Linux Audio

Check our new training course

Loading...
v5.9
   1/*
   2 * Copyright (C) 2011-2012 Red Hat, Inc.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
   8#include "persistent-data/dm-btree.h"
   9#include "persistent-data/dm-space-map.h"
  10#include "persistent-data/dm-space-map-disk.h"
  11#include "persistent-data/dm-transaction-manager.h"
  12
  13#include <linux/list.h>
  14#include <linux/device-mapper.h>
  15#include <linux/workqueue.h>
  16
  17/*--------------------------------------------------------------------------
  18 * As far as the metadata goes, there is:
  19 *
  20 * - A superblock in block zero, taking up fewer than 512 bytes for
  21 *   atomic writes.
  22 *
  23 * - A space map managing the metadata blocks.
  24 *
  25 * - A space map managing the data blocks.
  26 *
  27 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
  28 *
  29 * - A hierarchical btree, with 2 levels which effectively maps (thin
  30 *   dev id, virtual block) -> block_time.  Block time is a 64-bit
  31 *   field holding the time in the low 24 bits, and block in the top 40
  32 *   bits.
  33 *
  34 * BTrees consist solely of btree_nodes, that fill a block.  Some are
  35 * internal nodes, as such their values are a __le64 pointing to other
  36 * nodes.  Leaf nodes can store data of any reasonable size (ie. much
  37 * smaller than the block size).  The nodes consist of the header,
  38 * followed by an array of keys, followed by an array of values.  We have
  39 * to binary search on the keys so they're all held together to help the
  40 * cpu cache.
  41 *
  42 * Space maps have 2 btrees:
  43 *
  44 * - One maps a uint64_t onto a struct index_entry.  Which points to a
  45 *   bitmap block, and has some details about how many free entries there
  46 *   are etc.
  47 *
  48 * - The bitmap blocks have a header (for the checksum).  Then the rest
  49 *   of the block is pairs of bits.  With the meaning being:
  50 *
  51 *   0 - ref count is 0
  52 *   1 - ref count is 1
  53 *   2 - ref count is 2
  54 *   3 - ref count is higher than 2
  55 *
  56 * - If the count is higher than 2 then the ref count is entered in a
  57 *   second btree that directly maps the block_address to a uint32_t ref
  58 *   count.
  59 *
  60 * The space map metadata variant doesn't have a bitmaps btree.  Instead
  61 * it has one single blocks worth of index_entries.  This avoids
  62 * recursive issues with the bitmap btree needing to allocate space in
  63 * order to insert.  With a small data block size such as 64k the
  64 * metadata support data devices that are hundreds of terrabytes.
  65 *
  66 * The space maps allocate space linearly from front to back.  Space that
  67 * is freed in a transaction is never recycled within that transaction.
  68 * To try and avoid fragmenting _free_ space the allocator always goes
  69 * back and fills in gaps.
  70 *
  71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
  72 * from the block manager.
  73 *--------------------------------------------------------------------------*/
  74
  75#define DM_MSG_PREFIX   "thin metadata"
  76
  77#define THIN_SUPERBLOCK_MAGIC 27022010
  78#define THIN_SUPERBLOCK_LOCATION 0
  79#define THIN_VERSION 2
  80#define SECTOR_TO_BLOCK_SHIFT 3
  81
  82/*
  83 * For btree insert:
  84 *  3 for btree insert +
  85 *  2 for btree lookup used within space map
  86 * For btree remove:
  87 *  2 for shadow spine +
  88 *  4 for rebalance 3 child node
  89 */
  90#define THIN_MAX_CONCURRENT_LOCKS 6
  91
  92/* This should be plenty */
  93#define SPACE_MAP_ROOT_SIZE 128
  94
  95/*
  96 * Little endian on-disk superblock and device details.
  97 */
  98struct thin_disk_superblock {
  99	__le32 csum;	/* Checksum of superblock except for this field. */
 100	__le32 flags;
 101	__le64 blocknr;	/* This block number, dm_block_t. */
 102
 103	__u8 uuid[16];
 104	__le64 magic;
 105	__le32 version;
 106	__le32 time;
 107
 108	__le64 trans_id;
 109
 110	/*
 111	 * Root held by userspace transactions.
 112	 */
 113	__le64 held_root;
 114
 115	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
 116	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
 117
 118	/*
 119	 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
 120	 */
 121	__le64 data_mapping_root;
 122
 123	/*
 124	 * Device detail root mapping dev_id -> device_details
 125	 */
 126	__le64 device_details_root;
 127
 128	__le32 data_block_size;		/* In 512-byte sectors. */
 129
 130	__le32 metadata_block_size;	/* In 512-byte sectors. */
 131	__le64 metadata_nr_blocks;
 132
 133	__le32 compat_flags;
 134	__le32 compat_ro_flags;
 135	__le32 incompat_flags;
 136} __packed;
 137
 138struct disk_device_details {
 139	__le64 mapped_blocks;
 140	__le64 transaction_id;		/* When created. */
 141	__le32 creation_time;
 142	__le32 snapshotted_time;
 143} __packed;
 144
 145struct dm_pool_metadata {
 146	struct hlist_node hash;
 147
 148	struct block_device *bdev;
 149	struct dm_block_manager *bm;
 150	struct dm_space_map *metadata_sm;
 151	struct dm_space_map *data_sm;
 152	struct dm_transaction_manager *tm;
 153	struct dm_transaction_manager *nb_tm;
 154
 155	/*
 156	 * Two-level btree.
 157	 * First level holds thin_dev_t.
 158	 * Second level holds mappings.
 159	 */
 160	struct dm_btree_info info;
 161
 162	/*
 163	 * Non-blocking version of the above.
 164	 */
 165	struct dm_btree_info nb_info;
 166
 167	/*
 168	 * Just the top level for deleting whole devices.
 169	 */
 170	struct dm_btree_info tl_info;
 171
 172	/*
 173	 * Just the bottom level for creating new devices.
 174	 */
 175	struct dm_btree_info bl_info;
 176
 177	/*
 178	 * Describes the device details btree.
 179	 */
 180	struct dm_btree_info details_info;
 181
 182	struct rw_semaphore root_lock;
 183	uint32_t time;
 184	dm_block_t root;
 185	dm_block_t details_root;
 186	struct list_head thin_devices;
 187	uint64_t trans_id;
 188	unsigned long flags;
 189	sector_t data_block_size;
 190
 191	/*
 192	 * Pre-commit callback.
 193	 *
 194	 * This allows the thin provisioning target to run a callback before
 195	 * the metadata are committed.
 196	 */
 197	dm_pool_pre_commit_fn pre_commit_fn;
 198	void *pre_commit_context;
 199
 200	/*
 201	 * We reserve a section of the metadata for commit overhead.
 202	 * All reported space does *not* include this.
 203	 */
 204	dm_block_t metadata_reserve;
 205
 206	/*
 207	 * Set if a transaction has to be aborted but the attempt to roll back
 208	 * to the previous (good) transaction failed.  The only pool metadata
 209	 * operation possible in this state is the closing of the device.
 210	 */
 211	bool fail_io:1;
 212
 213	/*
 214	 * Set once a thin-pool has been accessed through one of the interfaces
 215	 * that imply the pool is in-service (e.g. thin devices created/deleted,
 216	 * thin-pool message, metadata snapshots, etc).
 217	 */
 218	bool in_service:1;
 219
 220	/*
 221	 * Reading the space map roots can fail, so we read it into these
 222	 * buffers before the superblock is locked and updated.
 223	 */
 224	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
 225	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
 226};
 227
 228struct dm_thin_device {
 229	struct list_head list;
 230	struct dm_pool_metadata *pmd;
 231	dm_thin_id id;
 232
 233	int open_count;
 234	bool changed:1;
 235	bool aborted_with_changes:1;
 236	uint64_t mapped_blocks;
 237	uint64_t transaction_id;
 238	uint32_t creation_time;
 239	uint32_t snapshotted_time;
 240};
 241
 242/*----------------------------------------------------------------
 243 * superblock validator
 244 *--------------------------------------------------------------*/
 245
 246#define SUPERBLOCK_CSUM_XOR 160774
 247
 248static void sb_prepare_for_write(struct dm_block_validator *v,
 249				 struct dm_block *b,
 250				 size_t block_size)
 251{
 252	struct thin_disk_superblock *disk_super = dm_block_data(b);
 253
 254	disk_super->blocknr = cpu_to_le64(dm_block_location(b));
 255	disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
 256						      block_size - sizeof(__le32),
 257						      SUPERBLOCK_CSUM_XOR));
 258}
 259
 260static int sb_check(struct dm_block_validator *v,
 261		    struct dm_block *b,
 262		    size_t block_size)
 263{
 264	struct thin_disk_superblock *disk_super = dm_block_data(b);
 265	__le32 csum_le;
 266
 267	if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
 268		DMERR("sb_check failed: blocknr %llu: "
 269		      "wanted %llu", le64_to_cpu(disk_super->blocknr),
 270		      (unsigned long long)dm_block_location(b));
 271		return -ENOTBLK;
 272	}
 273
 274	if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
 275		DMERR("sb_check failed: magic %llu: "
 276		      "wanted %llu", le64_to_cpu(disk_super->magic),
 277		      (unsigned long long)THIN_SUPERBLOCK_MAGIC);
 278		return -EILSEQ;
 279	}
 280
 281	csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
 282					     block_size - sizeof(__le32),
 283					     SUPERBLOCK_CSUM_XOR));
 284	if (csum_le != disk_super->csum) {
 285		DMERR("sb_check failed: csum %u: wanted %u",
 286		      le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
 287		return -EILSEQ;
 288	}
 289
 290	return 0;
 291}
 292
 293static struct dm_block_validator sb_validator = {
 294	.name = "superblock",
 295	.prepare_for_write = sb_prepare_for_write,
 296	.check = sb_check
 297};
 298
 299/*----------------------------------------------------------------
 300 * Methods for the btree value types
 301 *--------------------------------------------------------------*/
 302
 303static uint64_t pack_block_time(dm_block_t b, uint32_t t)
 304{
 305	return (b << 24) | t;
 306}
 307
 308static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
 309{
 310	*b = v >> 24;
 311	*t = v & ((1 << 24) - 1);
 312}
 313
 314static void data_block_inc(void *context, const void *value_le)
 
 
 
 
 
 
 
 315{
 316	struct dm_space_map *sm = context;
 317	__le64 v_le;
 318	uint64_t b;
 319	uint32_t t;
 
 
 320
 321	memcpy(&v_le, value_le, sizeof(v_le));
 322	unpack_block_time(le64_to_cpu(v_le), &b, &t);
 323	dm_sm_inc_block(sm, b);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 324}
 325
 326static void data_block_dec(void *context, const void *value_le)
 327{
 328	struct dm_space_map *sm = context;
 329	__le64 v_le;
 330	uint64_t b;
 331	uint32_t t;
 332
 333	memcpy(&v_le, value_le, sizeof(v_le));
 334	unpack_block_time(le64_to_cpu(v_le), &b, &t);
 335	dm_sm_dec_block(sm, b);
 
 336}
 337
 338static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
 339{
 340	__le64 v1_le, v2_le;
 341	uint64_t b1, b2;
 342	uint32_t t;
 343
 344	memcpy(&v1_le, value1_le, sizeof(v1_le));
 345	memcpy(&v2_le, value2_le, sizeof(v2_le));
 346	unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
 347	unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
 348
 349	return b1 == b2;
 350}
 351
 352static void subtree_inc(void *context, const void *value)
 353{
 354	struct dm_btree_info *info = context;
 355	__le64 root_le;
 356	uint64_t root;
 357
 358	memcpy(&root_le, value, sizeof(root_le));
 359	root = le64_to_cpu(root_le);
 360	dm_tm_inc(info->tm, root);
 361}
 362
 363static void subtree_dec(void *context, const void *value)
 364{
 365	struct dm_btree_info *info = context;
 366	__le64 root_le;
 367	uint64_t root;
 368
 369	memcpy(&root_le, value, sizeof(root_le));
 370	root = le64_to_cpu(root_le);
 371	if (dm_btree_del(info, root))
 372		DMERR("btree delete failed");
 373}
 374
 375static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
 376{
 377	__le64 v1_le, v2_le;
 378	memcpy(&v1_le, value1_le, sizeof(v1_le));
 379	memcpy(&v2_le, value2_le, sizeof(v2_le));
 380
 381	return v1_le == v2_le;
 382}
 383
 384/*----------------------------------------------------------------*/
 385
 386/*
 387 * Variant that is used for in-core only changes or code that
 388 * shouldn't put the pool in service on its own (e.g. commit).
 389 */
 390static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd)
 391	__acquires(pmd->root_lock)
 392{
 393	down_write(&pmd->root_lock);
 394}
 395
 396static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
 397{
 398	pmd_write_lock_in_core(pmd);
 399	if (unlikely(!pmd->in_service))
 400		pmd->in_service = true;
 401}
 402
 403static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
 404	__releases(pmd->root_lock)
 405{
 406	up_write(&pmd->root_lock);
 407}
 408
 409/*----------------------------------------------------------------*/
 410
 411static int superblock_lock_zero(struct dm_pool_metadata *pmd,
 412				struct dm_block **sblock)
 413{
 414	return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 415				     &sb_validator, sblock);
 416}
 417
 418static int superblock_lock(struct dm_pool_metadata *pmd,
 419			   struct dm_block **sblock)
 420{
 421	return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 422				&sb_validator, sblock);
 423}
 424
 425static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
 426{
 427	int r;
 428	unsigned i;
 429	struct dm_block *b;
 430	__le64 *data_le, zero = cpu_to_le64(0);
 431	unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
 432
 433	/*
 434	 * We can't use a validator here - it may be all zeroes.
 435	 */
 436	r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
 437	if (r)
 438		return r;
 439
 440	data_le = dm_block_data(b);
 441	*result = 1;
 442	for (i = 0; i < block_size; i++) {
 443		if (data_le[i] != zero) {
 444			*result = 0;
 445			break;
 446		}
 447	}
 448
 449	dm_bm_unlock(b);
 450
 451	return 0;
 452}
 453
 454static void __setup_btree_details(struct dm_pool_metadata *pmd)
 455{
 456	pmd->info.tm = pmd->tm;
 457	pmd->info.levels = 2;
 458	pmd->info.value_type.context = pmd->data_sm;
 459	pmd->info.value_type.size = sizeof(__le64);
 460	pmd->info.value_type.inc = data_block_inc;
 461	pmd->info.value_type.dec = data_block_dec;
 462	pmd->info.value_type.equal = data_block_equal;
 463
 464	memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
 465	pmd->nb_info.tm = pmd->nb_tm;
 466
 467	pmd->tl_info.tm = pmd->tm;
 468	pmd->tl_info.levels = 1;
 469	pmd->tl_info.value_type.context = &pmd->bl_info;
 470	pmd->tl_info.value_type.size = sizeof(__le64);
 471	pmd->tl_info.value_type.inc = subtree_inc;
 472	pmd->tl_info.value_type.dec = subtree_dec;
 473	pmd->tl_info.value_type.equal = subtree_equal;
 474
 475	pmd->bl_info.tm = pmd->tm;
 476	pmd->bl_info.levels = 1;
 477	pmd->bl_info.value_type.context = pmd->data_sm;
 478	pmd->bl_info.value_type.size = sizeof(__le64);
 479	pmd->bl_info.value_type.inc = data_block_inc;
 480	pmd->bl_info.value_type.dec = data_block_dec;
 481	pmd->bl_info.value_type.equal = data_block_equal;
 482
 483	pmd->details_info.tm = pmd->tm;
 484	pmd->details_info.levels = 1;
 485	pmd->details_info.value_type.context = NULL;
 486	pmd->details_info.value_type.size = sizeof(struct disk_device_details);
 487	pmd->details_info.value_type.inc = NULL;
 488	pmd->details_info.value_type.dec = NULL;
 489	pmd->details_info.value_type.equal = NULL;
 490}
 491
 492static int save_sm_roots(struct dm_pool_metadata *pmd)
 493{
 494	int r;
 495	size_t len;
 496
 497	r = dm_sm_root_size(pmd->metadata_sm, &len);
 498	if (r < 0)
 499		return r;
 500
 501	r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
 502	if (r < 0)
 503		return r;
 504
 505	r = dm_sm_root_size(pmd->data_sm, &len);
 506	if (r < 0)
 507		return r;
 508
 509	return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
 510}
 511
 512static void copy_sm_roots(struct dm_pool_metadata *pmd,
 513			  struct thin_disk_superblock *disk)
 514{
 515	memcpy(&disk->metadata_space_map_root,
 516	       &pmd->metadata_space_map_root,
 517	       sizeof(pmd->metadata_space_map_root));
 518
 519	memcpy(&disk->data_space_map_root,
 520	       &pmd->data_space_map_root,
 521	       sizeof(pmd->data_space_map_root));
 522}
 523
 524static int __write_initial_superblock(struct dm_pool_metadata *pmd)
 525{
 526	int r;
 527	struct dm_block *sblock;
 528	struct thin_disk_superblock *disk_super;
 529	sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
 530
 531	if (bdev_size > THIN_METADATA_MAX_SECTORS)
 532		bdev_size = THIN_METADATA_MAX_SECTORS;
 533
 534	r = dm_sm_commit(pmd->data_sm);
 535	if (r < 0)
 536		return r;
 537
 538	r = dm_tm_pre_commit(pmd->tm);
 539	if (r < 0)
 540		return r;
 541
 542	r = save_sm_roots(pmd);
 543	if (r < 0)
 544		return r;
 545
 546	r = superblock_lock_zero(pmd, &sblock);
 547	if (r)
 548		return r;
 549
 550	disk_super = dm_block_data(sblock);
 551	disk_super->flags = 0;
 552	memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
 553	disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
 554	disk_super->version = cpu_to_le32(THIN_VERSION);
 555	disk_super->time = 0;
 556	disk_super->trans_id = 0;
 557	disk_super->held_root = 0;
 558
 559	copy_sm_roots(pmd, disk_super);
 560
 561	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
 562	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
 563	disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
 564	disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
 565	disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
 566
 567	return dm_tm_commit(pmd->tm, sblock);
 568}
 569
 570static int __format_metadata(struct dm_pool_metadata *pmd)
 571{
 572	int r;
 573
 574	r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 575				 &pmd->tm, &pmd->metadata_sm);
 576	if (r < 0) {
 577		DMERR("tm_create_with_sm failed");
 578		return r;
 579	}
 580
 581	pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
 582	if (IS_ERR(pmd->data_sm)) {
 583		DMERR("sm_disk_create failed");
 584		r = PTR_ERR(pmd->data_sm);
 585		goto bad_cleanup_tm;
 586	}
 587
 588	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
 589	if (!pmd->nb_tm) {
 590		DMERR("could not create non-blocking clone tm");
 591		r = -ENOMEM;
 592		goto bad_cleanup_data_sm;
 593	}
 594
 595	__setup_btree_details(pmd);
 596
 597	r = dm_btree_empty(&pmd->info, &pmd->root);
 598	if (r < 0)
 599		goto bad_cleanup_nb_tm;
 600
 601	r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
 602	if (r < 0) {
 603		DMERR("couldn't create devices root");
 604		goto bad_cleanup_nb_tm;
 605	}
 606
 607	r = __write_initial_superblock(pmd);
 608	if (r)
 609		goto bad_cleanup_nb_tm;
 610
 611	return 0;
 612
 613bad_cleanup_nb_tm:
 614	dm_tm_destroy(pmd->nb_tm);
 615bad_cleanup_data_sm:
 616	dm_sm_destroy(pmd->data_sm);
 617bad_cleanup_tm:
 618	dm_tm_destroy(pmd->tm);
 619	dm_sm_destroy(pmd->metadata_sm);
 620
 621	return r;
 622}
 623
 624static int __check_incompat_features(struct thin_disk_superblock *disk_super,
 625				     struct dm_pool_metadata *pmd)
 626{
 627	uint32_t features;
 628
 629	features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
 630	if (features) {
 631		DMERR("could not access metadata due to unsupported optional features (%lx).",
 632		      (unsigned long)features);
 633		return -EINVAL;
 634	}
 635
 636	/*
 637	 * Check for read-only metadata to skip the following RDWR checks.
 638	 */
 639	if (get_disk_ro(pmd->bdev->bd_disk))
 640		return 0;
 641
 642	features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
 643	if (features) {
 644		DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
 645		      (unsigned long)features);
 646		return -EINVAL;
 647	}
 648
 649	return 0;
 650}
 651
 652static int __open_metadata(struct dm_pool_metadata *pmd)
 653{
 654	int r;
 655	struct dm_block *sblock;
 656	struct thin_disk_superblock *disk_super;
 657
 658	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 659			    &sb_validator, &sblock);
 660	if (r < 0) {
 661		DMERR("couldn't read superblock");
 662		return r;
 663	}
 664
 665	disk_super = dm_block_data(sblock);
 666
 667	/* Verify the data block size hasn't changed */
 668	if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
 669		DMERR("changing the data block size (from %u to %llu) is not supported",
 670		      le32_to_cpu(disk_super->data_block_size),
 671		      (unsigned long long)pmd->data_block_size);
 672		r = -EINVAL;
 673		goto bad_unlock_sblock;
 674	}
 675
 676	r = __check_incompat_features(disk_super, pmd);
 677	if (r < 0)
 678		goto bad_unlock_sblock;
 679
 680	r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 681			       disk_super->metadata_space_map_root,
 682			       sizeof(disk_super->metadata_space_map_root),
 683			       &pmd->tm, &pmd->metadata_sm);
 684	if (r < 0) {
 685		DMERR("tm_open_with_sm failed");
 686		goto bad_unlock_sblock;
 687	}
 688
 689	pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
 690				       sizeof(disk_super->data_space_map_root));
 691	if (IS_ERR(pmd->data_sm)) {
 692		DMERR("sm_disk_open failed");
 693		r = PTR_ERR(pmd->data_sm);
 694		goto bad_cleanup_tm;
 695	}
 696
 697	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
 698	if (!pmd->nb_tm) {
 699		DMERR("could not create non-blocking clone tm");
 700		r = -ENOMEM;
 701		goto bad_cleanup_data_sm;
 702	}
 703
 704	__setup_btree_details(pmd);
 705	dm_bm_unlock(sblock);
 706
 707	return 0;
 708
 709bad_cleanup_data_sm:
 710	dm_sm_destroy(pmd->data_sm);
 711bad_cleanup_tm:
 712	dm_tm_destroy(pmd->tm);
 713	dm_sm_destroy(pmd->metadata_sm);
 714bad_unlock_sblock:
 715	dm_bm_unlock(sblock);
 716
 717	return r;
 718}
 719
 720static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
 721{
 722	int r, unformatted;
 723
 724	r = __superblock_all_zeroes(pmd->bm, &unformatted);
 725	if (r)
 726		return r;
 727
 728	if (unformatted)
 729		return format_device ? __format_metadata(pmd) : -EPERM;
 730
 731	return __open_metadata(pmd);
 732}
 733
 734static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
 735{
 736	int r;
 737
 738	pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
 739					  THIN_MAX_CONCURRENT_LOCKS);
 740	if (IS_ERR(pmd->bm)) {
 741		DMERR("could not create block manager");
 742		r = PTR_ERR(pmd->bm);
 743		pmd->bm = NULL;
 744		return r;
 745	}
 746
 747	r = __open_or_format_metadata(pmd, format_device);
 748	if (r) {
 749		dm_block_manager_destroy(pmd->bm);
 750		pmd->bm = NULL;
 751	}
 752
 753	return r;
 754}
 755
 756static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
 757{
 758	dm_sm_destroy(pmd->data_sm);
 759	dm_sm_destroy(pmd->metadata_sm);
 760	dm_tm_destroy(pmd->nb_tm);
 761	dm_tm_destroy(pmd->tm);
 762	dm_block_manager_destroy(pmd->bm);
 763}
 764
 765static int __begin_transaction(struct dm_pool_metadata *pmd)
 766{
 767	int r;
 768	struct thin_disk_superblock *disk_super;
 769	struct dm_block *sblock;
 770
 771	/*
 772	 * We re-read the superblock every time.  Shouldn't need to do this
 773	 * really.
 774	 */
 775	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 776			    &sb_validator, &sblock);
 777	if (r)
 778		return r;
 779
 780	disk_super = dm_block_data(sblock);
 781	pmd->time = le32_to_cpu(disk_super->time);
 782	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
 783	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
 784	pmd->trans_id = le64_to_cpu(disk_super->trans_id);
 785	pmd->flags = le32_to_cpu(disk_super->flags);
 786	pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
 787
 788	dm_bm_unlock(sblock);
 789	return 0;
 790}
 791
 792static int __write_changed_details(struct dm_pool_metadata *pmd)
 793{
 794	int r;
 795	struct dm_thin_device *td, *tmp;
 796	struct disk_device_details details;
 797	uint64_t key;
 798
 799	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
 800		if (!td->changed)
 801			continue;
 802
 803		key = td->id;
 804
 805		details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
 806		details.transaction_id = cpu_to_le64(td->transaction_id);
 807		details.creation_time = cpu_to_le32(td->creation_time);
 808		details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
 809		__dm_bless_for_disk(&details);
 810
 811		r = dm_btree_insert(&pmd->details_info, pmd->details_root,
 812				    &key, &details, &pmd->details_root);
 813		if (r)
 814			return r;
 815
 816		if (td->open_count)
 817			td->changed = false;
 818		else {
 819			list_del(&td->list);
 820			kfree(td);
 821		}
 822	}
 823
 824	return 0;
 825}
 826
 827static int __commit_transaction(struct dm_pool_metadata *pmd)
 828{
 829	int r;
 830	struct thin_disk_superblock *disk_super;
 831	struct dm_block *sblock;
 832
 833	/*
 834	 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
 835	 */
 836	BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
 837	BUG_ON(!rwsem_is_locked(&pmd->root_lock));
 838
 839	if (unlikely(!pmd->in_service))
 840		return 0;
 841
 842	if (pmd->pre_commit_fn) {
 843		r = pmd->pre_commit_fn(pmd->pre_commit_context);
 844		if (r < 0) {
 845			DMERR("pre-commit callback failed");
 846			return r;
 847		}
 848	}
 849
 850	r = __write_changed_details(pmd);
 851	if (r < 0)
 852		return r;
 853
 854	r = dm_sm_commit(pmd->data_sm);
 855	if (r < 0)
 856		return r;
 857
 858	r = dm_tm_pre_commit(pmd->tm);
 859	if (r < 0)
 860		return r;
 861
 862	r = save_sm_roots(pmd);
 863	if (r < 0)
 864		return r;
 865
 866	r = superblock_lock(pmd, &sblock);
 867	if (r)
 868		return r;
 869
 870	disk_super = dm_block_data(sblock);
 871	disk_super->time = cpu_to_le32(pmd->time);
 872	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
 873	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
 874	disk_super->trans_id = cpu_to_le64(pmd->trans_id);
 875	disk_super->flags = cpu_to_le32(pmd->flags);
 876
 877	copy_sm_roots(pmd, disk_super);
 878
 879	return dm_tm_commit(pmd->tm, sblock);
 880}
 881
 882static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
 883{
 884	int r;
 885	dm_block_t total;
 886	dm_block_t max_blocks = 4096; /* 16M */
 887
 888	r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
 889	if (r) {
 890		DMERR("could not get size of metadata device");
 891		pmd->metadata_reserve = max_blocks;
 892	} else
 893		pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
 894}
 895
 896struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
 897					       sector_t data_block_size,
 898					       bool format_device)
 899{
 900	int r;
 901	struct dm_pool_metadata *pmd;
 902
 903	pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
 904	if (!pmd) {
 905		DMERR("could not allocate metadata struct");
 906		return ERR_PTR(-ENOMEM);
 907	}
 908
 909	init_rwsem(&pmd->root_lock);
 910	pmd->time = 0;
 911	INIT_LIST_HEAD(&pmd->thin_devices);
 912	pmd->fail_io = false;
 913	pmd->in_service = false;
 914	pmd->bdev = bdev;
 915	pmd->data_block_size = data_block_size;
 916	pmd->pre_commit_fn = NULL;
 917	pmd->pre_commit_context = NULL;
 918
 919	r = __create_persistent_data_objects(pmd, format_device);
 920	if (r) {
 921		kfree(pmd);
 922		return ERR_PTR(r);
 923	}
 924
 925	r = __begin_transaction(pmd);
 926	if (r < 0) {
 927		if (dm_pool_metadata_close(pmd) < 0)
 928			DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
 929		return ERR_PTR(r);
 930	}
 931
 932	__set_metadata_reserve(pmd);
 933
 934	return pmd;
 935}
 936
 937int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
 938{
 939	int r;
 940	unsigned open_devices = 0;
 941	struct dm_thin_device *td, *tmp;
 942
 943	down_read(&pmd->root_lock);
 944	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
 945		if (td->open_count)
 946			open_devices++;
 947		else {
 948			list_del(&td->list);
 949			kfree(td);
 950		}
 951	}
 952	up_read(&pmd->root_lock);
 953
 954	if (open_devices) {
 955		DMERR("attempt to close pmd when %u device(s) are still open",
 956		       open_devices);
 957		return -EBUSY;
 958	}
 959
 960	pmd_write_lock_in_core(pmd);
 961	if (!pmd->fail_io && !dm_bm_is_read_only(pmd->bm)) {
 962		r = __commit_transaction(pmd);
 963		if (r < 0)
 964			DMWARN("%s: __commit_transaction() failed, error = %d",
 965			       __func__, r);
 966	}
 967	pmd_write_unlock(pmd);
 968	if (!pmd->fail_io)
 969		__destroy_persistent_data_objects(pmd);
 970
 971	kfree(pmd);
 972	return 0;
 973}
 974
 975/*
 976 * __open_device: Returns @td corresponding to device with id @dev,
 977 * creating it if @create is set and incrementing @td->open_count.
 978 * On failure, @td is undefined.
 979 */
 980static int __open_device(struct dm_pool_metadata *pmd,
 981			 dm_thin_id dev, int create,
 982			 struct dm_thin_device **td)
 983{
 984	int r, changed = 0;
 985	struct dm_thin_device *td2;
 986	uint64_t key = dev;
 987	struct disk_device_details details_le;
 988
 989	/*
 990	 * If the device is already open, return it.
 991	 */
 992	list_for_each_entry(td2, &pmd->thin_devices, list)
 993		if (td2->id == dev) {
 994			/*
 995			 * May not create an already-open device.
 996			 */
 997			if (create)
 998				return -EEXIST;
 999
1000			td2->open_count++;
1001			*td = td2;
1002			return 0;
1003		}
1004
1005	/*
1006	 * Check the device exists.
1007	 */
1008	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1009			    &key, &details_le);
1010	if (r) {
1011		if (r != -ENODATA || !create)
1012			return r;
1013
1014		/*
1015		 * Create new device.
1016		 */
1017		changed = 1;
1018		details_le.mapped_blocks = 0;
1019		details_le.transaction_id = cpu_to_le64(pmd->trans_id);
1020		details_le.creation_time = cpu_to_le32(pmd->time);
1021		details_le.snapshotted_time = cpu_to_le32(pmd->time);
1022	}
1023
1024	*td = kmalloc(sizeof(**td), GFP_NOIO);
1025	if (!*td)
1026		return -ENOMEM;
1027
1028	(*td)->pmd = pmd;
1029	(*td)->id = dev;
1030	(*td)->open_count = 1;
1031	(*td)->changed = changed;
1032	(*td)->aborted_with_changes = false;
1033	(*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1034	(*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1035	(*td)->creation_time = le32_to_cpu(details_le.creation_time);
1036	(*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1037
1038	list_add(&(*td)->list, &pmd->thin_devices);
1039
1040	return 0;
1041}
1042
1043static void __close_device(struct dm_thin_device *td)
1044{
1045	--td->open_count;
1046}
1047
1048static int __create_thin(struct dm_pool_metadata *pmd,
1049			 dm_thin_id dev)
1050{
1051	int r;
1052	dm_block_t dev_root;
1053	uint64_t key = dev;
1054	struct disk_device_details details_le;
1055	struct dm_thin_device *td;
1056	__le64 value;
1057
1058	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1059			    &key, &details_le);
1060	if (!r)
1061		return -EEXIST;
1062
1063	/*
1064	 * Create an empty btree for the mappings.
1065	 */
1066	r = dm_btree_empty(&pmd->bl_info, &dev_root);
1067	if (r)
1068		return r;
1069
1070	/*
1071	 * Insert it into the main mapping tree.
1072	 */
1073	value = cpu_to_le64(dev_root);
1074	__dm_bless_for_disk(&value);
1075	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1076	if (r) {
1077		dm_btree_del(&pmd->bl_info, dev_root);
1078		return r;
1079	}
1080
1081	r = __open_device(pmd, dev, 1, &td);
1082	if (r) {
1083		dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1084		dm_btree_del(&pmd->bl_info, dev_root);
1085		return r;
1086	}
1087	__close_device(td);
1088
1089	return r;
1090}
1091
1092int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1093{
1094	int r = -EINVAL;
1095
1096	pmd_write_lock(pmd);
1097	if (!pmd->fail_io)
1098		r = __create_thin(pmd, dev);
1099	pmd_write_unlock(pmd);
1100
1101	return r;
1102}
1103
1104static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1105				  struct dm_thin_device *snap,
1106				  dm_thin_id origin, uint32_t time)
1107{
1108	int r;
1109	struct dm_thin_device *td;
1110
1111	r = __open_device(pmd, origin, 0, &td);
1112	if (r)
1113		return r;
1114
1115	td->changed = true;
1116	td->snapshotted_time = time;
1117
1118	snap->mapped_blocks = td->mapped_blocks;
1119	snap->snapshotted_time = time;
1120	__close_device(td);
1121
1122	return 0;
1123}
1124
1125static int __create_snap(struct dm_pool_metadata *pmd,
1126			 dm_thin_id dev, dm_thin_id origin)
1127{
1128	int r;
1129	dm_block_t origin_root;
1130	uint64_t key = origin, dev_key = dev;
1131	struct dm_thin_device *td;
1132	struct disk_device_details details_le;
1133	__le64 value;
1134
1135	/* check this device is unused */
1136	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1137			    &dev_key, &details_le);
1138	if (!r)
1139		return -EEXIST;
1140
1141	/* find the mapping tree for the origin */
1142	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1143	if (r)
1144		return r;
1145	origin_root = le64_to_cpu(value);
1146
1147	/* clone the origin, an inc will do */
1148	dm_tm_inc(pmd->tm, origin_root);
1149
1150	/* insert into the main mapping tree */
1151	value = cpu_to_le64(origin_root);
1152	__dm_bless_for_disk(&value);
1153	key = dev;
1154	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1155	if (r) {
1156		dm_tm_dec(pmd->tm, origin_root);
1157		return r;
1158	}
1159
1160	pmd->time++;
1161
1162	r = __open_device(pmd, dev, 1, &td);
1163	if (r)
1164		goto bad;
1165
1166	r = __set_snapshot_details(pmd, td, origin, pmd->time);
1167	__close_device(td);
1168
1169	if (r)
1170		goto bad;
1171
1172	return 0;
1173
1174bad:
1175	dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1176	dm_btree_remove(&pmd->details_info, pmd->details_root,
1177			&key, &pmd->details_root);
1178	return r;
1179}
1180
1181int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1182				 dm_thin_id dev,
1183				 dm_thin_id origin)
1184{
1185	int r = -EINVAL;
1186
1187	pmd_write_lock(pmd);
1188	if (!pmd->fail_io)
1189		r = __create_snap(pmd, dev, origin);
1190	pmd_write_unlock(pmd);
1191
1192	return r;
1193}
1194
1195static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1196{
1197	int r;
1198	uint64_t key = dev;
1199	struct dm_thin_device *td;
1200
1201	/* TODO: failure should mark the transaction invalid */
1202	r = __open_device(pmd, dev, 0, &td);
1203	if (r)
1204		return r;
1205
1206	if (td->open_count > 1) {
1207		__close_device(td);
1208		return -EBUSY;
1209	}
1210
1211	list_del(&td->list);
1212	kfree(td);
1213	r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1214			    &key, &pmd->details_root);
1215	if (r)
1216		return r;
1217
1218	r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1219	if (r)
1220		return r;
1221
1222	return 0;
1223}
1224
1225int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1226			       dm_thin_id dev)
1227{
1228	int r = -EINVAL;
1229
1230	pmd_write_lock(pmd);
1231	if (!pmd->fail_io)
1232		r = __delete_device(pmd, dev);
1233	pmd_write_unlock(pmd);
1234
1235	return r;
1236}
1237
1238int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1239					uint64_t current_id,
1240					uint64_t new_id)
1241{
1242	int r = -EINVAL;
1243
1244	pmd_write_lock(pmd);
1245
1246	if (pmd->fail_io)
1247		goto out;
1248
1249	if (pmd->trans_id != current_id) {
1250		DMERR("mismatched transaction id");
1251		goto out;
1252	}
1253
1254	pmd->trans_id = new_id;
1255	r = 0;
1256
1257out:
1258	pmd_write_unlock(pmd);
1259
1260	return r;
1261}
1262
1263int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1264					uint64_t *result)
1265{
1266	int r = -EINVAL;
1267
1268	down_read(&pmd->root_lock);
1269	if (!pmd->fail_io) {
1270		*result = pmd->trans_id;
1271		r = 0;
1272	}
1273	up_read(&pmd->root_lock);
1274
1275	return r;
1276}
1277
1278static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1279{
1280	int r, inc;
1281	struct thin_disk_superblock *disk_super;
1282	struct dm_block *copy, *sblock;
1283	dm_block_t held_root;
1284
1285	/*
1286	 * We commit to ensure the btree roots which we increment in a
1287	 * moment are up to date.
1288	 */
1289	r = __commit_transaction(pmd);
1290	if (r < 0) {
1291		DMWARN("%s: __commit_transaction() failed, error = %d",
1292		       __func__, r);
1293		return r;
1294	}
1295
1296	/*
1297	 * Copy the superblock.
1298	 */
1299	dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1300	r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1301			       &sb_validator, &copy, &inc);
1302	if (r)
1303		return r;
1304
1305	BUG_ON(!inc);
1306
1307	held_root = dm_block_location(copy);
1308	disk_super = dm_block_data(copy);
1309
1310	if (le64_to_cpu(disk_super->held_root)) {
1311		DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1312
1313		dm_tm_dec(pmd->tm, held_root);
1314		dm_tm_unlock(pmd->tm, copy);
1315		return -EBUSY;
1316	}
1317
1318	/*
1319	 * Wipe the spacemap since we're not publishing this.
1320	 */
1321	memset(&disk_super->data_space_map_root, 0,
1322	       sizeof(disk_super->data_space_map_root));
1323	memset(&disk_super->metadata_space_map_root, 0,
1324	       sizeof(disk_super->metadata_space_map_root));
1325
1326	/*
1327	 * Increment the data structures that need to be preserved.
1328	 */
1329	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1330	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1331	dm_tm_unlock(pmd->tm, copy);
1332
1333	/*
1334	 * Write the held root into the superblock.
1335	 */
1336	r = superblock_lock(pmd, &sblock);
1337	if (r) {
1338		dm_tm_dec(pmd->tm, held_root);
1339		return r;
1340	}
1341
1342	disk_super = dm_block_data(sblock);
1343	disk_super->held_root = cpu_to_le64(held_root);
1344	dm_bm_unlock(sblock);
1345	return 0;
1346}
1347
1348int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1349{
1350	int r = -EINVAL;
1351
1352	pmd_write_lock(pmd);
1353	if (!pmd->fail_io)
1354		r = __reserve_metadata_snap(pmd);
1355	pmd_write_unlock(pmd);
1356
1357	return r;
1358}
1359
1360static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1361{
1362	int r;
1363	struct thin_disk_superblock *disk_super;
1364	struct dm_block *sblock, *copy;
1365	dm_block_t held_root;
1366
1367	r = superblock_lock(pmd, &sblock);
1368	if (r)
1369		return r;
1370
1371	disk_super = dm_block_data(sblock);
1372	held_root = le64_to_cpu(disk_super->held_root);
1373	disk_super->held_root = cpu_to_le64(0);
1374
1375	dm_bm_unlock(sblock);
1376
1377	if (!held_root) {
1378		DMWARN("No pool metadata snapshot found: nothing to release.");
1379		return -EINVAL;
1380	}
1381
1382	r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1383	if (r)
1384		return r;
1385
1386	disk_super = dm_block_data(copy);
1387	dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1388	dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1389	dm_sm_dec_block(pmd->metadata_sm, held_root);
1390
1391	dm_tm_unlock(pmd->tm, copy);
1392
1393	return 0;
1394}
1395
1396int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1397{
1398	int r = -EINVAL;
1399
1400	pmd_write_lock(pmd);
1401	if (!pmd->fail_io)
1402		r = __release_metadata_snap(pmd);
1403	pmd_write_unlock(pmd);
1404
1405	return r;
1406}
1407
1408static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1409			       dm_block_t *result)
1410{
1411	int r;
1412	struct thin_disk_superblock *disk_super;
1413	struct dm_block *sblock;
1414
1415	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1416			    &sb_validator, &sblock);
1417	if (r)
1418		return r;
1419
1420	disk_super = dm_block_data(sblock);
1421	*result = le64_to_cpu(disk_super->held_root);
1422
1423	dm_bm_unlock(sblock);
1424
1425	return 0;
1426}
1427
1428int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1429			      dm_block_t *result)
1430{
1431	int r = -EINVAL;
1432
1433	down_read(&pmd->root_lock);
1434	if (!pmd->fail_io)
1435		r = __get_metadata_snap(pmd, result);
1436	up_read(&pmd->root_lock);
1437
1438	return r;
1439}
1440
1441int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1442			     struct dm_thin_device **td)
1443{
1444	int r = -EINVAL;
1445
1446	pmd_write_lock_in_core(pmd);
1447	if (!pmd->fail_io)
1448		r = __open_device(pmd, dev, 0, td);
1449	pmd_write_unlock(pmd);
1450
1451	return r;
1452}
1453
1454int dm_pool_close_thin_device(struct dm_thin_device *td)
1455{
1456	pmd_write_lock_in_core(td->pmd);
1457	__close_device(td);
1458	pmd_write_unlock(td->pmd);
1459
1460	return 0;
1461}
1462
1463dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1464{
1465	return td->id;
1466}
1467
1468/*
1469 * Check whether @time (of block creation) is older than @td's last snapshot.
1470 * If so then the associated block is shared with the last snapshot device.
1471 * Any block on a device created *after* the device last got snapshotted is
1472 * necessarily not shared.
1473 */
1474static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1475{
1476	return td->snapshotted_time > time;
1477}
1478
1479static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1480				 struct dm_thin_lookup_result *result)
1481{
1482	uint64_t block_time = 0;
1483	dm_block_t exception_block;
1484	uint32_t exception_time;
1485
1486	block_time = le64_to_cpu(value);
1487	unpack_block_time(block_time, &exception_block, &exception_time);
1488	result->block = exception_block;
1489	result->shared = __snapshotted_since(td, exception_time);
1490}
1491
1492static int __find_block(struct dm_thin_device *td, dm_block_t block,
1493			int can_issue_io, struct dm_thin_lookup_result *result)
1494{
1495	int r;
1496	__le64 value;
1497	struct dm_pool_metadata *pmd = td->pmd;
1498	dm_block_t keys[2] = { td->id, block };
1499	struct dm_btree_info *info;
1500
1501	if (can_issue_io) {
1502		info = &pmd->info;
1503	} else
1504		info = &pmd->nb_info;
1505
1506	r = dm_btree_lookup(info, pmd->root, keys, &value);
1507	if (!r)
1508		unpack_lookup_result(td, value, result);
1509
1510	return r;
1511}
1512
1513int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1514		       int can_issue_io, struct dm_thin_lookup_result *result)
1515{
1516	int r;
1517	struct dm_pool_metadata *pmd = td->pmd;
1518
1519	down_read(&pmd->root_lock);
1520	if (pmd->fail_io) {
1521		up_read(&pmd->root_lock);
1522		return -EINVAL;
1523	}
1524
1525	r = __find_block(td, block, can_issue_io, result);
1526
1527	up_read(&pmd->root_lock);
1528	return r;
1529}
1530
1531static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1532					  dm_block_t *vblock,
1533					  struct dm_thin_lookup_result *result)
1534{
1535	int r;
1536	__le64 value;
1537	struct dm_pool_metadata *pmd = td->pmd;
1538	dm_block_t keys[2] = { td->id, block };
1539
1540	r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1541	if (!r)
1542		unpack_lookup_result(td, value, result);
1543
1544	return r;
1545}
1546
1547static int __find_mapped_range(struct dm_thin_device *td,
1548			       dm_block_t begin, dm_block_t end,
1549			       dm_block_t *thin_begin, dm_block_t *thin_end,
1550			       dm_block_t *pool_begin, bool *maybe_shared)
1551{
1552	int r;
1553	dm_block_t pool_end;
1554	struct dm_thin_lookup_result lookup;
1555
1556	if (end < begin)
1557		return -ENODATA;
1558
1559	r = __find_next_mapped_block(td, begin, &begin, &lookup);
1560	if (r)
1561		return r;
1562
1563	if (begin >= end)
1564		return -ENODATA;
1565
1566	*thin_begin = begin;
1567	*pool_begin = lookup.block;
1568	*maybe_shared = lookup.shared;
1569
1570	begin++;
1571	pool_end = *pool_begin + 1;
1572	while (begin != end) {
1573		r = __find_block(td, begin, true, &lookup);
1574		if (r) {
1575			if (r == -ENODATA)
1576				break;
1577			else
1578				return r;
1579		}
1580
1581		if ((lookup.block != pool_end) ||
1582		    (lookup.shared != *maybe_shared))
1583			break;
1584
1585		pool_end++;
1586		begin++;
1587	}
1588
1589	*thin_end = begin;
1590	return 0;
1591}
1592
1593int dm_thin_find_mapped_range(struct dm_thin_device *td,
1594			      dm_block_t begin, dm_block_t end,
1595			      dm_block_t *thin_begin, dm_block_t *thin_end,
1596			      dm_block_t *pool_begin, bool *maybe_shared)
1597{
1598	int r = -EINVAL;
1599	struct dm_pool_metadata *pmd = td->pmd;
1600
1601	down_read(&pmd->root_lock);
1602	if (!pmd->fail_io) {
1603		r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1604					pool_begin, maybe_shared);
1605	}
1606	up_read(&pmd->root_lock);
1607
1608	return r;
1609}
1610
1611static int __insert(struct dm_thin_device *td, dm_block_t block,
1612		    dm_block_t data_block)
1613{
1614	int r, inserted;
1615	__le64 value;
1616	struct dm_pool_metadata *pmd = td->pmd;
1617	dm_block_t keys[2] = { td->id, block };
1618
1619	value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1620	__dm_bless_for_disk(&value);
1621
1622	r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1623				   &pmd->root, &inserted);
1624	if (r)
1625		return r;
1626
1627	td->changed = true;
1628	if (inserted)
1629		td->mapped_blocks++;
1630
1631	return 0;
1632}
1633
1634int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1635			 dm_block_t data_block)
1636{
1637	int r = -EINVAL;
1638
1639	pmd_write_lock(td->pmd);
1640	if (!td->pmd->fail_io)
1641		r = __insert(td, block, data_block);
1642	pmd_write_unlock(td->pmd);
1643
1644	return r;
1645}
1646
1647static int __remove(struct dm_thin_device *td, dm_block_t block)
1648{
1649	int r;
1650	struct dm_pool_metadata *pmd = td->pmd;
1651	dm_block_t keys[2] = { td->id, block };
1652
1653	r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1654	if (r)
1655		return r;
1656
1657	td->mapped_blocks--;
1658	td->changed = true;
1659
1660	return 0;
1661}
1662
1663static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1664{
1665	int r;
1666	unsigned count, total_count = 0;
1667	struct dm_pool_metadata *pmd = td->pmd;
1668	dm_block_t keys[1] = { td->id };
1669	__le64 value;
1670	dm_block_t mapping_root;
1671
1672	/*
1673	 * Find the mapping tree
1674	 */
1675	r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1676	if (r)
1677		return r;
1678
1679	/*
1680	 * Remove from the mapping tree, taking care to inc the
1681	 * ref count so it doesn't get deleted.
1682	 */
1683	mapping_root = le64_to_cpu(value);
1684	dm_tm_inc(pmd->tm, mapping_root);
1685	r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1686	if (r)
1687		return r;
1688
1689	/*
1690	 * Remove leaves stops at the first unmapped entry, so we have to
1691	 * loop round finding mapped ranges.
1692	 */
1693	while (begin < end) {
1694		r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1695		if (r == -ENODATA)
1696			break;
1697
1698		if (r)
1699			return r;
1700
1701		if (begin >= end)
1702			break;
1703
1704		r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1705		if (r)
1706			return r;
1707
1708		total_count += count;
1709	}
1710
1711	td->mapped_blocks -= total_count;
1712	td->changed = true;
1713
1714	/*
1715	 * Reinsert the mapping tree.
1716	 */
1717	value = cpu_to_le64(mapping_root);
1718	__dm_bless_for_disk(&value);
1719	return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1720}
1721
1722int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1723{
1724	int r = -EINVAL;
1725
1726	pmd_write_lock(td->pmd);
1727	if (!td->pmd->fail_io)
1728		r = __remove(td, block);
1729	pmd_write_unlock(td->pmd);
1730
1731	return r;
1732}
1733
1734int dm_thin_remove_range(struct dm_thin_device *td,
1735			 dm_block_t begin, dm_block_t end)
1736{
1737	int r = -EINVAL;
1738
1739	pmd_write_lock(td->pmd);
1740	if (!td->pmd->fail_io)
1741		r = __remove_range(td, begin, end);
1742	pmd_write_unlock(td->pmd);
1743
1744	return r;
1745}
1746
1747int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1748{
1749	int r;
1750	uint32_t ref_count;
1751
1752	down_read(&pmd->root_lock);
1753	r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1754	if (!r)
1755		*result = (ref_count > 1);
1756	up_read(&pmd->root_lock);
1757
1758	return r;
1759}
1760
1761int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1762{
1763	int r = 0;
1764
1765	pmd_write_lock(pmd);
1766	for (; b != e; b++) {
1767		r = dm_sm_inc_block(pmd->data_sm, b);
1768		if (r)
1769			break;
1770	}
1771	pmd_write_unlock(pmd);
1772
1773	return r;
1774}
1775
1776int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1777{
1778	int r = 0;
1779
1780	pmd_write_lock(pmd);
1781	for (; b != e; b++) {
1782		r = dm_sm_dec_block(pmd->data_sm, b);
1783		if (r)
1784			break;
1785	}
1786	pmd_write_unlock(pmd);
1787
1788	return r;
1789}
1790
1791bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1792{
1793	int r;
1794
1795	down_read(&td->pmd->root_lock);
1796	r = td->changed;
1797	up_read(&td->pmd->root_lock);
1798
1799	return r;
1800}
1801
1802bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1803{
1804	bool r = false;
1805	struct dm_thin_device *td, *tmp;
1806
1807	down_read(&pmd->root_lock);
1808	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1809		if (td->changed) {
1810			r = td->changed;
1811			break;
1812		}
1813	}
1814	up_read(&pmd->root_lock);
1815
1816	return r;
1817}
1818
1819bool dm_thin_aborted_changes(struct dm_thin_device *td)
1820{
1821	bool r;
1822
1823	down_read(&td->pmd->root_lock);
1824	r = td->aborted_with_changes;
1825	up_read(&td->pmd->root_lock);
1826
1827	return r;
1828}
1829
1830int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1831{
1832	int r = -EINVAL;
1833
1834	pmd_write_lock(pmd);
1835	if (!pmd->fail_io)
1836		r = dm_sm_new_block(pmd->data_sm, result);
1837	pmd_write_unlock(pmd);
1838
1839	return r;
1840}
1841
1842int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1843{
1844	int r = -EINVAL;
1845
1846	/*
1847	 * Care is taken to not have commit be what
1848	 * triggers putting the thin-pool in-service.
1849	 */
1850	pmd_write_lock_in_core(pmd);
1851	if (pmd->fail_io)
1852		goto out;
1853
1854	r = __commit_transaction(pmd);
1855	if (r < 0)
1856		goto out;
1857
1858	/*
1859	 * Open the next transaction.
1860	 */
1861	r = __begin_transaction(pmd);
1862out:
1863	pmd_write_unlock(pmd);
1864	return r;
1865}
1866
1867static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1868{
1869	struct dm_thin_device *td;
1870
1871	list_for_each_entry(td, &pmd->thin_devices, list)
1872		td->aborted_with_changes = td->changed;
1873}
1874
1875int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1876{
1877	int r = -EINVAL;
1878
1879	pmd_write_lock(pmd);
1880	if (pmd->fail_io)
1881		goto out;
1882
1883	__set_abort_with_changes_flags(pmd);
1884	__destroy_persistent_data_objects(pmd);
1885	r = __create_persistent_data_objects(pmd, false);
1886	if (r)
1887		pmd->fail_io = true;
1888
1889out:
1890	pmd_write_unlock(pmd);
1891
1892	return r;
1893}
1894
1895int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1896{
1897	int r = -EINVAL;
1898
1899	down_read(&pmd->root_lock);
1900	if (!pmd->fail_io)
1901		r = dm_sm_get_nr_free(pmd->data_sm, result);
1902	up_read(&pmd->root_lock);
1903
1904	return r;
1905}
1906
1907int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1908					  dm_block_t *result)
1909{
1910	int r = -EINVAL;
1911
1912	down_read(&pmd->root_lock);
1913	if (!pmd->fail_io)
1914		r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1915
1916	if (!r) {
1917		if (*result < pmd->metadata_reserve)
1918			*result = 0;
1919		else
1920			*result -= pmd->metadata_reserve;
1921	}
1922	up_read(&pmd->root_lock);
1923
1924	return r;
1925}
1926
1927int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1928				  dm_block_t *result)
1929{
1930	int r = -EINVAL;
1931
1932	down_read(&pmd->root_lock);
1933	if (!pmd->fail_io)
1934		r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1935	up_read(&pmd->root_lock);
1936
1937	return r;
1938}
1939
1940int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1941{
1942	int r = -EINVAL;
1943
1944	down_read(&pmd->root_lock);
1945	if (!pmd->fail_io)
1946		r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1947	up_read(&pmd->root_lock);
1948
1949	return r;
1950}
1951
1952int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1953{
1954	int r = -EINVAL;
1955	struct dm_pool_metadata *pmd = td->pmd;
1956
1957	down_read(&pmd->root_lock);
1958	if (!pmd->fail_io) {
1959		*result = td->mapped_blocks;
1960		r = 0;
1961	}
1962	up_read(&pmd->root_lock);
1963
1964	return r;
1965}
1966
1967static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1968{
1969	int r;
1970	__le64 value_le;
1971	dm_block_t thin_root;
1972	struct dm_pool_metadata *pmd = td->pmd;
1973
1974	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1975	if (r)
1976		return r;
1977
1978	thin_root = le64_to_cpu(value_le);
1979
1980	return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1981}
1982
1983int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1984				     dm_block_t *result)
1985{
1986	int r = -EINVAL;
1987	struct dm_pool_metadata *pmd = td->pmd;
1988
1989	down_read(&pmd->root_lock);
1990	if (!pmd->fail_io)
1991		r = __highest_block(td, result);
1992	up_read(&pmd->root_lock);
1993
1994	return r;
1995}
1996
1997static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1998{
1999	int r;
2000	dm_block_t old_count;
2001
2002	r = dm_sm_get_nr_blocks(sm, &old_count);
2003	if (r)
2004		return r;
2005
2006	if (new_count == old_count)
2007		return 0;
2008
2009	if (new_count < old_count) {
2010		DMERR("cannot reduce size of space map");
2011		return -EINVAL;
2012	}
2013
2014	return dm_sm_extend(sm, new_count - old_count);
2015}
2016
2017int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2018{
2019	int r = -EINVAL;
2020
2021	pmd_write_lock(pmd);
2022	if (!pmd->fail_io)
2023		r = __resize_space_map(pmd->data_sm, new_count);
2024	pmd_write_unlock(pmd);
2025
2026	return r;
2027}
2028
2029int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2030{
2031	int r = -EINVAL;
2032
2033	pmd_write_lock(pmd);
2034	if (!pmd->fail_io) {
2035		r = __resize_space_map(pmd->metadata_sm, new_count);
2036		if (!r)
2037			__set_metadata_reserve(pmd);
2038	}
2039	pmd_write_unlock(pmd);
2040
2041	return r;
2042}
2043
2044void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2045{
2046	pmd_write_lock_in_core(pmd);
2047	dm_bm_set_read_only(pmd->bm);
2048	pmd_write_unlock(pmd);
2049}
2050
2051void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2052{
2053	pmd_write_lock_in_core(pmd);
2054	dm_bm_set_read_write(pmd->bm);
2055	pmd_write_unlock(pmd);
2056}
2057
2058int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2059					dm_block_t threshold,
2060					dm_sm_threshold_fn fn,
2061					void *context)
2062{
2063	int r;
2064
2065	pmd_write_lock_in_core(pmd);
2066	r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
2067	pmd_write_unlock(pmd);
2068
2069	return r;
2070}
2071
2072void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
2073					  dm_pool_pre_commit_fn fn,
2074					  void *context)
2075{
2076	pmd_write_lock_in_core(pmd);
2077	pmd->pre_commit_fn = fn;
2078	pmd->pre_commit_context = context;
2079	pmd_write_unlock(pmd);
2080}
2081
2082int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2083{
2084	int r = -EINVAL;
2085	struct dm_block *sblock;
2086	struct thin_disk_superblock *disk_super;
2087
2088	pmd_write_lock(pmd);
2089	if (pmd->fail_io)
2090		goto out;
2091
2092	pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2093
2094	r = superblock_lock(pmd, &sblock);
2095	if (r) {
2096		DMERR("couldn't lock superblock");
2097		goto out;
2098	}
2099
2100	disk_super = dm_block_data(sblock);
2101	disk_super->flags = cpu_to_le32(pmd->flags);
2102
2103	dm_bm_unlock(sblock);
2104out:
2105	pmd_write_unlock(pmd);
2106	return r;
2107}
2108
2109bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2110{
2111	bool needs_check;
2112
2113	down_read(&pmd->root_lock);
2114	needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2115	up_read(&pmd->root_lock);
2116
2117	return needs_check;
2118}
2119
2120void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2121{
2122	down_read(&pmd->root_lock);
2123	if (!pmd->fail_io)
2124		dm_tm_issue_prefetches(pmd->tm);
2125	up_read(&pmd->root_lock);
2126}
v5.14.15
   1/*
   2 * Copyright (C) 2011-2012 Red Hat, Inc.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
   8#include "persistent-data/dm-btree.h"
   9#include "persistent-data/dm-space-map.h"
  10#include "persistent-data/dm-space-map-disk.h"
  11#include "persistent-data/dm-transaction-manager.h"
  12
  13#include <linux/list.h>
  14#include <linux/device-mapper.h>
  15#include <linux/workqueue.h>
  16
  17/*--------------------------------------------------------------------------
  18 * As far as the metadata goes, there is:
  19 *
  20 * - A superblock in block zero, taking up fewer than 512 bytes for
  21 *   atomic writes.
  22 *
  23 * - A space map managing the metadata blocks.
  24 *
  25 * - A space map managing the data blocks.
  26 *
  27 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
  28 *
  29 * - A hierarchical btree, with 2 levels which effectively maps (thin
  30 *   dev id, virtual block) -> block_time.  Block time is a 64-bit
  31 *   field holding the time in the low 24 bits, and block in the top 40
  32 *   bits.
  33 *
  34 * BTrees consist solely of btree_nodes, that fill a block.  Some are
  35 * internal nodes, as such their values are a __le64 pointing to other
  36 * nodes.  Leaf nodes can store data of any reasonable size (ie. much
  37 * smaller than the block size).  The nodes consist of the header,
  38 * followed by an array of keys, followed by an array of values.  We have
  39 * to binary search on the keys so they're all held together to help the
  40 * cpu cache.
  41 *
  42 * Space maps have 2 btrees:
  43 *
  44 * - One maps a uint64_t onto a struct index_entry.  Which points to a
  45 *   bitmap block, and has some details about how many free entries there
  46 *   are etc.
  47 *
  48 * - The bitmap blocks have a header (for the checksum).  Then the rest
  49 *   of the block is pairs of bits.  With the meaning being:
  50 *
  51 *   0 - ref count is 0
  52 *   1 - ref count is 1
  53 *   2 - ref count is 2
  54 *   3 - ref count is higher than 2
  55 *
  56 * - If the count is higher than 2 then the ref count is entered in a
  57 *   second btree that directly maps the block_address to a uint32_t ref
  58 *   count.
  59 *
  60 * The space map metadata variant doesn't have a bitmaps btree.  Instead
  61 * it has one single blocks worth of index_entries.  This avoids
  62 * recursive issues with the bitmap btree needing to allocate space in
  63 * order to insert.  With a small data block size such as 64k the
  64 * metadata support data devices that are hundreds of terrabytes.
  65 *
  66 * The space maps allocate space linearly from front to back.  Space that
  67 * is freed in a transaction is never recycled within that transaction.
  68 * To try and avoid fragmenting _free_ space the allocator always goes
  69 * back and fills in gaps.
  70 *
  71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
  72 * from the block manager.
  73 *--------------------------------------------------------------------------*/
  74
  75#define DM_MSG_PREFIX   "thin metadata"
  76
  77#define THIN_SUPERBLOCK_MAGIC 27022010
  78#define THIN_SUPERBLOCK_LOCATION 0
  79#define THIN_VERSION 2
  80#define SECTOR_TO_BLOCK_SHIFT 3
  81
  82/*
  83 * For btree insert:
  84 *  3 for btree insert +
  85 *  2 for btree lookup used within space map
  86 * For btree remove:
  87 *  2 for shadow spine +
  88 *  4 for rebalance 3 child node
  89 */
  90#define THIN_MAX_CONCURRENT_LOCKS 6
  91
  92/* This should be plenty */
  93#define SPACE_MAP_ROOT_SIZE 128
  94
  95/*
  96 * Little endian on-disk superblock and device details.
  97 */
  98struct thin_disk_superblock {
  99	__le32 csum;	/* Checksum of superblock except for this field. */
 100	__le32 flags;
 101	__le64 blocknr;	/* This block number, dm_block_t. */
 102
 103	__u8 uuid[16];
 104	__le64 magic;
 105	__le32 version;
 106	__le32 time;
 107
 108	__le64 trans_id;
 109
 110	/*
 111	 * Root held by userspace transactions.
 112	 */
 113	__le64 held_root;
 114
 115	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
 116	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
 117
 118	/*
 119	 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
 120	 */
 121	__le64 data_mapping_root;
 122
 123	/*
 124	 * Device detail root mapping dev_id -> device_details
 125	 */
 126	__le64 device_details_root;
 127
 128	__le32 data_block_size;		/* In 512-byte sectors. */
 129
 130	__le32 metadata_block_size;	/* In 512-byte sectors. */
 131	__le64 metadata_nr_blocks;
 132
 133	__le32 compat_flags;
 134	__le32 compat_ro_flags;
 135	__le32 incompat_flags;
 136} __packed;
 137
 138struct disk_device_details {
 139	__le64 mapped_blocks;
 140	__le64 transaction_id;		/* When created. */
 141	__le32 creation_time;
 142	__le32 snapshotted_time;
 143} __packed;
 144
 145struct dm_pool_metadata {
 146	struct hlist_node hash;
 147
 148	struct block_device *bdev;
 149	struct dm_block_manager *bm;
 150	struct dm_space_map *metadata_sm;
 151	struct dm_space_map *data_sm;
 152	struct dm_transaction_manager *tm;
 153	struct dm_transaction_manager *nb_tm;
 154
 155	/*
 156	 * Two-level btree.
 157	 * First level holds thin_dev_t.
 158	 * Second level holds mappings.
 159	 */
 160	struct dm_btree_info info;
 161
 162	/*
 163	 * Non-blocking version of the above.
 164	 */
 165	struct dm_btree_info nb_info;
 166
 167	/*
 168	 * Just the top level for deleting whole devices.
 169	 */
 170	struct dm_btree_info tl_info;
 171
 172	/*
 173	 * Just the bottom level for creating new devices.
 174	 */
 175	struct dm_btree_info bl_info;
 176
 177	/*
 178	 * Describes the device details btree.
 179	 */
 180	struct dm_btree_info details_info;
 181
 182	struct rw_semaphore root_lock;
 183	uint32_t time;
 184	dm_block_t root;
 185	dm_block_t details_root;
 186	struct list_head thin_devices;
 187	uint64_t trans_id;
 188	unsigned long flags;
 189	sector_t data_block_size;
 190
 191	/*
 192	 * Pre-commit callback.
 193	 *
 194	 * This allows the thin provisioning target to run a callback before
 195	 * the metadata are committed.
 196	 */
 197	dm_pool_pre_commit_fn pre_commit_fn;
 198	void *pre_commit_context;
 199
 200	/*
 201	 * We reserve a section of the metadata for commit overhead.
 202	 * All reported space does *not* include this.
 203	 */
 204	dm_block_t metadata_reserve;
 205
 206	/*
 207	 * Set if a transaction has to be aborted but the attempt to roll back
 208	 * to the previous (good) transaction failed.  The only pool metadata
 209	 * operation possible in this state is the closing of the device.
 210	 */
 211	bool fail_io:1;
 212
 213	/*
 214	 * Set once a thin-pool has been accessed through one of the interfaces
 215	 * that imply the pool is in-service (e.g. thin devices created/deleted,
 216	 * thin-pool message, metadata snapshots, etc).
 217	 */
 218	bool in_service:1;
 219
 220	/*
 221	 * Reading the space map roots can fail, so we read it into these
 222	 * buffers before the superblock is locked and updated.
 223	 */
 224	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
 225	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
 226};
 227
 228struct dm_thin_device {
 229	struct list_head list;
 230	struct dm_pool_metadata *pmd;
 231	dm_thin_id id;
 232
 233	int open_count;
 234	bool changed:1;
 235	bool aborted_with_changes:1;
 236	uint64_t mapped_blocks;
 237	uint64_t transaction_id;
 238	uint32_t creation_time;
 239	uint32_t snapshotted_time;
 240};
 241
 242/*----------------------------------------------------------------
 243 * superblock validator
 244 *--------------------------------------------------------------*/
 245
 246#define SUPERBLOCK_CSUM_XOR 160774
 247
 248static void sb_prepare_for_write(struct dm_block_validator *v,
 249				 struct dm_block *b,
 250				 size_t block_size)
 251{
 252	struct thin_disk_superblock *disk_super = dm_block_data(b);
 253
 254	disk_super->blocknr = cpu_to_le64(dm_block_location(b));
 255	disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
 256						      block_size - sizeof(__le32),
 257						      SUPERBLOCK_CSUM_XOR));
 258}
 259
 260static int sb_check(struct dm_block_validator *v,
 261		    struct dm_block *b,
 262		    size_t block_size)
 263{
 264	struct thin_disk_superblock *disk_super = dm_block_data(b);
 265	__le32 csum_le;
 266
 267	if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
 268		DMERR("sb_check failed: blocknr %llu: "
 269		      "wanted %llu", le64_to_cpu(disk_super->blocknr),
 270		      (unsigned long long)dm_block_location(b));
 271		return -ENOTBLK;
 272	}
 273
 274	if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
 275		DMERR("sb_check failed: magic %llu: "
 276		      "wanted %llu", le64_to_cpu(disk_super->magic),
 277		      (unsigned long long)THIN_SUPERBLOCK_MAGIC);
 278		return -EILSEQ;
 279	}
 280
 281	csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
 282					     block_size - sizeof(__le32),
 283					     SUPERBLOCK_CSUM_XOR));
 284	if (csum_le != disk_super->csum) {
 285		DMERR("sb_check failed: csum %u: wanted %u",
 286		      le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
 287		return -EILSEQ;
 288	}
 289
 290	return 0;
 291}
 292
 293static struct dm_block_validator sb_validator = {
 294	.name = "superblock",
 295	.prepare_for_write = sb_prepare_for_write,
 296	.check = sb_check
 297};
 298
 299/*----------------------------------------------------------------
 300 * Methods for the btree value types
 301 *--------------------------------------------------------------*/
 302
 303static uint64_t pack_block_time(dm_block_t b, uint32_t t)
 304{
 305	return (b << 24) | t;
 306}
 307
 308static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
 309{
 310	*b = v >> 24;
 311	*t = v & ((1 << 24) - 1);
 312}
 313
 314/*
 315 * It's more efficient to call dm_sm_{inc,dec}_blocks as few times as
 316 * possible.  'with_runs' reads contiguous runs of blocks, and calls the
 317 * given sm function.
 318 */
 319typedef int (*run_fn)(struct dm_space_map *, dm_block_t, dm_block_t);
 320
 321static void with_runs(struct dm_space_map *sm, const __le64 *value_le, unsigned count, run_fn fn)
 322{
 323	uint64_t b, begin, end;
 
 
 324	uint32_t t;
 325	bool in_run = false;
 326	unsigned i;
 327
 328	for (i = 0; i < count; i++, value_le++) {
 329		/* We know value_le is 8 byte aligned */
 330		unpack_block_time(le64_to_cpu(*value_le), &b, &t);
 331
 332		if (in_run) {
 333			if (b == end) {
 334				end++;
 335			} else {
 336				fn(sm, begin, end);
 337				begin = b;
 338				end = b + 1;
 339			}
 340		} else {
 341			in_run = true;
 342			begin = b;
 343			end = b + 1;
 344		}
 345	}
 346
 347	if (in_run)
 348		fn(sm, begin, end);
 349}
 350
 351static void data_block_inc(void *context, const void *value_le, unsigned count)
 352{
 353	with_runs((struct dm_space_map *) context,
 354		  (const __le64 *) value_le, count, dm_sm_inc_blocks);
 355}
 
 356
 357static void data_block_dec(void *context, const void *value_le, unsigned count)
 358{
 359	with_runs((struct dm_space_map *) context,
 360		  (const __le64 *) value_le, count, dm_sm_dec_blocks);
 361}
 362
 363static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
 364{
 365	__le64 v1_le, v2_le;
 366	uint64_t b1, b2;
 367	uint32_t t;
 368
 369	memcpy(&v1_le, value1_le, sizeof(v1_le));
 370	memcpy(&v2_le, value2_le, sizeof(v2_le));
 371	unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
 372	unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
 373
 374	return b1 == b2;
 375}
 376
 377static void subtree_inc(void *context, const void *value, unsigned count)
 378{
 379	struct dm_btree_info *info = context;
 380	const __le64 *root_le = value;
 381	unsigned i;
 382
 383	for (i = 0; i < count; i++, root_le++)
 384		dm_tm_inc(info->tm, le64_to_cpu(*root_le));
 
 385}
 386
 387static void subtree_dec(void *context, const void *value, unsigned count)
 388{
 389	struct dm_btree_info *info = context;
 390	const __le64 *root_le = value;
 391	unsigned i;
 392
 393	for (i = 0; i < count; i++, root_le++)
 394		if (dm_btree_del(info, le64_to_cpu(*root_le)))
 395			DMERR("btree delete failed");
 
 396}
 397
 398static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
 399{
 400	__le64 v1_le, v2_le;
 401	memcpy(&v1_le, value1_le, sizeof(v1_le));
 402	memcpy(&v2_le, value2_le, sizeof(v2_le));
 403
 404	return v1_le == v2_le;
 405}
 406
 407/*----------------------------------------------------------------*/
 408
 409/*
 410 * Variant that is used for in-core only changes or code that
 411 * shouldn't put the pool in service on its own (e.g. commit).
 412 */
 413static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd)
 414	__acquires(pmd->root_lock)
 415{
 416	down_write(&pmd->root_lock);
 417}
 418
 419static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
 420{
 421	pmd_write_lock_in_core(pmd);
 422	if (unlikely(!pmd->in_service))
 423		pmd->in_service = true;
 424}
 425
 426static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
 427	__releases(pmd->root_lock)
 428{
 429	up_write(&pmd->root_lock);
 430}
 431
 432/*----------------------------------------------------------------*/
 433
 434static int superblock_lock_zero(struct dm_pool_metadata *pmd,
 435				struct dm_block **sblock)
 436{
 437	return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 438				     &sb_validator, sblock);
 439}
 440
 441static int superblock_lock(struct dm_pool_metadata *pmd,
 442			   struct dm_block **sblock)
 443{
 444	return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 445				&sb_validator, sblock);
 446}
 447
 448static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
 449{
 450	int r;
 451	unsigned i;
 452	struct dm_block *b;
 453	__le64 *data_le, zero = cpu_to_le64(0);
 454	unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
 455
 456	/*
 457	 * We can't use a validator here - it may be all zeroes.
 458	 */
 459	r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
 460	if (r)
 461		return r;
 462
 463	data_le = dm_block_data(b);
 464	*result = 1;
 465	for (i = 0; i < block_size; i++) {
 466		if (data_le[i] != zero) {
 467			*result = 0;
 468			break;
 469		}
 470	}
 471
 472	dm_bm_unlock(b);
 473
 474	return 0;
 475}
 476
 477static void __setup_btree_details(struct dm_pool_metadata *pmd)
 478{
 479	pmd->info.tm = pmd->tm;
 480	pmd->info.levels = 2;
 481	pmd->info.value_type.context = pmd->data_sm;
 482	pmd->info.value_type.size = sizeof(__le64);
 483	pmd->info.value_type.inc = data_block_inc;
 484	pmd->info.value_type.dec = data_block_dec;
 485	pmd->info.value_type.equal = data_block_equal;
 486
 487	memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
 488	pmd->nb_info.tm = pmd->nb_tm;
 489
 490	pmd->tl_info.tm = pmd->tm;
 491	pmd->tl_info.levels = 1;
 492	pmd->tl_info.value_type.context = &pmd->bl_info;
 493	pmd->tl_info.value_type.size = sizeof(__le64);
 494	pmd->tl_info.value_type.inc = subtree_inc;
 495	pmd->tl_info.value_type.dec = subtree_dec;
 496	pmd->tl_info.value_type.equal = subtree_equal;
 497
 498	pmd->bl_info.tm = pmd->tm;
 499	pmd->bl_info.levels = 1;
 500	pmd->bl_info.value_type.context = pmd->data_sm;
 501	pmd->bl_info.value_type.size = sizeof(__le64);
 502	pmd->bl_info.value_type.inc = data_block_inc;
 503	pmd->bl_info.value_type.dec = data_block_dec;
 504	pmd->bl_info.value_type.equal = data_block_equal;
 505
 506	pmd->details_info.tm = pmd->tm;
 507	pmd->details_info.levels = 1;
 508	pmd->details_info.value_type.context = NULL;
 509	pmd->details_info.value_type.size = sizeof(struct disk_device_details);
 510	pmd->details_info.value_type.inc = NULL;
 511	pmd->details_info.value_type.dec = NULL;
 512	pmd->details_info.value_type.equal = NULL;
 513}
 514
 515static int save_sm_roots(struct dm_pool_metadata *pmd)
 516{
 517	int r;
 518	size_t len;
 519
 520	r = dm_sm_root_size(pmd->metadata_sm, &len);
 521	if (r < 0)
 522		return r;
 523
 524	r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
 525	if (r < 0)
 526		return r;
 527
 528	r = dm_sm_root_size(pmd->data_sm, &len);
 529	if (r < 0)
 530		return r;
 531
 532	return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
 533}
 534
 535static void copy_sm_roots(struct dm_pool_metadata *pmd,
 536			  struct thin_disk_superblock *disk)
 537{
 538	memcpy(&disk->metadata_space_map_root,
 539	       &pmd->metadata_space_map_root,
 540	       sizeof(pmd->metadata_space_map_root));
 541
 542	memcpy(&disk->data_space_map_root,
 543	       &pmd->data_space_map_root,
 544	       sizeof(pmd->data_space_map_root));
 545}
 546
 547static int __write_initial_superblock(struct dm_pool_metadata *pmd)
 548{
 549	int r;
 550	struct dm_block *sblock;
 551	struct thin_disk_superblock *disk_super;
 552	sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
 553
 554	if (bdev_size > THIN_METADATA_MAX_SECTORS)
 555		bdev_size = THIN_METADATA_MAX_SECTORS;
 556
 557	r = dm_sm_commit(pmd->data_sm);
 558	if (r < 0)
 559		return r;
 560
 561	r = dm_tm_pre_commit(pmd->tm);
 562	if (r < 0)
 563		return r;
 564
 565	r = save_sm_roots(pmd);
 566	if (r < 0)
 567		return r;
 568
 569	r = superblock_lock_zero(pmd, &sblock);
 570	if (r)
 571		return r;
 572
 573	disk_super = dm_block_data(sblock);
 574	disk_super->flags = 0;
 575	memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
 576	disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
 577	disk_super->version = cpu_to_le32(THIN_VERSION);
 578	disk_super->time = 0;
 579	disk_super->trans_id = 0;
 580	disk_super->held_root = 0;
 581
 582	copy_sm_roots(pmd, disk_super);
 583
 584	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
 585	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
 586	disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
 587	disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
 588	disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
 589
 590	return dm_tm_commit(pmd->tm, sblock);
 591}
 592
 593static int __format_metadata(struct dm_pool_metadata *pmd)
 594{
 595	int r;
 596
 597	r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 598				 &pmd->tm, &pmd->metadata_sm);
 599	if (r < 0) {
 600		DMERR("tm_create_with_sm failed");
 601		return r;
 602	}
 603
 604	pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
 605	if (IS_ERR(pmd->data_sm)) {
 606		DMERR("sm_disk_create failed");
 607		r = PTR_ERR(pmd->data_sm);
 608		goto bad_cleanup_tm;
 609	}
 610
 611	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
 612	if (!pmd->nb_tm) {
 613		DMERR("could not create non-blocking clone tm");
 614		r = -ENOMEM;
 615		goto bad_cleanup_data_sm;
 616	}
 617
 618	__setup_btree_details(pmd);
 619
 620	r = dm_btree_empty(&pmd->info, &pmd->root);
 621	if (r < 0)
 622		goto bad_cleanup_nb_tm;
 623
 624	r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
 625	if (r < 0) {
 626		DMERR("couldn't create devices root");
 627		goto bad_cleanup_nb_tm;
 628	}
 629
 630	r = __write_initial_superblock(pmd);
 631	if (r)
 632		goto bad_cleanup_nb_tm;
 633
 634	return 0;
 635
 636bad_cleanup_nb_tm:
 637	dm_tm_destroy(pmd->nb_tm);
 638bad_cleanup_data_sm:
 639	dm_sm_destroy(pmd->data_sm);
 640bad_cleanup_tm:
 641	dm_tm_destroy(pmd->tm);
 642	dm_sm_destroy(pmd->metadata_sm);
 643
 644	return r;
 645}
 646
 647static int __check_incompat_features(struct thin_disk_superblock *disk_super,
 648				     struct dm_pool_metadata *pmd)
 649{
 650	uint32_t features;
 651
 652	features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
 653	if (features) {
 654		DMERR("could not access metadata due to unsupported optional features (%lx).",
 655		      (unsigned long)features);
 656		return -EINVAL;
 657	}
 658
 659	/*
 660	 * Check for read-only metadata to skip the following RDWR checks.
 661	 */
 662	if (bdev_read_only(pmd->bdev))
 663		return 0;
 664
 665	features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
 666	if (features) {
 667		DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
 668		      (unsigned long)features);
 669		return -EINVAL;
 670	}
 671
 672	return 0;
 673}
 674
 675static int __open_metadata(struct dm_pool_metadata *pmd)
 676{
 677	int r;
 678	struct dm_block *sblock;
 679	struct thin_disk_superblock *disk_super;
 680
 681	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 682			    &sb_validator, &sblock);
 683	if (r < 0) {
 684		DMERR("couldn't read superblock");
 685		return r;
 686	}
 687
 688	disk_super = dm_block_data(sblock);
 689
 690	/* Verify the data block size hasn't changed */
 691	if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
 692		DMERR("changing the data block size (from %u to %llu) is not supported",
 693		      le32_to_cpu(disk_super->data_block_size),
 694		      (unsigned long long)pmd->data_block_size);
 695		r = -EINVAL;
 696		goto bad_unlock_sblock;
 697	}
 698
 699	r = __check_incompat_features(disk_super, pmd);
 700	if (r < 0)
 701		goto bad_unlock_sblock;
 702
 703	r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 704			       disk_super->metadata_space_map_root,
 705			       sizeof(disk_super->metadata_space_map_root),
 706			       &pmd->tm, &pmd->metadata_sm);
 707	if (r < 0) {
 708		DMERR("tm_open_with_sm failed");
 709		goto bad_unlock_sblock;
 710	}
 711
 712	pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
 713				       sizeof(disk_super->data_space_map_root));
 714	if (IS_ERR(pmd->data_sm)) {
 715		DMERR("sm_disk_open failed");
 716		r = PTR_ERR(pmd->data_sm);
 717		goto bad_cleanup_tm;
 718	}
 719
 720	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
 721	if (!pmd->nb_tm) {
 722		DMERR("could not create non-blocking clone tm");
 723		r = -ENOMEM;
 724		goto bad_cleanup_data_sm;
 725	}
 726
 727	__setup_btree_details(pmd);
 728	dm_bm_unlock(sblock);
 729
 730	return 0;
 731
 732bad_cleanup_data_sm:
 733	dm_sm_destroy(pmd->data_sm);
 734bad_cleanup_tm:
 735	dm_tm_destroy(pmd->tm);
 736	dm_sm_destroy(pmd->metadata_sm);
 737bad_unlock_sblock:
 738	dm_bm_unlock(sblock);
 739
 740	return r;
 741}
 742
 743static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
 744{
 745	int r, unformatted;
 746
 747	r = __superblock_all_zeroes(pmd->bm, &unformatted);
 748	if (r)
 749		return r;
 750
 751	if (unformatted)
 752		return format_device ? __format_metadata(pmd) : -EPERM;
 753
 754	return __open_metadata(pmd);
 755}
 756
 757static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
 758{
 759	int r;
 760
 761	pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
 762					  THIN_MAX_CONCURRENT_LOCKS);
 763	if (IS_ERR(pmd->bm)) {
 764		DMERR("could not create block manager");
 765		r = PTR_ERR(pmd->bm);
 766		pmd->bm = NULL;
 767		return r;
 768	}
 769
 770	r = __open_or_format_metadata(pmd, format_device);
 771	if (r) {
 772		dm_block_manager_destroy(pmd->bm);
 773		pmd->bm = NULL;
 774	}
 775
 776	return r;
 777}
 778
 779static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
 780{
 781	dm_sm_destroy(pmd->data_sm);
 782	dm_sm_destroy(pmd->metadata_sm);
 783	dm_tm_destroy(pmd->nb_tm);
 784	dm_tm_destroy(pmd->tm);
 785	dm_block_manager_destroy(pmd->bm);
 786}
 787
 788static int __begin_transaction(struct dm_pool_metadata *pmd)
 789{
 790	int r;
 791	struct thin_disk_superblock *disk_super;
 792	struct dm_block *sblock;
 793
 794	/*
 795	 * We re-read the superblock every time.  Shouldn't need to do this
 796	 * really.
 797	 */
 798	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 799			    &sb_validator, &sblock);
 800	if (r)
 801		return r;
 802
 803	disk_super = dm_block_data(sblock);
 804	pmd->time = le32_to_cpu(disk_super->time);
 805	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
 806	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
 807	pmd->trans_id = le64_to_cpu(disk_super->trans_id);
 808	pmd->flags = le32_to_cpu(disk_super->flags);
 809	pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
 810
 811	dm_bm_unlock(sblock);
 812	return 0;
 813}
 814
 815static int __write_changed_details(struct dm_pool_metadata *pmd)
 816{
 817	int r;
 818	struct dm_thin_device *td, *tmp;
 819	struct disk_device_details details;
 820	uint64_t key;
 821
 822	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
 823		if (!td->changed)
 824			continue;
 825
 826		key = td->id;
 827
 828		details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
 829		details.transaction_id = cpu_to_le64(td->transaction_id);
 830		details.creation_time = cpu_to_le32(td->creation_time);
 831		details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
 832		__dm_bless_for_disk(&details);
 833
 834		r = dm_btree_insert(&pmd->details_info, pmd->details_root,
 835				    &key, &details, &pmd->details_root);
 836		if (r)
 837			return r;
 838
 839		if (td->open_count)
 840			td->changed = false;
 841		else {
 842			list_del(&td->list);
 843			kfree(td);
 844		}
 845	}
 846
 847	return 0;
 848}
 849
 850static int __commit_transaction(struct dm_pool_metadata *pmd)
 851{
 852	int r;
 853	struct thin_disk_superblock *disk_super;
 854	struct dm_block *sblock;
 855
 856	/*
 857	 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
 858	 */
 859	BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
 860	BUG_ON(!rwsem_is_locked(&pmd->root_lock));
 861
 862	if (unlikely(!pmd->in_service))
 863		return 0;
 864
 865	if (pmd->pre_commit_fn) {
 866		r = pmd->pre_commit_fn(pmd->pre_commit_context);
 867		if (r < 0) {
 868			DMERR("pre-commit callback failed");
 869			return r;
 870		}
 871	}
 872
 873	r = __write_changed_details(pmd);
 874	if (r < 0)
 875		return r;
 876
 877	r = dm_sm_commit(pmd->data_sm);
 878	if (r < 0)
 879		return r;
 880
 881	r = dm_tm_pre_commit(pmd->tm);
 882	if (r < 0)
 883		return r;
 884
 885	r = save_sm_roots(pmd);
 886	if (r < 0)
 887		return r;
 888
 889	r = superblock_lock(pmd, &sblock);
 890	if (r)
 891		return r;
 892
 893	disk_super = dm_block_data(sblock);
 894	disk_super->time = cpu_to_le32(pmd->time);
 895	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
 896	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
 897	disk_super->trans_id = cpu_to_le64(pmd->trans_id);
 898	disk_super->flags = cpu_to_le32(pmd->flags);
 899
 900	copy_sm_roots(pmd, disk_super);
 901
 902	return dm_tm_commit(pmd->tm, sblock);
 903}
 904
 905static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
 906{
 907	int r;
 908	dm_block_t total;
 909	dm_block_t max_blocks = 4096; /* 16M */
 910
 911	r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
 912	if (r) {
 913		DMERR("could not get size of metadata device");
 914		pmd->metadata_reserve = max_blocks;
 915	} else
 916		pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
 917}
 918
 919struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
 920					       sector_t data_block_size,
 921					       bool format_device)
 922{
 923	int r;
 924	struct dm_pool_metadata *pmd;
 925
 926	pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
 927	if (!pmd) {
 928		DMERR("could not allocate metadata struct");
 929		return ERR_PTR(-ENOMEM);
 930	}
 931
 932	init_rwsem(&pmd->root_lock);
 933	pmd->time = 0;
 934	INIT_LIST_HEAD(&pmd->thin_devices);
 935	pmd->fail_io = false;
 936	pmd->in_service = false;
 937	pmd->bdev = bdev;
 938	pmd->data_block_size = data_block_size;
 939	pmd->pre_commit_fn = NULL;
 940	pmd->pre_commit_context = NULL;
 941
 942	r = __create_persistent_data_objects(pmd, format_device);
 943	if (r) {
 944		kfree(pmd);
 945		return ERR_PTR(r);
 946	}
 947
 948	r = __begin_transaction(pmd);
 949	if (r < 0) {
 950		if (dm_pool_metadata_close(pmd) < 0)
 951			DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
 952		return ERR_PTR(r);
 953	}
 954
 955	__set_metadata_reserve(pmd);
 956
 957	return pmd;
 958}
 959
 960int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
 961{
 962	int r;
 963	unsigned open_devices = 0;
 964	struct dm_thin_device *td, *tmp;
 965
 966	down_read(&pmd->root_lock);
 967	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
 968		if (td->open_count)
 969			open_devices++;
 970		else {
 971			list_del(&td->list);
 972			kfree(td);
 973		}
 974	}
 975	up_read(&pmd->root_lock);
 976
 977	if (open_devices) {
 978		DMERR("attempt to close pmd when %u device(s) are still open",
 979		       open_devices);
 980		return -EBUSY;
 981	}
 982
 983	pmd_write_lock_in_core(pmd);
 984	if (!pmd->fail_io && !dm_bm_is_read_only(pmd->bm)) {
 985		r = __commit_transaction(pmd);
 986		if (r < 0)
 987			DMWARN("%s: __commit_transaction() failed, error = %d",
 988			       __func__, r);
 989	}
 990	pmd_write_unlock(pmd);
 991	if (!pmd->fail_io)
 992		__destroy_persistent_data_objects(pmd);
 993
 994	kfree(pmd);
 995	return 0;
 996}
 997
 998/*
 999 * __open_device: Returns @td corresponding to device with id @dev,
1000 * creating it if @create is set and incrementing @td->open_count.
1001 * On failure, @td is undefined.
1002 */
1003static int __open_device(struct dm_pool_metadata *pmd,
1004			 dm_thin_id dev, int create,
1005			 struct dm_thin_device **td)
1006{
1007	int r, changed = 0;
1008	struct dm_thin_device *td2;
1009	uint64_t key = dev;
1010	struct disk_device_details details_le;
1011
1012	/*
1013	 * If the device is already open, return it.
1014	 */
1015	list_for_each_entry(td2, &pmd->thin_devices, list)
1016		if (td2->id == dev) {
1017			/*
1018			 * May not create an already-open device.
1019			 */
1020			if (create)
1021				return -EEXIST;
1022
1023			td2->open_count++;
1024			*td = td2;
1025			return 0;
1026		}
1027
1028	/*
1029	 * Check the device exists.
1030	 */
1031	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1032			    &key, &details_le);
1033	if (r) {
1034		if (r != -ENODATA || !create)
1035			return r;
1036
1037		/*
1038		 * Create new device.
1039		 */
1040		changed = 1;
1041		details_le.mapped_blocks = 0;
1042		details_le.transaction_id = cpu_to_le64(pmd->trans_id);
1043		details_le.creation_time = cpu_to_le32(pmd->time);
1044		details_le.snapshotted_time = cpu_to_le32(pmd->time);
1045	}
1046
1047	*td = kmalloc(sizeof(**td), GFP_NOIO);
1048	if (!*td)
1049		return -ENOMEM;
1050
1051	(*td)->pmd = pmd;
1052	(*td)->id = dev;
1053	(*td)->open_count = 1;
1054	(*td)->changed = changed;
1055	(*td)->aborted_with_changes = false;
1056	(*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1057	(*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1058	(*td)->creation_time = le32_to_cpu(details_le.creation_time);
1059	(*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1060
1061	list_add(&(*td)->list, &pmd->thin_devices);
1062
1063	return 0;
1064}
1065
1066static void __close_device(struct dm_thin_device *td)
1067{
1068	--td->open_count;
1069}
1070
1071static int __create_thin(struct dm_pool_metadata *pmd,
1072			 dm_thin_id dev)
1073{
1074	int r;
1075	dm_block_t dev_root;
1076	uint64_t key = dev;
 
1077	struct dm_thin_device *td;
1078	__le64 value;
1079
1080	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1081			    &key, NULL);
1082	if (!r)
1083		return -EEXIST;
1084
1085	/*
1086	 * Create an empty btree for the mappings.
1087	 */
1088	r = dm_btree_empty(&pmd->bl_info, &dev_root);
1089	if (r)
1090		return r;
1091
1092	/*
1093	 * Insert it into the main mapping tree.
1094	 */
1095	value = cpu_to_le64(dev_root);
1096	__dm_bless_for_disk(&value);
1097	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1098	if (r) {
1099		dm_btree_del(&pmd->bl_info, dev_root);
1100		return r;
1101	}
1102
1103	r = __open_device(pmd, dev, 1, &td);
1104	if (r) {
1105		dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1106		dm_btree_del(&pmd->bl_info, dev_root);
1107		return r;
1108	}
1109	__close_device(td);
1110
1111	return r;
1112}
1113
1114int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1115{
1116	int r = -EINVAL;
1117
1118	pmd_write_lock(pmd);
1119	if (!pmd->fail_io)
1120		r = __create_thin(pmd, dev);
1121	pmd_write_unlock(pmd);
1122
1123	return r;
1124}
1125
1126static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1127				  struct dm_thin_device *snap,
1128				  dm_thin_id origin, uint32_t time)
1129{
1130	int r;
1131	struct dm_thin_device *td;
1132
1133	r = __open_device(pmd, origin, 0, &td);
1134	if (r)
1135		return r;
1136
1137	td->changed = true;
1138	td->snapshotted_time = time;
1139
1140	snap->mapped_blocks = td->mapped_blocks;
1141	snap->snapshotted_time = time;
1142	__close_device(td);
1143
1144	return 0;
1145}
1146
1147static int __create_snap(struct dm_pool_metadata *pmd,
1148			 dm_thin_id dev, dm_thin_id origin)
1149{
1150	int r;
1151	dm_block_t origin_root;
1152	uint64_t key = origin, dev_key = dev;
1153	struct dm_thin_device *td;
 
1154	__le64 value;
1155
1156	/* check this device is unused */
1157	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1158			    &dev_key, NULL);
1159	if (!r)
1160		return -EEXIST;
1161
1162	/* find the mapping tree for the origin */
1163	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1164	if (r)
1165		return r;
1166	origin_root = le64_to_cpu(value);
1167
1168	/* clone the origin, an inc will do */
1169	dm_tm_inc(pmd->tm, origin_root);
1170
1171	/* insert into the main mapping tree */
1172	value = cpu_to_le64(origin_root);
1173	__dm_bless_for_disk(&value);
1174	key = dev;
1175	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1176	if (r) {
1177		dm_tm_dec(pmd->tm, origin_root);
1178		return r;
1179	}
1180
1181	pmd->time++;
1182
1183	r = __open_device(pmd, dev, 1, &td);
1184	if (r)
1185		goto bad;
1186
1187	r = __set_snapshot_details(pmd, td, origin, pmd->time);
1188	__close_device(td);
1189
1190	if (r)
1191		goto bad;
1192
1193	return 0;
1194
1195bad:
1196	dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1197	dm_btree_remove(&pmd->details_info, pmd->details_root,
1198			&key, &pmd->details_root);
1199	return r;
1200}
1201
1202int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1203				 dm_thin_id dev,
1204				 dm_thin_id origin)
1205{
1206	int r = -EINVAL;
1207
1208	pmd_write_lock(pmd);
1209	if (!pmd->fail_io)
1210		r = __create_snap(pmd, dev, origin);
1211	pmd_write_unlock(pmd);
1212
1213	return r;
1214}
1215
1216static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1217{
1218	int r;
1219	uint64_t key = dev;
1220	struct dm_thin_device *td;
1221
1222	/* TODO: failure should mark the transaction invalid */
1223	r = __open_device(pmd, dev, 0, &td);
1224	if (r)
1225		return r;
1226
1227	if (td->open_count > 1) {
1228		__close_device(td);
1229		return -EBUSY;
1230	}
1231
1232	list_del(&td->list);
1233	kfree(td);
1234	r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1235			    &key, &pmd->details_root);
1236	if (r)
1237		return r;
1238
1239	r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1240	if (r)
1241		return r;
1242
1243	return 0;
1244}
1245
1246int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1247			       dm_thin_id dev)
1248{
1249	int r = -EINVAL;
1250
1251	pmd_write_lock(pmd);
1252	if (!pmd->fail_io)
1253		r = __delete_device(pmd, dev);
1254	pmd_write_unlock(pmd);
1255
1256	return r;
1257}
1258
1259int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1260					uint64_t current_id,
1261					uint64_t new_id)
1262{
1263	int r = -EINVAL;
1264
1265	pmd_write_lock(pmd);
1266
1267	if (pmd->fail_io)
1268		goto out;
1269
1270	if (pmd->trans_id != current_id) {
1271		DMERR("mismatched transaction id");
1272		goto out;
1273	}
1274
1275	pmd->trans_id = new_id;
1276	r = 0;
1277
1278out:
1279	pmd_write_unlock(pmd);
1280
1281	return r;
1282}
1283
1284int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1285					uint64_t *result)
1286{
1287	int r = -EINVAL;
1288
1289	down_read(&pmd->root_lock);
1290	if (!pmd->fail_io) {
1291		*result = pmd->trans_id;
1292		r = 0;
1293	}
1294	up_read(&pmd->root_lock);
1295
1296	return r;
1297}
1298
1299static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1300{
1301	int r, inc;
1302	struct thin_disk_superblock *disk_super;
1303	struct dm_block *copy, *sblock;
1304	dm_block_t held_root;
1305
1306	/*
1307	 * We commit to ensure the btree roots which we increment in a
1308	 * moment are up to date.
1309	 */
1310	r = __commit_transaction(pmd);
1311	if (r < 0) {
1312		DMWARN("%s: __commit_transaction() failed, error = %d",
1313		       __func__, r);
1314		return r;
1315	}
1316
1317	/*
1318	 * Copy the superblock.
1319	 */
1320	dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1321	r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1322			       &sb_validator, &copy, &inc);
1323	if (r)
1324		return r;
1325
1326	BUG_ON(!inc);
1327
1328	held_root = dm_block_location(copy);
1329	disk_super = dm_block_data(copy);
1330
1331	if (le64_to_cpu(disk_super->held_root)) {
1332		DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1333
1334		dm_tm_dec(pmd->tm, held_root);
1335		dm_tm_unlock(pmd->tm, copy);
1336		return -EBUSY;
1337	}
1338
1339	/*
1340	 * Wipe the spacemap since we're not publishing this.
1341	 */
1342	memset(&disk_super->data_space_map_root, 0,
1343	       sizeof(disk_super->data_space_map_root));
1344	memset(&disk_super->metadata_space_map_root, 0,
1345	       sizeof(disk_super->metadata_space_map_root));
1346
1347	/*
1348	 * Increment the data structures that need to be preserved.
1349	 */
1350	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1351	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1352	dm_tm_unlock(pmd->tm, copy);
1353
1354	/*
1355	 * Write the held root into the superblock.
1356	 */
1357	r = superblock_lock(pmd, &sblock);
1358	if (r) {
1359		dm_tm_dec(pmd->tm, held_root);
1360		return r;
1361	}
1362
1363	disk_super = dm_block_data(sblock);
1364	disk_super->held_root = cpu_to_le64(held_root);
1365	dm_bm_unlock(sblock);
1366	return 0;
1367}
1368
1369int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1370{
1371	int r = -EINVAL;
1372
1373	pmd_write_lock(pmd);
1374	if (!pmd->fail_io)
1375		r = __reserve_metadata_snap(pmd);
1376	pmd_write_unlock(pmd);
1377
1378	return r;
1379}
1380
1381static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1382{
1383	int r;
1384	struct thin_disk_superblock *disk_super;
1385	struct dm_block *sblock, *copy;
1386	dm_block_t held_root;
1387
1388	r = superblock_lock(pmd, &sblock);
1389	if (r)
1390		return r;
1391
1392	disk_super = dm_block_data(sblock);
1393	held_root = le64_to_cpu(disk_super->held_root);
1394	disk_super->held_root = cpu_to_le64(0);
1395
1396	dm_bm_unlock(sblock);
1397
1398	if (!held_root) {
1399		DMWARN("No pool metadata snapshot found: nothing to release.");
1400		return -EINVAL;
1401	}
1402
1403	r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1404	if (r)
1405		return r;
1406
1407	disk_super = dm_block_data(copy);
1408	dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1409	dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1410	dm_sm_dec_block(pmd->metadata_sm, held_root);
1411
1412	dm_tm_unlock(pmd->tm, copy);
1413
1414	return 0;
1415}
1416
1417int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1418{
1419	int r = -EINVAL;
1420
1421	pmd_write_lock(pmd);
1422	if (!pmd->fail_io)
1423		r = __release_metadata_snap(pmd);
1424	pmd_write_unlock(pmd);
1425
1426	return r;
1427}
1428
1429static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1430			       dm_block_t *result)
1431{
1432	int r;
1433	struct thin_disk_superblock *disk_super;
1434	struct dm_block *sblock;
1435
1436	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1437			    &sb_validator, &sblock);
1438	if (r)
1439		return r;
1440
1441	disk_super = dm_block_data(sblock);
1442	*result = le64_to_cpu(disk_super->held_root);
1443
1444	dm_bm_unlock(sblock);
1445
1446	return 0;
1447}
1448
1449int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1450			      dm_block_t *result)
1451{
1452	int r = -EINVAL;
1453
1454	down_read(&pmd->root_lock);
1455	if (!pmd->fail_io)
1456		r = __get_metadata_snap(pmd, result);
1457	up_read(&pmd->root_lock);
1458
1459	return r;
1460}
1461
1462int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1463			     struct dm_thin_device **td)
1464{
1465	int r = -EINVAL;
1466
1467	pmd_write_lock_in_core(pmd);
1468	if (!pmd->fail_io)
1469		r = __open_device(pmd, dev, 0, td);
1470	pmd_write_unlock(pmd);
1471
1472	return r;
1473}
1474
1475int dm_pool_close_thin_device(struct dm_thin_device *td)
1476{
1477	pmd_write_lock_in_core(td->pmd);
1478	__close_device(td);
1479	pmd_write_unlock(td->pmd);
1480
1481	return 0;
1482}
1483
1484dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1485{
1486	return td->id;
1487}
1488
1489/*
1490 * Check whether @time (of block creation) is older than @td's last snapshot.
1491 * If so then the associated block is shared with the last snapshot device.
1492 * Any block on a device created *after* the device last got snapshotted is
1493 * necessarily not shared.
1494 */
1495static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1496{
1497	return td->snapshotted_time > time;
1498}
1499
1500static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1501				 struct dm_thin_lookup_result *result)
1502{
1503	uint64_t block_time = 0;
1504	dm_block_t exception_block;
1505	uint32_t exception_time;
1506
1507	block_time = le64_to_cpu(value);
1508	unpack_block_time(block_time, &exception_block, &exception_time);
1509	result->block = exception_block;
1510	result->shared = __snapshotted_since(td, exception_time);
1511}
1512
1513static int __find_block(struct dm_thin_device *td, dm_block_t block,
1514			int can_issue_io, struct dm_thin_lookup_result *result)
1515{
1516	int r;
1517	__le64 value;
1518	struct dm_pool_metadata *pmd = td->pmd;
1519	dm_block_t keys[2] = { td->id, block };
1520	struct dm_btree_info *info;
1521
1522	if (can_issue_io) {
1523		info = &pmd->info;
1524	} else
1525		info = &pmd->nb_info;
1526
1527	r = dm_btree_lookup(info, pmd->root, keys, &value);
1528	if (!r)
1529		unpack_lookup_result(td, value, result);
1530
1531	return r;
1532}
1533
1534int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1535		       int can_issue_io, struct dm_thin_lookup_result *result)
1536{
1537	int r;
1538	struct dm_pool_metadata *pmd = td->pmd;
1539
1540	down_read(&pmd->root_lock);
1541	if (pmd->fail_io) {
1542		up_read(&pmd->root_lock);
1543		return -EINVAL;
1544	}
1545
1546	r = __find_block(td, block, can_issue_io, result);
1547
1548	up_read(&pmd->root_lock);
1549	return r;
1550}
1551
1552static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1553					  dm_block_t *vblock,
1554					  struct dm_thin_lookup_result *result)
1555{
1556	int r;
1557	__le64 value;
1558	struct dm_pool_metadata *pmd = td->pmd;
1559	dm_block_t keys[2] = { td->id, block };
1560
1561	r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1562	if (!r)
1563		unpack_lookup_result(td, value, result);
1564
1565	return r;
1566}
1567
1568static int __find_mapped_range(struct dm_thin_device *td,
1569			       dm_block_t begin, dm_block_t end,
1570			       dm_block_t *thin_begin, dm_block_t *thin_end,
1571			       dm_block_t *pool_begin, bool *maybe_shared)
1572{
1573	int r;
1574	dm_block_t pool_end;
1575	struct dm_thin_lookup_result lookup;
1576
1577	if (end < begin)
1578		return -ENODATA;
1579
1580	r = __find_next_mapped_block(td, begin, &begin, &lookup);
1581	if (r)
1582		return r;
1583
1584	if (begin >= end)
1585		return -ENODATA;
1586
1587	*thin_begin = begin;
1588	*pool_begin = lookup.block;
1589	*maybe_shared = lookup.shared;
1590
1591	begin++;
1592	pool_end = *pool_begin + 1;
1593	while (begin != end) {
1594		r = __find_block(td, begin, true, &lookup);
1595		if (r) {
1596			if (r == -ENODATA)
1597				break;
1598			else
1599				return r;
1600		}
1601
1602		if ((lookup.block != pool_end) ||
1603		    (lookup.shared != *maybe_shared))
1604			break;
1605
1606		pool_end++;
1607		begin++;
1608	}
1609
1610	*thin_end = begin;
1611	return 0;
1612}
1613
1614int dm_thin_find_mapped_range(struct dm_thin_device *td,
1615			      dm_block_t begin, dm_block_t end,
1616			      dm_block_t *thin_begin, dm_block_t *thin_end,
1617			      dm_block_t *pool_begin, bool *maybe_shared)
1618{
1619	int r = -EINVAL;
1620	struct dm_pool_metadata *pmd = td->pmd;
1621
1622	down_read(&pmd->root_lock);
1623	if (!pmd->fail_io) {
1624		r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1625					pool_begin, maybe_shared);
1626	}
1627	up_read(&pmd->root_lock);
1628
1629	return r;
1630}
1631
1632static int __insert(struct dm_thin_device *td, dm_block_t block,
1633		    dm_block_t data_block)
1634{
1635	int r, inserted;
1636	__le64 value;
1637	struct dm_pool_metadata *pmd = td->pmd;
1638	dm_block_t keys[2] = { td->id, block };
1639
1640	value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1641	__dm_bless_for_disk(&value);
1642
1643	r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1644				   &pmd->root, &inserted);
1645	if (r)
1646		return r;
1647
1648	td->changed = true;
1649	if (inserted)
1650		td->mapped_blocks++;
1651
1652	return 0;
1653}
1654
1655int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1656			 dm_block_t data_block)
1657{
1658	int r = -EINVAL;
1659
1660	pmd_write_lock(td->pmd);
1661	if (!td->pmd->fail_io)
1662		r = __insert(td, block, data_block);
1663	pmd_write_unlock(td->pmd);
1664
1665	return r;
1666}
1667
1668static int __remove(struct dm_thin_device *td, dm_block_t block)
1669{
1670	int r;
1671	struct dm_pool_metadata *pmd = td->pmd;
1672	dm_block_t keys[2] = { td->id, block };
1673
1674	r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1675	if (r)
1676		return r;
1677
1678	td->mapped_blocks--;
1679	td->changed = true;
1680
1681	return 0;
1682}
1683
1684static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1685{
1686	int r;
1687	unsigned count, total_count = 0;
1688	struct dm_pool_metadata *pmd = td->pmd;
1689	dm_block_t keys[1] = { td->id };
1690	__le64 value;
1691	dm_block_t mapping_root;
1692
1693	/*
1694	 * Find the mapping tree
1695	 */
1696	r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1697	if (r)
1698		return r;
1699
1700	/*
1701	 * Remove from the mapping tree, taking care to inc the
1702	 * ref count so it doesn't get deleted.
1703	 */
1704	mapping_root = le64_to_cpu(value);
1705	dm_tm_inc(pmd->tm, mapping_root);
1706	r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1707	if (r)
1708		return r;
1709
1710	/*
1711	 * Remove leaves stops at the first unmapped entry, so we have to
1712	 * loop round finding mapped ranges.
1713	 */
1714	while (begin < end) {
1715		r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1716		if (r == -ENODATA)
1717			break;
1718
1719		if (r)
1720			return r;
1721
1722		if (begin >= end)
1723			break;
1724
1725		r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1726		if (r)
1727			return r;
1728
1729		total_count += count;
1730	}
1731
1732	td->mapped_blocks -= total_count;
1733	td->changed = true;
1734
1735	/*
1736	 * Reinsert the mapping tree.
1737	 */
1738	value = cpu_to_le64(mapping_root);
1739	__dm_bless_for_disk(&value);
1740	return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1741}
1742
1743int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1744{
1745	int r = -EINVAL;
1746
1747	pmd_write_lock(td->pmd);
1748	if (!td->pmd->fail_io)
1749		r = __remove(td, block);
1750	pmd_write_unlock(td->pmd);
1751
1752	return r;
1753}
1754
1755int dm_thin_remove_range(struct dm_thin_device *td,
1756			 dm_block_t begin, dm_block_t end)
1757{
1758	int r = -EINVAL;
1759
1760	pmd_write_lock(td->pmd);
1761	if (!td->pmd->fail_io)
1762		r = __remove_range(td, begin, end);
1763	pmd_write_unlock(td->pmd);
1764
1765	return r;
1766}
1767
1768int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1769{
1770	int r;
1771	uint32_t ref_count;
1772
1773	down_read(&pmd->root_lock);
1774	r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1775	if (!r)
1776		*result = (ref_count > 1);
1777	up_read(&pmd->root_lock);
1778
1779	return r;
1780}
1781
1782int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1783{
1784	int r = 0;
1785
1786	pmd_write_lock(pmd);
1787	r = dm_sm_inc_blocks(pmd->data_sm, b, e);
 
 
 
 
1788	pmd_write_unlock(pmd);
1789
1790	return r;
1791}
1792
1793int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1794{
1795	int r = 0;
1796
1797	pmd_write_lock(pmd);
1798	r = dm_sm_dec_blocks(pmd->data_sm, b, e);
 
 
 
 
1799	pmd_write_unlock(pmd);
1800
1801	return r;
1802}
1803
1804bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1805{
1806	int r;
1807
1808	down_read(&td->pmd->root_lock);
1809	r = td->changed;
1810	up_read(&td->pmd->root_lock);
1811
1812	return r;
1813}
1814
1815bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1816{
1817	bool r = false;
1818	struct dm_thin_device *td, *tmp;
1819
1820	down_read(&pmd->root_lock);
1821	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1822		if (td->changed) {
1823			r = td->changed;
1824			break;
1825		}
1826	}
1827	up_read(&pmd->root_lock);
1828
1829	return r;
1830}
1831
1832bool dm_thin_aborted_changes(struct dm_thin_device *td)
1833{
1834	bool r;
1835
1836	down_read(&td->pmd->root_lock);
1837	r = td->aborted_with_changes;
1838	up_read(&td->pmd->root_lock);
1839
1840	return r;
1841}
1842
1843int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1844{
1845	int r = -EINVAL;
1846
1847	pmd_write_lock(pmd);
1848	if (!pmd->fail_io)
1849		r = dm_sm_new_block(pmd->data_sm, result);
1850	pmd_write_unlock(pmd);
1851
1852	return r;
1853}
1854
1855int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1856{
1857	int r = -EINVAL;
1858
1859	/*
1860	 * Care is taken to not have commit be what
1861	 * triggers putting the thin-pool in-service.
1862	 */
1863	pmd_write_lock_in_core(pmd);
1864	if (pmd->fail_io)
1865		goto out;
1866
1867	r = __commit_transaction(pmd);
1868	if (r < 0)
1869		goto out;
1870
1871	/*
1872	 * Open the next transaction.
1873	 */
1874	r = __begin_transaction(pmd);
1875out:
1876	pmd_write_unlock(pmd);
1877	return r;
1878}
1879
1880static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1881{
1882	struct dm_thin_device *td;
1883
1884	list_for_each_entry(td, &pmd->thin_devices, list)
1885		td->aborted_with_changes = td->changed;
1886}
1887
1888int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1889{
1890	int r = -EINVAL;
1891
1892	pmd_write_lock(pmd);
1893	if (pmd->fail_io)
1894		goto out;
1895
1896	__set_abort_with_changes_flags(pmd);
1897	__destroy_persistent_data_objects(pmd);
1898	r = __create_persistent_data_objects(pmd, false);
1899	if (r)
1900		pmd->fail_io = true;
1901
1902out:
1903	pmd_write_unlock(pmd);
1904
1905	return r;
1906}
1907
1908int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1909{
1910	int r = -EINVAL;
1911
1912	down_read(&pmd->root_lock);
1913	if (!pmd->fail_io)
1914		r = dm_sm_get_nr_free(pmd->data_sm, result);
1915	up_read(&pmd->root_lock);
1916
1917	return r;
1918}
1919
1920int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1921					  dm_block_t *result)
1922{
1923	int r = -EINVAL;
1924
1925	down_read(&pmd->root_lock);
1926	if (!pmd->fail_io)
1927		r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1928
1929	if (!r) {
1930		if (*result < pmd->metadata_reserve)
1931			*result = 0;
1932		else
1933			*result -= pmd->metadata_reserve;
1934	}
1935	up_read(&pmd->root_lock);
1936
1937	return r;
1938}
1939
1940int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1941				  dm_block_t *result)
1942{
1943	int r = -EINVAL;
1944
1945	down_read(&pmd->root_lock);
1946	if (!pmd->fail_io)
1947		r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1948	up_read(&pmd->root_lock);
1949
1950	return r;
1951}
1952
1953int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1954{
1955	int r = -EINVAL;
1956
1957	down_read(&pmd->root_lock);
1958	if (!pmd->fail_io)
1959		r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1960	up_read(&pmd->root_lock);
1961
1962	return r;
1963}
1964
1965int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1966{
1967	int r = -EINVAL;
1968	struct dm_pool_metadata *pmd = td->pmd;
1969
1970	down_read(&pmd->root_lock);
1971	if (!pmd->fail_io) {
1972		*result = td->mapped_blocks;
1973		r = 0;
1974	}
1975	up_read(&pmd->root_lock);
1976
1977	return r;
1978}
1979
1980static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1981{
1982	int r;
1983	__le64 value_le;
1984	dm_block_t thin_root;
1985	struct dm_pool_metadata *pmd = td->pmd;
1986
1987	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1988	if (r)
1989		return r;
1990
1991	thin_root = le64_to_cpu(value_le);
1992
1993	return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1994}
1995
1996int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1997				     dm_block_t *result)
1998{
1999	int r = -EINVAL;
2000	struct dm_pool_metadata *pmd = td->pmd;
2001
2002	down_read(&pmd->root_lock);
2003	if (!pmd->fail_io)
2004		r = __highest_block(td, result);
2005	up_read(&pmd->root_lock);
2006
2007	return r;
2008}
2009
2010static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
2011{
2012	int r;
2013	dm_block_t old_count;
2014
2015	r = dm_sm_get_nr_blocks(sm, &old_count);
2016	if (r)
2017		return r;
2018
2019	if (new_count == old_count)
2020		return 0;
2021
2022	if (new_count < old_count) {
2023		DMERR("cannot reduce size of space map");
2024		return -EINVAL;
2025	}
2026
2027	return dm_sm_extend(sm, new_count - old_count);
2028}
2029
2030int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2031{
2032	int r = -EINVAL;
2033
2034	pmd_write_lock(pmd);
2035	if (!pmd->fail_io)
2036		r = __resize_space_map(pmd->data_sm, new_count);
2037	pmd_write_unlock(pmd);
2038
2039	return r;
2040}
2041
2042int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2043{
2044	int r = -EINVAL;
2045
2046	pmd_write_lock(pmd);
2047	if (!pmd->fail_io) {
2048		r = __resize_space_map(pmd->metadata_sm, new_count);
2049		if (!r)
2050			__set_metadata_reserve(pmd);
2051	}
2052	pmd_write_unlock(pmd);
2053
2054	return r;
2055}
2056
2057void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2058{
2059	pmd_write_lock_in_core(pmd);
2060	dm_bm_set_read_only(pmd->bm);
2061	pmd_write_unlock(pmd);
2062}
2063
2064void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2065{
2066	pmd_write_lock_in_core(pmd);
2067	dm_bm_set_read_write(pmd->bm);
2068	pmd_write_unlock(pmd);
2069}
2070
2071int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2072					dm_block_t threshold,
2073					dm_sm_threshold_fn fn,
2074					void *context)
2075{
2076	int r;
2077
2078	pmd_write_lock_in_core(pmd);
2079	r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
2080	pmd_write_unlock(pmd);
2081
2082	return r;
2083}
2084
2085void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
2086					  dm_pool_pre_commit_fn fn,
2087					  void *context)
2088{
2089	pmd_write_lock_in_core(pmd);
2090	pmd->pre_commit_fn = fn;
2091	pmd->pre_commit_context = context;
2092	pmd_write_unlock(pmd);
2093}
2094
2095int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2096{
2097	int r = -EINVAL;
2098	struct dm_block *sblock;
2099	struct thin_disk_superblock *disk_super;
2100
2101	pmd_write_lock(pmd);
2102	if (pmd->fail_io)
2103		goto out;
2104
2105	pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2106
2107	r = superblock_lock(pmd, &sblock);
2108	if (r) {
2109		DMERR("couldn't lock superblock");
2110		goto out;
2111	}
2112
2113	disk_super = dm_block_data(sblock);
2114	disk_super->flags = cpu_to_le32(pmd->flags);
2115
2116	dm_bm_unlock(sblock);
2117out:
2118	pmd_write_unlock(pmd);
2119	return r;
2120}
2121
2122bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2123{
2124	bool needs_check;
2125
2126	down_read(&pmd->root_lock);
2127	needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2128	up_read(&pmd->root_lock);
2129
2130	return needs_check;
2131}
2132
2133void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2134{
2135	down_read(&pmd->root_lock);
2136	if (!pmd->fail_io)
2137		dm_tm_issue_prefetches(pmd->tm);
2138	up_read(&pmd->root_lock);
2139}