Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2019, Intel Corporation. */
   3
   4#include "ice_common.h"
   5#include "ice_flow.h"
   6
   7/* Describe properties of a protocol header field */
   8struct ice_flow_field_info {
   9	enum ice_flow_seg_hdr hdr;
  10	s16 off;	/* Offset from start of a protocol header, in bits */
  11	u16 size;	/* Size of fields in bits */
 
  12};
  13
  14#define ICE_FLOW_FLD_INFO(_hdr, _offset_bytes, _size_bytes) { \
  15	.hdr = _hdr, \
  16	.off = (_offset_bytes) * BITS_PER_BYTE, \
  17	.size = (_size_bytes) * BITS_PER_BYTE, \
 
 
 
 
 
 
 
 
  18}
  19
  20/* Table containing properties of supported protocol header fields */
  21static const
  22struct ice_flow_field_info ice_flds_info[ICE_FLOW_FIELD_IDX_MAX] = {
 
 
 
 
 
 
 
 
 
 
 
  23	/* IPv4 / IPv6 */
 
 
 
 
 
 
 
 
 
 
 
 
  24	/* ICE_FLOW_FIELD_IDX_IPV4_SA */
  25	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 12, sizeof(struct in_addr)),
  26	/* ICE_FLOW_FIELD_IDX_IPV4_DA */
  27	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 16, sizeof(struct in_addr)),
  28	/* ICE_FLOW_FIELD_IDX_IPV6_SA */
  29	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 8, sizeof(struct in6_addr)),
  30	/* ICE_FLOW_FIELD_IDX_IPV6_DA */
  31	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 24, sizeof(struct in6_addr)),
  32	/* Transport */
  33	/* ICE_FLOW_FIELD_IDX_TCP_SRC_PORT */
  34	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 0, sizeof(__be16)),
  35	/* ICE_FLOW_FIELD_IDX_TCP_DST_PORT */
  36	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 2, sizeof(__be16)),
  37	/* ICE_FLOW_FIELD_IDX_UDP_SRC_PORT */
  38	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 0, sizeof(__be16)),
  39	/* ICE_FLOW_FIELD_IDX_UDP_DST_PORT */
  40	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 2, sizeof(__be16)),
  41	/* ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT */
  42	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 0, sizeof(__be16)),
  43	/* ICE_FLOW_FIELD_IDX_SCTP_DST_PORT */
  44	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 2, sizeof(__be16)),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  45	/* GRE */
  46	/* ICE_FLOW_FIELD_IDX_GRE_KEYID */
  47	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GRE, 12,
  48			  sizeof_field(struct gre_full_hdr, key)),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  49};
  50
  51/* Bitmaps indicating relevant packet types for a particular protocol header
  52 *
  53 * Packet types for packets with an Outer/First/Single IPv4 header
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  54 */
  55static const u32 ice_ptypes_ipv4_ofos[] = {
  56	0x1DC00000, 0x04000800, 0x00000000, 0x00000000,
 
 
  57	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  58	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  59	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  60	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  61	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 
 
 
 
 
 
 
 
 
 
 
 
  62	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  63	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  64};
  65
  66/* Packet types for packets with an Innermost/Last IPv4 header */
  67static const u32 ice_ptypes_ipv4_il[] = {
  68	0xE0000000, 0xB807700E, 0x80000003, 0xE01DC03B,
  69	0x0000000E, 0x00000000, 0x00000000, 0x00000000,
  70	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  71	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  72	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  73	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  74	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  75	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  76};
  77
  78/* Packet types for packets with an Outer/First/Single IPv6 header */
 
 
  79static const u32 ice_ptypes_ipv6_ofos[] = {
  80	0x00000000, 0x00000000, 0x77000000, 0x10002000,
 
 
 
  81	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  82	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  83	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  84	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 
 
 
 
 
 
 
 
 
 
 
  85	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  86	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  87	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  88};
  89
  90/* Packet types for packets with an Innermost/Last IPv6 header */
  91static const u32 ice_ptypes_ipv6_il[] = {
  92	0x00000000, 0x03B80770, 0x000001DC, 0x0EE00000,
  93	0x00000770, 0x00000000, 0x00000000, 0x00000000,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  94	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  95	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  96	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  97	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  98	0x00000000, 0x00000000, 0x00000000, 0x00000000,
  99	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 100};
 101
 102/* UDP Packet types for non-tunneled packets or tunneled
 103 * packets with inner UDP.
 104 */
 105static const u32 ice_ptypes_udp_il[] = {
 106	0x81000000, 0x20204040, 0x04000010, 0x80810102,
 107	0x00000040, 0x00000000, 0x00000000, 0x00000000,
 108	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 109	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 110	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 111	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 112	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 113	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 114};
 115
 116/* Packet types for packets with an Innermost/Last TCP header */
 117static const u32 ice_ptypes_tcp_il[] = {
 118	0x04000000, 0x80810102, 0x10000040, 0x02040408,
 119	0x00000102, 0x00000000, 0x00000000, 0x00000000,
 120	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 121	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 122	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 123	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 124	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 125	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 126};
 127
 128/* Packet types for packets with an Innermost/Last SCTP header */
 129static const u32 ice_ptypes_sctp_il[] = {
 130	0x08000000, 0x01020204, 0x20000081, 0x04080810,
 131	0x00000204, 0x00000000, 0x00000000, 0x00000000,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 133	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 134	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 135	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 
 
 
 
 
 
 
 
 
 
 136	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 137	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 138};
 139
 140/* Packet types for packets with an Outermost/First GRE header */
 141static const u32 ice_ptypes_gre_of[] = {
 142	0x00000000, 0xBFBF7800, 0x000001DF, 0xFEFDE000,
 143	0x0000017E, 0x00000000, 0x00000000, 0x00000000,
 144	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 145	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 146	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 147	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 148	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 149	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 150};
 151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152/* Manage parameters and info. used during the creation of a flow profile */
 153struct ice_flow_prof_params {
 154	enum ice_block blk;
 155	u16 entry_length; /* # of bytes formatted entry will require */
 156	u8 es_cnt;
 157	struct ice_flow_prof *prof;
 158
 159	/* For ACL, the es[0] will have the data of ICE_RX_MDID_PKT_FLAGS_15_0
 160	 * This will give us the direction flags.
 161	 */
 162	struct ice_fv_word es[ICE_MAX_FV_WORDS];
 
 
 
 
 
 163	DECLARE_BITMAP(ptypes, ICE_FLOW_PTYPE_MAX);
 164};
 165
 
 
 
 
 
 
 
 
 
 166#define ICE_FLOW_SEG_HDRS_L3_MASK	\
 167	(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6)
 168#define ICE_FLOW_SEG_HDRS_L4_MASK	\
 
 
 
 
 169	(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
 170
 171/**
 172 * ice_flow_val_hdrs - validates packet segments for valid protocol headers
 173 * @segs: array of one or more packet segments that describe the flow
 174 * @segs_cnt: number of packet segments provided
 175 */
 176static enum ice_status
 177ice_flow_val_hdrs(struct ice_flow_seg_info *segs, u8 segs_cnt)
 178{
 179	u8 i;
 180
 181	for (i = 0; i < segs_cnt; i++) {
 182		/* Multiple L3 headers */
 183		if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK &&
 184		    !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK))
 185			return ICE_ERR_PARAM;
 186
 187		/* Multiple L4 headers */
 188		if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK &&
 189		    !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK))
 190			return ICE_ERR_PARAM;
 191	}
 192
 193	return 0;
 194}
 195
 196/* Sizes of fixed known protocol headers without header options */
 197#define ICE_FLOW_PROT_HDR_SZ_MAC	14
 
 198#define ICE_FLOW_PROT_HDR_SZ_IPV4	20
 199#define ICE_FLOW_PROT_HDR_SZ_IPV6	40
 
 
 200#define ICE_FLOW_PROT_HDR_SZ_TCP	20
 201#define ICE_FLOW_PROT_HDR_SZ_UDP	8
 202#define ICE_FLOW_PROT_HDR_SZ_SCTP	12
 203
 204/**
 205 * ice_flow_calc_seg_sz - calculates size of a packet segment based on headers
 206 * @params: information about the flow to be processed
 207 * @seg: index of packet segment whose header size is to be determined
 208 */
 209static u16 ice_flow_calc_seg_sz(struct ice_flow_prof_params *params, u8 seg)
 210{
 211	u16 sz = ICE_FLOW_PROT_HDR_SZ_MAC;
 
 
 
 
 212
 213	/* L3 headers */
 214	if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4)
 215		sz += ICE_FLOW_PROT_HDR_SZ_IPV4;
 216	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV6)
 217		sz += ICE_FLOW_PROT_HDR_SZ_IPV6;
 
 
 
 
 
 218
 219	/* L4 headers */
 220	if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_TCP)
 
 
 221		sz += ICE_FLOW_PROT_HDR_SZ_TCP;
 222	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_UDP)
 223		sz += ICE_FLOW_PROT_HDR_SZ_UDP;
 224	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_SCTP)
 225		sz += ICE_FLOW_PROT_HDR_SZ_SCTP;
 226
 227	return sz;
 228}
 229
 230/**
 231 * ice_flow_proc_seg_hdrs - process protocol headers present in pkt segments
 232 * @params: information about the flow to be processed
 233 *
 234 * This function identifies the packet types associated with the protocol
 235 * headers being present in packet segments of the specified flow profile.
 236 */
 237static enum ice_status
 238ice_flow_proc_seg_hdrs(struct ice_flow_prof_params *params)
 239{
 240	struct ice_flow_prof *prof;
 241	u8 i;
 242
 243	memset(params->ptypes, 0xff, sizeof(params->ptypes));
 244
 245	prof = params->prof;
 246
 247	for (i = 0; i < params->prof->segs_cnt; i++) {
 248		const unsigned long *src;
 249		u32 hdrs;
 250
 251		hdrs = prof->segs[i].hdrs;
 252
 253		if (hdrs & ICE_FLOW_SEG_HDR_IPV4) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 254			src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos :
 255				(const unsigned long *)ice_ptypes_ipv4_il;
 256			bitmap_and(params->ptypes, params->ptypes, src,
 257				   ICE_FLOW_PTYPE_MAX);
 
 
 
 
 
 
 258		} else if (hdrs & ICE_FLOW_SEG_HDR_IPV6) {
 259			src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos :
 260				(const unsigned long *)ice_ptypes_ipv6_il;
 261			bitmap_and(params->ptypes, params->ptypes, src,
 262				   ICE_FLOW_PTYPE_MAX);
 263		}
 264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 265		if (hdrs & ICE_FLOW_SEG_HDR_UDP) {
 266			src = (const unsigned long *)ice_ptypes_udp_il;
 267			bitmap_and(params->ptypes, params->ptypes, src,
 268				   ICE_FLOW_PTYPE_MAX);
 269		} else if (hdrs & ICE_FLOW_SEG_HDR_TCP) {
 270			bitmap_and(params->ptypes, params->ptypes,
 271				   (const unsigned long *)ice_ptypes_tcp_il,
 272				   ICE_FLOW_PTYPE_MAX);
 273		} else if (hdrs & ICE_FLOW_SEG_HDR_SCTP) {
 274			src = (const unsigned long *)ice_ptypes_sctp_il;
 275			bitmap_and(params->ptypes, params->ptypes, src,
 276				   ICE_FLOW_PTYPE_MAX);
 
 
 
 
 
 
 
 277		} else if (hdrs & ICE_FLOW_SEG_HDR_GRE) {
 278			if (!i) {
 279				src = (const unsigned long *)ice_ptypes_gre_of;
 280				bitmap_and(params->ptypes, params->ptypes,
 281					   src, ICE_FLOW_PTYPE_MAX);
 282			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 283		}
 284	}
 285
 286	return 0;
 287}
 288
 289/**
 290 * ice_flow_xtract_fld - Create an extraction sequence entry for the given field
 291 * @hw: pointer to the HW struct
 292 * @params: information about the flow to be processed
 293 * @seg: packet segment index of the field to be extracted
 294 * @fld: ID of field to be extracted
 
 295 *
 296 * This function determines the protocol ID, offset, and size of the given
 297 * field. It then allocates one or more extraction sequence entries for the
 298 * given field, and fill the entries with protocol ID and offset information.
 299 */
 300static enum ice_status
 301ice_flow_xtract_fld(struct ice_hw *hw, struct ice_flow_prof_params *params,
 302		    u8 seg, enum ice_flow_field fld)
 303{
 
 304	enum ice_prot_id prot_id = ICE_PROT_ID_INVAL;
 305	u8 fv_words = hw->blk[params->blk].es.fvw;
 306	struct ice_flow_fld_info *flds;
 307	u16 cnt, ese_bits, i;
 
 
 308	u16 off;
 309
 310	flds = params->prof->segs[seg].fields;
 311
 312	switch (fld) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 313	case ICE_FLOW_FIELD_IDX_IPV4_SA:
 314	case ICE_FLOW_FIELD_IDX_IPV4_DA:
 315		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
 316		break;
 317	case ICE_FLOW_FIELD_IDX_IPV6_SA:
 318	case ICE_FLOW_FIELD_IDX_IPV6_DA:
 319		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
 320		break;
 321	case ICE_FLOW_FIELD_IDX_TCP_SRC_PORT:
 322	case ICE_FLOW_FIELD_IDX_TCP_DST_PORT:
 
 323		prot_id = ICE_PROT_TCP_IL;
 324		break;
 325	case ICE_FLOW_FIELD_IDX_UDP_SRC_PORT:
 326	case ICE_FLOW_FIELD_IDX_UDP_DST_PORT:
 327		prot_id = ICE_PROT_UDP_IL_OR_S;
 328		break;
 329	case ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT:
 330	case ICE_FLOW_FIELD_IDX_SCTP_DST_PORT:
 331		prot_id = ICE_PROT_SCTP_IL;
 332		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333	case ICE_FLOW_FIELD_IDX_GRE_KEYID:
 334		prot_id = ICE_PROT_GRE_OF;
 335		break;
 336	default:
 337		return ICE_ERR_NOT_IMPL;
 338	}
 339
 340	/* Each extraction sequence entry is a word in size, and extracts a
 341	 * word-aligned offset from a protocol header.
 342	 */
 343	ese_bits = ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE;
 344
 345	flds[fld].xtrct.prot_id = prot_id;
 346	flds[fld].xtrct.off = (ice_flds_info[fld].off / ese_bits) *
 347		ICE_FLOW_FV_EXTRACT_SZ;
 348	flds[fld].xtrct.disp = (u8)(ice_flds_info[fld].off % ese_bits);
 349	flds[fld].xtrct.idx = params->es_cnt;
 
 350
 351	/* Adjust the next field-entry index after accommodating the number of
 352	 * entries this field consumes
 353	 */
 354	cnt = DIV_ROUND_UP(flds[fld].xtrct.disp + ice_flds_info[fld].size,
 355			   ese_bits);
 356
 357	/* Fill in the extraction sequence entries needed for this field */
 358	off = flds[fld].xtrct.off;
 
 359	for (i = 0; i < cnt; i++) {
 360		u8 idx;
 361
 362		/* Make sure the number of extraction sequence required
 363		 * does not exceed the block's capability
 364		 */
 365		if (params->es_cnt >= fv_words)
 366			return ICE_ERR_MAX_LIMIT;
 
 
 367
 368		/* some blocks require a reversed field vector layout */
 369		if (hw->blk[params->blk].es.reverse)
 370			idx = fv_words - params->es_cnt - 1;
 371		else
 372			idx = params->es_cnt;
 
 
 
 
 
 
 373
 374		params->es[idx].prot_id = prot_id;
 375		params->es[idx].off = off;
 376		params->es_cnt++;
 
 
 377
 378		off += ICE_FLOW_FV_EXTRACT_SZ;
 379	}
 380
 381	return 0;
 382}
 383
 384/**
 385 * ice_flow_xtract_raws - Create extract sequence entries for raw bytes
 386 * @hw: pointer to the HW struct
 387 * @params: information about the flow to be processed
 388 * @seg: index of packet segment whose raw fields are to be be extracted
 389 */
 390static enum ice_status
 391ice_flow_xtract_raws(struct ice_hw *hw, struct ice_flow_prof_params *params,
 392		     u8 seg)
 393{
 394	u16 fv_words;
 395	u16 hdrs_sz;
 396	u8 i;
 397
 398	if (!params->prof->segs[seg].raws_cnt)
 399		return 0;
 400
 401	if (params->prof->segs[seg].raws_cnt >
 402	    ARRAY_SIZE(params->prof->segs[seg].raws))
 403		return ICE_ERR_MAX_LIMIT;
 404
 405	/* Offsets within the segment headers are not supported */
 406	hdrs_sz = ice_flow_calc_seg_sz(params, seg);
 407	if (!hdrs_sz)
 408		return ICE_ERR_PARAM;
 409
 410	fv_words = hw->blk[params->blk].es.fvw;
 411
 412	for (i = 0; i < params->prof->segs[seg].raws_cnt; i++) {
 413		struct ice_flow_seg_fld_raw *raw;
 414		u16 off, cnt, j;
 415
 416		raw = &params->prof->segs[seg].raws[i];
 417
 418		/* Storing extraction information */
 419		raw->info.xtrct.prot_id = ICE_PROT_MAC_OF_OR_S;
 420		raw->info.xtrct.off = (raw->off / ICE_FLOW_FV_EXTRACT_SZ) *
 421			ICE_FLOW_FV_EXTRACT_SZ;
 422		raw->info.xtrct.disp = (raw->off % ICE_FLOW_FV_EXTRACT_SZ) *
 423			BITS_PER_BYTE;
 424		raw->info.xtrct.idx = params->es_cnt;
 425
 426		/* Determine the number of field vector entries this raw field
 427		 * consumes.
 428		 */
 429		cnt = DIV_ROUND_UP(raw->info.xtrct.disp +
 430				   (raw->info.src.last * BITS_PER_BYTE),
 431				   (ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE));
 432		off = raw->info.xtrct.off;
 433		for (j = 0; j < cnt; j++) {
 434			u16 idx;
 435
 436			/* Make sure the number of extraction sequence required
 437			 * does not exceed the block's capability
 438			 */
 439			if (params->es_cnt >= hw->blk[params->blk].es.count ||
 440			    params->es_cnt >= ICE_MAX_FV_WORDS)
 441				return ICE_ERR_MAX_LIMIT;
 442
 443			/* some blocks require a reversed field vector layout */
 444			if (hw->blk[params->blk].es.reverse)
 445				idx = fv_words - params->es_cnt - 1;
 446			else
 447				idx = params->es_cnt;
 448
 449			params->es[idx].prot_id = raw->info.xtrct.prot_id;
 450			params->es[idx].off = off;
 451			params->es_cnt++;
 452			off += ICE_FLOW_FV_EXTRACT_SZ;
 453		}
 454	}
 455
 456	return 0;
 457}
 458
 459/**
 460 * ice_flow_create_xtrct_seq - Create an extraction sequence for given segments
 461 * @hw: pointer to the HW struct
 462 * @params: information about the flow to be processed
 463 *
 464 * This function iterates through all matched fields in the given segments, and
 465 * creates an extraction sequence for the fields.
 466 */
 467static enum ice_status
 468ice_flow_create_xtrct_seq(struct ice_hw *hw,
 469			  struct ice_flow_prof_params *params)
 470{
 471	struct ice_flow_prof *prof = params->prof;
 472	enum ice_status status = 0;
 473	u8 i;
 474
 475	for (i = 0; i < prof->segs_cnt; i++) {
 476		u8 j;
 
 477
 478		for_each_set_bit(j, (unsigned long *)&prof->segs[i].match,
 479				 ICE_FLOW_FIELD_IDX_MAX) {
 480			status = ice_flow_xtract_fld(hw, params, i,
 481						     (enum ice_flow_field)j);
 482			if (status)
 483				return status;
 
 484		}
 485
 486		/* Process raw matching bytes */
 487		status = ice_flow_xtract_raws(hw, params, i);
 488		if (status)
 489			return status;
 490	}
 491
 492	return status;
 493}
 494
 495/**
 496 * ice_flow_proc_segs - process all packet segments associated with a profile
 497 * @hw: pointer to the HW struct
 498 * @params: information about the flow to be processed
 499 */
 500static enum ice_status
 501ice_flow_proc_segs(struct ice_hw *hw, struct ice_flow_prof_params *params)
 502{
 503	enum ice_status status;
 504
 505	status = ice_flow_proc_seg_hdrs(params);
 506	if (status)
 507		return status;
 508
 509	status = ice_flow_create_xtrct_seq(hw, params);
 510	if (status)
 511		return status;
 512
 513	switch (params->blk) {
 514	case ICE_BLK_FD:
 515	case ICE_BLK_RSS:
 516		status = 0;
 517		break;
 518	default:
 519		return ICE_ERR_NOT_IMPL;
 520	}
 521
 522	return status;
 523}
 524
 525#define ICE_FLOW_FIND_PROF_CHK_FLDS	0x00000001
 526#define ICE_FLOW_FIND_PROF_CHK_VSI	0x00000002
 527#define ICE_FLOW_FIND_PROF_NOT_CHK_DIR	0x00000004
 528
 529/**
 530 * ice_flow_find_prof_conds - Find a profile matching headers and conditions
 531 * @hw: pointer to the HW struct
 532 * @blk: classification stage
 533 * @dir: flow direction
 534 * @segs: array of one or more packet segments that describe the flow
 535 * @segs_cnt: number of packet segments provided
 536 * @vsi_handle: software VSI handle to check VSI (ICE_FLOW_FIND_PROF_CHK_VSI)
 537 * @conds: additional conditions to be checked (ICE_FLOW_FIND_PROF_CHK_*)
 538 */
 539static struct ice_flow_prof *
 540ice_flow_find_prof_conds(struct ice_hw *hw, enum ice_block blk,
 541			 enum ice_flow_dir dir, struct ice_flow_seg_info *segs,
 542			 u8 segs_cnt, u16 vsi_handle, u32 conds)
 543{
 544	struct ice_flow_prof *p, *prof = NULL;
 545
 546	mutex_lock(&hw->fl_profs_locks[blk]);
 547	list_for_each_entry(p, &hw->fl_profs[blk], l_entry)
 548		if ((p->dir == dir || conds & ICE_FLOW_FIND_PROF_NOT_CHK_DIR) &&
 549		    segs_cnt && segs_cnt == p->segs_cnt) {
 550			u8 i;
 551
 552			/* Check for profile-VSI association if specified */
 553			if ((conds & ICE_FLOW_FIND_PROF_CHK_VSI) &&
 554			    ice_is_vsi_valid(hw, vsi_handle) &&
 555			    !test_bit(vsi_handle, p->vsis))
 556				continue;
 557
 558			/* Protocol headers must be checked. Matched fields are
 559			 * checked if specified.
 560			 */
 561			for (i = 0; i < segs_cnt; i++)
 562				if (segs[i].hdrs != p->segs[i].hdrs ||
 563				    ((conds & ICE_FLOW_FIND_PROF_CHK_FLDS) &&
 564				     segs[i].match != p->segs[i].match))
 565					break;
 566
 567			/* A match is found if all segments are matched */
 568			if (i == segs_cnt) {
 569				prof = p;
 570				break;
 571			}
 572		}
 573	mutex_unlock(&hw->fl_profs_locks[blk]);
 574
 575	return prof;
 576}
 577
 578/**
 579 * ice_flow_find_prof_id - Look up a profile with given profile ID
 580 * @hw: pointer to the HW struct
 581 * @blk: classification stage
 582 * @prof_id: unique ID to identify this flow profile
 583 */
 584static struct ice_flow_prof *
 585ice_flow_find_prof_id(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
 586{
 587	struct ice_flow_prof *p;
 588
 589	list_for_each_entry(p, &hw->fl_profs[blk], l_entry)
 590		if (p->id == prof_id)
 591			return p;
 592
 593	return NULL;
 594}
 595
 596/**
 597 * ice_dealloc_flow_entry - Deallocate flow entry memory
 598 * @hw: pointer to the HW struct
 599 * @entry: flow entry to be removed
 600 */
 601static void
 602ice_dealloc_flow_entry(struct ice_hw *hw, struct ice_flow_entry *entry)
 603{
 604	if (!entry)
 605		return;
 606
 607	if (entry->entry)
 608		devm_kfree(ice_hw_to_dev(hw), entry->entry);
 609
 610	devm_kfree(ice_hw_to_dev(hw), entry);
 611}
 612
 613/**
 614 * ice_flow_rem_entry_sync - Remove a flow entry
 615 * @hw: pointer to the HW struct
 616 * @blk: classification stage
 617 * @entry: flow entry to be removed
 618 */
 619static enum ice_status
 620ice_flow_rem_entry_sync(struct ice_hw *hw, enum ice_block __always_unused blk,
 621			struct ice_flow_entry *entry)
 622{
 623	if (!entry)
 624		return ICE_ERR_BAD_PTR;
 625
 626	list_del(&entry->l_entry);
 627
 628	ice_dealloc_flow_entry(hw, entry);
 629
 630	return 0;
 631}
 632
 633/**
 634 * ice_flow_add_prof_sync - Add a flow profile for packet segments and fields
 635 * @hw: pointer to the HW struct
 636 * @blk: classification stage
 637 * @dir: flow direction
 638 * @prof_id: unique ID to identify this flow profile
 639 * @segs: array of one or more packet segments that describe the flow
 640 * @segs_cnt: number of packet segments provided
 641 * @prof: stores the returned flow profile added
 642 *
 643 * Assumption: the caller has acquired the lock to the profile list
 644 */
 645static enum ice_status
 646ice_flow_add_prof_sync(struct ice_hw *hw, enum ice_block blk,
 647		       enum ice_flow_dir dir, u64 prof_id,
 648		       struct ice_flow_seg_info *segs, u8 segs_cnt,
 649		       struct ice_flow_prof **prof)
 650{
 651	struct ice_flow_prof_params params;
 652	enum ice_status status;
 653	u8 i;
 654
 655	if (!prof)
 656		return ICE_ERR_BAD_PTR;
 657
 658	memset(&params, 0, sizeof(params));
 659	params.prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*params.prof),
 660				   GFP_KERNEL);
 661	if (!params.prof)
 662		return ICE_ERR_NO_MEMORY;
 663
 
 
 
 
 
 
 
 664	/* initialize extraction sequence to all invalid (0xff) */
 665	for (i = 0; i < ICE_MAX_FV_WORDS; i++) {
 666		params.es[i].prot_id = ICE_PROT_INVALID;
 667		params.es[i].off = ICE_FV_OFFSET_INVAL;
 668	}
 669
 670	params.blk = blk;
 671	params.prof->id = prof_id;
 672	params.prof->dir = dir;
 673	params.prof->segs_cnt = segs_cnt;
 674
 675	/* Make a copy of the segments that need to be persistent in the flow
 676	 * profile instance
 677	 */
 678	for (i = 0; i < segs_cnt; i++)
 679		memcpy(&params.prof->segs[i], &segs[i], sizeof(*segs));
 680
 681	status = ice_flow_proc_segs(hw, &params);
 682	if (status) {
 683		ice_debug(hw, ICE_DBG_FLOW,
 684			  "Error processing a flow's packet segments\n");
 685		goto out;
 686	}
 687
 688	/* Add a HW profile for this flow profile */
 689	status = ice_add_prof(hw, blk, prof_id, (u8 *)params.ptypes, params.es);
 
 
 690	if (status) {
 691		ice_debug(hw, ICE_DBG_FLOW, "Error adding a HW flow profile\n");
 692		goto out;
 693	}
 694
 695	INIT_LIST_HEAD(&params.prof->entries);
 696	mutex_init(&params.prof->entries_lock);
 697	*prof = params.prof;
 698
 699out:
 700	if (status)
 701		devm_kfree(ice_hw_to_dev(hw), params.prof);
 
 
 702
 703	return status;
 704}
 705
 706/**
 707 * ice_flow_rem_prof_sync - remove a flow profile
 708 * @hw: pointer to the hardware structure
 709 * @blk: classification stage
 710 * @prof: pointer to flow profile to remove
 711 *
 712 * Assumption: the caller has acquired the lock to the profile list
 713 */
 714static enum ice_status
 715ice_flow_rem_prof_sync(struct ice_hw *hw, enum ice_block blk,
 716		       struct ice_flow_prof *prof)
 717{
 718	enum ice_status status;
 719
 720	/* Remove all remaining flow entries before removing the flow profile */
 721	if (!list_empty(&prof->entries)) {
 722		struct ice_flow_entry *e, *t;
 723
 724		mutex_lock(&prof->entries_lock);
 725
 726		list_for_each_entry_safe(e, t, &prof->entries, l_entry) {
 727			status = ice_flow_rem_entry_sync(hw, blk, e);
 728			if (status)
 729				break;
 730		}
 731
 732		mutex_unlock(&prof->entries_lock);
 733	}
 734
 735	/* Remove all hardware profiles associated with this flow profile */
 736	status = ice_rem_prof(hw, blk, prof->id);
 737	if (!status) {
 738		list_del(&prof->l_entry);
 739		mutex_destroy(&prof->entries_lock);
 740		devm_kfree(ice_hw_to_dev(hw), prof);
 741	}
 742
 743	return status;
 744}
 745
 746/**
 747 * ice_flow_assoc_prof - associate a VSI with a flow profile
 748 * @hw: pointer to the hardware structure
 749 * @blk: classification stage
 750 * @prof: pointer to flow profile
 751 * @vsi_handle: software VSI handle
 752 *
 753 * Assumption: the caller has acquired the lock to the profile list
 754 * and the software VSI handle has been validated
 755 */
 756static enum ice_status
 757ice_flow_assoc_prof(struct ice_hw *hw, enum ice_block blk,
 758		    struct ice_flow_prof *prof, u16 vsi_handle)
 759{
 760	enum ice_status status = 0;
 761
 762	if (!test_bit(vsi_handle, prof->vsis)) {
 763		status = ice_add_prof_id_flow(hw, blk,
 764					      ice_get_hw_vsi_num(hw,
 765								 vsi_handle),
 766					      prof->id);
 767		if (!status)
 768			set_bit(vsi_handle, prof->vsis);
 769		else
 770			ice_debug(hw, ICE_DBG_FLOW,
 771				  "HW profile add failed, %d\n",
 772				  status);
 773	}
 774
 775	return status;
 776}
 777
 778/**
 779 * ice_flow_disassoc_prof - disassociate a VSI from a flow profile
 780 * @hw: pointer to the hardware structure
 781 * @blk: classification stage
 782 * @prof: pointer to flow profile
 783 * @vsi_handle: software VSI handle
 784 *
 785 * Assumption: the caller has acquired the lock to the profile list
 786 * and the software VSI handle has been validated
 787 */
 788static enum ice_status
 789ice_flow_disassoc_prof(struct ice_hw *hw, enum ice_block blk,
 790		       struct ice_flow_prof *prof, u16 vsi_handle)
 791{
 792	enum ice_status status = 0;
 793
 794	if (test_bit(vsi_handle, prof->vsis)) {
 795		status = ice_rem_prof_id_flow(hw, blk,
 796					      ice_get_hw_vsi_num(hw,
 797								 vsi_handle),
 798					      prof->id);
 799		if (!status)
 800			clear_bit(vsi_handle, prof->vsis);
 801		else
 802			ice_debug(hw, ICE_DBG_FLOW,
 803				  "HW profile remove failed, %d\n",
 804				  status);
 805	}
 806
 807	return status;
 808}
 809
 810/**
 811 * ice_flow_add_prof - Add a flow profile for packet segments and matched fields
 812 * @hw: pointer to the HW struct
 813 * @blk: classification stage
 814 * @dir: flow direction
 815 * @prof_id: unique ID to identify this flow profile
 816 * @segs: array of one or more packet segments that describe the flow
 817 * @segs_cnt: number of packet segments provided
 818 * @prof: stores the returned flow profile added
 819 */
 820enum ice_status
 821ice_flow_add_prof(struct ice_hw *hw, enum ice_block blk, enum ice_flow_dir dir,
 822		  u64 prof_id, struct ice_flow_seg_info *segs, u8 segs_cnt,
 823		  struct ice_flow_prof **prof)
 824{
 825	enum ice_status status;
 826
 827	if (segs_cnt > ICE_FLOW_SEG_MAX)
 828		return ICE_ERR_MAX_LIMIT;
 829
 830	if (!segs_cnt)
 831		return ICE_ERR_PARAM;
 832
 833	if (!segs)
 834		return ICE_ERR_BAD_PTR;
 835
 836	status = ice_flow_val_hdrs(segs, segs_cnt);
 837	if (status)
 838		return status;
 839
 840	mutex_lock(&hw->fl_profs_locks[blk]);
 841
 842	status = ice_flow_add_prof_sync(hw, blk, dir, prof_id, segs, segs_cnt,
 843					prof);
 844	if (!status)
 845		list_add(&(*prof)->l_entry, &hw->fl_profs[blk]);
 846
 847	mutex_unlock(&hw->fl_profs_locks[blk]);
 848
 849	return status;
 850}
 851
 852/**
 853 * ice_flow_rem_prof - Remove a flow profile and all entries associated with it
 854 * @hw: pointer to the HW struct
 855 * @blk: the block for which the flow profile is to be removed
 856 * @prof_id: unique ID of the flow profile to be removed
 857 */
 858enum ice_status
 859ice_flow_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
 860{
 861	struct ice_flow_prof *prof;
 862	enum ice_status status;
 863
 864	mutex_lock(&hw->fl_profs_locks[blk]);
 865
 866	prof = ice_flow_find_prof_id(hw, blk, prof_id);
 867	if (!prof) {
 868		status = ICE_ERR_DOES_NOT_EXIST;
 869		goto out;
 870	}
 871
 872	/* prof becomes invalid after the call */
 873	status = ice_flow_rem_prof_sync(hw, blk, prof);
 874
 875out:
 876	mutex_unlock(&hw->fl_profs_locks[blk]);
 877
 878	return status;
 879}
 880
 881/**
 882 * ice_flow_add_entry - Add a flow entry
 883 * @hw: pointer to the HW struct
 884 * @blk: classification stage
 885 * @prof_id: ID of the profile to add a new flow entry to
 886 * @entry_id: unique ID to identify this flow entry
 887 * @vsi_handle: software VSI handle for the flow entry
 888 * @prio: priority of the flow entry
 889 * @data: pointer to a data buffer containing flow entry's match values/masks
 890 * @entry_h: pointer to buffer that receives the new flow entry's handle
 891 */
 892enum ice_status
 893ice_flow_add_entry(struct ice_hw *hw, enum ice_block blk, u64 prof_id,
 894		   u64 entry_id, u16 vsi_handle, enum ice_flow_priority prio,
 895		   void *data, u64 *entry_h)
 896{
 897	struct ice_flow_entry *e = NULL;
 898	struct ice_flow_prof *prof;
 899	enum ice_status status;
 900
 901	/* No flow entry data is expected for RSS */
 902	if (!entry_h || (!data && blk != ICE_BLK_RSS))
 903		return ICE_ERR_BAD_PTR;
 904
 905	if (!ice_is_vsi_valid(hw, vsi_handle))
 906		return ICE_ERR_PARAM;
 907
 908	mutex_lock(&hw->fl_profs_locks[blk]);
 909
 910	prof = ice_flow_find_prof_id(hw, blk, prof_id);
 911	if (!prof) {
 912		status = ICE_ERR_DOES_NOT_EXIST;
 913	} else {
 914		/* Allocate memory for the entry being added and associate
 915		 * the VSI to the found flow profile
 916		 */
 917		e = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*e), GFP_KERNEL);
 918		if (!e)
 919			status = ICE_ERR_NO_MEMORY;
 920		else
 921			status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
 922	}
 923
 924	mutex_unlock(&hw->fl_profs_locks[blk]);
 925	if (status)
 926		goto out;
 927
 928	e->id = entry_id;
 929	e->vsi_handle = vsi_handle;
 930	e->prof = prof;
 931	e->priority = prio;
 932
 933	switch (blk) {
 934	case ICE_BLK_FD:
 935	case ICE_BLK_RSS:
 936		break;
 937	default:
 938		status = ICE_ERR_NOT_IMPL;
 939		goto out;
 940	}
 941
 942	mutex_lock(&prof->entries_lock);
 943	list_add(&e->l_entry, &prof->entries);
 944	mutex_unlock(&prof->entries_lock);
 945
 946	*entry_h = ICE_FLOW_ENTRY_HNDL(e);
 947
 948out:
 949	if (status && e) {
 950		if (e->entry)
 951			devm_kfree(ice_hw_to_dev(hw), e->entry);
 952		devm_kfree(ice_hw_to_dev(hw), e);
 953	}
 954
 955	return status;
 956}
 957
 958/**
 959 * ice_flow_rem_entry - Remove a flow entry
 960 * @hw: pointer to the HW struct
 961 * @blk: classification stage
 962 * @entry_h: handle to the flow entry to be removed
 963 */
 964enum ice_status ice_flow_rem_entry(struct ice_hw *hw, enum ice_block blk,
 965				   u64 entry_h)
 966{
 967	struct ice_flow_entry *entry;
 968	struct ice_flow_prof *prof;
 969	enum ice_status status = 0;
 970
 971	if (entry_h == ICE_FLOW_ENTRY_HANDLE_INVAL)
 972		return ICE_ERR_PARAM;
 973
 974	entry = ICE_FLOW_ENTRY_PTR(entry_h);
 975
 976	/* Retain the pointer to the flow profile as the entry will be freed */
 977	prof = entry->prof;
 978
 979	if (prof) {
 980		mutex_lock(&prof->entries_lock);
 981		status = ice_flow_rem_entry_sync(hw, blk, entry);
 982		mutex_unlock(&prof->entries_lock);
 983	}
 984
 985	return status;
 986}
 987
 988/**
 989 * ice_flow_set_fld_ext - specifies locations of field from entry's input buffer
 990 * @seg: packet segment the field being set belongs to
 991 * @fld: field to be set
 992 * @field_type: type of the field
 993 * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
 994 *           entry's input buffer
 995 * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
 996 *            input buffer
 997 * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
 998 *            entry's input buffer
 999 *
1000 * This helper function stores information of a field being matched, including
1001 * the type of the field and the locations of the value to match, the mask, and
1002 * and the upper-bound value in the start of the input buffer for a flow entry.
1003 * This function should only be used for fixed-size data structures.
1004 *
1005 * This function also opportunistically determines the protocol headers to be
1006 * present based on the fields being set. Some fields cannot be used alone to
1007 * determine the protocol headers present. Sometimes, fields for particular
1008 * protocol headers are not matched. In those cases, the protocol headers
1009 * must be explicitly set.
1010 */
1011static void
1012ice_flow_set_fld_ext(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
1013		     enum ice_flow_fld_match_type field_type, u16 val_loc,
1014		     u16 mask_loc, u16 last_loc)
1015{
1016	u64 bit = BIT_ULL(fld);
1017
1018	seg->match |= bit;
1019	if (field_type == ICE_FLOW_FLD_TYPE_RANGE)
1020		seg->range |= bit;
1021
1022	seg->fields[fld].type = field_type;
1023	seg->fields[fld].src.val = val_loc;
1024	seg->fields[fld].src.mask = mask_loc;
1025	seg->fields[fld].src.last = last_loc;
1026
1027	ICE_FLOW_SET_HDRS(seg, ice_flds_info[fld].hdr);
1028}
1029
1030/**
1031 * ice_flow_set_fld - specifies locations of field from entry's input buffer
1032 * @seg: packet segment the field being set belongs to
1033 * @fld: field to be set
1034 * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
1035 *           entry's input buffer
1036 * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
1037 *            input buffer
1038 * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
1039 *            entry's input buffer
1040 * @range: indicate if field being matched is to be in a range
1041 *
1042 * This function specifies the locations, in the form of byte offsets from the
1043 * start of the input buffer for a flow entry, from where the value to match,
1044 * the mask value, and upper value can be extracted. These locations are then
1045 * stored in the flow profile. When adding a flow entry associated with the
1046 * flow profile, these locations will be used to quickly extract the values and
1047 * create the content of a match entry. This function should only be used for
1048 * fixed-size data structures.
1049 */
1050void
1051ice_flow_set_fld(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
1052		 u16 val_loc, u16 mask_loc, u16 last_loc, bool range)
1053{
1054	enum ice_flow_fld_match_type t = range ?
1055		ICE_FLOW_FLD_TYPE_RANGE : ICE_FLOW_FLD_TYPE_REG;
1056
1057	ice_flow_set_fld_ext(seg, fld, t, val_loc, mask_loc, last_loc);
1058}
1059
1060/**
1061 * ice_flow_add_fld_raw - sets locations of a raw field from entry's input buf
1062 * @seg: packet segment the field being set belongs to
1063 * @off: offset of the raw field from the beginning of the segment in bytes
1064 * @len: length of the raw pattern to be matched
1065 * @val_loc: location of the value to match from entry's input buffer
1066 * @mask_loc: location of mask value from entry's input buffer
1067 *
1068 * This function specifies the offset of the raw field to be match from the
1069 * beginning of the specified packet segment, and the locations, in the form of
1070 * byte offsets from the start of the input buffer for a flow entry, from where
1071 * the value to match and the mask value to be extracted. These locations are
1072 * then stored in the flow profile. When adding flow entries to the associated
1073 * flow profile, these locations can be used to quickly extract the values to
1074 * create the content of a match entry. This function should only be used for
1075 * fixed-size data structures.
1076 */
1077void
1078ice_flow_add_fld_raw(struct ice_flow_seg_info *seg, u16 off, u8 len,
1079		     u16 val_loc, u16 mask_loc)
1080{
1081	if (seg->raws_cnt < ICE_FLOW_SEG_RAW_FLD_MAX) {
1082		seg->raws[seg->raws_cnt].off = off;
1083		seg->raws[seg->raws_cnt].info.type = ICE_FLOW_FLD_TYPE_SIZE;
1084		seg->raws[seg->raws_cnt].info.src.val = val_loc;
1085		seg->raws[seg->raws_cnt].info.src.mask = mask_loc;
1086		/* The "last" field is used to store the length of the field */
1087		seg->raws[seg->raws_cnt].info.src.last = len;
1088	}
1089
1090	/* Overflows of "raws" will be handled as an error condition later in
1091	 * the flow when this information is processed.
1092	 */
1093	seg->raws_cnt++;
1094}
1095
 
 
 
1096#define ICE_FLOW_RSS_SEG_HDR_L3_MASKS \
1097	(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6)
1098
1099#define ICE_FLOW_RSS_SEG_HDR_L4_MASKS \
1100	(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
1101
1102#define ICE_FLOW_RSS_SEG_HDR_VAL_MASKS \
1103	(ICE_FLOW_RSS_SEG_HDR_L3_MASKS | \
 
1104	 ICE_FLOW_RSS_SEG_HDR_L4_MASKS)
1105
1106/**
1107 * ice_flow_set_rss_seg_info - setup packet segments for RSS
1108 * @segs: pointer to the flow field segment(s)
1109 * @hash_fields: fields to be hashed on for the segment(s)
1110 * @flow_hdr: protocol header fields within a packet segment
1111 *
1112 * Helper function to extract fields from hash bitmap and use flow
1113 * header value to set flow field segment for further use in flow
1114 * profile entry or removal.
1115 */
1116static enum ice_status
1117ice_flow_set_rss_seg_info(struct ice_flow_seg_info *segs, u64 hash_fields,
1118			  u32 flow_hdr)
1119{
1120	u64 val;
1121	u8 i;
1122
1123	for_each_set_bit(i, (unsigned long *)&hash_fields,
1124			 ICE_FLOW_FIELD_IDX_MAX)
1125		ice_flow_set_fld(segs, (enum ice_flow_field)i,
1126				 ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
1127				 ICE_FLOW_FLD_OFF_INVAL, false);
1128
1129	ICE_FLOW_SET_HDRS(segs, flow_hdr);
1130
1131	if (segs->hdrs & ~ICE_FLOW_RSS_SEG_HDR_VAL_MASKS)
 
1132		return ICE_ERR_PARAM;
1133
1134	val = (u64)(segs->hdrs & ICE_FLOW_RSS_SEG_HDR_L3_MASKS);
1135	if (val && !is_power_of_2(val))
1136		return ICE_ERR_CFG;
1137
1138	val = (u64)(segs->hdrs & ICE_FLOW_RSS_SEG_HDR_L4_MASKS);
1139	if (val && !is_power_of_2(val))
1140		return ICE_ERR_CFG;
1141
1142	return 0;
1143}
1144
1145/**
1146 * ice_rem_vsi_rss_list - remove VSI from RSS list
1147 * @hw: pointer to the hardware structure
1148 * @vsi_handle: software VSI handle
1149 *
1150 * Remove the VSI from all RSS configurations in the list.
1151 */
1152void ice_rem_vsi_rss_list(struct ice_hw *hw, u16 vsi_handle)
1153{
1154	struct ice_rss_cfg *r, *tmp;
1155
1156	if (list_empty(&hw->rss_list_head))
1157		return;
1158
1159	mutex_lock(&hw->rss_locks);
1160	list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry)
1161		if (test_and_clear_bit(vsi_handle, r->vsis))
1162			if (bitmap_empty(r->vsis, ICE_MAX_VSI)) {
1163				list_del(&r->l_entry);
1164				devm_kfree(ice_hw_to_dev(hw), r);
1165			}
1166	mutex_unlock(&hw->rss_locks);
1167}
1168
1169/**
1170 * ice_rem_vsi_rss_cfg - remove RSS configurations associated with VSI
1171 * @hw: pointer to the hardware structure
1172 * @vsi_handle: software VSI handle
1173 *
1174 * This function will iterate through all flow profiles and disassociate
1175 * the VSI from that profile. If the flow profile has no VSIs it will
1176 * be removed.
1177 */
1178enum ice_status ice_rem_vsi_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
1179{
1180	const enum ice_block blk = ICE_BLK_RSS;
1181	struct ice_flow_prof *p, *t;
1182	enum ice_status status = 0;
1183
1184	if (!ice_is_vsi_valid(hw, vsi_handle))
1185		return ICE_ERR_PARAM;
1186
1187	if (list_empty(&hw->fl_profs[blk]))
1188		return 0;
1189
1190	mutex_lock(&hw->rss_locks);
1191	list_for_each_entry_safe(p, t, &hw->fl_profs[blk], l_entry)
1192		if (test_bit(vsi_handle, p->vsis)) {
1193			status = ice_flow_disassoc_prof(hw, blk, p, vsi_handle);
1194			if (status)
1195				break;
1196
1197			if (bitmap_empty(p->vsis, ICE_MAX_VSI)) {
1198				status = ice_flow_rem_prof(hw, blk, p->id);
1199				if (status)
1200					break;
1201			}
1202		}
1203	mutex_unlock(&hw->rss_locks);
1204
1205	return status;
1206}
1207
1208/**
1209 * ice_rem_rss_list - remove RSS configuration from list
1210 * @hw: pointer to the hardware structure
1211 * @vsi_handle: software VSI handle
1212 * @prof: pointer to flow profile
1213 *
1214 * Assumption: lock has already been acquired for RSS list
1215 */
1216static void
1217ice_rem_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
1218{
1219	struct ice_rss_cfg *r, *tmp;
1220
1221	/* Search for RSS hash fields associated to the VSI that match the
1222	 * hash configurations associated to the flow profile. If found
1223	 * remove from the RSS entry list of the VSI context and delete entry.
1224	 */
1225	list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry)
1226		if (r->hashed_flds == prof->segs[prof->segs_cnt - 1].match &&
1227		    r->packet_hdr == prof->segs[prof->segs_cnt - 1].hdrs) {
1228			clear_bit(vsi_handle, r->vsis);
1229			if (bitmap_empty(r->vsis, ICE_MAX_VSI)) {
1230				list_del(&r->l_entry);
1231				devm_kfree(ice_hw_to_dev(hw), r);
1232			}
1233			return;
1234		}
1235}
1236
1237/**
1238 * ice_add_rss_list - add RSS configuration to list
1239 * @hw: pointer to the hardware structure
1240 * @vsi_handle: software VSI handle
1241 * @prof: pointer to flow profile
1242 *
1243 * Assumption: lock has already been acquired for RSS list
1244 */
1245static enum ice_status
1246ice_add_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
1247{
1248	struct ice_rss_cfg *r, *rss_cfg;
1249
1250	list_for_each_entry(r, &hw->rss_list_head, l_entry)
1251		if (r->hashed_flds == prof->segs[prof->segs_cnt - 1].match &&
1252		    r->packet_hdr == prof->segs[prof->segs_cnt - 1].hdrs) {
1253			set_bit(vsi_handle, r->vsis);
1254			return 0;
1255		}
1256
1257	rss_cfg = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rss_cfg),
1258			       GFP_KERNEL);
1259	if (!rss_cfg)
1260		return ICE_ERR_NO_MEMORY;
1261
1262	rss_cfg->hashed_flds = prof->segs[prof->segs_cnt - 1].match;
1263	rss_cfg->packet_hdr = prof->segs[prof->segs_cnt - 1].hdrs;
1264	set_bit(vsi_handle, rss_cfg->vsis);
1265
1266	list_add_tail(&rss_cfg->l_entry, &hw->rss_list_head);
1267
1268	return 0;
1269}
1270
1271#define ICE_FLOW_PROF_HASH_S	0
1272#define ICE_FLOW_PROF_HASH_M	(0xFFFFFFFFULL << ICE_FLOW_PROF_HASH_S)
1273#define ICE_FLOW_PROF_HDR_S	32
1274#define ICE_FLOW_PROF_HDR_M	(0x3FFFFFFFULL << ICE_FLOW_PROF_HDR_S)
1275#define ICE_FLOW_PROF_ENCAP_S	63
1276#define ICE_FLOW_PROF_ENCAP_M	(BIT_ULL(ICE_FLOW_PROF_ENCAP_S))
1277
1278#define ICE_RSS_OUTER_HEADERS	1
1279#define ICE_RSS_INNER_HEADERS	2
1280
1281/* Flow profile ID format:
1282 * [0:31] - Packet match fields
1283 * [32:62] - Protocol header
1284 * [63] - Encapsulation flag, 0 if non-tunneled, 1 if tunneled
1285 */
1286#define ICE_FLOW_GEN_PROFID(hash, hdr, segs_cnt) \
1287	(u64)(((u64)(hash) & ICE_FLOW_PROF_HASH_M) | \
1288	      (((u64)(hdr) << ICE_FLOW_PROF_HDR_S) & ICE_FLOW_PROF_HDR_M) | \
1289	      ((u8)((segs_cnt) - 1) ? ICE_FLOW_PROF_ENCAP_M : 0))
1290
1291/**
1292 * ice_add_rss_cfg_sync - add an RSS configuration
1293 * @hw: pointer to the hardware structure
1294 * @vsi_handle: software VSI handle
1295 * @hashed_flds: hash bit fields (ICE_FLOW_HASH_*) to configure
1296 * @addl_hdrs: protocol header fields
1297 * @segs_cnt: packet segment count
1298 *
1299 * Assumption: lock has already been acquired for RSS list
1300 */
1301static enum ice_status
1302ice_add_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
1303		     u32 addl_hdrs, u8 segs_cnt)
1304{
1305	const enum ice_block blk = ICE_BLK_RSS;
1306	struct ice_flow_prof *prof = NULL;
1307	struct ice_flow_seg_info *segs;
1308	enum ice_status status;
1309
1310	if (!segs_cnt || segs_cnt > ICE_FLOW_SEG_MAX)
1311		return ICE_ERR_PARAM;
1312
1313	segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL);
1314	if (!segs)
1315		return ICE_ERR_NO_MEMORY;
1316
1317	/* Construct the packet segment info from the hashed fields */
1318	status = ice_flow_set_rss_seg_info(&segs[segs_cnt - 1], hashed_flds,
1319					   addl_hdrs);
1320	if (status)
1321		goto exit;
1322
1323	/* Search for a flow profile that has matching headers, hash fields
1324	 * and has the input VSI associated to it. If found, no further
1325	 * operations required and exit.
1326	 */
1327	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
1328					vsi_handle,
1329					ICE_FLOW_FIND_PROF_CHK_FLDS |
1330					ICE_FLOW_FIND_PROF_CHK_VSI);
1331	if (prof)
1332		goto exit;
1333
1334	/* Check if a flow profile exists with the same protocol headers and
1335	 * associated with the input VSI. If so disassociate the VSI from
1336	 * this profile. The VSI will be added to a new profile created with
1337	 * the protocol header and new hash field configuration.
1338	 */
1339	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
1340					vsi_handle, ICE_FLOW_FIND_PROF_CHK_VSI);
1341	if (prof) {
1342		status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
1343		if (!status)
1344			ice_rem_rss_list(hw, vsi_handle, prof);
1345		else
1346			goto exit;
1347
1348		/* Remove profile if it has no VSIs associated */
1349		if (bitmap_empty(prof->vsis, ICE_MAX_VSI)) {
1350			status = ice_flow_rem_prof(hw, blk, prof->id);
1351			if (status)
1352				goto exit;
1353		}
1354	}
1355
1356	/* Search for a profile that has same match fields only. If this
1357	 * exists then associate the VSI to this profile.
1358	 */
1359	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
1360					vsi_handle,
1361					ICE_FLOW_FIND_PROF_CHK_FLDS);
1362	if (prof) {
1363		status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
1364		if (!status)
1365			status = ice_add_rss_list(hw, vsi_handle, prof);
1366		goto exit;
1367	}
1368
1369	/* Create a new flow profile with generated profile and packet
1370	 * segment information.
1371	 */
1372	status = ice_flow_add_prof(hw, blk, ICE_FLOW_RX,
1373				   ICE_FLOW_GEN_PROFID(hashed_flds,
1374						       segs[segs_cnt - 1].hdrs,
1375						       segs_cnt),
1376				   segs, segs_cnt, &prof);
1377	if (status)
1378		goto exit;
1379
1380	status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
1381	/* If association to a new flow profile failed then this profile can
1382	 * be removed.
1383	 */
1384	if (status) {
1385		ice_flow_rem_prof(hw, blk, prof->id);
1386		goto exit;
1387	}
1388
1389	status = ice_add_rss_list(hw, vsi_handle, prof);
1390
1391exit:
1392	kfree(segs);
1393	return status;
1394}
1395
1396/**
1397 * ice_add_rss_cfg - add an RSS configuration with specified hashed fields
1398 * @hw: pointer to the hardware structure
1399 * @vsi_handle: software VSI handle
1400 * @hashed_flds: hash bit fields (ICE_FLOW_HASH_*) to configure
1401 * @addl_hdrs: protocol header fields
1402 *
1403 * This function will generate a flow profile based on fields associated with
1404 * the input fields to hash on, the flow type and use the VSI number to add
1405 * a flow entry to the profile.
1406 */
1407enum ice_status
1408ice_add_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
1409		u32 addl_hdrs)
1410{
1411	enum ice_status status;
1412
1413	if (hashed_flds == ICE_HASH_INVALID ||
1414	    !ice_is_vsi_valid(hw, vsi_handle))
1415		return ICE_ERR_PARAM;
1416
1417	mutex_lock(&hw->rss_locks);
1418	status = ice_add_rss_cfg_sync(hw, vsi_handle, hashed_flds, addl_hdrs,
1419				      ICE_RSS_OUTER_HEADERS);
1420	if (!status)
1421		status = ice_add_rss_cfg_sync(hw, vsi_handle, hashed_flds,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1422					      addl_hdrs, ICE_RSS_INNER_HEADERS);
1423	mutex_unlock(&hw->rss_locks);
1424
1425	return status;
1426}
1427
1428/* Mapping of AVF hash bit fields to an L3-L4 hash combination.
1429 * As the ice_flow_avf_hdr_field represent individual bit shifts in a hash,
1430 * convert its values to their appropriate flow L3, L4 values.
1431 */
1432#define ICE_FLOW_AVF_RSS_IPV4_MASKS \
1433	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_OTHER) | \
1434	 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV4))
1435#define ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS \
1436	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP_SYN_NO_ACK) | \
1437	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP))
1438#define ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS \
1439	(BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV4_UDP) | \
1440	 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV4_UDP) | \
1441	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_UDP))
1442#define ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS \
1443	(ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS | \
1444	 ICE_FLOW_AVF_RSS_IPV4_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP))
1445
1446#define ICE_FLOW_AVF_RSS_IPV6_MASKS \
1447	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_OTHER) | \
1448	 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV6))
1449#define ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS \
1450	(BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV6_UDP) | \
1451	 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV6_UDP) | \
1452	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_UDP))
1453#define ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS \
1454	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP_SYN_NO_ACK) | \
1455	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP))
1456#define ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS \
1457	(ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS | \
1458	 ICE_FLOW_AVF_RSS_IPV6_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP))
1459
1460/**
1461 * ice_add_avf_rss_cfg - add an RSS configuration for AVF driver
1462 * @hw: pointer to the hardware structure
1463 * @vsi_handle: software VSI handle
1464 * @avf_hash: hash bit fields (ICE_AVF_FLOW_FIELD_*) to configure
1465 *
1466 * This function will take the hash bitmap provided by the AVF driver via a
1467 * message, convert it to ICE-compatible values, and configure RSS flow
1468 * profiles.
1469 */
1470enum ice_status
1471ice_add_avf_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 avf_hash)
1472{
1473	enum ice_status status = 0;
1474	u64 hash_flds;
1475
1476	if (avf_hash == ICE_AVF_FLOW_FIELD_INVALID ||
1477	    !ice_is_vsi_valid(hw, vsi_handle))
1478		return ICE_ERR_PARAM;
1479
1480	/* Make sure no unsupported bits are specified */
1481	if (avf_hash & ~(ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS |
1482			 ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS))
1483		return ICE_ERR_CFG;
1484
1485	hash_flds = avf_hash;
1486
1487	/* Always create an L3 RSS configuration for any L4 RSS configuration */
1488	if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS)
1489		hash_flds |= ICE_FLOW_AVF_RSS_IPV4_MASKS;
1490
1491	if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS)
1492		hash_flds |= ICE_FLOW_AVF_RSS_IPV6_MASKS;
1493
1494	/* Create the corresponding RSS configuration for each valid hash bit */
1495	while (hash_flds) {
1496		u64 rss_hash = ICE_HASH_INVALID;
1497
1498		if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS) {
1499			if (hash_flds & ICE_FLOW_AVF_RSS_IPV4_MASKS) {
1500				rss_hash = ICE_FLOW_HASH_IPV4;
1501				hash_flds &= ~ICE_FLOW_AVF_RSS_IPV4_MASKS;
1502			} else if (hash_flds &
1503				   ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS) {
1504				rss_hash = ICE_FLOW_HASH_IPV4 |
1505					ICE_FLOW_HASH_TCP_PORT;
1506				hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS;
1507			} else if (hash_flds &
1508				   ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS) {
1509				rss_hash = ICE_FLOW_HASH_IPV4 |
1510					ICE_FLOW_HASH_UDP_PORT;
1511				hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS;
1512			} else if (hash_flds &
1513				   BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP)) {
1514				rss_hash = ICE_FLOW_HASH_IPV4 |
1515					ICE_FLOW_HASH_SCTP_PORT;
1516				hash_flds &=
1517					~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP);
1518			}
1519		} else if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS) {
1520			if (hash_flds & ICE_FLOW_AVF_RSS_IPV6_MASKS) {
1521				rss_hash = ICE_FLOW_HASH_IPV6;
1522				hash_flds &= ~ICE_FLOW_AVF_RSS_IPV6_MASKS;
1523			} else if (hash_flds &
1524				   ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS) {
1525				rss_hash = ICE_FLOW_HASH_IPV6 |
1526					ICE_FLOW_HASH_TCP_PORT;
1527				hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS;
1528			} else if (hash_flds &
1529				   ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS) {
1530				rss_hash = ICE_FLOW_HASH_IPV6 |
1531					ICE_FLOW_HASH_UDP_PORT;
1532				hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS;
1533			} else if (hash_flds &
1534				   BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP)) {
1535				rss_hash = ICE_FLOW_HASH_IPV6 |
1536					ICE_FLOW_HASH_SCTP_PORT;
1537				hash_flds &=
1538					~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP);
1539			}
1540		}
1541
1542		if (rss_hash == ICE_HASH_INVALID)
1543			return ICE_ERR_OUT_OF_RANGE;
1544
1545		status = ice_add_rss_cfg(hw, vsi_handle, rss_hash,
1546					 ICE_FLOW_SEG_HDR_NONE);
1547		if (status)
1548			break;
1549	}
1550
1551	return status;
1552}
1553
1554/**
1555 * ice_replay_rss_cfg - replay RSS configurations associated with VSI
1556 * @hw: pointer to the hardware structure
1557 * @vsi_handle: software VSI handle
1558 */
1559enum ice_status ice_replay_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
1560{
1561	enum ice_status status = 0;
1562	struct ice_rss_cfg *r;
1563
1564	if (!ice_is_vsi_valid(hw, vsi_handle))
1565		return ICE_ERR_PARAM;
1566
1567	mutex_lock(&hw->rss_locks);
1568	list_for_each_entry(r, &hw->rss_list_head, l_entry) {
1569		if (test_bit(vsi_handle, r->vsis)) {
1570			status = ice_add_rss_cfg_sync(hw, vsi_handle,
1571						      r->hashed_flds,
1572						      r->packet_hdr,
1573						      ICE_RSS_OUTER_HEADERS);
1574			if (status)
1575				break;
1576			status = ice_add_rss_cfg_sync(hw, vsi_handle,
1577						      r->hashed_flds,
1578						      r->packet_hdr,
1579						      ICE_RSS_INNER_HEADERS);
1580			if (status)
1581				break;
1582		}
1583	}
1584	mutex_unlock(&hw->rss_locks);
1585
1586	return status;
1587}
1588
1589/**
1590 * ice_get_rss_cfg - returns hashed fields for the given header types
1591 * @hw: pointer to the hardware structure
1592 * @vsi_handle: software VSI handle
1593 * @hdrs: protocol header type
1594 *
1595 * This function will return the match fields of the first instance of flow
1596 * profile having the given header types and containing input VSI
1597 */
1598u64 ice_get_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u32 hdrs)
1599{
1600	u64 rss_hash = ICE_HASH_INVALID;
1601	struct ice_rss_cfg *r;
1602
1603	/* verify if the protocol header is non zero and VSI is valid */
1604	if (hdrs == ICE_FLOW_SEG_HDR_NONE || !ice_is_vsi_valid(hw, vsi_handle))
1605		return ICE_HASH_INVALID;
1606
1607	mutex_lock(&hw->rss_locks);
1608	list_for_each_entry(r, &hw->rss_list_head, l_entry)
1609		if (test_bit(vsi_handle, r->vsis) &&
1610		    r->packet_hdr == hdrs) {
1611			rss_hash = r->hashed_flds;
1612			break;
1613		}
1614	mutex_unlock(&hw->rss_locks);
1615
1616	return rss_hash;
1617}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2019, Intel Corporation. */
   3
   4#include "ice_common.h"
   5#include "ice_flow.h"
   6
   7/* Describe properties of a protocol header field */
   8struct ice_flow_field_info {
   9	enum ice_flow_seg_hdr hdr;
  10	s16 off;	/* Offset from start of a protocol header, in bits */
  11	u16 size;	/* Size of fields in bits */
  12	u16 mask;	/* 16-bit mask for field */
  13};
  14
  15#define ICE_FLOW_FLD_INFO(_hdr, _offset_bytes, _size_bytes) { \
  16	.hdr = _hdr, \
  17	.off = (_offset_bytes) * BITS_PER_BYTE, \
  18	.size = (_size_bytes) * BITS_PER_BYTE, \
  19	.mask = 0, \
  20}
  21
  22#define ICE_FLOW_FLD_INFO_MSK(_hdr, _offset_bytes, _size_bytes, _mask) { \
  23	.hdr = _hdr, \
  24	.off = (_offset_bytes) * BITS_PER_BYTE, \
  25	.size = (_size_bytes) * BITS_PER_BYTE, \
  26	.mask = _mask, \
  27}
  28
  29/* Table containing properties of supported protocol header fields */
  30static const
  31struct ice_flow_field_info ice_flds_info[ICE_FLOW_FIELD_IDX_MAX] = {
  32	/* Ether */
  33	/* ICE_FLOW_FIELD_IDX_ETH_DA */
  34	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, ETH_ALEN),
  35	/* ICE_FLOW_FIELD_IDX_ETH_SA */
  36	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, ETH_ALEN, ETH_ALEN),
  37	/* ICE_FLOW_FIELD_IDX_S_VLAN */
  38	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 12, sizeof(__be16)),
  39	/* ICE_FLOW_FIELD_IDX_C_VLAN */
  40	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 14, sizeof(__be16)),
  41	/* ICE_FLOW_FIELD_IDX_ETH_TYPE */
  42	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, sizeof(__be16)),
  43	/* IPv4 / IPv6 */
  44	/* ICE_FLOW_FIELD_IDX_IPV4_DSCP */
  45	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV4, 0, 1, 0x00fc),
  46	/* ICE_FLOW_FIELD_IDX_IPV6_DSCP */
  47	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV6, 0, 1, 0x0ff0),
  48	/* ICE_FLOW_FIELD_IDX_IPV4_TTL */
  49	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8, 1, 0xff00),
  50	/* ICE_FLOW_FIELD_IDX_IPV4_PROT */
  51	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8, 1, 0x00ff),
  52	/* ICE_FLOW_FIELD_IDX_IPV6_TTL */
  53	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6, 1, 0x00ff),
  54	/* ICE_FLOW_FIELD_IDX_IPV6_PROT */
  55	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6, 1, 0xff00),
  56	/* ICE_FLOW_FIELD_IDX_IPV4_SA */
  57	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 12, sizeof(struct in_addr)),
  58	/* ICE_FLOW_FIELD_IDX_IPV4_DA */
  59	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 16, sizeof(struct in_addr)),
  60	/* ICE_FLOW_FIELD_IDX_IPV6_SA */
  61	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 8, sizeof(struct in6_addr)),
  62	/* ICE_FLOW_FIELD_IDX_IPV6_DA */
  63	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 24, sizeof(struct in6_addr)),
  64	/* Transport */
  65	/* ICE_FLOW_FIELD_IDX_TCP_SRC_PORT */
  66	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 0, sizeof(__be16)),
  67	/* ICE_FLOW_FIELD_IDX_TCP_DST_PORT */
  68	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 2, sizeof(__be16)),
  69	/* ICE_FLOW_FIELD_IDX_UDP_SRC_PORT */
  70	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 0, sizeof(__be16)),
  71	/* ICE_FLOW_FIELD_IDX_UDP_DST_PORT */
  72	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 2, sizeof(__be16)),
  73	/* ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT */
  74	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 0, sizeof(__be16)),
  75	/* ICE_FLOW_FIELD_IDX_SCTP_DST_PORT */
  76	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 2, sizeof(__be16)),
  77	/* ICE_FLOW_FIELD_IDX_TCP_FLAGS */
  78	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 13, 1),
  79	/* ARP */
  80	/* ICE_FLOW_FIELD_IDX_ARP_SIP */
  81	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 14, sizeof(struct in_addr)),
  82	/* ICE_FLOW_FIELD_IDX_ARP_DIP */
  83	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 24, sizeof(struct in_addr)),
  84	/* ICE_FLOW_FIELD_IDX_ARP_SHA */
  85	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 8, ETH_ALEN),
  86	/* ICE_FLOW_FIELD_IDX_ARP_DHA */
  87	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 18, ETH_ALEN),
  88	/* ICE_FLOW_FIELD_IDX_ARP_OP */
  89	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 6, sizeof(__be16)),
  90	/* ICMP */
  91	/* ICE_FLOW_FIELD_IDX_ICMP_TYPE */
  92	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 0, 1),
  93	/* ICE_FLOW_FIELD_IDX_ICMP_CODE */
  94	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 1, 1),
  95	/* GRE */
  96	/* ICE_FLOW_FIELD_IDX_GRE_KEYID */
  97	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GRE, 12,
  98			  sizeof_field(struct gre_full_hdr, key)),
  99	/* GTP */
 100	/* ICE_FLOW_FIELD_IDX_GTPC_TEID */
 101	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPC_TEID, 12, sizeof(__be32)),
 102	/* ICE_FLOW_FIELD_IDX_GTPU_IP_TEID */
 103	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_IP, 12, sizeof(__be32)),
 104	/* ICE_FLOW_FIELD_IDX_GTPU_EH_TEID */
 105	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_EH, 12, sizeof(__be32)),
 106	/* ICE_FLOW_FIELD_IDX_GTPU_EH_QFI */
 107	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_GTPU_EH, 22, sizeof(__be16),
 108			      0x3f00),
 109	/* ICE_FLOW_FIELD_IDX_GTPU_UP_TEID */
 110	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_UP, 12, sizeof(__be32)),
 111	/* ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID */
 112	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_DWN, 12, sizeof(__be32)),
 113	/* PPPoE */
 114	/* ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID */
 115	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PPPOE, 2, sizeof(__be16)),
 116	/* PFCP */
 117	/* ICE_FLOW_FIELD_IDX_PFCP_SEID */
 118	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PFCP_SESSION, 12, sizeof(__be64)),
 119	/* L2TPv3 */
 120	/* ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID */
 121	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_L2TPV3, 0, sizeof(__be32)),
 122	/* ESP */
 123	/* ICE_FLOW_FIELD_IDX_ESP_SPI */
 124	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ESP, 0, sizeof(__be32)),
 125	/* AH */
 126	/* ICE_FLOW_FIELD_IDX_AH_SPI */
 127	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_AH, 4, sizeof(__be32)),
 128	/* NAT_T_ESP */
 129	/* ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI */
 130	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_NAT_T_ESP, 8, sizeof(__be32)),
 131};
 132
 133/* Bitmaps indicating relevant packet types for a particular protocol header
 134 *
 135 * Packet types for packets with an Outer/First/Single MAC header
 136 */
 137static const u32 ice_ptypes_mac_ofos[] = {
 138	0xFDC00846, 0xBFBF7F7E, 0xF70001DF, 0xFEFDFDFB,
 139	0x0000077E, 0x00000000, 0x00000000, 0x00000000,
 140	0x00400000, 0x03FFF000, 0x7FFFFFE0, 0x00000000,
 141	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 142	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 143	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 144	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 145	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 146};
 147
 148/* Packet types for packets with an Innermost/Last MAC VLAN header */
 149static const u32 ice_ptypes_macvlan_il[] = {
 150	0x00000000, 0xBC000000, 0x000001DF, 0xF0000000,
 151	0x0000077E, 0x00000000, 0x00000000, 0x00000000,
 152	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 153	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 154	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 155	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 156	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 157	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 158};
 159
 160/* Packet types for packets with an Outer/First/Single IPv4 header, does NOT
 161 * include IPv4 other PTYPEs
 162 */
 163static const u32 ice_ptypes_ipv4_ofos[] = {
 164	0x1DC00000, 0x04000800, 0x00000000, 0x00000000,
 165	0x00000000, 0x00000155, 0x00000000, 0x00000000,
 166	0x00000000, 0x000FC000, 0x00000000, 0x00000000,
 167	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 168	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 169	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 170	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 171	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 172};
 173
 174/* Packet types for packets with an Outer/First/Single IPv4 header, includes
 175 * IPv4 other PTYPEs
 176 */
 177static const u32 ice_ptypes_ipv4_ofos_all[] = {
 178	0x1DC00000, 0x04000800, 0x00000000, 0x00000000,
 179	0x00000000, 0x00000155, 0x00000000, 0x00000000,
 180	0x00000000, 0x000FC000, 0x83E0F800, 0x00000101,
 181	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 182	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 183	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 184	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 185	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 186};
 187
 188/* Packet types for packets with an Innermost/Last IPv4 header */
 189static const u32 ice_ptypes_ipv4_il[] = {
 190	0xE0000000, 0xB807700E, 0x80000003, 0xE01DC03B,
 191	0x0000000E, 0x00000000, 0x00000000, 0x00000000,
 192	0x00000000, 0x00000000, 0x001FF800, 0x00000000,
 193	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 194	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 195	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 196	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 197	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 198};
 199
 200/* Packet types for packets with an Outer/First/Single IPv6 header, does NOT
 201 * include IPv6 other PTYPEs
 202 */
 203static const u32 ice_ptypes_ipv6_ofos[] = {
 204	0x00000000, 0x00000000, 0x77000000, 0x10002000,
 205	0x00000000, 0x000002AA, 0x00000000, 0x00000000,
 206	0x00000000, 0x03F00000, 0x00000000, 0x00000000,
 207	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 208	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 209	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 210	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 211	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 212};
 213
 214/* Packet types for packets with an Outer/First/Single IPv6 header, includes
 215 * IPv6 other PTYPEs
 216 */
 217static const u32 ice_ptypes_ipv6_ofos_all[] = {
 218	0x00000000, 0x00000000, 0x77000000, 0x10002000,
 219	0x00000000, 0x000002AA, 0x00000000, 0x00000000,
 220	0x00080F00, 0x03F00000, 0x7C1F0000, 0x00000206,
 221	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 222	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 223	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 224	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 225	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 226};
 227
 228/* Packet types for packets with an Innermost/Last IPv6 header */
 229static const u32 ice_ptypes_ipv6_il[] = {
 230	0x00000000, 0x03B80770, 0x000001DC, 0x0EE00000,
 231	0x00000770, 0x00000000, 0x00000000, 0x00000000,
 232	0x00000000, 0x00000000, 0x7FE00000, 0x00000000,
 233	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 234	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 235	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 236	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 237	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 238};
 239
 240/* Packet types for packets with an Outer/First/Single IPv4 header - no L4 */
 241static const u32 ice_ptypes_ipv4_ofos_no_l4[] = {
 242	0x10C00000, 0x04000800, 0x00000000, 0x00000000,
 243	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 244	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 245	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 246	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 247	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 248	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 249	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 250};
 251
 252/* Packet types for packets with an Outermost/First ARP header */
 253static const u32 ice_ptypes_arp_of[] = {
 254	0x00000800, 0x00000000, 0x00000000, 0x00000000,
 255	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 256	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 257	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 258	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 259	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 260	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 261	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 262};
 263
 264/* Packet types for packets with an Innermost/Last IPv4 header - no L4 */
 265static const u32 ice_ptypes_ipv4_il_no_l4[] = {
 266	0x60000000, 0x18043008, 0x80000002, 0x6010c021,
 267	0x00000008, 0x00000000, 0x00000000, 0x00000000,
 268	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 269	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 270	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 271	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 272	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 273	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 274};
 275
 276/* Packet types for packets with an Outer/First/Single IPv6 header - no L4 */
 277static const u32 ice_ptypes_ipv6_ofos_no_l4[] = {
 278	0x00000000, 0x00000000, 0x43000000, 0x10002000,
 279	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 280	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 281	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 282	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 283	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 284	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 285	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 286};
 287
 288/* Packet types for packets with an Innermost/Last IPv6 header - no L4 */
 289static const u32 ice_ptypes_ipv6_il_no_l4[] = {
 290	0x00000000, 0x02180430, 0x0000010c, 0x086010c0,
 291	0x00000430, 0x00000000, 0x00000000, 0x00000000,
 292	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 293	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 294	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 295	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 296	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 297	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 298};
 299
 300/* UDP Packet types for non-tunneled packets or tunneled
 301 * packets with inner UDP.
 302 */
 303static const u32 ice_ptypes_udp_il[] = {
 304	0x81000000, 0x20204040, 0x04000010, 0x80810102,
 305	0x00000040, 0x00000000, 0x00000000, 0x00000000,
 306	0x00000000, 0x00410000, 0x90842000, 0x00000007,
 307	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 308	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 309	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 310	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 311	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 312};
 313
 314/* Packet types for packets with an Innermost/Last TCP header */
 315static const u32 ice_ptypes_tcp_il[] = {
 316	0x04000000, 0x80810102, 0x10000040, 0x02040408,
 317	0x00000102, 0x00000000, 0x00000000, 0x00000000,
 318	0x00000000, 0x00820000, 0x21084000, 0x00000000,
 319	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 320	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 321	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 322	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 323	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 324};
 325
 326/* Packet types for packets with an Innermost/Last SCTP header */
 327static const u32 ice_ptypes_sctp_il[] = {
 328	0x08000000, 0x01020204, 0x20000081, 0x04080810,
 329	0x00000204, 0x00000000, 0x00000000, 0x00000000,
 330	0x00000000, 0x01040000, 0x00000000, 0x00000000,
 331	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 332	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 333	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 334	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 335	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 336};
 337
 338/* Packet types for packets with an Outermost/First ICMP header */
 339static const u32 ice_ptypes_icmp_of[] = {
 340	0x10000000, 0x00000000, 0x00000000, 0x00000000,
 341	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 342	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 343	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 344	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 345	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 346	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 347	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 348};
 349
 350/* Packet types for packets with an Innermost/Last ICMP header */
 351static const u32 ice_ptypes_icmp_il[] = {
 352	0x00000000, 0x02040408, 0x40000102, 0x08101020,
 353	0x00000408, 0x00000000, 0x00000000, 0x00000000,
 354	0x00000000, 0x00000000, 0x42108000, 0x00000000,
 355	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 356	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 357	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 358	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 359	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 360};
 361
 362/* Packet types for packets with an Outermost/First GRE header */
 363static const u32 ice_ptypes_gre_of[] = {
 364	0x00000000, 0xBFBF7800, 0x000001DF, 0xFEFDE000,
 365	0x0000017E, 0x00000000, 0x00000000, 0x00000000,
 366	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 367	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 368	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 369	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 370	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 371	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 372};
 373
 374/* Packet types for packets with an Innermost/Last MAC header */
 375static const u32 ice_ptypes_mac_il[] = {
 376	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 377	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 378	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 379	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 380	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 381	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 382	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 383	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 384};
 385
 386/* Packet types for GTPC */
 387static const u32 ice_ptypes_gtpc[] = {
 388	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 389	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 390	0x00000000, 0x00000000, 0x00000180, 0x00000000,
 391	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 392	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 393	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 394	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 395	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 396};
 397
 398/* Packet types for GTPC with TEID */
 399static const u32 ice_ptypes_gtpc_tid[] = {
 400	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 401	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 402	0x00000000, 0x00000000, 0x00000060, 0x00000000,
 403	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 404	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 405	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 406	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 407	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 408};
 409
 410/* Packet types for GTPU */
 411static const struct ice_ptype_attributes ice_attr_gtpu_eh[] = {
 412	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 413	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 414	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
 415	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 416	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 417	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 418	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 419	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
 420	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 421	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 422	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 423	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 424	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
 425	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 426	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_PDU_EH },
 427	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 428	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 429	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
 430	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
 431	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_PDU_EH },
 432};
 433
 434static const struct ice_ptype_attributes ice_attr_gtpu_down[] = {
 435	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 436	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 437	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
 438	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 439	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 440	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 441	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 442	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
 443	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 444	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 445	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 446	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 447	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
 448	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 449	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 450	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 451	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 452	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
 453	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 454	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_DOWNLINK },
 455};
 456
 457static const struct ice_ptype_attributes ice_attr_gtpu_up[] = {
 458	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 459	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 460	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
 461	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 462	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 463	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 464	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 465	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
 466	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 467	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 468	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 469	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 470	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
 471	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 472	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_UPLINK },
 473	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 474	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 475	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
 476	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
 477	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_UPLINK },
 478};
 479
 480static const u32 ice_ptypes_gtpu[] = {
 481	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 482	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 483	0x00000000, 0x00000000, 0x7FFFFE00, 0x00000000,
 484	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 485	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 486	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 487	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 488	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 489};
 490
 491/* Packet types for PPPoE */
 492static const u32 ice_ptypes_pppoe[] = {
 493	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 494	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 495	0x00000000, 0x03ffe000, 0x00000000, 0x00000000,
 496	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 497	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 498	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 499	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 500	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 501};
 502
 503/* Packet types for packets with PFCP NODE header */
 504static const u32 ice_ptypes_pfcp_node[] = {
 505	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 506	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 507	0x00000000, 0x00000000, 0x80000000, 0x00000002,
 508	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 509	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 510	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 511	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 512	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 513};
 514
 515/* Packet types for packets with PFCP SESSION header */
 516static const u32 ice_ptypes_pfcp_session[] = {
 517	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 518	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 519	0x00000000, 0x00000000, 0x00000000, 0x00000005,
 520	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 521	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 522	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 523	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 524	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 525};
 526
 527/* Packet types for L2TPv3 */
 528static const u32 ice_ptypes_l2tpv3[] = {
 529	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 530	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 531	0x00000000, 0x00000000, 0x00000000, 0x00000300,
 532	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 533	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 534	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 535	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 536	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 537};
 538
 539/* Packet types for ESP */
 540static const u32 ice_ptypes_esp[] = {
 541	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 542	0x00000000, 0x00000003, 0x00000000, 0x00000000,
 543	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 544	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 545	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 546	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 547	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 548	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 549};
 550
 551/* Packet types for AH */
 552static const u32 ice_ptypes_ah[] = {
 553	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 554	0x00000000, 0x0000000C, 0x00000000, 0x00000000,
 555	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 556	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 557	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 558	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 559	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 560	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 561};
 562
 563/* Packet types for packets with NAT_T ESP header */
 564static const u32 ice_ptypes_nat_t_esp[] = {
 565	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 566	0x00000000, 0x00000030, 0x00000000, 0x00000000,
 567	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 568	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 569	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 570	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 571	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 572	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 573};
 574
 575static const u32 ice_ptypes_mac_non_ip_ofos[] = {
 576	0x00000846, 0x00000000, 0x00000000, 0x00000000,
 577	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 578	0x00400000, 0x03FFF000, 0x00000000, 0x00000000,
 579	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 580	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 581	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 582	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 583	0x00000000, 0x00000000, 0x00000000, 0x00000000,
 584};
 585
 586/* Manage parameters and info. used during the creation of a flow profile */
 587struct ice_flow_prof_params {
 588	enum ice_block blk;
 589	u16 entry_length; /* # of bytes formatted entry will require */
 590	u8 es_cnt;
 591	struct ice_flow_prof *prof;
 592
 593	/* For ACL, the es[0] will have the data of ICE_RX_MDID_PKT_FLAGS_15_0
 594	 * This will give us the direction flags.
 595	 */
 596	struct ice_fv_word es[ICE_MAX_FV_WORDS];
 597	/* attributes can be used to add attributes to a particular PTYPE */
 598	const struct ice_ptype_attributes *attr;
 599	u16 attr_cnt;
 600
 601	u16 mask[ICE_MAX_FV_WORDS];
 602	DECLARE_BITMAP(ptypes, ICE_FLOW_PTYPE_MAX);
 603};
 604
 605#define ICE_FLOW_RSS_HDRS_INNER_MASK \
 606	(ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_GTPC | \
 607	ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_GTPU | \
 608	ICE_FLOW_SEG_HDR_PFCP_SESSION | ICE_FLOW_SEG_HDR_L2TPV3 | \
 609	ICE_FLOW_SEG_HDR_ESP | ICE_FLOW_SEG_HDR_AH | \
 610	ICE_FLOW_SEG_HDR_NAT_T_ESP)
 611
 612#define ICE_FLOW_SEG_HDRS_L2_MASK	\
 613	(ICE_FLOW_SEG_HDR_ETH | ICE_FLOW_SEG_HDR_VLAN)
 614#define ICE_FLOW_SEG_HDRS_L3_MASK	\
 615	(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_ARP)
 616#define ICE_FLOW_SEG_HDRS_L4_MASK	\
 617	(ICE_FLOW_SEG_HDR_ICMP | ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | \
 618	 ICE_FLOW_SEG_HDR_SCTP)
 619/* mask for L4 protocols that are NOT part of IPv4/6 OTHER PTYPE groups */
 620#define ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER	\
 621	(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
 622
 623/**
 624 * ice_flow_val_hdrs - validates packet segments for valid protocol headers
 625 * @segs: array of one or more packet segments that describe the flow
 626 * @segs_cnt: number of packet segments provided
 627 */
 628static enum ice_status
 629ice_flow_val_hdrs(struct ice_flow_seg_info *segs, u8 segs_cnt)
 630{
 631	u8 i;
 632
 633	for (i = 0; i < segs_cnt; i++) {
 634		/* Multiple L3 headers */
 635		if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK &&
 636		    !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK))
 637			return ICE_ERR_PARAM;
 638
 639		/* Multiple L4 headers */
 640		if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK &&
 641		    !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK))
 642			return ICE_ERR_PARAM;
 643	}
 644
 645	return 0;
 646}
 647
 648/* Sizes of fixed known protocol headers without header options */
 649#define ICE_FLOW_PROT_HDR_SZ_MAC	14
 650#define ICE_FLOW_PROT_HDR_SZ_MAC_VLAN	(ICE_FLOW_PROT_HDR_SZ_MAC + 2)
 651#define ICE_FLOW_PROT_HDR_SZ_IPV4	20
 652#define ICE_FLOW_PROT_HDR_SZ_IPV6	40
 653#define ICE_FLOW_PROT_HDR_SZ_ARP	28
 654#define ICE_FLOW_PROT_HDR_SZ_ICMP	8
 655#define ICE_FLOW_PROT_HDR_SZ_TCP	20
 656#define ICE_FLOW_PROT_HDR_SZ_UDP	8
 657#define ICE_FLOW_PROT_HDR_SZ_SCTP	12
 658
 659/**
 660 * ice_flow_calc_seg_sz - calculates size of a packet segment based on headers
 661 * @params: information about the flow to be processed
 662 * @seg: index of packet segment whose header size is to be determined
 663 */
 664static u16 ice_flow_calc_seg_sz(struct ice_flow_prof_params *params, u8 seg)
 665{
 666	u16 sz;
 667
 668	/* L2 headers */
 669	sz = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_VLAN) ?
 670		ICE_FLOW_PROT_HDR_SZ_MAC_VLAN : ICE_FLOW_PROT_HDR_SZ_MAC;
 671
 672	/* L3 headers */
 673	if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4)
 674		sz += ICE_FLOW_PROT_HDR_SZ_IPV4;
 675	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV6)
 676		sz += ICE_FLOW_PROT_HDR_SZ_IPV6;
 677	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ARP)
 678		sz += ICE_FLOW_PROT_HDR_SZ_ARP;
 679	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK)
 680		/* An L3 header is required if L4 is specified */
 681		return 0;
 682
 683	/* L4 headers */
 684	if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ICMP)
 685		sz += ICE_FLOW_PROT_HDR_SZ_ICMP;
 686	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_TCP)
 687		sz += ICE_FLOW_PROT_HDR_SZ_TCP;
 688	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_UDP)
 689		sz += ICE_FLOW_PROT_HDR_SZ_UDP;
 690	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_SCTP)
 691		sz += ICE_FLOW_PROT_HDR_SZ_SCTP;
 692
 693	return sz;
 694}
 695
 696/**
 697 * ice_flow_proc_seg_hdrs - process protocol headers present in pkt segments
 698 * @params: information about the flow to be processed
 699 *
 700 * This function identifies the packet types associated with the protocol
 701 * headers being present in packet segments of the specified flow profile.
 702 */
 703static enum ice_status
 704ice_flow_proc_seg_hdrs(struct ice_flow_prof_params *params)
 705{
 706	struct ice_flow_prof *prof;
 707	u8 i;
 708
 709	memset(params->ptypes, 0xff, sizeof(params->ptypes));
 710
 711	prof = params->prof;
 712
 713	for (i = 0; i < params->prof->segs_cnt; i++) {
 714		const unsigned long *src;
 715		u32 hdrs;
 716
 717		hdrs = prof->segs[i].hdrs;
 718
 719		if (hdrs & ICE_FLOW_SEG_HDR_ETH) {
 720			src = !i ? (const unsigned long *)ice_ptypes_mac_ofos :
 721				(const unsigned long *)ice_ptypes_mac_il;
 722			bitmap_and(params->ptypes, params->ptypes, src,
 723				   ICE_FLOW_PTYPE_MAX);
 724		}
 725
 726		if (i && hdrs & ICE_FLOW_SEG_HDR_VLAN) {
 727			src = (const unsigned long *)ice_ptypes_macvlan_il;
 728			bitmap_and(params->ptypes, params->ptypes, src,
 729				   ICE_FLOW_PTYPE_MAX);
 730		}
 731
 732		if (!i && hdrs & ICE_FLOW_SEG_HDR_ARP) {
 733			bitmap_and(params->ptypes, params->ptypes,
 734				   (const unsigned long *)ice_ptypes_arp_of,
 735				   ICE_FLOW_PTYPE_MAX);
 736		}
 737
 738		if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) &&
 739		    (hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) {
 740			src = i ? (const unsigned long *)ice_ptypes_ipv4_il :
 741				(const unsigned long *)ice_ptypes_ipv4_ofos_all;
 742			bitmap_and(params->ptypes, params->ptypes, src,
 743				   ICE_FLOW_PTYPE_MAX);
 744		} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) &&
 745			   (hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) {
 746			src = i ? (const unsigned long *)ice_ptypes_ipv6_il :
 747				(const unsigned long *)ice_ptypes_ipv6_ofos_all;
 748			bitmap_and(params->ptypes, params->ptypes, src,
 749				   ICE_FLOW_PTYPE_MAX);
 750		} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) &&
 751			   !(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) {
 752			src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos_no_l4 :
 753				(const unsigned long *)ice_ptypes_ipv4_il_no_l4;
 754			bitmap_and(params->ptypes, params->ptypes, src,
 755				   ICE_FLOW_PTYPE_MAX);
 756		} else if (hdrs & ICE_FLOW_SEG_HDR_IPV4) {
 757			src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos :
 758				(const unsigned long *)ice_ptypes_ipv4_il;
 759			bitmap_and(params->ptypes, params->ptypes, src,
 760				   ICE_FLOW_PTYPE_MAX);
 761		} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) &&
 762			   !(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) {
 763			src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos_no_l4 :
 764				(const unsigned long *)ice_ptypes_ipv6_il_no_l4;
 765			bitmap_and(params->ptypes, params->ptypes, src,
 766				   ICE_FLOW_PTYPE_MAX);
 767		} else if (hdrs & ICE_FLOW_SEG_HDR_IPV6) {
 768			src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos :
 769				(const unsigned long *)ice_ptypes_ipv6_il;
 770			bitmap_and(params->ptypes, params->ptypes, src,
 771				   ICE_FLOW_PTYPE_MAX);
 772		}
 773
 774		if (hdrs & ICE_FLOW_SEG_HDR_ETH_NON_IP) {
 775			src = (const unsigned long *)ice_ptypes_mac_non_ip_ofos;
 776			bitmap_and(params->ptypes, params->ptypes, src,
 777				   ICE_FLOW_PTYPE_MAX);
 778		} else if (hdrs & ICE_FLOW_SEG_HDR_PPPOE) {
 779			src = (const unsigned long *)ice_ptypes_pppoe;
 780			bitmap_and(params->ptypes, params->ptypes, src,
 781				   ICE_FLOW_PTYPE_MAX);
 782		} else {
 783			src = (const unsigned long *)ice_ptypes_pppoe;
 784			bitmap_andnot(params->ptypes, params->ptypes, src,
 785				      ICE_FLOW_PTYPE_MAX);
 786		}
 787
 788		if (hdrs & ICE_FLOW_SEG_HDR_UDP) {
 789			src = (const unsigned long *)ice_ptypes_udp_il;
 790			bitmap_and(params->ptypes, params->ptypes, src,
 791				   ICE_FLOW_PTYPE_MAX);
 792		} else if (hdrs & ICE_FLOW_SEG_HDR_TCP) {
 793			bitmap_and(params->ptypes, params->ptypes,
 794				   (const unsigned long *)ice_ptypes_tcp_il,
 795				   ICE_FLOW_PTYPE_MAX);
 796		} else if (hdrs & ICE_FLOW_SEG_HDR_SCTP) {
 797			src = (const unsigned long *)ice_ptypes_sctp_il;
 798			bitmap_and(params->ptypes, params->ptypes, src,
 799				   ICE_FLOW_PTYPE_MAX);
 800		}
 801
 802		if (hdrs & ICE_FLOW_SEG_HDR_ICMP) {
 803			src = !i ? (const unsigned long *)ice_ptypes_icmp_of :
 804				(const unsigned long *)ice_ptypes_icmp_il;
 805			bitmap_and(params->ptypes, params->ptypes, src,
 806				   ICE_FLOW_PTYPE_MAX);
 807		} else if (hdrs & ICE_FLOW_SEG_HDR_GRE) {
 808			if (!i) {
 809				src = (const unsigned long *)ice_ptypes_gre_of;
 810				bitmap_and(params->ptypes, params->ptypes,
 811					   src, ICE_FLOW_PTYPE_MAX);
 812			}
 813		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPC) {
 814			src = (const unsigned long *)ice_ptypes_gtpc;
 815			bitmap_and(params->ptypes, params->ptypes, src,
 816				   ICE_FLOW_PTYPE_MAX);
 817		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPC_TEID) {
 818			src = (const unsigned long *)ice_ptypes_gtpc_tid;
 819			bitmap_and(params->ptypes, params->ptypes, src,
 820				   ICE_FLOW_PTYPE_MAX);
 821		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_DWN) {
 822			src = (const unsigned long *)ice_ptypes_gtpu;
 823			bitmap_and(params->ptypes, params->ptypes, src,
 824				   ICE_FLOW_PTYPE_MAX);
 825
 826			/* Attributes for GTP packet with downlink */
 827			params->attr = ice_attr_gtpu_down;
 828			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_down);
 829		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_UP) {
 830			src = (const unsigned long *)ice_ptypes_gtpu;
 831			bitmap_and(params->ptypes, params->ptypes, src,
 832				   ICE_FLOW_PTYPE_MAX);
 833
 834			/* Attributes for GTP packet with uplink */
 835			params->attr = ice_attr_gtpu_up;
 836			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_up);
 837		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_EH) {
 838			src = (const unsigned long *)ice_ptypes_gtpu;
 839			bitmap_and(params->ptypes, params->ptypes, src,
 840				   ICE_FLOW_PTYPE_MAX);
 841
 842			/* Attributes for GTP packet with Extension Header */
 843			params->attr = ice_attr_gtpu_eh;
 844			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_eh);
 845		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_IP) {
 846			src = (const unsigned long *)ice_ptypes_gtpu;
 847			bitmap_and(params->ptypes, params->ptypes, src,
 848				   ICE_FLOW_PTYPE_MAX);
 849		} else if (hdrs & ICE_FLOW_SEG_HDR_L2TPV3) {
 850			src = (const unsigned long *)ice_ptypes_l2tpv3;
 851			bitmap_and(params->ptypes, params->ptypes, src,
 852				   ICE_FLOW_PTYPE_MAX);
 853		} else if (hdrs & ICE_FLOW_SEG_HDR_ESP) {
 854			src = (const unsigned long *)ice_ptypes_esp;
 855			bitmap_and(params->ptypes, params->ptypes, src,
 856				   ICE_FLOW_PTYPE_MAX);
 857		} else if (hdrs & ICE_FLOW_SEG_HDR_AH) {
 858			src = (const unsigned long *)ice_ptypes_ah;
 859			bitmap_and(params->ptypes, params->ptypes, src,
 860				   ICE_FLOW_PTYPE_MAX);
 861		} else if (hdrs & ICE_FLOW_SEG_HDR_NAT_T_ESP) {
 862			src = (const unsigned long *)ice_ptypes_nat_t_esp;
 863			bitmap_and(params->ptypes, params->ptypes, src,
 864				   ICE_FLOW_PTYPE_MAX);
 865		}
 866
 867		if (hdrs & ICE_FLOW_SEG_HDR_PFCP) {
 868			if (hdrs & ICE_FLOW_SEG_HDR_PFCP_NODE)
 869				src = (const unsigned long *)ice_ptypes_pfcp_node;
 870			else
 871				src = (const unsigned long *)ice_ptypes_pfcp_session;
 872
 873			bitmap_and(params->ptypes, params->ptypes, src,
 874				   ICE_FLOW_PTYPE_MAX);
 875		} else {
 876			src = (const unsigned long *)ice_ptypes_pfcp_node;
 877			bitmap_andnot(params->ptypes, params->ptypes, src,
 878				      ICE_FLOW_PTYPE_MAX);
 879
 880			src = (const unsigned long *)ice_ptypes_pfcp_session;
 881			bitmap_andnot(params->ptypes, params->ptypes, src,
 882				      ICE_FLOW_PTYPE_MAX);
 883		}
 884	}
 885
 886	return 0;
 887}
 888
 889/**
 890 * ice_flow_xtract_fld - Create an extraction sequence entry for the given field
 891 * @hw: pointer to the HW struct
 892 * @params: information about the flow to be processed
 893 * @seg: packet segment index of the field to be extracted
 894 * @fld: ID of field to be extracted
 895 * @match: bit field of all fields
 896 *
 897 * This function determines the protocol ID, offset, and size of the given
 898 * field. It then allocates one or more extraction sequence entries for the
 899 * given field, and fill the entries with protocol ID and offset information.
 900 */
 901static enum ice_status
 902ice_flow_xtract_fld(struct ice_hw *hw, struct ice_flow_prof_params *params,
 903		    u8 seg, enum ice_flow_field fld, u64 match)
 904{
 905	enum ice_flow_field sib = ICE_FLOW_FIELD_IDX_MAX;
 906	enum ice_prot_id prot_id = ICE_PROT_ID_INVAL;
 907	u8 fv_words = hw->blk[params->blk].es.fvw;
 908	struct ice_flow_fld_info *flds;
 909	u16 cnt, ese_bits, i;
 910	u16 sib_mask = 0;
 911	u16 mask;
 912	u16 off;
 913
 914	flds = params->prof->segs[seg].fields;
 915
 916	switch (fld) {
 917	case ICE_FLOW_FIELD_IDX_ETH_DA:
 918	case ICE_FLOW_FIELD_IDX_ETH_SA:
 919	case ICE_FLOW_FIELD_IDX_S_VLAN:
 920	case ICE_FLOW_FIELD_IDX_C_VLAN:
 921		prot_id = seg == 0 ? ICE_PROT_MAC_OF_OR_S : ICE_PROT_MAC_IL;
 922		break;
 923	case ICE_FLOW_FIELD_IDX_ETH_TYPE:
 924		prot_id = seg == 0 ? ICE_PROT_ETYPE_OL : ICE_PROT_ETYPE_IL;
 925		break;
 926	case ICE_FLOW_FIELD_IDX_IPV4_DSCP:
 927		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
 928		break;
 929	case ICE_FLOW_FIELD_IDX_IPV6_DSCP:
 930		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
 931		break;
 932	case ICE_FLOW_FIELD_IDX_IPV4_TTL:
 933	case ICE_FLOW_FIELD_IDX_IPV4_PROT:
 934		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
 935
 936		/* TTL and PROT share the same extraction seq. entry.
 937		 * Each is considered a sibling to the other in terms of sharing
 938		 * the same extraction sequence entry.
 939		 */
 940		if (fld == ICE_FLOW_FIELD_IDX_IPV4_TTL)
 941			sib = ICE_FLOW_FIELD_IDX_IPV4_PROT;
 942		else if (fld == ICE_FLOW_FIELD_IDX_IPV4_PROT)
 943			sib = ICE_FLOW_FIELD_IDX_IPV4_TTL;
 944
 945		/* If the sibling field is also included, that field's
 946		 * mask needs to be included.
 947		 */
 948		if (match & BIT(sib))
 949			sib_mask = ice_flds_info[sib].mask;
 950		break;
 951	case ICE_FLOW_FIELD_IDX_IPV6_TTL:
 952	case ICE_FLOW_FIELD_IDX_IPV6_PROT:
 953		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
 954
 955		/* TTL and PROT share the same extraction seq. entry.
 956		 * Each is considered a sibling to the other in terms of sharing
 957		 * the same extraction sequence entry.
 958		 */
 959		if (fld == ICE_FLOW_FIELD_IDX_IPV6_TTL)
 960			sib = ICE_FLOW_FIELD_IDX_IPV6_PROT;
 961		else if (fld == ICE_FLOW_FIELD_IDX_IPV6_PROT)
 962			sib = ICE_FLOW_FIELD_IDX_IPV6_TTL;
 963
 964		/* If the sibling field is also included, that field's
 965		 * mask needs to be included.
 966		 */
 967		if (match & BIT(sib))
 968			sib_mask = ice_flds_info[sib].mask;
 969		break;
 970	case ICE_FLOW_FIELD_IDX_IPV4_SA:
 971	case ICE_FLOW_FIELD_IDX_IPV4_DA:
 972		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
 973		break;
 974	case ICE_FLOW_FIELD_IDX_IPV6_SA:
 975	case ICE_FLOW_FIELD_IDX_IPV6_DA:
 976		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
 977		break;
 978	case ICE_FLOW_FIELD_IDX_TCP_SRC_PORT:
 979	case ICE_FLOW_FIELD_IDX_TCP_DST_PORT:
 980	case ICE_FLOW_FIELD_IDX_TCP_FLAGS:
 981		prot_id = ICE_PROT_TCP_IL;
 982		break;
 983	case ICE_FLOW_FIELD_IDX_UDP_SRC_PORT:
 984	case ICE_FLOW_FIELD_IDX_UDP_DST_PORT:
 985		prot_id = ICE_PROT_UDP_IL_OR_S;
 986		break;
 987	case ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT:
 988	case ICE_FLOW_FIELD_IDX_SCTP_DST_PORT:
 989		prot_id = ICE_PROT_SCTP_IL;
 990		break;
 991	case ICE_FLOW_FIELD_IDX_GTPC_TEID:
 992	case ICE_FLOW_FIELD_IDX_GTPU_IP_TEID:
 993	case ICE_FLOW_FIELD_IDX_GTPU_UP_TEID:
 994	case ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID:
 995	case ICE_FLOW_FIELD_IDX_GTPU_EH_TEID:
 996	case ICE_FLOW_FIELD_IDX_GTPU_EH_QFI:
 997		/* GTP is accessed through UDP OF protocol */
 998		prot_id = ICE_PROT_UDP_OF;
 999		break;
1000	case ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID:
1001		prot_id = ICE_PROT_PPPOE;
1002		break;
1003	case ICE_FLOW_FIELD_IDX_PFCP_SEID:
1004		prot_id = ICE_PROT_UDP_IL_OR_S;
1005		break;
1006	case ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID:
1007		prot_id = ICE_PROT_L2TPV3;
1008		break;
1009	case ICE_FLOW_FIELD_IDX_ESP_SPI:
1010		prot_id = ICE_PROT_ESP_F;
1011		break;
1012	case ICE_FLOW_FIELD_IDX_AH_SPI:
1013		prot_id = ICE_PROT_ESP_2;
1014		break;
1015	case ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI:
1016		prot_id = ICE_PROT_UDP_IL_OR_S;
1017		break;
1018	case ICE_FLOW_FIELD_IDX_ARP_SIP:
1019	case ICE_FLOW_FIELD_IDX_ARP_DIP:
1020	case ICE_FLOW_FIELD_IDX_ARP_SHA:
1021	case ICE_FLOW_FIELD_IDX_ARP_DHA:
1022	case ICE_FLOW_FIELD_IDX_ARP_OP:
1023		prot_id = ICE_PROT_ARP_OF;
1024		break;
1025	case ICE_FLOW_FIELD_IDX_ICMP_TYPE:
1026	case ICE_FLOW_FIELD_IDX_ICMP_CODE:
1027		/* ICMP type and code share the same extraction seq. entry */
1028		prot_id = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4) ?
1029				ICE_PROT_ICMP_IL : ICE_PROT_ICMPV6_IL;
1030		sib = fld == ICE_FLOW_FIELD_IDX_ICMP_TYPE ?
1031			ICE_FLOW_FIELD_IDX_ICMP_CODE :
1032			ICE_FLOW_FIELD_IDX_ICMP_TYPE;
1033		break;
1034	case ICE_FLOW_FIELD_IDX_GRE_KEYID:
1035		prot_id = ICE_PROT_GRE_OF;
1036		break;
1037	default:
1038		return ICE_ERR_NOT_IMPL;
1039	}
1040
1041	/* Each extraction sequence entry is a word in size, and extracts a
1042	 * word-aligned offset from a protocol header.
1043	 */
1044	ese_bits = ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE;
1045
1046	flds[fld].xtrct.prot_id = prot_id;
1047	flds[fld].xtrct.off = (ice_flds_info[fld].off / ese_bits) *
1048		ICE_FLOW_FV_EXTRACT_SZ;
1049	flds[fld].xtrct.disp = (u8)(ice_flds_info[fld].off % ese_bits);
1050	flds[fld].xtrct.idx = params->es_cnt;
1051	flds[fld].xtrct.mask = ice_flds_info[fld].mask;
1052
1053	/* Adjust the next field-entry index after accommodating the number of
1054	 * entries this field consumes
1055	 */
1056	cnt = DIV_ROUND_UP(flds[fld].xtrct.disp + ice_flds_info[fld].size,
1057			   ese_bits);
1058
1059	/* Fill in the extraction sequence entries needed for this field */
1060	off = flds[fld].xtrct.off;
1061	mask = flds[fld].xtrct.mask;
1062	for (i = 0; i < cnt; i++) {
1063		/* Only consume an extraction sequence entry if there is no
1064		 * sibling field associated with this field or the sibling entry
1065		 * already extracts the word shared with this field.
 
1066		 */
1067		if (sib == ICE_FLOW_FIELD_IDX_MAX ||
1068		    flds[sib].xtrct.prot_id == ICE_PROT_ID_INVAL ||
1069		    flds[sib].xtrct.off != off) {
1070			u8 idx;
1071
1072			/* Make sure the number of extraction sequence required
1073			 * does not exceed the block's capability
1074			 */
1075			if (params->es_cnt >= fv_words)
1076				return ICE_ERR_MAX_LIMIT;
1077
1078			/* some blocks require a reversed field vector layout */
1079			if (hw->blk[params->blk].es.reverse)
1080				idx = fv_words - params->es_cnt - 1;
1081			else
1082				idx = params->es_cnt;
1083
1084			params->es[idx].prot_id = prot_id;
1085			params->es[idx].off = off;
1086			params->mask[idx] = mask | sib_mask;
1087			params->es_cnt++;
1088		}
1089
1090		off += ICE_FLOW_FV_EXTRACT_SZ;
1091	}
1092
1093	return 0;
1094}
1095
1096/**
1097 * ice_flow_xtract_raws - Create extract sequence entries for raw bytes
1098 * @hw: pointer to the HW struct
1099 * @params: information about the flow to be processed
1100 * @seg: index of packet segment whose raw fields are to be extracted
1101 */
1102static enum ice_status
1103ice_flow_xtract_raws(struct ice_hw *hw, struct ice_flow_prof_params *params,
1104		     u8 seg)
1105{
1106	u16 fv_words;
1107	u16 hdrs_sz;
1108	u8 i;
1109
1110	if (!params->prof->segs[seg].raws_cnt)
1111		return 0;
1112
1113	if (params->prof->segs[seg].raws_cnt >
1114	    ARRAY_SIZE(params->prof->segs[seg].raws))
1115		return ICE_ERR_MAX_LIMIT;
1116
1117	/* Offsets within the segment headers are not supported */
1118	hdrs_sz = ice_flow_calc_seg_sz(params, seg);
1119	if (!hdrs_sz)
1120		return ICE_ERR_PARAM;
1121
1122	fv_words = hw->blk[params->blk].es.fvw;
1123
1124	for (i = 0; i < params->prof->segs[seg].raws_cnt; i++) {
1125		struct ice_flow_seg_fld_raw *raw;
1126		u16 off, cnt, j;
1127
1128		raw = &params->prof->segs[seg].raws[i];
1129
1130		/* Storing extraction information */
1131		raw->info.xtrct.prot_id = ICE_PROT_MAC_OF_OR_S;
1132		raw->info.xtrct.off = (raw->off / ICE_FLOW_FV_EXTRACT_SZ) *
1133			ICE_FLOW_FV_EXTRACT_SZ;
1134		raw->info.xtrct.disp = (raw->off % ICE_FLOW_FV_EXTRACT_SZ) *
1135			BITS_PER_BYTE;
1136		raw->info.xtrct.idx = params->es_cnt;
1137
1138		/* Determine the number of field vector entries this raw field
1139		 * consumes.
1140		 */
1141		cnt = DIV_ROUND_UP(raw->info.xtrct.disp +
1142				   (raw->info.src.last * BITS_PER_BYTE),
1143				   (ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE));
1144		off = raw->info.xtrct.off;
1145		for (j = 0; j < cnt; j++) {
1146			u16 idx;
1147
1148			/* Make sure the number of extraction sequence required
1149			 * does not exceed the block's capability
1150			 */
1151			if (params->es_cnt >= hw->blk[params->blk].es.count ||
1152			    params->es_cnt >= ICE_MAX_FV_WORDS)
1153				return ICE_ERR_MAX_LIMIT;
1154
1155			/* some blocks require a reversed field vector layout */
1156			if (hw->blk[params->blk].es.reverse)
1157				idx = fv_words - params->es_cnt - 1;
1158			else
1159				idx = params->es_cnt;
1160
1161			params->es[idx].prot_id = raw->info.xtrct.prot_id;
1162			params->es[idx].off = off;
1163			params->es_cnt++;
1164			off += ICE_FLOW_FV_EXTRACT_SZ;
1165		}
1166	}
1167
1168	return 0;
1169}
1170
1171/**
1172 * ice_flow_create_xtrct_seq - Create an extraction sequence for given segments
1173 * @hw: pointer to the HW struct
1174 * @params: information about the flow to be processed
1175 *
1176 * This function iterates through all matched fields in the given segments, and
1177 * creates an extraction sequence for the fields.
1178 */
1179static enum ice_status
1180ice_flow_create_xtrct_seq(struct ice_hw *hw,
1181			  struct ice_flow_prof_params *params)
1182{
1183	struct ice_flow_prof *prof = params->prof;
1184	enum ice_status status = 0;
1185	u8 i;
1186
1187	for (i = 0; i < prof->segs_cnt; i++) {
1188		u64 match = params->prof->segs[i].match;
1189		enum ice_flow_field j;
1190
1191		for_each_set_bit(j, (unsigned long *)&match,
1192				 ICE_FLOW_FIELD_IDX_MAX) {
1193			status = ice_flow_xtract_fld(hw, params, i, j, match);
 
1194			if (status)
1195				return status;
1196			clear_bit(j, (unsigned long *)&match);
1197		}
1198
1199		/* Process raw matching bytes */
1200		status = ice_flow_xtract_raws(hw, params, i);
1201		if (status)
1202			return status;
1203	}
1204
1205	return status;
1206}
1207
1208/**
1209 * ice_flow_proc_segs - process all packet segments associated with a profile
1210 * @hw: pointer to the HW struct
1211 * @params: information about the flow to be processed
1212 */
1213static enum ice_status
1214ice_flow_proc_segs(struct ice_hw *hw, struct ice_flow_prof_params *params)
1215{
1216	enum ice_status status;
1217
1218	status = ice_flow_proc_seg_hdrs(params);
1219	if (status)
1220		return status;
1221
1222	status = ice_flow_create_xtrct_seq(hw, params);
1223	if (status)
1224		return status;
1225
1226	switch (params->blk) {
1227	case ICE_BLK_FD:
1228	case ICE_BLK_RSS:
1229		status = 0;
1230		break;
1231	default:
1232		return ICE_ERR_NOT_IMPL;
1233	}
1234
1235	return status;
1236}
1237
1238#define ICE_FLOW_FIND_PROF_CHK_FLDS	0x00000001
1239#define ICE_FLOW_FIND_PROF_CHK_VSI	0x00000002
1240#define ICE_FLOW_FIND_PROF_NOT_CHK_DIR	0x00000004
1241
1242/**
1243 * ice_flow_find_prof_conds - Find a profile matching headers and conditions
1244 * @hw: pointer to the HW struct
1245 * @blk: classification stage
1246 * @dir: flow direction
1247 * @segs: array of one or more packet segments that describe the flow
1248 * @segs_cnt: number of packet segments provided
1249 * @vsi_handle: software VSI handle to check VSI (ICE_FLOW_FIND_PROF_CHK_VSI)
1250 * @conds: additional conditions to be checked (ICE_FLOW_FIND_PROF_CHK_*)
1251 */
1252static struct ice_flow_prof *
1253ice_flow_find_prof_conds(struct ice_hw *hw, enum ice_block blk,
1254			 enum ice_flow_dir dir, struct ice_flow_seg_info *segs,
1255			 u8 segs_cnt, u16 vsi_handle, u32 conds)
1256{
1257	struct ice_flow_prof *p, *prof = NULL;
1258
1259	mutex_lock(&hw->fl_profs_locks[blk]);
1260	list_for_each_entry(p, &hw->fl_profs[blk], l_entry)
1261		if ((p->dir == dir || conds & ICE_FLOW_FIND_PROF_NOT_CHK_DIR) &&
1262		    segs_cnt && segs_cnt == p->segs_cnt) {
1263			u8 i;
1264
1265			/* Check for profile-VSI association if specified */
1266			if ((conds & ICE_FLOW_FIND_PROF_CHK_VSI) &&
1267			    ice_is_vsi_valid(hw, vsi_handle) &&
1268			    !test_bit(vsi_handle, p->vsis))
1269				continue;
1270
1271			/* Protocol headers must be checked. Matched fields are
1272			 * checked if specified.
1273			 */
1274			for (i = 0; i < segs_cnt; i++)
1275				if (segs[i].hdrs != p->segs[i].hdrs ||
1276				    ((conds & ICE_FLOW_FIND_PROF_CHK_FLDS) &&
1277				     segs[i].match != p->segs[i].match))
1278					break;
1279
1280			/* A match is found if all segments are matched */
1281			if (i == segs_cnt) {
1282				prof = p;
1283				break;
1284			}
1285		}
1286	mutex_unlock(&hw->fl_profs_locks[blk]);
1287
1288	return prof;
1289}
1290
1291/**
1292 * ice_flow_find_prof_id - Look up a profile with given profile ID
1293 * @hw: pointer to the HW struct
1294 * @blk: classification stage
1295 * @prof_id: unique ID to identify this flow profile
1296 */
1297static struct ice_flow_prof *
1298ice_flow_find_prof_id(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
1299{
1300	struct ice_flow_prof *p;
1301
1302	list_for_each_entry(p, &hw->fl_profs[blk], l_entry)
1303		if (p->id == prof_id)
1304			return p;
1305
1306	return NULL;
1307}
1308
1309/**
1310 * ice_dealloc_flow_entry - Deallocate flow entry memory
1311 * @hw: pointer to the HW struct
1312 * @entry: flow entry to be removed
1313 */
1314static void
1315ice_dealloc_flow_entry(struct ice_hw *hw, struct ice_flow_entry *entry)
1316{
1317	if (!entry)
1318		return;
1319
1320	if (entry->entry)
1321		devm_kfree(ice_hw_to_dev(hw), entry->entry);
1322
1323	devm_kfree(ice_hw_to_dev(hw), entry);
1324}
1325
1326/**
1327 * ice_flow_rem_entry_sync - Remove a flow entry
1328 * @hw: pointer to the HW struct
1329 * @blk: classification stage
1330 * @entry: flow entry to be removed
1331 */
1332static enum ice_status
1333ice_flow_rem_entry_sync(struct ice_hw *hw, enum ice_block __always_unused blk,
1334			struct ice_flow_entry *entry)
1335{
1336	if (!entry)
1337		return ICE_ERR_BAD_PTR;
1338
1339	list_del(&entry->l_entry);
1340
1341	ice_dealloc_flow_entry(hw, entry);
1342
1343	return 0;
1344}
1345
1346/**
1347 * ice_flow_add_prof_sync - Add a flow profile for packet segments and fields
1348 * @hw: pointer to the HW struct
1349 * @blk: classification stage
1350 * @dir: flow direction
1351 * @prof_id: unique ID to identify this flow profile
1352 * @segs: array of one or more packet segments that describe the flow
1353 * @segs_cnt: number of packet segments provided
1354 * @prof: stores the returned flow profile added
1355 *
1356 * Assumption: the caller has acquired the lock to the profile list
1357 */
1358static enum ice_status
1359ice_flow_add_prof_sync(struct ice_hw *hw, enum ice_block blk,
1360		       enum ice_flow_dir dir, u64 prof_id,
1361		       struct ice_flow_seg_info *segs, u8 segs_cnt,
1362		       struct ice_flow_prof **prof)
1363{
1364	struct ice_flow_prof_params *params;
1365	enum ice_status status;
1366	u8 i;
1367
1368	if (!prof)
1369		return ICE_ERR_BAD_PTR;
1370
1371	params = kzalloc(sizeof(*params), GFP_KERNEL);
1372	if (!params)
 
 
1373		return ICE_ERR_NO_MEMORY;
1374
1375	params->prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*params->prof),
1376				    GFP_KERNEL);
1377	if (!params->prof) {
1378		status = ICE_ERR_NO_MEMORY;
1379		goto free_params;
1380	}
1381
1382	/* initialize extraction sequence to all invalid (0xff) */
1383	for (i = 0; i < ICE_MAX_FV_WORDS; i++) {
1384		params->es[i].prot_id = ICE_PROT_INVALID;
1385		params->es[i].off = ICE_FV_OFFSET_INVAL;
1386	}
1387
1388	params->blk = blk;
1389	params->prof->id = prof_id;
1390	params->prof->dir = dir;
1391	params->prof->segs_cnt = segs_cnt;
1392
1393	/* Make a copy of the segments that need to be persistent in the flow
1394	 * profile instance
1395	 */
1396	for (i = 0; i < segs_cnt; i++)
1397		memcpy(&params->prof->segs[i], &segs[i], sizeof(*segs));
1398
1399	status = ice_flow_proc_segs(hw, params);
1400	if (status) {
1401		ice_debug(hw, ICE_DBG_FLOW, "Error processing a flow's packet segments\n");
 
1402		goto out;
1403	}
1404
1405	/* Add a HW profile for this flow profile */
1406	status = ice_add_prof(hw, blk, prof_id, (u8 *)params->ptypes,
1407			      params->attr, params->attr_cnt, params->es,
1408			      params->mask);
1409	if (status) {
1410		ice_debug(hw, ICE_DBG_FLOW, "Error adding a HW flow profile\n");
1411		goto out;
1412	}
1413
1414	INIT_LIST_HEAD(&params->prof->entries);
1415	mutex_init(&params->prof->entries_lock);
1416	*prof = params->prof;
1417
1418out:
1419	if (status)
1420		devm_kfree(ice_hw_to_dev(hw), params->prof);
1421free_params:
1422	kfree(params);
1423
1424	return status;
1425}
1426
1427/**
1428 * ice_flow_rem_prof_sync - remove a flow profile
1429 * @hw: pointer to the hardware structure
1430 * @blk: classification stage
1431 * @prof: pointer to flow profile to remove
1432 *
1433 * Assumption: the caller has acquired the lock to the profile list
1434 */
1435static enum ice_status
1436ice_flow_rem_prof_sync(struct ice_hw *hw, enum ice_block blk,
1437		       struct ice_flow_prof *prof)
1438{
1439	enum ice_status status;
1440
1441	/* Remove all remaining flow entries before removing the flow profile */
1442	if (!list_empty(&prof->entries)) {
1443		struct ice_flow_entry *e, *t;
1444
1445		mutex_lock(&prof->entries_lock);
1446
1447		list_for_each_entry_safe(e, t, &prof->entries, l_entry) {
1448			status = ice_flow_rem_entry_sync(hw, blk, e);
1449			if (status)
1450				break;
1451		}
1452
1453		mutex_unlock(&prof->entries_lock);
1454	}
1455
1456	/* Remove all hardware profiles associated with this flow profile */
1457	status = ice_rem_prof(hw, blk, prof->id);
1458	if (!status) {
1459		list_del(&prof->l_entry);
1460		mutex_destroy(&prof->entries_lock);
1461		devm_kfree(ice_hw_to_dev(hw), prof);
1462	}
1463
1464	return status;
1465}
1466
1467/**
1468 * ice_flow_assoc_prof - associate a VSI with a flow profile
1469 * @hw: pointer to the hardware structure
1470 * @blk: classification stage
1471 * @prof: pointer to flow profile
1472 * @vsi_handle: software VSI handle
1473 *
1474 * Assumption: the caller has acquired the lock to the profile list
1475 * and the software VSI handle has been validated
1476 */
1477static enum ice_status
1478ice_flow_assoc_prof(struct ice_hw *hw, enum ice_block blk,
1479		    struct ice_flow_prof *prof, u16 vsi_handle)
1480{
1481	enum ice_status status = 0;
1482
1483	if (!test_bit(vsi_handle, prof->vsis)) {
1484		status = ice_add_prof_id_flow(hw, blk,
1485					      ice_get_hw_vsi_num(hw,
1486								 vsi_handle),
1487					      prof->id);
1488		if (!status)
1489			set_bit(vsi_handle, prof->vsis);
1490		else
1491			ice_debug(hw, ICE_DBG_FLOW, "HW profile add failed, %d\n",
 
1492				  status);
1493	}
1494
1495	return status;
1496}
1497
1498/**
1499 * ice_flow_disassoc_prof - disassociate a VSI from a flow profile
1500 * @hw: pointer to the hardware structure
1501 * @blk: classification stage
1502 * @prof: pointer to flow profile
1503 * @vsi_handle: software VSI handle
1504 *
1505 * Assumption: the caller has acquired the lock to the profile list
1506 * and the software VSI handle has been validated
1507 */
1508static enum ice_status
1509ice_flow_disassoc_prof(struct ice_hw *hw, enum ice_block blk,
1510		       struct ice_flow_prof *prof, u16 vsi_handle)
1511{
1512	enum ice_status status = 0;
1513
1514	if (test_bit(vsi_handle, prof->vsis)) {
1515		status = ice_rem_prof_id_flow(hw, blk,
1516					      ice_get_hw_vsi_num(hw,
1517								 vsi_handle),
1518					      prof->id);
1519		if (!status)
1520			clear_bit(vsi_handle, prof->vsis);
1521		else
1522			ice_debug(hw, ICE_DBG_FLOW, "HW profile remove failed, %d\n",
 
1523				  status);
1524	}
1525
1526	return status;
1527}
1528
1529/**
1530 * ice_flow_add_prof - Add a flow profile for packet segments and matched fields
1531 * @hw: pointer to the HW struct
1532 * @blk: classification stage
1533 * @dir: flow direction
1534 * @prof_id: unique ID to identify this flow profile
1535 * @segs: array of one or more packet segments that describe the flow
1536 * @segs_cnt: number of packet segments provided
1537 * @prof: stores the returned flow profile added
1538 */
1539enum ice_status
1540ice_flow_add_prof(struct ice_hw *hw, enum ice_block blk, enum ice_flow_dir dir,
1541		  u64 prof_id, struct ice_flow_seg_info *segs, u8 segs_cnt,
1542		  struct ice_flow_prof **prof)
1543{
1544	enum ice_status status;
1545
1546	if (segs_cnt > ICE_FLOW_SEG_MAX)
1547		return ICE_ERR_MAX_LIMIT;
1548
1549	if (!segs_cnt)
1550		return ICE_ERR_PARAM;
1551
1552	if (!segs)
1553		return ICE_ERR_BAD_PTR;
1554
1555	status = ice_flow_val_hdrs(segs, segs_cnt);
1556	if (status)
1557		return status;
1558
1559	mutex_lock(&hw->fl_profs_locks[blk]);
1560
1561	status = ice_flow_add_prof_sync(hw, blk, dir, prof_id, segs, segs_cnt,
1562					prof);
1563	if (!status)
1564		list_add(&(*prof)->l_entry, &hw->fl_profs[blk]);
1565
1566	mutex_unlock(&hw->fl_profs_locks[blk]);
1567
1568	return status;
1569}
1570
1571/**
1572 * ice_flow_rem_prof - Remove a flow profile and all entries associated with it
1573 * @hw: pointer to the HW struct
1574 * @blk: the block for which the flow profile is to be removed
1575 * @prof_id: unique ID of the flow profile to be removed
1576 */
1577enum ice_status
1578ice_flow_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
1579{
1580	struct ice_flow_prof *prof;
1581	enum ice_status status;
1582
1583	mutex_lock(&hw->fl_profs_locks[blk]);
1584
1585	prof = ice_flow_find_prof_id(hw, blk, prof_id);
1586	if (!prof) {
1587		status = ICE_ERR_DOES_NOT_EXIST;
1588		goto out;
1589	}
1590
1591	/* prof becomes invalid after the call */
1592	status = ice_flow_rem_prof_sync(hw, blk, prof);
1593
1594out:
1595	mutex_unlock(&hw->fl_profs_locks[blk]);
1596
1597	return status;
1598}
1599
1600/**
1601 * ice_flow_add_entry - Add a flow entry
1602 * @hw: pointer to the HW struct
1603 * @blk: classification stage
1604 * @prof_id: ID of the profile to add a new flow entry to
1605 * @entry_id: unique ID to identify this flow entry
1606 * @vsi_handle: software VSI handle for the flow entry
1607 * @prio: priority of the flow entry
1608 * @data: pointer to a data buffer containing flow entry's match values/masks
1609 * @entry_h: pointer to buffer that receives the new flow entry's handle
1610 */
1611enum ice_status
1612ice_flow_add_entry(struct ice_hw *hw, enum ice_block blk, u64 prof_id,
1613		   u64 entry_id, u16 vsi_handle, enum ice_flow_priority prio,
1614		   void *data, u64 *entry_h)
1615{
1616	struct ice_flow_entry *e = NULL;
1617	struct ice_flow_prof *prof;
1618	enum ice_status status;
1619
1620	/* No flow entry data is expected for RSS */
1621	if (!entry_h || (!data && blk != ICE_BLK_RSS))
1622		return ICE_ERR_BAD_PTR;
1623
1624	if (!ice_is_vsi_valid(hw, vsi_handle))
1625		return ICE_ERR_PARAM;
1626
1627	mutex_lock(&hw->fl_profs_locks[blk]);
1628
1629	prof = ice_flow_find_prof_id(hw, blk, prof_id);
1630	if (!prof) {
1631		status = ICE_ERR_DOES_NOT_EXIST;
1632	} else {
1633		/* Allocate memory for the entry being added and associate
1634		 * the VSI to the found flow profile
1635		 */
1636		e = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*e), GFP_KERNEL);
1637		if (!e)
1638			status = ICE_ERR_NO_MEMORY;
1639		else
1640			status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
1641	}
1642
1643	mutex_unlock(&hw->fl_profs_locks[blk]);
1644	if (status)
1645		goto out;
1646
1647	e->id = entry_id;
1648	e->vsi_handle = vsi_handle;
1649	e->prof = prof;
1650	e->priority = prio;
1651
1652	switch (blk) {
1653	case ICE_BLK_FD:
1654	case ICE_BLK_RSS:
1655		break;
1656	default:
1657		status = ICE_ERR_NOT_IMPL;
1658		goto out;
1659	}
1660
1661	mutex_lock(&prof->entries_lock);
1662	list_add(&e->l_entry, &prof->entries);
1663	mutex_unlock(&prof->entries_lock);
1664
1665	*entry_h = ICE_FLOW_ENTRY_HNDL(e);
1666
1667out:
1668	if (status && e) {
1669		if (e->entry)
1670			devm_kfree(ice_hw_to_dev(hw), e->entry);
1671		devm_kfree(ice_hw_to_dev(hw), e);
1672	}
1673
1674	return status;
1675}
1676
1677/**
1678 * ice_flow_rem_entry - Remove a flow entry
1679 * @hw: pointer to the HW struct
1680 * @blk: classification stage
1681 * @entry_h: handle to the flow entry to be removed
1682 */
1683enum ice_status ice_flow_rem_entry(struct ice_hw *hw, enum ice_block blk,
1684				   u64 entry_h)
1685{
1686	struct ice_flow_entry *entry;
1687	struct ice_flow_prof *prof;
1688	enum ice_status status = 0;
1689
1690	if (entry_h == ICE_FLOW_ENTRY_HANDLE_INVAL)
1691		return ICE_ERR_PARAM;
1692
1693	entry = ICE_FLOW_ENTRY_PTR(entry_h);
1694
1695	/* Retain the pointer to the flow profile as the entry will be freed */
1696	prof = entry->prof;
1697
1698	if (prof) {
1699		mutex_lock(&prof->entries_lock);
1700		status = ice_flow_rem_entry_sync(hw, blk, entry);
1701		mutex_unlock(&prof->entries_lock);
1702	}
1703
1704	return status;
1705}
1706
1707/**
1708 * ice_flow_set_fld_ext - specifies locations of field from entry's input buffer
1709 * @seg: packet segment the field being set belongs to
1710 * @fld: field to be set
1711 * @field_type: type of the field
1712 * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
1713 *           entry's input buffer
1714 * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
1715 *            input buffer
1716 * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
1717 *            entry's input buffer
1718 *
1719 * This helper function stores information of a field being matched, including
1720 * the type of the field and the locations of the value to match, the mask, and
1721 * the upper-bound value in the start of the input buffer for a flow entry.
1722 * This function should only be used for fixed-size data structures.
1723 *
1724 * This function also opportunistically determines the protocol headers to be
1725 * present based on the fields being set. Some fields cannot be used alone to
1726 * determine the protocol headers present. Sometimes, fields for particular
1727 * protocol headers are not matched. In those cases, the protocol headers
1728 * must be explicitly set.
1729 */
1730static void
1731ice_flow_set_fld_ext(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
1732		     enum ice_flow_fld_match_type field_type, u16 val_loc,
1733		     u16 mask_loc, u16 last_loc)
1734{
1735	u64 bit = BIT_ULL(fld);
1736
1737	seg->match |= bit;
1738	if (field_type == ICE_FLOW_FLD_TYPE_RANGE)
1739		seg->range |= bit;
1740
1741	seg->fields[fld].type = field_type;
1742	seg->fields[fld].src.val = val_loc;
1743	seg->fields[fld].src.mask = mask_loc;
1744	seg->fields[fld].src.last = last_loc;
1745
1746	ICE_FLOW_SET_HDRS(seg, ice_flds_info[fld].hdr);
1747}
1748
1749/**
1750 * ice_flow_set_fld - specifies locations of field from entry's input buffer
1751 * @seg: packet segment the field being set belongs to
1752 * @fld: field to be set
1753 * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
1754 *           entry's input buffer
1755 * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
1756 *            input buffer
1757 * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
1758 *            entry's input buffer
1759 * @range: indicate if field being matched is to be in a range
1760 *
1761 * This function specifies the locations, in the form of byte offsets from the
1762 * start of the input buffer for a flow entry, from where the value to match,
1763 * the mask value, and upper value can be extracted. These locations are then
1764 * stored in the flow profile. When adding a flow entry associated with the
1765 * flow profile, these locations will be used to quickly extract the values and
1766 * create the content of a match entry. This function should only be used for
1767 * fixed-size data structures.
1768 */
1769void
1770ice_flow_set_fld(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
1771		 u16 val_loc, u16 mask_loc, u16 last_loc, bool range)
1772{
1773	enum ice_flow_fld_match_type t = range ?
1774		ICE_FLOW_FLD_TYPE_RANGE : ICE_FLOW_FLD_TYPE_REG;
1775
1776	ice_flow_set_fld_ext(seg, fld, t, val_loc, mask_loc, last_loc);
1777}
1778
1779/**
1780 * ice_flow_add_fld_raw - sets locations of a raw field from entry's input buf
1781 * @seg: packet segment the field being set belongs to
1782 * @off: offset of the raw field from the beginning of the segment in bytes
1783 * @len: length of the raw pattern to be matched
1784 * @val_loc: location of the value to match from entry's input buffer
1785 * @mask_loc: location of mask value from entry's input buffer
1786 *
1787 * This function specifies the offset of the raw field to be match from the
1788 * beginning of the specified packet segment, and the locations, in the form of
1789 * byte offsets from the start of the input buffer for a flow entry, from where
1790 * the value to match and the mask value to be extracted. These locations are
1791 * then stored in the flow profile. When adding flow entries to the associated
1792 * flow profile, these locations can be used to quickly extract the values to
1793 * create the content of a match entry. This function should only be used for
1794 * fixed-size data structures.
1795 */
1796void
1797ice_flow_add_fld_raw(struct ice_flow_seg_info *seg, u16 off, u8 len,
1798		     u16 val_loc, u16 mask_loc)
1799{
1800	if (seg->raws_cnt < ICE_FLOW_SEG_RAW_FLD_MAX) {
1801		seg->raws[seg->raws_cnt].off = off;
1802		seg->raws[seg->raws_cnt].info.type = ICE_FLOW_FLD_TYPE_SIZE;
1803		seg->raws[seg->raws_cnt].info.src.val = val_loc;
1804		seg->raws[seg->raws_cnt].info.src.mask = mask_loc;
1805		/* The "last" field is used to store the length of the field */
1806		seg->raws[seg->raws_cnt].info.src.last = len;
1807	}
1808
1809	/* Overflows of "raws" will be handled as an error condition later in
1810	 * the flow when this information is processed.
1811	 */
1812	seg->raws_cnt++;
1813}
1814
1815#define ICE_FLOW_RSS_SEG_HDR_L2_MASKS \
1816	(ICE_FLOW_SEG_HDR_ETH | ICE_FLOW_SEG_HDR_VLAN)
1817
1818#define ICE_FLOW_RSS_SEG_HDR_L3_MASKS \
1819	(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6)
1820
1821#define ICE_FLOW_RSS_SEG_HDR_L4_MASKS \
1822	(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
1823
1824#define ICE_FLOW_RSS_SEG_HDR_VAL_MASKS \
1825	(ICE_FLOW_RSS_SEG_HDR_L2_MASKS | \
1826	 ICE_FLOW_RSS_SEG_HDR_L3_MASKS | \
1827	 ICE_FLOW_RSS_SEG_HDR_L4_MASKS)
1828
1829/**
1830 * ice_flow_set_rss_seg_info - setup packet segments for RSS
1831 * @segs: pointer to the flow field segment(s)
1832 * @hash_fields: fields to be hashed on for the segment(s)
1833 * @flow_hdr: protocol header fields within a packet segment
1834 *
1835 * Helper function to extract fields from hash bitmap and use flow
1836 * header value to set flow field segment for further use in flow
1837 * profile entry or removal.
1838 */
1839static enum ice_status
1840ice_flow_set_rss_seg_info(struct ice_flow_seg_info *segs, u64 hash_fields,
1841			  u32 flow_hdr)
1842{
1843	u64 val;
1844	u8 i;
1845
1846	for_each_set_bit(i, (unsigned long *)&hash_fields,
1847			 ICE_FLOW_FIELD_IDX_MAX)
1848		ice_flow_set_fld(segs, (enum ice_flow_field)i,
1849				 ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
1850				 ICE_FLOW_FLD_OFF_INVAL, false);
1851
1852	ICE_FLOW_SET_HDRS(segs, flow_hdr);
1853
1854	if (segs->hdrs & ~ICE_FLOW_RSS_SEG_HDR_VAL_MASKS &
1855	    ~ICE_FLOW_RSS_HDRS_INNER_MASK & ~ICE_FLOW_SEG_HDR_IPV_OTHER)
1856		return ICE_ERR_PARAM;
1857
1858	val = (u64)(segs->hdrs & ICE_FLOW_RSS_SEG_HDR_L3_MASKS);
1859	if (val && !is_power_of_2(val))
1860		return ICE_ERR_CFG;
1861
1862	val = (u64)(segs->hdrs & ICE_FLOW_RSS_SEG_HDR_L4_MASKS);
1863	if (val && !is_power_of_2(val))
1864		return ICE_ERR_CFG;
1865
1866	return 0;
1867}
1868
1869/**
1870 * ice_rem_vsi_rss_list - remove VSI from RSS list
1871 * @hw: pointer to the hardware structure
1872 * @vsi_handle: software VSI handle
1873 *
1874 * Remove the VSI from all RSS configurations in the list.
1875 */
1876void ice_rem_vsi_rss_list(struct ice_hw *hw, u16 vsi_handle)
1877{
1878	struct ice_rss_cfg *r, *tmp;
1879
1880	if (list_empty(&hw->rss_list_head))
1881		return;
1882
1883	mutex_lock(&hw->rss_locks);
1884	list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry)
1885		if (test_and_clear_bit(vsi_handle, r->vsis))
1886			if (bitmap_empty(r->vsis, ICE_MAX_VSI)) {
1887				list_del(&r->l_entry);
1888				devm_kfree(ice_hw_to_dev(hw), r);
1889			}
1890	mutex_unlock(&hw->rss_locks);
1891}
1892
1893/**
1894 * ice_rem_vsi_rss_cfg - remove RSS configurations associated with VSI
1895 * @hw: pointer to the hardware structure
1896 * @vsi_handle: software VSI handle
1897 *
1898 * This function will iterate through all flow profiles and disassociate
1899 * the VSI from that profile. If the flow profile has no VSIs it will
1900 * be removed.
1901 */
1902enum ice_status ice_rem_vsi_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
1903{
1904	const enum ice_block blk = ICE_BLK_RSS;
1905	struct ice_flow_prof *p, *t;
1906	enum ice_status status = 0;
1907
1908	if (!ice_is_vsi_valid(hw, vsi_handle))
1909		return ICE_ERR_PARAM;
1910
1911	if (list_empty(&hw->fl_profs[blk]))
1912		return 0;
1913
1914	mutex_lock(&hw->rss_locks);
1915	list_for_each_entry_safe(p, t, &hw->fl_profs[blk], l_entry)
1916		if (test_bit(vsi_handle, p->vsis)) {
1917			status = ice_flow_disassoc_prof(hw, blk, p, vsi_handle);
1918			if (status)
1919				break;
1920
1921			if (bitmap_empty(p->vsis, ICE_MAX_VSI)) {
1922				status = ice_flow_rem_prof(hw, blk, p->id);
1923				if (status)
1924					break;
1925			}
1926		}
1927	mutex_unlock(&hw->rss_locks);
1928
1929	return status;
1930}
1931
1932/**
1933 * ice_rem_rss_list - remove RSS configuration from list
1934 * @hw: pointer to the hardware structure
1935 * @vsi_handle: software VSI handle
1936 * @prof: pointer to flow profile
1937 *
1938 * Assumption: lock has already been acquired for RSS list
1939 */
1940static void
1941ice_rem_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
1942{
1943	struct ice_rss_cfg *r, *tmp;
1944
1945	/* Search for RSS hash fields associated to the VSI that match the
1946	 * hash configurations associated to the flow profile. If found
1947	 * remove from the RSS entry list of the VSI context and delete entry.
1948	 */
1949	list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry)
1950		if (r->hashed_flds == prof->segs[prof->segs_cnt - 1].match &&
1951		    r->packet_hdr == prof->segs[prof->segs_cnt - 1].hdrs) {
1952			clear_bit(vsi_handle, r->vsis);
1953			if (bitmap_empty(r->vsis, ICE_MAX_VSI)) {
1954				list_del(&r->l_entry);
1955				devm_kfree(ice_hw_to_dev(hw), r);
1956			}
1957			return;
1958		}
1959}
1960
1961/**
1962 * ice_add_rss_list - add RSS configuration to list
1963 * @hw: pointer to the hardware structure
1964 * @vsi_handle: software VSI handle
1965 * @prof: pointer to flow profile
1966 *
1967 * Assumption: lock has already been acquired for RSS list
1968 */
1969static enum ice_status
1970ice_add_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
1971{
1972	struct ice_rss_cfg *r, *rss_cfg;
1973
1974	list_for_each_entry(r, &hw->rss_list_head, l_entry)
1975		if (r->hashed_flds == prof->segs[prof->segs_cnt - 1].match &&
1976		    r->packet_hdr == prof->segs[prof->segs_cnt - 1].hdrs) {
1977			set_bit(vsi_handle, r->vsis);
1978			return 0;
1979		}
1980
1981	rss_cfg = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rss_cfg),
1982			       GFP_KERNEL);
1983	if (!rss_cfg)
1984		return ICE_ERR_NO_MEMORY;
1985
1986	rss_cfg->hashed_flds = prof->segs[prof->segs_cnt - 1].match;
1987	rss_cfg->packet_hdr = prof->segs[prof->segs_cnt - 1].hdrs;
1988	set_bit(vsi_handle, rss_cfg->vsis);
1989
1990	list_add_tail(&rss_cfg->l_entry, &hw->rss_list_head);
1991
1992	return 0;
1993}
1994
1995#define ICE_FLOW_PROF_HASH_S	0
1996#define ICE_FLOW_PROF_HASH_M	(0xFFFFFFFFULL << ICE_FLOW_PROF_HASH_S)
1997#define ICE_FLOW_PROF_HDR_S	32
1998#define ICE_FLOW_PROF_HDR_M	(0x3FFFFFFFULL << ICE_FLOW_PROF_HDR_S)
1999#define ICE_FLOW_PROF_ENCAP_S	63
2000#define ICE_FLOW_PROF_ENCAP_M	(BIT_ULL(ICE_FLOW_PROF_ENCAP_S))
2001
2002#define ICE_RSS_OUTER_HEADERS	1
2003#define ICE_RSS_INNER_HEADERS	2
2004
2005/* Flow profile ID format:
2006 * [0:31] - Packet match fields
2007 * [32:62] - Protocol header
2008 * [63] - Encapsulation flag, 0 if non-tunneled, 1 if tunneled
2009 */
2010#define ICE_FLOW_GEN_PROFID(hash, hdr, segs_cnt) \
2011	((u64)(((u64)(hash) & ICE_FLOW_PROF_HASH_M) | \
2012	       (((u64)(hdr) << ICE_FLOW_PROF_HDR_S) & ICE_FLOW_PROF_HDR_M) | \
2013	       ((u8)((segs_cnt) - 1) ? ICE_FLOW_PROF_ENCAP_M : 0)))
2014
2015/**
2016 * ice_add_rss_cfg_sync - add an RSS configuration
2017 * @hw: pointer to the hardware structure
2018 * @vsi_handle: software VSI handle
2019 * @hashed_flds: hash bit fields (ICE_FLOW_HASH_*) to configure
2020 * @addl_hdrs: protocol header fields
2021 * @segs_cnt: packet segment count
2022 *
2023 * Assumption: lock has already been acquired for RSS list
2024 */
2025static enum ice_status
2026ice_add_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
2027		     u32 addl_hdrs, u8 segs_cnt)
2028{
2029	const enum ice_block blk = ICE_BLK_RSS;
2030	struct ice_flow_prof *prof = NULL;
2031	struct ice_flow_seg_info *segs;
2032	enum ice_status status;
2033
2034	if (!segs_cnt || segs_cnt > ICE_FLOW_SEG_MAX)
2035		return ICE_ERR_PARAM;
2036
2037	segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL);
2038	if (!segs)
2039		return ICE_ERR_NO_MEMORY;
2040
2041	/* Construct the packet segment info from the hashed fields */
2042	status = ice_flow_set_rss_seg_info(&segs[segs_cnt - 1], hashed_flds,
2043					   addl_hdrs);
2044	if (status)
2045		goto exit;
2046
2047	/* Search for a flow profile that has matching headers, hash fields
2048	 * and has the input VSI associated to it. If found, no further
2049	 * operations required and exit.
2050	 */
2051	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2052					vsi_handle,
2053					ICE_FLOW_FIND_PROF_CHK_FLDS |
2054					ICE_FLOW_FIND_PROF_CHK_VSI);
2055	if (prof)
2056		goto exit;
2057
2058	/* Check if a flow profile exists with the same protocol headers and
2059	 * associated with the input VSI. If so disassociate the VSI from
2060	 * this profile. The VSI will be added to a new profile created with
2061	 * the protocol header and new hash field configuration.
2062	 */
2063	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2064					vsi_handle, ICE_FLOW_FIND_PROF_CHK_VSI);
2065	if (prof) {
2066		status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
2067		if (!status)
2068			ice_rem_rss_list(hw, vsi_handle, prof);
2069		else
2070			goto exit;
2071
2072		/* Remove profile if it has no VSIs associated */
2073		if (bitmap_empty(prof->vsis, ICE_MAX_VSI)) {
2074			status = ice_flow_rem_prof(hw, blk, prof->id);
2075			if (status)
2076				goto exit;
2077		}
2078	}
2079
2080	/* Search for a profile that has same match fields only. If this
2081	 * exists then associate the VSI to this profile.
2082	 */
2083	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2084					vsi_handle,
2085					ICE_FLOW_FIND_PROF_CHK_FLDS);
2086	if (prof) {
2087		status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
2088		if (!status)
2089			status = ice_add_rss_list(hw, vsi_handle, prof);
2090		goto exit;
2091	}
2092
2093	/* Create a new flow profile with generated profile and packet
2094	 * segment information.
2095	 */
2096	status = ice_flow_add_prof(hw, blk, ICE_FLOW_RX,
2097				   ICE_FLOW_GEN_PROFID(hashed_flds,
2098						       segs[segs_cnt - 1].hdrs,
2099						       segs_cnt),
2100				   segs, segs_cnt, &prof);
2101	if (status)
2102		goto exit;
2103
2104	status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
2105	/* If association to a new flow profile failed then this profile can
2106	 * be removed.
2107	 */
2108	if (status) {
2109		ice_flow_rem_prof(hw, blk, prof->id);
2110		goto exit;
2111	}
2112
2113	status = ice_add_rss_list(hw, vsi_handle, prof);
2114
2115exit:
2116	kfree(segs);
2117	return status;
2118}
2119
2120/**
2121 * ice_add_rss_cfg - add an RSS configuration with specified hashed fields
2122 * @hw: pointer to the hardware structure
2123 * @vsi_handle: software VSI handle
2124 * @hashed_flds: hash bit fields (ICE_FLOW_HASH_*) to configure
2125 * @addl_hdrs: protocol header fields
2126 *
2127 * This function will generate a flow profile based on fields associated with
2128 * the input fields to hash on, the flow type and use the VSI number to add
2129 * a flow entry to the profile.
2130 */
2131enum ice_status
2132ice_add_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
2133		u32 addl_hdrs)
2134{
2135	enum ice_status status;
2136
2137	if (hashed_flds == ICE_HASH_INVALID ||
2138	    !ice_is_vsi_valid(hw, vsi_handle))
2139		return ICE_ERR_PARAM;
2140
2141	mutex_lock(&hw->rss_locks);
2142	status = ice_add_rss_cfg_sync(hw, vsi_handle, hashed_flds, addl_hdrs,
2143				      ICE_RSS_OUTER_HEADERS);
2144	if (!status)
2145		status = ice_add_rss_cfg_sync(hw, vsi_handle, hashed_flds,
2146					      addl_hdrs, ICE_RSS_INNER_HEADERS);
2147	mutex_unlock(&hw->rss_locks);
2148
2149	return status;
2150}
2151
2152/**
2153 * ice_rem_rss_cfg_sync - remove an existing RSS configuration
2154 * @hw: pointer to the hardware structure
2155 * @vsi_handle: software VSI handle
2156 * @hashed_flds: Packet hash types (ICE_FLOW_HASH_*) to remove
2157 * @addl_hdrs: Protocol header fields within a packet segment
2158 * @segs_cnt: packet segment count
2159 *
2160 * Assumption: lock has already been acquired for RSS list
2161 */
2162static enum ice_status
2163ice_rem_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
2164		     u32 addl_hdrs, u8 segs_cnt)
2165{
2166	const enum ice_block blk = ICE_BLK_RSS;
2167	struct ice_flow_seg_info *segs;
2168	struct ice_flow_prof *prof;
2169	enum ice_status status;
2170
2171	segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL);
2172	if (!segs)
2173		return ICE_ERR_NO_MEMORY;
2174
2175	/* Construct the packet segment info from the hashed fields */
2176	status = ice_flow_set_rss_seg_info(&segs[segs_cnt - 1], hashed_flds,
2177					   addl_hdrs);
2178	if (status)
2179		goto out;
2180
2181	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2182					vsi_handle,
2183					ICE_FLOW_FIND_PROF_CHK_FLDS);
2184	if (!prof) {
2185		status = ICE_ERR_DOES_NOT_EXIST;
2186		goto out;
2187	}
2188
2189	status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
2190	if (status)
2191		goto out;
2192
2193	/* Remove RSS configuration from VSI context before deleting
2194	 * the flow profile.
2195	 */
2196	ice_rem_rss_list(hw, vsi_handle, prof);
2197
2198	if (bitmap_empty(prof->vsis, ICE_MAX_VSI))
2199		status = ice_flow_rem_prof(hw, blk, prof->id);
2200
2201out:
2202	kfree(segs);
2203	return status;
2204}
2205
2206/**
2207 * ice_rem_rss_cfg - remove an existing RSS config with matching hashed fields
2208 * @hw: pointer to the hardware structure
2209 * @vsi_handle: software VSI handle
2210 * @hashed_flds: Packet hash types (ICE_FLOW_HASH_*) to remove
2211 * @addl_hdrs: Protocol header fields within a packet segment
2212 *
2213 * This function will lookup the flow profile based on the input
2214 * hash field bitmap, iterate through the profile entry list of
2215 * that profile and find entry associated with input VSI to be
2216 * removed. Calls are made to underlying flow s which will APIs
2217 * turn build or update buffers for RSS XLT1 section.
2218 */
2219enum ice_status __maybe_unused
2220ice_rem_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
2221		u32 addl_hdrs)
2222{
2223	enum ice_status status;
2224
2225	if (hashed_flds == ICE_HASH_INVALID ||
2226	    !ice_is_vsi_valid(hw, vsi_handle))
2227		return ICE_ERR_PARAM;
2228
2229	mutex_lock(&hw->rss_locks);
2230	status = ice_rem_rss_cfg_sync(hw, vsi_handle, hashed_flds, addl_hdrs,
2231				      ICE_RSS_OUTER_HEADERS);
2232	if (!status)
2233		status = ice_rem_rss_cfg_sync(hw, vsi_handle, hashed_flds,
2234					      addl_hdrs, ICE_RSS_INNER_HEADERS);
2235	mutex_unlock(&hw->rss_locks);
2236
2237	return status;
2238}
2239
2240/* Mapping of AVF hash bit fields to an L3-L4 hash combination.
2241 * As the ice_flow_avf_hdr_field represent individual bit shifts in a hash,
2242 * convert its values to their appropriate flow L3, L4 values.
2243 */
2244#define ICE_FLOW_AVF_RSS_IPV4_MASKS \
2245	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_OTHER) | \
2246	 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV4))
2247#define ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS \
2248	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP_SYN_NO_ACK) | \
2249	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP))
2250#define ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS \
2251	(BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV4_UDP) | \
2252	 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV4_UDP) | \
2253	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_UDP))
2254#define ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS \
2255	(ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS | \
2256	 ICE_FLOW_AVF_RSS_IPV4_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP))
2257
2258#define ICE_FLOW_AVF_RSS_IPV6_MASKS \
2259	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_OTHER) | \
2260	 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV6))
2261#define ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS \
2262	(BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV6_UDP) | \
2263	 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV6_UDP) | \
2264	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_UDP))
2265#define ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS \
2266	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP_SYN_NO_ACK) | \
2267	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP))
2268#define ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS \
2269	(ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS | \
2270	 ICE_FLOW_AVF_RSS_IPV6_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP))
2271
2272/**
2273 * ice_add_avf_rss_cfg - add an RSS configuration for AVF driver
2274 * @hw: pointer to the hardware structure
2275 * @vsi_handle: software VSI handle
2276 * @avf_hash: hash bit fields (ICE_AVF_FLOW_FIELD_*) to configure
2277 *
2278 * This function will take the hash bitmap provided by the AVF driver via a
2279 * message, convert it to ICE-compatible values, and configure RSS flow
2280 * profiles.
2281 */
2282enum ice_status
2283ice_add_avf_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 avf_hash)
2284{
2285	enum ice_status status = 0;
2286	u64 hash_flds;
2287
2288	if (avf_hash == ICE_AVF_FLOW_FIELD_INVALID ||
2289	    !ice_is_vsi_valid(hw, vsi_handle))
2290		return ICE_ERR_PARAM;
2291
2292	/* Make sure no unsupported bits are specified */
2293	if (avf_hash & ~(ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS |
2294			 ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS))
2295		return ICE_ERR_CFG;
2296
2297	hash_flds = avf_hash;
2298
2299	/* Always create an L3 RSS configuration for any L4 RSS configuration */
2300	if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS)
2301		hash_flds |= ICE_FLOW_AVF_RSS_IPV4_MASKS;
2302
2303	if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS)
2304		hash_flds |= ICE_FLOW_AVF_RSS_IPV6_MASKS;
2305
2306	/* Create the corresponding RSS configuration for each valid hash bit */
2307	while (hash_flds) {
2308		u64 rss_hash = ICE_HASH_INVALID;
2309
2310		if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS) {
2311			if (hash_flds & ICE_FLOW_AVF_RSS_IPV4_MASKS) {
2312				rss_hash = ICE_FLOW_HASH_IPV4;
2313				hash_flds &= ~ICE_FLOW_AVF_RSS_IPV4_MASKS;
2314			} else if (hash_flds &
2315				   ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS) {
2316				rss_hash = ICE_FLOW_HASH_IPV4 |
2317					ICE_FLOW_HASH_TCP_PORT;
2318				hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS;
2319			} else if (hash_flds &
2320				   ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS) {
2321				rss_hash = ICE_FLOW_HASH_IPV4 |
2322					ICE_FLOW_HASH_UDP_PORT;
2323				hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS;
2324			} else if (hash_flds &
2325				   BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP)) {
2326				rss_hash = ICE_FLOW_HASH_IPV4 |
2327					ICE_FLOW_HASH_SCTP_PORT;
2328				hash_flds &=
2329					~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP);
2330			}
2331		} else if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS) {
2332			if (hash_flds & ICE_FLOW_AVF_RSS_IPV6_MASKS) {
2333				rss_hash = ICE_FLOW_HASH_IPV6;
2334				hash_flds &= ~ICE_FLOW_AVF_RSS_IPV6_MASKS;
2335			} else if (hash_flds &
2336				   ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS) {
2337				rss_hash = ICE_FLOW_HASH_IPV6 |
2338					ICE_FLOW_HASH_TCP_PORT;
2339				hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS;
2340			} else if (hash_flds &
2341				   ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS) {
2342				rss_hash = ICE_FLOW_HASH_IPV6 |
2343					ICE_FLOW_HASH_UDP_PORT;
2344				hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS;
2345			} else if (hash_flds &
2346				   BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP)) {
2347				rss_hash = ICE_FLOW_HASH_IPV6 |
2348					ICE_FLOW_HASH_SCTP_PORT;
2349				hash_flds &=
2350					~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP);
2351			}
2352		}
2353
2354		if (rss_hash == ICE_HASH_INVALID)
2355			return ICE_ERR_OUT_OF_RANGE;
2356
2357		status = ice_add_rss_cfg(hw, vsi_handle, rss_hash,
2358					 ICE_FLOW_SEG_HDR_NONE);
2359		if (status)
2360			break;
2361	}
2362
2363	return status;
2364}
2365
2366/**
2367 * ice_replay_rss_cfg - replay RSS configurations associated with VSI
2368 * @hw: pointer to the hardware structure
2369 * @vsi_handle: software VSI handle
2370 */
2371enum ice_status ice_replay_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
2372{
2373	enum ice_status status = 0;
2374	struct ice_rss_cfg *r;
2375
2376	if (!ice_is_vsi_valid(hw, vsi_handle))
2377		return ICE_ERR_PARAM;
2378
2379	mutex_lock(&hw->rss_locks);
2380	list_for_each_entry(r, &hw->rss_list_head, l_entry) {
2381		if (test_bit(vsi_handle, r->vsis)) {
2382			status = ice_add_rss_cfg_sync(hw, vsi_handle,
2383						      r->hashed_flds,
2384						      r->packet_hdr,
2385						      ICE_RSS_OUTER_HEADERS);
2386			if (status)
2387				break;
2388			status = ice_add_rss_cfg_sync(hw, vsi_handle,
2389						      r->hashed_flds,
2390						      r->packet_hdr,
2391						      ICE_RSS_INNER_HEADERS);
2392			if (status)
2393				break;
2394		}
2395	}
2396	mutex_unlock(&hw->rss_locks);
2397
2398	return status;
2399}
2400
2401/**
2402 * ice_get_rss_cfg - returns hashed fields for the given header types
2403 * @hw: pointer to the hardware structure
2404 * @vsi_handle: software VSI handle
2405 * @hdrs: protocol header type
2406 *
2407 * This function will return the match fields of the first instance of flow
2408 * profile having the given header types and containing input VSI
2409 */
2410u64 ice_get_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u32 hdrs)
2411{
2412	u64 rss_hash = ICE_HASH_INVALID;
2413	struct ice_rss_cfg *r;
2414
2415	/* verify if the protocol header is non zero and VSI is valid */
2416	if (hdrs == ICE_FLOW_SEG_HDR_NONE || !ice_is_vsi_valid(hw, vsi_handle))
2417		return ICE_HASH_INVALID;
2418
2419	mutex_lock(&hw->rss_locks);
2420	list_for_each_entry(r, &hw->rss_list_head, l_entry)
2421		if (test_bit(vsi_handle, r->vsis) &&
2422		    r->packet_hdr == hdrs) {
2423			rss_hash = r->hashed_flds;
2424			break;
2425		}
2426	mutex_unlock(&hw->rss_locks);
2427
2428	return rss_hash;
2429}