Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2015 MediaTek Inc.
   4 * Author: Hanyi Wu <hanyi.wu@mediatek.com>
   5 *         Sascha Hauer <s.hauer@pengutronix.de>
   6 *         Dawei Chien <dawei.chien@mediatek.com>
   7 *         Louis Yu <louis.yu@mediatek.com>
   8 */
   9
  10#include <linux/clk.h>
  11#include <linux/delay.h>
  12#include <linux/interrupt.h>
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/nvmem-consumer.h>
  16#include <linux/of.h>
  17#include <linux/of_address.h>
  18#include <linux/of_device.h>
  19#include <linux/platform_device.h>
  20#include <linux/slab.h>
  21#include <linux/io.h>
  22#include <linux/thermal.h>
  23#include <linux/reset.h>
  24#include <linux/types.h>
  25
 
 
  26/* AUXADC Registers */
  27#define AUXADC_CON1_SET_V	0x008
  28#define AUXADC_CON1_CLR_V	0x00c
  29#define AUXADC_CON2_V		0x010
  30#define AUXADC_DATA(channel)	(0x14 + (channel) * 4)
  31
  32#define APMIXED_SYS_TS_CON1	0x604
  33
  34/* Thermal Controller Registers */
  35#define TEMP_MONCTL0		0x000
  36#define TEMP_MONCTL1		0x004
  37#define TEMP_MONCTL2		0x008
  38#define TEMP_MONIDET0		0x014
  39#define TEMP_MONIDET1		0x018
  40#define TEMP_MSRCTL0		0x038
  41#define TEMP_MSRCTL1		0x03c
  42#define TEMP_AHBPOLL		0x040
  43#define TEMP_AHBTO		0x044
  44#define TEMP_ADCPNP0		0x048
  45#define TEMP_ADCPNP1		0x04c
  46#define TEMP_ADCPNP2		0x050
  47#define TEMP_ADCPNP3		0x0b4
  48
  49#define TEMP_ADCMUX		0x054
  50#define TEMP_ADCEN		0x060
  51#define TEMP_PNPMUXADDR		0x064
  52#define TEMP_ADCMUXADDR		0x068
  53#define TEMP_ADCENADDR		0x074
  54#define TEMP_ADCVALIDADDR	0x078
  55#define TEMP_ADCVOLTADDR	0x07c
  56#define TEMP_RDCTRL		0x080
  57#define TEMP_ADCVALIDMASK	0x084
  58#define TEMP_ADCVOLTAGESHIFT	0x088
  59#define TEMP_ADCWRITECTRL	0x08c
  60#define TEMP_MSR0		0x090
  61#define TEMP_MSR1		0x094
  62#define TEMP_MSR2		0x098
  63#define TEMP_MSR3		0x0B8
  64
  65#define TEMP_SPARE0		0x0f0
  66
  67#define TEMP_ADCPNP0_1          0x148
  68#define TEMP_ADCPNP1_1          0x14c
  69#define TEMP_ADCPNP2_1          0x150
  70#define TEMP_MSR0_1             0x190
  71#define TEMP_MSR1_1             0x194
  72#define TEMP_MSR2_1             0x198
  73#define TEMP_ADCPNP3_1          0x1b4
  74#define TEMP_MSR3_1             0x1B8
  75
  76#define PTPCORESEL		0x400
  77
  78#define TEMP_MONCTL1_PERIOD_UNIT(x)	((x) & 0x3ff)
  79
  80#define TEMP_MONCTL2_FILTER_INTERVAL(x)	(((x) & 0x3ff) << 16)
  81#define TEMP_MONCTL2_SENSOR_INTERVAL(x)	((x) & 0x3ff)
  82
  83#define TEMP_AHBPOLL_ADC_POLL_INTERVAL(x)	(x)
  84
  85#define TEMP_ADCWRITECTRL_ADC_PNP_WRITE		BIT(0)
  86#define TEMP_ADCWRITECTRL_ADC_MUX_WRITE		BIT(1)
  87
  88#define TEMP_ADCVALIDMASK_VALID_HIGH		BIT(5)
  89#define TEMP_ADCVALIDMASK_VALID_POS(bit)	(bit)
  90
  91/* MT8173 thermal sensors */
  92#define MT8173_TS1	0
  93#define MT8173_TS2	1
  94#define MT8173_TS3	2
  95#define MT8173_TS4	3
  96#define MT8173_TSABB	4
  97
  98/* AUXADC channel 11 is used for the temperature sensors */
  99#define MT8173_TEMP_AUXADC_CHANNEL	11
 100
 101/* The total number of temperature sensors in the MT8173 */
 102#define MT8173_NUM_SENSORS		5
 103
 104/* The number of banks in the MT8173 */
 105#define MT8173_NUM_ZONES		4
 106
 107/* The number of sensing points per bank */
 108#define MT8173_NUM_SENSORS_PER_ZONE	4
 109
 110/* The number of controller in the MT8173 */
 111#define MT8173_NUM_CONTROLLER		1
 112
 113/* The calibration coefficient of sensor  */
 114#define MT8173_CALIBRATION	165
 115
 116/*
 117 * Layout of the fuses providing the calibration data
 118 * These macros could be used for MT8183, MT8173, MT2701, and MT2712.
 119 * MT8183 has 6 sensors and needs 6 VTS calibration data.
 120 * MT8173 has 5 sensors and needs 5 VTS calibration data.
 121 * MT2701 has 3 sensors and needs 3 VTS calibration data.
 122 * MT2712 has 4 sensors and needs 4 VTS calibration data.
 123 */
 124#define CALIB_BUF0_VALID_V1		BIT(0)
 125#define CALIB_BUF1_ADC_GE_V1(x)		(((x) >> 22) & 0x3ff)
 126#define CALIB_BUF0_VTS_TS1_V1(x)	(((x) >> 17) & 0x1ff)
 127#define CALIB_BUF0_VTS_TS2_V1(x)	(((x) >> 8) & 0x1ff)
 128#define CALIB_BUF1_VTS_TS3_V1(x)	(((x) >> 0) & 0x1ff)
 129#define CALIB_BUF2_VTS_TS4_V1(x)	(((x) >> 23) & 0x1ff)
 130#define CALIB_BUF2_VTS_TS5_V1(x)	(((x) >> 5) & 0x1ff)
 131#define CALIB_BUF2_VTS_TSABB_V1(x)	(((x) >> 14) & 0x1ff)
 132#define CALIB_BUF0_DEGC_CALI_V1(x)	(((x) >> 1) & 0x3f)
 133#define CALIB_BUF0_O_SLOPE_V1(x)	(((x) >> 26) & 0x3f)
 134#define CALIB_BUF0_O_SLOPE_SIGN_V1(x)	(((x) >> 7) & 0x1)
 135#define CALIB_BUF1_ID_V1(x)		(((x) >> 9) & 0x1)
 136
 137/*
 138 * Layout of the fuses providing the calibration data
 139 * These macros could be used for MT7622.
 140 */
 141#define CALIB_BUF0_ADC_OE_V2(x)		(((x) >> 22) & 0x3ff)
 142#define CALIB_BUF0_ADC_GE_V2(x)		(((x) >> 12) & 0x3ff)
 143#define CALIB_BUF0_DEGC_CALI_V2(x)	(((x) >> 6) & 0x3f)
 144#define CALIB_BUF0_O_SLOPE_V2(x)	(((x) >> 0) & 0x3f)
 145#define CALIB_BUF1_VTS_TS1_V2(x)	(((x) >> 23) & 0x1ff)
 146#define CALIB_BUF1_VTS_TS2_V2(x)	(((x) >> 14) & 0x1ff)
 147#define CALIB_BUF1_VTS_TSABB_V2(x)	(((x) >> 5) & 0x1ff)
 148#define CALIB_BUF1_VALID_V2(x)		(((x) >> 4) & 0x1)
 149#define CALIB_BUF1_O_SLOPE_SIGN_V2(x)	(((x) >> 3) & 0x1)
 150
 151enum {
 152	VTS1,
 153	VTS2,
 154	VTS3,
 155	VTS4,
 156	VTS5,
 157	VTSABB,
 158	MAX_NUM_VTS,
 159};
 160
 161enum mtk_thermal_version {
 162	MTK_THERMAL_V1 = 1,
 163	MTK_THERMAL_V2,
 164};
 165
 166/* MT2701 thermal sensors */
 167#define MT2701_TS1	0
 168#define MT2701_TS2	1
 169#define MT2701_TSABB	2
 170
 171/* AUXADC channel 11 is used for the temperature sensors */
 172#define MT2701_TEMP_AUXADC_CHANNEL	11
 173
 174/* The total number of temperature sensors in the MT2701 */
 175#define MT2701_NUM_SENSORS	3
 176
 177/* The number of sensing points per bank */
 178#define MT2701_NUM_SENSORS_PER_ZONE	3
 179
 180/* The number of controller in the MT2701 */
 181#define MT2701_NUM_CONTROLLER		1
 182
 183/* The calibration coefficient of sensor  */
 184#define MT2701_CALIBRATION	165
 185
 186/* MT2712 thermal sensors */
 187#define MT2712_TS1	0
 188#define MT2712_TS2	1
 189#define MT2712_TS3	2
 190#define MT2712_TS4	3
 191
 192/* AUXADC channel 11 is used for the temperature sensors */
 193#define MT2712_TEMP_AUXADC_CHANNEL	11
 194
 195/* The total number of temperature sensors in the MT2712 */
 196#define MT2712_NUM_SENSORS	4
 197
 198/* The number of sensing points per bank */
 199#define MT2712_NUM_SENSORS_PER_ZONE	4
 200
 201/* The number of controller in the MT2712 */
 202#define MT2712_NUM_CONTROLLER		1
 203
 204/* The calibration coefficient of sensor  */
 205#define MT2712_CALIBRATION	165
 206
 207#define MT7622_TEMP_AUXADC_CHANNEL	11
 208#define MT7622_NUM_SENSORS		1
 209#define MT7622_NUM_ZONES		1
 210#define MT7622_NUM_SENSORS_PER_ZONE	1
 211#define MT7622_TS1	0
 212#define MT7622_NUM_CONTROLLER		1
 213
 214/* The maximum number of banks */
 215#define MAX_NUM_ZONES		8
 216
 217/* The calibration coefficient of sensor  */
 218#define MT7622_CALIBRATION	165
 219
 220/* MT8183 thermal sensors */
 221#define MT8183_TS1	0
 222#define MT8183_TS2	1
 223#define MT8183_TS3	2
 224#define MT8183_TS4	3
 225#define MT8183_TS5	4
 226#define MT8183_TSABB	5
 227
 228/* AUXADC channel  is used for the temperature sensors */
 229#define MT8183_TEMP_AUXADC_CHANNEL	11
 230
 231/* The total number of temperature sensors in the MT8183 */
 232#define MT8183_NUM_SENSORS	6
 233
 234/* The number of banks in the MT8183 */
 235#define MT8183_NUM_ZONES               1
 236
 237/* The number of sensing points per bank */
 238#define MT8183_NUM_SENSORS_PER_ZONE	 6
 239
 240/* The number of controller in the MT8183 */
 241#define MT8183_NUM_CONTROLLER		2
 242
 243/* The calibration coefficient of sensor  */
 244#define MT8183_CALIBRATION	153
 245
 246struct mtk_thermal;
 247
 248struct thermal_bank_cfg {
 249	unsigned int num_sensors;
 250	const int *sensors;
 251};
 252
 253struct mtk_thermal_bank {
 254	struct mtk_thermal *mt;
 255	int id;
 256};
 257
 258struct mtk_thermal_data {
 259	s32 num_banks;
 260	s32 num_sensors;
 261	s32 auxadc_channel;
 262	const int *vts_index;
 263	const int *sensor_mux_values;
 264	const int *msr;
 265	const int *adcpnp;
 266	const int cali_val;
 267	const int num_controller;
 268	const int *controller_offset;
 269	bool need_switch_bank;
 270	struct thermal_bank_cfg bank_data[MAX_NUM_ZONES];
 271	enum mtk_thermal_version version;
 272};
 273
 274struct mtk_thermal {
 275	struct device *dev;
 276	void __iomem *thermal_base;
 277
 278	struct clk *clk_peri_therm;
 279	struct clk *clk_auxadc;
 280	/* lock: for getting and putting banks */
 281	struct mutex lock;
 282
 283	/* Calibration values */
 284	s32 adc_ge;
 285	s32 adc_oe;
 286	s32 degc_cali;
 287	s32 o_slope;
 288	s32 o_slope_sign;
 289	s32 vts[MAX_NUM_VTS];
 290
 291	const struct mtk_thermal_data *conf;
 292	struct mtk_thermal_bank banks[MAX_NUM_ZONES];
 293};
 294
 295/* MT8183 thermal sensor data */
 296static const int mt8183_bank_data[MT8183_NUM_SENSORS] = {
 297	MT8183_TS1, MT8183_TS2, MT8183_TS3, MT8183_TS4, MT8183_TS5, MT8183_TSABB
 298};
 299
 300static const int mt8183_msr[MT8183_NUM_SENSORS_PER_ZONE] = {
 301	TEMP_MSR0_1, TEMP_MSR1_1, TEMP_MSR2_1, TEMP_MSR1, TEMP_MSR0, TEMP_MSR3_1
 302};
 303
 304static const int mt8183_adcpnp[MT8183_NUM_SENSORS_PER_ZONE] = {
 305	TEMP_ADCPNP0_1, TEMP_ADCPNP1_1, TEMP_ADCPNP2_1,
 306	TEMP_ADCPNP1, TEMP_ADCPNP0, TEMP_ADCPNP3_1
 307};
 308
 309static const int mt8183_mux_values[MT8183_NUM_SENSORS] = { 0, 1, 2, 3, 4, 0 };
 310static const int mt8183_tc_offset[MT8183_NUM_CONTROLLER] = {0x0, 0x100};
 311
 312static const int mt8183_vts_index[MT8183_NUM_SENSORS] = {
 313	VTS1, VTS2, VTS3, VTS4, VTS5, VTSABB
 314};
 315
 316/* MT8173 thermal sensor data */
 317static const int mt8173_bank_data[MT8173_NUM_ZONES][3] = {
 318	{ MT8173_TS2, MT8173_TS3 },
 319	{ MT8173_TS2, MT8173_TS4 },
 320	{ MT8173_TS1, MT8173_TS2, MT8173_TSABB },
 321	{ MT8173_TS2 },
 322};
 323
 324static const int mt8173_msr[MT8173_NUM_SENSORS_PER_ZONE] = {
 325	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
 326};
 327
 328static const int mt8173_adcpnp[MT8173_NUM_SENSORS_PER_ZONE] = {
 329	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
 330};
 331
 332static const int mt8173_mux_values[MT8173_NUM_SENSORS] = { 0, 1, 2, 3, 16 };
 333static const int mt8173_tc_offset[MT8173_NUM_CONTROLLER] = { 0x0, };
 334
 335static const int mt8173_vts_index[MT8173_NUM_SENSORS] = {
 336	VTS1, VTS2, VTS3, VTS4, VTSABB
 337};
 338
 339/* MT2701 thermal sensor data */
 340static const int mt2701_bank_data[MT2701_NUM_SENSORS] = {
 341	MT2701_TS1, MT2701_TS2, MT2701_TSABB
 342};
 343
 344static const int mt2701_msr[MT2701_NUM_SENSORS_PER_ZONE] = {
 345	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2
 346};
 347
 348static const int mt2701_adcpnp[MT2701_NUM_SENSORS_PER_ZONE] = {
 349	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2
 350};
 351
 352static const int mt2701_mux_values[MT2701_NUM_SENSORS] = { 0, 1, 16 };
 353static const int mt2701_tc_offset[MT2701_NUM_CONTROLLER] = { 0x0, };
 354
 355static const int mt2701_vts_index[MT2701_NUM_SENSORS] = {
 356	VTS1, VTS2, VTS3
 357};
 358
 359/* MT2712 thermal sensor data */
 360static const int mt2712_bank_data[MT2712_NUM_SENSORS] = {
 361	MT2712_TS1, MT2712_TS2, MT2712_TS3, MT2712_TS4
 362};
 363
 364static const int mt2712_msr[MT2712_NUM_SENSORS_PER_ZONE] = {
 365	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
 366};
 367
 368static const int mt2712_adcpnp[MT2712_NUM_SENSORS_PER_ZONE] = {
 369	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
 370};
 371
 372static const int mt2712_mux_values[MT2712_NUM_SENSORS] = { 0, 1, 2, 3 };
 373static const int mt2712_tc_offset[MT2712_NUM_CONTROLLER] = { 0x0, };
 374
 375static const int mt2712_vts_index[MT2712_NUM_SENSORS] = {
 376	VTS1, VTS2, VTS3, VTS4
 377};
 378
 379/* MT7622 thermal sensor data */
 380static const int mt7622_bank_data[MT7622_NUM_SENSORS] = { MT7622_TS1, };
 381static const int mt7622_msr[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, };
 382static const int mt7622_adcpnp[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, };
 383static const int mt7622_mux_values[MT7622_NUM_SENSORS] = { 0, };
 384static const int mt7622_vts_index[MT7622_NUM_SENSORS] = { VTS1 };
 385static const int mt7622_tc_offset[MT7622_NUM_CONTROLLER] = { 0x0, };
 386
 387/*
 388 * The MT8173 thermal controller has four banks. Each bank can read up to
 389 * four temperature sensors simultaneously. The MT8173 has a total of 5
 390 * temperature sensors. We use each bank to measure a certain area of the
 391 * SoC. Since TS2 is located centrally in the SoC it is influenced by multiple
 392 * areas, hence is used in different banks.
 393 *
 394 * The thermal core only gets the maximum temperature of all banks, so
 395 * the bank concept wouldn't be necessary here. However, the SVS (Smart
 396 * Voltage Scaling) unit makes its decisions based on the same bank
 397 * data, and this indeed needs the temperatures of the individual banks
 398 * for making better decisions.
 399 */
 400static const struct mtk_thermal_data mt8173_thermal_data = {
 401	.auxadc_channel = MT8173_TEMP_AUXADC_CHANNEL,
 402	.num_banks = MT8173_NUM_ZONES,
 403	.num_sensors = MT8173_NUM_SENSORS,
 404	.vts_index = mt8173_vts_index,
 405	.cali_val = MT8173_CALIBRATION,
 406	.num_controller = MT8173_NUM_CONTROLLER,
 407	.controller_offset = mt8173_tc_offset,
 408	.need_switch_bank = true,
 409	.bank_data = {
 410		{
 411			.num_sensors = 2,
 412			.sensors = mt8173_bank_data[0],
 413		}, {
 414			.num_sensors = 2,
 415			.sensors = mt8173_bank_data[1],
 416		}, {
 417			.num_sensors = 3,
 418			.sensors = mt8173_bank_data[2],
 419		}, {
 420			.num_sensors = 1,
 421			.sensors = mt8173_bank_data[3],
 422		},
 423	},
 424	.msr = mt8173_msr,
 425	.adcpnp = mt8173_adcpnp,
 426	.sensor_mux_values = mt8173_mux_values,
 427	.version = MTK_THERMAL_V1,
 428};
 429
 430/*
 431 * The MT2701 thermal controller has one bank, which can read up to
 432 * three temperature sensors simultaneously. The MT2701 has a total of 3
 433 * temperature sensors.
 434 *
 435 * The thermal core only gets the maximum temperature of this one bank,
 436 * so the bank concept wouldn't be necessary here. However, the SVS (Smart
 437 * Voltage Scaling) unit makes its decisions based on the same bank
 438 * data.
 439 */
 440static const struct mtk_thermal_data mt2701_thermal_data = {
 441	.auxadc_channel = MT2701_TEMP_AUXADC_CHANNEL,
 442	.num_banks = 1,
 443	.num_sensors = MT2701_NUM_SENSORS,
 444	.vts_index = mt2701_vts_index,
 445	.cali_val = MT2701_CALIBRATION,
 446	.num_controller = MT2701_NUM_CONTROLLER,
 447	.controller_offset = mt2701_tc_offset,
 448	.need_switch_bank = true,
 449	.bank_data = {
 450		{
 451			.num_sensors = 3,
 452			.sensors = mt2701_bank_data,
 453		},
 454	},
 455	.msr = mt2701_msr,
 456	.adcpnp = mt2701_adcpnp,
 457	.sensor_mux_values = mt2701_mux_values,
 458	.version = MTK_THERMAL_V1,
 459};
 460
 461/*
 462 * The MT2712 thermal controller has one bank, which can read up to
 463 * four temperature sensors simultaneously. The MT2712 has a total of 4
 464 * temperature sensors.
 465 *
 466 * The thermal core only gets the maximum temperature of this one bank,
 467 * so the bank concept wouldn't be necessary here. However, the SVS (Smart
 468 * Voltage Scaling) unit makes its decisions based on the same bank
 469 * data.
 470 */
 471static const struct mtk_thermal_data mt2712_thermal_data = {
 472	.auxadc_channel = MT2712_TEMP_AUXADC_CHANNEL,
 473	.num_banks = 1,
 474	.num_sensors = MT2712_NUM_SENSORS,
 475	.vts_index = mt2712_vts_index,
 476	.cali_val = MT2712_CALIBRATION,
 477	.num_controller = MT2712_NUM_CONTROLLER,
 478	.controller_offset = mt2712_tc_offset,
 479	.need_switch_bank = true,
 480	.bank_data = {
 481		{
 482			.num_sensors = 4,
 483			.sensors = mt2712_bank_data,
 484		},
 485	},
 486	.msr = mt2712_msr,
 487	.adcpnp = mt2712_adcpnp,
 488	.sensor_mux_values = mt2712_mux_values,
 489	.version = MTK_THERMAL_V1,
 490};
 491
 492/*
 493 * MT7622 have only one sensing point which uses AUXADC Channel 11 for raw data
 494 * access.
 495 */
 496static const struct mtk_thermal_data mt7622_thermal_data = {
 497	.auxadc_channel = MT7622_TEMP_AUXADC_CHANNEL,
 498	.num_banks = MT7622_NUM_ZONES,
 499	.num_sensors = MT7622_NUM_SENSORS,
 500	.vts_index = mt7622_vts_index,
 501	.cali_val = MT7622_CALIBRATION,
 502	.num_controller = MT7622_NUM_CONTROLLER,
 503	.controller_offset = mt7622_tc_offset,
 504	.need_switch_bank = true,
 505	.bank_data = {
 506		{
 507			.num_sensors = 1,
 508			.sensors = mt7622_bank_data,
 509		},
 510	},
 511	.msr = mt7622_msr,
 512	.adcpnp = mt7622_adcpnp,
 513	.sensor_mux_values = mt7622_mux_values,
 514	.version = MTK_THERMAL_V2,
 515};
 516
 517/*
 518 * The MT8183 thermal controller has one bank for the current SW framework.
 519 * The MT8183 has a total of 6 temperature sensors.
 520 * There are two thermal controller to control the six sensor.
 521 * The first one bind 2 sensor, and the other bind 4 sensors.
 522 * The thermal core only gets the maximum temperature of all sensor, so
 523 * the bank concept wouldn't be necessary here. However, the SVS (Smart
 524 * Voltage Scaling) unit makes its decisions based on the same bank
 525 * data, and this indeed needs the temperatures of the individual banks
 526 * for making better decisions.
 527 */
 528static const struct mtk_thermal_data mt8183_thermal_data = {
 529	.auxadc_channel = MT8183_TEMP_AUXADC_CHANNEL,
 530	.num_banks = MT8183_NUM_ZONES,
 531	.num_sensors = MT8183_NUM_SENSORS,
 532	.vts_index = mt8183_vts_index,
 533	.cali_val = MT8183_CALIBRATION,
 534	.num_controller = MT8183_NUM_CONTROLLER,
 535	.controller_offset = mt8183_tc_offset,
 536	.need_switch_bank = false,
 537	.bank_data = {
 538		{
 539			.num_sensors = 6,
 540			.sensors = mt8183_bank_data,
 541		},
 542	},
 543
 544	.msr = mt8183_msr,
 545	.adcpnp = mt8183_adcpnp,
 546	.sensor_mux_values = mt8183_mux_values,
 547	.version = MTK_THERMAL_V1,
 548};
 549
 550/**
 551 * raw_to_mcelsius - convert a raw ADC value to mcelsius
 552 * @mt:	The thermal controller
 553 * @sensno:	sensor number
 554 * @raw:	raw ADC value
 555 *
 556 * This converts the raw ADC value to mcelsius using the SoC specific
 557 * calibration constants
 558 */
 559static int raw_to_mcelsius_v1(struct mtk_thermal *mt, int sensno, s32 raw)
 560{
 561	s32 tmp;
 562
 563	raw &= 0xfff;
 564
 565	tmp = 203450520 << 3;
 566	tmp /= mt->conf->cali_val + mt->o_slope;
 567	tmp /= 10000 + mt->adc_ge;
 568	tmp *= raw - mt->vts[sensno] - 3350;
 569	tmp >>= 3;
 570
 571	return mt->degc_cali * 500 - tmp;
 572}
 573
 574static int raw_to_mcelsius_v2(struct mtk_thermal *mt, int sensno, s32 raw)
 575{
 576	s32 format_1 = 0;
 577	s32 format_2 = 0;
 578	s32 g_oe = 1;
 579	s32 g_gain = 1;
 580	s32 g_x_roomt = 0;
 581	s32 tmp = 0;
 582
 583	if (raw == 0)
 584		return 0;
 585
 586	raw &= 0xfff;
 587	g_gain = 10000 + (((mt->adc_ge - 512) * 10000) >> 12);
 588	g_oe = mt->adc_oe - 512;
 589	format_1 = mt->vts[VTS2] + 3105 - g_oe;
 590	format_2 = (mt->degc_cali * 10) >> 1;
 591	g_x_roomt = (((format_1 * 10000) >> 12) * 10000) / g_gain;
 592
 593	tmp = (((((raw - g_oe) * 10000) >> 12) * 10000) / g_gain) - g_x_roomt;
 594	tmp = tmp * 10 * 100 / 11;
 595
 596	if (mt->o_slope_sign == 0)
 597		tmp = tmp / (165 - mt->o_slope);
 598	else
 599		tmp = tmp / (165 + mt->o_slope);
 600
 601	return (format_2 - tmp) * 100;
 602}
 603
 604/**
 605 * mtk_thermal_get_bank - get bank
 606 * @bank:	The bank
 607 *
 608 * The bank registers are banked, we have to select a bank in the
 609 * PTPCORESEL register to access it.
 610 */
 611static void mtk_thermal_get_bank(struct mtk_thermal_bank *bank)
 612{
 613	struct mtk_thermal *mt = bank->mt;
 614	u32 val;
 615
 616	if (mt->conf->need_switch_bank) {
 617		mutex_lock(&mt->lock);
 618
 619		val = readl(mt->thermal_base + PTPCORESEL);
 620		val &= ~0xf;
 621		val |= bank->id;
 622		writel(val, mt->thermal_base + PTPCORESEL);
 623	}
 624}
 625
 626/**
 627 * mtk_thermal_put_bank - release bank
 628 * @bank:	The bank
 629 *
 630 * release a bank previously taken with mtk_thermal_get_bank,
 631 */
 632static void mtk_thermal_put_bank(struct mtk_thermal_bank *bank)
 633{
 634	struct mtk_thermal *mt = bank->mt;
 635
 636	if (mt->conf->need_switch_bank)
 637		mutex_unlock(&mt->lock);
 638}
 639
 640/**
 641 * mtk_thermal_bank_temperature - get the temperature of a bank
 642 * @bank:	The bank
 643 *
 644 * The temperature of a bank is considered the maximum temperature of
 645 * the sensors associated to the bank.
 646 */
 647static int mtk_thermal_bank_temperature(struct mtk_thermal_bank *bank)
 648{
 649	struct mtk_thermal *mt = bank->mt;
 650	const struct mtk_thermal_data *conf = mt->conf;
 651	int i, temp = INT_MIN, max = INT_MIN;
 652	u32 raw;
 653
 654	for (i = 0; i < conf->bank_data[bank->id].num_sensors; i++) {
 655		raw = readl(mt->thermal_base + conf->msr[i]);
 656
 657		if (mt->conf->version == MTK_THERMAL_V1) {
 658			temp = raw_to_mcelsius_v1(
 659				mt, conf->bank_data[bank->id].sensors[i], raw);
 660		} else {
 661			temp = raw_to_mcelsius_v2(
 662				mt, conf->bank_data[bank->id].sensors[i], raw);
 663		}
 664
 665		/*
 666		 * The first read of a sensor often contains very high bogus
 667		 * temperature value. Filter these out so that the system does
 668		 * not immediately shut down.
 669		 */
 670		if (temp > 200000)
 671			temp = 0;
 672
 673		if (temp > max)
 674			max = temp;
 675	}
 676
 677	return max;
 678}
 679
 680static int mtk_read_temp(void *data, int *temperature)
 681{
 682	struct mtk_thermal *mt = data;
 683	int i;
 684	int tempmax = INT_MIN;
 685
 686	for (i = 0; i < mt->conf->num_banks; i++) {
 687		struct mtk_thermal_bank *bank = &mt->banks[i];
 688
 689		mtk_thermal_get_bank(bank);
 690
 691		tempmax = max(tempmax, mtk_thermal_bank_temperature(bank));
 692
 693		mtk_thermal_put_bank(bank);
 694	}
 695
 696	*temperature = tempmax;
 697
 698	return 0;
 699}
 700
 701static const struct thermal_zone_of_device_ops mtk_thermal_ops = {
 702	.get_temp = mtk_read_temp,
 703};
 704
 705static void mtk_thermal_init_bank(struct mtk_thermal *mt, int num,
 706				  u32 apmixed_phys_base, u32 auxadc_phys_base,
 707				  int ctrl_id)
 708{
 709	struct mtk_thermal_bank *bank = &mt->banks[num];
 710	const struct mtk_thermal_data *conf = mt->conf;
 711	int i;
 712
 713	int offset = mt->conf->controller_offset[ctrl_id];
 714	void __iomem *controller_base = mt->thermal_base + offset;
 715
 716	bank->id = num;
 717	bank->mt = mt;
 718
 719	mtk_thermal_get_bank(bank);
 720
 721	/* bus clock 66M counting unit is 12 * 15.15ns * 256 = 46.540us */
 722	writel(TEMP_MONCTL1_PERIOD_UNIT(12), controller_base + TEMP_MONCTL1);
 723
 724	/*
 725	 * filt interval is 1 * 46.540us = 46.54us,
 726	 * sen interval is 429 * 46.540us = 19.96ms
 727	 */
 728	writel(TEMP_MONCTL2_FILTER_INTERVAL(1) |
 729			TEMP_MONCTL2_SENSOR_INTERVAL(429),
 730			controller_base + TEMP_MONCTL2);
 731
 732	/* poll is set to 10u */
 733	writel(TEMP_AHBPOLL_ADC_POLL_INTERVAL(768),
 734	       controller_base + TEMP_AHBPOLL);
 735
 736	/* temperature sampling control, 1 sample */
 737	writel(0x0, controller_base + TEMP_MSRCTL0);
 738
 739	/* exceed this polling time, IRQ would be inserted */
 740	writel(0xffffffff, controller_base + TEMP_AHBTO);
 741
 742	/* number of interrupts per event, 1 is enough */
 743	writel(0x0, controller_base + TEMP_MONIDET0);
 744	writel(0x0, controller_base + TEMP_MONIDET1);
 745
 746	/*
 747	 * The MT8173 thermal controller does not have its own ADC. Instead it
 748	 * uses AHB bus accesses to control the AUXADC. To do this the thermal
 749	 * controller has to be programmed with the physical addresses of the
 750	 * AUXADC registers and with the various bit positions in the AUXADC.
 751	 * Also the thermal controller controls a mux in the APMIXEDSYS register
 752	 * space.
 753	 */
 754
 755	/*
 756	 * this value will be stored to TEMP_PNPMUXADDR (TEMP_SPARE0)
 757	 * automatically by hw
 758	 */
 759	writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCMUX);
 760
 761	/* AHB address for auxadc mux selection */
 762	writel(auxadc_phys_base + AUXADC_CON1_CLR_V,
 763	       controller_base + TEMP_ADCMUXADDR);
 764
 765	if (mt->conf->version == MTK_THERMAL_V1) {
 766		/* AHB address for pnp sensor mux selection */
 767		writel(apmixed_phys_base + APMIXED_SYS_TS_CON1,
 768		       controller_base + TEMP_PNPMUXADDR);
 769	}
 770
 771	/* AHB value for auxadc enable */
 772	writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCEN);
 773
 774	/* AHB address for auxadc enable (channel 0 immediate mode selected) */
 775	writel(auxadc_phys_base + AUXADC_CON1_SET_V,
 776	       controller_base + TEMP_ADCENADDR);
 777
 778	/* AHB address for auxadc valid bit */
 779	writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
 780	       controller_base + TEMP_ADCVALIDADDR);
 781
 782	/* AHB address for auxadc voltage output */
 783	writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
 784	       controller_base + TEMP_ADCVOLTADDR);
 785
 786	/* read valid & voltage are at the same register */
 787	writel(0x0, controller_base + TEMP_RDCTRL);
 788
 789	/* indicate where the valid bit is */
 790	writel(TEMP_ADCVALIDMASK_VALID_HIGH | TEMP_ADCVALIDMASK_VALID_POS(12),
 791	       controller_base + TEMP_ADCVALIDMASK);
 792
 793	/* no shift */
 794	writel(0x0, controller_base + TEMP_ADCVOLTAGESHIFT);
 795
 796	/* enable auxadc mux write transaction */
 797	writel(TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
 798		controller_base + TEMP_ADCWRITECTRL);
 799
 800	for (i = 0; i < conf->bank_data[num].num_sensors; i++)
 801		writel(conf->sensor_mux_values[conf->bank_data[num].sensors[i]],
 802		       mt->thermal_base + conf->adcpnp[i]);
 803
 804	writel((1 << conf->bank_data[num].num_sensors) - 1,
 805	       controller_base + TEMP_MONCTL0);
 806
 807	writel(TEMP_ADCWRITECTRL_ADC_PNP_WRITE |
 808	       TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
 809	       controller_base + TEMP_ADCWRITECTRL);
 810
 811	mtk_thermal_put_bank(bank);
 812}
 813
 814static u64 of_get_phys_base(struct device_node *np)
 815{
 816	u64 size64;
 817	const __be32 *regaddr_p;
 818
 819	regaddr_p = of_get_address(np, 0, &size64, NULL);
 820	if (!regaddr_p)
 821		return OF_BAD_ADDR;
 822
 823	return of_translate_address(np, regaddr_p);
 824}
 825
 826static int mtk_thermal_extract_efuse_v1(struct mtk_thermal *mt, u32 *buf)
 827{
 828	int i;
 829
 830	if (!(buf[0] & CALIB_BUF0_VALID_V1))
 831		return -EINVAL;
 832
 833	mt->adc_ge = CALIB_BUF1_ADC_GE_V1(buf[1]);
 834
 835	for (i = 0; i < mt->conf->num_sensors; i++) {
 836		switch (mt->conf->vts_index[i]) {
 837		case VTS1:
 838			mt->vts[VTS1] = CALIB_BUF0_VTS_TS1_V1(buf[0]);
 839			break;
 840		case VTS2:
 841			mt->vts[VTS2] = CALIB_BUF0_VTS_TS2_V1(buf[0]);
 842			break;
 843		case VTS3:
 844			mt->vts[VTS3] = CALIB_BUF1_VTS_TS3_V1(buf[1]);
 845			break;
 846		case VTS4:
 847			mt->vts[VTS4] = CALIB_BUF2_VTS_TS4_V1(buf[2]);
 848			break;
 849		case VTS5:
 850			mt->vts[VTS5] = CALIB_BUF2_VTS_TS5_V1(buf[2]);
 851			break;
 852		case VTSABB:
 853			mt->vts[VTSABB] =
 854				CALIB_BUF2_VTS_TSABB_V1(buf[2]);
 855			break;
 856		default:
 857			break;
 858		}
 859	}
 860
 861	mt->degc_cali = CALIB_BUF0_DEGC_CALI_V1(buf[0]);
 862	if (CALIB_BUF1_ID_V1(buf[1]) &
 863	    CALIB_BUF0_O_SLOPE_SIGN_V1(buf[0]))
 864		mt->o_slope = -CALIB_BUF0_O_SLOPE_V1(buf[0]);
 865	else
 866		mt->o_slope = CALIB_BUF0_O_SLOPE_V1(buf[0]);
 867
 868	return 0;
 869}
 870
 871static int mtk_thermal_extract_efuse_v2(struct mtk_thermal *mt, u32 *buf)
 872{
 873	if (!CALIB_BUF1_VALID_V2(buf[1]))
 874		return -EINVAL;
 875
 876	mt->adc_oe = CALIB_BUF0_ADC_OE_V2(buf[0]);
 877	mt->adc_ge = CALIB_BUF0_ADC_GE_V2(buf[0]);
 878	mt->degc_cali = CALIB_BUF0_DEGC_CALI_V2(buf[0]);
 879	mt->o_slope = CALIB_BUF0_O_SLOPE_V2(buf[0]);
 880	mt->vts[VTS1] = CALIB_BUF1_VTS_TS1_V2(buf[1]);
 881	mt->vts[VTS2] = CALIB_BUF1_VTS_TS2_V2(buf[1]);
 882	mt->vts[VTSABB] = CALIB_BUF1_VTS_TSABB_V2(buf[1]);
 883	mt->o_slope_sign = CALIB_BUF1_O_SLOPE_SIGN_V2(buf[1]);
 884
 885	return 0;
 886}
 887
 888static int mtk_thermal_get_calibration_data(struct device *dev,
 889					    struct mtk_thermal *mt)
 890{
 891	struct nvmem_cell *cell;
 892	u32 *buf;
 893	size_t len;
 894	int i, ret = 0;
 895
 896	/* Start with default values */
 897	mt->adc_ge = 512;
 898	for (i = 0; i < mt->conf->num_sensors; i++)
 899		mt->vts[i] = 260;
 900	mt->degc_cali = 40;
 901	mt->o_slope = 0;
 902
 903	cell = nvmem_cell_get(dev, "calibration-data");
 904	if (IS_ERR(cell)) {
 905		if (PTR_ERR(cell) == -EPROBE_DEFER)
 906			return PTR_ERR(cell);
 907		return 0;
 908	}
 909
 910	buf = (u32 *)nvmem_cell_read(cell, &len);
 911
 912	nvmem_cell_put(cell);
 913
 914	if (IS_ERR(buf))
 915		return PTR_ERR(buf);
 916
 917	if (len < 3 * sizeof(u32)) {
 918		dev_warn(dev, "invalid calibration data\n");
 919		ret = -EINVAL;
 920		goto out;
 921	}
 922
 923	if (mt->conf->version == MTK_THERMAL_V1)
 924		ret = mtk_thermal_extract_efuse_v1(mt, buf);
 925	else
 926		ret = mtk_thermal_extract_efuse_v2(mt, buf);
 927
 928	if (ret) {
 929		dev_info(dev, "Device not calibrated, using default calibration values\n");
 930		ret = 0;
 931	}
 932
 933out:
 934	kfree(buf);
 935
 936	return ret;
 937}
 938
 939static const struct of_device_id mtk_thermal_of_match[] = {
 940	{
 941		.compatible = "mediatek,mt8173-thermal",
 942		.data = (void *)&mt8173_thermal_data,
 943	},
 944	{
 945		.compatible = "mediatek,mt2701-thermal",
 946		.data = (void *)&mt2701_thermal_data,
 947	},
 948	{
 949		.compatible = "mediatek,mt2712-thermal",
 950		.data = (void *)&mt2712_thermal_data,
 951	},
 952	{
 953		.compatible = "mediatek,mt7622-thermal",
 954		.data = (void *)&mt7622_thermal_data,
 955	},
 956	{
 957		.compatible = "mediatek,mt8183-thermal",
 958		.data = (void *)&mt8183_thermal_data,
 959	}, {
 960	},
 961};
 962MODULE_DEVICE_TABLE(of, mtk_thermal_of_match);
 963
 964static void mtk_thermal_turn_on_buffer(void __iomem *apmixed_base)
 965{
 966	int tmp;
 967
 968	tmp = readl(apmixed_base + APMIXED_SYS_TS_CON1);
 969	tmp &= ~(0x37);
 970	tmp |= 0x1;
 971	writel(tmp, apmixed_base + APMIXED_SYS_TS_CON1);
 972	udelay(200);
 973}
 974
 975static void mtk_thermal_release_periodic_ts(struct mtk_thermal *mt,
 976					    void __iomem *auxadc_base)
 977{
 978	int tmp;
 979
 980	writel(0x800, auxadc_base + AUXADC_CON1_SET_V);
 981	writel(0x1, mt->thermal_base + TEMP_MONCTL0);
 982	tmp = readl(mt->thermal_base + TEMP_MSRCTL1);
 983	writel((tmp & (~0x10e)), mt->thermal_base + TEMP_MSRCTL1);
 984}
 985
 986static int mtk_thermal_probe(struct platform_device *pdev)
 987{
 988	int ret, i, ctrl_id;
 989	struct device_node *auxadc, *apmixedsys, *np = pdev->dev.of_node;
 990	struct mtk_thermal *mt;
 991	struct resource *res;
 992	u64 auxadc_phys_base, apmixed_phys_base;
 993	struct thermal_zone_device *tzdev;
 994	void __iomem *apmixed_base, *auxadc_base;
 995
 996	mt = devm_kzalloc(&pdev->dev, sizeof(*mt), GFP_KERNEL);
 997	if (!mt)
 998		return -ENOMEM;
 999
1000	mt->conf = of_device_get_match_data(&pdev->dev);
1001
1002	mt->clk_peri_therm = devm_clk_get(&pdev->dev, "therm");
1003	if (IS_ERR(mt->clk_peri_therm))
1004		return PTR_ERR(mt->clk_peri_therm);
1005
1006	mt->clk_auxadc = devm_clk_get(&pdev->dev, "auxadc");
1007	if (IS_ERR(mt->clk_auxadc))
1008		return PTR_ERR(mt->clk_auxadc);
1009
1010	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1011	mt->thermal_base = devm_ioremap_resource(&pdev->dev, res);
1012	if (IS_ERR(mt->thermal_base))
1013		return PTR_ERR(mt->thermal_base);
1014
1015	ret = mtk_thermal_get_calibration_data(&pdev->dev, mt);
1016	if (ret)
1017		return ret;
1018
1019	mutex_init(&mt->lock);
1020
1021	mt->dev = &pdev->dev;
1022
1023	auxadc = of_parse_phandle(np, "mediatek,auxadc", 0);
1024	if (!auxadc) {
1025		dev_err(&pdev->dev, "missing auxadc node\n");
1026		return -ENODEV;
1027	}
1028
1029	auxadc_base = of_iomap(auxadc, 0);
1030	auxadc_phys_base = of_get_phys_base(auxadc);
1031
1032	of_node_put(auxadc);
1033
1034	if (auxadc_phys_base == OF_BAD_ADDR) {
1035		dev_err(&pdev->dev, "Can't get auxadc phys address\n");
1036		return -EINVAL;
1037	}
1038
1039	apmixedsys = of_parse_phandle(np, "mediatek,apmixedsys", 0);
1040	if (!apmixedsys) {
1041		dev_err(&pdev->dev, "missing apmixedsys node\n");
1042		return -ENODEV;
1043	}
1044
1045	apmixed_base = of_iomap(apmixedsys, 0);
1046	apmixed_phys_base = of_get_phys_base(apmixedsys);
1047
1048	of_node_put(apmixedsys);
1049
1050	if (apmixed_phys_base == OF_BAD_ADDR) {
1051		dev_err(&pdev->dev, "Can't get auxadc phys address\n");
1052		return -EINVAL;
1053	}
1054
1055	ret = device_reset(&pdev->dev);
1056	if (ret)
1057		return ret;
1058
1059	ret = clk_prepare_enable(mt->clk_auxadc);
1060	if (ret) {
1061		dev_err(&pdev->dev, "Can't enable auxadc clk: %d\n", ret);
1062		return ret;
1063	}
1064
1065	ret = clk_prepare_enable(mt->clk_peri_therm);
1066	if (ret) {
1067		dev_err(&pdev->dev, "Can't enable peri clk: %d\n", ret);
1068		goto err_disable_clk_auxadc;
1069	}
1070
1071	if (mt->conf->version == MTK_THERMAL_V2) {
1072		mtk_thermal_turn_on_buffer(apmixed_base);
1073		mtk_thermal_release_periodic_ts(mt, auxadc_base);
1074	}
1075
1076	for (ctrl_id = 0; ctrl_id < mt->conf->num_controller ; ctrl_id++)
1077		for (i = 0; i < mt->conf->num_banks; i++)
1078			mtk_thermal_init_bank(mt, i, apmixed_phys_base,
1079					      auxadc_phys_base, ctrl_id);
1080
1081	platform_set_drvdata(pdev, mt);
1082
1083	tzdev = devm_thermal_zone_of_sensor_register(&pdev->dev, 0, mt,
1084						     &mtk_thermal_ops);
1085	if (IS_ERR(tzdev)) {
1086		ret = PTR_ERR(tzdev);
1087		goto err_disable_clk_peri_therm;
1088	}
 
 
 
 
1089
1090	return 0;
1091
1092err_disable_clk_peri_therm:
1093	clk_disable_unprepare(mt->clk_peri_therm);
1094err_disable_clk_auxadc:
1095	clk_disable_unprepare(mt->clk_auxadc);
1096
1097	return ret;
1098}
1099
1100static int mtk_thermal_remove(struct platform_device *pdev)
1101{
1102	struct mtk_thermal *mt = platform_get_drvdata(pdev);
1103
1104	clk_disable_unprepare(mt->clk_peri_therm);
1105	clk_disable_unprepare(mt->clk_auxadc);
1106
1107	return 0;
1108}
1109
1110static struct platform_driver mtk_thermal_driver = {
1111	.probe = mtk_thermal_probe,
1112	.remove = mtk_thermal_remove,
1113	.driver = {
1114		.name = "mtk-thermal",
1115		.of_match_table = mtk_thermal_of_match,
1116	},
1117};
1118
1119module_platform_driver(mtk_thermal_driver);
1120
1121MODULE_AUTHOR("Michael Kao <michael.kao@mediatek.com>");
1122MODULE_AUTHOR("Louis Yu <louis.yu@mediatek.com>");
1123MODULE_AUTHOR("Dawei Chien <dawei.chien@mediatek.com>");
1124MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
1125MODULE_AUTHOR("Hanyi Wu <hanyi.wu@mediatek.com>");
1126MODULE_DESCRIPTION("Mediatek thermal driver");
1127MODULE_LICENSE("GPL v2");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2015 MediaTek Inc.
   4 * Author: Hanyi Wu <hanyi.wu@mediatek.com>
   5 *         Sascha Hauer <s.hauer@pengutronix.de>
   6 *         Dawei Chien <dawei.chien@mediatek.com>
   7 *         Louis Yu <louis.yu@mediatek.com>
   8 */
   9
  10#include <linux/clk.h>
  11#include <linux/delay.h>
  12#include <linux/interrupt.h>
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/nvmem-consumer.h>
  16#include <linux/of.h>
  17#include <linux/of_address.h>
  18#include <linux/of_device.h>
  19#include <linux/platform_device.h>
  20#include <linux/slab.h>
  21#include <linux/io.h>
  22#include <linux/thermal.h>
  23#include <linux/reset.h>
  24#include <linux/types.h>
  25
  26#include "thermal_hwmon.h"
  27
  28/* AUXADC Registers */
  29#define AUXADC_CON1_SET_V	0x008
  30#define AUXADC_CON1_CLR_V	0x00c
  31#define AUXADC_CON2_V		0x010
  32#define AUXADC_DATA(channel)	(0x14 + (channel) * 4)
  33
  34#define APMIXED_SYS_TS_CON1	0x604
  35
  36/* Thermal Controller Registers */
  37#define TEMP_MONCTL0		0x000
  38#define TEMP_MONCTL1		0x004
  39#define TEMP_MONCTL2		0x008
  40#define TEMP_MONIDET0		0x014
  41#define TEMP_MONIDET1		0x018
  42#define TEMP_MSRCTL0		0x038
  43#define TEMP_MSRCTL1		0x03c
  44#define TEMP_AHBPOLL		0x040
  45#define TEMP_AHBTO		0x044
  46#define TEMP_ADCPNP0		0x048
  47#define TEMP_ADCPNP1		0x04c
  48#define TEMP_ADCPNP2		0x050
  49#define TEMP_ADCPNP3		0x0b4
  50
  51#define TEMP_ADCMUX		0x054
  52#define TEMP_ADCEN		0x060
  53#define TEMP_PNPMUXADDR		0x064
  54#define TEMP_ADCMUXADDR		0x068
  55#define TEMP_ADCENADDR		0x074
  56#define TEMP_ADCVALIDADDR	0x078
  57#define TEMP_ADCVOLTADDR	0x07c
  58#define TEMP_RDCTRL		0x080
  59#define TEMP_ADCVALIDMASK	0x084
  60#define TEMP_ADCVOLTAGESHIFT	0x088
  61#define TEMP_ADCWRITECTRL	0x08c
  62#define TEMP_MSR0		0x090
  63#define TEMP_MSR1		0x094
  64#define TEMP_MSR2		0x098
  65#define TEMP_MSR3		0x0B8
  66
  67#define TEMP_SPARE0		0x0f0
  68
  69#define TEMP_ADCPNP0_1          0x148
  70#define TEMP_ADCPNP1_1          0x14c
  71#define TEMP_ADCPNP2_1          0x150
  72#define TEMP_MSR0_1             0x190
  73#define TEMP_MSR1_1             0x194
  74#define TEMP_MSR2_1             0x198
  75#define TEMP_ADCPNP3_1          0x1b4
  76#define TEMP_MSR3_1             0x1B8
  77
  78#define PTPCORESEL		0x400
  79
  80#define TEMP_MONCTL1_PERIOD_UNIT(x)	((x) & 0x3ff)
  81
  82#define TEMP_MONCTL2_FILTER_INTERVAL(x)	(((x) & 0x3ff) << 16)
  83#define TEMP_MONCTL2_SENSOR_INTERVAL(x)	((x) & 0x3ff)
  84
  85#define TEMP_AHBPOLL_ADC_POLL_INTERVAL(x)	(x)
  86
  87#define TEMP_ADCWRITECTRL_ADC_PNP_WRITE		BIT(0)
  88#define TEMP_ADCWRITECTRL_ADC_MUX_WRITE		BIT(1)
  89
  90#define TEMP_ADCVALIDMASK_VALID_HIGH		BIT(5)
  91#define TEMP_ADCVALIDMASK_VALID_POS(bit)	(bit)
  92
  93/* MT8173 thermal sensors */
  94#define MT8173_TS1	0
  95#define MT8173_TS2	1
  96#define MT8173_TS3	2
  97#define MT8173_TS4	3
  98#define MT8173_TSABB	4
  99
 100/* AUXADC channel 11 is used for the temperature sensors */
 101#define MT8173_TEMP_AUXADC_CHANNEL	11
 102
 103/* The total number of temperature sensors in the MT8173 */
 104#define MT8173_NUM_SENSORS		5
 105
 106/* The number of banks in the MT8173 */
 107#define MT8173_NUM_ZONES		4
 108
 109/* The number of sensing points per bank */
 110#define MT8173_NUM_SENSORS_PER_ZONE	4
 111
 112/* The number of controller in the MT8173 */
 113#define MT8173_NUM_CONTROLLER		1
 114
 115/* The calibration coefficient of sensor  */
 116#define MT8173_CALIBRATION	165
 117
 118/*
 119 * Layout of the fuses providing the calibration data
 120 * These macros could be used for MT8183, MT8173, MT2701, and MT2712.
 121 * MT8183 has 6 sensors and needs 6 VTS calibration data.
 122 * MT8173 has 5 sensors and needs 5 VTS calibration data.
 123 * MT2701 has 3 sensors and needs 3 VTS calibration data.
 124 * MT2712 has 4 sensors and needs 4 VTS calibration data.
 125 */
 126#define CALIB_BUF0_VALID_V1		BIT(0)
 127#define CALIB_BUF1_ADC_GE_V1(x)		(((x) >> 22) & 0x3ff)
 128#define CALIB_BUF0_VTS_TS1_V1(x)	(((x) >> 17) & 0x1ff)
 129#define CALIB_BUF0_VTS_TS2_V1(x)	(((x) >> 8) & 0x1ff)
 130#define CALIB_BUF1_VTS_TS3_V1(x)	(((x) >> 0) & 0x1ff)
 131#define CALIB_BUF2_VTS_TS4_V1(x)	(((x) >> 23) & 0x1ff)
 132#define CALIB_BUF2_VTS_TS5_V1(x)	(((x) >> 5) & 0x1ff)
 133#define CALIB_BUF2_VTS_TSABB_V1(x)	(((x) >> 14) & 0x1ff)
 134#define CALIB_BUF0_DEGC_CALI_V1(x)	(((x) >> 1) & 0x3f)
 135#define CALIB_BUF0_O_SLOPE_V1(x)	(((x) >> 26) & 0x3f)
 136#define CALIB_BUF0_O_SLOPE_SIGN_V1(x)	(((x) >> 7) & 0x1)
 137#define CALIB_BUF1_ID_V1(x)		(((x) >> 9) & 0x1)
 138
 139/*
 140 * Layout of the fuses providing the calibration data
 141 * These macros could be used for MT7622.
 142 */
 143#define CALIB_BUF0_ADC_OE_V2(x)		(((x) >> 22) & 0x3ff)
 144#define CALIB_BUF0_ADC_GE_V2(x)		(((x) >> 12) & 0x3ff)
 145#define CALIB_BUF0_DEGC_CALI_V2(x)	(((x) >> 6) & 0x3f)
 146#define CALIB_BUF0_O_SLOPE_V2(x)	(((x) >> 0) & 0x3f)
 147#define CALIB_BUF1_VTS_TS1_V2(x)	(((x) >> 23) & 0x1ff)
 148#define CALIB_BUF1_VTS_TS2_V2(x)	(((x) >> 14) & 0x1ff)
 149#define CALIB_BUF1_VTS_TSABB_V2(x)	(((x) >> 5) & 0x1ff)
 150#define CALIB_BUF1_VALID_V2(x)		(((x) >> 4) & 0x1)
 151#define CALIB_BUF1_O_SLOPE_SIGN_V2(x)	(((x) >> 3) & 0x1)
 152
 153enum {
 154	VTS1,
 155	VTS2,
 156	VTS3,
 157	VTS4,
 158	VTS5,
 159	VTSABB,
 160	MAX_NUM_VTS,
 161};
 162
 163enum mtk_thermal_version {
 164	MTK_THERMAL_V1 = 1,
 165	MTK_THERMAL_V2,
 166};
 167
 168/* MT2701 thermal sensors */
 169#define MT2701_TS1	0
 170#define MT2701_TS2	1
 171#define MT2701_TSABB	2
 172
 173/* AUXADC channel 11 is used for the temperature sensors */
 174#define MT2701_TEMP_AUXADC_CHANNEL	11
 175
 176/* The total number of temperature sensors in the MT2701 */
 177#define MT2701_NUM_SENSORS	3
 178
 179/* The number of sensing points per bank */
 180#define MT2701_NUM_SENSORS_PER_ZONE	3
 181
 182/* The number of controller in the MT2701 */
 183#define MT2701_NUM_CONTROLLER		1
 184
 185/* The calibration coefficient of sensor  */
 186#define MT2701_CALIBRATION	165
 187
 188/* MT2712 thermal sensors */
 189#define MT2712_TS1	0
 190#define MT2712_TS2	1
 191#define MT2712_TS3	2
 192#define MT2712_TS4	3
 193
 194/* AUXADC channel 11 is used for the temperature sensors */
 195#define MT2712_TEMP_AUXADC_CHANNEL	11
 196
 197/* The total number of temperature sensors in the MT2712 */
 198#define MT2712_NUM_SENSORS	4
 199
 200/* The number of sensing points per bank */
 201#define MT2712_NUM_SENSORS_PER_ZONE	4
 202
 203/* The number of controller in the MT2712 */
 204#define MT2712_NUM_CONTROLLER		1
 205
 206/* The calibration coefficient of sensor  */
 207#define MT2712_CALIBRATION	165
 208
 209#define MT7622_TEMP_AUXADC_CHANNEL	11
 210#define MT7622_NUM_SENSORS		1
 211#define MT7622_NUM_ZONES		1
 212#define MT7622_NUM_SENSORS_PER_ZONE	1
 213#define MT7622_TS1	0
 214#define MT7622_NUM_CONTROLLER		1
 215
 216/* The maximum number of banks */
 217#define MAX_NUM_ZONES		8
 218
 219/* The calibration coefficient of sensor  */
 220#define MT7622_CALIBRATION	165
 221
 222/* MT8183 thermal sensors */
 223#define MT8183_TS1	0
 224#define MT8183_TS2	1
 225#define MT8183_TS3	2
 226#define MT8183_TS4	3
 227#define MT8183_TS5	4
 228#define MT8183_TSABB	5
 229
 230/* AUXADC channel  is used for the temperature sensors */
 231#define MT8183_TEMP_AUXADC_CHANNEL	11
 232
 233/* The total number of temperature sensors in the MT8183 */
 234#define MT8183_NUM_SENSORS	6
 235
 236/* The number of banks in the MT8183 */
 237#define MT8183_NUM_ZONES               1
 238
 239/* The number of sensing points per bank */
 240#define MT8183_NUM_SENSORS_PER_ZONE	 6
 241
 242/* The number of controller in the MT8183 */
 243#define MT8183_NUM_CONTROLLER		2
 244
 245/* The calibration coefficient of sensor  */
 246#define MT8183_CALIBRATION	153
 247
 248struct mtk_thermal;
 249
 250struct thermal_bank_cfg {
 251	unsigned int num_sensors;
 252	const int *sensors;
 253};
 254
 255struct mtk_thermal_bank {
 256	struct mtk_thermal *mt;
 257	int id;
 258};
 259
 260struct mtk_thermal_data {
 261	s32 num_banks;
 262	s32 num_sensors;
 263	s32 auxadc_channel;
 264	const int *vts_index;
 265	const int *sensor_mux_values;
 266	const int *msr;
 267	const int *adcpnp;
 268	const int cali_val;
 269	const int num_controller;
 270	const int *controller_offset;
 271	bool need_switch_bank;
 272	struct thermal_bank_cfg bank_data[MAX_NUM_ZONES];
 273	enum mtk_thermal_version version;
 274};
 275
 276struct mtk_thermal {
 277	struct device *dev;
 278	void __iomem *thermal_base;
 279
 280	struct clk *clk_peri_therm;
 281	struct clk *clk_auxadc;
 282	/* lock: for getting and putting banks */
 283	struct mutex lock;
 284
 285	/* Calibration values */
 286	s32 adc_ge;
 287	s32 adc_oe;
 288	s32 degc_cali;
 289	s32 o_slope;
 290	s32 o_slope_sign;
 291	s32 vts[MAX_NUM_VTS];
 292
 293	const struct mtk_thermal_data *conf;
 294	struct mtk_thermal_bank banks[MAX_NUM_ZONES];
 295};
 296
 297/* MT8183 thermal sensor data */
 298static const int mt8183_bank_data[MT8183_NUM_SENSORS] = {
 299	MT8183_TS1, MT8183_TS2, MT8183_TS3, MT8183_TS4, MT8183_TS5, MT8183_TSABB
 300};
 301
 302static const int mt8183_msr[MT8183_NUM_SENSORS_PER_ZONE] = {
 303	TEMP_MSR0_1, TEMP_MSR1_1, TEMP_MSR2_1, TEMP_MSR1, TEMP_MSR0, TEMP_MSR3_1
 304};
 305
 306static const int mt8183_adcpnp[MT8183_NUM_SENSORS_PER_ZONE] = {
 307	TEMP_ADCPNP0_1, TEMP_ADCPNP1_1, TEMP_ADCPNP2_1,
 308	TEMP_ADCPNP1, TEMP_ADCPNP0, TEMP_ADCPNP3_1
 309};
 310
 311static const int mt8183_mux_values[MT8183_NUM_SENSORS] = { 0, 1, 2, 3, 4, 0 };
 312static const int mt8183_tc_offset[MT8183_NUM_CONTROLLER] = {0x0, 0x100};
 313
 314static const int mt8183_vts_index[MT8183_NUM_SENSORS] = {
 315	VTS1, VTS2, VTS3, VTS4, VTS5, VTSABB
 316};
 317
 318/* MT8173 thermal sensor data */
 319static const int mt8173_bank_data[MT8173_NUM_ZONES][3] = {
 320	{ MT8173_TS2, MT8173_TS3 },
 321	{ MT8173_TS2, MT8173_TS4 },
 322	{ MT8173_TS1, MT8173_TS2, MT8173_TSABB },
 323	{ MT8173_TS2 },
 324};
 325
 326static const int mt8173_msr[MT8173_NUM_SENSORS_PER_ZONE] = {
 327	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
 328};
 329
 330static const int mt8173_adcpnp[MT8173_NUM_SENSORS_PER_ZONE] = {
 331	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
 332};
 333
 334static const int mt8173_mux_values[MT8173_NUM_SENSORS] = { 0, 1, 2, 3, 16 };
 335static const int mt8173_tc_offset[MT8173_NUM_CONTROLLER] = { 0x0, };
 336
 337static const int mt8173_vts_index[MT8173_NUM_SENSORS] = {
 338	VTS1, VTS2, VTS3, VTS4, VTSABB
 339};
 340
 341/* MT2701 thermal sensor data */
 342static const int mt2701_bank_data[MT2701_NUM_SENSORS] = {
 343	MT2701_TS1, MT2701_TS2, MT2701_TSABB
 344};
 345
 346static const int mt2701_msr[MT2701_NUM_SENSORS_PER_ZONE] = {
 347	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2
 348};
 349
 350static const int mt2701_adcpnp[MT2701_NUM_SENSORS_PER_ZONE] = {
 351	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2
 352};
 353
 354static const int mt2701_mux_values[MT2701_NUM_SENSORS] = { 0, 1, 16 };
 355static const int mt2701_tc_offset[MT2701_NUM_CONTROLLER] = { 0x0, };
 356
 357static const int mt2701_vts_index[MT2701_NUM_SENSORS] = {
 358	VTS1, VTS2, VTS3
 359};
 360
 361/* MT2712 thermal sensor data */
 362static const int mt2712_bank_data[MT2712_NUM_SENSORS] = {
 363	MT2712_TS1, MT2712_TS2, MT2712_TS3, MT2712_TS4
 364};
 365
 366static const int mt2712_msr[MT2712_NUM_SENSORS_PER_ZONE] = {
 367	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
 368};
 369
 370static const int mt2712_adcpnp[MT2712_NUM_SENSORS_PER_ZONE] = {
 371	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
 372};
 373
 374static const int mt2712_mux_values[MT2712_NUM_SENSORS] = { 0, 1, 2, 3 };
 375static const int mt2712_tc_offset[MT2712_NUM_CONTROLLER] = { 0x0, };
 376
 377static const int mt2712_vts_index[MT2712_NUM_SENSORS] = {
 378	VTS1, VTS2, VTS3, VTS4
 379};
 380
 381/* MT7622 thermal sensor data */
 382static const int mt7622_bank_data[MT7622_NUM_SENSORS] = { MT7622_TS1, };
 383static const int mt7622_msr[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, };
 384static const int mt7622_adcpnp[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, };
 385static const int mt7622_mux_values[MT7622_NUM_SENSORS] = { 0, };
 386static const int mt7622_vts_index[MT7622_NUM_SENSORS] = { VTS1 };
 387static const int mt7622_tc_offset[MT7622_NUM_CONTROLLER] = { 0x0, };
 388
 389/*
 390 * The MT8173 thermal controller has four banks. Each bank can read up to
 391 * four temperature sensors simultaneously. The MT8173 has a total of 5
 392 * temperature sensors. We use each bank to measure a certain area of the
 393 * SoC. Since TS2 is located centrally in the SoC it is influenced by multiple
 394 * areas, hence is used in different banks.
 395 *
 396 * The thermal core only gets the maximum temperature of all banks, so
 397 * the bank concept wouldn't be necessary here. However, the SVS (Smart
 398 * Voltage Scaling) unit makes its decisions based on the same bank
 399 * data, and this indeed needs the temperatures of the individual banks
 400 * for making better decisions.
 401 */
 402static const struct mtk_thermal_data mt8173_thermal_data = {
 403	.auxadc_channel = MT8173_TEMP_AUXADC_CHANNEL,
 404	.num_banks = MT8173_NUM_ZONES,
 405	.num_sensors = MT8173_NUM_SENSORS,
 406	.vts_index = mt8173_vts_index,
 407	.cali_val = MT8173_CALIBRATION,
 408	.num_controller = MT8173_NUM_CONTROLLER,
 409	.controller_offset = mt8173_tc_offset,
 410	.need_switch_bank = true,
 411	.bank_data = {
 412		{
 413			.num_sensors = 2,
 414			.sensors = mt8173_bank_data[0],
 415		}, {
 416			.num_sensors = 2,
 417			.sensors = mt8173_bank_data[1],
 418		}, {
 419			.num_sensors = 3,
 420			.sensors = mt8173_bank_data[2],
 421		}, {
 422			.num_sensors = 1,
 423			.sensors = mt8173_bank_data[3],
 424		},
 425	},
 426	.msr = mt8173_msr,
 427	.adcpnp = mt8173_adcpnp,
 428	.sensor_mux_values = mt8173_mux_values,
 429	.version = MTK_THERMAL_V1,
 430};
 431
 432/*
 433 * The MT2701 thermal controller has one bank, which can read up to
 434 * three temperature sensors simultaneously. The MT2701 has a total of 3
 435 * temperature sensors.
 436 *
 437 * The thermal core only gets the maximum temperature of this one bank,
 438 * so the bank concept wouldn't be necessary here. However, the SVS (Smart
 439 * Voltage Scaling) unit makes its decisions based on the same bank
 440 * data.
 441 */
 442static const struct mtk_thermal_data mt2701_thermal_data = {
 443	.auxadc_channel = MT2701_TEMP_AUXADC_CHANNEL,
 444	.num_banks = 1,
 445	.num_sensors = MT2701_NUM_SENSORS,
 446	.vts_index = mt2701_vts_index,
 447	.cali_val = MT2701_CALIBRATION,
 448	.num_controller = MT2701_NUM_CONTROLLER,
 449	.controller_offset = mt2701_tc_offset,
 450	.need_switch_bank = true,
 451	.bank_data = {
 452		{
 453			.num_sensors = 3,
 454			.sensors = mt2701_bank_data,
 455		},
 456	},
 457	.msr = mt2701_msr,
 458	.adcpnp = mt2701_adcpnp,
 459	.sensor_mux_values = mt2701_mux_values,
 460	.version = MTK_THERMAL_V1,
 461};
 462
 463/*
 464 * The MT2712 thermal controller has one bank, which can read up to
 465 * four temperature sensors simultaneously. The MT2712 has a total of 4
 466 * temperature sensors.
 467 *
 468 * The thermal core only gets the maximum temperature of this one bank,
 469 * so the bank concept wouldn't be necessary here. However, the SVS (Smart
 470 * Voltage Scaling) unit makes its decisions based on the same bank
 471 * data.
 472 */
 473static const struct mtk_thermal_data mt2712_thermal_data = {
 474	.auxadc_channel = MT2712_TEMP_AUXADC_CHANNEL,
 475	.num_banks = 1,
 476	.num_sensors = MT2712_NUM_SENSORS,
 477	.vts_index = mt2712_vts_index,
 478	.cali_val = MT2712_CALIBRATION,
 479	.num_controller = MT2712_NUM_CONTROLLER,
 480	.controller_offset = mt2712_tc_offset,
 481	.need_switch_bank = true,
 482	.bank_data = {
 483		{
 484			.num_sensors = 4,
 485			.sensors = mt2712_bank_data,
 486		},
 487	},
 488	.msr = mt2712_msr,
 489	.adcpnp = mt2712_adcpnp,
 490	.sensor_mux_values = mt2712_mux_values,
 491	.version = MTK_THERMAL_V1,
 492};
 493
 494/*
 495 * MT7622 have only one sensing point which uses AUXADC Channel 11 for raw data
 496 * access.
 497 */
 498static const struct mtk_thermal_data mt7622_thermal_data = {
 499	.auxadc_channel = MT7622_TEMP_AUXADC_CHANNEL,
 500	.num_banks = MT7622_NUM_ZONES,
 501	.num_sensors = MT7622_NUM_SENSORS,
 502	.vts_index = mt7622_vts_index,
 503	.cali_val = MT7622_CALIBRATION,
 504	.num_controller = MT7622_NUM_CONTROLLER,
 505	.controller_offset = mt7622_tc_offset,
 506	.need_switch_bank = true,
 507	.bank_data = {
 508		{
 509			.num_sensors = 1,
 510			.sensors = mt7622_bank_data,
 511		},
 512	},
 513	.msr = mt7622_msr,
 514	.adcpnp = mt7622_adcpnp,
 515	.sensor_mux_values = mt7622_mux_values,
 516	.version = MTK_THERMAL_V2,
 517};
 518
 519/*
 520 * The MT8183 thermal controller has one bank for the current SW framework.
 521 * The MT8183 has a total of 6 temperature sensors.
 522 * There are two thermal controller to control the six sensor.
 523 * The first one bind 2 sensor, and the other bind 4 sensors.
 524 * The thermal core only gets the maximum temperature of all sensor, so
 525 * the bank concept wouldn't be necessary here. However, the SVS (Smart
 526 * Voltage Scaling) unit makes its decisions based on the same bank
 527 * data, and this indeed needs the temperatures of the individual banks
 528 * for making better decisions.
 529 */
 530static const struct mtk_thermal_data mt8183_thermal_data = {
 531	.auxadc_channel = MT8183_TEMP_AUXADC_CHANNEL,
 532	.num_banks = MT8183_NUM_ZONES,
 533	.num_sensors = MT8183_NUM_SENSORS,
 534	.vts_index = mt8183_vts_index,
 535	.cali_val = MT8183_CALIBRATION,
 536	.num_controller = MT8183_NUM_CONTROLLER,
 537	.controller_offset = mt8183_tc_offset,
 538	.need_switch_bank = false,
 539	.bank_data = {
 540		{
 541			.num_sensors = 6,
 542			.sensors = mt8183_bank_data,
 543		},
 544	},
 545
 546	.msr = mt8183_msr,
 547	.adcpnp = mt8183_adcpnp,
 548	.sensor_mux_values = mt8183_mux_values,
 549	.version = MTK_THERMAL_V1,
 550};
 551
 552/**
 553 * raw_to_mcelsius - convert a raw ADC value to mcelsius
 554 * @mt:	The thermal controller
 555 * @sensno:	sensor number
 556 * @raw:	raw ADC value
 557 *
 558 * This converts the raw ADC value to mcelsius using the SoC specific
 559 * calibration constants
 560 */
 561static int raw_to_mcelsius_v1(struct mtk_thermal *mt, int sensno, s32 raw)
 562{
 563	s32 tmp;
 564
 565	raw &= 0xfff;
 566
 567	tmp = 203450520 << 3;
 568	tmp /= mt->conf->cali_val + mt->o_slope;
 569	tmp /= 10000 + mt->adc_ge;
 570	tmp *= raw - mt->vts[sensno] - 3350;
 571	tmp >>= 3;
 572
 573	return mt->degc_cali * 500 - tmp;
 574}
 575
 576static int raw_to_mcelsius_v2(struct mtk_thermal *mt, int sensno, s32 raw)
 577{
 578	s32 format_1;
 579	s32 format_2;
 580	s32 g_oe;
 581	s32 g_gain;
 582	s32 g_x_roomt;
 583	s32 tmp;
 584
 585	if (raw == 0)
 586		return 0;
 587
 588	raw &= 0xfff;
 589	g_gain = 10000 + (((mt->adc_ge - 512) * 10000) >> 12);
 590	g_oe = mt->adc_oe - 512;
 591	format_1 = mt->vts[VTS2] + 3105 - g_oe;
 592	format_2 = (mt->degc_cali * 10) >> 1;
 593	g_x_roomt = (((format_1 * 10000) >> 12) * 10000) / g_gain;
 594
 595	tmp = (((((raw - g_oe) * 10000) >> 12) * 10000) / g_gain) - g_x_roomt;
 596	tmp = tmp * 10 * 100 / 11;
 597
 598	if (mt->o_slope_sign == 0)
 599		tmp = tmp / (165 - mt->o_slope);
 600	else
 601		tmp = tmp / (165 + mt->o_slope);
 602
 603	return (format_2 - tmp) * 100;
 604}
 605
 606/**
 607 * mtk_thermal_get_bank - get bank
 608 * @bank:	The bank
 609 *
 610 * The bank registers are banked, we have to select a bank in the
 611 * PTPCORESEL register to access it.
 612 */
 613static void mtk_thermal_get_bank(struct mtk_thermal_bank *bank)
 614{
 615	struct mtk_thermal *mt = bank->mt;
 616	u32 val;
 617
 618	if (mt->conf->need_switch_bank) {
 619		mutex_lock(&mt->lock);
 620
 621		val = readl(mt->thermal_base + PTPCORESEL);
 622		val &= ~0xf;
 623		val |= bank->id;
 624		writel(val, mt->thermal_base + PTPCORESEL);
 625	}
 626}
 627
 628/**
 629 * mtk_thermal_put_bank - release bank
 630 * @bank:	The bank
 631 *
 632 * release a bank previously taken with mtk_thermal_get_bank,
 633 */
 634static void mtk_thermal_put_bank(struct mtk_thermal_bank *bank)
 635{
 636	struct mtk_thermal *mt = bank->mt;
 637
 638	if (mt->conf->need_switch_bank)
 639		mutex_unlock(&mt->lock);
 640}
 641
 642/**
 643 * mtk_thermal_bank_temperature - get the temperature of a bank
 644 * @bank:	The bank
 645 *
 646 * The temperature of a bank is considered the maximum temperature of
 647 * the sensors associated to the bank.
 648 */
 649static int mtk_thermal_bank_temperature(struct mtk_thermal_bank *bank)
 650{
 651	struct mtk_thermal *mt = bank->mt;
 652	const struct mtk_thermal_data *conf = mt->conf;
 653	int i, temp = INT_MIN, max = INT_MIN;
 654	u32 raw;
 655
 656	for (i = 0; i < conf->bank_data[bank->id].num_sensors; i++) {
 657		raw = readl(mt->thermal_base + conf->msr[i]);
 658
 659		if (mt->conf->version == MTK_THERMAL_V1) {
 660			temp = raw_to_mcelsius_v1(
 661				mt, conf->bank_data[bank->id].sensors[i], raw);
 662		} else {
 663			temp = raw_to_mcelsius_v2(
 664				mt, conf->bank_data[bank->id].sensors[i], raw);
 665		}
 666
 667		/*
 668		 * The first read of a sensor often contains very high bogus
 669		 * temperature value. Filter these out so that the system does
 670		 * not immediately shut down.
 671		 */
 672		if (temp > 200000)
 673			temp = 0;
 674
 675		if (temp > max)
 676			max = temp;
 677	}
 678
 679	return max;
 680}
 681
 682static int mtk_read_temp(void *data, int *temperature)
 683{
 684	struct mtk_thermal *mt = data;
 685	int i;
 686	int tempmax = INT_MIN;
 687
 688	for (i = 0; i < mt->conf->num_banks; i++) {
 689		struct mtk_thermal_bank *bank = &mt->banks[i];
 690
 691		mtk_thermal_get_bank(bank);
 692
 693		tempmax = max(tempmax, mtk_thermal_bank_temperature(bank));
 694
 695		mtk_thermal_put_bank(bank);
 696	}
 697
 698	*temperature = tempmax;
 699
 700	return 0;
 701}
 702
 703static const struct thermal_zone_of_device_ops mtk_thermal_ops = {
 704	.get_temp = mtk_read_temp,
 705};
 706
 707static void mtk_thermal_init_bank(struct mtk_thermal *mt, int num,
 708				  u32 apmixed_phys_base, u32 auxadc_phys_base,
 709				  int ctrl_id)
 710{
 711	struct mtk_thermal_bank *bank = &mt->banks[num];
 712	const struct mtk_thermal_data *conf = mt->conf;
 713	int i;
 714
 715	int offset = mt->conf->controller_offset[ctrl_id];
 716	void __iomem *controller_base = mt->thermal_base + offset;
 717
 718	bank->id = num;
 719	bank->mt = mt;
 720
 721	mtk_thermal_get_bank(bank);
 722
 723	/* bus clock 66M counting unit is 12 * 15.15ns * 256 = 46.540us */
 724	writel(TEMP_MONCTL1_PERIOD_UNIT(12), controller_base + TEMP_MONCTL1);
 725
 726	/*
 727	 * filt interval is 1 * 46.540us = 46.54us,
 728	 * sen interval is 429 * 46.540us = 19.96ms
 729	 */
 730	writel(TEMP_MONCTL2_FILTER_INTERVAL(1) |
 731			TEMP_MONCTL2_SENSOR_INTERVAL(429),
 732			controller_base + TEMP_MONCTL2);
 733
 734	/* poll is set to 10u */
 735	writel(TEMP_AHBPOLL_ADC_POLL_INTERVAL(768),
 736	       controller_base + TEMP_AHBPOLL);
 737
 738	/* temperature sampling control, 1 sample */
 739	writel(0x0, controller_base + TEMP_MSRCTL0);
 740
 741	/* exceed this polling time, IRQ would be inserted */
 742	writel(0xffffffff, controller_base + TEMP_AHBTO);
 743
 744	/* number of interrupts per event, 1 is enough */
 745	writel(0x0, controller_base + TEMP_MONIDET0);
 746	writel(0x0, controller_base + TEMP_MONIDET1);
 747
 748	/*
 749	 * The MT8173 thermal controller does not have its own ADC. Instead it
 750	 * uses AHB bus accesses to control the AUXADC. To do this the thermal
 751	 * controller has to be programmed with the physical addresses of the
 752	 * AUXADC registers and with the various bit positions in the AUXADC.
 753	 * Also the thermal controller controls a mux in the APMIXEDSYS register
 754	 * space.
 755	 */
 756
 757	/*
 758	 * this value will be stored to TEMP_PNPMUXADDR (TEMP_SPARE0)
 759	 * automatically by hw
 760	 */
 761	writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCMUX);
 762
 763	/* AHB address for auxadc mux selection */
 764	writel(auxadc_phys_base + AUXADC_CON1_CLR_V,
 765	       controller_base + TEMP_ADCMUXADDR);
 766
 767	if (mt->conf->version == MTK_THERMAL_V1) {
 768		/* AHB address for pnp sensor mux selection */
 769		writel(apmixed_phys_base + APMIXED_SYS_TS_CON1,
 770		       controller_base + TEMP_PNPMUXADDR);
 771	}
 772
 773	/* AHB value for auxadc enable */
 774	writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCEN);
 775
 776	/* AHB address for auxadc enable (channel 0 immediate mode selected) */
 777	writel(auxadc_phys_base + AUXADC_CON1_SET_V,
 778	       controller_base + TEMP_ADCENADDR);
 779
 780	/* AHB address for auxadc valid bit */
 781	writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
 782	       controller_base + TEMP_ADCVALIDADDR);
 783
 784	/* AHB address for auxadc voltage output */
 785	writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
 786	       controller_base + TEMP_ADCVOLTADDR);
 787
 788	/* read valid & voltage are at the same register */
 789	writel(0x0, controller_base + TEMP_RDCTRL);
 790
 791	/* indicate where the valid bit is */
 792	writel(TEMP_ADCVALIDMASK_VALID_HIGH | TEMP_ADCVALIDMASK_VALID_POS(12),
 793	       controller_base + TEMP_ADCVALIDMASK);
 794
 795	/* no shift */
 796	writel(0x0, controller_base + TEMP_ADCVOLTAGESHIFT);
 797
 798	/* enable auxadc mux write transaction */
 799	writel(TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
 800		controller_base + TEMP_ADCWRITECTRL);
 801
 802	for (i = 0; i < conf->bank_data[num].num_sensors; i++)
 803		writel(conf->sensor_mux_values[conf->bank_data[num].sensors[i]],
 804		       mt->thermal_base + conf->adcpnp[i]);
 805
 806	writel((1 << conf->bank_data[num].num_sensors) - 1,
 807	       controller_base + TEMP_MONCTL0);
 808
 809	writel(TEMP_ADCWRITECTRL_ADC_PNP_WRITE |
 810	       TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
 811	       controller_base + TEMP_ADCWRITECTRL);
 812
 813	mtk_thermal_put_bank(bank);
 814}
 815
 816static u64 of_get_phys_base(struct device_node *np)
 817{
 818	u64 size64;
 819	const __be32 *regaddr_p;
 820
 821	regaddr_p = of_get_address(np, 0, &size64, NULL);
 822	if (!regaddr_p)
 823		return OF_BAD_ADDR;
 824
 825	return of_translate_address(np, regaddr_p);
 826}
 827
 828static int mtk_thermal_extract_efuse_v1(struct mtk_thermal *mt, u32 *buf)
 829{
 830	int i;
 831
 832	if (!(buf[0] & CALIB_BUF0_VALID_V1))
 833		return -EINVAL;
 834
 835	mt->adc_ge = CALIB_BUF1_ADC_GE_V1(buf[1]);
 836
 837	for (i = 0; i < mt->conf->num_sensors; i++) {
 838		switch (mt->conf->vts_index[i]) {
 839		case VTS1:
 840			mt->vts[VTS1] = CALIB_BUF0_VTS_TS1_V1(buf[0]);
 841			break;
 842		case VTS2:
 843			mt->vts[VTS2] = CALIB_BUF0_VTS_TS2_V1(buf[0]);
 844			break;
 845		case VTS3:
 846			mt->vts[VTS3] = CALIB_BUF1_VTS_TS3_V1(buf[1]);
 847			break;
 848		case VTS4:
 849			mt->vts[VTS4] = CALIB_BUF2_VTS_TS4_V1(buf[2]);
 850			break;
 851		case VTS5:
 852			mt->vts[VTS5] = CALIB_BUF2_VTS_TS5_V1(buf[2]);
 853			break;
 854		case VTSABB:
 855			mt->vts[VTSABB] =
 856				CALIB_BUF2_VTS_TSABB_V1(buf[2]);
 857			break;
 858		default:
 859			break;
 860		}
 861	}
 862
 863	mt->degc_cali = CALIB_BUF0_DEGC_CALI_V1(buf[0]);
 864	if (CALIB_BUF1_ID_V1(buf[1]) &
 865	    CALIB_BUF0_O_SLOPE_SIGN_V1(buf[0]))
 866		mt->o_slope = -CALIB_BUF0_O_SLOPE_V1(buf[0]);
 867	else
 868		mt->o_slope = CALIB_BUF0_O_SLOPE_V1(buf[0]);
 869
 870	return 0;
 871}
 872
 873static int mtk_thermal_extract_efuse_v2(struct mtk_thermal *mt, u32 *buf)
 874{
 875	if (!CALIB_BUF1_VALID_V2(buf[1]))
 876		return -EINVAL;
 877
 878	mt->adc_oe = CALIB_BUF0_ADC_OE_V2(buf[0]);
 879	mt->adc_ge = CALIB_BUF0_ADC_GE_V2(buf[0]);
 880	mt->degc_cali = CALIB_BUF0_DEGC_CALI_V2(buf[0]);
 881	mt->o_slope = CALIB_BUF0_O_SLOPE_V2(buf[0]);
 882	mt->vts[VTS1] = CALIB_BUF1_VTS_TS1_V2(buf[1]);
 883	mt->vts[VTS2] = CALIB_BUF1_VTS_TS2_V2(buf[1]);
 884	mt->vts[VTSABB] = CALIB_BUF1_VTS_TSABB_V2(buf[1]);
 885	mt->o_slope_sign = CALIB_BUF1_O_SLOPE_SIGN_V2(buf[1]);
 886
 887	return 0;
 888}
 889
 890static int mtk_thermal_get_calibration_data(struct device *dev,
 891					    struct mtk_thermal *mt)
 892{
 893	struct nvmem_cell *cell;
 894	u32 *buf;
 895	size_t len;
 896	int i, ret = 0;
 897
 898	/* Start with default values */
 899	mt->adc_ge = 512;
 900	for (i = 0; i < mt->conf->num_sensors; i++)
 901		mt->vts[i] = 260;
 902	mt->degc_cali = 40;
 903	mt->o_slope = 0;
 904
 905	cell = nvmem_cell_get(dev, "calibration-data");
 906	if (IS_ERR(cell)) {
 907		if (PTR_ERR(cell) == -EPROBE_DEFER)
 908			return PTR_ERR(cell);
 909		return 0;
 910	}
 911
 912	buf = (u32 *)nvmem_cell_read(cell, &len);
 913
 914	nvmem_cell_put(cell);
 915
 916	if (IS_ERR(buf))
 917		return PTR_ERR(buf);
 918
 919	if (len < 3 * sizeof(u32)) {
 920		dev_warn(dev, "invalid calibration data\n");
 921		ret = -EINVAL;
 922		goto out;
 923	}
 924
 925	if (mt->conf->version == MTK_THERMAL_V1)
 926		ret = mtk_thermal_extract_efuse_v1(mt, buf);
 927	else
 928		ret = mtk_thermal_extract_efuse_v2(mt, buf);
 929
 930	if (ret) {
 931		dev_info(dev, "Device not calibrated, using default calibration values\n");
 932		ret = 0;
 933	}
 934
 935out:
 936	kfree(buf);
 937
 938	return ret;
 939}
 940
 941static const struct of_device_id mtk_thermal_of_match[] = {
 942	{
 943		.compatible = "mediatek,mt8173-thermal",
 944		.data = (void *)&mt8173_thermal_data,
 945	},
 946	{
 947		.compatible = "mediatek,mt2701-thermal",
 948		.data = (void *)&mt2701_thermal_data,
 949	},
 950	{
 951		.compatible = "mediatek,mt2712-thermal",
 952		.data = (void *)&mt2712_thermal_data,
 953	},
 954	{
 955		.compatible = "mediatek,mt7622-thermal",
 956		.data = (void *)&mt7622_thermal_data,
 957	},
 958	{
 959		.compatible = "mediatek,mt8183-thermal",
 960		.data = (void *)&mt8183_thermal_data,
 961	}, {
 962	},
 963};
 964MODULE_DEVICE_TABLE(of, mtk_thermal_of_match);
 965
 966static void mtk_thermal_turn_on_buffer(void __iomem *apmixed_base)
 967{
 968	int tmp;
 969
 970	tmp = readl(apmixed_base + APMIXED_SYS_TS_CON1);
 971	tmp &= ~(0x37);
 972	tmp |= 0x1;
 973	writel(tmp, apmixed_base + APMIXED_SYS_TS_CON1);
 974	udelay(200);
 975}
 976
 977static void mtk_thermal_release_periodic_ts(struct mtk_thermal *mt,
 978					    void __iomem *auxadc_base)
 979{
 980	int tmp;
 981
 982	writel(0x800, auxadc_base + AUXADC_CON1_SET_V);
 983	writel(0x1, mt->thermal_base + TEMP_MONCTL0);
 984	tmp = readl(mt->thermal_base + TEMP_MSRCTL1);
 985	writel((tmp & (~0x10e)), mt->thermal_base + TEMP_MSRCTL1);
 986}
 987
 988static int mtk_thermal_probe(struct platform_device *pdev)
 989{
 990	int ret, i, ctrl_id;
 991	struct device_node *auxadc, *apmixedsys, *np = pdev->dev.of_node;
 992	struct mtk_thermal *mt;
 993	struct resource *res;
 994	u64 auxadc_phys_base, apmixed_phys_base;
 995	struct thermal_zone_device *tzdev;
 996	void __iomem *apmixed_base, *auxadc_base;
 997
 998	mt = devm_kzalloc(&pdev->dev, sizeof(*mt), GFP_KERNEL);
 999	if (!mt)
1000		return -ENOMEM;
1001
1002	mt->conf = of_device_get_match_data(&pdev->dev);
1003
1004	mt->clk_peri_therm = devm_clk_get(&pdev->dev, "therm");
1005	if (IS_ERR(mt->clk_peri_therm))
1006		return PTR_ERR(mt->clk_peri_therm);
1007
1008	mt->clk_auxadc = devm_clk_get(&pdev->dev, "auxadc");
1009	if (IS_ERR(mt->clk_auxadc))
1010		return PTR_ERR(mt->clk_auxadc);
1011
1012	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1013	mt->thermal_base = devm_ioremap_resource(&pdev->dev, res);
1014	if (IS_ERR(mt->thermal_base))
1015		return PTR_ERR(mt->thermal_base);
1016
1017	ret = mtk_thermal_get_calibration_data(&pdev->dev, mt);
1018	if (ret)
1019		return ret;
1020
1021	mutex_init(&mt->lock);
1022
1023	mt->dev = &pdev->dev;
1024
1025	auxadc = of_parse_phandle(np, "mediatek,auxadc", 0);
1026	if (!auxadc) {
1027		dev_err(&pdev->dev, "missing auxadc node\n");
1028		return -ENODEV;
1029	}
1030
1031	auxadc_base = of_iomap(auxadc, 0);
1032	auxadc_phys_base = of_get_phys_base(auxadc);
1033
1034	of_node_put(auxadc);
1035
1036	if (auxadc_phys_base == OF_BAD_ADDR) {
1037		dev_err(&pdev->dev, "Can't get auxadc phys address\n");
1038		return -EINVAL;
1039	}
1040
1041	apmixedsys = of_parse_phandle(np, "mediatek,apmixedsys", 0);
1042	if (!apmixedsys) {
1043		dev_err(&pdev->dev, "missing apmixedsys node\n");
1044		return -ENODEV;
1045	}
1046
1047	apmixed_base = of_iomap(apmixedsys, 0);
1048	apmixed_phys_base = of_get_phys_base(apmixedsys);
1049
1050	of_node_put(apmixedsys);
1051
1052	if (apmixed_phys_base == OF_BAD_ADDR) {
1053		dev_err(&pdev->dev, "Can't get auxadc phys address\n");
1054		return -EINVAL;
1055	}
1056
1057	ret = device_reset_optional(&pdev->dev);
1058	if (ret)
1059		return ret;
1060
1061	ret = clk_prepare_enable(mt->clk_auxadc);
1062	if (ret) {
1063		dev_err(&pdev->dev, "Can't enable auxadc clk: %d\n", ret);
1064		return ret;
1065	}
1066
1067	ret = clk_prepare_enable(mt->clk_peri_therm);
1068	if (ret) {
1069		dev_err(&pdev->dev, "Can't enable peri clk: %d\n", ret);
1070		goto err_disable_clk_auxadc;
1071	}
1072
1073	if (mt->conf->version == MTK_THERMAL_V2) {
1074		mtk_thermal_turn_on_buffer(apmixed_base);
1075		mtk_thermal_release_periodic_ts(mt, auxadc_base);
1076	}
1077
1078	for (ctrl_id = 0; ctrl_id < mt->conf->num_controller ; ctrl_id++)
1079		for (i = 0; i < mt->conf->num_banks; i++)
1080			mtk_thermal_init_bank(mt, i, apmixed_phys_base,
1081					      auxadc_phys_base, ctrl_id);
1082
1083	platform_set_drvdata(pdev, mt);
1084
1085	tzdev = devm_thermal_zone_of_sensor_register(&pdev->dev, 0, mt,
1086						     &mtk_thermal_ops);
1087	if (IS_ERR(tzdev)) {
1088		ret = PTR_ERR(tzdev);
1089		goto err_disable_clk_peri_therm;
1090	}
1091
1092	ret = devm_thermal_add_hwmon_sysfs(tzdev);
1093	if (ret)
1094		dev_warn(&pdev->dev, "error in thermal_add_hwmon_sysfs");
1095
1096	return 0;
1097
1098err_disable_clk_peri_therm:
1099	clk_disable_unprepare(mt->clk_peri_therm);
1100err_disable_clk_auxadc:
1101	clk_disable_unprepare(mt->clk_auxadc);
1102
1103	return ret;
1104}
1105
1106static int mtk_thermal_remove(struct platform_device *pdev)
1107{
1108	struct mtk_thermal *mt = platform_get_drvdata(pdev);
1109
1110	clk_disable_unprepare(mt->clk_peri_therm);
1111	clk_disable_unprepare(mt->clk_auxadc);
1112
1113	return 0;
1114}
1115
1116static struct platform_driver mtk_thermal_driver = {
1117	.probe = mtk_thermal_probe,
1118	.remove = mtk_thermal_remove,
1119	.driver = {
1120		.name = "mtk-thermal",
1121		.of_match_table = mtk_thermal_of_match,
1122	},
1123};
1124
1125module_platform_driver(mtk_thermal_driver);
1126
1127MODULE_AUTHOR("Michael Kao <michael.kao@mediatek.com>");
1128MODULE_AUTHOR("Louis Yu <louis.yu@mediatek.com>");
1129MODULE_AUTHOR("Dawei Chien <dawei.chien@mediatek.com>");
1130MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
1131MODULE_AUTHOR("Hanyi Wu <hanyi.wu@mediatek.com>");
1132MODULE_DESCRIPTION("Mediatek thermal driver");
1133MODULE_LICENSE("GPL v2");