Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
   3 * Copyright (c) 2016 Facebook
   4 */
   5#include <linux/bpf.h>
   6#include <linux/btf.h>
   7#include <linux/jhash.h>
   8#include <linux/filter.h>
   9#include <linux/rculist_nulls.h>
  10#include <linux/random.h>
  11#include <uapi/linux/btf.h>
 
  12#include "percpu_freelist.h"
  13#include "bpf_lru_list.h"
  14#include "map_in_map.h"
  15
  16#define HTAB_CREATE_FLAG_MASK						\
  17	(BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE |	\
  18	 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
  19
  20#define BATCH_OPS(_name)			\
  21	.map_lookup_batch =			\
  22	_name##_map_lookup_batch,		\
  23	.map_lookup_and_delete_batch =		\
  24	_name##_map_lookup_and_delete_batch,	\
  25	.map_update_batch =			\
  26	generic_map_update_batch,		\
  27	.map_delete_batch =			\
  28	generic_map_delete_batch
  29
  30/*
  31 * The bucket lock has two protection scopes:
  32 *
  33 * 1) Serializing concurrent operations from BPF programs on differrent
  34 *    CPUs
  35 *
  36 * 2) Serializing concurrent operations from BPF programs and sys_bpf()
  37 *
  38 * BPF programs can execute in any context including perf, kprobes and
  39 * tracing. As there are almost no limits where perf, kprobes and tracing
  40 * can be invoked from the lock operations need to be protected against
  41 * deadlocks. Deadlocks can be caused by recursion and by an invocation in
  42 * the lock held section when functions which acquire this lock are invoked
  43 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
  44 * variable bpf_prog_active, which prevents BPF programs attached to perf
  45 * events, kprobes and tracing to be invoked before the prior invocation
  46 * from one of these contexts completed. sys_bpf() uses the same mechanism
  47 * by pinning the task to the current CPU and incrementing the recursion
  48 * protection accross the map operation.
  49 *
  50 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
  51 * operations like memory allocations (even with GFP_ATOMIC) from atomic
  52 * contexts. This is required because even with GFP_ATOMIC the memory
  53 * allocator calls into code pathes which acquire locks with long held lock
  54 * sections. To ensure the deterministic behaviour these locks are regular
  55 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
  56 * true atomic contexts on an RT kernel are the low level hardware
  57 * handling, scheduling, low level interrupt handling, NMIs etc. None of
  58 * these contexts should ever do memory allocations.
  59 *
  60 * As regular device interrupt handlers and soft interrupts are forced into
  61 * thread context, the existing code which does
  62 *   spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*();
  63 * just works.
  64 *
  65 * In theory the BPF locks could be converted to regular spinlocks as well,
  66 * but the bucket locks and percpu_freelist locks can be taken from
  67 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
  68 * atomic contexts even on RT. These mechanisms require preallocated maps,
  69 * so there is no need to invoke memory allocations within the lock held
  70 * sections.
  71 *
  72 * BPF maps which need dynamic allocation are only used from (forced)
  73 * thread context on RT and can therefore use regular spinlocks which in
  74 * turn allows to invoke memory allocations from the lock held section.
  75 *
  76 * On a non RT kernel this distinction is neither possible nor required.
  77 * spinlock maps to raw_spinlock and the extra code is optimized out by the
  78 * compiler.
  79 */
  80struct bucket {
  81	struct hlist_nulls_head head;
  82	union {
  83		raw_spinlock_t raw_lock;
  84		spinlock_t     lock;
  85	};
  86};
  87
 
 
 
  88struct bpf_htab {
  89	struct bpf_map map;
  90	struct bucket *buckets;
  91	void *elems;
  92	union {
  93		struct pcpu_freelist freelist;
  94		struct bpf_lru lru;
  95	};
  96	struct htab_elem *__percpu *extra_elems;
  97	atomic_t count;	/* number of elements in this hashtable */
  98	u32 n_buckets;	/* number of hash buckets */
  99	u32 elem_size;	/* size of each element in bytes */
 100	u32 hashrnd;
 
 
 101};
 102
 103/* each htab element is struct htab_elem + key + value */
 104struct htab_elem {
 105	union {
 106		struct hlist_nulls_node hash_node;
 107		struct {
 108			void *padding;
 109			union {
 110				struct bpf_htab *htab;
 111				struct pcpu_freelist_node fnode;
 112				struct htab_elem *batch_flink;
 113			};
 114		};
 115	};
 116	union {
 117		struct rcu_head rcu;
 118		struct bpf_lru_node lru_node;
 119	};
 120	u32 hash;
 121	char key[] __aligned(8);
 122};
 123
 124static inline bool htab_is_prealloc(const struct bpf_htab *htab)
 125{
 126	return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
 127}
 128
 129static inline bool htab_use_raw_lock(const struct bpf_htab *htab)
 130{
 131	return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab));
 132}
 133
 134static void htab_init_buckets(struct bpf_htab *htab)
 135{
 136	unsigned i;
 137
 138	for (i = 0; i < htab->n_buckets; i++) {
 139		INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
 140		if (htab_use_raw_lock(htab))
 141			raw_spin_lock_init(&htab->buckets[i].raw_lock);
 142		else
 
 
 143			spin_lock_init(&htab->buckets[i].lock);
 
 
 
 
 144	}
 145}
 146
 147static inline unsigned long htab_lock_bucket(const struct bpf_htab *htab,
 148					     struct bucket *b)
 
 149{
 150	unsigned long flags;
 151
 
 
 
 
 
 
 
 
 
 152	if (htab_use_raw_lock(htab))
 153		raw_spin_lock_irqsave(&b->raw_lock, flags);
 154	else
 155		spin_lock_irqsave(&b->lock, flags);
 156	return flags;
 
 
 157}
 158
 159static inline void htab_unlock_bucket(const struct bpf_htab *htab,
 160				      struct bucket *b,
 161				      unsigned long flags)
 162{
 
 163	if (htab_use_raw_lock(htab))
 164		raw_spin_unlock_irqrestore(&b->raw_lock, flags);
 165	else
 166		spin_unlock_irqrestore(&b->lock, flags);
 
 
 167}
 168
 169static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
 170
 171static bool htab_is_lru(const struct bpf_htab *htab)
 172{
 173	return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
 174		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
 175}
 176
 177static bool htab_is_percpu(const struct bpf_htab *htab)
 178{
 179	return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
 180		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
 181}
 182
 183static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
 184				     void __percpu *pptr)
 185{
 186	*(void __percpu **)(l->key + key_size) = pptr;
 187}
 188
 189static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
 190{
 191	return *(void __percpu **)(l->key + key_size);
 192}
 193
 194static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
 195{
 196	return *(void **)(l->key + roundup(map->key_size, 8));
 197}
 198
 199static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
 200{
 201	return (struct htab_elem *) (htab->elems + i * htab->elem_size);
 202}
 203
 204static void htab_free_elems(struct bpf_htab *htab)
 205{
 206	int i;
 207
 208	if (!htab_is_percpu(htab))
 209		goto free_elems;
 210
 211	for (i = 0; i < htab->map.max_entries; i++) {
 212		void __percpu *pptr;
 213
 214		pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
 215					 htab->map.key_size);
 216		free_percpu(pptr);
 217		cond_resched();
 218	}
 219free_elems:
 220	bpf_map_area_free(htab->elems);
 221}
 222
 223/* The LRU list has a lock (lru_lock). Each htab bucket has a lock
 224 * (bucket_lock). If both locks need to be acquired together, the lock
 225 * order is always lru_lock -> bucket_lock and this only happens in
 226 * bpf_lru_list.c logic. For example, certain code path of
 227 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
 228 * will acquire lru_lock first followed by acquiring bucket_lock.
 229 *
 230 * In hashtab.c, to avoid deadlock, lock acquisition of
 231 * bucket_lock followed by lru_lock is not allowed. In such cases,
 232 * bucket_lock needs to be released first before acquiring lru_lock.
 233 */
 234static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
 235					  u32 hash)
 236{
 237	struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
 238	struct htab_elem *l;
 239
 240	if (node) {
 241		l = container_of(node, struct htab_elem, lru_node);
 242		memcpy(l->key, key, htab->map.key_size);
 243		return l;
 244	}
 245
 246	return NULL;
 247}
 248
 249static int prealloc_init(struct bpf_htab *htab)
 250{
 251	u32 num_entries = htab->map.max_entries;
 252	int err = -ENOMEM, i;
 253
 254	if (!htab_is_percpu(htab) && !htab_is_lru(htab))
 255		num_entries += num_possible_cpus();
 256
 257	htab->elems = bpf_map_area_alloc(htab->elem_size * num_entries,
 258					 htab->map.numa_node);
 259	if (!htab->elems)
 260		return -ENOMEM;
 261
 262	if (!htab_is_percpu(htab))
 263		goto skip_percpu_elems;
 264
 265	for (i = 0; i < num_entries; i++) {
 266		u32 size = round_up(htab->map.value_size, 8);
 267		void __percpu *pptr;
 268
 269		pptr = __alloc_percpu_gfp(size, 8, GFP_USER | __GFP_NOWARN);
 
 270		if (!pptr)
 271			goto free_elems;
 272		htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
 273				  pptr);
 274		cond_resched();
 275	}
 276
 277skip_percpu_elems:
 278	if (htab_is_lru(htab))
 279		err = bpf_lru_init(&htab->lru,
 280				   htab->map.map_flags & BPF_F_NO_COMMON_LRU,
 281				   offsetof(struct htab_elem, hash) -
 282				   offsetof(struct htab_elem, lru_node),
 283				   htab_lru_map_delete_node,
 284				   htab);
 285	else
 286		err = pcpu_freelist_init(&htab->freelist);
 287
 288	if (err)
 289		goto free_elems;
 290
 291	if (htab_is_lru(htab))
 292		bpf_lru_populate(&htab->lru, htab->elems,
 293				 offsetof(struct htab_elem, lru_node),
 294				 htab->elem_size, num_entries);
 295	else
 296		pcpu_freelist_populate(&htab->freelist,
 297				       htab->elems + offsetof(struct htab_elem, fnode),
 298				       htab->elem_size, num_entries);
 299
 300	return 0;
 301
 302free_elems:
 303	htab_free_elems(htab);
 304	return err;
 305}
 306
 307static void prealloc_destroy(struct bpf_htab *htab)
 308{
 309	htab_free_elems(htab);
 310
 311	if (htab_is_lru(htab))
 312		bpf_lru_destroy(&htab->lru);
 313	else
 314		pcpu_freelist_destroy(&htab->freelist);
 315}
 316
 317static int alloc_extra_elems(struct bpf_htab *htab)
 318{
 319	struct htab_elem *__percpu *pptr, *l_new;
 320	struct pcpu_freelist_node *l;
 321	int cpu;
 322
 323	pptr = __alloc_percpu_gfp(sizeof(struct htab_elem *), 8,
 324				  GFP_USER | __GFP_NOWARN);
 325	if (!pptr)
 326		return -ENOMEM;
 327
 328	for_each_possible_cpu(cpu) {
 329		l = pcpu_freelist_pop(&htab->freelist);
 330		/* pop will succeed, since prealloc_init()
 331		 * preallocated extra num_possible_cpus elements
 332		 */
 333		l_new = container_of(l, struct htab_elem, fnode);
 334		*per_cpu_ptr(pptr, cpu) = l_new;
 335	}
 336	htab->extra_elems = pptr;
 337	return 0;
 338}
 339
 340/* Called from syscall */
 341static int htab_map_alloc_check(union bpf_attr *attr)
 342{
 343	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
 344		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
 345	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
 346		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
 347	/* percpu_lru means each cpu has its own LRU list.
 348	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
 349	 * the map's value itself is percpu.  percpu_lru has
 350	 * nothing to do with the map's value.
 351	 */
 352	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
 353	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
 354	bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
 355	int numa_node = bpf_map_attr_numa_node(attr);
 356
 357	BUILD_BUG_ON(offsetof(struct htab_elem, htab) !=
 358		     offsetof(struct htab_elem, hash_node.pprev));
 359	BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
 360		     offsetof(struct htab_elem, hash_node.pprev));
 361
 362	if (lru && !bpf_capable())
 363		/* LRU implementation is much complicated than other
 364		 * maps.  Hence, limit to CAP_BPF.
 365		 */
 366		return -EPERM;
 367
 368	if (zero_seed && !capable(CAP_SYS_ADMIN))
 369		/* Guard against local DoS, and discourage production use. */
 370		return -EPERM;
 371
 372	if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
 373	    !bpf_map_flags_access_ok(attr->map_flags))
 374		return -EINVAL;
 375
 376	if (!lru && percpu_lru)
 377		return -EINVAL;
 378
 379	if (lru && !prealloc)
 380		return -ENOTSUPP;
 381
 382	if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
 383		return -EINVAL;
 384
 385	/* check sanity of attributes.
 386	 * value_size == 0 may be allowed in the future to use map as a set
 387	 */
 388	if (attr->max_entries == 0 || attr->key_size == 0 ||
 389	    attr->value_size == 0)
 390		return -EINVAL;
 391
 392	if (attr->key_size > MAX_BPF_STACK)
 393		/* eBPF programs initialize keys on stack, so they cannot be
 394		 * larger than max stack size
 395		 */
 396		return -E2BIG;
 397
 398	if (attr->value_size >= KMALLOC_MAX_SIZE -
 399	    MAX_BPF_STACK - sizeof(struct htab_elem))
 400		/* if value_size is bigger, the user space won't be able to
 401		 * access the elements via bpf syscall. This check also makes
 402		 * sure that the elem_size doesn't overflow and it's
 403		 * kmalloc-able later in htab_map_update_elem()
 404		 */
 405		return -E2BIG;
 406
 407	return 0;
 408}
 409
 410static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
 411{
 412	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
 413		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
 414	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
 415		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
 416	/* percpu_lru means each cpu has its own LRU list.
 417	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
 418	 * the map's value itself is percpu.  percpu_lru has
 419	 * nothing to do with the map's value.
 420	 */
 421	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
 422	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
 423	struct bpf_htab *htab;
 424	u64 cost;
 425	int err;
 426
 427	htab = kzalloc(sizeof(*htab), GFP_USER);
 428	if (!htab)
 429		return ERR_PTR(-ENOMEM);
 430
 
 
 431	bpf_map_init_from_attr(&htab->map, attr);
 432
 433	if (percpu_lru) {
 434		/* ensure each CPU's lru list has >=1 elements.
 435		 * since we are at it, make each lru list has the same
 436		 * number of elements.
 437		 */
 438		htab->map.max_entries = roundup(attr->max_entries,
 439						num_possible_cpus());
 440		if (htab->map.max_entries < attr->max_entries)
 441			htab->map.max_entries = rounddown(attr->max_entries,
 442							  num_possible_cpus());
 443	}
 444
 445	/* hash table size must be power of 2 */
 446	htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
 447
 448	htab->elem_size = sizeof(struct htab_elem) +
 449			  round_up(htab->map.key_size, 8);
 450	if (percpu)
 451		htab->elem_size += sizeof(void *);
 452	else
 453		htab->elem_size += round_up(htab->map.value_size, 8);
 454
 455	err = -E2BIG;
 456	/* prevent zero size kmalloc and check for u32 overflow */
 457	if (htab->n_buckets == 0 ||
 458	    htab->n_buckets > U32_MAX / sizeof(struct bucket))
 459		goto free_htab;
 460
 461	cost = (u64) htab->n_buckets * sizeof(struct bucket) +
 462	       (u64) htab->elem_size * htab->map.max_entries;
 463
 464	if (percpu)
 465		cost += (u64) round_up(htab->map.value_size, 8) *
 466			num_possible_cpus() * htab->map.max_entries;
 467	else
 468	       cost += (u64) htab->elem_size * num_possible_cpus();
 469
 470	/* if map size is larger than memlock limit, reject it */
 471	err = bpf_map_charge_init(&htab->map.memory, cost);
 472	if (err)
 473		goto free_htab;
 474
 475	err = -ENOMEM;
 476	htab->buckets = bpf_map_area_alloc(htab->n_buckets *
 477					   sizeof(struct bucket),
 478					   htab->map.numa_node);
 479	if (!htab->buckets)
 480		goto free_charge;
 
 
 
 
 
 
 
 
 
 481
 482	if (htab->map.map_flags & BPF_F_ZERO_SEED)
 483		htab->hashrnd = 0;
 484	else
 485		htab->hashrnd = get_random_int();
 486
 487	htab_init_buckets(htab);
 488
 489	if (prealloc) {
 490		err = prealloc_init(htab);
 491		if (err)
 492			goto free_buckets;
 493
 494		if (!percpu && !lru) {
 495			/* lru itself can remove the least used element, so
 496			 * there is no need for an extra elem during map_update.
 497			 */
 498			err = alloc_extra_elems(htab);
 499			if (err)
 500				goto free_prealloc;
 501		}
 502	}
 503
 504	return &htab->map;
 505
 506free_prealloc:
 507	prealloc_destroy(htab);
 508free_buckets:
 
 
 509	bpf_map_area_free(htab->buckets);
 510free_charge:
 511	bpf_map_charge_finish(&htab->map.memory);
 512free_htab:
 
 513	kfree(htab);
 514	return ERR_PTR(err);
 515}
 516
 517static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
 518{
 519	return jhash(key, key_len, hashrnd);
 520}
 521
 522static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
 523{
 524	return &htab->buckets[hash & (htab->n_buckets - 1)];
 525}
 526
 527static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
 528{
 529	return &__select_bucket(htab, hash)->head;
 530}
 531
 532/* this lookup function can only be called with bucket lock taken */
 533static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
 534					 void *key, u32 key_size)
 535{
 536	struct hlist_nulls_node *n;
 537	struct htab_elem *l;
 538
 539	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
 540		if (l->hash == hash && !memcmp(&l->key, key, key_size))
 541			return l;
 542
 543	return NULL;
 544}
 545
 546/* can be called without bucket lock. it will repeat the loop in
 547 * the unlikely event when elements moved from one bucket into another
 548 * while link list is being walked
 549 */
 550static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
 551					       u32 hash, void *key,
 552					       u32 key_size, u32 n_buckets)
 553{
 554	struct hlist_nulls_node *n;
 555	struct htab_elem *l;
 556
 557again:
 558	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
 559		if (l->hash == hash && !memcmp(&l->key, key, key_size))
 560			return l;
 561
 562	if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
 563		goto again;
 564
 565	return NULL;
 566}
 567
 568/* Called from syscall or from eBPF program directly, so
 569 * arguments have to match bpf_map_lookup_elem() exactly.
 570 * The return value is adjusted by BPF instructions
 571 * in htab_map_gen_lookup().
 572 */
 573static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
 574{
 575	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 576	struct hlist_nulls_head *head;
 577	struct htab_elem *l;
 578	u32 hash, key_size;
 579
 580	/* Must be called with rcu_read_lock. */
 581	WARN_ON_ONCE(!rcu_read_lock_held());
 582
 583	key_size = map->key_size;
 584
 585	hash = htab_map_hash(key, key_size, htab->hashrnd);
 586
 587	head = select_bucket(htab, hash);
 588
 589	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
 590
 591	return l;
 592}
 593
 594static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
 595{
 596	struct htab_elem *l = __htab_map_lookup_elem(map, key);
 597
 598	if (l)
 599		return l->key + round_up(map->key_size, 8);
 600
 601	return NULL;
 602}
 603
 604/* inline bpf_map_lookup_elem() call.
 605 * Instead of:
 606 * bpf_prog
 607 *   bpf_map_lookup_elem
 608 *     map->ops->map_lookup_elem
 609 *       htab_map_lookup_elem
 610 *         __htab_map_lookup_elem
 611 * do:
 612 * bpf_prog
 613 *   __htab_map_lookup_elem
 614 */
 615static u32 htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
 616{
 617	struct bpf_insn *insn = insn_buf;
 618	const int ret = BPF_REG_0;
 619
 620	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
 621		     (void *(*)(struct bpf_map *map, void *key))NULL));
 622	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
 623	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
 624	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
 625				offsetof(struct htab_elem, key) +
 626				round_up(map->key_size, 8));
 627	return insn - insn_buf;
 628}
 629
 630static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
 631							void *key, const bool mark)
 632{
 633	struct htab_elem *l = __htab_map_lookup_elem(map, key);
 634
 635	if (l) {
 636		if (mark)
 637			bpf_lru_node_set_ref(&l->lru_node);
 638		return l->key + round_up(map->key_size, 8);
 639	}
 640
 641	return NULL;
 642}
 643
 644static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
 645{
 646	return __htab_lru_map_lookup_elem(map, key, true);
 647}
 648
 649static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
 650{
 651	return __htab_lru_map_lookup_elem(map, key, false);
 652}
 653
 654static u32 htab_lru_map_gen_lookup(struct bpf_map *map,
 655				   struct bpf_insn *insn_buf)
 656{
 657	struct bpf_insn *insn = insn_buf;
 658	const int ret = BPF_REG_0;
 659	const int ref_reg = BPF_REG_1;
 660
 661	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
 662		     (void *(*)(struct bpf_map *map, void *key))NULL));
 663	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
 664	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
 665	*insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
 666			      offsetof(struct htab_elem, lru_node) +
 667			      offsetof(struct bpf_lru_node, ref));
 668	*insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
 669	*insn++ = BPF_ST_MEM(BPF_B, ret,
 670			     offsetof(struct htab_elem, lru_node) +
 671			     offsetof(struct bpf_lru_node, ref),
 672			     1);
 673	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
 674				offsetof(struct htab_elem, key) +
 675				round_up(map->key_size, 8));
 676	return insn - insn_buf;
 677}
 678
 679/* It is called from the bpf_lru_list when the LRU needs to delete
 680 * older elements from the htab.
 681 */
 682static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
 683{
 684	struct bpf_htab *htab = (struct bpf_htab *)arg;
 685	struct htab_elem *l = NULL, *tgt_l;
 686	struct hlist_nulls_head *head;
 687	struct hlist_nulls_node *n;
 688	unsigned long flags;
 689	struct bucket *b;
 
 690
 691	tgt_l = container_of(node, struct htab_elem, lru_node);
 692	b = __select_bucket(htab, tgt_l->hash);
 693	head = &b->head;
 694
 695	flags = htab_lock_bucket(htab, b);
 
 
 696
 697	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
 698		if (l == tgt_l) {
 699			hlist_nulls_del_rcu(&l->hash_node);
 700			break;
 701		}
 702
 703	htab_unlock_bucket(htab, b, flags);
 704
 705	return l == tgt_l;
 706}
 707
 708/* Called from syscall */
 709static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
 710{
 711	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 712	struct hlist_nulls_head *head;
 713	struct htab_elem *l, *next_l;
 714	u32 hash, key_size;
 715	int i = 0;
 716
 717	WARN_ON_ONCE(!rcu_read_lock_held());
 718
 719	key_size = map->key_size;
 720
 721	if (!key)
 722		goto find_first_elem;
 723
 724	hash = htab_map_hash(key, key_size, htab->hashrnd);
 725
 726	head = select_bucket(htab, hash);
 727
 728	/* lookup the key */
 729	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
 730
 731	if (!l)
 732		goto find_first_elem;
 733
 734	/* key was found, get next key in the same bucket */
 735	next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
 736				  struct htab_elem, hash_node);
 737
 738	if (next_l) {
 739		/* if next elem in this hash list is non-zero, just return it */
 740		memcpy(next_key, next_l->key, key_size);
 741		return 0;
 742	}
 743
 744	/* no more elements in this hash list, go to the next bucket */
 745	i = hash & (htab->n_buckets - 1);
 746	i++;
 747
 748find_first_elem:
 749	/* iterate over buckets */
 750	for (; i < htab->n_buckets; i++) {
 751		head = select_bucket(htab, i);
 752
 753		/* pick first element in the bucket */
 754		next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
 755					  struct htab_elem, hash_node);
 756		if (next_l) {
 757			/* if it's not empty, just return it */
 758			memcpy(next_key, next_l->key, key_size);
 759			return 0;
 760		}
 761	}
 762
 763	/* iterated over all buckets and all elements */
 764	return -ENOENT;
 765}
 766
 767static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
 768{
 769	if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
 770		free_percpu(htab_elem_get_ptr(l, htab->map.key_size));
 771	kfree(l);
 772}
 773
 774static void htab_elem_free_rcu(struct rcu_head *head)
 775{
 776	struct htab_elem *l = container_of(head, struct htab_elem, rcu);
 777	struct bpf_htab *htab = l->htab;
 778
 779	htab_elem_free(htab, l);
 780}
 781
 782static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
 783{
 784	struct bpf_map *map = &htab->map;
 785	void *ptr;
 786
 787	if (map->ops->map_fd_put_ptr) {
 788		ptr = fd_htab_map_get_ptr(map, l);
 789		map->ops->map_fd_put_ptr(ptr);
 790	}
 791}
 792
 793static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
 794{
 795	htab_put_fd_value(htab, l);
 796
 797	if (htab_is_prealloc(htab)) {
 798		__pcpu_freelist_push(&htab->freelist, &l->fnode);
 799	} else {
 800		atomic_dec(&htab->count);
 801		l->htab = htab;
 802		call_rcu(&l->rcu, htab_elem_free_rcu);
 803	}
 804}
 805
 806static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
 807			    void *value, bool onallcpus)
 808{
 809	if (!onallcpus) {
 810		/* copy true value_size bytes */
 811		memcpy(this_cpu_ptr(pptr), value, htab->map.value_size);
 812	} else {
 813		u32 size = round_up(htab->map.value_size, 8);
 814		int off = 0, cpu;
 815
 816		for_each_possible_cpu(cpu) {
 817			bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
 818					value + off, size);
 819			off += size;
 820		}
 821	}
 822}
 823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 824static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
 825{
 826	return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
 827	       BITS_PER_LONG == 64;
 828}
 829
 830static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
 831					 void *value, u32 key_size, u32 hash,
 832					 bool percpu, bool onallcpus,
 833					 struct htab_elem *old_elem)
 834{
 835	u32 size = htab->map.value_size;
 836	bool prealloc = htab_is_prealloc(htab);
 837	struct htab_elem *l_new, **pl_new;
 838	void __percpu *pptr;
 839
 840	if (prealloc) {
 841		if (old_elem) {
 842			/* if we're updating the existing element,
 843			 * use per-cpu extra elems to avoid freelist_pop/push
 844			 */
 845			pl_new = this_cpu_ptr(htab->extra_elems);
 846			l_new = *pl_new;
 847			htab_put_fd_value(htab, old_elem);
 848			*pl_new = old_elem;
 849		} else {
 850			struct pcpu_freelist_node *l;
 851
 852			l = __pcpu_freelist_pop(&htab->freelist);
 853			if (!l)
 854				return ERR_PTR(-E2BIG);
 855			l_new = container_of(l, struct htab_elem, fnode);
 856		}
 857	} else {
 858		if (atomic_inc_return(&htab->count) > htab->map.max_entries)
 859			if (!old_elem) {
 860				/* when map is full and update() is replacing
 861				 * old element, it's ok to allocate, since
 862				 * old element will be freed immediately.
 863				 * Otherwise return an error
 864				 */
 865				l_new = ERR_PTR(-E2BIG);
 866				goto dec_count;
 867			}
 868		l_new = kmalloc_node(htab->elem_size, GFP_ATOMIC | __GFP_NOWARN,
 869				     htab->map.numa_node);
 
 870		if (!l_new) {
 871			l_new = ERR_PTR(-ENOMEM);
 872			goto dec_count;
 873		}
 874		check_and_init_map_lock(&htab->map,
 875					l_new->key + round_up(key_size, 8));
 876	}
 877
 878	memcpy(l_new->key, key, key_size);
 879	if (percpu) {
 880		size = round_up(size, 8);
 881		if (prealloc) {
 882			pptr = htab_elem_get_ptr(l_new, key_size);
 883		} else {
 884			/* alloc_percpu zero-fills */
 885			pptr = __alloc_percpu_gfp(size, 8,
 886						  GFP_ATOMIC | __GFP_NOWARN);
 887			if (!pptr) {
 888				kfree(l_new);
 889				l_new = ERR_PTR(-ENOMEM);
 890				goto dec_count;
 891			}
 892		}
 893
 894		pcpu_copy_value(htab, pptr, value, onallcpus);
 895
 896		if (!prealloc)
 897			htab_elem_set_ptr(l_new, key_size, pptr);
 898	} else if (fd_htab_map_needs_adjust(htab)) {
 899		size = round_up(size, 8);
 900		memcpy(l_new->key + round_up(key_size, 8), value, size);
 901	} else {
 902		copy_map_value(&htab->map,
 903			       l_new->key + round_up(key_size, 8),
 904			       value);
 905	}
 906
 907	l_new->hash = hash;
 908	return l_new;
 909dec_count:
 910	atomic_dec(&htab->count);
 911	return l_new;
 912}
 913
 914static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
 915		       u64 map_flags)
 916{
 917	if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
 918		/* elem already exists */
 919		return -EEXIST;
 920
 921	if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
 922		/* elem doesn't exist, cannot update it */
 923		return -ENOENT;
 924
 925	return 0;
 926}
 927
 928/* Called from syscall or from eBPF program */
 929static int htab_map_update_elem(struct bpf_map *map, void *key, void *value,
 930				u64 map_flags)
 931{
 932	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 933	struct htab_elem *l_new = NULL, *l_old;
 934	struct hlist_nulls_head *head;
 935	unsigned long flags;
 936	struct bucket *b;
 937	u32 key_size, hash;
 938	int ret;
 939
 940	if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
 941		/* unknown flags */
 942		return -EINVAL;
 943
 944	WARN_ON_ONCE(!rcu_read_lock_held());
 
 945
 946	key_size = map->key_size;
 947
 948	hash = htab_map_hash(key, key_size, htab->hashrnd);
 949
 950	b = __select_bucket(htab, hash);
 951	head = &b->head;
 952
 953	if (unlikely(map_flags & BPF_F_LOCK)) {
 954		if (unlikely(!map_value_has_spin_lock(map)))
 955			return -EINVAL;
 956		/* find an element without taking the bucket lock */
 957		l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
 958					      htab->n_buckets);
 959		ret = check_flags(htab, l_old, map_flags);
 960		if (ret)
 961			return ret;
 962		if (l_old) {
 963			/* grab the element lock and update value in place */
 964			copy_map_value_locked(map,
 965					      l_old->key + round_up(key_size, 8),
 966					      value, false);
 967			return 0;
 968		}
 969		/* fall through, grab the bucket lock and lookup again.
 970		 * 99.9% chance that the element won't be found,
 971		 * but second lookup under lock has to be done.
 972		 */
 973	}
 974
 975	flags = htab_lock_bucket(htab, b);
 
 
 976
 977	l_old = lookup_elem_raw(head, hash, key, key_size);
 978
 979	ret = check_flags(htab, l_old, map_flags);
 980	if (ret)
 981		goto err;
 982
 983	if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
 984		/* first lookup without the bucket lock didn't find the element,
 985		 * but second lookup with the bucket lock found it.
 986		 * This case is highly unlikely, but has to be dealt with:
 987		 * grab the element lock in addition to the bucket lock
 988		 * and update element in place
 989		 */
 990		copy_map_value_locked(map,
 991				      l_old->key + round_up(key_size, 8),
 992				      value, false);
 993		ret = 0;
 994		goto err;
 995	}
 996
 997	l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
 998				l_old);
 999	if (IS_ERR(l_new)) {
1000		/* all pre-allocated elements are in use or memory exhausted */
1001		ret = PTR_ERR(l_new);
1002		goto err;
1003	}
1004
1005	/* add new element to the head of the list, so that
1006	 * concurrent search will find it before old elem
1007	 */
1008	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1009	if (l_old) {
1010		hlist_nulls_del_rcu(&l_old->hash_node);
1011		if (!htab_is_prealloc(htab))
1012			free_htab_elem(htab, l_old);
1013	}
1014	ret = 0;
1015err:
1016	htab_unlock_bucket(htab, b, flags);
1017	return ret;
1018}
1019
1020static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1021				    u64 map_flags)
1022{
1023	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1024	struct htab_elem *l_new, *l_old = NULL;
1025	struct hlist_nulls_head *head;
1026	unsigned long flags;
1027	struct bucket *b;
1028	u32 key_size, hash;
1029	int ret;
1030
1031	if (unlikely(map_flags > BPF_EXIST))
1032		/* unknown flags */
1033		return -EINVAL;
1034
1035	WARN_ON_ONCE(!rcu_read_lock_held());
 
1036
1037	key_size = map->key_size;
1038
1039	hash = htab_map_hash(key, key_size, htab->hashrnd);
1040
1041	b = __select_bucket(htab, hash);
1042	head = &b->head;
1043
1044	/* For LRU, we need to alloc before taking bucket's
1045	 * spinlock because getting free nodes from LRU may need
1046	 * to remove older elements from htab and this removal
1047	 * operation will need a bucket lock.
1048	 */
1049	l_new = prealloc_lru_pop(htab, key, hash);
1050	if (!l_new)
1051		return -ENOMEM;
1052	memcpy(l_new->key + round_up(map->key_size, 8), value, map->value_size);
1053
1054	flags = htab_lock_bucket(htab, b);
 
 
1055
1056	l_old = lookup_elem_raw(head, hash, key, key_size);
1057
1058	ret = check_flags(htab, l_old, map_flags);
1059	if (ret)
1060		goto err;
1061
1062	/* add new element to the head of the list, so that
1063	 * concurrent search will find it before old elem
1064	 */
1065	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1066	if (l_old) {
1067		bpf_lru_node_set_ref(&l_new->lru_node);
1068		hlist_nulls_del_rcu(&l_old->hash_node);
1069	}
1070	ret = 0;
1071
1072err:
1073	htab_unlock_bucket(htab, b, flags);
1074
1075	if (ret)
1076		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1077	else if (l_old)
1078		bpf_lru_push_free(&htab->lru, &l_old->lru_node);
1079
1080	return ret;
1081}
1082
1083static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1084					 void *value, u64 map_flags,
1085					 bool onallcpus)
1086{
1087	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1088	struct htab_elem *l_new = NULL, *l_old;
1089	struct hlist_nulls_head *head;
1090	unsigned long flags;
1091	struct bucket *b;
1092	u32 key_size, hash;
1093	int ret;
1094
1095	if (unlikely(map_flags > BPF_EXIST))
1096		/* unknown flags */
1097		return -EINVAL;
1098
1099	WARN_ON_ONCE(!rcu_read_lock_held());
 
1100
1101	key_size = map->key_size;
1102
1103	hash = htab_map_hash(key, key_size, htab->hashrnd);
1104
1105	b = __select_bucket(htab, hash);
1106	head = &b->head;
1107
1108	flags = htab_lock_bucket(htab, b);
 
 
1109
1110	l_old = lookup_elem_raw(head, hash, key, key_size);
1111
1112	ret = check_flags(htab, l_old, map_flags);
1113	if (ret)
1114		goto err;
1115
1116	if (l_old) {
1117		/* per-cpu hash map can update value in-place */
1118		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1119				value, onallcpus);
1120	} else {
1121		l_new = alloc_htab_elem(htab, key, value, key_size,
1122					hash, true, onallcpus, NULL);
1123		if (IS_ERR(l_new)) {
1124			ret = PTR_ERR(l_new);
1125			goto err;
1126		}
1127		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1128	}
1129	ret = 0;
1130err:
1131	htab_unlock_bucket(htab, b, flags);
1132	return ret;
1133}
1134
1135static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1136					     void *value, u64 map_flags,
1137					     bool onallcpus)
1138{
1139	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1140	struct htab_elem *l_new = NULL, *l_old;
1141	struct hlist_nulls_head *head;
1142	unsigned long flags;
1143	struct bucket *b;
1144	u32 key_size, hash;
1145	int ret;
1146
1147	if (unlikely(map_flags > BPF_EXIST))
1148		/* unknown flags */
1149		return -EINVAL;
1150
1151	WARN_ON_ONCE(!rcu_read_lock_held());
 
1152
1153	key_size = map->key_size;
1154
1155	hash = htab_map_hash(key, key_size, htab->hashrnd);
1156
1157	b = __select_bucket(htab, hash);
1158	head = &b->head;
1159
1160	/* For LRU, we need to alloc before taking bucket's
1161	 * spinlock because LRU's elem alloc may need
1162	 * to remove older elem from htab and this removal
1163	 * operation will need a bucket lock.
1164	 */
1165	if (map_flags != BPF_EXIST) {
1166		l_new = prealloc_lru_pop(htab, key, hash);
1167		if (!l_new)
1168			return -ENOMEM;
1169	}
1170
1171	flags = htab_lock_bucket(htab, b);
 
 
1172
1173	l_old = lookup_elem_raw(head, hash, key, key_size);
1174
1175	ret = check_flags(htab, l_old, map_flags);
1176	if (ret)
1177		goto err;
1178
1179	if (l_old) {
1180		bpf_lru_node_set_ref(&l_old->lru_node);
1181
1182		/* per-cpu hash map can update value in-place */
1183		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1184				value, onallcpus);
1185	} else {
1186		pcpu_copy_value(htab, htab_elem_get_ptr(l_new, key_size),
1187				value, onallcpus);
1188		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1189		l_new = NULL;
1190	}
1191	ret = 0;
1192err:
1193	htab_unlock_bucket(htab, b, flags);
1194	if (l_new)
1195		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1196	return ret;
1197}
1198
1199static int htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1200				       void *value, u64 map_flags)
1201{
1202	return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1203}
1204
1205static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1206					   void *value, u64 map_flags)
1207{
1208	return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1209						 false);
1210}
1211
1212/* Called from syscall or from eBPF program */
1213static int htab_map_delete_elem(struct bpf_map *map, void *key)
1214{
1215	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1216	struct hlist_nulls_head *head;
1217	struct bucket *b;
1218	struct htab_elem *l;
1219	unsigned long flags;
1220	u32 hash, key_size;
1221	int ret = -ENOENT;
1222
1223	WARN_ON_ONCE(!rcu_read_lock_held());
 
1224
1225	key_size = map->key_size;
1226
1227	hash = htab_map_hash(key, key_size, htab->hashrnd);
1228	b = __select_bucket(htab, hash);
1229	head = &b->head;
1230
1231	flags = htab_lock_bucket(htab, b);
 
 
1232
1233	l = lookup_elem_raw(head, hash, key, key_size);
1234
1235	if (l) {
1236		hlist_nulls_del_rcu(&l->hash_node);
1237		free_htab_elem(htab, l);
1238		ret = 0;
 
1239	}
1240
1241	htab_unlock_bucket(htab, b, flags);
1242	return ret;
1243}
1244
1245static int htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1246{
1247	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1248	struct hlist_nulls_head *head;
1249	struct bucket *b;
1250	struct htab_elem *l;
1251	unsigned long flags;
1252	u32 hash, key_size;
1253	int ret = -ENOENT;
1254
1255	WARN_ON_ONCE(!rcu_read_lock_held());
 
1256
1257	key_size = map->key_size;
1258
1259	hash = htab_map_hash(key, key_size, htab->hashrnd);
1260	b = __select_bucket(htab, hash);
1261	head = &b->head;
1262
1263	flags = htab_lock_bucket(htab, b);
 
 
1264
1265	l = lookup_elem_raw(head, hash, key, key_size);
1266
1267	if (l) {
1268		hlist_nulls_del_rcu(&l->hash_node);
1269		ret = 0;
1270	}
1271
1272	htab_unlock_bucket(htab, b, flags);
1273	if (l)
1274		bpf_lru_push_free(&htab->lru, &l->lru_node);
1275	return ret;
1276}
1277
1278static void delete_all_elements(struct bpf_htab *htab)
1279{
1280	int i;
1281
1282	for (i = 0; i < htab->n_buckets; i++) {
1283		struct hlist_nulls_head *head = select_bucket(htab, i);
1284		struct hlist_nulls_node *n;
1285		struct htab_elem *l;
1286
1287		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1288			hlist_nulls_del_rcu(&l->hash_node);
1289			htab_elem_free(htab, l);
1290		}
1291	}
1292}
1293
1294/* Called when map->refcnt goes to zero, either from workqueue or from syscall */
1295static void htab_map_free(struct bpf_map *map)
1296{
1297	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 
1298
1299	/* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
1300	 * bpf_free_used_maps() is called after bpf prog is no longer executing.
1301	 * There is no need to synchronize_rcu() here to protect map elements.
1302	 */
1303
1304	/* some of free_htab_elem() callbacks for elements of this map may
1305	 * not have executed. Wait for them.
1306	 */
1307	rcu_barrier();
1308	if (!htab_is_prealloc(htab))
1309		delete_all_elements(htab);
1310	else
1311		prealloc_destroy(htab);
1312
1313	free_percpu(htab->extra_elems);
1314	bpf_map_area_free(htab->buckets);
 
 
 
1315	kfree(htab);
1316}
1317
1318static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1319				   struct seq_file *m)
1320{
1321	void *value;
1322
1323	rcu_read_lock();
1324
1325	value = htab_map_lookup_elem(map, key);
1326	if (!value) {
1327		rcu_read_unlock();
1328		return;
1329	}
1330
1331	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1332	seq_puts(m, ": ");
1333	btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1334	seq_puts(m, "\n");
1335
1336	rcu_read_unlock();
1337}
1338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1339static int
1340__htab_map_lookup_and_delete_batch(struct bpf_map *map,
1341				   const union bpf_attr *attr,
1342				   union bpf_attr __user *uattr,
1343				   bool do_delete, bool is_lru_map,
1344				   bool is_percpu)
1345{
1346	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1347	u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1348	void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1349	void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1350	void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1351	void *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1352	u32 batch, max_count, size, bucket_size;
1353	struct htab_elem *node_to_free = NULL;
1354	u64 elem_map_flags, map_flags;
1355	struct hlist_nulls_head *head;
1356	struct hlist_nulls_node *n;
1357	unsigned long flags = 0;
1358	bool locked = false;
1359	struct htab_elem *l;
1360	struct bucket *b;
1361	int ret = 0;
1362
1363	elem_map_flags = attr->batch.elem_flags;
1364	if ((elem_map_flags & ~BPF_F_LOCK) ||
1365	    ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map)))
1366		return -EINVAL;
1367
1368	map_flags = attr->batch.flags;
1369	if (map_flags)
1370		return -EINVAL;
1371
1372	max_count = attr->batch.count;
1373	if (!max_count)
1374		return 0;
1375
1376	if (put_user(0, &uattr->batch.count))
1377		return -EFAULT;
1378
1379	batch = 0;
1380	if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1381		return -EFAULT;
1382
1383	if (batch >= htab->n_buckets)
1384		return -ENOENT;
1385
1386	key_size = htab->map.key_size;
1387	roundup_key_size = round_up(htab->map.key_size, 8);
1388	value_size = htab->map.value_size;
1389	size = round_up(value_size, 8);
1390	if (is_percpu)
1391		value_size = size * num_possible_cpus();
1392	total = 0;
1393	/* while experimenting with hash tables with sizes ranging from 10 to
1394	 * 1000, it was observed that a bucket can have upto 5 entries.
1395	 */
1396	bucket_size = 5;
1397
1398alloc:
1399	/* We cannot do copy_from_user or copy_to_user inside
1400	 * the rcu_read_lock. Allocate enough space here.
1401	 */
1402	keys = kvmalloc(key_size * bucket_size, GFP_USER | __GFP_NOWARN);
1403	values = kvmalloc(value_size * bucket_size, GFP_USER | __GFP_NOWARN);
1404	if (!keys || !values) {
1405		ret = -ENOMEM;
1406		goto after_loop;
1407	}
1408
1409again:
1410	bpf_disable_instrumentation();
1411	rcu_read_lock();
1412again_nocopy:
1413	dst_key = keys;
1414	dst_val = values;
1415	b = &htab->buckets[batch];
1416	head = &b->head;
1417	/* do not grab the lock unless need it (bucket_cnt > 0). */
1418	if (locked)
1419		flags = htab_lock_bucket(htab, b);
 
 
 
1420
1421	bucket_cnt = 0;
1422	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1423		bucket_cnt++;
1424
1425	if (bucket_cnt && !locked) {
1426		locked = true;
1427		goto again_nocopy;
1428	}
1429
1430	if (bucket_cnt > (max_count - total)) {
1431		if (total == 0)
1432			ret = -ENOSPC;
1433		/* Note that since bucket_cnt > 0 here, it is implicit
1434		 * that the locked was grabbed, so release it.
1435		 */
1436		htab_unlock_bucket(htab, b, flags);
1437		rcu_read_unlock();
1438		bpf_enable_instrumentation();
1439		goto after_loop;
1440	}
1441
1442	if (bucket_cnt > bucket_size) {
1443		bucket_size = bucket_cnt;
1444		/* Note that since bucket_cnt > 0 here, it is implicit
1445		 * that the locked was grabbed, so release it.
1446		 */
1447		htab_unlock_bucket(htab, b, flags);
1448		rcu_read_unlock();
1449		bpf_enable_instrumentation();
1450		kvfree(keys);
1451		kvfree(values);
1452		goto alloc;
1453	}
1454
1455	/* Next block is only safe to run if you have grabbed the lock */
1456	if (!locked)
1457		goto next_batch;
1458
1459	hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1460		memcpy(dst_key, l->key, key_size);
1461
1462		if (is_percpu) {
1463			int off = 0, cpu;
1464			void __percpu *pptr;
1465
1466			pptr = htab_elem_get_ptr(l, map->key_size);
1467			for_each_possible_cpu(cpu) {
1468				bpf_long_memcpy(dst_val + off,
1469						per_cpu_ptr(pptr, cpu), size);
1470				off += size;
1471			}
1472		} else {
1473			value = l->key + roundup_key_size;
1474			if (elem_map_flags & BPF_F_LOCK)
1475				copy_map_value_locked(map, dst_val, value,
1476						      true);
1477			else
1478				copy_map_value(map, dst_val, value);
1479			check_and_init_map_lock(map, dst_val);
1480		}
1481		if (do_delete) {
1482			hlist_nulls_del_rcu(&l->hash_node);
1483
1484			/* bpf_lru_push_free() will acquire lru_lock, which
1485			 * may cause deadlock. See comments in function
1486			 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1487			 * after releasing the bucket lock.
1488			 */
1489			if (is_lru_map) {
1490				l->batch_flink = node_to_free;
1491				node_to_free = l;
1492			} else {
1493				free_htab_elem(htab, l);
1494			}
1495		}
1496		dst_key += key_size;
1497		dst_val += value_size;
1498	}
1499
1500	htab_unlock_bucket(htab, b, flags);
1501	locked = false;
1502
1503	while (node_to_free) {
1504		l = node_to_free;
1505		node_to_free = node_to_free->batch_flink;
1506		bpf_lru_push_free(&htab->lru, &l->lru_node);
1507	}
1508
1509next_batch:
1510	/* If we are not copying data, we can go to next bucket and avoid
1511	 * unlocking the rcu.
1512	 */
1513	if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1514		batch++;
1515		goto again_nocopy;
1516	}
1517
1518	rcu_read_unlock();
1519	bpf_enable_instrumentation();
1520	if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1521	    key_size * bucket_cnt) ||
1522	    copy_to_user(uvalues + total * value_size, values,
1523	    value_size * bucket_cnt))) {
1524		ret = -EFAULT;
1525		goto after_loop;
1526	}
1527
1528	total += bucket_cnt;
1529	batch++;
1530	if (batch >= htab->n_buckets) {
1531		ret = -ENOENT;
1532		goto after_loop;
1533	}
1534	goto again;
1535
1536after_loop:
1537	if (ret == -EFAULT)
1538		goto out;
1539
1540	/* copy # of entries and next batch */
1541	ubatch = u64_to_user_ptr(attr->batch.out_batch);
1542	if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1543	    put_user(total, &uattr->batch.count))
1544		ret = -EFAULT;
1545
1546out:
1547	kvfree(keys);
1548	kvfree(values);
1549	return ret;
1550}
1551
1552static int
1553htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1554			     union bpf_attr __user *uattr)
1555{
1556	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1557						  false, true);
1558}
1559
1560static int
1561htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1562					const union bpf_attr *attr,
1563					union bpf_attr __user *uattr)
1564{
1565	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1566						  false, true);
1567}
1568
1569static int
1570htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1571		      union bpf_attr __user *uattr)
1572{
1573	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1574						  false, false);
1575}
1576
1577static int
1578htab_map_lookup_and_delete_batch(struct bpf_map *map,
1579				 const union bpf_attr *attr,
1580				 union bpf_attr __user *uattr)
1581{
1582	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1583						  false, false);
1584}
1585
1586static int
1587htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1588				 const union bpf_attr *attr,
1589				 union bpf_attr __user *uattr)
1590{
1591	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1592						  true, true);
1593}
1594
1595static int
1596htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1597					    const union bpf_attr *attr,
1598					    union bpf_attr __user *uattr)
1599{
1600	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1601						  true, true);
1602}
1603
1604static int
1605htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1606			  union bpf_attr __user *uattr)
1607{
1608	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1609						  true, false);
1610}
1611
1612static int
1613htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1614				     const union bpf_attr *attr,
1615				     union bpf_attr __user *uattr)
1616{
1617	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1618						  true, false);
1619}
1620
1621struct bpf_iter_seq_hash_map_info {
1622	struct bpf_map *map;
1623	struct bpf_htab *htab;
1624	void *percpu_value_buf; // non-zero means percpu hash
1625	u32 bucket_id;
1626	u32 skip_elems;
1627};
1628
1629static struct htab_elem *
1630bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
1631			   struct htab_elem *prev_elem)
1632{
1633	const struct bpf_htab *htab = info->htab;
1634	u32 skip_elems = info->skip_elems;
1635	u32 bucket_id = info->bucket_id;
1636	struct hlist_nulls_head *head;
1637	struct hlist_nulls_node *n;
1638	struct htab_elem *elem;
1639	struct bucket *b;
1640	u32 i, count;
1641
1642	if (bucket_id >= htab->n_buckets)
1643		return NULL;
1644
1645	/* try to find next elem in the same bucket */
1646	if (prev_elem) {
1647		/* no update/deletion on this bucket, prev_elem should be still valid
1648		 * and we won't skip elements.
1649		 */
1650		n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
1651		elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
1652		if (elem)
1653			return elem;
1654
1655		/* not found, unlock and go to the next bucket */
1656		b = &htab->buckets[bucket_id++];
1657		rcu_read_unlock();
1658		skip_elems = 0;
1659	}
1660
1661	for (i = bucket_id; i < htab->n_buckets; i++) {
1662		b = &htab->buckets[i];
1663		rcu_read_lock();
1664
1665		count = 0;
1666		head = &b->head;
1667		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
1668			if (count >= skip_elems) {
1669				info->bucket_id = i;
1670				info->skip_elems = count;
1671				return elem;
1672			}
1673			count++;
1674		}
1675
1676		rcu_read_unlock();
1677		skip_elems = 0;
1678	}
1679
1680	info->bucket_id = i;
1681	info->skip_elems = 0;
1682	return NULL;
1683}
1684
1685static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
1686{
1687	struct bpf_iter_seq_hash_map_info *info = seq->private;
1688	struct htab_elem *elem;
1689
1690	elem = bpf_hash_map_seq_find_next(info, NULL);
1691	if (!elem)
1692		return NULL;
1693
1694	if (*pos == 0)
1695		++*pos;
1696	return elem;
1697}
1698
1699static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1700{
1701	struct bpf_iter_seq_hash_map_info *info = seq->private;
1702
1703	++*pos;
1704	++info->skip_elems;
1705	return bpf_hash_map_seq_find_next(info, v);
1706}
1707
1708static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
1709{
1710	struct bpf_iter_seq_hash_map_info *info = seq->private;
1711	u32 roundup_key_size, roundup_value_size;
1712	struct bpf_iter__bpf_map_elem ctx = {};
1713	struct bpf_map *map = info->map;
1714	struct bpf_iter_meta meta;
1715	int ret = 0, off = 0, cpu;
1716	struct bpf_prog *prog;
1717	void __percpu *pptr;
1718
1719	meta.seq = seq;
1720	prog = bpf_iter_get_info(&meta, elem == NULL);
1721	if (prog) {
1722		ctx.meta = &meta;
1723		ctx.map = info->map;
1724		if (elem) {
1725			roundup_key_size = round_up(map->key_size, 8);
1726			ctx.key = elem->key;
1727			if (!info->percpu_value_buf) {
1728				ctx.value = elem->key + roundup_key_size;
1729			} else {
1730				roundup_value_size = round_up(map->value_size, 8);
1731				pptr = htab_elem_get_ptr(elem, map->key_size);
1732				for_each_possible_cpu(cpu) {
1733					bpf_long_memcpy(info->percpu_value_buf + off,
1734							per_cpu_ptr(pptr, cpu),
1735							roundup_value_size);
1736					off += roundup_value_size;
1737				}
1738				ctx.value = info->percpu_value_buf;
1739			}
1740		}
1741		ret = bpf_iter_run_prog(prog, &ctx);
1742	}
1743
1744	return ret;
1745}
1746
1747static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
1748{
1749	return __bpf_hash_map_seq_show(seq, v);
1750}
1751
1752static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
1753{
1754	if (!v)
1755		(void)__bpf_hash_map_seq_show(seq, NULL);
1756	else
1757		rcu_read_unlock();
1758}
1759
1760static int bpf_iter_init_hash_map(void *priv_data,
1761				  struct bpf_iter_aux_info *aux)
1762{
1763	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1764	struct bpf_map *map = aux->map;
1765	void *value_buf;
1766	u32 buf_size;
1767
1768	if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
1769	    map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
1770		buf_size = round_up(map->value_size, 8) * num_possible_cpus();
1771		value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
1772		if (!value_buf)
1773			return -ENOMEM;
1774
1775		seq_info->percpu_value_buf = value_buf;
1776	}
1777
1778	seq_info->map = map;
1779	seq_info->htab = container_of(map, struct bpf_htab, map);
1780	return 0;
1781}
1782
1783static void bpf_iter_fini_hash_map(void *priv_data)
1784{
1785	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1786
1787	kfree(seq_info->percpu_value_buf);
1788}
1789
1790static const struct seq_operations bpf_hash_map_seq_ops = {
1791	.start	= bpf_hash_map_seq_start,
1792	.next	= bpf_hash_map_seq_next,
1793	.stop	= bpf_hash_map_seq_stop,
1794	.show	= bpf_hash_map_seq_show,
1795};
1796
1797static const struct bpf_iter_seq_info iter_seq_info = {
1798	.seq_ops		= &bpf_hash_map_seq_ops,
1799	.init_seq_private	= bpf_iter_init_hash_map,
1800	.fini_seq_private	= bpf_iter_fini_hash_map,
1801	.seq_priv_size		= sizeof(struct bpf_iter_seq_hash_map_info),
1802};
1803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1804static int htab_map_btf_id;
1805const struct bpf_map_ops htab_map_ops = {
 
1806	.map_alloc_check = htab_map_alloc_check,
1807	.map_alloc = htab_map_alloc,
1808	.map_free = htab_map_free,
1809	.map_get_next_key = htab_map_get_next_key,
1810	.map_lookup_elem = htab_map_lookup_elem,
 
1811	.map_update_elem = htab_map_update_elem,
1812	.map_delete_elem = htab_map_delete_elem,
1813	.map_gen_lookup = htab_map_gen_lookup,
1814	.map_seq_show_elem = htab_map_seq_show_elem,
 
 
1815	BATCH_OPS(htab),
1816	.map_btf_name = "bpf_htab",
1817	.map_btf_id = &htab_map_btf_id,
1818	.iter_seq_info = &iter_seq_info,
1819};
1820
1821static int htab_lru_map_btf_id;
1822const struct bpf_map_ops htab_lru_map_ops = {
 
1823	.map_alloc_check = htab_map_alloc_check,
1824	.map_alloc = htab_map_alloc,
1825	.map_free = htab_map_free,
1826	.map_get_next_key = htab_map_get_next_key,
1827	.map_lookup_elem = htab_lru_map_lookup_elem,
 
1828	.map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
1829	.map_update_elem = htab_lru_map_update_elem,
1830	.map_delete_elem = htab_lru_map_delete_elem,
1831	.map_gen_lookup = htab_lru_map_gen_lookup,
1832	.map_seq_show_elem = htab_map_seq_show_elem,
 
 
1833	BATCH_OPS(htab_lru),
1834	.map_btf_name = "bpf_htab",
1835	.map_btf_id = &htab_lru_map_btf_id,
1836	.iter_seq_info = &iter_seq_info,
1837};
1838
1839/* Called from eBPF program */
1840static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
1841{
1842	struct htab_elem *l = __htab_map_lookup_elem(map, key);
1843
1844	if (l)
1845		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
1846	else
1847		return NULL;
1848}
1849
1850static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
1851{
1852	struct htab_elem *l = __htab_map_lookup_elem(map, key);
1853
1854	if (l) {
1855		bpf_lru_node_set_ref(&l->lru_node);
1856		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
1857	}
1858
1859	return NULL;
1860}
1861
1862int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
1863{
1864	struct htab_elem *l;
1865	void __percpu *pptr;
1866	int ret = -ENOENT;
1867	int cpu, off = 0;
1868	u32 size;
1869
1870	/* per_cpu areas are zero-filled and bpf programs can only
1871	 * access 'value_size' of them, so copying rounded areas
1872	 * will not leak any kernel data
1873	 */
1874	size = round_up(map->value_size, 8);
1875	rcu_read_lock();
1876	l = __htab_map_lookup_elem(map, key);
1877	if (!l)
1878		goto out;
1879	/* We do not mark LRU map element here in order to not mess up
1880	 * eviction heuristics when user space does a map walk.
1881	 */
1882	pptr = htab_elem_get_ptr(l, map->key_size);
1883	for_each_possible_cpu(cpu) {
1884		bpf_long_memcpy(value + off,
1885				per_cpu_ptr(pptr, cpu), size);
1886		off += size;
1887	}
1888	ret = 0;
1889out:
1890	rcu_read_unlock();
1891	return ret;
1892}
1893
1894int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
1895			   u64 map_flags)
1896{
1897	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1898	int ret;
1899
1900	rcu_read_lock();
1901	if (htab_is_lru(htab))
1902		ret = __htab_lru_percpu_map_update_elem(map, key, value,
1903							map_flags, true);
1904	else
1905		ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
1906						    true);
1907	rcu_read_unlock();
1908
1909	return ret;
1910}
1911
1912static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
1913					  struct seq_file *m)
1914{
1915	struct htab_elem *l;
1916	void __percpu *pptr;
1917	int cpu;
1918
1919	rcu_read_lock();
1920
1921	l = __htab_map_lookup_elem(map, key);
1922	if (!l) {
1923		rcu_read_unlock();
1924		return;
1925	}
1926
1927	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1928	seq_puts(m, ": {\n");
1929	pptr = htab_elem_get_ptr(l, map->key_size);
1930	for_each_possible_cpu(cpu) {
1931		seq_printf(m, "\tcpu%d: ", cpu);
1932		btf_type_seq_show(map->btf, map->btf_value_type_id,
1933				  per_cpu_ptr(pptr, cpu), m);
1934		seq_puts(m, "\n");
1935	}
1936	seq_puts(m, "}\n");
1937
1938	rcu_read_unlock();
1939}
1940
1941static int htab_percpu_map_btf_id;
1942const struct bpf_map_ops htab_percpu_map_ops = {
 
1943	.map_alloc_check = htab_map_alloc_check,
1944	.map_alloc = htab_map_alloc,
1945	.map_free = htab_map_free,
1946	.map_get_next_key = htab_map_get_next_key,
1947	.map_lookup_elem = htab_percpu_map_lookup_elem,
 
1948	.map_update_elem = htab_percpu_map_update_elem,
1949	.map_delete_elem = htab_map_delete_elem,
1950	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
 
 
1951	BATCH_OPS(htab_percpu),
1952	.map_btf_name = "bpf_htab",
1953	.map_btf_id = &htab_percpu_map_btf_id,
1954	.iter_seq_info = &iter_seq_info,
1955};
1956
1957static int htab_lru_percpu_map_btf_id;
1958const struct bpf_map_ops htab_lru_percpu_map_ops = {
 
1959	.map_alloc_check = htab_map_alloc_check,
1960	.map_alloc = htab_map_alloc,
1961	.map_free = htab_map_free,
1962	.map_get_next_key = htab_map_get_next_key,
1963	.map_lookup_elem = htab_lru_percpu_map_lookup_elem,
 
1964	.map_update_elem = htab_lru_percpu_map_update_elem,
1965	.map_delete_elem = htab_lru_map_delete_elem,
1966	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
 
 
1967	BATCH_OPS(htab_lru_percpu),
1968	.map_btf_name = "bpf_htab",
1969	.map_btf_id = &htab_lru_percpu_map_btf_id,
1970	.iter_seq_info = &iter_seq_info,
1971};
1972
1973static int fd_htab_map_alloc_check(union bpf_attr *attr)
1974{
1975	if (attr->value_size != sizeof(u32))
1976		return -EINVAL;
1977	return htab_map_alloc_check(attr);
1978}
1979
1980static void fd_htab_map_free(struct bpf_map *map)
1981{
1982	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1983	struct hlist_nulls_node *n;
1984	struct hlist_nulls_head *head;
1985	struct htab_elem *l;
1986	int i;
1987
1988	for (i = 0; i < htab->n_buckets; i++) {
1989		head = select_bucket(htab, i);
1990
1991		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1992			void *ptr = fd_htab_map_get_ptr(map, l);
1993
1994			map->ops->map_fd_put_ptr(ptr);
1995		}
1996	}
1997
1998	htab_map_free(map);
1999}
2000
2001/* only called from syscall */
2002int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
2003{
2004	void **ptr;
2005	int ret = 0;
2006
2007	if (!map->ops->map_fd_sys_lookup_elem)
2008		return -ENOTSUPP;
2009
2010	rcu_read_lock();
2011	ptr = htab_map_lookup_elem(map, key);
2012	if (ptr)
2013		*value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
2014	else
2015		ret = -ENOENT;
2016	rcu_read_unlock();
2017
2018	return ret;
2019}
2020
2021/* only called from syscall */
2022int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2023				void *key, void *value, u64 map_flags)
2024{
2025	void *ptr;
2026	int ret;
2027	u32 ufd = *(u32 *)value;
2028
2029	ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
2030	if (IS_ERR(ptr))
2031		return PTR_ERR(ptr);
2032
2033	ret = htab_map_update_elem(map, key, &ptr, map_flags);
2034	if (ret)
2035		map->ops->map_fd_put_ptr(ptr);
2036
2037	return ret;
2038}
2039
2040static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
2041{
2042	struct bpf_map *map, *inner_map_meta;
2043
2044	inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
2045	if (IS_ERR(inner_map_meta))
2046		return inner_map_meta;
2047
2048	map = htab_map_alloc(attr);
2049	if (IS_ERR(map)) {
2050		bpf_map_meta_free(inner_map_meta);
2051		return map;
2052	}
2053
2054	map->inner_map_meta = inner_map_meta;
2055
2056	return map;
2057}
2058
2059static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
2060{
2061	struct bpf_map **inner_map  = htab_map_lookup_elem(map, key);
2062
2063	if (!inner_map)
2064		return NULL;
2065
2066	return READ_ONCE(*inner_map);
2067}
2068
2069static u32 htab_of_map_gen_lookup(struct bpf_map *map,
2070				  struct bpf_insn *insn_buf)
2071{
2072	struct bpf_insn *insn = insn_buf;
2073	const int ret = BPF_REG_0;
2074
2075	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
2076		     (void *(*)(struct bpf_map *map, void *key))NULL));
2077	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
2078	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
2079	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
2080				offsetof(struct htab_elem, key) +
2081				round_up(map->key_size, 8));
2082	*insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
2083
2084	return insn - insn_buf;
2085}
2086
2087static void htab_of_map_free(struct bpf_map *map)
2088{
2089	bpf_map_meta_free(map->inner_map_meta);
2090	fd_htab_map_free(map);
2091}
2092
2093static int htab_of_maps_map_btf_id;
2094const struct bpf_map_ops htab_of_maps_map_ops = {
2095	.map_alloc_check = fd_htab_map_alloc_check,
2096	.map_alloc = htab_of_map_alloc,
2097	.map_free = htab_of_map_free,
2098	.map_get_next_key = htab_map_get_next_key,
2099	.map_lookup_elem = htab_of_map_lookup_elem,
2100	.map_delete_elem = htab_map_delete_elem,
2101	.map_fd_get_ptr = bpf_map_fd_get_ptr,
2102	.map_fd_put_ptr = bpf_map_fd_put_ptr,
2103	.map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
2104	.map_gen_lookup = htab_of_map_gen_lookup,
2105	.map_check_btf = map_check_no_btf,
2106	.map_btf_name = "bpf_htab",
2107	.map_btf_id = &htab_of_maps_map_btf_id,
2108};
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
   3 * Copyright (c) 2016 Facebook
   4 */
   5#include <linux/bpf.h>
   6#include <linux/btf.h>
   7#include <linux/jhash.h>
   8#include <linux/filter.h>
   9#include <linux/rculist_nulls.h>
  10#include <linux/random.h>
  11#include <uapi/linux/btf.h>
  12#include <linux/rcupdate_trace.h>
  13#include "percpu_freelist.h"
  14#include "bpf_lru_list.h"
  15#include "map_in_map.h"
  16
  17#define HTAB_CREATE_FLAG_MASK						\
  18	(BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE |	\
  19	 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
  20
  21#define BATCH_OPS(_name)			\
  22	.map_lookup_batch =			\
  23	_name##_map_lookup_batch,		\
  24	.map_lookup_and_delete_batch =		\
  25	_name##_map_lookup_and_delete_batch,	\
  26	.map_update_batch =			\
  27	generic_map_update_batch,		\
  28	.map_delete_batch =			\
  29	generic_map_delete_batch
  30
  31/*
  32 * The bucket lock has two protection scopes:
  33 *
  34 * 1) Serializing concurrent operations from BPF programs on different
  35 *    CPUs
  36 *
  37 * 2) Serializing concurrent operations from BPF programs and sys_bpf()
  38 *
  39 * BPF programs can execute in any context including perf, kprobes and
  40 * tracing. As there are almost no limits where perf, kprobes and tracing
  41 * can be invoked from the lock operations need to be protected against
  42 * deadlocks. Deadlocks can be caused by recursion and by an invocation in
  43 * the lock held section when functions which acquire this lock are invoked
  44 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
  45 * variable bpf_prog_active, which prevents BPF programs attached to perf
  46 * events, kprobes and tracing to be invoked before the prior invocation
  47 * from one of these contexts completed. sys_bpf() uses the same mechanism
  48 * by pinning the task to the current CPU and incrementing the recursion
  49 * protection across the map operation.
  50 *
  51 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
  52 * operations like memory allocations (even with GFP_ATOMIC) from atomic
  53 * contexts. This is required because even with GFP_ATOMIC the memory
  54 * allocator calls into code paths which acquire locks with long held lock
  55 * sections. To ensure the deterministic behaviour these locks are regular
  56 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
  57 * true atomic contexts on an RT kernel are the low level hardware
  58 * handling, scheduling, low level interrupt handling, NMIs etc. None of
  59 * these contexts should ever do memory allocations.
  60 *
  61 * As regular device interrupt handlers and soft interrupts are forced into
  62 * thread context, the existing code which does
  63 *   spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*();
  64 * just works.
  65 *
  66 * In theory the BPF locks could be converted to regular spinlocks as well,
  67 * but the bucket locks and percpu_freelist locks can be taken from
  68 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
  69 * atomic contexts even on RT. These mechanisms require preallocated maps,
  70 * so there is no need to invoke memory allocations within the lock held
  71 * sections.
  72 *
  73 * BPF maps which need dynamic allocation are only used from (forced)
  74 * thread context on RT and can therefore use regular spinlocks which in
  75 * turn allows to invoke memory allocations from the lock held section.
  76 *
  77 * On a non RT kernel this distinction is neither possible nor required.
  78 * spinlock maps to raw_spinlock and the extra code is optimized out by the
  79 * compiler.
  80 */
  81struct bucket {
  82	struct hlist_nulls_head head;
  83	union {
  84		raw_spinlock_t raw_lock;
  85		spinlock_t     lock;
  86	};
  87};
  88
  89#define HASHTAB_MAP_LOCK_COUNT 8
  90#define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1)
  91
  92struct bpf_htab {
  93	struct bpf_map map;
  94	struct bucket *buckets;
  95	void *elems;
  96	union {
  97		struct pcpu_freelist freelist;
  98		struct bpf_lru lru;
  99	};
 100	struct htab_elem *__percpu *extra_elems;
 101	atomic_t count;	/* number of elements in this hashtable */
 102	u32 n_buckets;	/* number of hash buckets */
 103	u32 elem_size;	/* size of each element in bytes */
 104	u32 hashrnd;
 105	struct lock_class_key lockdep_key;
 106	int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT];
 107};
 108
 109/* each htab element is struct htab_elem + key + value */
 110struct htab_elem {
 111	union {
 112		struct hlist_nulls_node hash_node;
 113		struct {
 114			void *padding;
 115			union {
 116				struct bpf_htab *htab;
 117				struct pcpu_freelist_node fnode;
 118				struct htab_elem *batch_flink;
 119			};
 120		};
 121	};
 122	union {
 123		struct rcu_head rcu;
 124		struct bpf_lru_node lru_node;
 125	};
 126	u32 hash;
 127	char key[] __aligned(8);
 128};
 129
 130static inline bool htab_is_prealloc(const struct bpf_htab *htab)
 131{
 132	return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
 133}
 134
 135static inline bool htab_use_raw_lock(const struct bpf_htab *htab)
 136{
 137	return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab));
 138}
 139
 140static void htab_init_buckets(struct bpf_htab *htab)
 141{
 142	unsigned i;
 143
 144	for (i = 0; i < htab->n_buckets; i++) {
 145		INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
 146		if (htab_use_raw_lock(htab)) {
 147			raw_spin_lock_init(&htab->buckets[i].raw_lock);
 148			lockdep_set_class(&htab->buckets[i].raw_lock,
 149					  &htab->lockdep_key);
 150		} else {
 151			spin_lock_init(&htab->buckets[i].lock);
 152			lockdep_set_class(&htab->buckets[i].lock,
 153					  &htab->lockdep_key);
 154		}
 155		cond_resched();
 156	}
 157}
 158
 159static inline int htab_lock_bucket(const struct bpf_htab *htab,
 160				   struct bucket *b, u32 hash,
 161				   unsigned long *pflags)
 162{
 163	unsigned long flags;
 164
 165	hash = hash & HASHTAB_MAP_LOCK_MASK;
 166
 167	migrate_disable();
 168	if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) {
 169		__this_cpu_dec(*(htab->map_locked[hash]));
 170		migrate_enable();
 171		return -EBUSY;
 172	}
 173
 174	if (htab_use_raw_lock(htab))
 175		raw_spin_lock_irqsave(&b->raw_lock, flags);
 176	else
 177		spin_lock_irqsave(&b->lock, flags);
 178	*pflags = flags;
 179
 180	return 0;
 181}
 182
 183static inline void htab_unlock_bucket(const struct bpf_htab *htab,
 184				      struct bucket *b, u32 hash,
 185				      unsigned long flags)
 186{
 187	hash = hash & HASHTAB_MAP_LOCK_MASK;
 188	if (htab_use_raw_lock(htab))
 189		raw_spin_unlock_irqrestore(&b->raw_lock, flags);
 190	else
 191		spin_unlock_irqrestore(&b->lock, flags);
 192	__this_cpu_dec(*(htab->map_locked[hash]));
 193	migrate_enable();
 194}
 195
 196static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
 197
 198static bool htab_is_lru(const struct bpf_htab *htab)
 199{
 200	return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
 201		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
 202}
 203
 204static bool htab_is_percpu(const struct bpf_htab *htab)
 205{
 206	return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
 207		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
 208}
 209
 210static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
 211				     void __percpu *pptr)
 212{
 213	*(void __percpu **)(l->key + key_size) = pptr;
 214}
 215
 216static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
 217{
 218	return *(void __percpu **)(l->key + key_size);
 219}
 220
 221static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
 222{
 223	return *(void **)(l->key + roundup(map->key_size, 8));
 224}
 225
 226static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
 227{
 228	return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size);
 229}
 230
 231static void htab_free_elems(struct bpf_htab *htab)
 232{
 233	int i;
 234
 235	if (!htab_is_percpu(htab))
 236		goto free_elems;
 237
 238	for (i = 0; i < htab->map.max_entries; i++) {
 239		void __percpu *pptr;
 240
 241		pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
 242					 htab->map.key_size);
 243		free_percpu(pptr);
 244		cond_resched();
 245	}
 246free_elems:
 247	bpf_map_area_free(htab->elems);
 248}
 249
 250/* The LRU list has a lock (lru_lock). Each htab bucket has a lock
 251 * (bucket_lock). If both locks need to be acquired together, the lock
 252 * order is always lru_lock -> bucket_lock and this only happens in
 253 * bpf_lru_list.c logic. For example, certain code path of
 254 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
 255 * will acquire lru_lock first followed by acquiring bucket_lock.
 256 *
 257 * In hashtab.c, to avoid deadlock, lock acquisition of
 258 * bucket_lock followed by lru_lock is not allowed. In such cases,
 259 * bucket_lock needs to be released first before acquiring lru_lock.
 260 */
 261static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
 262					  u32 hash)
 263{
 264	struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
 265	struct htab_elem *l;
 266
 267	if (node) {
 268		l = container_of(node, struct htab_elem, lru_node);
 269		memcpy(l->key, key, htab->map.key_size);
 270		return l;
 271	}
 272
 273	return NULL;
 274}
 275
 276static int prealloc_init(struct bpf_htab *htab)
 277{
 278	u32 num_entries = htab->map.max_entries;
 279	int err = -ENOMEM, i;
 280
 281	if (!htab_is_percpu(htab) && !htab_is_lru(htab))
 282		num_entries += num_possible_cpus();
 283
 284	htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries,
 285					 htab->map.numa_node);
 286	if (!htab->elems)
 287		return -ENOMEM;
 288
 289	if (!htab_is_percpu(htab))
 290		goto skip_percpu_elems;
 291
 292	for (i = 0; i < num_entries; i++) {
 293		u32 size = round_up(htab->map.value_size, 8);
 294		void __percpu *pptr;
 295
 296		pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
 297					    GFP_USER | __GFP_NOWARN);
 298		if (!pptr)
 299			goto free_elems;
 300		htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
 301				  pptr);
 302		cond_resched();
 303	}
 304
 305skip_percpu_elems:
 306	if (htab_is_lru(htab))
 307		err = bpf_lru_init(&htab->lru,
 308				   htab->map.map_flags & BPF_F_NO_COMMON_LRU,
 309				   offsetof(struct htab_elem, hash) -
 310				   offsetof(struct htab_elem, lru_node),
 311				   htab_lru_map_delete_node,
 312				   htab);
 313	else
 314		err = pcpu_freelist_init(&htab->freelist);
 315
 316	if (err)
 317		goto free_elems;
 318
 319	if (htab_is_lru(htab))
 320		bpf_lru_populate(&htab->lru, htab->elems,
 321				 offsetof(struct htab_elem, lru_node),
 322				 htab->elem_size, num_entries);
 323	else
 324		pcpu_freelist_populate(&htab->freelist,
 325				       htab->elems + offsetof(struct htab_elem, fnode),
 326				       htab->elem_size, num_entries);
 327
 328	return 0;
 329
 330free_elems:
 331	htab_free_elems(htab);
 332	return err;
 333}
 334
 335static void prealloc_destroy(struct bpf_htab *htab)
 336{
 337	htab_free_elems(htab);
 338
 339	if (htab_is_lru(htab))
 340		bpf_lru_destroy(&htab->lru);
 341	else
 342		pcpu_freelist_destroy(&htab->freelist);
 343}
 344
 345static int alloc_extra_elems(struct bpf_htab *htab)
 346{
 347	struct htab_elem *__percpu *pptr, *l_new;
 348	struct pcpu_freelist_node *l;
 349	int cpu;
 350
 351	pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8,
 352				    GFP_USER | __GFP_NOWARN);
 353	if (!pptr)
 354		return -ENOMEM;
 355
 356	for_each_possible_cpu(cpu) {
 357		l = pcpu_freelist_pop(&htab->freelist);
 358		/* pop will succeed, since prealloc_init()
 359		 * preallocated extra num_possible_cpus elements
 360		 */
 361		l_new = container_of(l, struct htab_elem, fnode);
 362		*per_cpu_ptr(pptr, cpu) = l_new;
 363	}
 364	htab->extra_elems = pptr;
 365	return 0;
 366}
 367
 368/* Called from syscall */
 369static int htab_map_alloc_check(union bpf_attr *attr)
 370{
 371	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
 372		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
 373	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
 374		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
 375	/* percpu_lru means each cpu has its own LRU list.
 376	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
 377	 * the map's value itself is percpu.  percpu_lru has
 378	 * nothing to do with the map's value.
 379	 */
 380	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
 381	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
 382	bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
 383	int numa_node = bpf_map_attr_numa_node(attr);
 384
 385	BUILD_BUG_ON(offsetof(struct htab_elem, htab) !=
 386		     offsetof(struct htab_elem, hash_node.pprev));
 387	BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
 388		     offsetof(struct htab_elem, hash_node.pprev));
 389
 390	if (lru && !bpf_capable())
 391		/* LRU implementation is much complicated than other
 392		 * maps.  Hence, limit to CAP_BPF.
 393		 */
 394		return -EPERM;
 395
 396	if (zero_seed && !capable(CAP_SYS_ADMIN))
 397		/* Guard against local DoS, and discourage production use. */
 398		return -EPERM;
 399
 400	if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
 401	    !bpf_map_flags_access_ok(attr->map_flags))
 402		return -EINVAL;
 403
 404	if (!lru && percpu_lru)
 405		return -EINVAL;
 406
 407	if (lru && !prealloc)
 408		return -ENOTSUPP;
 409
 410	if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
 411		return -EINVAL;
 412
 413	/* check sanity of attributes.
 414	 * value_size == 0 may be allowed in the future to use map as a set
 415	 */
 416	if (attr->max_entries == 0 || attr->key_size == 0 ||
 417	    attr->value_size == 0)
 418		return -EINVAL;
 419
 420	if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE -
 421	   sizeof(struct htab_elem))
 422		/* if key_size + value_size is bigger, the user space won't be
 423		 * able to access the elements via bpf syscall. This check
 424		 * also makes sure that the elem_size doesn't overflow and it's
 
 
 
 
 
 
 425		 * kmalloc-able later in htab_map_update_elem()
 426		 */
 427		return -E2BIG;
 428
 429	return 0;
 430}
 431
 432static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
 433{
 434	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
 435		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
 436	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
 437		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
 438	/* percpu_lru means each cpu has its own LRU list.
 439	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
 440	 * the map's value itself is percpu.  percpu_lru has
 441	 * nothing to do with the map's value.
 442	 */
 443	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
 444	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
 445	struct bpf_htab *htab;
 446	int err, i;
 
 447
 448	htab = kzalloc(sizeof(*htab), GFP_USER | __GFP_ACCOUNT);
 449	if (!htab)
 450		return ERR_PTR(-ENOMEM);
 451
 452	lockdep_register_key(&htab->lockdep_key);
 453
 454	bpf_map_init_from_attr(&htab->map, attr);
 455
 456	if (percpu_lru) {
 457		/* ensure each CPU's lru list has >=1 elements.
 458		 * since we are at it, make each lru list has the same
 459		 * number of elements.
 460		 */
 461		htab->map.max_entries = roundup(attr->max_entries,
 462						num_possible_cpus());
 463		if (htab->map.max_entries < attr->max_entries)
 464			htab->map.max_entries = rounddown(attr->max_entries,
 465							  num_possible_cpus());
 466	}
 467
 468	/* hash table size must be power of 2 */
 469	htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
 470
 471	htab->elem_size = sizeof(struct htab_elem) +
 472			  round_up(htab->map.key_size, 8);
 473	if (percpu)
 474		htab->elem_size += sizeof(void *);
 475	else
 476		htab->elem_size += round_up(htab->map.value_size, 8);
 477
 478	err = -E2BIG;
 479	/* prevent zero size kmalloc and check for u32 overflow */
 480	if (htab->n_buckets == 0 ||
 481	    htab->n_buckets > U32_MAX / sizeof(struct bucket))
 482		goto free_htab;
 483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 484	err = -ENOMEM;
 485	htab->buckets = bpf_map_area_alloc(htab->n_buckets *
 486					   sizeof(struct bucket),
 487					   htab->map.numa_node);
 488	if (!htab->buckets)
 489		goto free_htab;
 490
 491	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) {
 492		htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map,
 493							   sizeof(int),
 494							   sizeof(int),
 495							   GFP_USER);
 496		if (!htab->map_locked[i])
 497			goto free_map_locked;
 498	}
 499
 500	if (htab->map.map_flags & BPF_F_ZERO_SEED)
 501		htab->hashrnd = 0;
 502	else
 503		htab->hashrnd = get_random_int();
 504
 505	htab_init_buckets(htab);
 506
 507	if (prealloc) {
 508		err = prealloc_init(htab);
 509		if (err)
 510			goto free_map_locked;
 511
 512		if (!percpu && !lru) {
 513			/* lru itself can remove the least used element, so
 514			 * there is no need for an extra elem during map_update.
 515			 */
 516			err = alloc_extra_elems(htab);
 517			if (err)
 518				goto free_prealloc;
 519		}
 520	}
 521
 522	return &htab->map;
 523
 524free_prealloc:
 525	prealloc_destroy(htab);
 526free_map_locked:
 527	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
 528		free_percpu(htab->map_locked[i]);
 529	bpf_map_area_free(htab->buckets);
 
 
 530free_htab:
 531	lockdep_unregister_key(&htab->lockdep_key);
 532	kfree(htab);
 533	return ERR_PTR(err);
 534}
 535
 536static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
 537{
 538	return jhash(key, key_len, hashrnd);
 539}
 540
 541static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
 542{
 543	return &htab->buckets[hash & (htab->n_buckets - 1)];
 544}
 545
 546static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
 547{
 548	return &__select_bucket(htab, hash)->head;
 549}
 550
 551/* this lookup function can only be called with bucket lock taken */
 552static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
 553					 void *key, u32 key_size)
 554{
 555	struct hlist_nulls_node *n;
 556	struct htab_elem *l;
 557
 558	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
 559		if (l->hash == hash && !memcmp(&l->key, key, key_size))
 560			return l;
 561
 562	return NULL;
 563}
 564
 565/* can be called without bucket lock. it will repeat the loop in
 566 * the unlikely event when elements moved from one bucket into another
 567 * while link list is being walked
 568 */
 569static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
 570					       u32 hash, void *key,
 571					       u32 key_size, u32 n_buckets)
 572{
 573	struct hlist_nulls_node *n;
 574	struct htab_elem *l;
 575
 576again:
 577	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
 578		if (l->hash == hash && !memcmp(&l->key, key, key_size))
 579			return l;
 580
 581	if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
 582		goto again;
 583
 584	return NULL;
 585}
 586
 587/* Called from syscall or from eBPF program directly, so
 588 * arguments have to match bpf_map_lookup_elem() exactly.
 589 * The return value is adjusted by BPF instructions
 590 * in htab_map_gen_lookup().
 591 */
 592static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
 593{
 594	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 595	struct hlist_nulls_head *head;
 596	struct htab_elem *l;
 597	u32 hash, key_size;
 598
 599	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
 600		     !rcu_read_lock_bh_held());
 601
 602	key_size = map->key_size;
 603
 604	hash = htab_map_hash(key, key_size, htab->hashrnd);
 605
 606	head = select_bucket(htab, hash);
 607
 608	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
 609
 610	return l;
 611}
 612
 613static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
 614{
 615	struct htab_elem *l = __htab_map_lookup_elem(map, key);
 616
 617	if (l)
 618		return l->key + round_up(map->key_size, 8);
 619
 620	return NULL;
 621}
 622
 623/* inline bpf_map_lookup_elem() call.
 624 * Instead of:
 625 * bpf_prog
 626 *   bpf_map_lookup_elem
 627 *     map->ops->map_lookup_elem
 628 *       htab_map_lookup_elem
 629 *         __htab_map_lookup_elem
 630 * do:
 631 * bpf_prog
 632 *   __htab_map_lookup_elem
 633 */
 634static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
 635{
 636	struct bpf_insn *insn = insn_buf;
 637	const int ret = BPF_REG_0;
 638
 639	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
 640		     (void *(*)(struct bpf_map *map, void *key))NULL));
 641	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
 642	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
 643	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
 644				offsetof(struct htab_elem, key) +
 645				round_up(map->key_size, 8));
 646	return insn - insn_buf;
 647}
 648
 649static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
 650							void *key, const bool mark)
 651{
 652	struct htab_elem *l = __htab_map_lookup_elem(map, key);
 653
 654	if (l) {
 655		if (mark)
 656			bpf_lru_node_set_ref(&l->lru_node);
 657		return l->key + round_up(map->key_size, 8);
 658	}
 659
 660	return NULL;
 661}
 662
 663static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
 664{
 665	return __htab_lru_map_lookup_elem(map, key, true);
 666}
 667
 668static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
 669{
 670	return __htab_lru_map_lookup_elem(map, key, false);
 671}
 672
 673static int htab_lru_map_gen_lookup(struct bpf_map *map,
 674				   struct bpf_insn *insn_buf)
 675{
 676	struct bpf_insn *insn = insn_buf;
 677	const int ret = BPF_REG_0;
 678	const int ref_reg = BPF_REG_1;
 679
 680	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
 681		     (void *(*)(struct bpf_map *map, void *key))NULL));
 682	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
 683	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
 684	*insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
 685			      offsetof(struct htab_elem, lru_node) +
 686			      offsetof(struct bpf_lru_node, ref));
 687	*insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
 688	*insn++ = BPF_ST_MEM(BPF_B, ret,
 689			     offsetof(struct htab_elem, lru_node) +
 690			     offsetof(struct bpf_lru_node, ref),
 691			     1);
 692	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
 693				offsetof(struct htab_elem, key) +
 694				round_up(map->key_size, 8));
 695	return insn - insn_buf;
 696}
 697
 698/* It is called from the bpf_lru_list when the LRU needs to delete
 699 * older elements from the htab.
 700 */
 701static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
 702{
 703	struct bpf_htab *htab = (struct bpf_htab *)arg;
 704	struct htab_elem *l = NULL, *tgt_l;
 705	struct hlist_nulls_head *head;
 706	struct hlist_nulls_node *n;
 707	unsigned long flags;
 708	struct bucket *b;
 709	int ret;
 710
 711	tgt_l = container_of(node, struct htab_elem, lru_node);
 712	b = __select_bucket(htab, tgt_l->hash);
 713	head = &b->head;
 714
 715	ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags);
 716	if (ret)
 717		return false;
 718
 719	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
 720		if (l == tgt_l) {
 721			hlist_nulls_del_rcu(&l->hash_node);
 722			break;
 723		}
 724
 725	htab_unlock_bucket(htab, b, tgt_l->hash, flags);
 726
 727	return l == tgt_l;
 728}
 729
 730/* Called from syscall */
 731static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
 732{
 733	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 734	struct hlist_nulls_head *head;
 735	struct htab_elem *l, *next_l;
 736	u32 hash, key_size;
 737	int i = 0;
 738
 739	WARN_ON_ONCE(!rcu_read_lock_held());
 740
 741	key_size = map->key_size;
 742
 743	if (!key)
 744		goto find_first_elem;
 745
 746	hash = htab_map_hash(key, key_size, htab->hashrnd);
 747
 748	head = select_bucket(htab, hash);
 749
 750	/* lookup the key */
 751	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
 752
 753	if (!l)
 754		goto find_first_elem;
 755
 756	/* key was found, get next key in the same bucket */
 757	next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
 758				  struct htab_elem, hash_node);
 759
 760	if (next_l) {
 761		/* if next elem in this hash list is non-zero, just return it */
 762		memcpy(next_key, next_l->key, key_size);
 763		return 0;
 764	}
 765
 766	/* no more elements in this hash list, go to the next bucket */
 767	i = hash & (htab->n_buckets - 1);
 768	i++;
 769
 770find_first_elem:
 771	/* iterate over buckets */
 772	for (; i < htab->n_buckets; i++) {
 773		head = select_bucket(htab, i);
 774
 775		/* pick first element in the bucket */
 776		next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
 777					  struct htab_elem, hash_node);
 778		if (next_l) {
 779			/* if it's not empty, just return it */
 780			memcpy(next_key, next_l->key, key_size);
 781			return 0;
 782		}
 783	}
 784
 785	/* iterated over all buckets and all elements */
 786	return -ENOENT;
 787}
 788
 789static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
 790{
 791	if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
 792		free_percpu(htab_elem_get_ptr(l, htab->map.key_size));
 793	kfree(l);
 794}
 795
 796static void htab_elem_free_rcu(struct rcu_head *head)
 797{
 798	struct htab_elem *l = container_of(head, struct htab_elem, rcu);
 799	struct bpf_htab *htab = l->htab;
 800
 801	htab_elem_free(htab, l);
 802}
 803
 804static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
 805{
 806	struct bpf_map *map = &htab->map;
 807	void *ptr;
 808
 809	if (map->ops->map_fd_put_ptr) {
 810		ptr = fd_htab_map_get_ptr(map, l);
 811		map->ops->map_fd_put_ptr(ptr);
 812	}
 813}
 814
 815static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
 816{
 817	htab_put_fd_value(htab, l);
 818
 819	if (htab_is_prealloc(htab)) {
 820		__pcpu_freelist_push(&htab->freelist, &l->fnode);
 821	} else {
 822		atomic_dec(&htab->count);
 823		l->htab = htab;
 824		call_rcu(&l->rcu, htab_elem_free_rcu);
 825	}
 826}
 827
 828static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
 829			    void *value, bool onallcpus)
 830{
 831	if (!onallcpus) {
 832		/* copy true value_size bytes */
 833		memcpy(this_cpu_ptr(pptr), value, htab->map.value_size);
 834	} else {
 835		u32 size = round_up(htab->map.value_size, 8);
 836		int off = 0, cpu;
 837
 838		for_each_possible_cpu(cpu) {
 839			bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
 840					value + off, size);
 841			off += size;
 842		}
 843	}
 844}
 845
 846static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr,
 847			    void *value, bool onallcpus)
 848{
 849	/* When using prealloc and not setting the initial value on all cpus,
 850	 * zero-fill element values for other cpus (just as what happens when
 851	 * not using prealloc). Otherwise, bpf program has no way to ensure
 852	 * known initial values for cpus other than current one
 853	 * (onallcpus=false always when coming from bpf prog).
 854	 */
 855	if (htab_is_prealloc(htab) && !onallcpus) {
 856		u32 size = round_up(htab->map.value_size, 8);
 857		int current_cpu = raw_smp_processor_id();
 858		int cpu;
 859
 860		for_each_possible_cpu(cpu) {
 861			if (cpu == current_cpu)
 862				bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value,
 863						size);
 864			else
 865				memset(per_cpu_ptr(pptr, cpu), 0, size);
 866		}
 867	} else {
 868		pcpu_copy_value(htab, pptr, value, onallcpus);
 869	}
 870}
 871
 872static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
 873{
 874	return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
 875	       BITS_PER_LONG == 64;
 876}
 877
 878static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
 879					 void *value, u32 key_size, u32 hash,
 880					 bool percpu, bool onallcpus,
 881					 struct htab_elem *old_elem)
 882{
 883	u32 size = htab->map.value_size;
 884	bool prealloc = htab_is_prealloc(htab);
 885	struct htab_elem *l_new, **pl_new;
 886	void __percpu *pptr;
 887
 888	if (prealloc) {
 889		if (old_elem) {
 890			/* if we're updating the existing element,
 891			 * use per-cpu extra elems to avoid freelist_pop/push
 892			 */
 893			pl_new = this_cpu_ptr(htab->extra_elems);
 894			l_new = *pl_new;
 895			htab_put_fd_value(htab, old_elem);
 896			*pl_new = old_elem;
 897		} else {
 898			struct pcpu_freelist_node *l;
 899
 900			l = __pcpu_freelist_pop(&htab->freelist);
 901			if (!l)
 902				return ERR_PTR(-E2BIG);
 903			l_new = container_of(l, struct htab_elem, fnode);
 904		}
 905	} else {
 906		if (atomic_inc_return(&htab->count) > htab->map.max_entries)
 907			if (!old_elem) {
 908				/* when map is full and update() is replacing
 909				 * old element, it's ok to allocate, since
 910				 * old element will be freed immediately.
 911				 * Otherwise return an error
 912				 */
 913				l_new = ERR_PTR(-E2BIG);
 914				goto dec_count;
 915			}
 916		l_new = bpf_map_kmalloc_node(&htab->map, htab->elem_size,
 917					     GFP_ATOMIC | __GFP_NOWARN,
 918					     htab->map.numa_node);
 919		if (!l_new) {
 920			l_new = ERR_PTR(-ENOMEM);
 921			goto dec_count;
 922		}
 923		check_and_init_map_lock(&htab->map,
 924					l_new->key + round_up(key_size, 8));
 925	}
 926
 927	memcpy(l_new->key, key, key_size);
 928	if (percpu) {
 929		size = round_up(size, 8);
 930		if (prealloc) {
 931			pptr = htab_elem_get_ptr(l_new, key_size);
 932		} else {
 933			/* alloc_percpu zero-fills */
 934			pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
 935						    GFP_ATOMIC | __GFP_NOWARN);
 936			if (!pptr) {
 937				kfree(l_new);
 938				l_new = ERR_PTR(-ENOMEM);
 939				goto dec_count;
 940			}
 941		}
 942
 943		pcpu_init_value(htab, pptr, value, onallcpus);
 944
 945		if (!prealloc)
 946			htab_elem_set_ptr(l_new, key_size, pptr);
 947	} else if (fd_htab_map_needs_adjust(htab)) {
 948		size = round_up(size, 8);
 949		memcpy(l_new->key + round_up(key_size, 8), value, size);
 950	} else {
 951		copy_map_value(&htab->map,
 952			       l_new->key + round_up(key_size, 8),
 953			       value);
 954	}
 955
 956	l_new->hash = hash;
 957	return l_new;
 958dec_count:
 959	atomic_dec(&htab->count);
 960	return l_new;
 961}
 962
 963static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
 964		       u64 map_flags)
 965{
 966	if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
 967		/* elem already exists */
 968		return -EEXIST;
 969
 970	if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
 971		/* elem doesn't exist, cannot update it */
 972		return -ENOENT;
 973
 974	return 0;
 975}
 976
 977/* Called from syscall or from eBPF program */
 978static int htab_map_update_elem(struct bpf_map *map, void *key, void *value,
 979				u64 map_flags)
 980{
 981	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 982	struct htab_elem *l_new = NULL, *l_old;
 983	struct hlist_nulls_head *head;
 984	unsigned long flags;
 985	struct bucket *b;
 986	u32 key_size, hash;
 987	int ret;
 988
 989	if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
 990		/* unknown flags */
 991		return -EINVAL;
 992
 993	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
 994		     !rcu_read_lock_bh_held());
 995
 996	key_size = map->key_size;
 997
 998	hash = htab_map_hash(key, key_size, htab->hashrnd);
 999
1000	b = __select_bucket(htab, hash);
1001	head = &b->head;
1002
1003	if (unlikely(map_flags & BPF_F_LOCK)) {
1004		if (unlikely(!map_value_has_spin_lock(map)))
1005			return -EINVAL;
1006		/* find an element without taking the bucket lock */
1007		l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
1008					      htab->n_buckets);
1009		ret = check_flags(htab, l_old, map_flags);
1010		if (ret)
1011			return ret;
1012		if (l_old) {
1013			/* grab the element lock and update value in place */
1014			copy_map_value_locked(map,
1015					      l_old->key + round_up(key_size, 8),
1016					      value, false);
1017			return 0;
1018		}
1019		/* fall through, grab the bucket lock and lookup again.
1020		 * 99.9% chance that the element won't be found,
1021		 * but second lookup under lock has to be done.
1022		 */
1023	}
1024
1025	ret = htab_lock_bucket(htab, b, hash, &flags);
1026	if (ret)
1027		return ret;
1028
1029	l_old = lookup_elem_raw(head, hash, key, key_size);
1030
1031	ret = check_flags(htab, l_old, map_flags);
1032	if (ret)
1033		goto err;
1034
1035	if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
1036		/* first lookup without the bucket lock didn't find the element,
1037		 * but second lookup with the bucket lock found it.
1038		 * This case is highly unlikely, but has to be dealt with:
1039		 * grab the element lock in addition to the bucket lock
1040		 * and update element in place
1041		 */
1042		copy_map_value_locked(map,
1043				      l_old->key + round_up(key_size, 8),
1044				      value, false);
1045		ret = 0;
1046		goto err;
1047	}
1048
1049	l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
1050				l_old);
1051	if (IS_ERR(l_new)) {
1052		/* all pre-allocated elements are in use or memory exhausted */
1053		ret = PTR_ERR(l_new);
1054		goto err;
1055	}
1056
1057	/* add new element to the head of the list, so that
1058	 * concurrent search will find it before old elem
1059	 */
1060	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1061	if (l_old) {
1062		hlist_nulls_del_rcu(&l_old->hash_node);
1063		if (!htab_is_prealloc(htab))
1064			free_htab_elem(htab, l_old);
1065	}
1066	ret = 0;
1067err:
1068	htab_unlock_bucket(htab, b, hash, flags);
1069	return ret;
1070}
1071
1072static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1073				    u64 map_flags)
1074{
1075	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1076	struct htab_elem *l_new, *l_old = NULL;
1077	struct hlist_nulls_head *head;
1078	unsigned long flags;
1079	struct bucket *b;
1080	u32 key_size, hash;
1081	int ret;
1082
1083	if (unlikely(map_flags > BPF_EXIST))
1084		/* unknown flags */
1085		return -EINVAL;
1086
1087	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1088		     !rcu_read_lock_bh_held());
1089
1090	key_size = map->key_size;
1091
1092	hash = htab_map_hash(key, key_size, htab->hashrnd);
1093
1094	b = __select_bucket(htab, hash);
1095	head = &b->head;
1096
1097	/* For LRU, we need to alloc before taking bucket's
1098	 * spinlock because getting free nodes from LRU may need
1099	 * to remove older elements from htab and this removal
1100	 * operation will need a bucket lock.
1101	 */
1102	l_new = prealloc_lru_pop(htab, key, hash);
1103	if (!l_new)
1104		return -ENOMEM;
1105	memcpy(l_new->key + round_up(map->key_size, 8), value, map->value_size);
1106
1107	ret = htab_lock_bucket(htab, b, hash, &flags);
1108	if (ret)
1109		return ret;
1110
1111	l_old = lookup_elem_raw(head, hash, key, key_size);
1112
1113	ret = check_flags(htab, l_old, map_flags);
1114	if (ret)
1115		goto err;
1116
1117	/* add new element to the head of the list, so that
1118	 * concurrent search will find it before old elem
1119	 */
1120	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1121	if (l_old) {
1122		bpf_lru_node_set_ref(&l_new->lru_node);
1123		hlist_nulls_del_rcu(&l_old->hash_node);
1124	}
1125	ret = 0;
1126
1127err:
1128	htab_unlock_bucket(htab, b, hash, flags);
1129
1130	if (ret)
1131		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1132	else if (l_old)
1133		bpf_lru_push_free(&htab->lru, &l_old->lru_node);
1134
1135	return ret;
1136}
1137
1138static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1139					 void *value, u64 map_flags,
1140					 bool onallcpus)
1141{
1142	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1143	struct htab_elem *l_new = NULL, *l_old;
1144	struct hlist_nulls_head *head;
1145	unsigned long flags;
1146	struct bucket *b;
1147	u32 key_size, hash;
1148	int ret;
1149
1150	if (unlikely(map_flags > BPF_EXIST))
1151		/* unknown flags */
1152		return -EINVAL;
1153
1154	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1155		     !rcu_read_lock_bh_held());
1156
1157	key_size = map->key_size;
1158
1159	hash = htab_map_hash(key, key_size, htab->hashrnd);
1160
1161	b = __select_bucket(htab, hash);
1162	head = &b->head;
1163
1164	ret = htab_lock_bucket(htab, b, hash, &flags);
1165	if (ret)
1166		return ret;
1167
1168	l_old = lookup_elem_raw(head, hash, key, key_size);
1169
1170	ret = check_flags(htab, l_old, map_flags);
1171	if (ret)
1172		goto err;
1173
1174	if (l_old) {
1175		/* per-cpu hash map can update value in-place */
1176		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1177				value, onallcpus);
1178	} else {
1179		l_new = alloc_htab_elem(htab, key, value, key_size,
1180					hash, true, onallcpus, NULL);
1181		if (IS_ERR(l_new)) {
1182			ret = PTR_ERR(l_new);
1183			goto err;
1184		}
1185		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1186	}
1187	ret = 0;
1188err:
1189	htab_unlock_bucket(htab, b, hash, flags);
1190	return ret;
1191}
1192
1193static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1194					     void *value, u64 map_flags,
1195					     bool onallcpus)
1196{
1197	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1198	struct htab_elem *l_new = NULL, *l_old;
1199	struct hlist_nulls_head *head;
1200	unsigned long flags;
1201	struct bucket *b;
1202	u32 key_size, hash;
1203	int ret;
1204
1205	if (unlikely(map_flags > BPF_EXIST))
1206		/* unknown flags */
1207		return -EINVAL;
1208
1209	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1210		     !rcu_read_lock_bh_held());
1211
1212	key_size = map->key_size;
1213
1214	hash = htab_map_hash(key, key_size, htab->hashrnd);
1215
1216	b = __select_bucket(htab, hash);
1217	head = &b->head;
1218
1219	/* For LRU, we need to alloc before taking bucket's
1220	 * spinlock because LRU's elem alloc may need
1221	 * to remove older elem from htab and this removal
1222	 * operation will need a bucket lock.
1223	 */
1224	if (map_flags != BPF_EXIST) {
1225		l_new = prealloc_lru_pop(htab, key, hash);
1226		if (!l_new)
1227			return -ENOMEM;
1228	}
1229
1230	ret = htab_lock_bucket(htab, b, hash, &flags);
1231	if (ret)
1232		return ret;
1233
1234	l_old = lookup_elem_raw(head, hash, key, key_size);
1235
1236	ret = check_flags(htab, l_old, map_flags);
1237	if (ret)
1238		goto err;
1239
1240	if (l_old) {
1241		bpf_lru_node_set_ref(&l_old->lru_node);
1242
1243		/* per-cpu hash map can update value in-place */
1244		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1245				value, onallcpus);
1246	} else {
1247		pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size),
1248				value, onallcpus);
1249		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1250		l_new = NULL;
1251	}
1252	ret = 0;
1253err:
1254	htab_unlock_bucket(htab, b, hash, flags);
1255	if (l_new)
1256		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1257	return ret;
1258}
1259
1260static int htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1261				       void *value, u64 map_flags)
1262{
1263	return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1264}
1265
1266static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1267					   void *value, u64 map_flags)
1268{
1269	return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1270						 false);
1271}
1272
1273/* Called from syscall or from eBPF program */
1274static int htab_map_delete_elem(struct bpf_map *map, void *key)
1275{
1276	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1277	struct hlist_nulls_head *head;
1278	struct bucket *b;
1279	struct htab_elem *l;
1280	unsigned long flags;
1281	u32 hash, key_size;
1282	int ret;
1283
1284	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1285		     !rcu_read_lock_bh_held());
1286
1287	key_size = map->key_size;
1288
1289	hash = htab_map_hash(key, key_size, htab->hashrnd);
1290	b = __select_bucket(htab, hash);
1291	head = &b->head;
1292
1293	ret = htab_lock_bucket(htab, b, hash, &flags);
1294	if (ret)
1295		return ret;
1296
1297	l = lookup_elem_raw(head, hash, key, key_size);
1298
1299	if (l) {
1300		hlist_nulls_del_rcu(&l->hash_node);
1301		free_htab_elem(htab, l);
1302	} else {
1303		ret = -ENOENT;
1304	}
1305
1306	htab_unlock_bucket(htab, b, hash, flags);
1307	return ret;
1308}
1309
1310static int htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1311{
1312	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1313	struct hlist_nulls_head *head;
1314	struct bucket *b;
1315	struct htab_elem *l;
1316	unsigned long flags;
1317	u32 hash, key_size;
1318	int ret;
1319
1320	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1321		     !rcu_read_lock_bh_held());
1322
1323	key_size = map->key_size;
1324
1325	hash = htab_map_hash(key, key_size, htab->hashrnd);
1326	b = __select_bucket(htab, hash);
1327	head = &b->head;
1328
1329	ret = htab_lock_bucket(htab, b, hash, &flags);
1330	if (ret)
1331		return ret;
1332
1333	l = lookup_elem_raw(head, hash, key, key_size);
1334
1335	if (l)
1336		hlist_nulls_del_rcu(&l->hash_node);
1337	else
1338		ret = -ENOENT;
1339
1340	htab_unlock_bucket(htab, b, hash, flags);
1341	if (l)
1342		bpf_lru_push_free(&htab->lru, &l->lru_node);
1343	return ret;
1344}
1345
1346static void delete_all_elements(struct bpf_htab *htab)
1347{
1348	int i;
1349
1350	for (i = 0; i < htab->n_buckets; i++) {
1351		struct hlist_nulls_head *head = select_bucket(htab, i);
1352		struct hlist_nulls_node *n;
1353		struct htab_elem *l;
1354
1355		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1356			hlist_nulls_del_rcu(&l->hash_node);
1357			htab_elem_free(htab, l);
1358		}
1359	}
1360}
1361
1362/* Called when map->refcnt goes to zero, either from workqueue or from syscall */
1363static void htab_map_free(struct bpf_map *map)
1364{
1365	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1366	int i;
1367
1368	/* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
1369	 * bpf_free_used_maps() is called after bpf prog is no longer executing.
1370	 * There is no need to synchronize_rcu() here to protect map elements.
1371	 */
1372
1373	/* some of free_htab_elem() callbacks for elements of this map may
1374	 * not have executed. Wait for them.
1375	 */
1376	rcu_barrier();
1377	if (!htab_is_prealloc(htab))
1378		delete_all_elements(htab);
1379	else
1380		prealloc_destroy(htab);
1381
1382	free_percpu(htab->extra_elems);
1383	bpf_map_area_free(htab->buckets);
1384	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
1385		free_percpu(htab->map_locked[i]);
1386	lockdep_unregister_key(&htab->lockdep_key);
1387	kfree(htab);
1388}
1389
1390static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1391				   struct seq_file *m)
1392{
1393	void *value;
1394
1395	rcu_read_lock();
1396
1397	value = htab_map_lookup_elem(map, key);
1398	if (!value) {
1399		rcu_read_unlock();
1400		return;
1401	}
1402
1403	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1404	seq_puts(m, ": ");
1405	btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1406	seq_puts(m, "\n");
1407
1408	rcu_read_unlock();
1409}
1410
1411static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1412					     void *value, bool is_lru_map,
1413					     bool is_percpu, u64 flags)
1414{
1415	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1416	struct hlist_nulls_head *head;
1417	unsigned long bflags;
1418	struct htab_elem *l;
1419	u32 hash, key_size;
1420	struct bucket *b;
1421	int ret;
1422
1423	key_size = map->key_size;
1424
1425	hash = htab_map_hash(key, key_size, htab->hashrnd);
1426	b = __select_bucket(htab, hash);
1427	head = &b->head;
1428
1429	ret = htab_lock_bucket(htab, b, hash, &bflags);
1430	if (ret)
1431		return ret;
1432
1433	l = lookup_elem_raw(head, hash, key, key_size);
1434	if (!l) {
1435		ret = -ENOENT;
1436	} else {
1437		if (is_percpu) {
1438			u32 roundup_value_size = round_up(map->value_size, 8);
1439			void __percpu *pptr;
1440			int off = 0, cpu;
1441
1442			pptr = htab_elem_get_ptr(l, key_size);
1443			for_each_possible_cpu(cpu) {
1444				bpf_long_memcpy(value + off,
1445						per_cpu_ptr(pptr, cpu),
1446						roundup_value_size);
1447				off += roundup_value_size;
1448			}
1449		} else {
1450			u32 roundup_key_size = round_up(map->key_size, 8);
1451
1452			if (flags & BPF_F_LOCK)
1453				copy_map_value_locked(map, value, l->key +
1454						      roundup_key_size,
1455						      true);
1456			else
1457				copy_map_value(map, value, l->key +
1458					       roundup_key_size);
1459			check_and_init_map_lock(map, value);
1460		}
1461
1462		hlist_nulls_del_rcu(&l->hash_node);
1463		if (!is_lru_map)
1464			free_htab_elem(htab, l);
1465	}
1466
1467	htab_unlock_bucket(htab, b, hash, bflags);
1468
1469	if (is_lru_map && l)
1470		bpf_lru_push_free(&htab->lru, &l->lru_node);
1471
1472	return ret;
1473}
1474
1475static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1476					   void *value, u64 flags)
1477{
1478	return __htab_map_lookup_and_delete_elem(map, key, value, false, false,
1479						 flags);
1480}
1481
1482static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1483						  void *key, void *value,
1484						  u64 flags)
1485{
1486	return __htab_map_lookup_and_delete_elem(map, key, value, false, true,
1487						 flags);
1488}
1489
1490static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1491					       void *value, u64 flags)
1492{
1493	return __htab_map_lookup_and_delete_elem(map, key, value, true, false,
1494						 flags);
1495}
1496
1497static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1498						      void *key, void *value,
1499						      u64 flags)
1500{
1501	return __htab_map_lookup_and_delete_elem(map, key, value, true, true,
1502						 flags);
1503}
1504
1505static int
1506__htab_map_lookup_and_delete_batch(struct bpf_map *map,
1507				   const union bpf_attr *attr,
1508				   union bpf_attr __user *uattr,
1509				   bool do_delete, bool is_lru_map,
1510				   bool is_percpu)
1511{
1512	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1513	u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1514	void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1515	void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1516	void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1517	void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1518	u32 batch, max_count, size, bucket_size;
1519	struct htab_elem *node_to_free = NULL;
1520	u64 elem_map_flags, map_flags;
1521	struct hlist_nulls_head *head;
1522	struct hlist_nulls_node *n;
1523	unsigned long flags = 0;
1524	bool locked = false;
1525	struct htab_elem *l;
1526	struct bucket *b;
1527	int ret = 0;
1528
1529	elem_map_flags = attr->batch.elem_flags;
1530	if ((elem_map_flags & ~BPF_F_LOCK) ||
1531	    ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map)))
1532		return -EINVAL;
1533
1534	map_flags = attr->batch.flags;
1535	if (map_flags)
1536		return -EINVAL;
1537
1538	max_count = attr->batch.count;
1539	if (!max_count)
1540		return 0;
1541
1542	if (put_user(0, &uattr->batch.count))
1543		return -EFAULT;
1544
1545	batch = 0;
1546	if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1547		return -EFAULT;
1548
1549	if (batch >= htab->n_buckets)
1550		return -ENOENT;
1551
1552	key_size = htab->map.key_size;
1553	roundup_key_size = round_up(htab->map.key_size, 8);
1554	value_size = htab->map.value_size;
1555	size = round_up(value_size, 8);
1556	if (is_percpu)
1557		value_size = size * num_possible_cpus();
1558	total = 0;
1559	/* while experimenting with hash tables with sizes ranging from 10 to
1560	 * 1000, it was observed that a bucket can have upto 5 entries.
1561	 */
1562	bucket_size = 5;
1563
1564alloc:
1565	/* We cannot do copy_from_user or copy_to_user inside
1566	 * the rcu_read_lock. Allocate enough space here.
1567	 */
1568	keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN);
1569	values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN);
1570	if (!keys || !values) {
1571		ret = -ENOMEM;
1572		goto after_loop;
1573	}
1574
1575again:
1576	bpf_disable_instrumentation();
1577	rcu_read_lock();
1578again_nocopy:
1579	dst_key = keys;
1580	dst_val = values;
1581	b = &htab->buckets[batch];
1582	head = &b->head;
1583	/* do not grab the lock unless need it (bucket_cnt > 0). */
1584	if (locked) {
1585		ret = htab_lock_bucket(htab, b, batch, &flags);
1586		if (ret)
1587			goto next_batch;
1588	}
1589
1590	bucket_cnt = 0;
1591	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1592		bucket_cnt++;
1593
1594	if (bucket_cnt && !locked) {
1595		locked = true;
1596		goto again_nocopy;
1597	}
1598
1599	if (bucket_cnt > (max_count - total)) {
1600		if (total == 0)
1601			ret = -ENOSPC;
1602		/* Note that since bucket_cnt > 0 here, it is implicit
1603		 * that the locked was grabbed, so release it.
1604		 */
1605		htab_unlock_bucket(htab, b, batch, flags);
1606		rcu_read_unlock();
1607		bpf_enable_instrumentation();
1608		goto after_loop;
1609	}
1610
1611	if (bucket_cnt > bucket_size) {
1612		bucket_size = bucket_cnt;
1613		/* Note that since bucket_cnt > 0 here, it is implicit
1614		 * that the locked was grabbed, so release it.
1615		 */
1616		htab_unlock_bucket(htab, b, batch, flags);
1617		rcu_read_unlock();
1618		bpf_enable_instrumentation();
1619		kvfree(keys);
1620		kvfree(values);
1621		goto alloc;
1622	}
1623
1624	/* Next block is only safe to run if you have grabbed the lock */
1625	if (!locked)
1626		goto next_batch;
1627
1628	hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1629		memcpy(dst_key, l->key, key_size);
1630
1631		if (is_percpu) {
1632			int off = 0, cpu;
1633			void __percpu *pptr;
1634
1635			pptr = htab_elem_get_ptr(l, map->key_size);
1636			for_each_possible_cpu(cpu) {
1637				bpf_long_memcpy(dst_val + off,
1638						per_cpu_ptr(pptr, cpu), size);
1639				off += size;
1640			}
1641		} else {
1642			value = l->key + roundup_key_size;
1643			if (elem_map_flags & BPF_F_LOCK)
1644				copy_map_value_locked(map, dst_val, value,
1645						      true);
1646			else
1647				copy_map_value(map, dst_val, value);
1648			check_and_init_map_lock(map, dst_val);
1649		}
1650		if (do_delete) {
1651			hlist_nulls_del_rcu(&l->hash_node);
1652
1653			/* bpf_lru_push_free() will acquire lru_lock, which
1654			 * may cause deadlock. See comments in function
1655			 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1656			 * after releasing the bucket lock.
1657			 */
1658			if (is_lru_map) {
1659				l->batch_flink = node_to_free;
1660				node_to_free = l;
1661			} else {
1662				free_htab_elem(htab, l);
1663			}
1664		}
1665		dst_key += key_size;
1666		dst_val += value_size;
1667	}
1668
1669	htab_unlock_bucket(htab, b, batch, flags);
1670	locked = false;
1671
1672	while (node_to_free) {
1673		l = node_to_free;
1674		node_to_free = node_to_free->batch_flink;
1675		bpf_lru_push_free(&htab->lru, &l->lru_node);
1676	}
1677
1678next_batch:
1679	/* If we are not copying data, we can go to next bucket and avoid
1680	 * unlocking the rcu.
1681	 */
1682	if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1683		batch++;
1684		goto again_nocopy;
1685	}
1686
1687	rcu_read_unlock();
1688	bpf_enable_instrumentation();
1689	if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1690	    key_size * bucket_cnt) ||
1691	    copy_to_user(uvalues + total * value_size, values,
1692	    value_size * bucket_cnt))) {
1693		ret = -EFAULT;
1694		goto after_loop;
1695	}
1696
1697	total += bucket_cnt;
1698	batch++;
1699	if (batch >= htab->n_buckets) {
1700		ret = -ENOENT;
1701		goto after_loop;
1702	}
1703	goto again;
1704
1705after_loop:
1706	if (ret == -EFAULT)
1707		goto out;
1708
1709	/* copy # of entries and next batch */
1710	ubatch = u64_to_user_ptr(attr->batch.out_batch);
1711	if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1712	    put_user(total, &uattr->batch.count))
1713		ret = -EFAULT;
1714
1715out:
1716	kvfree(keys);
1717	kvfree(values);
1718	return ret;
1719}
1720
1721static int
1722htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1723			     union bpf_attr __user *uattr)
1724{
1725	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1726						  false, true);
1727}
1728
1729static int
1730htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1731					const union bpf_attr *attr,
1732					union bpf_attr __user *uattr)
1733{
1734	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1735						  false, true);
1736}
1737
1738static int
1739htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1740		      union bpf_attr __user *uattr)
1741{
1742	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1743						  false, false);
1744}
1745
1746static int
1747htab_map_lookup_and_delete_batch(struct bpf_map *map,
1748				 const union bpf_attr *attr,
1749				 union bpf_attr __user *uattr)
1750{
1751	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1752						  false, false);
1753}
1754
1755static int
1756htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1757				 const union bpf_attr *attr,
1758				 union bpf_attr __user *uattr)
1759{
1760	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1761						  true, true);
1762}
1763
1764static int
1765htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1766					    const union bpf_attr *attr,
1767					    union bpf_attr __user *uattr)
1768{
1769	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1770						  true, true);
1771}
1772
1773static int
1774htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1775			  union bpf_attr __user *uattr)
1776{
1777	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1778						  true, false);
1779}
1780
1781static int
1782htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1783				     const union bpf_attr *attr,
1784				     union bpf_attr __user *uattr)
1785{
1786	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1787						  true, false);
1788}
1789
1790struct bpf_iter_seq_hash_map_info {
1791	struct bpf_map *map;
1792	struct bpf_htab *htab;
1793	void *percpu_value_buf; // non-zero means percpu hash
1794	u32 bucket_id;
1795	u32 skip_elems;
1796};
1797
1798static struct htab_elem *
1799bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
1800			   struct htab_elem *prev_elem)
1801{
1802	const struct bpf_htab *htab = info->htab;
1803	u32 skip_elems = info->skip_elems;
1804	u32 bucket_id = info->bucket_id;
1805	struct hlist_nulls_head *head;
1806	struct hlist_nulls_node *n;
1807	struct htab_elem *elem;
1808	struct bucket *b;
1809	u32 i, count;
1810
1811	if (bucket_id >= htab->n_buckets)
1812		return NULL;
1813
1814	/* try to find next elem in the same bucket */
1815	if (prev_elem) {
1816		/* no update/deletion on this bucket, prev_elem should be still valid
1817		 * and we won't skip elements.
1818		 */
1819		n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
1820		elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
1821		if (elem)
1822			return elem;
1823
1824		/* not found, unlock and go to the next bucket */
1825		b = &htab->buckets[bucket_id++];
1826		rcu_read_unlock();
1827		skip_elems = 0;
1828	}
1829
1830	for (i = bucket_id; i < htab->n_buckets; i++) {
1831		b = &htab->buckets[i];
1832		rcu_read_lock();
1833
1834		count = 0;
1835		head = &b->head;
1836		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
1837			if (count >= skip_elems) {
1838				info->bucket_id = i;
1839				info->skip_elems = count;
1840				return elem;
1841			}
1842			count++;
1843		}
1844
1845		rcu_read_unlock();
1846		skip_elems = 0;
1847	}
1848
1849	info->bucket_id = i;
1850	info->skip_elems = 0;
1851	return NULL;
1852}
1853
1854static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
1855{
1856	struct bpf_iter_seq_hash_map_info *info = seq->private;
1857	struct htab_elem *elem;
1858
1859	elem = bpf_hash_map_seq_find_next(info, NULL);
1860	if (!elem)
1861		return NULL;
1862
1863	if (*pos == 0)
1864		++*pos;
1865	return elem;
1866}
1867
1868static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1869{
1870	struct bpf_iter_seq_hash_map_info *info = seq->private;
1871
1872	++*pos;
1873	++info->skip_elems;
1874	return bpf_hash_map_seq_find_next(info, v);
1875}
1876
1877static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
1878{
1879	struct bpf_iter_seq_hash_map_info *info = seq->private;
1880	u32 roundup_key_size, roundup_value_size;
1881	struct bpf_iter__bpf_map_elem ctx = {};
1882	struct bpf_map *map = info->map;
1883	struct bpf_iter_meta meta;
1884	int ret = 0, off = 0, cpu;
1885	struct bpf_prog *prog;
1886	void __percpu *pptr;
1887
1888	meta.seq = seq;
1889	prog = bpf_iter_get_info(&meta, elem == NULL);
1890	if (prog) {
1891		ctx.meta = &meta;
1892		ctx.map = info->map;
1893		if (elem) {
1894			roundup_key_size = round_up(map->key_size, 8);
1895			ctx.key = elem->key;
1896			if (!info->percpu_value_buf) {
1897				ctx.value = elem->key + roundup_key_size;
1898			} else {
1899				roundup_value_size = round_up(map->value_size, 8);
1900				pptr = htab_elem_get_ptr(elem, map->key_size);
1901				for_each_possible_cpu(cpu) {
1902					bpf_long_memcpy(info->percpu_value_buf + off,
1903							per_cpu_ptr(pptr, cpu),
1904							roundup_value_size);
1905					off += roundup_value_size;
1906				}
1907				ctx.value = info->percpu_value_buf;
1908			}
1909		}
1910		ret = bpf_iter_run_prog(prog, &ctx);
1911	}
1912
1913	return ret;
1914}
1915
1916static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
1917{
1918	return __bpf_hash_map_seq_show(seq, v);
1919}
1920
1921static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
1922{
1923	if (!v)
1924		(void)__bpf_hash_map_seq_show(seq, NULL);
1925	else
1926		rcu_read_unlock();
1927}
1928
1929static int bpf_iter_init_hash_map(void *priv_data,
1930				  struct bpf_iter_aux_info *aux)
1931{
1932	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1933	struct bpf_map *map = aux->map;
1934	void *value_buf;
1935	u32 buf_size;
1936
1937	if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
1938	    map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
1939		buf_size = round_up(map->value_size, 8) * num_possible_cpus();
1940		value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
1941		if (!value_buf)
1942			return -ENOMEM;
1943
1944		seq_info->percpu_value_buf = value_buf;
1945	}
1946
1947	seq_info->map = map;
1948	seq_info->htab = container_of(map, struct bpf_htab, map);
1949	return 0;
1950}
1951
1952static void bpf_iter_fini_hash_map(void *priv_data)
1953{
1954	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1955
1956	kfree(seq_info->percpu_value_buf);
1957}
1958
1959static const struct seq_operations bpf_hash_map_seq_ops = {
1960	.start	= bpf_hash_map_seq_start,
1961	.next	= bpf_hash_map_seq_next,
1962	.stop	= bpf_hash_map_seq_stop,
1963	.show	= bpf_hash_map_seq_show,
1964};
1965
1966static const struct bpf_iter_seq_info iter_seq_info = {
1967	.seq_ops		= &bpf_hash_map_seq_ops,
1968	.init_seq_private	= bpf_iter_init_hash_map,
1969	.fini_seq_private	= bpf_iter_fini_hash_map,
1970	.seq_priv_size		= sizeof(struct bpf_iter_seq_hash_map_info),
1971};
1972
1973static int bpf_for_each_hash_elem(struct bpf_map *map, void *callback_fn,
1974				  void *callback_ctx, u64 flags)
1975{
1976	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1977	struct hlist_nulls_head *head;
1978	struct hlist_nulls_node *n;
1979	struct htab_elem *elem;
1980	u32 roundup_key_size;
1981	int i, num_elems = 0;
1982	void __percpu *pptr;
1983	struct bucket *b;
1984	void *key, *val;
1985	bool is_percpu;
1986	u64 ret = 0;
1987
1988	if (flags != 0)
1989		return -EINVAL;
1990
1991	is_percpu = htab_is_percpu(htab);
1992
1993	roundup_key_size = round_up(map->key_size, 8);
1994	/* disable migration so percpu value prepared here will be the
1995	 * same as the one seen by the bpf program with bpf_map_lookup_elem().
1996	 */
1997	if (is_percpu)
1998		migrate_disable();
1999	for (i = 0; i < htab->n_buckets; i++) {
2000		b = &htab->buckets[i];
2001		rcu_read_lock();
2002		head = &b->head;
2003		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
2004			key = elem->key;
2005			if (is_percpu) {
2006				/* current cpu value for percpu map */
2007				pptr = htab_elem_get_ptr(elem, map->key_size);
2008				val = this_cpu_ptr(pptr);
2009			} else {
2010				val = elem->key + roundup_key_size;
2011			}
2012			num_elems++;
2013			ret = BPF_CAST_CALL(callback_fn)((u64)(long)map,
2014					(u64)(long)key, (u64)(long)val,
2015					(u64)(long)callback_ctx, 0);
2016			/* return value: 0 - continue, 1 - stop and return */
2017			if (ret) {
2018				rcu_read_unlock();
2019				goto out;
2020			}
2021		}
2022		rcu_read_unlock();
2023	}
2024out:
2025	if (is_percpu)
2026		migrate_enable();
2027	return num_elems;
2028}
2029
2030static int htab_map_btf_id;
2031const struct bpf_map_ops htab_map_ops = {
2032	.map_meta_equal = bpf_map_meta_equal,
2033	.map_alloc_check = htab_map_alloc_check,
2034	.map_alloc = htab_map_alloc,
2035	.map_free = htab_map_free,
2036	.map_get_next_key = htab_map_get_next_key,
2037	.map_lookup_elem = htab_map_lookup_elem,
2038	.map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem,
2039	.map_update_elem = htab_map_update_elem,
2040	.map_delete_elem = htab_map_delete_elem,
2041	.map_gen_lookup = htab_map_gen_lookup,
2042	.map_seq_show_elem = htab_map_seq_show_elem,
2043	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2044	.map_for_each_callback = bpf_for_each_hash_elem,
2045	BATCH_OPS(htab),
2046	.map_btf_name = "bpf_htab",
2047	.map_btf_id = &htab_map_btf_id,
2048	.iter_seq_info = &iter_seq_info,
2049};
2050
2051static int htab_lru_map_btf_id;
2052const struct bpf_map_ops htab_lru_map_ops = {
2053	.map_meta_equal = bpf_map_meta_equal,
2054	.map_alloc_check = htab_map_alloc_check,
2055	.map_alloc = htab_map_alloc,
2056	.map_free = htab_map_free,
2057	.map_get_next_key = htab_map_get_next_key,
2058	.map_lookup_elem = htab_lru_map_lookup_elem,
2059	.map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem,
2060	.map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
2061	.map_update_elem = htab_lru_map_update_elem,
2062	.map_delete_elem = htab_lru_map_delete_elem,
2063	.map_gen_lookup = htab_lru_map_gen_lookup,
2064	.map_seq_show_elem = htab_map_seq_show_elem,
2065	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2066	.map_for_each_callback = bpf_for_each_hash_elem,
2067	BATCH_OPS(htab_lru),
2068	.map_btf_name = "bpf_htab",
2069	.map_btf_id = &htab_lru_map_btf_id,
2070	.iter_seq_info = &iter_seq_info,
2071};
2072
2073/* Called from eBPF program */
2074static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2075{
2076	struct htab_elem *l = __htab_map_lookup_elem(map, key);
2077
2078	if (l)
2079		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2080	else
2081		return NULL;
2082}
2083
2084static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2085{
2086	struct htab_elem *l = __htab_map_lookup_elem(map, key);
2087
2088	if (l) {
2089		bpf_lru_node_set_ref(&l->lru_node);
2090		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2091	}
2092
2093	return NULL;
2094}
2095
2096int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
2097{
2098	struct htab_elem *l;
2099	void __percpu *pptr;
2100	int ret = -ENOENT;
2101	int cpu, off = 0;
2102	u32 size;
2103
2104	/* per_cpu areas are zero-filled and bpf programs can only
2105	 * access 'value_size' of them, so copying rounded areas
2106	 * will not leak any kernel data
2107	 */
2108	size = round_up(map->value_size, 8);
2109	rcu_read_lock();
2110	l = __htab_map_lookup_elem(map, key);
2111	if (!l)
2112		goto out;
2113	/* We do not mark LRU map element here in order to not mess up
2114	 * eviction heuristics when user space does a map walk.
2115	 */
2116	pptr = htab_elem_get_ptr(l, map->key_size);
2117	for_each_possible_cpu(cpu) {
2118		bpf_long_memcpy(value + off,
2119				per_cpu_ptr(pptr, cpu), size);
2120		off += size;
2121	}
2122	ret = 0;
2123out:
2124	rcu_read_unlock();
2125	return ret;
2126}
2127
2128int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2129			   u64 map_flags)
2130{
2131	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2132	int ret;
2133
2134	rcu_read_lock();
2135	if (htab_is_lru(htab))
2136		ret = __htab_lru_percpu_map_update_elem(map, key, value,
2137							map_flags, true);
2138	else
2139		ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
2140						    true);
2141	rcu_read_unlock();
2142
2143	return ret;
2144}
2145
2146static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
2147					  struct seq_file *m)
2148{
2149	struct htab_elem *l;
2150	void __percpu *pptr;
2151	int cpu;
2152
2153	rcu_read_lock();
2154
2155	l = __htab_map_lookup_elem(map, key);
2156	if (!l) {
2157		rcu_read_unlock();
2158		return;
2159	}
2160
2161	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
2162	seq_puts(m, ": {\n");
2163	pptr = htab_elem_get_ptr(l, map->key_size);
2164	for_each_possible_cpu(cpu) {
2165		seq_printf(m, "\tcpu%d: ", cpu);
2166		btf_type_seq_show(map->btf, map->btf_value_type_id,
2167				  per_cpu_ptr(pptr, cpu), m);
2168		seq_puts(m, "\n");
2169	}
2170	seq_puts(m, "}\n");
2171
2172	rcu_read_unlock();
2173}
2174
2175static int htab_percpu_map_btf_id;
2176const struct bpf_map_ops htab_percpu_map_ops = {
2177	.map_meta_equal = bpf_map_meta_equal,
2178	.map_alloc_check = htab_map_alloc_check,
2179	.map_alloc = htab_map_alloc,
2180	.map_free = htab_map_free,
2181	.map_get_next_key = htab_map_get_next_key,
2182	.map_lookup_elem = htab_percpu_map_lookup_elem,
2183	.map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem,
2184	.map_update_elem = htab_percpu_map_update_elem,
2185	.map_delete_elem = htab_map_delete_elem,
2186	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2187	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2188	.map_for_each_callback = bpf_for_each_hash_elem,
2189	BATCH_OPS(htab_percpu),
2190	.map_btf_name = "bpf_htab",
2191	.map_btf_id = &htab_percpu_map_btf_id,
2192	.iter_seq_info = &iter_seq_info,
2193};
2194
2195static int htab_lru_percpu_map_btf_id;
2196const struct bpf_map_ops htab_lru_percpu_map_ops = {
2197	.map_meta_equal = bpf_map_meta_equal,
2198	.map_alloc_check = htab_map_alloc_check,
2199	.map_alloc = htab_map_alloc,
2200	.map_free = htab_map_free,
2201	.map_get_next_key = htab_map_get_next_key,
2202	.map_lookup_elem = htab_lru_percpu_map_lookup_elem,
2203	.map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem,
2204	.map_update_elem = htab_lru_percpu_map_update_elem,
2205	.map_delete_elem = htab_lru_map_delete_elem,
2206	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2207	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2208	.map_for_each_callback = bpf_for_each_hash_elem,
2209	BATCH_OPS(htab_lru_percpu),
2210	.map_btf_name = "bpf_htab",
2211	.map_btf_id = &htab_lru_percpu_map_btf_id,
2212	.iter_seq_info = &iter_seq_info,
2213};
2214
2215static int fd_htab_map_alloc_check(union bpf_attr *attr)
2216{
2217	if (attr->value_size != sizeof(u32))
2218		return -EINVAL;
2219	return htab_map_alloc_check(attr);
2220}
2221
2222static void fd_htab_map_free(struct bpf_map *map)
2223{
2224	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2225	struct hlist_nulls_node *n;
2226	struct hlist_nulls_head *head;
2227	struct htab_elem *l;
2228	int i;
2229
2230	for (i = 0; i < htab->n_buckets; i++) {
2231		head = select_bucket(htab, i);
2232
2233		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
2234			void *ptr = fd_htab_map_get_ptr(map, l);
2235
2236			map->ops->map_fd_put_ptr(ptr);
2237		}
2238	}
2239
2240	htab_map_free(map);
2241}
2242
2243/* only called from syscall */
2244int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
2245{
2246	void **ptr;
2247	int ret = 0;
2248
2249	if (!map->ops->map_fd_sys_lookup_elem)
2250		return -ENOTSUPP;
2251
2252	rcu_read_lock();
2253	ptr = htab_map_lookup_elem(map, key);
2254	if (ptr)
2255		*value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
2256	else
2257		ret = -ENOENT;
2258	rcu_read_unlock();
2259
2260	return ret;
2261}
2262
2263/* only called from syscall */
2264int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2265				void *key, void *value, u64 map_flags)
2266{
2267	void *ptr;
2268	int ret;
2269	u32 ufd = *(u32 *)value;
2270
2271	ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
2272	if (IS_ERR(ptr))
2273		return PTR_ERR(ptr);
2274
2275	ret = htab_map_update_elem(map, key, &ptr, map_flags);
2276	if (ret)
2277		map->ops->map_fd_put_ptr(ptr);
2278
2279	return ret;
2280}
2281
2282static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
2283{
2284	struct bpf_map *map, *inner_map_meta;
2285
2286	inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
2287	if (IS_ERR(inner_map_meta))
2288		return inner_map_meta;
2289
2290	map = htab_map_alloc(attr);
2291	if (IS_ERR(map)) {
2292		bpf_map_meta_free(inner_map_meta);
2293		return map;
2294	}
2295
2296	map->inner_map_meta = inner_map_meta;
2297
2298	return map;
2299}
2300
2301static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
2302{
2303	struct bpf_map **inner_map  = htab_map_lookup_elem(map, key);
2304
2305	if (!inner_map)
2306		return NULL;
2307
2308	return READ_ONCE(*inner_map);
2309}
2310
2311static int htab_of_map_gen_lookup(struct bpf_map *map,
2312				  struct bpf_insn *insn_buf)
2313{
2314	struct bpf_insn *insn = insn_buf;
2315	const int ret = BPF_REG_0;
2316
2317	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
2318		     (void *(*)(struct bpf_map *map, void *key))NULL));
2319	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
2320	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
2321	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
2322				offsetof(struct htab_elem, key) +
2323				round_up(map->key_size, 8));
2324	*insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
2325
2326	return insn - insn_buf;
2327}
2328
2329static void htab_of_map_free(struct bpf_map *map)
2330{
2331	bpf_map_meta_free(map->inner_map_meta);
2332	fd_htab_map_free(map);
2333}
2334
2335static int htab_of_maps_map_btf_id;
2336const struct bpf_map_ops htab_of_maps_map_ops = {
2337	.map_alloc_check = fd_htab_map_alloc_check,
2338	.map_alloc = htab_of_map_alloc,
2339	.map_free = htab_of_map_free,
2340	.map_get_next_key = htab_map_get_next_key,
2341	.map_lookup_elem = htab_of_map_lookup_elem,
2342	.map_delete_elem = htab_map_delete_elem,
2343	.map_fd_get_ptr = bpf_map_fd_get_ptr,
2344	.map_fd_put_ptr = bpf_map_fd_put_ptr,
2345	.map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
2346	.map_gen_lookup = htab_of_map_gen_lookup,
2347	.map_check_btf = map_check_no_btf,
2348	.map_btf_name = "bpf_htab",
2349	.map_btf_id = &htab_of_maps_map_btf_id,
2350};