Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2019 Spreadtrum Communications Inc.
  4 */
  5
  6#include <linux/clk.h>
  7#include <linux/err.h>
  8#include <linux/io.h>
  9#include <linux/math64.h>
 10#include <linux/module.h>
 11#include <linux/platform_device.h>
 12#include <linux/pwm.h>
 13
 14#define SPRD_PWM_PRESCALE	0x0
 15#define SPRD_PWM_MOD		0x4
 16#define SPRD_PWM_DUTY		0x8
 17#define SPRD_PWM_ENABLE		0x18
 18
 19#define SPRD_PWM_MOD_MAX	GENMASK(7, 0)
 20#define SPRD_PWM_DUTY_MSK	GENMASK(15, 0)
 21#define SPRD_PWM_PRESCALE_MSK	GENMASK(7, 0)
 22#define SPRD_PWM_ENABLE_BIT	BIT(0)
 23
 24#define SPRD_PWM_CHN_NUM	4
 25#define SPRD_PWM_REGS_SHIFT	5
 26#define SPRD_PWM_CHN_CLKS_NUM	2
 27#define SPRD_PWM_CHN_OUTPUT_CLK	1
 28
 29struct sprd_pwm_chn {
 30	struct clk_bulk_data clks[SPRD_PWM_CHN_CLKS_NUM];
 31	u32 clk_rate;
 32};
 33
 34struct sprd_pwm_chip {
 35	void __iomem *base;
 36	struct device *dev;
 37	struct pwm_chip chip;
 38	int num_pwms;
 39	struct sprd_pwm_chn chn[SPRD_PWM_CHN_NUM];
 40};
 41
 42/*
 43 * The list of clocks required by PWM channels, and each channel has 2 clocks:
 44 * enable clock and pwm clock.
 45 */
 46static const char * const sprd_pwm_clks[] = {
 47	"enable0", "pwm0",
 48	"enable1", "pwm1",
 49	"enable2", "pwm2",
 50	"enable3", "pwm3",
 51};
 52
 53static u32 sprd_pwm_read(struct sprd_pwm_chip *spc, u32 hwid, u32 reg)
 54{
 55	u32 offset = reg + (hwid << SPRD_PWM_REGS_SHIFT);
 56
 57	return readl_relaxed(spc->base + offset);
 58}
 59
 60static void sprd_pwm_write(struct sprd_pwm_chip *spc, u32 hwid,
 61			   u32 reg, u32 val)
 62{
 63	u32 offset = reg + (hwid << SPRD_PWM_REGS_SHIFT);
 64
 65	writel_relaxed(val, spc->base + offset);
 66}
 67
 68static void sprd_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
 69			       struct pwm_state *state)
 70{
 71	struct sprd_pwm_chip *spc =
 72		container_of(chip, struct sprd_pwm_chip, chip);
 73	struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
 74	u32 val, duty, prescale;
 75	u64 tmp;
 76	int ret;
 77
 78	/*
 79	 * The clocks to PWM channel has to be enabled first before
 80	 * reading to the registers.
 81	 */
 82	ret = clk_bulk_prepare_enable(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
 83	if (ret) {
 84		dev_err(spc->dev, "failed to enable pwm%u clocks\n",
 85			pwm->hwpwm);
 86		return;
 87	}
 88
 89	val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_ENABLE);
 90	if (val & SPRD_PWM_ENABLE_BIT)
 91		state->enabled = true;
 92	else
 93		state->enabled = false;
 94
 95	/*
 96	 * The hardware provides a counter that is feed by the source clock.
 97	 * The period length is (PRESCALE + 1) * MOD counter steps.
 98	 * The duty cycle length is (PRESCALE + 1) * DUTY counter steps.
 99	 * Thus the period_ns and duty_ns calculation formula should be:
100	 * period_ns = NSEC_PER_SEC * (prescale + 1) * mod / clk_rate
101	 * duty_ns = NSEC_PER_SEC * (prescale + 1) * duty / clk_rate
102	 */
103	val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_PRESCALE);
104	prescale = val & SPRD_PWM_PRESCALE_MSK;
105	tmp = (prescale + 1) * NSEC_PER_SEC * SPRD_PWM_MOD_MAX;
106	state->period = DIV_ROUND_CLOSEST_ULL(tmp, chn->clk_rate);
107
108	val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_DUTY);
109	duty = val & SPRD_PWM_DUTY_MSK;
110	tmp = (prescale + 1) * NSEC_PER_SEC * duty;
111	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, chn->clk_rate);
112
113	/* Disable PWM clocks if the PWM channel is not in enable state. */
114	if (!state->enabled)
115		clk_bulk_disable_unprepare(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
116}
117
118static int sprd_pwm_config(struct sprd_pwm_chip *spc, struct pwm_device *pwm,
119			   int duty_ns, int period_ns)
120{
121	struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
122	u32 prescale, duty;
123	u64 tmp;
124
125	/*
126	 * The hardware provides a counter that is feed by the source clock.
127	 * The period length is (PRESCALE + 1) * MOD counter steps.
128	 * The duty cycle length is (PRESCALE + 1) * DUTY counter steps.
129	 *
130	 * To keep the maths simple we're always using MOD = SPRD_PWM_MOD_MAX.
131	 * The value for PRESCALE is selected such that the resulting period
132	 * gets the maximal length not bigger than the requested one with the
133	 * given settings (MOD = SPRD_PWM_MOD_MAX and input clock).
134	 */
135	duty = duty_ns * SPRD_PWM_MOD_MAX / period_ns;
136
137	tmp = (u64)chn->clk_rate * period_ns;
138	do_div(tmp, NSEC_PER_SEC);
139	prescale = DIV_ROUND_CLOSEST_ULL(tmp, SPRD_PWM_MOD_MAX) - 1;
140	if (prescale > SPRD_PWM_PRESCALE_MSK)
141		prescale = SPRD_PWM_PRESCALE_MSK;
142
143	/*
144	 * Note: Writing DUTY triggers the hardware to actually apply the
145	 * values written to MOD and DUTY to the output, so must keep writing
146	 * DUTY last.
147	 *
148	 * The hardware can ensures that current running period is completed
149	 * before changing a new configuration to avoid mixed settings.
150	 */
151	sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_PRESCALE, prescale);
152	sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_MOD, SPRD_PWM_MOD_MAX);
153	sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_DUTY, duty);
154
155	return 0;
156}
157
158static int sprd_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
159			  const struct pwm_state *state)
160{
161	struct sprd_pwm_chip *spc =
162		container_of(chip, struct sprd_pwm_chip, chip);
163	struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
164	struct pwm_state *cstate = &pwm->state;
165	int ret;
166
 
 
 
167	if (state->enabled) {
168		if (!cstate->enabled) {
169			/*
170			 * The clocks to PWM channel has to be enabled first
171			 * before writing to the registers.
172			 */
173			ret = clk_bulk_prepare_enable(SPRD_PWM_CHN_CLKS_NUM,
174						      chn->clks);
175			if (ret) {
176				dev_err(spc->dev,
177					"failed to enable pwm%u clocks\n",
178					pwm->hwpwm);
179				return ret;
180			}
181		}
182
183		if (state->period != cstate->period ||
184		    state->duty_cycle != cstate->duty_cycle) {
185			ret = sprd_pwm_config(spc, pwm, state->duty_cycle,
186					      state->period);
187			if (ret)
188				return ret;
189		}
190
191		sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_ENABLE, 1);
192	} else if (cstate->enabled) {
193		/*
194		 * Note: After setting SPRD_PWM_ENABLE to zero, the controller
195		 * will not wait for current period to be completed, instead it
196		 * will stop the PWM channel immediately.
197		 */
198		sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_ENABLE, 0);
199
200		clk_bulk_disable_unprepare(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
201	}
202
203	return 0;
204}
205
206static const struct pwm_ops sprd_pwm_ops = {
207	.apply = sprd_pwm_apply,
208	.get_state = sprd_pwm_get_state,
209	.owner = THIS_MODULE,
210};
211
212static int sprd_pwm_clk_init(struct sprd_pwm_chip *spc)
213{
214	struct clk *clk_pwm;
215	int ret, i;
216
217	for (i = 0; i < SPRD_PWM_CHN_NUM; i++) {
218		struct sprd_pwm_chn *chn = &spc->chn[i];
219		int j;
220
221		for (j = 0; j < SPRD_PWM_CHN_CLKS_NUM; ++j)
222			chn->clks[j].id =
223				sprd_pwm_clks[i * SPRD_PWM_CHN_CLKS_NUM + j];
224
225		ret = devm_clk_bulk_get(spc->dev, SPRD_PWM_CHN_CLKS_NUM,
226					chn->clks);
227		if (ret) {
228			if (ret == -ENOENT)
229				break;
230
231			if (ret != -EPROBE_DEFER)
232				dev_err(spc->dev,
233					"failed to get channel clocks\n");
234
235			return ret;
236		}
237
238		clk_pwm = chn->clks[SPRD_PWM_CHN_OUTPUT_CLK].clk;
239		chn->clk_rate = clk_get_rate(clk_pwm);
240	}
241
242	if (!i) {
243		dev_err(spc->dev, "no available PWM channels\n");
244		return -ENODEV;
245	}
246
247	spc->num_pwms = i;
248
249	return 0;
250}
251
252static int sprd_pwm_probe(struct platform_device *pdev)
253{
254	struct sprd_pwm_chip *spc;
255	int ret;
256
257	spc = devm_kzalloc(&pdev->dev, sizeof(*spc), GFP_KERNEL);
258	if (!spc)
259		return -ENOMEM;
260
261	spc->base = devm_platform_ioremap_resource(pdev, 0);
262	if (IS_ERR(spc->base))
263		return PTR_ERR(spc->base);
264
265	spc->dev = &pdev->dev;
266	platform_set_drvdata(pdev, spc);
267
268	ret = sprd_pwm_clk_init(spc);
269	if (ret)
270		return ret;
271
272	spc->chip.dev = &pdev->dev;
273	spc->chip.ops = &sprd_pwm_ops;
274	spc->chip.base = -1;
275	spc->chip.npwm = spc->num_pwms;
276
277	ret = pwmchip_add(&spc->chip);
278	if (ret)
279		dev_err(&pdev->dev, "failed to add PWM chip\n");
280
281	return ret;
282}
283
284static int sprd_pwm_remove(struct platform_device *pdev)
285{
286	struct sprd_pwm_chip *spc = platform_get_drvdata(pdev);
287
288	return pwmchip_remove(&spc->chip);
 
 
289}
290
291static const struct of_device_id sprd_pwm_of_match[] = {
292	{ .compatible = "sprd,ums512-pwm", },
293	{ },
294};
295MODULE_DEVICE_TABLE(of, sprd_pwm_of_match);
296
297static struct platform_driver sprd_pwm_driver = {
298	.driver = {
299		.name = "sprd-pwm",
300		.of_match_table = sprd_pwm_of_match,
301	},
302	.probe = sprd_pwm_probe,
303	.remove = sprd_pwm_remove,
304};
305
306module_platform_driver(sprd_pwm_driver);
307
308MODULE_DESCRIPTION("Spreadtrum PWM Driver");
309MODULE_LICENSE("GPL v2");
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2019 Spreadtrum Communications Inc.
  4 */
  5
  6#include <linux/clk.h>
  7#include <linux/err.h>
  8#include <linux/io.h>
  9#include <linux/math64.h>
 10#include <linux/module.h>
 11#include <linux/platform_device.h>
 12#include <linux/pwm.h>
 13
 14#define SPRD_PWM_PRESCALE	0x0
 15#define SPRD_PWM_MOD		0x4
 16#define SPRD_PWM_DUTY		0x8
 17#define SPRD_PWM_ENABLE		0x18
 18
 19#define SPRD_PWM_MOD_MAX	GENMASK(7, 0)
 20#define SPRD_PWM_DUTY_MSK	GENMASK(15, 0)
 21#define SPRD_PWM_PRESCALE_MSK	GENMASK(7, 0)
 22#define SPRD_PWM_ENABLE_BIT	BIT(0)
 23
 24#define SPRD_PWM_CHN_NUM	4
 25#define SPRD_PWM_REGS_SHIFT	5
 26#define SPRD_PWM_CHN_CLKS_NUM	2
 27#define SPRD_PWM_CHN_OUTPUT_CLK	1
 28
 29struct sprd_pwm_chn {
 30	struct clk_bulk_data clks[SPRD_PWM_CHN_CLKS_NUM];
 31	u32 clk_rate;
 32};
 33
 34struct sprd_pwm_chip {
 35	void __iomem *base;
 36	struct device *dev;
 37	struct pwm_chip chip;
 38	int num_pwms;
 39	struct sprd_pwm_chn chn[SPRD_PWM_CHN_NUM];
 40};
 41
 42/*
 43 * The list of clocks required by PWM channels, and each channel has 2 clocks:
 44 * enable clock and pwm clock.
 45 */
 46static const char * const sprd_pwm_clks[] = {
 47	"enable0", "pwm0",
 48	"enable1", "pwm1",
 49	"enable2", "pwm2",
 50	"enable3", "pwm3",
 51};
 52
 53static u32 sprd_pwm_read(struct sprd_pwm_chip *spc, u32 hwid, u32 reg)
 54{
 55	u32 offset = reg + (hwid << SPRD_PWM_REGS_SHIFT);
 56
 57	return readl_relaxed(spc->base + offset);
 58}
 59
 60static void sprd_pwm_write(struct sprd_pwm_chip *spc, u32 hwid,
 61			   u32 reg, u32 val)
 62{
 63	u32 offset = reg + (hwid << SPRD_PWM_REGS_SHIFT);
 64
 65	writel_relaxed(val, spc->base + offset);
 66}
 67
 68static void sprd_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
 69			       struct pwm_state *state)
 70{
 71	struct sprd_pwm_chip *spc =
 72		container_of(chip, struct sprd_pwm_chip, chip);
 73	struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
 74	u32 val, duty, prescale;
 75	u64 tmp;
 76	int ret;
 77
 78	/*
 79	 * The clocks to PWM channel has to be enabled first before
 80	 * reading to the registers.
 81	 */
 82	ret = clk_bulk_prepare_enable(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
 83	if (ret) {
 84		dev_err(spc->dev, "failed to enable pwm%u clocks\n",
 85			pwm->hwpwm);
 86		return;
 87	}
 88
 89	val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_ENABLE);
 90	if (val & SPRD_PWM_ENABLE_BIT)
 91		state->enabled = true;
 92	else
 93		state->enabled = false;
 94
 95	/*
 96	 * The hardware provides a counter that is feed by the source clock.
 97	 * The period length is (PRESCALE + 1) * MOD counter steps.
 98	 * The duty cycle length is (PRESCALE + 1) * DUTY counter steps.
 99	 * Thus the period_ns and duty_ns calculation formula should be:
100	 * period_ns = NSEC_PER_SEC * (prescale + 1) * mod / clk_rate
101	 * duty_ns = NSEC_PER_SEC * (prescale + 1) * duty / clk_rate
102	 */
103	val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_PRESCALE);
104	prescale = val & SPRD_PWM_PRESCALE_MSK;
105	tmp = (prescale + 1) * NSEC_PER_SEC * SPRD_PWM_MOD_MAX;
106	state->period = DIV_ROUND_CLOSEST_ULL(tmp, chn->clk_rate);
107
108	val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_DUTY);
109	duty = val & SPRD_PWM_DUTY_MSK;
110	tmp = (prescale + 1) * NSEC_PER_SEC * duty;
111	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, chn->clk_rate);
112
113	/* Disable PWM clocks if the PWM channel is not in enable state. */
114	if (!state->enabled)
115		clk_bulk_disable_unprepare(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
116}
117
118static int sprd_pwm_config(struct sprd_pwm_chip *spc, struct pwm_device *pwm,
119			   int duty_ns, int period_ns)
120{
121	struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
122	u32 prescale, duty;
123	u64 tmp;
124
125	/*
126	 * The hardware provides a counter that is feed by the source clock.
127	 * The period length is (PRESCALE + 1) * MOD counter steps.
128	 * The duty cycle length is (PRESCALE + 1) * DUTY counter steps.
129	 *
130	 * To keep the maths simple we're always using MOD = SPRD_PWM_MOD_MAX.
131	 * The value for PRESCALE is selected such that the resulting period
132	 * gets the maximal length not bigger than the requested one with the
133	 * given settings (MOD = SPRD_PWM_MOD_MAX and input clock).
134	 */
135	duty = duty_ns * SPRD_PWM_MOD_MAX / period_ns;
136
137	tmp = (u64)chn->clk_rate * period_ns;
138	do_div(tmp, NSEC_PER_SEC);
139	prescale = DIV_ROUND_CLOSEST_ULL(tmp, SPRD_PWM_MOD_MAX) - 1;
140	if (prescale > SPRD_PWM_PRESCALE_MSK)
141		prescale = SPRD_PWM_PRESCALE_MSK;
142
143	/*
144	 * Note: Writing DUTY triggers the hardware to actually apply the
145	 * values written to MOD and DUTY to the output, so must keep writing
146	 * DUTY last.
147	 *
148	 * The hardware can ensures that current running period is completed
149	 * before changing a new configuration to avoid mixed settings.
150	 */
151	sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_PRESCALE, prescale);
152	sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_MOD, SPRD_PWM_MOD_MAX);
153	sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_DUTY, duty);
154
155	return 0;
156}
157
158static int sprd_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
159			  const struct pwm_state *state)
160{
161	struct sprd_pwm_chip *spc =
162		container_of(chip, struct sprd_pwm_chip, chip);
163	struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
164	struct pwm_state *cstate = &pwm->state;
165	int ret;
166
167	if (state->polarity != PWM_POLARITY_NORMAL)
168		return -EINVAL;
169
170	if (state->enabled) {
171		if (!cstate->enabled) {
172			/*
173			 * The clocks to PWM channel has to be enabled first
174			 * before writing to the registers.
175			 */
176			ret = clk_bulk_prepare_enable(SPRD_PWM_CHN_CLKS_NUM,
177						      chn->clks);
178			if (ret) {
179				dev_err(spc->dev,
180					"failed to enable pwm%u clocks\n",
181					pwm->hwpwm);
182				return ret;
183			}
184		}
185
186		ret = sprd_pwm_config(spc, pwm, state->duty_cycle,
187				      state->period);
188		if (ret)
189			return ret;
 
 
 
190
191		sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_ENABLE, 1);
192	} else if (cstate->enabled) {
193		/*
194		 * Note: After setting SPRD_PWM_ENABLE to zero, the controller
195		 * will not wait for current period to be completed, instead it
196		 * will stop the PWM channel immediately.
197		 */
198		sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_ENABLE, 0);
199
200		clk_bulk_disable_unprepare(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
201	}
202
203	return 0;
204}
205
206static const struct pwm_ops sprd_pwm_ops = {
207	.apply = sprd_pwm_apply,
208	.get_state = sprd_pwm_get_state,
209	.owner = THIS_MODULE,
210};
211
212static int sprd_pwm_clk_init(struct sprd_pwm_chip *spc)
213{
214	struct clk *clk_pwm;
215	int ret, i;
216
217	for (i = 0; i < SPRD_PWM_CHN_NUM; i++) {
218		struct sprd_pwm_chn *chn = &spc->chn[i];
219		int j;
220
221		for (j = 0; j < SPRD_PWM_CHN_CLKS_NUM; ++j)
222			chn->clks[j].id =
223				sprd_pwm_clks[i * SPRD_PWM_CHN_CLKS_NUM + j];
224
225		ret = devm_clk_bulk_get(spc->dev, SPRD_PWM_CHN_CLKS_NUM,
226					chn->clks);
227		if (ret) {
228			if (ret == -ENOENT)
229				break;
230
231			return dev_err_probe(spc->dev, ret,
232					     "failed to get channel clocks\n");
 
 
 
233		}
234
235		clk_pwm = chn->clks[SPRD_PWM_CHN_OUTPUT_CLK].clk;
236		chn->clk_rate = clk_get_rate(clk_pwm);
237	}
238
239	if (!i) {
240		dev_err(spc->dev, "no available PWM channels\n");
241		return -ENODEV;
242	}
243
244	spc->num_pwms = i;
245
246	return 0;
247}
248
249static int sprd_pwm_probe(struct platform_device *pdev)
250{
251	struct sprd_pwm_chip *spc;
252	int ret;
253
254	spc = devm_kzalloc(&pdev->dev, sizeof(*spc), GFP_KERNEL);
255	if (!spc)
256		return -ENOMEM;
257
258	spc->base = devm_platform_ioremap_resource(pdev, 0);
259	if (IS_ERR(spc->base))
260		return PTR_ERR(spc->base);
261
262	spc->dev = &pdev->dev;
263	platform_set_drvdata(pdev, spc);
264
265	ret = sprd_pwm_clk_init(spc);
266	if (ret)
267		return ret;
268
269	spc->chip.dev = &pdev->dev;
270	spc->chip.ops = &sprd_pwm_ops;
 
271	spc->chip.npwm = spc->num_pwms;
272
273	ret = pwmchip_add(&spc->chip);
274	if (ret)
275		dev_err(&pdev->dev, "failed to add PWM chip\n");
276
277	return ret;
278}
279
280static int sprd_pwm_remove(struct platform_device *pdev)
281{
282	struct sprd_pwm_chip *spc = platform_get_drvdata(pdev);
283
284	pwmchip_remove(&spc->chip);
285
286	return 0;
287}
288
289static const struct of_device_id sprd_pwm_of_match[] = {
290	{ .compatible = "sprd,ums512-pwm", },
291	{ },
292};
293MODULE_DEVICE_TABLE(of, sprd_pwm_of_match);
294
295static struct platform_driver sprd_pwm_driver = {
296	.driver = {
297		.name = "sprd-pwm",
298		.of_match_table = sprd_pwm_of_match,
299	},
300	.probe = sprd_pwm_probe,
301	.remove = sprd_pwm_remove,
302};
303
304module_platform_driver(sprd_pwm_driver);
305
306MODULE_DESCRIPTION("Spreadtrum PWM Driver");
307MODULE_LICENSE("GPL v2");