Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2
  3/*
  4 * Clocksource driver for the synthetic counter and timers
  5 * provided by the Hyper-V hypervisor to guest VMs, as described
  6 * in the Hyper-V Top Level Functional Spec (TLFS). This driver
  7 * is instruction set architecture independent.
  8 *
  9 * Copyright (C) 2019, Microsoft, Inc.
 10 *
 11 * Author:  Michael Kelley <mikelley@microsoft.com>
 12 */
 13
 14#include <linux/percpu.h>
 15#include <linux/cpumask.h>
 16#include <linux/clockchips.h>
 17#include <linux/clocksource.h>
 18#include <linux/sched_clock.h>
 19#include <linux/mm.h>
 20#include <linux/cpuhotplug.h>
 
 
 
 21#include <clocksource/hyperv_timer.h>
 22#include <asm/hyperv-tlfs.h>
 23#include <asm/mshyperv.h>
 24
 25static struct clock_event_device __percpu *hv_clock_event;
 26static u64 hv_sched_clock_offset __ro_after_init;
 27
 28/*
 29 * If false, we're using the old mechanism for stimer0 interrupts
 30 * where it sends a VMbus message when it expires. The old
 31 * mechanism is used when running on older versions of Hyper-V
 32 * that don't support Direct Mode. While Hyper-V provides
 33 * four stimer's per CPU, Linux uses only stimer0.
 34 *
 35 * Because Direct Mode does not require processing a VMbus
 36 * message, stimer interrupts can be enabled earlier in the
 37 * process of booting a CPU, and consistent with when timer
 38 * interrupts are enabled for other clocksource drivers.
 39 * However, for legacy versions of Hyper-V when Direct Mode
 40 * is not enabled, setting up stimer interrupts must be
 41 * delayed until VMbus is initialized and can process the
 42 * interrupt message.
 43 */
 44static bool direct_mode_enabled;
 45
 46static int stimer0_irq;
 47static int stimer0_vector;
 48static int stimer0_message_sint;
 
 49
 50/*
 51 * ISR for when stimer0 is operating in Direct Mode.  Direct Mode
 52 * does not use VMbus or any VMbus messages, so process here and not
 53 * in the VMbus driver code.
 54 */
 55void hv_stimer0_isr(void)
 56{
 57	struct clock_event_device *ce;
 58
 59	ce = this_cpu_ptr(hv_clock_event);
 60	ce->event_handler(ce);
 61}
 62EXPORT_SYMBOL_GPL(hv_stimer0_isr);
 63
 
 
 
 
 
 
 
 
 
 
 64static int hv_ce_set_next_event(unsigned long delta,
 65				struct clock_event_device *evt)
 66{
 67	u64 current_tick;
 68
 69	current_tick = hv_read_reference_counter();
 70	current_tick += delta;
 71	hv_init_timer(0, current_tick);
 72	return 0;
 73}
 74
 75static int hv_ce_shutdown(struct clock_event_device *evt)
 76{
 77	hv_init_timer(0, 0);
 78	hv_init_timer_config(0, 0);
 79	if (direct_mode_enabled)
 80		hv_disable_stimer0_percpu_irq(stimer0_irq);
 81
 82	return 0;
 83}
 84
 85static int hv_ce_set_oneshot(struct clock_event_device *evt)
 86{
 87	union hv_stimer_config timer_cfg;
 88
 89	timer_cfg.as_uint64 = 0;
 90	timer_cfg.enable = 1;
 91	timer_cfg.auto_enable = 1;
 92	if (direct_mode_enabled) {
 93		/*
 94		 * When it expires, the timer will directly interrupt
 95		 * on the specified hardware vector/IRQ.
 96		 */
 97		timer_cfg.direct_mode = 1;
 98		timer_cfg.apic_vector = stimer0_vector;
 99		hv_enable_stimer0_percpu_irq(stimer0_irq);
 
100	} else {
101		/*
102		 * When it expires, the timer will generate a VMbus message,
103		 * to be handled by the normal VMbus interrupt handler.
104		 */
105		timer_cfg.direct_mode = 0;
106		timer_cfg.sintx = stimer0_message_sint;
107	}
108	hv_init_timer_config(0, timer_cfg.as_uint64);
109	return 0;
110}
111
112/*
113 * hv_stimer_init - Per-cpu initialization of the clockevent
114 */
115static int hv_stimer_init(unsigned int cpu)
116{
117	struct clock_event_device *ce;
118
119	if (!hv_clock_event)
120		return 0;
121
122	ce = per_cpu_ptr(hv_clock_event, cpu);
123	ce->name = "Hyper-V clockevent";
124	ce->features = CLOCK_EVT_FEAT_ONESHOT;
125	ce->cpumask = cpumask_of(cpu);
126	ce->rating = 1000;
127	ce->set_state_shutdown = hv_ce_shutdown;
128	ce->set_state_oneshot = hv_ce_set_oneshot;
129	ce->set_next_event = hv_ce_set_next_event;
130
131	clockevents_config_and_register(ce,
132					HV_CLOCK_HZ,
133					HV_MIN_DELTA_TICKS,
134					HV_MAX_MAX_DELTA_TICKS);
135	return 0;
136}
137
138/*
139 * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
140 */
141int hv_stimer_cleanup(unsigned int cpu)
142{
143	struct clock_event_device *ce;
144
145	if (!hv_clock_event)
146		return 0;
147
148	/*
149	 * In the legacy case where Direct Mode is not enabled
150	 * (which can only be on x86/64), stimer cleanup happens
151	 * relatively early in the CPU offlining process. We
152	 * must unbind the stimer-based clockevent device so
153	 * that the LAPIC timer can take over until clockevents
154	 * are no longer needed in the offlining process. Note
155	 * that clockevents_unbind_device() eventually calls
156	 * hv_ce_shutdown().
157	 *
158	 * The unbind should not be done when Direct Mode is
159	 * enabled because we may be on an architecture where
160	 * there are no other clockevent devices to fallback to.
161	 */
162	ce = per_cpu_ptr(hv_clock_event, cpu);
163	if (direct_mode_enabled)
164		hv_ce_shutdown(ce);
165	else
166		clockevents_unbind_device(ce, cpu);
167
168	return 0;
169}
170EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172/* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
173int hv_stimer_alloc(void)
174{
175	int ret = 0;
176
177	/*
178	 * Synthetic timers are always available except on old versions of
179	 * Hyper-V on x86.  In that case, return as error as Linux will use a
180	 * clockevent based on emulated LAPIC timer hardware.
181	 */
182	if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
183		return -EINVAL;
184
185	hv_clock_event = alloc_percpu(struct clock_event_device);
186	if (!hv_clock_event)
187		return -ENOMEM;
188
189	direct_mode_enabled = ms_hyperv.misc_features &
190			HV_STIMER_DIRECT_MODE_AVAILABLE;
191	if (direct_mode_enabled) {
192		ret = hv_setup_stimer0_irq(&stimer0_irq, &stimer0_vector,
193				hv_stimer0_isr);
 
 
 
 
 
 
 
194		if (ret)
195			goto free_percpu;
 
 
 
196
197		/*
198		 * Since we are in Direct Mode, stimer initialization
199		 * can be done now with a CPUHP value in the same range
200		 * as other clockevent devices.
201		 */
202		ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
203				"clockevents/hyperv/stimer:starting",
204				hv_stimer_init, hv_stimer_cleanup);
205		if (ret < 0)
206			goto free_stimer0_irq;
 
207	}
208	return ret;
209
210free_stimer0_irq:
211	hv_remove_stimer0_irq(stimer0_irq);
212	stimer0_irq = 0;
213free_percpu:
214	free_percpu(hv_clock_event);
215	hv_clock_event = NULL;
216	return ret;
217}
218EXPORT_SYMBOL_GPL(hv_stimer_alloc);
219
220/*
221 * hv_stimer_legacy_init -- Called from the VMbus driver to handle
222 * the case when Direct Mode is not enabled, and the stimer
223 * must be initialized late in the CPU onlining process.
224 *
225 */
226void hv_stimer_legacy_init(unsigned int cpu, int sint)
227{
228	if (direct_mode_enabled)
229		return;
230
231	/*
232	 * This function gets called by each vCPU, so setting the
233	 * global stimer_message_sint value each time is conceptually
234	 * not ideal, but the value passed in is always the same and
235	 * it avoids introducing yet another interface into this
236	 * clocksource driver just to set the sint in the legacy case.
237	 */
238	stimer0_message_sint = sint;
239	(void)hv_stimer_init(cpu);
240}
241EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
242
243/*
244 * hv_stimer_legacy_cleanup -- Called from the VMbus driver to
245 * handle the case when Direct Mode is not enabled, and the
246 * stimer must be cleaned up early in the CPU offlining
247 * process.
248 */
249void hv_stimer_legacy_cleanup(unsigned int cpu)
250{
251	if (direct_mode_enabled)
252		return;
253	(void)hv_stimer_cleanup(cpu);
254}
255EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
256
257
258/* hv_stimer_free - Free global resources allocated by hv_stimer_alloc() */
259void hv_stimer_free(void)
260{
261	if (!hv_clock_event)
262		return;
263
264	if (direct_mode_enabled) {
265		cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
266		hv_remove_stimer0_irq(stimer0_irq);
267		stimer0_irq = 0;
268	}
269	free_percpu(hv_clock_event);
270	hv_clock_event = NULL;
271}
272EXPORT_SYMBOL_GPL(hv_stimer_free);
273
274/*
275 * Do a global cleanup of clockevents for the cases of kexec and
276 * vmbus exit
277 */
278void hv_stimer_global_cleanup(void)
279{
280	int	cpu;
281
282	/*
283	 * hv_stime_legacy_cleanup() will stop the stimer if Direct
284	 * Mode is not enabled, and fallback to the LAPIC timer.
285	 */
286	for_each_present_cpu(cpu) {
287		hv_stimer_legacy_cleanup(cpu);
288	}
289
290	/*
291	 * If Direct Mode is enabled, the cpuhp teardown callback
292	 * (hv_stimer_cleanup) will be run on all CPUs to stop the
293	 * stimers.
294	 */
295	hv_stimer_free();
 
 
 
 
 
296}
297EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
298
299/*
300 * Code and definitions for the Hyper-V clocksources.  Two
301 * clocksources are defined: one that reads the Hyper-V defined MSR, and
302 * the other that uses the TSC reference page feature as defined in the
303 * TLFS.  The MSR version is for compatibility with old versions of
304 * Hyper-V and 32-bit x86.  The TSC reference page version is preferred.
305 *
306 * The Hyper-V clocksource ratings of 250 are chosen to be below the
307 * TSC clocksource rating of 300.  In configurations where Hyper-V offers
308 * an InvariantTSC, the TSC is not marked "unstable", so the TSC clocksource
309 * is available and preferred.  With the higher rating, it will be the
310 * default.  On older hardware and Hyper-V versions, the TSC is marked
311 * "unstable", so no TSC clocksource is created and the selected Hyper-V
312 * clocksource will be the default.
313 */
314
315u64 (*hv_read_reference_counter)(void);
316EXPORT_SYMBOL_GPL(hv_read_reference_counter);
317
318static union {
319	struct ms_hyperv_tsc_page page;
320	u8 reserved[PAGE_SIZE];
321} tsc_pg __aligned(PAGE_SIZE);
322
323struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
324{
325	return &tsc_pg.page;
326}
327EXPORT_SYMBOL_GPL(hv_get_tsc_page);
328
329static u64 notrace read_hv_clock_tsc(void)
330{
331	u64 current_tick = hv_read_tsc_page(hv_get_tsc_page());
332
333	if (current_tick == U64_MAX)
334		hv_get_time_ref_count(current_tick);
335
336	return current_tick;
337}
338
339static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
340{
341	return read_hv_clock_tsc();
342}
343
344static u64 read_hv_sched_clock_tsc(void)
345{
346	return (read_hv_clock_tsc() - hv_sched_clock_offset) *
347		(NSEC_PER_SEC / HV_CLOCK_HZ);
348}
349
350static void suspend_hv_clock_tsc(struct clocksource *arg)
351{
352	u64 tsc_msr;
353
354	/* Disable the TSC page */
355	hv_get_reference_tsc(tsc_msr);
356	tsc_msr &= ~BIT_ULL(0);
357	hv_set_reference_tsc(tsc_msr);
358}
359
360
361static void resume_hv_clock_tsc(struct clocksource *arg)
362{
363	phys_addr_t phys_addr = virt_to_phys(&tsc_pg);
364	u64 tsc_msr;
365
366	/* Re-enable the TSC page */
367	hv_get_reference_tsc(tsc_msr);
368	tsc_msr &= GENMASK_ULL(11, 0);
369	tsc_msr |= BIT_ULL(0) | (u64)phys_addr;
370	hv_set_reference_tsc(tsc_msr);
371}
372
 
373static int hv_cs_enable(struct clocksource *cs)
374{
375	hv_enable_vdso_clocksource();
376	return 0;
377}
 
378
379static struct clocksource hyperv_cs_tsc = {
380	.name	= "hyperv_clocksource_tsc_page",
381	.rating	= 250,
382	.read	= read_hv_clock_tsc_cs,
383	.mask	= CLOCKSOURCE_MASK(64),
384	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
385	.suspend= suspend_hv_clock_tsc,
386	.resume	= resume_hv_clock_tsc,
 
387	.enable = hv_cs_enable,
 
 
 
 
388};
389
390static u64 notrace read_hv_clock_msr(void)
391{
392	u64 current_tick;
393	/*
394	 * Read the partition counter to get the current tick count. This count
395	 * is set to 0 when the partition is created and is incremented in
396	 * 100 nanosecond units.
397	 */
398	hv_get_time_ref_count(current_tick);
399	return current_tick;
400}
401
402static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
403{
404	return read_hv_clock_msr();
405}
406
407static u64 read_hv_sched_clock_msr(void)
408{
409	return (read_hv_clock_msr() - hv_sched_clock_offset) *
410		(NSEC_PER_SEC / HV_CLOCK_HZ);
411}
412
413static struct clocksource hyperv_cs_msr = {
414	.name	= "hyperv_clocksource_msr",
415	.rating	= 250,
416	.read	= read_hv_clock_msr_cs,
417	.mask	= CLOCKSOURCE_MASK(64),
418	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
419};
420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
421static bool __init hv_init_tsc_clocksource(void)
422{
423	u64		tsc_msr;
424	phys_addr_t	phys_addr;
425
426	if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
427		return false;
428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
429	hv_read_reference_counter = read_hv_clock_tsc;
430	phys_addr = virt_to_phys(hv_get_tsc_page());
431
432	/*
433	 * The Hyper-V TLFS specifies to preserve the value of reserved
434	 * bits in registers. So read the existing value, preserve the
435	 * low order 12 bits, and add in the guest physical address
436	 * (which already has at least the low 12 bits set to zero since
437	 * it is page aligned). Also set the "enable" bit, which is bit 0.
438	 */
439	hv_get_reference_tsc(tsc_msr);
440	tsc_msr &= GENMASK_ULL(11, 0);
441	tsc_msr = tsc_msr | 0x1 | (u64)phys_addr;
442	hv_set_reference_tsc(tsc_msr);
443
444	hv_set_clocksource_vdso(hyperv_cs_tsc);
445	clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
446
447	hv_sched_clock_offset = hv_read_reference_counter();
448	hv_setup_sched_clock(read_hv_sched_clock_tsc);
449
450	return true;
451}
452
453void __init hv_init_clocksource(void)
454{
455	/*
456	 * Try to set up the TSC page clocksource. If it succeeds, we're
457	 * done. Otherwise, set up the MSR clocksoruce.  At least one of
458	 * these will always be available except on very old versions of
459	 * Hyper-V on x86.  In that case we won't have a Hyper-V
460	 * clocksource, but Linux will still run with a clocksource based
461	 * on the emulated PIT or LAPIC timer.
462	 */
463	if (hv_init_tsc_clocksource())
464		return;
465
466	if (!(ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE))
467		return;
468
469	hv_read_reference_counter = read_hv_clock_msr;
470	clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
471
472	hv_sched_clock_offset = hv_read_reference_counter();
473	hv_setup_sched_clock(read_hv_sched_clock_msr);
474}
475EXPORT_SYMBOL_GPL(hv_init_clocksource);
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2
  3/*
  4 * Clocksource driver for the synthetic counter and timers
  5 * provided by the Hyper-V hypervisor to guest VMs, as described
  6 * in the Hyper-V Top Level Functional Spec (TLFS). This driver
  7 * is instruction set architecture independent.
  8 *
  9 * Copyright (C) 2019, Microsoft, Inc.
 10 *
 11 * Author:  Michael Kelley <mikelley@microsoft.com>
 12 */
 13
 14#include <linux/percpu.h>
 15#include <linux/cpumask.h>
 16#include <linux/clockchips.h>
 17#include <linux/clocksource.h>
 18#include <linux/sched_clock.h>
 19#include <linux/mm.h>
 20#include <linux/cpuhotplug.h>
 21#include <linux/interrupt.h>
 22#include <linux/irq.h>
 23#include <linux/acpi.h>
 24#include <clocksource/hyperv_timer.h>
 25#include <asm/hyperv-tlfs.h>
 26#include <asm/mshyperv.h>
 27
 28static struct clock_event_device __percpu *hv_clock_event;
 29static u64 hv_sched_clock_offset __ro_after_init;
 30
 31/*
 32 * If false, we're using the old mechanism for stimer0 interrupts
 33 * where it sends a VMbus message when it expires. The old
 34 * mechanism is used when running on older versions of Hyper-V
 35 * that don't support Direct Mode. While Hyper-V provides
 36 * four stimer's per CPU, Linux uses only stimer0.
 37 *
 38 * Because Direct Mode does not require processing a VMbus
 39 * message, stimer interrupts can be enabled earlier in the
 40 * process of booting a CPU, and consistent with when timer
 41 * interrupts are enabled for other clocksource drivers.
 42 * However, for legacy versions of Hyper-V when Direct Mode
 43 * is not enabled, setting up stimer interrupts must be
 44 * delayed until VMbus is initialized and can process the
 45 * interrupt message.
 46 */
 47static bool direct_mode_enabled;
 48
 49static int stimer0_irq = -1;
 
 50static int stimer0_message_sint;
 51static DEFINE_PER_CPU(long, stimer0_evt);
 52
 53/*
 54 * Common code for stimer0 interrupts coming via Direct Mode or
 55 * as a VMbus message.
 
 56 */
 57void hv_stimer0_isr(void)
 58{
 59	struct clock_event_device *ce;
 60
 61	ce = this_cpu_ptr(hv_clock_event);
 62	ce->event_handler(ce);
 63}
 64EXPORT_SYMBOL_GPL(hv_stimer0_isr);
 65
 66/*
 67 * stimer0 interrupt handler for architectures that support
 68 * per-cpu interrupts, which also implies Direct Mode.
 69 */
 70static irqreturn_t hv_stimer0_percpu_isr(int irq, void *dev_id)
 71{
 72	hv_stimer0_isr();
 73	return IRQ_HANDLED;
 74}
 75
 76static int hv_ce_set_next_event(unsigned long delta,
 77				struct clock_event_device *evt)
 78{
 79	u64 current_tick;
 80
 81	current_tick = hv_read_reference_counter();
 82	current_tick += delta;
 83	hv_set_register(HV_REGISTER_STIMER0_COUNT, current_tick);
 84	return 0;
 85}
 86
 87static int hv_ce_shutdown(struct clock_event_device *evt)
 88{
 89	hv_set_register(HV_REGISTER_STIMER0_COUNT, 0);
 90	hv_set_register(HV_REGISTER_STIMER0_CONFIG, 0);
 91	if (direct_mode_enabled && stimer0_irq >= 0)
 92		disable_percpu_irq(stimer0_irq);
 93
 94	return 0;
 95}
 96
 97static int hv_ce_set_oneshot(struct clock_event_device *evt)
 98{
 99	union hv_stimer_config timer_cfg;
100
101	timer_cfg.as_uint64 = 0;
102	timer_cfg.enable = 1;
103	timer_cfg.auto_enable = 1;
104	if (direct_mode_enabled) {
105		/*
106		 * When it expires, the timer will directly interrupt
107		 * on the specified hardware vector/IRQ.
108		 */
109		timer_cfg.direct_mode = 1;
110		timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR;
111		if (stimer0_irq >= 0)
112			enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE);
113	} else {
114		/*
115		 * When it expires, the timer will generate a VMbus message,
116		 * to be handled by the normal VMbus interrupt handler.
117		 */
118		timer_cfg.direct_mode = 0;
119		timer_cfg.sintx = stimer0_message_sint;
120	}
121	hv_set_register(HV_REGISTER_STIMER0_CONFIG, timer_cfg.as_uint64);
122	return 0;
123}
124
125/*
126 * hv_stimer_init - Per-cpu initialization of the clockevent
127 */
128static int hv_stimer_init(unsigned int cpu)
129{
130	struct clock_event_device *ce;
131
132	if (!hv_clock_event)
133		return 0;
134
135	ce = per_cpu_ptr(hv_clock_event, cpu);
136	ce->name = "Hyper-V clockevent";
137	ce->features = CLOCK_EVT_FEAT_ONESHOT;
138	ce->cpumask = cpumask_of(cpu);
139	ce->rating = 1000;
140	ce->set_state_shutdown = hv_ce_shutdown;
141	ce->set_state_oneshot = hv_ce_set_oneshot;
142	ce->set_next_event = hv_ce_set_next_event;
143
144	clockevents_config_and_register(ce,
145					HV_CLOCK_HZ,
146					HV_MIN_DELTA_TICKS,
147					HV_MAX_MAX_DELTA_TICKS);
148	return 0;
149}
150
151/*
152 * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
153 */
154int hv_stimer_cleanup(unsigned int cpu)
155{
156	struct clock_event_device *ce;
157
158	if (!hv_clock_event)
159		return 0;
160
161	/*
162	 * In the legacy case where Direct Mode is not enabled
163	 * (which can only be on x86/64), stimer cleanup happens
164	 * relatively early in the CPU offlining process. We
165	 * must unbind the stimer-based clockevent device so
166	 * that the LAPIC timer can take over until clockevents
167	 * are no longer needed in the offlining process. Note
168	 * that clockevents_unbind_device() eventually calls
169	 * hv_ce_shutdown().
170	 *
171	 * The unbind should not be done when Direct Mode is
172	 * enabled because we may be on an architecture where
173	 * there are no other clockevent devices to fallback to.
174	 */
175	ce = per_cpu_ptr(hv_clock_event, cpu);
176	if (direct_mode_enabled)
177		hv_ce_shutdown(ce);
178	else
179		clockevents_unbind_device(ce, cpu);
180
181	return 0;
182}
183EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
184
185/*
186 * These placeholders are overridden by arch specific code on
187 * architectures that need special setup of the stimer0 IRQ because
188 * they don't support per-cpu IRQs (such as x86/x64).
189 */
190void __weak hv_setup_stimer0_handler(void (*handler)(void))
191{
192};
193
194void __weak hv_remove_stimer0_handler(void)
195{
196};
197
198/* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */
199static int hv_setup_stimer0_irq(void)
200{
201	int ret;
202
203	ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR,
204			ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH);
205	if (ret < 0) {
206		pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret);
207		return ret;
208	}
209	stimer0_irq = ret;
210
211	ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr,
212		"Hyper-V stimer0", &stimer0_evt);
213	if (ret) {
214		pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d",
215			stimer0_irq, ret);
216		acpi_unregister_gsi(stimer0_irq);
217		stimer0_irq = -1;
218	}
219	return ret;
220}
221
222static void hv_remove_stimer0_irq(void)
223{
224	if (stimer0_irq == -1) {
225		hv_remove_stimer0_handler();
226	} else {
227		free_percpu_irq(stimer0_irq, &stimer0_evt);
228		acpi_unregister_gsi(stimer0_irq);
229		stimer0_irq = -1;
230	}
231}
232
233/* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
234int hv_stimer_alloc(bool have_percpu_irqs)
235{
236	int ret;
237
238	/*
239	 * Synthetic timers are always available except on old versions of
240	 * Hyper-V on x86.  In that case, return as error as Linux will use a
241	 * clockevent based on emulated LAPIC timer hardware.
242	 */
243	if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
244		return -EINVAL;
245
246	hv_clock_event = alloc_percpu(struct clock_event_device);
247	if (!hv_clock_event)
248		return -ENOMEM;
249
250	direct_mode_enabled = ms_hyperv.misc_features &
251			HV_STIMER_DIRECT_MODE_AVAILABLE;
252
253	/*
254	 * If Direct Mode isn't enabled, the remainder of the initialization
255	 * is done later by hv_stimer_legacy_init()
256	 */
257	if (!direct_mode_enabled)
258		return 0;
259
260	if (have_percpu_irqs) {
261		ret = hv_setup_stimer0_irq();
262		if (ret)
263			goto free_clock_event;
264	} else {
265		hv_setup_stimer0_handler(hv_stimer0_isr);
266	}
267
268	/*
269	 * Since we are in Direct Mode, stimer initialization
270	 * can be done now with a CPUHP value in the same range
271	 * as other clockevent devices.
272	 */
273	ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
274			"clockevents/hyperv/stimer:starting",
275			hv_stimer_init, hv_stimer_cleanup);
276	if (ret < 0) {
277		hv_remove_stimer0_irq();
278		goto free_clock_event;
279	}
280	return ret;
281
282free_clock_event:
 
 
 
283	free_percpu(hv_clock_event);
284	hv_clock_event = NULL;
285	return ret;
286}
287EXPORT_SYMBOL_GPL(hv_stimer_alloc);
288
289/*
290 * hv_stimer_legacy_init -- Called from the VMbus driver to handle
291 * the case when Direct Mode is not enabled, and the stimer
292 * must be initialized late in the CPU onlining process.
293 *
294 */
295void hv_stimer_legacy_init(unsigned int cpu, int sint)
296{
297	if (direct_mode_enabled)
298		return;
299
300	/*
301	 * This function gets called by each vCPU, so setting the
302	 * global stimer_message_sint value each time is conceptually
303	 * not ideal, but the value passed in is always the same and
304	 * it avoids introducing yet another interface into this
305	 * clocksource driver just to set the sint in the legacy case.
306	 */
307	stimer0_message_sint = sint;
308	(void)hv_stimer_init(cpu);
309}
310EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
311
312/*
313 * hv_stimer_legacy_cleanup -- Called from the VMbus driver to
314 * handle the case when Direct Mode is not enabled, and the
315 * stimer must be cleaned up early in the CPU offlining
316 * process.
317 */
318void hv_stimer_legacy_cleanup(unsigned int cpu)
319{
320	if (direct_mode_enabled)
321		return;
322	(void)hv_stimer_cleanup(cpu);
323}
324EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
326/*
327 * Do a global cleanup of clockevents for the cases of kexec and
328 * vmbus exit
329 */
330void hv_stimer_global_cleanup(void)
331{
332	int	cpu;
333
334	/*
335	 * hv_stime_legacy_cleanup() will stop the stimer if Direct
336	 * Mode is not enabled, and fallback to the LAPIC timer.
337	 */
338	for_each_present_cpu(cpu) {
339		hv_stimer_legacy_cleanup(cpu);
340	}
341
342	if (!hv_clock_event)
343		return;
344
345	if (direct_mode_enabled) {
346		cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
347		hv_remove_stimer0_irq();
348		stimer0_irq = -1;
349	}
350	free_percpu(hv_clock_event);
351	hv_clock_event = NULL;
352
353}
354EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
355
356/*
357 * Code and definitions for the Hyper-V clocksources.  Two
358 * clocksources are defined: one that reads the Hyper-V defined MSR, and
359 * the other that uses the TSC reference page feature as defined in the
360 * TLFS.  The MSR version is for compatibility with old versions of
361 * Hyper-V and 32-bit x86.  The TSC reference page version is preferred.
 
 
 
 
 
 
 
 
362 */
363
364u64 (*hv_read_reference_counter)(void);
365EXPORT_SYMBOL_GPL(hv_read_reference_counter);
366
367static union {
368	struct ms_hyperv_tsc_page page;
369	u8 reserved[PAGE_SIZE];
370} tsc_pg __aligned(PAGE_SIZE);
371
372struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
373{
374	return &tsc_pg.page;
375}
376EXPORT_SYMBOL_GPL(hv_get_tsc_page);
377
378static u64 notrace read_hv_clock_tsc(void)
379{
380	u64 current_tick = hv_read_tsc_page(hv_get_tsc_page());
381
382	if (current_tick == U64_MAX)
383		current_tick = hv_get_register(HV_REGISTER_TIME_REF_COUNT);
384
385	return current_tick;
386}
387
388static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
389{
390	return read_hv_clock_tsc();
391}
392
393static u64 notrace read_hv_sched_clock_tsc(void)
394{
395	return (read_hv_clock_tsc() - hv_sched_clock_offset) *
396		(NSEC_PER_SEC / HV_CLOCK_HZ);
397}
398
399static void suspend_hv_clock_tsc(struct clocksource *arg)
400{
401	u64 tsc_msr;
402
403	/* Disable the TSC page */
404	tsc_msr = hv_get_register(HV_REGISTER_REFERENCE_TSC);
405	tsc_msr &= ~BIT_ULL(0);
406	hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr);
407}
408
409
410static void resume_hv_clock_tsc(struct clocksource *arg)
411{
412	phys_addr_t phys_addr = virt_to_phys(&tsc_pg);
413	u64 tsc_msr;
414
415	/* Re-enable the TSC page */
416	tsc_msr = hv_get_register(HV_REGISTER_REFERENCE_TSC);
417	tsc_msr &= GENMASK_ULL(11, 0);
418	tsc_msr |= BIT_ULL(0) | (u64)phys_addr;
419	hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr);
420}
421
422#ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
423static int hv_cs_enable(struct clocksource *cs)
424{
425	vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK);
426	return 0;
427}
428#endif
429
430static struct clocksource hyperv_cs_tsc = {
431	.name	= "hyperv_clocksource_tsc_page",
432	.rating	= 500,
433	.read	= read_hv_clock_tsc_cs,
434	.mask	= CLOCKSOURCE_MASK(64),
435	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
436	.suspend= suspend_hv_clock_tsc,
437	.resume	= resume_hv_clock_tsc,
438#ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
439	.enable = hv_cs_enable,
440	.vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK,
441#else
442	.vdso_clock_mode = VDSO_CLOCKMODE_NONE,
443#endif
444};
445
446static u64 notrace read_hv_clock_msr(void)
447{
 
448	/*
449	 * Read the partition counter to get the current tick count. This count
450	 * is set to 0 when the partition is created and is incremented in
451	 * 100 nanosecond units.
452	 */
453	return hv_get_register(HV_REGISTER_TIME_REF_COUNT);
 
454}
455
456static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
457{
458	return read_hv_clock_msr();
459}
460
461static u64 notrace read_hv_sched_clock_msr(void)
462{
463	return (read_hv_clock_msr() - hv_sched_clock_offset) *
464		(NSEC_PER_SEC / HV_CLOCK_HZ);
465}
466
467static struct clocksource hyperv_cs_msr = {
468	.name	= "hyperv_clocksource_msr",
469	.rating	= 500,
470	.read	= read_hv_clock_msr_cs,
471	.mask	= CLOCKSOURCE_MASK(64),
472	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
473};
474
475/*
476 * Reference to pv_ops must be inline so objtool
477 * detection of noinstr violations can work correctly.
478 */
479#ifdef CONFIG_GENERIC_SCHED_CLOCK
480static __always_inline void hv_setup_sched_clock(void *sched_clock)
481{
482	/*
483	 * We're on an architecture with generic sched clock (not x86/x64).
484	 * The Hyper-V sched clock read function returns nanoseconds, not
485	 * the normal 100ns units of the Hyper-V synthetic clock.
486	 */
487	sched_clock_register(sched_clock, 64, NSEC_PER_SEC);
488}
489#elif defined CONFIG_PARAVIRT
490static __always_inline void hv_setup_sched_clock(void *sched_clock)
491{
492	/* We're on x86/x64 *and* using PV ops */
493	paravirt_set_sched_clock(sched_clock);
494}
495#else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */
496static __always_inline void hv_setup_sched_clock(void *sched_clock) {}
497#endif /* CONFIG_GENERIC_SCHED_CLOCK */
498
499static bool __init hv_init_tsc_clocksource(void)
500{
501	u64		tsc_msr;
502	phys_addr_t	phys_addr;
503
504	if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
505		return false;
506
507	if (hv_root_partition)
508		return false;
509
510	/*
511	 * If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly
512	 * handles frequency and offset changes due to live migration,
513	 * pause/resume, and other VM management operations.  So lower the
514	 * Hyper-V Reference TSC rating, causing the generic TSC to be used.
515	 * TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference
516	 * TSC will be preferred over the virtualized ARM64 arch counter.
517	 * While the Hyper-V MSR clocksource won't be used since the
518	 * Reference TSC clocksource is present, change its rating as
519	 * well for consistency.
520	 */
521	if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) {
522		hyperv_cs_tsc.rating = 250;
523		hyperv_cs_msr.rating = 250;
524	}
525
526	hv_read_reference_counter = read_hv_clock_tsc;
527	phys_addr = virt_to_phys(hv_get_tsc_page());
528
529	/*
530	 * The Hyper-V TLFS specifies to preserve the value of reserved
531	 * bits in registers. So read the existing value, preserve the
532	 * low order 12 bits, and add in the guest physical address
533	 * (which already has at least the low 12 bits set to zero since
534	 * it is page aligned). Also set the "enable" bit, which is bit 0.
535	 */
536	tsc_msr = hv_get_register(HV_REGISTER_REFERENCE_TSC);
537	tsc_msr &= GENMASK_ULL(11, 0);
538	tsc_msr = tsc_msr | 0x1 | (u64)phys_addr;
539	hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr);
540
 
541	clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
542
543	hv_sched_clock_offset = hv_read_reference_counter();
544	hv_setup_sched_clock(read_hv_sched_clock_tsc);
545
546	return true;
547}
548
549void __init hv_init_clocksource(void)
550{
551	/*
552	 * Try to set up the TSC page clocksource. If it succeeds, we're
553	 * done. Otherwise, set up the MSR clocksource.  At least one of
554	 * these will always be available except on very old versions of
555	 * Hyper-V on x86.  In that case we won't have a Hyper-V
556	 * clocksource, but Linux will still run with a clocksource based
557	 * on the emulated PIT or LAPIC timer.
558	 */
559	if (hv_init_tsc_clocksource())
560		return;
561
562	if (!(ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE))
563		return;
564
565	hv_read_reference_counter = read_hv_clock_msr;
566	clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
567
568	hv_sched_clock_offset = hv_read_reference_counter();
569	hv_setup_sched_clock(read_hv_sched_clock_msr);
570}
571EXPORT_SYMBOL_GPL(hv_init_clocksource);