Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2
  3#include <linux/blkdev.h>
  4#include <linux/iversion.h>
  5#include "compression.h"
  6#include "ctree.h"
  7#include "delalloc-space.h"
  8#include "reflink.h"
  9#include "transaction.h"
 
 10
 11#define BTRFS_MAX_DEDUPE_LEN	SZ_16M
 12
 13static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
 14				     struct inode *inode,
 15				     u64 endoff,
 16				     const u64 destoff,
 17				     const u64 olen,
 18				     int no_time_update)
 19{
 20	struct btrfs_root *root = BTRFS_I(inode)->root;
 21	int ret;
 22
 23	inode_inc_iversion(inode);
 24	if (!no_time_update)
 25		inode->i_mtime = inode->i_ctime = current_time(inode);
 26	/*
 27	 * We round up to the block size at eof when determining which
 28	 * extents to clone above, but shouldn't round up the file size.
 29	 */
 30	if (endoff > destoff + olen)
 31		endoff = destoff + olen;
 32	if (endoff > inode->i_size) {
 33		i_size_write(inode, endoff);
 34		btrfs_inode_safe_disk_i_size_write(inode, 0);
 35	}
 36
 37	ret = btrfs_update_inode(trans, root, inode);
 38	if (ret) {
 39		btrfs_abort_transaction(trans, ret);
 40		btrfs_end_transaction(trans);
 41		goto out;
 42	}
 43	ret = btrfs_end_transaction(trans);
 44out:
 45	return ret;
 46}
 47
 48static int copy_inline_to_page(struct inode *inode,
 49			       const u64 file_offset,
 50			       char *inline_data,
 51			       const u64 size,
 52			       const u64 datal,
 53			       const u8 comp_type)
 54{
 55	const u64 block_size = btrfs_inode_sectorsize(inode);
 
 56	const u64 range_end = file_offset + block_size - 1;
 57	const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
 58	char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
 59	struct extent_changeset *data_reserved = NULL;
 60	struct page *page = NULL;
 
 61	int ret;
 62
 63	ASSERT(IS_ALIGNED(file_offset, block_size));
 64
 65	/*
 66	 * We have flushed and locked the ranges of the source and destination
 67	 * inodes, we also have locked the inodes, so we are safe to do a
 68	 * reservation here. Also we must not do the reservation while holding
 69	 * a transaction open, otherwise we would deadlock.
 70	 */
 71	ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
 72					   file_offset, block_size);
 73	if (ret)
 74		goto out;
 75
 76	page = find_or_create_page(inode->i_mapping, file_offset >> PAGE_SHIFT,
 77				   btrfs_alloc_write_mask(inode->i_mapping));
 78	if (!page) {
 79		ret = -ENOMEM;
 80		goto out_unlock;
 81	}
 82
 83	set_page_extent_mapped(page);
 84	clear_extent_bit(&BTRFS_I(inode)->io_tree, file_offset, range_end,
 
 
 
 85			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
 86			 0, 0, NULL);
 87	ret = btrfs_set_extent_delalloc(BTRFS_I(inode), file_offset, range_end,
 88					0, NULL);
 89	if (ret)
 90		goto out_unlock;
 91
 92	if (comp_type == BTRFS_COMPRESS_NONE) {
 93		char *map;
 
 
 
 
 
 
 
 
 
 
 94
 95		map = kmap(page);
 96		memcpy(map, data_start, datal);
 
 97		flush_dcache_page(page);
 98		kunmap(page);
 99	} else {
100		ret = btrfs_decompress(comp_type, data_start, page, 0,
 
101				       inline_size, datal);
102		if (ret)
103			goto out_unlock;
104		flush_dcache_page(page);
105	}
106
107	/*
108	 * If our inline data is smaller then the block/page size, then the
109	 * remaining of the block/page is equivalent to zeroes. We had something
110	 * like the following done:
111	 *
112	 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
113	 * $ sync  # (or fsync)
114	 * $ xfs_io -c "falloc 0 4K" file
115	 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
116	 *
117	 * So what's in the range [500, 4095] corresponds to zeroes.
118	 */
119	if (datal < block_size) {
120		char *map;
121
122		map = kmap(page);
123		memset(map + datal, 0, block_size - datal);
124		flush_dcache_page(page);
125		kunmap(page);
126	}
127
128	SetPageUptodate(page);
129	ClearPageChecked(page);
130	set_page_dirty(page);
131out_unlock:
132	if (page) {
133		unlock_page(page);
134		put_page(page);
135	}
136	if (ret)
137		btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
138					     file_offset, block_size, true);
139	btrfs_delalloc_release_extents(BTRFS_I(inode), block_size);
140out:
141	extent_changeset_free(data_reserved);
142
143	return ret;
144}
145
146/*
147 * Deal with cloning of inline extents. We try to copy the inline extent from
148 * the source inode to destination inode when possible. When not possible we
149 * copy the inline extent's data into the respective page of the inode.
150 */
151static int clone_copy_inline_extent(struct inode *dst,
152				    struct btrfs_path *path,
153				    struct btrfs_key *new_key,
154				    const u64 drop_start,
155				    const u64 datal,
156				    const u64 size,
157				    const u8 comp_type,
158				    char *inline_data,
159				    struct btrfs_trans_handle **trans_out)
160{
161	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
162	struct btrfs_root *root = BTRFS_I(dst)->root;
163	const u64 aligned_end = ALIGN(new_key->offset + datal,
164				      fs_info->sectorsize);
165	struct btrfs_trans_handle *trans = NULL;
 
166	int ret;
167	struct btrfs_key key;
168
169	if (new_key->offset > 0) {
170		ret = copy_inline_to_page(dst, new_key->offset, inline_data,
171					  size, datal, comp_type);
172		goto out;
173	}
174
175	key.objectid = btrfs_ino(BTRFS_I(dst));
176	key.type = BTRFS_EXTENT_DATA_KEY;
177	key.offset = 0;
178	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
179	if (ret < 0) {
180		return ret;
181	} else if (ret > 0) {
182		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
183			ret = btrfs_next_leaf(root, path);
184			if (ret < 0)
185				return ret;
186			else if (ret > 0)
187				goto copy_inline_extent;
188		}
189		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
190		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
191		    key.type == BTRFS_EXTENT_DATA_KEY) {
192			/*
193			 * There's an implicit hole at file offset 0, copy the
194			 * inline extent's data to the page.
195			 */
196			ASSERT(key.offset > 0);
197			ret = copy_inline_to_page(dst, new_key->offset,
198						  inline_data, size, datal,
199						  comp_type);
200			goto out;
201		}
202	} else if (i_size_read(dst) <= datal) {
203		struct btrfs_file_extent_item *ei;
204
205		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
206				    struct btrfs_file_extent_item);
207		/*
208		 * If it's an inline extent replace it with the source inline
209		 * extent, otherwise copy the source inline extent data into
210		 * the respective page at the destination inode.
211		 */
212		if (btrfs_file_extent_type(path->nodes[0], ei) ==
213		    BTRFS_FILE_EXTENT_INLINE)
214			goto copy_inline_extent;
215
216		ret = copy_inline_to_page(dst, new_key->offset, inline_data,
217					  size, datal, comp_type);
218		goto out;
219	}
220
221copy_inline_extent:
222	ret = 0;
223	/*
224	 * We have no extent items, or we have an extent at offset 0 which may
225	 * or may not be inlined. All these cases are dealt the same way.
226	 */
227	if (i_size_read(dst) > datal) {
228		/*
229		 * At the destination offset 0 we have either a hole, a regular
230		 * extent or an inline extent larger then the one we want to
231		 * clone. Deal with all these cases by copying the inline extent
232		 * data into the respective page at the destination inode.
233		 */
234		ret = copy_inline_to_page(dst, new_key->offset, inline_data,
235					   size, datal, comp_type);
236		goto out;
237	}
238
 
 
 
 
239	btrfs_release_path(path);
240	/*
241	 * If we end up here it means were copy the inline extent into a leaf
242	 * of the destination inode. We know we will drop or adjust at most one
243	 * extent item in the destination root.
244	 *
245	 * 1 unit - adjusting old extent (we may have to split it)
246	 * 1 unit - add new extent
247	 * 1 unit - inode update
248	 */
249	trans = btrfs_start_transaction(root, 3);
250	if (IS_ERR(trans)) {
251		ret = PTR_ERR(trans);
252		trans = NULL;
253		goto out;
254	}
255	ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
 
 
 
 
256	if (ret)
257		goto out;
258	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
259	if (ret)
260		goto out;
261
262	write_extent_buffer(path->nodes[0], inline_data,
263			    btrfs_item_ptr_offset(path->nodes[0],
264						  path->slots[0]),
265			    size);
266	inode_add_bytes(dst, datal);
267	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(dst)->runtime_flags);
268	ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
269out:
270	if (!ret && !trans) {
271		/*
272		 * No transaction here means we copied the inline extent into a
273		 * page of the destination inode.
274		 *
275		 * 1 unit to update inode item
276		 */
277		trans = btrfs_start_transaction(root, 1);
278		if (IS_ERR(trans)) {
279			ret = PTR_ERR(trans);
280			trans = NULL;
281		}
282	}
283	if (ret && trans) {
284		btrfs_abort_transaction(trans, ret);
285		btrfs_end_transaction(trans);
286	}
287	if (!ret)
288		*trans_out = trans;
289
290	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
291}
292
293/**
294 * btrfs_clone() - clone a range from inode file to another
295 *
296 * @src: Inode to clone from
297 * @inode: Inode to clone to
298 * @off: Offset within source to start clone from
299 * @olen: Original length, passed by user, of range to clone
300 * @olen_aligned: Block-aligned value of olen
301 * @destoff: Offset within @inode to start clone
302 * @no_time_update: Whether to update mtime/ctime on the target inode
303 */
304static int btrfs_clone(struct inode *src, struct inode *inode,
305		       const u64 off, const u64 olen, const u64 olen_aligned,
306		       const u64 destoff, int no_time_update)
307{
308	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
309	struct btrfs_path *path = NULL;
310	struct extent_buffer *leaf;
311	struct btrfs_trans_handle *trans;
312	char *buf = NULL;
313	struct btrfs_key key;
314	u32 nritems;
315	int slot;
316	int ret;
317	const u64 len = olen_aligned;
318	u64 last_dest_end = destoff;
319
320	ret = -ENOMEM;
321	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
322	if (!buf)
323		return ret;
324
325	path = btrfs_alloc_path();
326	if (!path) {
327		kvfree(buf);
328		return ret;
329	}
330
331	path->reada = READA_FORWARD;
332	/* Clone data */
333	key.objectid = btrfs_ino(BTRFS_I(src));
334	key.type = BTRFS_EXTENT_DATA_KEY;
335	key.offset = off;
336
337	while (1) {
338		u64 next_key_min_offset = key.offset + 1;
339		struct btrfs_file_extent_item *extent;
340		u64 extent_gen;
341		int type;
342		u32 size;
343		struct btrfs_key new_key;
344		u64 disko = 0, diskl = 0;
345		u64 datao = 0, datal = 0;
346		u8 comp;
347		u64 drop_start;
348
349		/* Note the key will change type as we walk through the tree */
350		path->leave_spinning = 1;
351		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
352				0, 0);
353		if (ret < 0)
354			goto out;
355		/*
356		 * First search, if no extent item that starts at offset off was
357		 * found but the previous item is an extent item, it's possible
358		 * it might overlap our target range, therefore process it.
359		 */
360		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
361			btrfs_item_key_to_cpu(path->nodes[0], &key,
362					      path->slots[0] - 1);
363			if (key.type == BTRFS_EXTENT_DATA_KEY)
364				path->slots[0]--;
365		}
366
367		nritems = btrfs_header_nritems(path->nodes[0]);
368process_slot:
369		if (path->slots[0] >= nritems) {
370			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
371			if (ret < 0)
372				goto out;
373			if (ret > 0)
374				break;
375			nritems = btrfs_header_nritems(path->nodes[0]);
376		}
377		leaf = path->nodes[0];
378		slot = path->slots[0];
379
380		btrfs_item_key_to_cpu(leaf, &key, slot);
381		if (key.type > BTRFS_EXTENT_DATA_KEY ||
382		    key.objectid != btrfs_ino(BTRFS_I(src)))
383			break;
384
385		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
386
387		extent = btrfs_item_ptr(leaf, slot,
388					struct btrfs_file_extent_item);
389		extent_gen = btrfs_file_extent_generation(leaf, extent);
390		comp = btrfs_file_extent_compression(leaf, extent);
391		type = btrfs_file_extent_type(leaf, extent);
392		if (type == BTRFS_FILE_EXTENT_REG ||
393		    type == BTRFS_FILE_EXTENT_PREALLOC) {
394			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
395			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
396			datao = btrfs_file_extent_offset(leaf, extent);
397			datal = btrfs_file_extent_num_bytes(leaf, extent);
398		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
399			/* Take upper bound, may be compressed */
400			datal = btrfs_file_extent_ram_bytes(leaf, extent);
401		}
402
403		/*
404		 * The first search might have left us at an extent item that
405		 * ends before our target range's start, can happen if we have
406		 * holes and NO_HOLES feature enabled.
407		 */
408		if (key.offset + datal <= off) {
409			path->slots[0]++;
410			goto process_slot;
411		} else if (key.offset >= off + len) {
412			break;
413		}
414		next_key_min_offset = key.offset + datal;
415		size = btrfs_item_size_nr(leaf, slot);
416		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
417				   size);
418
419		btrfs_release_path(path);
420		path->leave_spinning = 0;
421
422		memcpy(&new_key, &key, sizeof(new_key));
423		new_key.objectid = btrfs_ino(BTRFS_I(inode));
424		if (off <= key.offset)
425			new_key.offset = key.offset + destoff - off;
426		else
427			new_key.offset = destoff;
428
429		/*
430		 * Deal with a hole that doesn't have an extent item that
431		 * represents it (NO_HOLES feature enabled).
432		 * This hole is either in the middle of the cloning range or at
433		 * the beginning (fully overlaps it or partially overlaps it).
434		 */
435		if (new_key.offset != last_dest_end)
436			drop_start = last_dest_end;
437		else
438			drop_start = new_key.offset;
439
440		if (type == BTRFS_FILE_EXTENT_REG ||
441		    type == BTRFS_FILE_EXTENT_PREALLOC) {
442			struct btrfs_clone_extent_info clone_info;
443
444			/*
445			 *    a  | --- range to clone ---|  b
446			 * | ------------- extent ------------- |
447			 */
448
449			/* Subtract range b */
450			if (key.offset + datal > off + len)
451				datal = off + len - key.offset;
452
453			/* Subtract range a */
454			if (off > key.offset) {
455				datao += off - key.offset;
456				datal -= off - key.offset;
457			}
458
459			clone_info.disk_offset = disko;
460			clone_info.disk_len = diskl;
461			clone_info.data_offset = datao;
462			clone_info.data_len = datal;
463			clone_info.file_offset = new_key.offset;
464			clone_info.extent_buf = buf;
465			clone_info.item_size = size;
466			ret = btrfs_punch_hole_range(inode, path, drop_start,
467					new_key.offset + datal - 1, &clone_info,
468					&trans);
469			if (ret)
470				goto out;
471		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
472			/*
473			 * Inline extents always have to start at file offset 0
474			 * and can never be bigger then the sector size. We can
475			 * never clone only parts of an inline extent, since all
476			 * reflink operations must start at a sector size aligned
477			 * offset, and the length must be aligned too or end at
478			 * the i_size (which implies the whole inlined data).
479			 */
480			ASSERT(key.offset == 0);
481			ASSERT(datal <= fs_info->sectorsize);
482			if (key.offset != 0 || datal > fs_info->sectorsize)
483				return -EUCLEAN;
484
485			ret = clone_copy_inline_extent(inode, path, &new_key,
486						       drop_start, datal, size,
487						       comp, buf, &trans);
488			if (ret)
489				goto out;
490		}
491
492		btrfs_release_path(path);
493
494		/*
495		 * If this is a new extent update the last_reflink_trans of both
496		 * inodes. This is used by fsync to make sure it does not log
497		 * multiple checksum items with overlapping ranges. For older
498		 * extents we don't need to do it since inode logging skips the
499		 * checksums for older extents. Also ignore holes and inline
500		 * extents because they don't have checksums in the csum tree.
501		 */
502		if (extent_gen == trans->transid && disko > 0) {
503			BTRFS_I(src)->last_reflink_trans = trans->transid;
504			BTRFS_I(inode)->last_reflink_trans = trans->transid;
505		}
506
507		last_dest_end = ALIGN(new_key.offset + datal,
508				      fs_info->sectorsize);
509		ret = clone_finish_inode_update(trans, inode, last_dest_end,
510						destoff, olen, no_time_update);
511		if (ret)
512			goto out;
513		if (new_key.offset + datal >= destoff + len)
514			break;
515
516		btrfs_release_path(path);
517		key.offset = next_key_min_offset;
518
519		if (fatal_signal_pending(current)) {
520			ret = -EINTR;
521			goto out;
522		}
 
 
523	}
524	ret = 0;
525
526	if (last_dest_end < destoff + len) {
527		/*
528		 * We have an implicit hole that fully or partially overlaps our
529		 * cloning range at its end. This means that we either have the
530		 * NO_HOLES feature enabled or the implicit hole happened due to
531		 * mixing buffered and direct IO writes against this file.
532		 */
533		btrfs_release_path(path);
534		path->leave_spinning = 0;
535
536		ret = btrfs_punch_hole_range(inode, path, last_dest_end,
537				destoff + len - 1, NULL, &trans);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
538		if (ret)
539			goto out;
540
541		ret = clone_finish_inode_update(trans, inode, destoff + len,
542						destoff, olen, no_time_update);
543	}
544
545out:
546	btrfs_free_path(path);
547	kvfree(buf);
 
 
548	return ret;
549}
550
551static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
552				       struct inode *inode2, u64 loff2, u64 len)
553{
554	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
555	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
556}
557
558static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
559				     struct inode *inode2, u64 loff2, u64 len)
560{
561	if (inode1 < inode2) {
562		swap(inode1, inode2);
563		swap(loff1, loff2);
564	} else if (inode1 == inode2 && loff2 < loff1) {
565		swap(loff1, loff2);
566	}
567	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
568	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
569}
570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
571static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
572				   struct inode *dst, u64 dst_loff)
573{
574	const u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
575	int ret;
576
577	/*
578	 * Lock destination range to serialize with concurrent readpages() and
579	 * source range to serialize with relocation.
580	 */
581	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
582	ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
583	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
584
585	return ret;
586}
587
588static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
589			     struct inode *dst, u64 dst_loff)
590{
591	int ret;
592	u64 i, tail_len, chunk_count;
593	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
594
595	spin_lock(&root_dst->root_item_lock);
596	if (root_dst->send_in_progress) {
597		btrfs_warn_rl(root_dst->fs_info,
598"cannot deduplicate to root %llu while send operations are using it (%d in progress)",
599			      root_dst->root_key.objectid,
600			      root_dst->send_in_progress);
601		spin_unlock(&root_dst->root_item_lock);
602		return -EAGAIN;
603	}
604	root_dst->dedupe_in_progress++;
605	spin_unlock(&root_dst->root_item_lock);
606
607	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
608	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
609
610	for (i = 0; i < chunk_count; i++) {
611		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
612					      dst, dst_loff);
613		if (ret)
614			goto out;
615
616		loff += BTRFS_MAX_DEDUPE_LEN;
617		dst_loff += BTRFS_MAX_DEDUPE_LEN;
618	}
619
620	if (tail_len > 0)
621		ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
622out:
623	spin_lock(&root_dst->root_item_lock);
624	root_dst->dedupe_in_progress--;
625	spin_unlock(&root_dst->root_item_lock);
626
627	return ret;
628}
629
630static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
631					u64 off, u64 olen, u64 destoff)
632{
633	struct inode *inode = file_inode(file);
634	struct inode *src = file_inode(file_src);
635	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
636	int ret;
637	int wb_ret;
638	u64 len = olen;
639	u64 bs = fs_info->sb->s_blocksize;
640
641	/*
642	 * VFS's generic_remap_file_range_prep() protects us from cloning the
643	 * eof block into the middle of a file, which would result in corruption
644	 * if the file size is not blocksize aligned. So we don't need to check
645	 * for that case here.
646	 */
647	if (off + len == src->i_size)
648		len = ALIGN(src->i_size, bs) - off;
649
650	if (destoff > inode->i_size) {
651		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
652
653		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
654		if (ret)
655			return ret;
656		/*
657		 * We may have truncated the last block if the inode's size is
658		 * not sector size aligned, so we need to wait for writeback to
659		 * complete before proceeding further, otherwise we can race
660		 * with cloning and attempt to increment a reference to an
661		 * extent that no longer exists (writeback completed right after
662		 * we found the previous extent covering eof and before we
663		 * attempted to increment its reference count).
664		 */
665		ret = btrfs_wait_ordered_range(inode, wb_start,
666					       destoff - wb_start);
667		if (ret)
668			return ret;
669	}
670
671	/*
672	 * Lock destination range to serialize with concurrent readpages() and
673	 * source range to serialize with relocation.
674	 */
675	btrfs_double_extent_lock(src, off, inode, destoff, len);
676	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
677	btrfs_double_extent_unlock(src, off, inode, destoff, len);
678
679	/*
680	 * We may have copied an inline extent into a page of the destination
681	 * range, so wait for writeback to complete before truncating pages
682	 * from the page cache. This is a rare case.
683	 */
684	wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
685	ret = ret ? ret : wb_ret;
686	/*
687	 * Truncate page cache pages so that future reads will see the cloned
688	 * data immediately and not the previous data.
689	 */
690	truncate_inode_pages_range(&inode->i_data,
691				round_down(destoff, PAGE_SIZE),
692				round_up(destoff + len, PAGE_SIZE) - 1);
693
694	return ret;
695}
696
697static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
698				       struct file *file_out, loff_t pos_out,
699				       loff_t *len, unsigned int remap_flags)
700{
701	struct inode *inode_in = file_inode(file_in);
702	struct inode *inode_out = file_inode(file_out);
703	u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
704	bool same_inode = inode_out == inode_in;
705	u64 wb_len;
706	int ret;
707
708	if (!(remap_flags & REMAP_FILE_DEDUP)) {
709		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
710
711		if (btrfs_root_readonly(root_out))
712			return -EROFS;
713
714		if (file_in->f_path.mnt != file_out->f_path.mnt ||
715		    inode_in->i_sb != inode_out->i_sb)
716			return -EXDEV;
717	}
718
719	/* Don't make the dst file partly checksummed */
720	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
721	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
722		return -EINVAL;
723	}
724
725	/*
726	 * Now that the inodes are locked, we need to start writeback ourselves
727	 * and can not rely on the writeback from the VFS's generic helper
728	 * generic_remap_file_range_prep() because:
729	 *
730	 * 1) For compression we must call filemap_fdatawrite_range() range
731	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
732	 *    helper only calls it once;
733	 *
734	 * 2) filemap_fdatawrite_range(), called by the generic helper only
735	 *    waits for the writeback to complete, i.e. for IO to be done, and
736	 *    not for the ordered extents to complete. We need to wait for them
737	 *    to complete so that new file extent items are in the fs tree.
738	 */
739	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
740		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
741	else
742		wb_len = ALIGN(*len, bs);
743
744	/*
745	 * Since we don't lock ranges, wait for ongoing lockless dio writes (as
746	 * any in progress could create its ordered extents after we wait for
747	 * existing ordered extents below).
748	 */
749	inode_dio_wait(inode_in);
750	if (!same_inode)
751		inode_dio_wait(inode_out);
752
753	/*
754	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
755	 *
756	 * Btrfs' back references do not have a block level granularity, they
757	 * work at the whole extent level.
758	 * NOCOW buffered write without data space reserved may not be able
759	 * to fall back to CoW due to lack of data space, thus could cause
760	 * data loss.
761	 *
762	 * Here we take a shortcut by flushing the whole inode, so that all
763	 * nocow write should reach disk as nocow before we increase the
764	 * reference of the extent. We could do better by only flushing NOCOW
765	 * data, but that needs extra accounting.
766	 *
767	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
768	 * CoWed anyway, not affecting nocow part.
769	 */
770	ret = filemap_flush(inode_in->i_mapping);
771	if (ret < 0)
772		return ret;
773
774	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
775				       wb_len);
776	if (ret < 0)
777		return ret;
778	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
779				       wb_len);
780	if (ret < 0)
781		return ret;
782
783	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
784					    len, remap_flags);
785}
786
 
 
 
 
 
 
 
 
 
 
787loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
788		struct file *dst_file, loff_t destoff, loff_t len,
789		unsigned int remap_flags)
790{
791	struct inode *src_inode = file_inode(src_file);
792	struct inode *dst_inode = file_inode(dst_file);
793	bool same_inode = dst_inode == src_inode;
794	int ret;
795
796	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
797		return -EINVAL;
798
799	if (same_inode)
800		inode_lock(src_inode);
801	else
802		lock_two_nondirectories(src_inode, dst_inode);
 
 
803
804	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
805					  &len, remap_flags);
806	if (ret < 0 || len == 0)
807		goto out_unlock;
808
809	if (remap_flags & REMAP_FILE_DEDUP)
810		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
811	else
812		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
813
814out_unlock:
815	if (same_inode)
816		inode_unlock(src_inode);
817	else
 
818		unlock_two_nondirectories(src_inode, dst_inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
819
820	return ret < 0 ? ret : len;
821}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2
  3#include <linux/blkdev.h>
  4#include <linux/iversion.h>
  5#include "compression.h"
  6#include "ctree.h"
  7#include "delalloc-space.h"
  8#include "reflink.h"
  9#include "transaction.h"
 10#include "subpage.h"
 11
 12#define BTRFS_MAX_DEDUPE_LEN	SZ_16M
 13
 14static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
 15				     struct inode *inode,
 16				     u64 endoff,
 17				     const u64 destoff,
 18				     const u64 olen,
 19				     int no_time_update)
 20{
 21	struct btrfs_root *root = BTRFS_I(inode)->root;
 22	int ret;
 23
 24	inode_inc_iversion(inode);
 25	if (!no_time_update)
 26		inode->i_mtime = inode->i_ctime = current_time(inode);
 27	/*
 28	 * We round up to the block size at eof when determining which
 29	 * extents to clone above, but shouldn't round up the file size.
 30	 */
 31	if (endoff > destoff + olen)
 32		endoff = destoff + olen;
 33	if (endoff > inode->i_size) {
 34		i_size_write(inode, endoff);
 35		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
 36	}
 37
 38	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
 39	if (ret) {
 40		btrfs_abort_transaction(trans, ret);
 41		btrfs_end_transaction(trans);
 42		goto out;
 43	}
 44	ret = btrfs_end_transaction(trans);
 45out:
 46	return ret;
 47}
 48
 49static int copy_inline_to_page(struct btrfs_inode *inode,
 50			       const u64 file_offset,
 51			       char *inline_data,
 52			       const u64 size,
 53			       const u64 datal,
 54			       const u8 comp_type)
 55{
 56	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 57	const u32 block_size = fs_info->sectorsize;
 58	const u64 range_end = file_offset + block_size - 1;
 59	const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
 60	char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
 61	struct extent_changeset *data_reserved = NULL;
 62	struct page *page = NULL;
 63	struct address_space *mapping = inode->vfs_inode.i_mapping;
 64	int ret;
 65
 66	ASSERT(IS_ALIGNED(file_offset, block_size));
 67
 68	/*
 69	 * We have flushed and locked the ranges of the source and destination
 70	 * inodes, we also have locked the inodes, so we are safe to do a
 71	 * reservation here. Also we must not do the reservation while holding
 72	 * a transaction open, otherwise we would deadlock.
 73	 */
 74	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
 75					   block_size);
 76	if (ret)
 77		goto out;
 78
 79	page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT,
 80				   btrfs_alloc_write_mask(mapping));
 81	if (!page) {
 82		ret = -ENOMEM;
 83		goto out_unlock;
 84	}
 85
 86	ret = set_page_extent_mapped(page);
 87	if (ret < 0)
 88		goto out_unlock;
 89
 90	clear_extent_bit(&inode->io_tree, file_offset, range_end,
 91			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
 92			 0, 0, NULL);
 93	ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
 
 94	if (ret)
 95		goto out_unlock;
 96
 97	/*
 98	 * After dirtying the page our caller will need to start a transaction,
 99	 * and if we are low on metadata free space, that can cause flushing of
100	 * delalloc for all inodes in order to get metadata space released.
101	 * However we are holding the range locked for the whole duration of
102	 * the clone/dedupe operation, so we may deadlock if that happens and no
103	 * other task releases enough space. So mark this inode as not being
104	 * possible to flush to avoid such deadlock. We will clear that flag
105	 * when we finish cloning all extents, since a transaction is started
106	 * after finding each extent to clone.
107	 */
108	set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
109
110	if (comp_type == BTRFS_COMPRESS_NONE) {
111		memcpy_to_page(page, offset_in_page(file_offset), data_start,
112			       datal);
113		flush_dcache_page(page);
 
114	} else {
115		ret = btrfs_decompress(comp_type, data_start, page,
116				       offset_in_page(file_offset),
117				       inline_size, datal);
118		if (ret)
119			goto out_unlock;
120		flush_dcache_page(page);
121	}
122
123	/*
124	 * If our inline data is smaller then the block/page size, then the
125	 * remaining of the block/page is equivalent to zeroes. We had something
126	 * like the following done:
127	 *
128	 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
129	 * $ sync  # (or fsync)
130	 * $ xfs_io -c "falloc 0 4K" file
131	 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
132	 *
133	 * So what's in the range [500, 4095] corresponds to zeroes.
134	 */
135	if (datal < block_size) {
136		memzero_page(page, datal, block_size - datal);
 
 
 
137		flush_dcache_page(page);
 
138	}
139
140	btrfs_page_set_uptodate(fs_info, page, file_offset, block_size);
141	ClearPageChecked(page);
142	btrfs_page_set_dirty(fs_info, page, file_offset, block_size);
143out_unlock:
144	if (page) {
145		unlock_page(page);
146		put_page(page);
147	}
148	if (ret)
149		btrfs_delalloc_release_space(inode, data_reserved, file_offset,
150					     block_size, true);
151	btrfs_delalloc_release_extents(inode, block_size);
152out:
153	extent_changeset_free(data_reserved);
154
155	return ret;
156}
157
158/*
159 * Deal with cloning of inline extents. We try to copy the inline extent from
160 * the source inode to destination inode when possible. When not possible we
161 * copy the inline extent's data into the respective page of the inode.
162 */
163static int clone_copy_inline_extent(struct inode *dst,
164				    struct btrfs_path *path,
165				    struct btrfs_key *new_key,
166				    const u64 drop_start,
167				    const u64 datal,
168				    const u64 size,
169				    const u8 comp_type,
170				    char *inline_data,
171				    struct btrfs_trans_handle **trans_out)
172{
173	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
174	struct btrfs_root *root = BTRFS_I(dst)->root;
175	const u64 aligned_end = ALIGN(new_key->offset + datal,
176				      fs_info->sectorsize);
177	struct btrfs_trans_handle *trans = NULL;
178	struct btrfs_drop_extents_args drop_args = { 0 };
179	int ret;
180	struct btrfs_key key;
181
182	if (new_key->offset > 0) {
183		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
184					  inline_data, size, datal, comp_type);
185		goto out;
186	}
187
188	key.objectid = btrfs_ino(BTRFS_I(dst));
189	key.type = BTRFS_EXTENT_DATA_KEY;
190	key.offset = 0;
191	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
192	if (ret < 0) {
193		return ret;
194	} else if (ret > 0) {
195		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
196			ret = btrfs_next_leaf(root, path);
197			if (ret < 0)
198				return ret;
199			else if (ret > 0)
200				goto copy_inline_extent;
201		}
202		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
203		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
204		    key.type == BTRFS_EXTENT_DATA_KEY) {
205			/*
206			 * There's an implicit hole at file offset 0, copy the
207			 * inline extent's data to the page.
208			 */
209			ASSERT(key.offset > 0);
210			goto copy_to_page;
 
 
 
211		}
212	} else if (i_size_read(dst) <= datal) {
213		struct btrfs_file_extent_item *ei;
214
215		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
216				    struct btrfs_file_extent_item);
217		/*
218		 * If it's an inline extent replace it with the source inline
219		 * extent, otherwise copy the source inline extent data into
220		 * the respective page at the destination inode.
221		 */
222		if (btrfs_file_extent_type(path->nodes[0], ei) ==
223		    BTRFS_FILE_EXTENT_INLINE)
224			goto copy_inline_extent;
225
226		goto copy_to_page;
 
 
227	}
228
229copy_inline_extent:
 
230	/*
231	 * We have no extent items, or we have an extent at offset 0 which may
232	 * or may not be inlined. All these cases are dealt the same way.
233	 */
234	if (i_size_read(dst) > datal) {
235		/*
236		 * At the destination offset 0 we have either a hole, a regular
237		 * extent or an inline extent larger then the one we want to
238		 * clone. Deal with all these cases by copying the inline extent
239		 * data into the respective page at the destination inode.
240		 */
241		goto copy_to_page;
 
 
242	}
243
244	/*
245	 * Release path before starting a new transaction so we don't hold locks
246	 * that would confuse lockdep.
247	 */
248	btrfs_release_path(path);
249	/*
250	 * If we end up here it means were copy the inline extent into a leaf
251	 * of the destination inode. We know we will drop or adjust at most one
252	 * extent item in the destination root.
253	 *
254	 * 1 unit - adjusting old extent (we may have to split it)
255	 * 1 unit - add new extent
256	 * 1 unit - inode update
257	 */
258	trans = btrfs_start_transaction(root, 3);
259	if (IS_ERR(trans)) {
260		ret = PTR_ERR(trans);
261		trans = NULL;
262		goto out;
263	}
264	drop_args.path = path;
265	drop_args.start = drop_start;
266	drop_args.end = aligned_end;
267	drop_args.drop_cache = true;
268	ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args);
269	if (ret)
270		goto out;
271	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
272	if (ret)
273		goto out;
274
275	write_extent_buffer(path->nodes[0], inline_data,
276			    btrfs_item_ptr_offset(path->nodes[0],
277						  path->slots[0]),
278			    size);
279	btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found);
280	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(dst)->runtime_flags);
281	ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
282out:
283	if (!ret && !trans) {
284		/*
285		 * No transaction here means we copied the inline extent into a
286		 * page of the destination inode.
287		 *
288		 * 1 unit to update inode item
289		 */
290		trans = btrfs_start_transaction(root, 1);
291		if (IS_ERR(trans)) {
292			ret = PTR_ERR(trans);
293			trans = NULL;
294		}
295	}
296	if (ret && trans) {
297		btrfs_abort_transaction(trans, ret);
298		btrfs_end_transaction(trans);
299	}
300	if (!ret)
301		*trans_out = trans;
302
303	return ret;
304
305copy_to_page:
306	/*
307	 * Release our path because we don't need it anymore and also because
308	 * copy_inline_to_page() needs to reserve data and metadata, which may
309	 * need to flush delalloc when we are low on available space and
310	 * therefore cause a deadlock if writeback of an inline extent needs to
311	 * write to the same leaf or an ordered extent completion needs to write
312	 * to the same leaf.
313	 */
314	btrfs_release_path(path);
315
316	ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
317				  inline_data, size, datal, comp_type);
318	goto out;
319}
320
321/**
322 * btrfs_clone() - clone a range from inode file to another
323 *
324 * @src: Inode to clone from
325 * @inode: Inode to clone to
326 * @off: Offset within source to start clone from
327 * @olen: Original length, passed by user, of range to clone
328 * @olen_aligned: Block-aligned value of olen
329 * @destoff: Offset within @inode to start clone
330 * @no_time_update: Whether to update mtime/ctime on the target inode
331 */
332static int btrfs_clone(struct inode *src, struct inode *inode,
333		       const u64 off, const u64 olen, const u64 olen_aligned,
334		       const u64 destoff, int no_time_update)
335{
336	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
337	struct btrfs_path *path = NULL;
338	struct extent_buffer *leaf;
339	struct btrfs_trans_handle *trans;
340	char *buf = NULL;
341	struct btrfs_key key;
342	u32 nritems;
343	int slot;
344	int ret;
345	const u64 len = olen_aligned;
346	u64 last_dest_end = destoff;
347
348	ret = -ENOMEM;
349	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
350	if (!buf)
351		return ret;
352
353	path = btrfs_alloc_path();
354	if (!path) {
355		kvfree(buf);
356		return ret;
357	}
358
359	path->reada = READA_FORWARD;
360	/* Clone data */
361	key.objectid = btrfs_ino(BTRFS_I(src));
362	key.type = BTRFS_EXTENT_DATA_KEY;
363	key.offset = off;
364
365	while (1) {
366		u64 next_key_min_offset = key.offset + 1;
367		struct btrfs_file_extent_item *extent;
368		u64 extent_gen;
369		int type;
370		u32 size;
371		struct btrfs_key new_key;
372		u64 disko = 0, diskl = 0;
373		u64 datao = 0, datal = 0;
374		u8 comp;
375		u64 drop_start;
376
377		/* Note the key will change type as we walk through the tree */
 
378		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
379				0, 0);
380		if (ret < 0)
381			goto out;
382		/*
383		 * First search, if no extent item that starts at offset off was
384		 * found but the previous item is an extent item, it's possible
385		 * it might overlap our target range, therefore process it.
386		 */
387		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
388			btrfs_item_key_to_cpu(path->nodes[0], &key,
389					      path->slots[0] - 1);
390			if (key.type == BTRFS_EXTENT_DATA_KEY)
391				path->slots[0]--;
392		}
393
394		nritems = btrfs_header_nritems(path->nodes[0]);
395process_slot:
396		if (path->slots[0] >= nritems) {
397			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
398			if (ret < 0)
399				goto out;
400			if (ret > 0)
401				break;
402			nritems = btrfs_header_nritems(path->nodes[0]);
403		}
404		leaf = path->nodes[0];
405		slot = path->slots[0];
406
407		btrfs_item_key_to_cpu(leaf, &key, slot);
408		if (key.type > BTRFS_EXTENT_DATA_KEY ||
409		    key.objectid != btrfs_ino(BTRFS_I(src)))
410			break;
411
412		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
413
414		extent = btrfs_item_ptr(leaf, slot,
415					struct btrfs_file_extent_item);
416		extent_gen = btrfs_file_extent_generation(leaf, extent);
417		comp = btrfs_file_extent_compression(leaf, extent);
418		type = btrfs_file_extent_type(leaf, extent);
419		if (type == BTRFS_FILE_EXTENT_REG ||
420		    type == BTRFS_FILE_EXTENT_PREALLOC) {
421			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
422			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
423			datao = btrfs_file_extent_offset(leaf, extent);
424			datal = btrfs_file_extent_num_bytes(leaf, extent);
425		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
426			/* Take upper bound, may be compressed */
427			datal = btrfs_file_extent_ram_bytes(leaf, extent);
428		}
429
430		/*
431		 * The first search might have left us at an extent item that
432		 * ends before our target range's start, can happen if we have
433		 * holes and NO_HOLES feature enabled.
434		 */
435		if (key.offset + datal <= off) {
436			path->slots[0]++;
437			goto process_slot;
438		} else if (key.offset >= off + len) {
439			break;
440		}
441		next_key_min_offset = key.offset + datal;
442		size = btrfs_item_size_nr(leaf, slot);
443		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
444				   size);
445
446		btrfs_release_path(path);
 
447
448		memcpy(&new_key, &key, sizeof(new_key));
449		new_key.objectid = btrfs_ino(BTRFS_I(inode));
450		if (off <= key.offset)
451			new_key.offset = key.offset + destoff - off;
452		else
453			new_key.offset = destoff;
454
455		/*
456		 * Deal with a hole that doesn't have an extent item that
457		 * represents it (NO_HOLES feature enabled).
458		 * This hole is either in the middle of the cloning range or at
459		 * the beginning (fully overlaps it or partially overlaps it).
460		 */
461		if (new_key.offset != last_dest_end)
462			drop_start = last_dest_end;
463		else
464			drop_start = new_key.offset;
465
466		if (type == BTRFS_FILE_EXTENT_REG ||
467		    type == BTRFS_FILE_EXTENT_PREALLOC) {
468			struct btrfs_replace_extent_info clone_info;
469
470			/*
471			 *    a  | --- range to clone ---|  b
472			 * | ------------- extent ------------- |
473			 */
474
475			/* Subtract range b */
476			if (key.offset + datal > off + len)
477				datal = off + len - key.offset;
478
479			/* Subtract range a */
480			if (off > key.offset) {
481				datao += off - key.offset;
482				datal -= off - key.offset;
483			}
484
485			clone_info.disk_offset = disko;
486			clone_info.disk_len = diskl;
487			clone_info.data_offset = datao;
488			clone_info.data_len = datal;
489			clone_info.file_offset = new_key.offset;
490			clone_info.extent_buf = buf;
491			clone_info.is_new_extent = false;
492			ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
493					drop_start, new_key.offset + datal - 1,
494					&clone_info, &trans);
495			if (ret)
496				goto out;
497		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
498			/*
499			 * Inline extents always have to start at file offset 0
500			 * and can never be bigger then the sector size. We can
501			 * never clone only parts of an inline extent, since all
502			 * reflink operations must start at a sector size aligned
503			 * offset, and the length must be aligned too or end at
504			 * the i_size (which implies the whole inlined data).
505			 */
506			ASSERT(key.offset == 0);
507			ASSERT(datal <= fs_info->sectorsize);
508			if (key.offset != 0 || datal > fs_info->sectorsize)
509				return -EUCLEAN;
510
511			ret = clone_copy_inline_extent(inode, path, &new_key,
512						       drop_start, datal, size,
513						       comp, buf, &trans);
514			if (ret)
515				goto out;
516		}
517
518		btrfs_release_path(path);
519
520		/*
521		 * If this is a new extent update the last_reflink_trans of both
522		 * inodes. This is used by fsync to make sure it does not log
523		 * multiple checksum items with overlapping ranges. For older
524		 * extents we don't need to do it since inode logging skips the
525		 * checksums for older extents. Also ignore holes and inline
526		 * extents because they don't have checksums in the csum tree.
527		 */
528		if (extent_gen == trans->transid && disko > 0) {
529			BTRFS_I(src)->last_reflink_trans = trans->transid;
530			BTRFS_I(inode)->last_reflink_trans = trans->transid;
531		}
532
533		last_dest_end = ALIGN(new_key.offset + datal,
534				      fs_info->sectorsize);
535		ret = clone_finish_inode_update(trans, inode, last_dest_end,
536						destoff, olen, no_time_update);
537		if (ret)
538			goto out;
539		if (new_key.offset + datal >= destoff + len)
540			break;
541
542		btrfs_release_path(path);
543		key.offset = next_key_min_offset;
544
545		if (fatal_signal_pending(current)) {
546			ret = -EINTR;
547			goto out;
548		}
549
550		cond_resched();
551	}
552	ret = 0;
553
554	if (last_dest_end < destoff + len) {
555		/*
556		 * We have an implicit hole that fully or partially overlaps our
557		 * cloning range at its end. This means that we either have the
558		 * NO_HOLES feature enabled or the implicit hole happened due to
559		 * mixing buffered and direct IO writes against this file.
560		 */
561		btrfs_release_path(path);
 
562
563		/*
564		 * When using NO_HOLES and we are cloning a range that covers
565		 * only a hole (no extents) into a range beyond the current
566		 * i_size, punching a hole in the target range will not create
567		 * an extent map defining a hole, because the range starts at or
568		 * beyond current i_size. If the file previously had an i_size
569		 * greater than the new i_size set by this clone operation, we
570		 * need to make sure the next fsync is a full fsync, so that it
571		 * detects and logs a hole covering a range from the current
572		 * i_size to the new i_size. If the clone range covers extents,
573		 * besides a hole, then we know the full sync flag was already
574		 * set by previous calls to btrfs_replace_file_extents() that
575		 * replaced file extent items.
576		 */
577		if (last_dest_end >= i_size_read(inode))
578			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
579				&BTRFS_I(inode)->runtime_flags);
580
581		ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
582				last_dest_end, destoff + len - 1, NULL, &trans);
583		if (ret)
584			goto out;
585
586		ret = clone_finish_inode_update(trans, inode, destoff + len,
587						destoff, olen, no_time_update);
588	}
589
590out:
591	btrfs_free_path(path);
592	kvfree(buf);
593	clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
594
595	return ret;
596}
597
598static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
599				       struct inode *inode2, u64 loff2, u64 len)
600{
601	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
602	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
603}
604
605static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
606				     struct inode *inode2, u64 loff2, u64 len)
607{
608	if (inode1 < inode2) {
609		swap(inode1, inode2);
610		swap(loff1, loff2);
611	} else if (inode1 == inode2 && loff2 < loff1) {
612		swap(loff1, loff2);
613	}
614	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
615	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
616}
617
618static void btrfs_double_mmap_lock(struct inode *inode1, struct inode *inode2)
619{
620	if (inode1 < inode2)
621		swap(inode1, inode2);
622	down_write(&BTRFS_I(inode1)->i_mmap_lock);
623	down_write_nested(&BTRFS_I(inode2)->i_mmap_lock, SINGLE_DEPTH_NESTING);
624}
625
626static void btrfs_double_mmap_unlock(struct inode *inode1, struct inode *inode2)
627{
628	up_write(&BTRFS_I(inode1)->i_mmap_lock);
629	up_write(&BTRFS_I(inode2)->i_mmap_lock);
630}
631
632static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
633				   struct inode *dst, u64 dst_loff)
634{
635	const u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
636	int ret;
637
638	/*
639	 * Lock destination range to serialize with concurrent readpages() and
640	 * source range to serialize with relocation.
641	 */
642	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
643	ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
644	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
645
646	return ret;
647}
648
649static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
650			     struct inode *dst, u64 dst_loff)
651{
652	int ret;
653	u64 i, tail_len, chunk_count;
654	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
655
656	spin_lock(&root_dst->root_item_lock);
657	if (root_dst->send_in_progress) {
658		btrfs_warn_rl(root_dst->fs_info,
659"cannot deduplicate to root %llu while send operations are using it (%d in progress)",
660			      root_dst->root_key.objectid,
661			      root_dst->send_in_progress);
662		spin_unlock(&root_dst->root_item_lock);
663		return -EAGAIN;
664	}
665	root_dst->dedupe_in_progress++;
666	spin_unlock(&root_dst->root_item_lock);
667
668	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
669	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
670
671	for (i = 0; i < chunk_count; i++) {
672		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
673					      dst, dst_loff);
674		if (ret)
675			goto out;
676
677		loff += BTRFS_MAX_DEDUPE_LEN;
678		dst_loff += BTRFS_MAX_DEDUPE_LEN;
679	}
680
681	if (tail_len > 0)
682		ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
683out:
684	spin_lock(&root_dst->root_item_lock);
685	root_dst->dedupe_in_progress--;
686	spin_unlock(&root_dst->root_item_lock);
687
688	return ret;
689}
690
691static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
692					u64 off, u64 olen, u64 destoff)
693{
694	struct inode *inode = file_inode(file);
695	struct inode *src = file_inode(file_src);
696	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
697	int ret;
698	int wb_ret;
699	u64 len = olen;
700	u64 bs = fs_info->sb->s_blocksize;
701
702	/*
703	 * VFS's generic_remap_file_range_prep() protects us from cloning the
704	 * eof block into the middle of a file, which would result in corruption
705	 * if the file size is not blocksize aligned. So we don't need to check
706	 * for that case here.
707	 */
708	if (off + len == src->i_size)
709		len = ALIGN(src->i_size, bs) - off;
710
711	if (destoff > inode->i_size) {
712		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
713
714		ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
715		if (ret)
716			return ret;
717		/*
718		 * We may have truncated the last block if the inode's size is
719		 * not sector size aligned, so we need to wait for writeback to
720		 * complete before proceeding further, otherwise we can race
721		 * with cloning and attempt to increment a reference to an
722		 * extent that no longer exists (writeback completed right after
723		 * we found the previous extent covering eof and before we
724		 * attempted to increment its reference count).
725		 */
726		ret = btrfs_wait_ordered_range(inode, wb_start,
727					       destoff - wb_start);
728		if (ret)
729			return ret;
730	}
731
732	/*
733	 * Lock destination range to serialize with concurrent readpages() and
734	 * source range to serialize with relocation.
735	 */
736	btrfs_double_extent_lock(src, off, inode, destoff, len);
737	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
738	btrfs_double_extent_unlock(src, off, inode, destoff, len);
739
740	/*
741	 * We may have copied an inline extent into a page of the destination
742	 * range, so wait for writeback to complete before truncating pages
743	 * from the page cache. This is a rare case.
744	 */
745	wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
746	ret = ret ? ret : wb_ret;
747	/*
748	 * Truncate page cache pages so that future reads will see the cloned
749	 * data immediately and not the previous data.
750	 */
751	truncate_inode_pages_range(&inode->i_data,
752				round_down(destoff, PAGE_SIZE),
753				round_up(destoff + len, PAGE_SIZE) - 1);
754
755	return ret;
756}
757
758static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
759				       struct file *file_out, loff_t pos_out,
760				       loff_t *len, unsigned int remap_flags)
761{
762	struct inode *inode_in = file_inode(file_in);
763	struct inode *inode_out = file_inode(file_out);
764	u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
765	bool same_inode = inode_out == inode_in;
766	u64 wb_len;
767	int ret;
768
769	if (!(remap_flags & REMAP_FILE_DEDUP)) {
770		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
771
772		if (btrfs_root_readonly(root_out))
773			return -EROFS;
774
775		if (file_in->f_path.mnt != file_out->f_path.mnt ||
776		    inode_in->i_sb != inode_out->i_sb)
777			return -EXDEV;
778	}
779
780	/* Don't make the dst file partly checksummed */
781	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
782	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
783		return -EINVAL;
784	}
785
786	/*
787	 * Now that the inodes are locked, we need to start writeback ourselves
788	 * and can not rely on the writeback from the VFS's generic helper
789	 * generic_remap_file_range_prep() because:
790	 *
791	 * 1) For compression we must call filemap_fdatawrite_range() range
792	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
793	 *    helper only calls it once;
794	 *
795	 * 2) filemap_fdatawrite_range(), called by the generic helper only
796	 *    waits for the writeback to complete, i.e. for IO to be done, and
797	 *    not for the ordered extents to complete. We need to wait for them
798	 *    to complete so that new file extent items are in the fs tree.
799	 */
800	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
801		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
802	else
803		wb_len = ALIGN(*len, bs);
804
805	/*
806	 * Since we don't lock ranges, wait for ongoing lockless dio writes (as
807	 * any in progress could create its ordered extents after we wait for
808	 * existing ordered extents below).
809	 */
810	inode_dio_wait(inode_in);
811	if (!same_inode)
812		inode_dio_wait(inode_out);
813
814	/*
815	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
816	 *
817	 * Btrfs' back references do not have a block level granularity, they
818	 * work at the whole extent level.
819	 * NOCOW buffered write without data space reserved may not be able
820	 * to fall back to CoW due to lack of data space, thus could cause
821	 * data loss.
822	 *
823	 * Here we take a shortcut by flushing the whole inode, so that all
824	 * nocow write should reach disk as nocow before we increase the
825	 * reference of the extent. We could do better by only flushing NOCOW
826	 * data, but that needs extra accounting.
827	 *
828	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
829	 * CoWed anyway, not affecting nocow part.
830	 */
831	ret = filemap_flush(inode_in->i_mapping);
832	if (ret < 0)
833		return ret;
834
835	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
836				       wb_len);
837	if (ret < 0)
838		return ret;
839	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
840				       wb_len);
841	if (ret < 0)
842		return ret;
843
844	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
845					    len, remap_flags);
846}
847
848static bool file_sync_write(const struct file *file)
849{
850	if (file->f_flags & (__O_SYNC | O_DSYNC))
851		return true;
852	if (IS_SYNC(file_inode(file)))
853		return true;
854
855	return false;
856}
857
858loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
859		struct file *dst_file, loff_t destoff, loff_t len,
860		unsigned int remap_flags)
861{
862	struct inode *src_inode = file_inode(src_file);
863	struct inode *dst_inode = file_inode(dst_file);
864	bool same_inode = dst_inode == src_inode;
865	int ret;
866
867	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
868		return -EINVAL;
869
870	if (same_inode) {
871		btrfs_inode_lock(src_inode, BTRFS_ILOCK_MMAP);
872	} else {
873		lock_two_nondirectories(src_inode, dst_inode);
874		btrfs_double_mmap_lock(src_inode, dst_inode);
875	}
876
877	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
878					  &len, remap_flags);
879	if (ret < 0 || len == 0)
880		goto out_unlock;
881
882	if (remap_flags & REMAP_FILE_DEDUP)
883		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
884	else
885		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
886
887out_unlock:
888	if (same_inode) {
889		btrfs_inode_unlock(src_inode, BTRFS_ILOCK_MMAP);
890	} else {
891		btrfs_double_mmap_unlock(src_inode, dst_inode);
892		unlock_two_nondirectories(src_inode, dst_inode);
893	}
894
895	/*
896	 * If either the source or the destination file was opened with O_SYNC,
897	 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and
898	 * source files/ranges, so that after a successful return (0) followed
899	 * by a power failure results in the reflinked data to be readable from
900	 * both files/ranges.
901	 */
902	if (ret == 0 && len > 0 &&
903	    (file_sync_write(src_file) || file_sync_write(dst_file))) {
904		ret = btrfs_sync_file(src_file, off, off + len - 1, 0);
905		if (ret == 0)
906			ret = btrfs_sync_file(dst_file, destoff,
907					      destoff + len - 1, 0);
908	}
909
910	return ret < 0 ? ret : len;
911}