Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* drivers/net/ethernet/micrel/ks8851.c
  3 *
  4 * Copyright 2009 Simtec Electronics
  5 *	http://www.simtec.co.uk/
  6 *	Ben Dooks <ben@simtec.co.uk>
  7 */
  8
  9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 10
 11#define DEBUG
 12
 13#include <linux/interrupt.h>
 14#include <linux/module.h>
 15#include <linux/kernel.h>
 16#include <linux/netdevice.h>
 17#include <linux/etherdevice.h>
 18#include <linux/ethtool.h>
 19#include <linux/cache.h>
 20#include <linux/crc32.h>
 21#include <linux/mii.h>
 22#include <linux/regulator/consumer.h>
 23
 24#include <linux/spi/spi.h>
 25#include <linux/gpio.h>
 26#include <linux/of_gpio.h>
 27#include <linux/of_net.h>
 28
 29#include "ks8851.h"
 30
 31static int msg_enable;
 32
 33/**
 34 * struct ks8851_net_spi - KS8851 SPI driver private data
 35 * @lock: Lock to ensure that the device is not accessed when busy.
 36 * @tx_work: Work queue for tx packets
 37 * @ks8851: KS8851 driver common private data
 38 * @spidev: The spi device we're bound to.
 39 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
 40 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
 41 * @spi_xfer1: @spi_msg1 SPI transfer structure
 42 * @spi_xfer2: @spi_msg2 SPI transfer structure
 43 *
 44 * The @lock ensures that the chip is protected when certain operations are
 45 * in progress. When the read or write packet transfer is in progress, most
 46 * of the chip registers are not ccessible until the transfer is finished and
 47 * the DMA has been de-asserted.
 48 */
 49struct ks8851_net_spi {
 50	struct ks8851_net	ks8851;
 51	struct mutex		lock;
 52	struct work_struct	tx_work;
 53	struct spi_device	*spidev;
 54	struct spi_message	spi_msg1;
 55	struct spi_message	spi_msg2;
 56	struct spi_transfer	spi_xfer1;
 57	struct spi_transfer	spi_xfer2[2];
 58};
 59
 60#define to_ks8851_spi(ks) container_of((ks), struct ks8851_net_spi, ks8851)
 61
 62/* SPI frame opcodes */
 63#define KS_SPIOP_RD	0x00
 64#define KS_SPIOP_WR	0x40
 65#define KS_SPIOP_RXFIFO	0x80
 66#define KS_SPIOP_TXFIFO	0xC0
 67
 68/* shift for byte-enable data */
 69#define BYTE_EN(_x)	((_x) << 2)
 70
 71/* turn register number and byte-enable mask into data for start of packet */
 72#define MK_OP(_byteen, _reg)	\
 73	(BYTE_EN(_byteen) | (_reg) << (8 + 2) | (_reg) >> 6)
 74
 75/**
 76 * ks8851_lock_spi - register access lock
 77 * @ks: The chip state
 78 * @flags: Spinlock flags
 79 *
 80 * Claim chip register access lock
 81 */
 82static void ks8851_lock_spi(struct ks8851_net *ks, unsigned long *flags)
 83{
 84	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
 85
 86	mutex_lock(&kss->lock);
 87}
 88
 89/**
 90 * ks8851_unlock_spi - register access unlock
 91 * @ks: The chip state
 92 * @flags: Spinlock flags
 93 *
 94 * Release chip register access lock
 95 */
 96static void ks8851_unlock_spi(struct ks8851_net *ks, unsigned long *flags)
 97{
 98	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
 99
100	mutex_unlock(&kss->lock);
101}
102
103/* SPI register read/write calls.
104 *
105 * All these calls issue SPI transactions to access the chip's registers. They
106 * all require that the necessary lock is held to prevent accesses when the
107 * chip is busy transferring packet data (RX/TX FIFO accesses).
108 */
109
110/**
111 * ks8851_wrreg16_spi - write 16bit register value to chip via SPI
112 * @ks: The chip state
113 * @reg: The register address
114 * @val: The value to write
115 *
116 * Issue a write to put the value @val into the register specified in @reg.
117 */
118static void ks8851_wrreg16_spi(struct ks8851_net *ks, unsigned int reg,
119			       unsigned int val)
120{
121	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
122	struct spi_transfer *xfer = &kss->spi_xfer1;
123	struct spi_message *msg = &kss->spi_msg1;
124	__le16 txb[2];
125	int ret;
126
127	txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
128	txb[1] = cpu_to_le16(val);
129
130	xfer->tx_buf = txb;
131	xfer->rx_buf = NULL;
132	xfer->len = 4;
133
134	ret = spi_sync(kss->spidev, msg);
135	if (ret < 0)
136		netdev_err(ks->netdev, "spi_sync() failed\n");
137}
138
139/**
140 * ks8851_rdreg - issue read register command and return the data
141 * @ks: The device state
142 * @op: The register address and byte enables in message format.
143 * @rxb: The RX buffer to return the result into
144 * @rxl: The length of data expected.
145 *
146 * This is the low level read call that issues the necessary spi message(s)
147 * to read data from the register specified in @op.
148 */
149static void ks8851_rdreg(struct ks8851_net *ks, unsigned int op,
150			 u8 *rxb, unsigned int rxl)
151{
152	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
153	struct spi_transfer *xfer;
154	struct spi_message *msg;
155	__le16 *txb = (__le16 *)ks->txd;
156	u8 *trx = ks->rxd;
157	int ret;
158
159	txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
160
161	if (kss->spidev->master->flags & SPI_MASTER_HALF_DUPLEX) {
162		msg = &kss->spi_msg2;
163		xfer = kss->spi_xfer2;
164
165		xfer->tx_buf = txb;
166		xfer->rx_buf = NULL;
167		xfer->len = 2;
168
169		xfer++;
170		xfer->tx_buf = NULL;
171		xfer->rx_buf = trx;
172		xfer->len = rxl;
173	} else {
174		msg = &kss->spi_msg1;
175		xfer = &kss->spi_xfer1;
176
177		xfer->tx_buf = txb;
178		xfer->rx_buf = trx;
179		xfer->len = rxl + 2;
180	}
181
182	ret = spi_sync(kss->spidev, msg);
183	if (ret < 0)
184		netdev_err(ks->netdev, "read: spi_sync() failed\n");
185	else if (kss->spidev->master->flags & SPI_MASTER_HALF_DUPLEX)
186		memcpy(rxb, trx, rxl);
187	else
188		memcpy(rxb, trx + 2, rxl);
189}
190
191/**
192 * ks8851_rdreg16_spi - read 16 bit register from device via SPI
193 * @ks: The chip information
194 * @reg: The register address
195 *
196 * Read a 16bit register from the chip, returning the result
197 */
198static unsigned int ks8851_rdreg16_spi(struct ks8851_net *ks, unsigned int reg)
199{
200	__le16 rx = 0;
201
202	ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
203	return le16_to_cpu(rx);
204}
205
206/**
207 * ks8851_rdfifo_spi - read data from the receive fifo via SPI
208 * @ks: The device state.
209 * @buff: The buffer address
210 * @len: The length of the data to read
211 *
212 * Issue an RXQ FIFO read command and read the @len amount of data from
213 * the FIFO into the buffer specified by @buff.
214 */
215static void ks8851_rdfifo_spi(struct ks8851_net *ks, u8 *buff, unsigned int len)
216{
217	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
218	struct spi_transfer *xfer = kss->spi_xfer2;
219	struct spi_message *msg = &kss->spi_msg2;
220	u8 txb[1];
221	int ret;
222
223	netif_dbg(ks, rx_status, ks->netdev,
224		  "%s: %d@%p\n", __func__, len, buff);
225
226	/* set the operation we're issuing */
227	txb[0] = KS_SPIOP_RXFIFO;
228
229	xfer->tx_buf = txb;
230	xfer->rx_buf = NULL;
231	xfer->len = 1;
232
233	xfer++;
234	xfer->rx_buf = buff;
235	xfer->tx_buf = NULL;
236	xfer->len = len;
237
238	ret = spi_sync(kss->spidev, msg);
239	if (ret < 0)
240		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
241}
242
243/**
244 * ks8851_wrfifo_spi - write packet to TX FIFO via SPI
245 * @ks: The device state.
246 * @txp: The sk_buff to transmit.
247 * @irq: IRQ on completion of the packet.
248 *
249 * Send the @txp to the chip. This means creating the relevant packet header
250 * specifying the length of the packet and the other information the chip
251 * needs, such as IRQ on completion. Send the header and the packet data to
252 * the device.
253 */
254static void ks8851_wrfifo_spi(struct ks8851_net *ks, struct sk_buff *txp,
255			      bool irq)
256{
257	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
258	struct spi_transfer *xfer = kss->spi_xfer2;
259	struct spi_message *msg = &kss->spi_msg2;
260	unsigned int fid = 0;
261	int ret;
262
263	netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
264		  __func__, txp, txp->len, txp->data, irq);
265
266	fid = ks->fid++;
267	fid &= TXFR_TXFID_MASK;
268
269	if (irq)
270		fid |= TXFR_TXIC;	/* irq on completion */
271
272	/* start header at txb[1] to align txw entries */
273	ks->txh.txb[1] = KS_SPIOP_TXFIFO;
274	ks->txh.txw[1] = cpu_to_le16(fid);
275	ks->txh.txw[2] = cpu_to_le16(txp->len);
276
277	xfer->tx_buf = &ks->txh.txb[1];
278	xfer->rx_buf = NULL;
279	xfer->len = 5;
280
281	xfer++;
282	xfer->tx_buf = txp->data;
283	xfer->rx_buf = NULL;
284	xfer->len = ALIGN(txp->len, 4);
285
286	ret = spi_sync(kss->spidev, msg);
287	if (ret < 0)
288		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
289}
290
291/**
292 * ks8851_rx_skb_spi - receive skbuff
293 * @ks: The device state
294 * @skb: The skbuff
295 */
296static void ks8851_rx_skb_spi(struct ks8851_net *ks, struct sk_buff *skb)
297{
298	netif_rx_ni(skb);
299}
300
301/**
302 * ks8851_tx_work - process tx packet(s)
303 * @work: The work strucutre what was scheduled.
304 *
305 * This is called when a number of packets have been scheduled for
306 * transmission and need to be sent to the device.
307 */
308static void ks8851_tx_work(struct work_struct *work)
309{
310	struct ks8851_net_spi *kss;
311	struct ks8851_net *ks;
312	unsigned long flags;
313	struct sk_buff *txb;
314	bool last;
315
316	kss = container_of(work, struct ks8851_net_spi, tx_work);
317	ks = &kss->ks8851;
318	last = skb_queue_empty(&ks->txq);
319
320	ks8851_lock_spi(ks, &flags);
321
322	while (!last) {
323		txb = skb_dequeue(&ks->txq);
324		last = skb_queue_empty(&ks->txq);
325
326		if (txb) {
327			ks8851_wrreg16_spi(ks, KS_RXQCR,
328					   ks->rc_rxqcr | RXQCR_SDA);
329			ks8851_wrfifo_spi(ks, txb, last);
330			ks8851_wrreg16_spi(ks, KS_RXQCR, ks->rc_rxqcr);
331			ks8851_wrreg16_spi(ks, KS_TXQCR, TXQCR_METFE);
332
333			ks8851_done_tx(ks, txb);
334		}
335	}
336
337	ks8851_unlock_spi(ks, &flags);
338}
339
340/**
341 * ks8851_flush_tx_work_spi - flush outstanding TX work
342 * @ks: The device state
343 */
344static void ks8851_flush_tx_work_spi(struct ks8851_net *ks)
345{
346	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
347
348	flush_work(&kss->tx_work);
349}
350
351/**
352 * calc_txlen - calculate size of message to send packet
353 * @len: Length of data
354 *
355 * Returns the size of the TXFIFO message needed to send
356 * this packet.
357 */
358static unsigned int calc_txlen(unsigned int len)
359{
360	return ALIGN(len + 4, 4);
361}
362
363/**
364 * ks8851_start_xmit_spi - transmit packet using SPI
365 * @skb: The buffer to transmit
366 * @dev: The device used to transmit the packet.
367 *
368 * Called by the network layer to transmit the @skb. Queue the packet for
369 * the device and schedule the necessary work to transmit the packet when
370 * it is free.
371 *
372 * We do this to firstly avoid sleeping with the network device locked,
373 * and secondly so we can round up more than one packet to transmit which
374 * means we can try and avoid generating too many transmit done interrupts.
375 */
376static netdev_tx_t ks8851_start_xmit_spi(struct sk_buff *skb,
377					 struct net_device *dev)
378{
379	unsigned int needed = calc_txlen(skb->len);
380	struct ks8851_net *ks = netdev_priv(dev);
381	netdev_tx_t ret = NETDEV_TX_OK;
382	struct ks8851_net_spi *kss;
383
384	kss = to_ks8851_spi(ks);
385
386	netif_dbg(ks, tx_queued, ks->netdev,
387		  "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
388
389	spin_lock(&ks->statelock);
390
391	if (needed > ks->tx_space) {
392		netif_stop_queue(dev);
393		ret = NETDEV_TX_BUSY;
394	} else {
395		ks->tx_space -= needed;
396		skb_queue_tail(&ks->txq, skb);
397	}
398
399	spin_unlock(&ks->statelock);
400	schedule_work(&kss->tx_work);
401
402	return ret;
403}
404
405static int ks8851_probe_spi(struct spi_device *spi)
406{
407	struct device *dev = &spi->dev;
408	struct ks8851_net_spi *kss;
409	struct net_device *netdev;
410	struct ks8851_net *ks;
411
412	netdev = devm_alloc_etherdev(dev, sizeof(struct ks8851_net_spi));
413	if (!netdev)
414		return -ENOMEM;
415
416	spi->bits_per_word = 8;
417
418	ks = netdev_priv(netdev);
419
420	ks->lock = ks8851_lock_spi;
421	ks->unlock = ks8851_unlock_spi;
422	ks->rdreg16 = ks8851_rdreg16_spi;
423	ks->wrreg16 = ks8851_wrreg16_spi;
424	ks->rdfifo = ks8851_rdfifo_spi;
425	ks->wrfifo = ks8851_wrfifo_spi;
426	ks->start_xmit = ks8851_start_xmit_spi;
427	ks->rx_skb = ks8851_rx_skb_spi;
428	ks->flush_tx_work = ks8851_flush_tx_work_spi;
429
430#define STD_IRQ (IRQ_LCI |	/* Link Change */	\
431		 IRQ_TXI |	/* TX done */		\
432		 IRQ_RXI |	/* RX done */		\
433		 IRQ_SPIBEI |	/* SPI bus error */	\
434		 IRQ_TXPSI |	/* TX process stop */	\
435		 IRQ_RXPSI)	/* RX process stop */
436	ks->rc_ier = STD_IRQ;
437
438	kss = to_ks8851_spi(ks);
439
440	kss->spidev = spi;
441	mutex_init(&kss->lock);
442	INIT_WORK(&kss->tx_work, ks8851_tx_work);
443
444	/* initialise pre-made spi transfer messages */
445	spi_message_init(&kss->spi_msg1);
446	spi_message_add_tail(&kss->spi_xfer1, &kss->spi_msg1);
447
448	spi_message_init(&kss->spi_msg2);
449	spi_message_add_tail(&kss->spi_xfer2[0], &kss->spi_msg2);
450	spi_message_add_tail(&kss->spi_xfer2[1], &kss->spi_msg2);
451
452	netdev->irq = spi->irq;
453
454	return ks8851_probe_common(netdev, dev, msg_enable);
455}
456
457static int ks8851_remove_spi(struct spi_device *spi)
458{
459	return ks8851_remove_common(&spi->dev);
460}
461
462static const struct of_device_id ks8851_match_table[] = {
463	{ .compatible = "micrel,ks8851" },
464	{ }
465};
466MODULE_DEVICE_TABLE(of, ks8851_match_table);
467
468static struct spi_driver ks8851_driver = {
469	.driver = {
470		.name = "ks8851",
471		.of_match_table = ks8851_match_table,
472		.pm = &ks8851_pm_ops,
473	},
474	.probe = ks8851_probe_spi,
475	.remove = ks8851_remove_spi,
476};
477module_spi_driver(ks8851_driver);
478
479MODULE_DESCRIPTION("KS8851 Network driver");
480MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
481MODULE_LICENSE("GPL");
482
483module_param_named(message, msg_enable, int, 0);
484MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
485MODULE_ALIAS("spi:ks8851");
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* drivers/net/ethernet/micrel/ks8851.c
  3 *
  4 * Copyright 2009 Simtec Electronics
  5 *	http://www.simtec.co.uk/
  6 *	Ben Dooks <ben@simtec.co.uk>
  7 */
  8
  9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 10
 
 
 11#include <linux/interrupt.h>
 12#include <linux/module.h>
 13#include <linux/kernel.h>
 14#include <linux/netdevice.h>
 15#include <linux/etherdevice.h>
 16#include <linux/ethtool.h>
 17#include <linux/cache.h>
 18#include <linux/crc32.h>
 19#include <linux/mii.h>
 20#include <linux/regulator/consumer.h>
 21
 22#include <linux/spi/spi.h>
 23#include <linux/gpio.h>
 24#include <linux/of_gpio.h>
 25#include <linux/of_net.h>
 26
 27#include "ks8851.h"
 28
 29static int msg_enable;
 30
 31/**
 32 * struct ks8851_net_spi - KS8851 SPI driver private data
 33 * @lock: Lock to ensure that the device is not accessed when busy.
 34 * @tx_work: Work queue for tx packets
 35 * @ks8851: KS8851 driver common private data
 36 * @spidev: The spi device we're bound to.
 37 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
 38 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
 39 * @spi_xfer1: @spi_msg1 SPI transfer structure
 40 * @spi_xfer2: @spi_msg2 SPI transfer structure
 41 *
 42 * The @lock ensures that the chip is protected when certain operations are
 43 * in progress. When the read or write packet transfer is in progress, most
 44 * of the chip registers are not ccessible until the transfer is finished and
 45 * the DMA has been de-asserted.
 46 */
 47struct ks8851_net_spi {
 48	struct ks8851_net	ks8851;
 49	struct mutex		lock;
 50	struct work_struct	tx_work;
 51	struct spi_device	*spidev;
 52	struct spi_message	spi_msg1;
 53	struct spi_message	spi_msg2;
 54	struct spi_transfer	spi_xfer1;
 55	struct spi_transfer	spi_xfer2[2];
 56};
 57
 58#define to_ks8851_spi(ks) container_of((ks), struct ks8851_net_spi, ks8851)
 59
 60/* SPI frame opcodes */
 61#define KS_SPIOP_RD	0x00
 62#define KS_SPIOP_WR	0x40
 63#define KS_SPIOP_RXFIFO	0x80
 64#define KS_SPIOP_TXFIFO	0xC0
 65
 66/* shift for byte-enable data */
 67#define BYTE_EN(_x)	((_x) << 2)
 68
 69/* turn register number and byte-enable mask into data for start of packet */
 70#define MK_OP(_byteen, _reg)	\
 71	(BYTE_EN(_byteen) | (_reg) << (8 + 2) | (_reg) >> 6)
 72
 73/**
 74 * ks8851_lock_spi - register access lock
 75 * @ks: The chip state
 76 * @flags: Spinlock flags
 77 *
 78 * Claim chip register access lock
 79 */
 80static void ks8851_lock_spi(struct ks8851_net *ks, unsigned long *flags)
 81{
 82	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
 83
 84	mutex_lock(&kss->lock);
 85}
 86
 87/**
 88 * ks8851_unlock_spi - register access unlock
 89 * @ks: The chip state
 90 * @flags: Spinlock flags
 91 *
 92 * Release chip register access lock
 93 */
 94static void ks8851_unlock_spi(struct ks8851_net *ks, unsigned long *flags)
 95{
 96	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
 97
 98	mutex_unlock(&kss->lock);
 99}
100
101/* SPI register read/write calls.
102 *
103 * All these calls issue SPI transactions to access the chip's registers. They
104 * all require that the necessary lock is held to prevent accesses when the
105 * chip is busy transferring packet data (RX/TX FIFO accesses).
106 */
107
108/**
109 * ks8851_wrreg16_spi - write 16bit register value to chip via SPI
110 * @ks: The chip state
111 * @reg: The register address
112 * @val: The value to write
113 *
114 * Issue a write to put the value @val into the register specified in @reg.
115 */
116static void ks8851_wrreg16_spi(struct ks8851_net *ks, unsigned int reg,
117			       unsigned int val)
118{
119	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
120	struct spi_transfer *xfer = &kss->spi_xfer1;
121	struct spi_message *msg = &kss->spi_msg1;
122	__le16 txb[2];
123	int ret;
124
125	txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
126	txb[1] = cpu_to_le16(val);
127
128	xfer->tx_buf = txb;
129	xfer->rx_buf = NULL;
130	xfer->len = 4;
131
132	ret = spi_sync(kss->spidev, msg);
133	if (ret < 0)
134		netdev_err(ks->netdev, "spi_sync() failed\n");
135}
136
137/**
138 * ks8851_rdreg - issue read register command and return the data
139 * @ks: The device state
140 * @op: The register address and byte enables in message format.
141 * @rxb: The RX buffer to return the result into
142 * @rxl: The length of data expected.
143 *
144 * This is the low level read call that issues the necessary spi message(s)
145 * to read data from the register specified in @op.
146 */
147static void ks8851_rdreg(struct ks8851_net *ks, unsigned int op,
148			 u8 *rxb, unsigned int rxl)
149{
150	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
151	struct spi_transfer *xfer;
152	struct spi_message *msg;
153	__le16 *txb = (__le16 *)ks->txd;
154	u8 *trx = ks->rxd;
155	int ret;
156
157	txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
158
159	if (kss->spidev->master->flags & SPI_MASTER_HALF_DUPLEX) {
160		msg = &kss->spi_msg2;
161		xfer = kss->spi_xfer2;
162
163		xfer->tx_buf = txb;
164		xfer->rx_buf = NULL;
165		xfer->len = 2;
166
167		xfer++;
168		xfer->tx_buf = NULL;
169		xfer->rx_buf = trx;
170		xfer->len = rxl;
171	} else {
172		msg = &kss->spi_msg1;
173		xfer = &kss->spi_xfer1;
174
175		xfer->tx_buf = txb;
176		xfer->rx_buf = trx;
177		xfer->len = rxl + 2;
178	}
179
180	ret = spi_sync(kss->spidev, msg);
181	if (ret < 0)
182		netdev_err(ks->netdev, "read: spi_sync() failed\n");
183	else if (kss->spidev->master->flags & SPI_MASTER_HALF_DUPLEX)
184		memcpy(rxb, trx, rxl);
185	else
186		memcpy(rxb, trx + 2, rxl);
187}
188
189/**
190 * ks8851_rdreg16_spi - read 16 bit register from device via SPI
191 * @ks: The chip information
192 * @reg: The register address
193 *
194 * Read a 16bit register from the chip, returning the result
195 */
196static unsigned int ks8851_rdreg16_spi(struct ks8851_net *ks, unsigned int reg)
197{
198	__le16 rx = 0;
199
200	ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
201	return le16_to_cpu(rx);
202}
203
204/**
205 * ks8851_rdfifo_spi - read data from the receive fifo via SPI
206 * @ks: The device state.
207 * @buff: The buffer address
208 * @len: The length of the data to read
209 *
210 * Issue an RXQ FIFO read command and read the @len amount of data from
211 * the FIFO into the buffer specified by @buff.
212 */
213static void ks8851_rdfifo_spi(struct ks8851_net *ks, u8 *buff, unsigned int len)
214{
215	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
216	struct spi_transfer *xfer = kss->spi_xfer2;
217	struct spi_message *msg = &kss->spi_msg2;
218	u8 txb[1];
219	int ret;
220
221	netif_dbg(ks, rx_status, ks->netdev,
222		  "%s: %d@%p\n", __func__, len, buff);
223
224	/* set the operation we're issuing */
225	txb[0] = KS_SPIOP_RXFIFO;
226
227	xfer->tx_buf = txb;
228	xfer->rx_buf = NULL;
229	xfer->len = 1;
230
231	xfer++;
232	xfer->rx_buf = buff;
233	xfer->tx_buf = NULL;
234	xfer->len = len;
235
236	ret = spi_sync(kss->spidev, msg);
237	if (ret < 0)
238		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
239}
240
241/**
242 * ks8851_wrfifo_spi - write packet to TX FIFO via SPI
243 * @ks: The device state.
244 * @txp: The sk_buff to transmit.
245 * @irq: IRQ on completion of the packet.
246 *
247 * Send the @txp to the chip. This means creating the relevant packet header
248 * specifying the length of the packet and the other information the chip
249 * needs, such as IRQ on completion. Send the header and the packet data to
250 * the device.
251 */
252static void ks8851_wrfifo_spi(struct ks8851_net *ks, struct sk_buff *txp,
253			      bool irq)
254{
255	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
256	struct spi_transfer *xfer = kss->spi_xfer2;
257	struct spi_message *msg = &kss->spi_msg2;
258	unsigned int fid = 0;
259	int ret;
260
261	netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
262		  __func__, txp, txp->len, txp->data, irq);
263
264	fid = ks->fid++;
265	fid &= TXFR_TXFID_MASK;
266
267	if (irq)
268		fid |= TXFR_TXIC;	/* irq on completion */
269
270	/* start header at txb[1] to align txw entries */
271	ks->txh.txb[1] = KS_SPIOP_TXFIFO;
272	ks->txh.txw[1] = cpu_to_le16(fid);
273	ks->txh.txw[2] = cpu_to_le16(txp->len);
274
275	xfer->tx_buf = &ks->txh.txb[1];
276	xfer->rx_buf = NULL;
277	xfer->len = 5;
278
279	xfer++;
280	xfer->tx_buf = txp->data;
281	xfer->rx_buf = NULL;
282	xfer->len = ALIGN(txp->len, 4);
283
284	ret = spi_sync(kss->spidev, msg);
285	if (ret < 0)
286		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
287}
288
289/**
290 * ks8851_rx_skb_spi - receive skbuff
291 * @ks: The device state
292 * @skb: The skbuff
293 */
294static void ks8851_rx_skb_spi(struct ks8851_net *ks, struct sk_buff *skb)
295{
296	netif_rx_ni(skb);
297}
298
299/**
300 * ks8851_tx_work - process tx packet(s)
301 * @work: The work strucutre what was scheduled.
302 *
303 * This is called when a number of packets have been scheduled for
304 * transmission and need to be sent to the device.
305 */
306static void ks8851_tx_work(struct work_struct *work)
307{
308	struct ks8851_net_spi *kss;
309	struct ks8851_net *ks;
310	unsigned long flags;
311	struct sk_buff *txb;
312	bool last;
313
314	kss = container_of(work, struct ks8851_net_spi, tx_work);
315	ks = &kss->ks8851;
316	last = skb_queue_empty(&ks->txq);
317
318	ks8851_lock_spi(ks, &flags);
319
320	while (!last) {
321		txb = skb_dequeue(&ks->txq);
322		last = skb_queue_empty(&ks->txq);
323
324		if (txb) {
325			ks8851_wrreg16_spi(ks, KS_RXQCR,
326					   ks->rc_rxqcr | RXQCR_SDA);
327			ks8851_wrfifo_spi(ks, txb, last);
328			ks8851_wrreg16_spi(ks, KS_RXQCR, ks->rc_rxqcr);
329			ks8851_wrreg16_spi(ks, KS_TXQCR, TXQCR_METFE);
330
331			ks8851_done_tx(ks, txb);
332		}
333	}
334
335	ks8851_unlock_spi(ks, &flags);
336}
337
338/**
339 * ks8851_flush_tx_work_spi - flush outstanding TX work
340 * @ks: The device state
341 */
342static void ks8851_flush_tx_work_spi(struct ks8851_net *ks)
343{
344	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
345
346	flush_work(&kss->tx_work);
347}
348
349/**
350 * calc_txlen - calculate size of message to send packet
351 * @len: Length of data
352 *
353 * Returns the size of the TXFIFO message needed to send
354 * this packet.
355 */
356static unsigned int calc_txlen(unsigned int len)
357{
358	return ALIGN(len + 4, 4);
359}
360
361/**
362 * ks8851_start_xmit_spi - transmit packet using SPI
363 * @skb: The buffer to transmit
364 * @dev: The device used to transmit the packet.
365 *
366 * Called by the network layer to transmit the @skb. Queue the packet for
367 * the device and schedule the necessary work to transmit the packet when
368 * it is free.
369 *
370 * We do this to firstly avoid sleeping with the network device locked,
371 * and secondly so we can round up more than one packet to transmit which
372 * means we can try and avoid generating too many transmit done interrupts.
373 */
374static netdev_tx_t ks8851_start_xmit_spi(struct sk_buff *skb,
375					 struct net_device *dev)
376{
377	unsigned int needed = calc_txlen(skb->len);
378	struct ks8851_net *ks = netdev_priv(dev);
379	netdev_tx_t ret = NETDEV_TX_OK;
380	struct ks8851_net_spi *kss;
381
382	kss = to_ks8851_spi(ks);
383
384	netif_dbg(ks, tx_queued, ks->netdev,
385		  "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
386
387	spin_lock(&ks->statelock);
388
389	if (needed > ks->tx_space) {
390		netif_stop_queue(dev);
391		ret = NETDEV_TX_BUSY;
392	} else {
393		ks->tx_space -= needed;
394		skb_queue_tail(&ks->txq, skb);
395	}
396
397	spin_unlock(&ks->statelock);
398	schedule_work(&kss->tx_work);
399
400	return ret;
401}
402
403static int ks8851_probe_spi(struct spi_device *spi)
404{
405	struct device *dev = &spi->dev;
406	struct ks8851_net_spi *kss;
407	struct net_device *netdev;
408	struct ks8851_net *ks;
409
410	netdev = devm_alloc_etherdev(dev, sizeof(struct ks8851_net_spi));
411	if (!netdev)
412		return -ENOMEM;
413
414	spi->bits_per_word = 8;
415
416	ks = netdev_priv(netdev);
417
418	ks->lock = ks8851_lock_spi;
419	ks->unlock = ks8851_unlock_spi;
420	ks->rdreg16 = ks8851_rdreg16_spi;
421	ks->wrreg16 = ks8851_wrreg16_spi;
422	ks->rdfifo = ks8851_rdfifo_spi;
423	ks->wrfifo = ks8851_wrfifo_spi;
424	ks->start_xmit = ks8851_start_xmit_spi;
425	ks->rx_skb = ks8851_rx_skb_spi;
426	ks->flush_tx_work = ks8851_flush_tx_work_spi;
427
428#define STD_IRQ (IRQ_LCI |	/* Link Change */	\
429		 IRQ_TXI |	/* TX done */		\
430		 IRQ_RXI |	/* RX done */		\
431		 IRQ_SPIBEI |	/* SPI bus error */	\
432		 IRQ_TXPSI |	/* TX process stop */	\
433		 IRQ_RXPSI)	/* RX process stop */
434	ks->rc_ier = STD_IRQ;
435
436	kss = to_ks8851_spi(ks);
437
438	kss->spidev = spi;
439	mutex_init(&kss->lock);
440	INIT_WORK(&kss->tx_work, ks8851_tx_work);
441
442	/* initialise pre-made spi transfer messages */
443	spi_message_init(&kss->spi_msg1);
444	spi_message_add_tail(&kss->spi_xfer1, &kss->spi_msg1);
445
446	spi_message_init(&kss->spi_msg2);
447	spi_message_add_tail(&kss->spi_xfer2[0], &kss->spi_msg2);
448	spi_message_add_tail(&kss->spi_xfer2[1], &kss->spi_msg2);
449
450	netdev->irq = spi->irq;
451
452	return ks8851_probe_common(netdev, dev, msg_enable);
453}
454
455static int ks8851_remove_spi(struct spi_device *spi)
456{
457	return ks8851_remove_common(&spi->dev);
458}
459
460static const struct of_device_id ks8851_match_table[] = {
461	{ .compatible = "micrel,ks8851" },
462	{ }
463};
464MODULE_DEVICE_TABLE(of, ks8851_match_table);
465
466static struct spi_driver ks8851_driver = {
467	.driver = {
468		.name = "ks8851",
469		.of_match_table = ks8851_match_table,
470		.pm = &ks8851_pm_ops,
471	},
472	.probe = ks8851_probe_spi,
473	.remove = ks8851_remove_spi,
474};
475module_spi_driver(ks8851_driver);
476
477MODULE_DESCRIPTION("KS8851 Network driver");
478MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
479MODULE_LICENSE("GPL");
480
481module_param_named(message, msg_enable, int, 0);
482MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
483MODULE_ALIAS("spi:ks8851");