreads to the housekeeping CPU.
2533 */
2534static void rcu_bind_gp_kthread(void)
2535{
2536	if (!tick_nohz_full_enabled())
2537		return;
2538	housekeeping_affine(current, HK_FLAG_RCU);
2539}
2540
2541/* Record the current task on dyntick-idle entry. */
2542static void noinstr rcu_dynticks_task_enter(void)
2543{
2544#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2545	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2546#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2547}
2548
2549/* Record no current task on dyntick-idle exit. */
2550static void noinstr rcu_dynticks_task_exit(void)
2551{
2552#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2553	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2554#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2555}
2556
2557/* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
2558static void rcu_dynticks_task_trace_enter(void)
2559{
2560#ifdef CONFIG_TASKS_RCU_TRACE
2561	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2562		current->trc_reader_special.b.need_mb = true;
2563#endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
2564}
2565
2566/* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
2567static void rcu_dynticks_task_trace_exit(void)
2568{
2569#ifdef CONFIG_TASKS_RCU_TRACE
2570	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2571		current->trc_reader_special.b.need_mb = false;
2572#endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
2573}
v5.14.15
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   4 * Internal non-public definitions that provide either classic
   5 * or preemptible semantics.
   6 *
   7 * Copyright Red Hat, 2009
   8 * Copyright IBM Corporation, 2009
   9 *
  10 * Author: Ingo Molnar <mingo@elte.hu>
  11 *	   Paul E. McKenney <paulmck@linux.ibm.com>
  12 */
  13
  14#include "../locking/rtmutex_common.h"
  15
  16#ifdef CONFIG_RCU_NOCB_CPU
  17static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
  18static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
  19static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
  20{
  21	return lockdep_is_held(&rdp->nocb_lock);
  22}
  23
  24static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
  25{
  26	/* Race on early boot between thread creation and assignment */
  27	if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
  28		return true;
  29
  30	if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
  31		if (in_task())
  32			return true;
  33	return false;
  34}
  35
  36#else
  37static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
  38{
  39	return 0;
  40}
  41
  42static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
  43{
  44	return false;
  45}
  46
  47#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  48
  49static bool rcu_rdp_is_offloaded(struct rcu_data *rdp)
  50{
  51	/*
  52	 * In order to read the offloaded state of an rdp is a safe
  53	 * and stable way and prevent from its value to be changed
  54	 * under us, we must either hold the barrier mutex, the cpu
  55	 * hotplug lock (read or write) or the nocb lock. Local
  56	 * non-preemptible reads are also safe. NOCB kthreads and
  57	 * timers have their own means of synchronization against the
  58	 * offloaded state updaters.
  59	 */
  60	RCU_LOCKDEP_WARN(
  61		!(lockdep_is_held(&rcu_state.barrier_mutex) ||
  62		  (IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) ||
  63		  rcu_lockdep_is_held_nocb(rdp) ||
  64		  (rdp == this_cpu_ptr(&rcu_data) &&
  65		   !(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible())) ||
  66		  rcu_current_is_nocb_kthread(rdp)),
  67		"Unsafe read of RCU_NOCB offloaded state"
  68	);
  69
  70	return rcu_segcblist_is_offloaded(&rdp->cblist);
  71}
  72
  73/*
  74 * Check the RCU kernel configuration parameters and print informative
  75 * messages about anything out of the ordinary.
  76 */
  77static void __init rcu_bootup_announce_oddness(void)
  78{
  79	if (IS_ENABLED(CONFIG_RCU_TRACE))
  80		pr_info("\tRCU event tracing is enabled.\n");
  81	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
  82	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
  83		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
  84			RCU_FANOUT);
  85	if (rcu_fanout_exact)
  86		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
  87	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
  88		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  89	if (IS_ENABLED(CONFIG_PROVE_RCU))
  90		pr_info("\tRCU lockdep checking is enabled.\n");
  91	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
  92		pr_info("\tRCU strict (and thus non-scalable) grace periods enabled.\n");
  93	if (RCU_NUM_LVLS >= 4)
  94		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
  95	if (RCU_FANOUT_LEAF != 16)
  96		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
  97			RCU_FANOUT_LEAF);
  98	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
  99		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
 100			rcu_fanout_leaf);
 101	if (nr_cpu_ids != NR_CPUS)
 102		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
 103#ifdef CONFIG_RCU_BOOST
 104	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
 105		kthread_prio, CONFIG_RCU_BOOST_DELAY);
 106#endif
 107	if (blimit != DEFAULT_RCU_BLIMIT)
 108		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
 109	if (qhimark != DEFAULT_RCU_QHIMARK)
 110		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
 111	if (qlowmark != DEFAULT_RCU_QLOMARK)
 112		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
 113	if (qovld != DEFAULT_RCU_QOVLD)
 114		pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
 115	if (jiffies_till_first_fqs != ULONG_MAX)
 116		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
 117	if (jiffies_till_next_fqs != ULONG_MAX)
 118		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
 119	if (jiffies_till_sched_qs != ULONG_MAX)
 120		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
 121	if (rcu_kick_kthreads)
 122		pr_info("\tKick kthreads if too-long grace period.\n");
 123	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
 124		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
 125	if (gp_preinit_delay)
 126		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
 127	if (gp_init_delay)
 128		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
 129	if (gp_cleanup_delay)
 130		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
 131	if (!use_softirq)
 132		pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
 133	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
 134		pr_info("\tRCU debug extended QS entry/exit.\n");
 135	rcupdate_announce_bootup_oddness();
 136}
 137
 138#ifdef CONFIG_PREEMPT_RCU
 139
 140static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
 141static void rcu_read_unlock_special(struct task_struct *t);
 142
 143/*
 144 * Tell them what RCU they are running.
 145 */
 146static void __init rcu_bootup_announce(void)
 147{
 148	pr_info("Preemptible hierarchical RCU implementation.\n");
 149	rcu_bootup_announce_oddness();
 150}
 151
 152/* Flags for rcu_preempt_ctxt_queue() decision table. */
 153#define RCU_GP_TASKS	0x8
 154#define RCU_EXP_TASKS	0x4
 155#define RCU_GP_BLKD	0x2
 156#define RCU_EXP_BLKD	0x1
 157
 158/*
 159 * Queues a task preempted within an RCU-preempt read-side critical
 160 * section into the appropriate location within the ->blkd_tasks list,
 161 * depending on the states of any ongoing normal and expedited grace
 162 * periods.  The ->gp_tasks pointer indicates which element the normal
 163 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
 164 * indicates which element the expedited grace period is waiting on (again,
 165 * NULL if none).  If a grace period is waiting on a given element in the
 166 * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
 167 * adding a task to the tail of the list blocks any grace period that is
 168 * already waiting on one of the elements.  In contrast, adding a task
 169 * to the head of the list won't block any grace period that is already
 170 * waiting on one of the elements.
 171 *
 172 * This queuing is imprecise, and can sometimes make an ongoing grace
 173 * period wait for a task that is not strictly speaking blocking it.
 174 * Given the choice, we needlessly block a normal grace period rather than
 175 * blocking an expedited grace period.
 176 *
 177 * Note that an endless sequence of expedited grace periods still cannot
 178 * indefinitely postpone a normal grace period.  Eventually, all of the
 179 * fixed number of preempted tasks blocking the normal grace period that are
 180 * not also blocking the expedited grace period will resume and complete
 181 * their RCU read-side critical sections.  At that point, the ->gp_tasks
 182 * pointer will equal the ->exp_tasks pointer, at which point the end of
 183 * the corresponding expedited grace period will also be the end of the
 184 * normal grace period.
 185 */
 186static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
 187	__releases(rnp->lock) /* But leaves rrupts disabled. */
 188{
 189	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
 190			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
 191			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
 192			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
 193	struct task_struct *t = current;
 194
 195	raw_lockdep_assert_held_rcu_node(rnp);
 196	WARN_ON_ONCE(rdp->mynode != rnp);
 197	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
 198	/* RCU better not be waiting on newly onlined CPUs! */
 199	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
 200		     rdp->grpmask);
 201
 202	/*
 203	 * Decide where to queue the newly blocked task.  In theory,
 204	 * this could be an if-statement.  In practice, when I tried
 205	 * that, it was quite messy.
 206	 */
 207	switch (blkd_state) {
 208	case 0:
 209	case                RCU_EXP_TASKS:
 210	case                RCU_EXP_TASKS + RCU_GP_BLKD:
 211	case RCU_GP_TASKS:
 212	case RCU_GP_TASKS + RCU_EXP_TASKS:
 213
 214		/*
 215		 * Blocking neither GP, or first task blocking the normal
 216		 * GP but not blocking the already-waiting expedited GP.
 217		 * Queue at the head of the list to avoid unnecessarily
 218		 * blocking the already-waiting GPs.
 219		 */
 220		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
 221		break;
 222
 223	case                                              RCU_EXP_BLKD:
 224	case                                RCU_GP_BLKD:
 225	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
 226	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
 227	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
 228	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 229
 230		/*
 231		 * First task arriving that blocks either GP, or first task
 232		 * arriving that blocks the expedited GP (with the normal
 233		 * GP already waiting), or a task arriving that blocks
 234		 * both GPs with both GPs already waiting.  Queue at the
 235		 * tail of the list to avoid any GP waiting on any of the
 236		 * already queued tasks that are not blocking it.
 237		 */
 238		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
 239		break;
 240
 241	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
 242	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 243	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
 244
 245		/*
 246		 * Second or subsequent task blocking the expedited GP.
 247		 * The task either does not block the normal GP, or is the
 248		 * first task blocking the normal GP.  Queue just after
 249		 * the first task blocking the expedited GP.
 250		 */
 251		list_add(&t->rcu_node_entry, rnp->exp_tasks);
 252		break;
 253
 254	case RCU_GP_TASKS +                 RCU_GP_BLKD:
 255	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
 256
 257		/*
 258		 * Second or subsequent task blocking the normal GP.
 259		 * The task does not block the expedited GP. Queue just
 260		 * after the first task blocking the normal GP.
 261		 */
 262		list_add(&t->rcu_node_entry, rnp->gp_tasks);
 263		break;
 264
 265	default:
 266
 267		/* Yet another exercise in excessive paranoia. */
 268		WARN_ON_ONCE(1);
 269		break;
 270	}
 271
 272	/*
 273	 * We have now queued the task.  If it was the first one to
 274	 * block either grace period, update the ->gp_tasks and/or
 275	 * ->exp_tasks pointers, respectively, to reference the newly
 276	 * blocked tasks.
 277	 */
 278	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
 279		WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
 280		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
 281	}
 282	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
 283		WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
 284	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
 285		     !(rnp->qsmask & rdp->grpmask));
 286	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
 287		     !(rnp->expmask & rdp->grpmask));
 288	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
 289
 290	/*
 291	 * Report the quiescent state for the expedited GP.  This expedited
 292	 * GP should not be able to end until we report, so there should be
 293	 * no need to check for a subsequent expedited GP.  (Though we are
 294	 * still in a quiescent state in any case.)
 295	 */
 296	if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
 297		rcu_report_exp_rdp(rdp);
 298	else
 299		WARN_ON_ONCE(rdp->exp_deferred_qs);
 300}
 301
 302/*
 303 * Record a preemptible-RCU quiescent state for the specified CPU.
 304 * Note that this does not necessarily mean that the task currently running
 305 * on the CPU is in a quiescent state:  Instead, it means that the current
 306 * grace period need not wait on any RCU read-side critical section that
 307 * starts later on this CPU.  It also means that if the current task is
 308 * in an RCU read-side critical section, it has already added itself to
 309 * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
 310 * current task, there might be any number of other tasks blocked while
 311 * in an RCU read-side critical section.
 312 *
 313 * Callers to this function must disable preemption.
 314 */
 315static void rcu_qs(void)
 316{
 317	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
 318	if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
 319		trace_rcu_grace_period(TPS("rcu_preempt"),
 320				       __this_cpu_read(rcu_data.gp_seq),
 321				       TPS("cpuqs"));
 322		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
 323		barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
 324		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
 325	}
 326}
 327
 328/*
 329 * We have entered the scheduler, and the current task might soon be
 330 * context-switched away from.  If this task is in an RCU read-side
 331 * critical section, we will no longer be able to rely on the CPU to
 332 * record that fact, so we enqueue the task on the blkd_tasks list.
 333 * The task will dequeue itself when it exits the outermost enclosing
 334 * RCU read-side critical section.  Therefore, the current grace period
 335 * cannot be permitted to complete until the blkd_tasks list entries
 336 * predating the current grace period drain, in other words, until
 337 * rnp->gp_tasks becomes NULL.
 338 *
 339 * Caller must disable interrupts.
 340 */
 341void rcu_note_context_switch(bool preempt)
 342{
 343	struct task_struct *t = current;
 344	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 345	struct rcu_node *rnp;
 346
 347	trace_rcu_utilization(TPS("Start context switch"));
 348	lockdep_assert_irqs_disabled();
 349	WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
 350	if (rcu_preempt_depth() > 0 &&
 351	    !t->rcu_read_unlock_special.b.blocked) {
 352
 353		/* Possibly blocking in an RCU read-side critical section. */
 354		rnp = rdp->mynode;
 355		raw_spin_lock_rcu_node(rnp);
 356		t->rcu_read_unlock_special.b.blocked = true;
 357		t->rcu_blocked_node = rnp;
 358
 359		/*
 360		 * Verify the CPU's sanity, trace the preemption, and
 361		 * then queue the task as required based on the states
 362		 * of any ongoing and expedited grace periods.
 363		 */
 364		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
 365		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
 366		trace_rcu_preempt_task(rcu_state.name,
 367				       t->pid,
 368				       (rnp->qsmask & rdp->grpmask)
 369				       ? rnp->gp_seq
 370				       : rcu_seq_snap(&rnp->gp_seq));
 371		rcu_preempt_ctxt_queue(rnp, rdp);
 372	} else {
 373		rcu_preempt_deferred_qs(t);
 374	}
 375
 376	/*
 377	 * Either we were not in an RCU read-side critical section to
 378	 * begin with, or we have now recorded that critical section
 379	 * globally.  Either way, we can now note a quiescent state
 380	 * for this CPU.  Again, if we were in an RCU read-side critical
 381	 * section, and if that critical section was blocking the current
 382	 * grace period, then the fact that the task has been enqueued
 383	 * means that we continue to block the current grace period.
 384	 */
 385	rcu_qs();
 386	if (rdp->exp_deferred_qs)
 387		rcu_report_exp_rdp(rdp);
 388	rcu_tasks_qs(current, preempt);
 389	trace_rcu_utilization(TPS("End context switch"));
 390}
 391EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 392
 393/*
 394 * Check for preempted RCU readers blocking the current grace period
 395 * for the specified rcu_node structure.  If the caller needs a reliable
 396 * answer, it must hold the rcu_node's ->lock.
 397 */
 398static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 399{
 400	return READ_ONCE(rnp->gp_tasks) != NULL;
 401}
 402
 403/* limit value for ->rcu_read_lock_nesting. */
 404#define RCU_NEST_PMAX (INT_MAX / 2)
 405
 406static void rcu_preempt_read_enter(void)
 407{
 408	current->rcu_read_lock_nesting++;
 409}
 410
 411static int rcu_preempt_read_exit(void)
 412{
 413	return --current->rcu_read_lock_nesting;
 414}
 415
 416static void rcu_preempt_depth_set(int val)
 417{
 418	current->rcu_read_lock_nesting = val;
 419}
 420
 421/*
 422 * Preemptible RCU implementation for rcu_read_lock().
 423 * Just increment ->rcu_read_lock_nesting, shared state will be updated
 424 * if we block.
 425 */
 426void __rcu_read_lock(void)
 427{
 428	rcu_preempt_read_enter();
 429	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
 430		WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
 431	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
 432		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
 433	barrier();  /* critical section after entry code. */
 434}
 435EXPORT_SYMBOL_GPL(__rcu_read_lock);
 436
 437/*
 438 * Preemptible RCU implementation for rcu_read_unlock().
 439 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 440 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 441 * invoke rcu_read_unlock_special() to clean up after a context switch
 442 * in an RCU read-side critical section and other special cases.
 443 */
 444void __rcu_read_unlock(void)
 445{
 446	struct task_struct *t = current;
 447
 448	barrier();  // critical section before exit code.
 449	if (rcu_preempt_read_exit() == 0) {
 450		barrier();  // critical-section exit before .s check.
 451		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
 452			rcu_read_unlock_special(t);
 453	}
 454	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
 455		int rrln = rcu_preempt_depth();
 456
 457		WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
 458	}
 459}
 460EXPORT_SYMBOL_GPL(__rcu_read_unlock);
 461
 462/*
 463 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 464 * returning NULL if at the end of the list.
 465 */
 466static struct list_head *rcu_next_node_entry(struct task_struct *t,
 467					     struct rcu_node *rnp)
 468{
 469	struct list_head *np;
 470
 471	np = t->rcu_node_entry.next;
 472	if (np == &rnp->blkd_tasks)
 473		np = NULL;
 474	return np;
 475}
 476
 477/*
 478 * Return true if the specified rcu_node structure has tasks that were
 479 * preempted within an RCU read-side critical section.
 480 */
 481static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 482{
 483	return !list_empty(&rnp->blkd_tasks);
 484}
 485
 486/*
 487 * Report deferred quiescent states.  The deferral time can
 488 * be quite short, for example, in the case of the call from
 489 * rcu_read_unlock_special().
 490 */
 491static void
 492rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
 493{
 494	bool empty_exp;
 495	bool empty_norm;
 496	bool empty_exp_now;
 497	struct list_head *np;
 498	bool drop_boost_mutex = false;
 499	struct rcu_data *rdp;
 500	struct rcu_node *rnp;
 501	union rcu_special special;
 502
 503	/*
 504	 * If RCU core is waiting for this CPU to exit its critical section,
 505	 * report the fact that it has exited.  Because irqs are disabled,
 506	 * t->rcu_read_unlock_special cannot change.
 507	 */
 508	special = t->rcu_read_unlock_special;
 509	rdp = this_cpu_ptr(&rcu_data);
 510	if (!special.s && !rdp->exp_deferred_qs) {
 511		local_irq_restore(flags);
 512		return;
 513	}
 514	t->rcu_read_unlock_special.s = 0;
 515	if (special.b.need_qs) {
 516		if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
 517			rcu_report_qs_rdp(rdp);
 518			udelay(rcu_unlock_delay);
 519		} else {
 520			rcu_qs();
 521		}
 522	}
 523
 524	/*
 525	 * Respond to a request by an expedited grace period for a
 526	 * quiescent state from this CPU.  Note that requests from
 527	 * tasks are handled when removing the task from the
 528	 * blocked-tasks list below.
 529	 */
 530	if (rdp->exp_deferred_qs)
 531		rcu_report_exp_rdp(rdp);
 532
 533	/* Clean up if blocked during RCU read-side critical section. */
 534	if (special.b.blocked) {
 535
 536		/*
 537		 * Remove this task from the list it blocked on.  The task
 538		 * now remains queued on the rcu_node corresponding to the
 539		 * CPU it first blocked on, so there is no longer any need
 540		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
 541		 */
 542		rnp = t->rcu_blocked_node;
 543		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
 544		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
 545		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
 546		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
 547		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
 548			     (!empty_norm || rnp->qsmask));
 549		empty_exp = sync_rcu_exp_done(rnp);
 550		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
 551		np = rcu_next_node_entry(t, rnp);
 552		list_del_init(&t->rcu_node_entry);
 553		t->rcu_blocked_node = NULL;
 554		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
 555						rnp->gp_seq, t->pid);
 556		if (&t->rcu_node_entry == rnp->gp_tasks)
 557			WRITE_ONCE(rnp->gp_tasks, np);
 558		if (&t->rcu_node_entry == rnp->exp_tasks)
 559			WRITE_ONCE(rnp->exp_tasks, np);
 560		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
 561			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
 562			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
 563			if (&t->rcu_node_entry == rnp->boost_tasks)
 564				WRITE_ONCE(rnp->boost_tasks, np);
 565		}
 566
 567		/*
 568		 * If this was the last task on the current list, and if
 569		 * we aren't waiting on any CPUs, report the quiescent state.
 570		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
 571		 * so we must take a snapshot of the expedited state.
 572		 */
 573		empty_exp_now = sync_rcu_exp_done(rnp);
 574		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
 575			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
 576							 rnp->gp_seq,
 577							 0, rnp->qsmask,
 578							 rnp->level,
 579							 rnp->grplo,
 580							 rnp->grphi,
 581							 !!rnp->gp_tasks);
 582			rcu_report_unblock_qs_rnp(rnp, flags);
 583		} else {
 584			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 585		}
 586
 587		/* Unboost if we were boosted. */
 588		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
 589			rt_mutex_futex_unlock(&rnp->boost_mtx);
 590
 591		/*
 592		 * If this was the last task on the expedited lists,
 593		 * then we need to report up the rcu_node hierarchy.
 594		 */
 595		if (!empty_exp && empty_exp_now)
 596			rcu_report_exp_rnp(rnp, true);
 597	} else {
 598		local_irq_restore(flags);
 599	}
 600}
 601
 602/*
 603 * Is a deferred quiescent-state pending, and are we also not in
 604 * an RCU read-side critical section?  It is the caller's responsibility
 605 * to ensure it is otherwise safe to report any deferred quiescent
 606 * states.  The reason for this is that it is safe to report a
 607 * quiescent state during context switch even though preemption
 608 * is disabled.  This function cannot be expected to understand these
 609 * nuances, so the caller must handle them.
 610 */
 611static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
 612{
 613	return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
 614		READ_ONCE(t->rcu_read_unlock_special.s)) &&
 615	       rcu_preempt_depth() == 0;
 616}
 617
 618/*
 619 * Report a deferred quiescent state if needed and safe to do so.
 620 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
 621 * not being in an RCU read-side critical section.  The caller must
 622 * evaluate safety in terms of interrupt, softirq, and preemption
 623 * disabling.
 624 */
 625static void rcu_preempt_deferred_qs(struct task_struct *t)
 626{
 627	unsigned long flags;
 628
 629	if (!rcu_preempt_need_deferred_qs(t))
 630		return;
 631	local_irq_save(flags);
 632	rcu_preempt_deferred_qs_irqrestore(t, flags);
 633}
 634
 635/*
 636 * Minimal handler to give the scheduler a chance to re-evaluate.
 637 */
 638static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
 639{
 640	struct rcu_data *rdp;
 641
 642	rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
 643	rdp->defer_qs_iw_pending = false;
 644}
 645
 646/*
 647 * Handle special cases during rcu_read_unlock(), such as needing to
 648 * notify RCU core processing or task having blocked during the RCU
 649 * read-side critical section.
 650 */
 651static void rcu_read_unlock_special(struct task_struct *t)
 652{
 653	unsigned long flags;
 654	bool irqs_were_disabled;
 655	bool preempt_bh_were_disabled =
 656			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
 
 657
 658	/* NMI handlers cannot block and cannot safely manipulate state. */
 659	if (in_nmi())
 660		return;
 661
 662	local_irq_save(flags);
 663	irqs_were_disabled = irqs_disabled_flags(flags);
 664	if (preempt_bh_were_disabled || irqs_were_disabled) {
 665		bool expboost; // Expedited GP in flight or possible boosting.
 666		struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 667		struct rcu_node *rnp = rdp->mynode;
 668
 669		expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
 670			   (rdp->grpmask & READ_ONCE(rnp->expmask)) ||
 671			   IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ||
 672			   (IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled &&
 673			    t->rcu_blocked_node);
 674		// Need to defer quiescent state until everything is enabled.
 675		if (use_softirq && (in_irq() || (expboost && !irqs_were_disabled))) {
 676			// Using softirq, safe to awaken, and either the
 677			// wakeup is free or there is either an expedited
 678			// GP in flight or a potential need to deboost.
 679			raise_softirq_irqoff(RCU_SOFTIRQ);
 680		} else {
 681			// Enabling BH or preempt does reschedule, so...
 682			// Also if no expediting and no possible deboosting,
 683			// slow is OK.  Plus nohz_full CPUs eventually get
 684			// tick enabled.
 685			set_tsk_need_resched(current);
 686			set_preempt_need_resched();
 687			if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
 688			    expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) {
 689				// Get scheduler to re-evaluate and call hooks.
 690				// If !IRQ_WORK, FQS scan will eventually IPI.
 691				init_irq_work(&rdp->defer_qs_iw, rcu_preempt_deferred_qs_handler);
 
 692				rdp->defer_qs_iw_pending = true;
 693				irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
 694			}
 695		}
 696		local_irq_restore(flags);
 697		return;
 698	}
 699	rcu_preempt_deferred_qs_irqrestore(t, flags);
 700}
 701
 702/*
 703 * Check that the list of blocked tasks for the newly completed grace
 704 * period is in fact empty.  It is a serious bug to complete a grace
 705 * period that still has RCU readers blocked!  This function must be
 706 * invoked -before- updating this rnp's ->gp_seq.
 707 *
 708 * Also, if there are blocked tasks on the list, they automatically
 709 * block the newly created grace period, so set up ->gp_tasks accordingly.
 710 */
 711static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 712{
 713	struct task_struct *t;
 714
 715	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
 716	raw_lockdep_assert_held_rcu_node(rnp);
 717	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
 718		dump_blkd_tasks(rnp, 10);
 719	if (rcu_preempt_has_tasks(rnp) &&
 720	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
 721		WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
 722		t = container_of(rnp->gp_tasks, struct task_struct,
 723				 rcu_node_entry);
 724		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
 725						rnp->gp_seq, t->pid);
 726	}
 727	WARN_ON_ONCE(rnp->qsmask);
 728}
 729
 730/*
 731 * Check for a quiescent state from the current CPU, including voluntary
 732 * context switches for Tasks RCU.  When a task blocks, the task is
 733 * recorded in the corresponding CPU's rcu_node structure, which is checked
 734 * elsewhere, hence this function need only check for quiescent states
 735 * related to the current CPU, not to those related to tasks.
 736 */
 737static void rcu_flavor_sched_clock_irq(int user)
 738{
 739	struct task_struct *t = current;
 740
 741	lockdep_assert_irqs_disabled();
 742	if (user || rcu_is_cpu_rrupt_from_idle()) {
 743		rcu_note_voluntary_context_switch(current);
 744	}
 745	if (rcu_preempt_depth() > 0 ||
 746	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
 747		/* No QS, force context switch if deferred. */
 748		if (rcu_preempt_need_deferred_qs(t)) {
 749			set_tsk_need_resched(t);
 750			set_preempt_need_resched();
 751		}
 752	} else if (rcu_preempt_need_deferred_qs(t)) {
 753		rcu_preempt_deferred_qs(t); /* Report deferred QS. */
 754		return;
 755	} else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
 756		rcu_qs(); /* Report immediate QS. */
 757		return;
 758	}
 759
 760	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
 761	if (rcu_preempt_depth() > 0 &&
 762	    __this_cpu_read(rcu_data.core_needs_qs) &&
 763	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
 764	    !t->rcu_read_unlock_special.b.need_qs &&
 765	    time_after(jiffies, rcu_state.gp_start + HZ))
 766		t->rcu_read_unlock_special.b.need_qs = true;
 767}
 768
 769/*
 770 * Check for a task exiting while in a preemptible-RCU read-side
 771 * critical section, clean up if so.  No need to issue warnings, as
 772 * debug_check_no_locks_held() already does this if lockdep is enabled.
 773 * Besides, if this function does anything other than just immediately
 774 * return, there was a bug of some sort.  Spewing warnings from this
 775 * function is like as not to simply obscure important prior warnings.
 776 */
 777void exit_rcu(void)
 778{
 779	struct task_struct *t = current;
 780
 781	if (unlikely(!list_empty(&current->rcu_node_entry))) {
 782		rcu_preempt_depth_set(1);
 783		barrier();
 784		WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
 785	} else if (unlikely(rcu_preempt_depth())) {
 786		rcu_preempt_depth_set(1);
 787	} else {
 788		return;
 789	}
 790	__rcu_read_unlock();
 791	rcu_preempt_deferred_qs(current);
 792}
 793
 794/*
 795 * Dump the blocked-tasks state, but limit the list dump to the
 796 * specified number of elements.
 797 */
 798static void
 799dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
 800{
 801	int cpu;
 802	int i;
 803	struct list_head *lhp;
 804	bool onl;
 805	struct rcu_data *rdp;
 806	struct rcu_node *rnp1;
 807
 808	raw_lockdep_assert_held_rcu_node(rnp);
 809	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
 810		__func__, rnp->grplo, rnp->grphi, rnp->level,
 811		(long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
 812	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
 813		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
 814			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
 815	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
 816		__func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
 817		READ_ONCE(rnp->exp_tasks));
 818	pr_info("%s: ->blkd_tasks", __func__);
 819	i = 0;
 820	list_for_each(lhp, &rnp->blkd_tasks) {
 821		pr_cont(" %p", lhp);
 822		if (++i >= ncheck)
 823			break;
 824	}
 825	pr_cont("\n");
 826	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
 827		rdp = per_cpu_ptr(&rcu_data, cpu);
 828		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
 829		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
 830			cpu, ".o"[onl],
 831			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
 832			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
 833	}
 834}
 835
 836#else /* #ifdef CONFIG_PREEMPT_RCU */
 837
 838/*
 839 * If strict grace periods are enabled, and if the calling
 840 * __rcu_read_unlock() marks the beginning of a quiescent state, immediately
 841 * report that quiescent state and, if requested, spin for a bit.
 842 */
 843void rcu_read_unlock_strict(void)
 844{
 845	struct rcu_data *rdp;
 846
 847	if (!IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ||
 848	   irqs_disabled() || preempt_count() || !rcu_state.gp_kthread)
 849		return;
 850	rdp = this_cpu_ptr(&rcu_data);
 851	rcu_report_qs_rdp(rdp);
 852	udelay(rcu_unlock_delay);
 853}
 854EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);
 855
 856/*
 857 * Tell them what RCU they are running.
 858 */
 859static void __init rcu_bootup_announce(void)
 860{
 861	pr_info("Hierarchical RCU implementation.\n");
 862	rcu_bootup_announce_oddness();
 863}
 864
 865/*
 866 * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
 867 * how many quiescent states passed, just if there was at least one since
 868 * the start of the grace period, this just sets a flag.  The caller must
 869 * have disabled preemption.
 870 */
 871static void rcu_qs(void)
 872{
 873	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
 874	if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
 875		return;
 876	trace_rcu_grace_period(TPS("rcu_sched"),
 877			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
 878	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
 879	if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
 880		return;
 881	__this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
 882	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
 883}
 884
 885/*
 886 * Register an urgently needed quiescent state.  If there is an
 887 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 888 * dyntick-idle quiescent state visible to other CPUs, which will in
 889 * some cases serve for expedited as well as normal grace periods.
 890 * Either way, register a lightweight quiescent state.
 891 */
 892void rcu_all_qs(void)
 893{
 894	unsigned long flags;
 895
 896	if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
 897		return;
 898	preempt_disable();
 899	/* Load rcu_urgent_qs before other flags. */
 900	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
 901		preempt_enable();
 902		return;
 903	}
 904	this_cpu_write(rcu_data.rcu_urgent_qs, false);
 905	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
 906		local_irq_save(flags);
 907		rcu_momentary_dyntick_idle();
 908		local_irq_restore(flags);
 909	}
 910	rcu_qs();
 911	preempt_enable();
 912}
 913EXPORT_SYMBOL_GPL(rcu_all_qs);
 914
 915/*
 916 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
 917 */
 918void rcu_note_context_switch(bool preempt)
 919{
 920	trace_rcu_utilization(TPS("Start context switch"));
 921	rcu_qs();
 922	/* Load rcu_urgent_qs before other flags. */
 923	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
 924		goto out;
 925	this_cpu_write(rcu_data.rcu_urgent_qs, false);
 926	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
 927		rcu_momentary_dyntick_idle();
 928	rcu_tasks_qs(current, preempt);
 929out:
 930	trace_rcu_utilization(TPS("End context switch"));
 931}
 932EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 933
 934/*
 935 * Because preemptible RCU does not exist, there are never any preempted
 936 * RCU readers.
 937 */
 938static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 939{
 940	return 0;
 941}
 942
 943/*
 944 * Because there is no preemptible RCU, there can be no readers blocked.
 945 */
 946static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 947{
 948	return false;
 949}
 950
 951/*
 952 * Because there is no preemptible RCU, there can be no deferred quiescent
 953 * states.
 954 */
 955static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
 956{
 957	return false;
 958}
 959static void rcu_preempt_deferred_qs(struct task_struct *t) { }
 960
 961/*
 962 * Because there is no preemptible RCU, there can be no readers blocked,
 963 * so there is no need to check for blocked tasks.  So check only for
 964 * bogus qsmask values.
 965 */
 966static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 967{
 968	WARN_ON_ONCE(rnp->qsmask);
 969}
 970
 971/*
 972 * Check to see if this CPU is in a non-context-switch quiescent state,
 973 * namely user mode and idle loop.
 974 */
 975static void rcu_flavor_sched_clock_irq(int user)
 976{
 977	if (user || rcu_is_cpu_rrupt_from_idle()) {
 978
 979		/*
 980		 * Get here if this CPU took its interrupt from user
 981		 * mode or from the idle loop, and if this is not a
 982		 * nested interrupt.  In this case, the CPU is in
 983		 * a quiescent state, so note it.
 984		 *
 985		 * No memory barrier is required here because rcu_qs()
 986		 * references only CPU-local variables that other CPUs
 987		 * neither access nor modify, at least not while the
 988		 * corresponding CPU is online.
 989		 */
 990
 991		rcu_qs();
 992	}
 993}
 994
 995/*
 996 * Because preemptible RCU does not exist, tasks cannot possibly exit
 997 * while in preemptible RCU read-side critical sections.
 998 */
 999void exit_rcu(void)
1000{
1001}
1002
1003/*
1004 * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
1005 */
1006static void
1007dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
1008{
1009	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
1010}
1011
1012#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
1013
1014/*
1015 * If boosting, set rcuc kthreads to realtime priority.
1016 */
1017static void rcu_cpu_kthread_setup(unsigned int cpu)
1018{
1019#ifdef CONFIG_RCU_BOOST
1020	struct sched_param sp;
1021
1022	sp.sched_priority = kthread_prio;
1023	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1024#endif /* #ifdef CONFIG_RCU_BOOST */
1025}
1026
1027#ifdef CONFIG_RCU_BOOST
1028
1029/*
1030 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1031 * or ->boost_tasks, advancing the pointer to the next task in the
1032 * ->blkd_tasks list.
1033 *
1034 * Note that irqs must be enabled: boosting the task can block.
1035 * Returns 1 if there are more tasks needing to be boosted.
1036 */
1037static int rcu_boost(struct rcu_node *rnp)
1038{
1039	unsigned long flags;
1040	struct task_struct *t;
1041	struct list_head *tb;
1042
1043	if (READ_ONCE(rnp->exp_tasks) == NULL &&
1044	    READ_ONCE(rnp->boost_tasks) == NULL)
1045		return 0;  /* Nothing left to boost. */
1046
1047	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1048
1049	/*
1050	 * Recheck under the lock: all tasks in need of boosting
1051	 * might exit their RCU read-side critical sections on their own.
1052	 */
1053	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1054		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1055		return 0;
1056	}
1057
1058	/*
1059	 * Preferentially boost tasks blocking expedited grace periods.
1060	 * This cannot starve the normal grace periods because a second
1061	 * expedited grace period must boost all blocked tasks, including
1062	 * those blocking the pre-existing normal grace period.
1063	 */
1064	if (rnp->exp_tasks != NULL)
1065		tb = rnp->exp_tasks;
1066	else
1067		tb = rnp->boost_tasks;
1068
1069	/*
1070	 * We boost task t by manufacturing an rt_mutex that appears to
1071	 * be held by task t.  We leave a pointer to that rt_mutex where
1072	 * task t can find it, and task t will release the mutex when it
1073	 * exits its outermost RCU read-side critical section.  Then
1074	 * simply acquiring this artificial rt_mutex will boost task
1075	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1076	 *
1077	 * Note that task t must acquire rnp->lock to remove itself from
1078	 * the ->blkd_tasks list, which it will do from exit() if from
1079	 * nowhere else.  We therefore are guaranteed that task t will
1080	 * stay around at least until we drop rnp->lock.  Note that
1081	 * rnp->lock also resolves races between our priority boosting
1082	 * and task t's exiting its outermost RCU read-side critical
1083	 * section.
1084	 */
1085	t = container_of(tb, struct task_struct, rcu_node_entry);
1086	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1087	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1088	/* Lock only for side effect: boosts task t's priority. */
1089	rt_mutex_lock(&rnp->boost_mtx);
1090	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1091	rnp->n_boosts++;
1092
1093	return READ_ONCE(rnp->exp_tasks) != NULL ||
1094	       READ_ONCE(rnp->boost_tasks) != NULL;
1095}
1096
1097/*
1098 * Priority-boosting kthread, one per leaf rcu_node.
1099 */
1100static int rcu_boost_kthread(void *arg)
1101{
1102	struct rcu_node *rnp = (struct rcu_node *)arg;
1103	int spincnt = 0;
1104	int more2boost;
1105
1106	trace_rcu_utilization(TPS("Start boost kthread@init"));
1107	for (;;) {
1108		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1109		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1110		rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1111			 READ_ONCE(rnp->exp_tasks));
1112		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1113		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1114		more2boost = rcu_boost(rnp);
1115		if (more2boost)
1116			spincnt++;
1117		else
1118			spincnt = 0;
1119		if (spincnt > 10) {
1120			WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1121			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1122			schedule_timeout_idle(2);
1123			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1124			spincnt = 0;
1125		}
1126	}
1127	/* NOTREACHED */
1128	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1129	return 0;
1130}
1131
1132/*
1133 * Check to see if it is time to start boosting RCU readers that are
1134 * blocking the current grace period, and, if so, tell the per-rcu_node
1135 * kthread to start boosting them.  If there is an expedited grace
1136 * period in progress, it is always time to boost.
1137 *
1138 * The caller must hold rnp->lock, which this function releases.
1139 * The ->boost_kthread_task is immortal, so we don't need to worry
1140 * about it going away.
1141 */
1142static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1143	__releases(rnp->lock)
1144{
1145	raw_lockdep_assert_held_rcu_node(rnp);
1146	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1147		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1148		return;
1149	}
1150	if (rnp->exp_tasks != NULL ||
1151	    (rnp->gp_tasks != NULL &&
1152	     rnp->boost_tasks == NULL &&
1153	     rnp->qsmask == 0 &&
1154	     (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) {
1155		if (rnp->exp_tasks == NULL)
1156			WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
1157		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1158		rcu_wake_cond(rnp->boost_kthread_task,
1159			      READ_ONCE(rnp->boost_kthread_status));
1160	} else {
1161		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1162	}
1163}
1164
1165/*
1166 * Is the current CPU running the RCU-callbacks kthread?
1167 * Caller must have preemption disabled.
1168 */
1169static bool rcu_is_callbacks_kthread(void)
1170{
1171	return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1172}
1173
1174#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1175
1176/*
1177 * Do priority-boost accounting for the start of a new grace period.
1178 */
1179static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1180{
1181	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1182}
1183
1184/*
1185 * Create an RCU-boost kthread for the specified node if one does not
1186 * already exist.  We only create this kthread for preemptible RCU.
1187 * Returns zero if all is well, a negated errno otherwise.
1188 */
1189static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1190{
 
1191	unsigned long flags;
1192	int rnp_index = rnp - rcu_get_root();
1193	struct sched_param sp;
1194	struct task_struct *t;
1195
1196	if (rnp->boost_kthread_task || !rcu_scheduler_fully_active)
 
 
 
1197		return;
1198
1199	rcu_state.boost = 1;
1200
 
 
 
1201	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1202			   "rcub/%d", rnp_index);
1203	if (WARN_ON_ONCE(IS_ERR(t)))
1204		return;
1205
1206	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1207	rnp->boost_kthread_task = t;
1208	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1209	sp.sched_priority = kthread_prio;
1210	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1211	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1212}
1213
1214/*
1215 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1216 * served by the rcu_node in question.  The CPU hotplug lock is still
1217 * held, so the value of rnp->qsmaskinit will be stable.
1218 *
1219 * We don't include outgoingcpu in the affinity set, use -1 if there is
1220 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1221 * this function allows the kthread to execute on any CPU.
1222 */
1223static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1224{
1225	struct task_struct *t = rnp->boost_kthread_task;
1226	unsigned long mask = rcu_rnp_online_cpus(rnp);
1227	cpumask_var_t cm;
1228	int cpu;
1229
1230	if (!t)
1231		return;
1232	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1233		return;
1234	for_each_leaf_node_possible_cpu(rnp, cpu)
1235		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1236		    cpu != outgoingcpu)
1237			cpumask_set_cpu(cpu, cm);
1238	if (cpumask_weight(cm) == 0)
1239		cpumask_setall(cm);
1240	set_cpus_allowed_ptr(t, cm);
1241	free_cpumask_var(cm);
1242}
1243
1244/*
1245 * Spawn boost kthreads -- called as soon as the scheduler is running.
1246 */
1247static void __init rcu_spawn_boost_kthreads(void)
1248{
1249	struct rcu_node *rnp;
1250
1251	rcu_for_each_leaf_node(rnp)
1252		if (rcu_rnp_online_cpus(rnp))
1253			rcu_spawn_one_boost_kthread(rnp);
 
 
 
 
 
 
 
 
 
1254}
1255
1256#else /* #ifdef CONFIG_RCU_BOOST */
1257
1258static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1259	__releases(rnp->lock)
1260{
1261	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1262}
1263
1264static bool rcu_is_callbacks_kthread(void)
1265{
1266	return false;
1267}
1268
1269static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1270{
1271}
1272
1273static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1274{
1275}
1276
1277static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1278{
1279}
1280
1281static void __init rcu_spawn_boost_kthreads(void)
1282{
1283}
1284
1285#endif /* #else #ifdef CONFIG_RCU_BOOST */
1286
1287#if !defined(CONFIG_RCU_FAST_NO_HZ)
1288
1289/*
1290 * Check to see if any future non-offloaded RCU-related work will need
1291 * to be done by the current CPU, even if none need be done immediately,
1292 * returning 1 if so.  This function is part of the RCU implementation;
1293 * it is -not- an exported member of the RCU API.
1294 *
1295 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1296 * CPU has RCU callbacks queued.
1297 */
1298int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1299{
1300	*nextevt = KTIME_MAX;
1301	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1302		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
1303}
1304
1305/*
1306 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1307 * after it.
1308 */
1309static void rcu_cleanup_after_idle(void)
1310{
1311}
1312
1313/*
1314 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1315 * is nothing.
1316 */
1317static void rcu_prepare_for_idle(void)
1318{
1319}
1320
1321#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1322
1323/*
1324 * This code is invoked when a CPU goes idle, at which point we want
1325 * to have the CPU do everything required for RCU so that it can enter
1326 * the energy-efficient dyntick-idle mode.
1327 *
1328 * The following preprocessor symbol controls this:
1329 *
1330 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1331 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1332 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1333 *	benchmarkers who might otherwise be tempted to set this to a large
1334 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1335 *	system.  And if you are -that- concerned about energy efficiency,
1336 *	just power the system down and be done with it!
1337 *
1338 * The value below works well in practice.  If future workloads require
1339 * adjustment, they can be converted into kernel config parameters, though
1340 * making the state machine smarter might be a better option.
1341 */
1342#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1343
1344static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1345module_param(rcu_idle_gp_delay, int, 0644);
1346
1347/*
1348 * Try to advance callbacks on the current CPU, but only if it has been
1349 * awhile since the last time we did so.  Afterwards, if there are any
1350 * callbacks ready for immediate invocation, return true.
1351 */
1352static bool __maybe_unused rcu_try_advance_all_cbs(void)
1353{
1354	bool cbs_ready = false;
1355	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1356	struct rcu_node *rnp;
1357
1358	/* Exit early if we advanced recently. */
1359	if (jiffies == rdp->last_advance_all)
1360		return false;
1361	rdp->last_advance_all = jiffies;
1362
1363	rnp = rdp->mynode;
1364
1365	/*
1366	 * Don't bother checking unless a grace period has
1367	 * completed since we last checked and there are
1368	 * callbacks not yet ready to invoke.
1369	 */
1370	if ((rcu_seq_completed_gp(rdp->gp_seq,
1371				  rcu_seq_current(&rnp->gp_seq)) ||
1372	     unlikely(READ_ONCE(rdp->gpwrap))) &&
1373	    rcu_segcblist_pend_cbs(&rdp->cblist))
1374		note_gp_changes(rdp);
1375
1376	if (rcu_segcblist_ready_cbs(&rdp->cblist))
1377		cbs_ready = true;
1378	return cbs_ready;
1379}
1380
1381/*
1382 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1383 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1384 * caller about what to set the timeout.
1385 *
1386 * The caller must have disabled interrupts.
1387 */
1388int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1389{
1390	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1391	unsigned long dj;
1392
1393	lockdep_assert_irqs_disabled();
1394
1395	/* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1396	if (rcu_segcblist_empty(&rdp->cblist) ||
1397	    rcu_rdp_is_offloaded(rdp)) {
1398		*nextevt = KTIME_MAX;
1399		return 0;
1400	}
1401
1402	/* Attempt to advance callbacks. */
1403	if (rcu_try_advance_all_cbs()) {
1404		/* Some ready to invoke, so initiate later invocation. */
1405		invoke_rcu_core();
1406		return 1;
1407	}
1408	rdp->last_accelerate = jiffies;
1409
1410	/* Request timer and round. */
1411	dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1412
1413	*nextevt = basemono + dj * TICK_NSEC;
1414	return 0;
1415}
1416
1417/*
1418 * Prepare a CPU for idle from an RCU perspective.  The first major task is to
1419 * sense whether nohz mode has been enabled or disabled via sysfs.  The second
1420 * major task is to accelerate (that is, assign grace-period numbers to) any
1421 * recently arrived callbacks.
1422 *
1423 * The caller must have disabled interrupts.
1424 */
1425static void rcu_prepare_for_idle(void)
1426{
1427	bool needwake;
1428	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1429	struct rcu_node *rnp;
1430	int tne;
1431
1432	lockdep_assert_irqs_disabled();
1433	if (rcu_rdp_is_offloaded(rdp))
1434		return;
1435
1436	/* Handle nohz enablement switches conservatively. */
1437	tne = READ_ONCE(tick_nohz_active);
1438	if (tne != rdp->tick_nohz_enabled_snap) {
1439		if (!rcu_segcblist_empty(&rdp->cblist))
1440			invoke_rcu_core(); /* force nohz to see update. */
1441		rdp->tick_nohz_enabled_snap = tne;
1442		return;
1443	}
1444	if (!tne)
1445		return;
1446
1447	/*
1448	 * If we have not yet accelerated this jiffy, accelerate all
1449	 * callbacks on this CPU.
1450	 */
1451	if (rdp->last_accelerate == jiffies)
1452		return;
1453	rdp->last_accelerate = jiffies;
1454	if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1455		rnp = rdp->mynode;
1456		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1457		needwake = rcu_accelerate_cbs(rnp, rdp);
1458		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1459		if (needwake)
1460			rcu_gp_kthread_wake();
1461	}
1462}
1463
1464/*
1465 * Clean up for exit from idle.  Attempt to advance callbacks based on
1466 * any grace periods that elapsed while the CPU was idle, and if any
1467 * callbacks are now ready to invoke, initiate invocation.
1468 */
1469static void rcu_cleanup_after_idle(void)
1470{
1471	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1472
1473	lockdep_assert_irqs_disabled();
1474	if (rcu_rdp_is_offloaded(rdp))
1475		return;
1476	if (rcu_try_advance_all_cbs())
1477		invoke_rcu_core();
1478}
1479
1480#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1481
1482#ifdef CONFIG_RCU_NOCB_CPU
1483
1484/*
1485 * Offload callback processing from the boot-time-specified set of CPUs
1486 * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
1487 * created that pull the callbacks from the corresponding CPU, wait for
1488 * a grace period to elapse, and invoke the callbacks.  These kthreads
1489 * are organized into GP kthreads, which manage incoming callbacks, wait for
1490 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1491 * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
1492 * do a wake_up() on their GP kthread when they insert a callback into any
1493 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1494 * in which case each kthread actively polls its CPU.  (Which isn't so great
1495 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1496 *
1497 * This is intended to be used in conjunction with Frederic Weisbecker's
1498 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1499 * running CPU-bound user-mode computations.
1500 *
1501 * Offloading of callbacks can also be used as an energy-efficiency
1502 * measure because CPUs with no RCU callbacks queued are more aggressive
1503 * about entering dyntick-idle mode.
1504 */
1505
1506
1507/*
1508 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1509 * If the list is invalid, a warning is emitted and all CPUs are offloaded.
 
 
1510 */
1511static int __init rcu_nocb_setup(char *str)
1512{
1513	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1514	if (cpulist_parse(str, rcu_nocb_mask)) {
1515		pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1516		cpumask_setall(rcu_nocb_mask);
1517	}
 
 
 
 
1518	return 1;
1519}
1520__setup("rcu_nocbs=", rcu_nocb_setup);
1521
1522static int __init parse_rcu_nocb_poll(char *arg)
1523{
1524	rcu_nocb_poll = true;
1525	return 0;
1526}
1527early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1528
1529/*
1530 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1531 * After all, the main point of bypassing is to avoid lock contention
1532 * on ->nocb_lock, which only can happen at high call_rcu() rates.
1533 */
1534static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1535module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1536
1537/*
1538 * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
1539 * lock isn't immediately available, increment ->nocb_lock_contended to
1540 * flag the contention.
1541 */
1542static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1543	__acquires(&rdp->nocb_bypass_lock)
1544{
1545	lockdep_assert_irqs_disabled();
1546	if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1547		return;
1548	atomic_inc(&rdp->nocb_lock_contended);
1549	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1550	smp_mb__after_atomic(); /* atomic_inc() before lock. */
1551	raw_spin_lock(&rdp->nocb_bypass_lock);
1552	smp_mb__before_atomic(); /* atomic_dec() after lock. */
1553	atomic_dec(&rdp->nocb_lock_contended);
1554}
1555
1556/*
1557 * Spinwait until the specified rcu_data structure's ->nocb_lock is
1558 * not contended.  Please note that this is extremely special-purpose,
1559 * relying on the fact that at most two kthreads and one CPU contend for
1560 * this lock, and also that the two kthreads are guaranteed to have frequent
1561 * grace-period-duration time intervals between successive acquisitions
1562 * of the lock.  This allows us to use an extremely simple throttling
1563 * mechanism, and further to apply it only to the CPU doing floods of
1564 * call_rcu() invocations.  Don't try this at home!
1565 */
1566static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1567{
1568	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1569	while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1570		cpu_relax();
1571}
1572
1573/*
1574 * Conditionally acquire the specified rcu_data structure's
1575 * ->nocb_bypass_lock.
1576 */
1577static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1578{
1579	lockdep_assert_irqs_disabled();
1580	return raw_spin_trylock(&rdp->nocb_bypass_lock);
1581}
1582
1583/*
1584 * Release the specified rcu_data structure's ->nocb_bypass_lock.
1585 */
1586static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1587	__releases(&rdp->nocb_bypass_lock)
1588{
1589	lockdep_assert_irqs_disabled();
1590	raw_spin_unlock(&rdp->nocb_bypass_lock);
1591}
1592
1593/*
1594 * Acquire the specified rcu_data structure's ->nocb_lock, but only
1595 * if it corresponds to a no-CBs CPU.
1596 */
1597static void rcu_nocb_lock(struct rcu_data *rdp)
1598{
1599	lockdep_assert_irqs_disabled();
1600	if (!rcu_rdp_is_offloaded(rdp))
1601		return;
1602	raw_spin_lock(&rdp->nocb_lock);
1603}
1604
1605/*
1606 * Release the specified rcu_data structure's ->nocb_lock, but only
1607 * if it corresponds to a no-CBs CPU.
1608 */
1609static void rcu_nocb_unlock(struct rcu_data *rdp)
1610{
1611	if (rcu_rdp_is_offloaded(rdp)) {
1612		lockdep_assert_irqs_disabled();
1613		raw_spin_unlock(&rdp->nocb_lock);
1614	}
1615}
1616
1617/*
1618 * Release the specified rcu_data structure's ->nocb_lock and restore
1619 * interrupts, but only if it corresponds to a no-CBs CPU.
1620 */
1621static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1622				       unsigned long flags)
1623{
1624	if (rcu_rdp_is_offloaded(rdp)) {
1625		lockdep_assert_irqs_disabled();
1626		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1627	} else {
1628		local_irq_restore(flags);
1629	}
1630}
1631
1632/* Lockdep check that ->cblist may be safely accessed. */
1633static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1634{
1635	lockdep_assert_irqs_disabled();
1636	if (rcu_rdp_is_offloaded(rdp))
1637		lockdep_assert_held(&rdp->nocb_lock);
1638}
1639
1640/*
1641 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1642 * grace period.
1643 */
1644static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1645{
1646	swake_up_all(sq);
1647}
1648
1649static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1650{
1651	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1652}
1653
1654static void rcu_init_one_nocb(struct rcu_node *rnp)
1655{
1656	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1657	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1658}
1659
1660/* Is the specified CPU a no-CBs CPU? */
1661bool rcu_is_nocb_cpu(int cpu)
1662{
1663	if (cpumask_available(rcu_nocb_mask))
1664		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1665	return false;
1666}
1667
1668static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
1669			   struct rcu_data *rdp,
1670			   bool force, unsigned long flags)
1671	__releases(rdp_gp->nocb_gp_lock)
 
 
 
1672{
1673	bool needwake = false;
 
1674
 
1675	if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1676		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1677		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1678				    TPS("AlreadyAwake"));
1679		return false;
 
1680	}
1681
1682	if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
1683		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
1684		del_timer(&rdp_gp->nocb_timer);
1685	}
1686
1687	if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1688		WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1689		needwake = true;
 
1690	}
1691	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1692	if (needwake) {
1693		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1694		wake_up_process(rdp_gp->nocb_gp_kthread);
1695	}
1696
1697	return needwake;
1698}
1699
1700/*
1701 * Kick the GP kthread for this NOCB group.
1702 */
1703static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
1704{
1705	unsigned long flags;
1706	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1707
1708	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1709	return __wake_nocb_gp(rdp_gp, rdp, force, flags);
1710}
1711
1712/*
1713 * Arrange to wake the GP kthread for this NOCB group at some future
1714 * time when it is safe to do so.
1715 */
1716static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1717			       const char *reason)
1718{
1719	unsigned long flags;
1720	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1721
1722	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1723
1724	/*
1725	 * Bypass wakeup overrides previous deferments. In case
1726	 * of callback storm, no need to wake up too early.
1727	 */
1728	if (waketype == RCU_NOCB_WAKE_BYPASS) {
1729		mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
1730		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
1731	} else {
1732		if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
1733			mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
1734		if (rdp_gp->nocb_defer_wakeup < waketype)
1735			WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
1736	}
1737
1738	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1739
1740	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1741}
1742
1743/*
1744 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1745 * However, if there is a callback to be enqueued and if ->nocb_bypass
1746 * proves to be initially empty, just return false because the no-CB GP
1747 * kthread may need to be awakened in this case.
1748 *
1749 * Note that this function always returns true if rhp is NULL.
1750 */
1751static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1752				     unsigned long j)
1753{
1754	struct rcu_cblist rcl;
1755
1756	WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
1757	rcu_lockdep_assert_cblist_protected(rdp);
1758	lockdep_assert_held(&rdp->nocb_bypass_lock);
1759	if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1760		raw_spin_unlock(&rdp->nocb_bypass_lock);
1761		return false;
1762	}
1763	/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1764	if (rhp)
1765		rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1766	rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1767	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1768	WRITE_ONCE(rdp->nocb_bypass_first, j);
1769	rcu_nocb_bypass_unlock(rdp);
1770	return true;
1771}
1772
1773/*
1774 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1775 * However, if there is a callback to be enqueued and if ->nocb_bypass
1776 * proves to be initially empty, just return false because the no-CB GP
1777 * kthread may need to be awakened in this case.
1778 *
1779 * Note that this function always returns true if rhp is NULL.
1780 */
1781static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1782				  unsigned long j)
1783{
1784	if (!rcu_rdp_is_offloaded(rdp))
1785		return true;
1786	rcu_lockdep_assert_cblist_protected(rdp);
1787	rcu_nocb_bypass_lock(rdp);
1788	return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1789}
1790
1791/*
1792 * If the ->nocb_bypass_lock is immediately available, flush the
1793 * ->nocb_bypass queue into ->cblist.
1794 */
1795static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1796{
1797	rcu_lockdep_assert_cblist_protected(rdp);
1798	if (!rcu_rdp_is_offloaded(rdp) ||
1799	    !rcu_nocb_bypass_trylock(rdp))
1800		return;
1801	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1802}
1803
1804/*
1805 * See whether it is appropriate to use the ->nocb_bypass list in order
1806 * to control contention on ->nocb_lock.  A limited number of direct
1807 * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
1808 * is non-empty, further callbacks must be placed into ->nocb_bypass,
1809 * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
1810 * back to direct use of ->cblist.  However, ->nocb_bypass should not be
1811 * used if ->cblist is empty, because otherwise callbacks can be stranded
1812 * on ->nocb_bypass because we cannot count on the current CPU ever again
1813 * invoking call_rcu().  The general rule is that if ->nocb_bypass is
1814 * non-empty, the corresponding no-CBs grace-period kthread must not be
1815 * in an indefinite sleep state.
1816 *
1817 * Finally, it is not permitted to use the bypass during early boot,
1818 * as doing so would confuse the auto-initialization code.  Besides
1819 * which, there is no point in worrying about lock contention while
1820 * there is only one CPU in operation.
1821 */
1822static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1823				bool *was_alldone, unsigned long flags)
1824{
1825	unsigned long c;
1826	unsigned long cur_gp_seq;
1827	unsigned long j = jiffies;
1828	long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1829
1830	lockdep_assert_irqs_disabled();
1831
1832	// Pure softirq/rcuc based processing: no bypassing, no
1833	// locking.
1834	if (!rcu_rdp_is_offloaded(rdp)) {
1835		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1836		return false;
1837	}
1838
1839	// In the process of (de-)offloading: no bypassing, but
1840	// locking.
1841	if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
1842		rcu_nocb_lock(rdp);
1843		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1844		return false; /* Not offloaded, no bypassing. */
1845	}
 
1846
1847	// Don't use ->nocb_bypass during early boot.
1848	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1849		rcu_nocb_lock(rdp);
1850		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1851		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1852		return false;
1853	}
1854
1855	// If we have advanced to a new jiffy, reset counts to allow
1856	// moving back from ->nocb_bypass to ->cblist.
1857	if (j == rdp->nocb_nobypass_last) {
1858		c = rdp->nocb_nobypass_count + 1;
1859	} else {
1860		WRITE_ONCE(rdp->nocb_nobypass_last, j);
1861		c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1862		if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1863				 nocb_nobypass_lim_per_jiffy))
1864			c = 0;
1865		else if (c > nocb_nobypass_lim_per_jiffy)
1866			c = nocb_nobypass_lim_per_jiffy;
1867	}
1868	WRITE_ONCE(rdp->nocb_nobypass_count, c);
1869
1870	// If there hasn't yet been all that many ->cblist enqueues
1871	// this jiffy, tell the caller to enqueue onto ->cblist.  But flush
1872	// ->nocb_bypass first.
1873	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1874		rcu_nocb_lock(rdp);
1875		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1876		if (*was_alldone)
1877			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1878					    TPS("FirstQ"));
1879		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1880		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1881		return false; // Caller must enqueue the callback.
1882	}
1883
1884	// If ->nocb_bypass has been used too long or is too full,
1885	// flush ->nocb_bypass to ->cblist.
1886	if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1887	    ncbs >= qhimark) {
1888		rcu_nocb_lock(rdp);
1889		if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1890			*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1891			if (*was_alldone)
1892				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1893						    TPS("FirstQ"));
1894			WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1895			return false; // Caller must enqueue the callback.
1896		}
1897		if (j != rdp->nocb_gp_adv_time &&
1898		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1899		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1900			rcu_advance_cbs_nowake(rdp->mynode, rdp);
1901			rdp->nocb_gp_adv_time = j;
1902		}
1903		rcu_nocb_unlock_irqrestore(rdp, flags);
1904		return true; // Callback already enqueued.
1905	}
1906
1907	// We need to use the bypass.
1908	rcu_nocb_wait_contended(rdp);
1909	rcu_nocb_bypass_lock(rdp);
1910	ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1911	rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1912	rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1913	if (!ncbs) {
1914		WRITE_ONCE(rdp->nocb_bypass_first, j);
1915		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1916	}
1917	rcu_nocb_bypass_unlock(rdp);
1918	smp_mb(); /* Order enqueue before wake. */
1919	if (ncbs) {
1920		local_irq_restore(flags);
1921	} else {
1922		// No-CBs GP kthread might be indefinitely asleep, if so, wake.
1923		rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1924		if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1925			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1926					    TPS("FirstBQwake"));
1927			__call_rcu_nocb_wake(rdp, true, flags);
1928		} else {
1929			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1930					    TPS("FirstBQnoWake"));
1931			rcu_nocb_unlock_irqrestore(rdp, flags);
1932		}
1933	}
1934	return true; // Callback already enqueued.
1935}
1936
1937/*
1938 * Awaken the no-CBs grace-period kthread if needed, either due to it
1939 * legitimately being asleep or due to overload conditions.
1940 *
1941 * If warranted, also wake up the kthread servicing this CPUs queues.
1942 */
1943static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1944				 unsigned long flags)
1945				 __releases(rdp->nocb_lock)
1946{
1947	unsigned long cur_gp_seq;
1948	unsigned long j;
1949	long len;
1950	struct task_struct *t;
1951
1952	// If we are being polled or there is no kthread, just leave.
1953	t = READ_ONCE(rdp->nocb_gp_kthread);
1954	if (rcu_nocb_poll || !t) {
1955		rcu_nocb_unlock_irqrestore(rdp, flags);
1956		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1957				    TPS("WakeNotPoll"));
 
1958		return;
1959	}
1960	// Need to actually to a wakeup.
1961	len = rcu_segcblist_n_cbs(&rdp->cblist);
1962	if (was_alldone) {
1963		rdp->qlen_last_fqs_check = len;
1964		if (!irqs_disabled_flags(flags)) {
1965			/* ... if queue was empty ... */
1966			rcu_nocb_unlock_irqrestore(rdp, flags);
1967			wake_nocb_gp(rdp, false);
1968			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1969					    TPS("WakeEmpty"));
1970		} else {
1971			rcu_nocb_unlock_irqrestore(rdp, flags);
1972			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1973					   TPS("WakeEmptyIsDeferred"));
 
1974		}
1975	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1976		/* ... or if many callbacks queued. */
1977		rdp->qlen_last_fqs_check = len;
1978		j = jiffies;
1979		if (j != rdp->nocb_gp_adv_time &&
1980		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1981		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1982			rcu_advance_cbs_nowake(rdp->mynode, rdp);
1983			rdp->nocb_gp_adv_time = j;
1984		}
1985		smp_mb(); /* Enqueue before timer_pending(). */
1986		if ((rdp->nocb_cb_sleep ||
1987		     !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1988		    !timer_pending(&rdp->nocb_timer)) {
1989			rcu_nocb_unlock_irqrestore(rdp, flags);
1990			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1991					   TPS("WakeOvfIsDeferred"));
1992		} else {
1993			rcu_nocb_unlock_irqrestore(rdp, flags);
1994			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1995		}
1996	} else {
 
1997		rcu_nocb_unlock_irqrestore(rdp, flags);
1998		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1999	}
2000	return;
2001}
2002
2003/*
2004 * Check if we ignore this rdp.
2005 *
2006 * We check that without holding the nocb lock but
2007 * we make sure not to miss a freshly offloaded rdp
2008 * with the current ordering:
2009 *
2010 *  rdp_offload_toggle()        nocb_gp_enabled_cb()
2011 * -------------------------   ----------------------------
2012 *    WRITE flags                 LOCK nocb_gp_lock
2013 *    LOCK nocb_gp_lock           READ/WRITE nocb_gp_sleep
2014 *    READ/WRITE nocb_gp_sleep    UNLOCK nocb_gp_lock
2015 *    UNLOCK nocb_gp_lock         READ flags
2016 */
2017static inline bool nocb_gp_enabled_cb(struct rcu_data *rdp)
2018{
2019	u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_GP;
2020
2021	return rcu_segcblist_test_flags(&rdp->cblist, flags);
2022}
2023
2024static inline bool nocb_gp_update_state_deoffloading(struct rcu_data *rdp,
2025						     bool *needwake_state)
2026{
2027	struct rcu_segcblist *cblist = &rdp->cblist;
 
2028
2029	if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
2030		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
2031			rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP);
2032			if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
2033				*needwake_state = true;
2034		}
2035		return false;
2036	}
2037
2038	/*
2039	 * De-offloading. Clear our flag and notify the de-offload worker.
2040	 * We will ignore this rdp until it ever gets re-offloaded.
2041	 */
2042	WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
2043	rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP);
2044	if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
2045		*needwake_state = true;
2046	return true;
2047}
2048
2049
2050/*
2051 * No-CBs GP kthreads come here to wait for additional callbacks to show up
2052 * or for grace periods to end.
2053 */
2054static void nocb_gp_wait(struct rcu_data *my_rdp)
2055{
2056	bool bypass = false;
2057	long bypass_ncbs;
2058	int __maybe_unused cpu = my_rdp->cpu;
2059	unsigned long cur_gp_seq;
2060	unsigned long flags;
2061	bool gotcbs = false;
2062	unsigned long j = jiffies;
2063	bool needwait_gp = false; // This prevents actual uninitialized use.
2064	bool needwake;
2065	bool needwake_gp;
2066	struct rcu_data *rdp;
2067	struct rcu_node *rnp;
2068	unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
2069	bool wasempty = false;
2070
2071	/*
2072	 * Each pass through the following loop checks for CBs and for the
2073	 * nearest grace period (if any) to wait for next.  The CB kthreads
2074	 * and the global grace-period kthread are awakened if needed.
2075	 */
2076	WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
2077	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
2078		bool needwake_state = false;
2079
2080		if (!nocb_gp_enabled_cb(rdp))
2081			continue;
2082		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
2083		rcu_nocb_lock_irqsave(rdp, flags);
2084		if (nocb_gp_update_state_deoffloading(rdp, &needwake_state)) {
2085			rcu_nocb_unlock_irqrestore(rdp, flags);
2086			if (needwake_state)
2087				swake_up_one(&rdp->nocb_state_wq);
2088			continue;
2089		}
2090		bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
2091		if (bypass_ncbs &&
2092		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
2093		     bypass_ncbs > 2 * qhimark)) {
2094			// Bypass full or old, so flush it.
2095			(void)rcu_nocb_try_flush_bypass(rdp, j);
2096			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
2097		} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
2098			rcu_nocb_unlock_irqrestore(rdp, flags);
2099			if (needwake_state)
2100				swake_up_one(&rdp->nocb_state_wq);
2101			continue; /* No callbacks here, try next. */
2102		}
2103		if (bypass_ncbs) {
2104			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2105					    TPS("Bypass"));
2106			bypass = true;
2107		}
2108		rnp = rdp->mynode;
2109
 
 
 
 
2110		// Advance callbacks if helpful and low contention.
2111		needwake_gp = false;
2112		if (!rcu_segcblist_restempty(&rdp->cblist,
2113					     RCU_NEXT_READY_TAIL) ||
2114		    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2115		     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
2116			raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
2117			needwake_gp = rcu_advance_cbs(rnp, rdp);
2118			wasempty = rcu_segcblist_restempty(&rdp->cblist,
2119							   RCU_NEXT_READY_TAIL);
2120			raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
2121		}
2122		// Need to wait on some grace period?
2123		WARN_ON_ONCE(wasempty &&
2124			     !rcu_segcblist_restempty(&rdp->cblist,
2125						      RCU_NEXT_READY_TAIL));
2126		if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
2127			if (!needwait_gp ||
2128			    ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
2129				wait_gp_seq = cur_gp_seq;
2130			needwait_gp = true;
2131			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2132					    TPS("NeedWaitGP"));
2133		}
2134		if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2135			needwake = rdp->nocb_cb_sleep;
2136			WRITE_ONCE(rdp->nocb_cb_sleep, false);
2137			smp_mb(); /* CB invocation -after- GP end. */
2138		} else {
2139			needwake = false;
2140		}
2141		rcu_nocb_unlock_irqrestore(rdp, flags);
2142		if (needwake) {
2143			swake_up_one(&rdp->nocb_cb_wq);
2144			gotcbs = true;
2145		}
2146		if (needwake_gp)
2147			rcu_gp_kthread_wake();
2148		if (needwake_state)
2149			swake_up_one(&rdp->nocb_state_wq);
2150	}
2151
2152	my_rdp->nocb_gp_bypass = bypass;
2153	my_rdp->nocb_gp_gp = needwait_gp;
2154	my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
2155
2156	if (bypass && !rcu_nocb_poll) {
2157		// At least one child with non-empty ->nocb_bypass, so set
2158		// timer in order to avoid stranding its callbacks.
2159		wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
2160				   TPS("WakeBypassIsDeferred"));
 
2161	}
2162	if (rcu_nocb_poll) {
2163		/* Polling, so trace if first poll in the series. */
2164		if (gotcbs)
2165			trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2166		schedule_timeout_idle(1);
2167	} else if (!needwait_gp) {
2168		/* Wait for callbacks to appear. */
2169		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2170		swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2171				!READ_ONCE(my_rdp->nocb_gp_sleep));
2172		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2173	} else {
2174		rnp = my_rdp->mynode;
2175		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2176		swait_event_interruptible_exclusive(
2177			rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2178			rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2179			!READ_ONCE(my_rdp->nocb_gp_sleep));
2180		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2181	}
2182	if (!rcu_nocb_poll) {
2183		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2184		if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
2185			WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2186			del_timer(&my_rdp->nocb_timer);
2187		}
2188		WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2189		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2190	}
2191	my_rdp->nocb_gp_seq = -1;
2192	WARN_ON(signal_pending(current));
2193}
2194
2195/*
2196 * No-CBs grace-period-wait kthread.  There is one of these per group
2197 * of CPUs, but only once at least one CPU in that group has come online
2198 * at least once since boot.  This kthread checks for newly posted
2199 * callbacks from any of the CPUs it is responsible for, waits for a
2200 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2201 * that then have callback-invocation work to do.
2202 */
2203static int rcu_nocb_gp_kthread(void *arg)
2204{
2205	struct rcu_data *rdp = arg;
2206
2207	for (;;) {
2208		WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2209		nocb_gp_wait(rdp);
2210		cond_resched_tasks_rcu_qs();
2211	}
2212	return 0;
2213}
2214
2215static inline bool nocb_cb_can_run(struct rcu_data *rdp)
2216{
2217	u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB;
2218	return rcu_segcblist_test_flags(&rdp->cblist, flags);
2219}
2220
2221static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
2222{
2223	return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep);
2224}
2225
2226/*
2227 * Invoke any ready callbacks from the corresponding no-CBs CPU,
2228 * then, if there are no more, wait for more to appear.
2229 */
2230static void nocb_cb_wait(struct rcu_data *rdp)
2231{
2232	struct rcu_segcblist *cblist = &rdp->cblist;
2233	unsigned long cur_gp_seq;
2234	unsigned long flags;
2235	bool needwake_state = false;
2236	bool needwake_gp = false;
2237	bool can_sleep = true;
2238	struct rcu_node *rnp = rdp->mynode;
2239
2240	local_irq_save(flags);
2241	rcu_momentary_dyntick_idle();
2242	local_irq_restore(flags);
2243	/*
2244	 * Disable BH to provide the expected environment.  Also, when
2245	 * transitioning to/from NOCB mode, a self-requeuing callback might
2246	 * be invoked from softirq.  A short grace period could cause both
2247	 * instances of this callback would execute concurrently.
2248	 */
2249	local_bh_disable();
2250	rcu_do_batch(rdp);
2251	local_bh_enable();
2252	lockdep_assert_irqs_enabled();
2253	rcu_nocb_lock_irqsave(rdp, flags);
2254	if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
2255	    rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2256	    raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2257		needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2258		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2259	}
2260
2261	if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
2262		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) {
2263			rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB);
2264			if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
2265				needwake_state = true;
2266		}
2267		if (rcu_segcblist_ready_cbs(cblist))
2268			can_sleep = false;
2269	} else {
2270		/*
2271		 * De-offloading. Clear our flag and notify the de-offload worker.
2272		 * We won't touch the callbacks and keep sleeping until we ever
2273		 * get re-offloaded.
2274		 */
2275		WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB));
2276		rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB);
2277		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
2278			needwake_state = true;
2279	}
2280
2281	WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep);
2282
2283	if (rdp->nocb_cb_sleep)
2284		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2285
2286	rcu_nocb_unlock_irqrestore(rdp, flags);
2287	if (needwake_gp)
2288		rcu_gp_kthread_wake();
2289
2290	if (needwake_state)
2291		swake_up_one(&rdp->nocb_state_wq);
2292
2293	do {
2294		swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2295						    nocb_cb_wait_cond(rdp));
2296
2297		// VVV Ensure CB invocation follows _sleep test.
2298		if (smp_load_acquire(&rdp->nocb_cb_sleep)) { // ^^^
2299			WARN_ON(signal_pending(current));
2300			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2301		}
2302	} while (!nocb_cb_can_run(rdp));
2303}
2304
2305/*
2306 * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
2307 * nocb_cb_wait() to do the dirty work.
2308 */
2309static int rcu_nocb_cb_kthread(void *arg)
2310{
2311	struct rcu_data *rdp = arg;
2312
2313	// Each pass through this loop does one callback batch, and,
2314	// if there are no more ready callbacks, waits for them.
2315	for (;;) {
2316		nocb_cb_wait(rdp);
2317		cond_resched_tasks_rcu_qs();
2318	}
2319	return 0;
2320}
2321
2322/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2323static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
2324{
2325	return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
2326}
2327
2328/* Do a deferred wakeup of rcu_nocb_kthread(). */
2329static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
2330					   struct rcu_data *rdp, int level,
2331					   unsigned long flags)
2332	__releases(rdp_gp->nocb_gp_lock)
2333{
 
2334	int ndw;
2335	int ret;
2336
2337	if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
2338		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
2339		return false;
 
2340	}
2341
2342	ndw = rdp_gp->nocb_defer_wakeup;
2343	ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2344	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2345
2346	return ret;
2347}
2348
2349/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2350static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2351{
2352	unsigned long flags;
2353	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2354
2355	WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
2356	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
2357
2358	raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
2359	smp_mb__after_spinlock(); /* Timer expire before wakeup. */
2360	do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
2361}
2362
2363/*
2364 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2365 * This means we do an inexact common-case check.  Note that if
2366 * we miss, ->nocb_timer will eventually clean things up.
2367 */
2368static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
2369{
2370	unsigned long flags;
2371	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
2372
2373	if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
2374		return false;
2375
2376	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
2377	return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
2378}
2379
2380void rcu_nocb_flush_deferred_wakeup(void)
2381{
2382	do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
 
2383}
2384EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);
2385
2386static int rdp_offload_toggle(struct rcu_data *rdp,
2387			       bool offload, unsigned long flags)
2388	__releases(rdp->nocb_lock)
2389{
2390	struct rcu_segcblist *cblist = &rdp->cblist;
2391	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
2392	bool wake_gp = false;
2393
2394	rcu_segcblist_offload(cblist, offload);
2395
2396	if (rdp->nocb_cb_sleep)
2397		rdp->nocb_cb_sleep = false;
2398	rcu_nocb_unlock_irqrestore(rdp, flags);
2399
2400	/*
2401	 * Ignore former value of nocb_cb_sleep and force wake up as it could
2402	 * have been spuriously set to false already.
2403	 */
2404	swake_up_one(&rdp->nocb_cb_wq);
2405
2406	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
2407	if (rdp_gp->nocb_gp_sleep) {
2408		rdp_gp->nocb_gp_sleep = false;
2409		wake_gp = true;
2410	}
2411	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
2412
2413	if (wake_gp)
2414		wake_up_process(rdp_gp->nocb_gp_kthread);
2415
2416	return 0;
2417}
2418
2419static long rcu_nocb_rdp_deoffload(void *arg)
2420{
2421	struct rcu_data *rdp = arg;
2422	struct rcu_segcblist *cblist = &rdp->cblist;
2423	unsigned long flags;
2424	int ret;
2425
2426	WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
2427
2428	pr_info("De-offloading %d\n", rdp->cpu);
2429
2430	rcu_nocb_lock_irqsave(rdp, flags);
2431	/*
2432	 * Flush once and for all now. This suffices because we are
2433	 * running on the target CPU holding ->nocb_lock (thus having
2434	 * interrupts disabled), and because rdp_offload_toggle()
2435	 * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED.
2436	 * Thus future calls to rcu_segcblist_completely_offloaded() will
2437	 * return false, which means that future calls to rcu_nocb_try_bypass()
2438	 * will refuse to put anything into the bypass.
2439	 */
2440	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
2441	ret = rdp_offload_toggle(rdp, false, flags);
2442	swait_event_exclusive(rdp->nocb_state_wq,
2443			      !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB |
2444							SEGCBLIST_KTHREAD_GP));
2445	/*
2446	 * Lock one last time to acquire latest callback updates from kthreads
2447	 * so we can later handle callbacks locally without locking.
2448	 */
2449	rcu_nocb_lock_irqsave(rdp, flags);
2450	/*
2451	 * Theoretically we could set SEGCBLIST_SOFTIRQ_ONLY after the nocb
2452	 * lock is released but how about being paranoid for once?
2453	 */
2454	rcu_segcblist_set_flags(cblist, SEGCBLIST_SOFTIRQ_ONLY);
2455	/*
2456	 * With SEGCBLIST_SOFTIRQ_ONLY, we can't use
2457	 * rcu_nocb_unlock_irqrestore() anymore.
2458	 */
2459	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2460
2461	/* Sanity check */
2462	WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
2463
2464
2465	return ret;
2466}
2467
2468int rcu_nocb_cpu_deoffload(int cpu)
2469{
2470	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2471	int ret = 0;
2472
2473	mutex_lock(&rcu_state.barrier_mutex);
2474	cpus_read_lock();
2475	if (rcu_rdp_is_offloaded(rdp)) {
2476		if (cpu_online(cpu)) {
2477			ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp);
2478			if (!ret)
2479				cpumask_clear_cpu(cpu, rcu_nocb_mask);
2480		} else {
2481			pr_info("NOCB: Can't CB-deoffload an offline CPU\n");
2482			ret = -EINVAL;
2483		}
2484	}
2485	cpus_read_unlock();
2486	mutex_unlock(&rcu_state.barrier_mutex);
2487
2488	return ret;
2489}
2490EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);
2491
2492static long rcu_nocb_rdp_offload(void *arg)
2493{
2494	struct rcu_data *rdp = arg;
2495	struct rcu_segcblist *cblist = &rdp->cblist;
2496	unsigned long flags;
2497	int ret;
2498
2499	WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
2500	/*
2501	 * For now we only support re-offload, ie: the rdp must have been
2502	 * offloaded on boot first.
2503	 */
2504	if (!rdp->nocb_gp_rdp)
2505		return -EINVAL;
2506
2507	pr_info("Offloading %d\n", rdp->cpu);
2508	/*
2509	 * Can't use rcu_nocb_lock_irqsave() while we are in
2510	 * SEGCBLIST_SOFTIRQ_ONLY mode.
2511	 */
2512	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2513
2514	/*
2515	 * We didn't take the nocb lock while working on the
2516	 * rdp->cblist in SEGCBLIST_SOFTIRQ_ONLY mode.
2517	 * Every modifications that have been done previously on
2518	 * rdp->cblist must be visible remotely by the nocb kthreads
2519	 * upon wake up after reading the cblist flags.
2520	 *
2521	 * The layout against nocb_lock enforces that ordering:
2522	 *
2523	 *  __rcu_nocb_rdp_offload()   nocb_cb_wait()/nocb_gp_wait()
2524	 * -------------------------   ----------------------------
2525	 *      WRITE callbacks           rcu_nocb_lock()
2526	 *      rcu_nocb_lock()           READ flags
2527	 *      WRITE flags               READ callbacks
2528	 *      rcu_nocb_unlock()         rcu_nocb_unlock()
2529	 */
2530	ret = rdp_offload_toggle(rdp, true, flags);
2531	swait_event_exclusive(rdp->nocb_state_wq,
2532			      rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) &&
2533			      rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
2534
2535	return ret;
2536}
2537
2538int rcu_nocb_cpu_offload(int cpu)
2539{
2540	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2541	int ret = 0;
2542
2543	mutex_lock(&rcu_state.barrier_mutex);
2544	cpus_read_lock();
2545	if (!rcu_rdp_is_offloaded(rdp)) {
2546		if (cpu_online(cpu)) {
2547			ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp);
2548			if (!ret)
2549				cpumask_set_cpu(cpu, rcu_nocb_mask);
2550		} else {
2551			pr_info("NOCB: Can't CB-offload an offline CPU\n");
2552			ret = -EINVAL;
2553		}
2554	}
2555	cpus_read_unlock();
2556	mutex_unlock(&rcu_state.barrier_mutex);
2557
2558	return ret;
2559}
2560EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
2561
2562void __init rcu_init_nohz(void)
2563{
2564	int cpu;
2565	bool need_rcu_nocb_mask = false;
2566	struct rcu_data *rdp;
2567
2568#if defined(CONFIG_NO_HZ_FULL)
2569	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2570		need_rcu_nocb_mask = true;
2571#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2572
2573	if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2574		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2575			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2576			return;
2577		}
2578	}
2579	if (!cpumask_available(rcu_nocb_mask))
2580		return;
2581
2582#if defined(CONFIG_NO_HZ_FULL)
2583	if (tick_nohz_full_running)
2584		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2585#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2586
2587	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2588		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2589		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2590			    rcu_nocb_mask);
2591	}
2592	if (cpumask_empty(rcu_nocb_mask))
2593		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2594	else
2595		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2596			cpumask_pr_args(rcu_nocb_mask));
2597	if (rcu_nocb_poll)
2598		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2599
2600	for_each_cpu(cpu, rcu_nocb_mask) {
2601		rdp = per_cpu_ptr(&rcu_data, cpu);
2602		if (rcu_segcblist_empty(&rdp->cblist))
2603			rcu_segcblist_init(&rdp->cblist);
2604		rcu_segcblist_offload(&rdp->cblist, true);
2605		rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB);
2606		rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_GP);
2607	}
2608	rcu_organize_nocb_kthreads();
2609}
2610
2611/* Initialize per-rcu_data variables for no-CBs CPUs. */
2612static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2613{
2614	init_swait_queue_head(&rdp->nocb_cb_wq);
2615	init_swait_queue_head(&rdp->nocb_gp_wq);
2616	init_swait_queue_head(&rdp->nocb_state_wq);
2617	raw_spin_lock_init(&rdp->nocb_lock);
2618	raw_spin_lock_init(&rdp->nocb_bypass_lock);
2619	raw_spin_lock_init(&rdp->nocb_gp_lock);
2620	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
 
2621	rcu_cblist_init(&rdp->nocb_bypass);
2622}
2623
2624/*
2625 * If the specified CPU is a no-CBs CPU that does not already have its
2626 * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
2627 * for this CPU's group has not yet been created, spawn it as well.
2628 */
2629static void rcu_spawn_one_nocb_kthread(int cpu)
2630{
2631	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2632	struct rcu_data *rdp_gp;
2633	struct task_struct *t;
2634
2635	/*
2636	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2637	 * then nothing to do.
2638	 */
2639	if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2640		return;
2641
2642	/* If we didn't spawn the GP kthread first, reorganize! */
2643	rdp_gp = rdp->nocb_gp_rdp;
2644	if (!rdp_gp->nocb_gp_kthread) {
2645		t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2646				"rcuog/%d", rdp_gp->cpu);
2647		if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2648			return;
2649		WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
2650	}
2651
2652	/* Spawn the kthread for this CPU. */
2653	t = kthread_run(rcu_nocb_cb_kthread, rdp,
2654			"rcuo%c/%d", rcu_state.abbr, cpu);
2655	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2656		return;
2657	WRITE_ONCE(rdp->nocb_cb_kthread, t);
2658	WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2659}
2660
2661/*
2662 * If the specified CPU is a no-CBs CPU that does not already have its
2663 * rcuo kthread, spawn it.
2664 */
2665static void rcu_spawn_cpu_nocb_kthread(int cpu)
2666{
2667	if (rcu_scheduler_fully_active)
2668		rcu_spawn_one_nocb_kthread(cpu);
2669}
2670
2671/*
2672 * Once the scheduler is running, spawn rcuo kthreads for all online
2673 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2674 * non-boot CPUs come online -- if this changes, we will need to add
2675 * some mutual exclusion.
2676 */
2677static void __init rcu_spawn_nocb_kthreads(void)
2678{
2679	int cpu;
2680
2681	for_each_online_cpu(cpu)
2682		rcu_spawn_cpu_nocb_kthread(cpu);
2683}
2684
2685/* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
2686static int rcu_nocb_gp_stride = -1;
2687module_param(rcu_nocb_gp_stride, int, 0444);
2688
2689/*
2690 * Initialize GP-CB relationships for all no-CBs CPU.
2691 */
2692static void __init rcu_organize_nocb_kthreads(void)
2693{
2694	int cpu;
2695	bool firsttime = true;
2696	bool gotnocbs = false;
2697	bool gotnocbscbs = true;
2698	int ls = rcu_nocb_gp_stride;
2699	int nl = 0;  /* Next GP kthread. */
2700	struct rcu_data *rdp;
2701	struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
2702	struct rcu_data *rdp_prev = NULL;
2703
2704	if (!cpumask_available(rcu_nocb_mask))
2705		return;
2706	if (ls == -1) {
2707		ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2708		rcu_nocb_gp_stride = ls;
2709	}
2710
2711	/*
2712	 * Each pass through this loop sets up one rcu_data structure.
2713	 * Should the corresponding CPU come online in the future, then
2714	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2715	 */
2716	for_each_cpu(cpu, rcu_nocb_mask) {
2717		rdp = per_cpu_ptr(&rcu_data, cpu);
2718		if (rdp->cpu >= nl) {
2719			/* New GP kthread, set up for CBs & next GP. */
2720			gotnocbs = true;
2721			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2722			rdp->nocb_gp_rdp = rdp;
2723			rdp_gp = rdp;
2724			if (dump_tree) {
2725				if (!firsttime)
2726					pr_cont("%s\n", gotnocbscbs
2727							? "" : " (self only)");
2728				gotnocbscbs = false;
2729				firsttime = false;
2730				pr_alert("%s: No-CB GP kthread CPU %d:",
2731					 __func__, cpu);
2732			}
2733		} else {
2734			/* Another CB kthread, link to previous GP kthread. */
2735			gotnocbscbs = true;
2736			rdp->nocb_gp_rdp = rdp_gp;
2737			rdp_prev->nocb_next_cb_rdp = rdp;
2738			if (dump_tree)
2739				pr_cont(" %d", cpu);
2740		}
2741		rdp_prev = rdp;
2742	}
2743	if (gotnocbs && dump_tree)
2744		pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
2745}
2746
2747/*
2748 * Bind the current task to the offloaded CPUs.  If there are no offloaded
2749 * CPUs, leave the task unbound.  Splat if the bind attempt fails.
2750 */
2751void rcu_bind_current_to_nocb(void)
2752{
2753	if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2754		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2755}
2756EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2757
2758// The ->on_cpu field is available only in CONFIG_SMP=y, so...
2759#ifdef CONFIG_SMP
2760static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
2761{
2762	return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
2763}
2764#else // #ifdef CONFIG_SMP
2765static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
2766{
2767	return "";
2768}
2769#endif // #else #ifdef CONFIG_SMP
2770
2771/*
2772 * Dump out nocb grace-period kthread state for the specified rcu_data
2773 * structure.
2774 */
2775static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2776{
2777	struct rcu_node *rnp = rdp->mynode;
2778
2779	pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
2780		rdp->cpu,
2781		"kK"[!!rdp->nocb_gp_kthread],
2782		"lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2783		"dD"[!!rdp->nocb_defer_wakeup],
2784		"tT"[timer_pending(&rdp->nocb_timer)],
 
2785		"sS"[!!rdp->nocb_gp_sleep],
2786		".W"[swait_active(&rdp->nocb_gp_wq)],
2787		".W"[swait_active(&rnp->nocb_gp_wq[0])],
2788		".W"[swait_active(&rnp->nocb_gp_wq[1])],
2789		".B"[!!rdp->nocb_gp_bypass],
2790		".G"[!!rdp->nocb_gp_gp],
2791		(long)rdp->nocb_gp_seq,
2792		rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
2793		rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
2794		rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
2795		show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
2796}
2797
2798/* Dump out nocb kthread state for the specified rcu_data structure. */
2799static void show_rcu_nocb_state(struct rcu_data *rdp)
2800{
2801	char bufw[20];
2802	char bufr[20];
2803	struct rcu_segcblist *rsclp = &rdp->cblist;
2804	bool waslocked;
 
2805	bool wassleep;
2806
2807	if (rdp->nocb_gp_rdp == rdp)
2808		show_rcu_nocb_gp_state(rdp);
2809
2810	sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]);
2811	sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
2812	pr_info("   CB %d^%d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n",
2813		rdp->cpu, rdp->nocb_gp_rdp->cpu,
2814		rdp->nocb_next_cb_rdp ? rdp->nocb_next_cb_rdp->cpu : -1,
2815		"kK"[!!rdp->nocb_cb_kthread],
2816		"bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2817		"cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2818		"lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2819		"sS"[!!rdp->nocb_cb_sleep],
2820		".W"[swait_active(&rdp->nocb_cb_wq)],
2821		jiffies - rdp->nocb_bypass_first,
2822		jiffies - rdp->nocb_nobypass_last,
2823		rdp->nocb_nobypass_count,
2824		".D"[rcu_segcblist_ready_cbs(rsclp)],
2825		".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
2826		rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
2827		".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
2828		rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
2829		".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
2830		".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2831		rcu_segcblist_n_cbs(&rdp->cblist),
2832		rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
2833		rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
2834		show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
2835
2836	/* It is OK for GP kthreads to have GP state. */
2837	if (rdp->nocb_gp_rdp == rdp)
2838		return;
2839
2840	waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
 
2841	wassleep = swait_active(&rdp->nocb_gp_wq);
2842	if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
2843		return;  /* Nothing untoward. */
 
2844
2845	pr_info("   nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
2846		"lL"[waslocked],
2847		"dD"[!!rdp->nocb_defer_wakeup],
 
2848		"sS"[!!rdp->nocb_gp_sleep],
2849		".W"[wassleep]);
2850}
2851
2852#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2853
2854/* No ->nocb_lock to acquire.  */
2855static void rcu_nocb_lock(struct rcu_data *rdp)
2856{
2857}
2858
2859/* No ->nocb_lock to release.  */
2860static void rcu_nocb_unlock(struct rcu_data *rdp)
2861{
2862}
2863
2864/* No ->nocb_lock to release.  */
2865static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2866				       unsigned long flags)
2867{
2868	local_irq_restore(flags);
2869}
2870
2871/* Lockdep check that ->cblist may be safely accessed. */
2872static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2873{
2874	lockdep_assert_irqs_disabled();
2875}
2876
2877static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2878{
2879}
2880
2881static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2882{
2883	return NULL;
2884}
2885
2886static void rcu_init_one_nocb(struct rcu_node *rnp)
2887{
2888}
2889
2890static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2891				  unsigned long j)
2892{
2893	return true;
2894}
2895
2896static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2897				bool *was_alldone, unsigned long flags)
2898{
2899	return false;
2900}
2901
2902static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2903				 unsigned long flags)
2904{
2905	WARN_ON_ONCE(1);  /* Should be dead code! */
2906}
2907
2908static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2909{
2910}
2911
2912static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
2913{
2914	return false;
2915}
2916
2917static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
2918{
2919	return false;
2920}
2921
2922static void rcu_spawn_cpu_nocb_kthread(int cpu)
2923{
2924}
2925
2926static void __init rcu_spawn_nocb_kthreads(void)
2927{
2928}
2929
2930static void show_rcu_nocb_state(struct rcu_data *rdp)
2931{
2932}
2933
2934#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2935
2936/*
2937 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2938 * grace-period kthread will do force_quiescent_state() processing?
2939 * The idea is to avoid waking up RCU core processing on such a
2940 * CPU unless the grace period has extended for too long.
2941 *
2942 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2943 * CONFIG_RCU_NOCB_CPU CPUs.
2944 */
2945static bool rcu_nohz_full_cpu(void)
2946{
2947#ifdef CONFIG_NO_HZ_FULL
2948	if (tick_nohz_full_cpu(smp_processor_id()) &&
2949	    (!rcu_gp_in_progress() ||
2950	     time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2951		return true;
2952#endif /* #ifdef CONFIG_NO_HZ_FULL */
2953	return false;
2954}
2955
2956/*
2957 * Bind the RCU grace-period kthreads to the housekeeping CPU.
2958 */
2959static void rcu_bind_gp_kthread(void)
2960{
2961	if (!tick_nohz_full_enabled())
2962		return;
2963	housekeeping_affine(current, HK_FLAG_RCU);
2964}
2965
2966/* Record the current task on dyntick-idle entry. */
2967static void noinstr rcu_dynticks_task_enter(void)
2968{
2969#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2970	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2971#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2972}
2973
2974/* Record no current task on dyntick-idle exit. */
2975static void noinstr rcu_dynticks_task_exit(void)
2976{
2977#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2978	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2979#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2980}
2981
2982/* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
2983static void rcu_dynticks_task_trace_enter(void)
2984{
2985#ifdef CONFIG_TASKS_TRACE_RCU
2986	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2987		current->trc_reader_special.b.need_mb = true;
2988#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
2989}
2990
2991/* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
2992static void rcu_dynticks_task_trace_exit(void)
2993{
2994#ifdef CONFIG_TASKS_TRACE_RCU
2995	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2996		current->trc_reader_special.b.need_mb = false;
2997#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
2998}