Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * x86 SMP booting functions
4 *
5 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7 * Copyright 2001 Andi Kleen, SuSE Labs.
8 *
9 * Much of the core SMP work is based on previous work by Thomas Radke, to
10 * whom a great many thanks are extended.
11 *
12 * Thanks to Intel for making available several different Pentium,
13 * Pentium Pro and Pentium-II/Xeon MP machines.
14 * Original development of Linux SMP code supported by Caldera.
15 *
16 * Fixes
17 * Felix Koop : NR_CPUS used properly
18 * Jose Renau : Handle single CPU case.
19 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
20 * Greg Wright : Fix for kernel stacks panic.
21 * Erich Boleyn : MP v1.4 and additional changes.
22 * Matthias Sattler : Changes for 2.1 kernel map.
23 * Michel Lespinasse : Changes for 2.1 kernel map.
24 * Michael Chastain : Change trampoline.S to gnu as.
25 * Alan Cox : Dumb bug: 'B' step PPro's are fine
26 * Ingo Molnar : Added APIC timers, based on code
27 * from Jose Renau
28 * Ingo Molnar : various cleanups and rewrites
29 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
30 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
31 * Andi Kleen : Changed for SMP boot into long mode.
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
35 * Andi Kleen : Converted to new state machine.
36 * Ashok Raj : CPU hotplug support
37 * Glauber Costa : i386 and x86_64 integration
38 */
39
40#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
42#include <linux/init.h>
43#include <linux/smp.h>
44#include <linux/export.h>
45#include <linux/sched.h>
46#include <linux/sched/topology.h>
47#include <linux/sched/hotplug.h>
48#include <linux/sched/task_stack.h>
49#include <linux/percpu.h>
50#include <linux/memblock.h>
51#include <linux/err.h>
52#include <linux/nmi.h>
53#include <linux/tboot.h>
54#include <linux/gfp.h>
55#include <linux/cpuidle.h>
56#include <linux/numa.h>
57#include <linux/pgtable.h>
58#include <linux/overflow.h>
59
60#include <asm/acpi.h>
61#include <asm/desc.h>
62#include <asm/nmi.h>
63#include <asm/irq.h>
64#include <asm/realmode.h>
65#include <asm/cpu.h>
66#include <asm/numa.h>
67#include <asm/tlbflush.h>
68#include <asm/mtrr.h>
69#include <asm/mwait.h>
70#include <asm/apic.h>
71#include <asm/io_apic.h>
72#include <asm/fpu/internal.h>
73#include <asm/setup.h>
74#include <asm/uv/uv.h>
75#include <linux/mc146818rtc.h>
76#include <asm/i8259.h>
77#include <asm/misc.h>
78#include <asm/qspinlock.h>
79#include <asm/intel-family.h>
80#include <asm/cpu_device_id.h>
81#include <asm/spec-ctrl.h>
82#include <asm/hw_irq.h>
83#include <asm/stackprotector.h>
84
85/* representing HT siblings of each logical CPU */
86DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
87EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
88
89/* representing HT and core siblings of each logical CPU */
90DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
91EXPORT_PER_CPU_SYMBOL(cpu_core_map);
92
93/* representing HT, core, and die siblings of each logical CPU */
94DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
95EXPORT_PER_CPU_SYMBOL(cpu_die_map);
96
97DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
98
99/* Per CPU bogomips and other parameters */
100DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
101EXPORT_PER_CPU_SYMBOL(cpu_info);
102
103/* Logical package management. We might want to allocate that dynamically */
104unsigned int __max_logical_packages __read_mostly;
105EXPORT_SYMBOL(__max_logical_packages);
106static unsigned int logical_packages __read_mostly;
107static unsigned int logical_die __read_mostly;
108
109/* Maximum number of SMT threads on any online core */
110int __read_mostly __max_smt_threads = 1;
111
112/* Flag to indicate if a complete sched domain rebuild is required */
113bool x86_topology_update;
114
115int arch_update_cpu_topology(void)
116{
117 int retval = x86_topology_update;
118
119 x86_topology_update = false;
120 return retval;
121}
122
123static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
124{
125 unsigned long flags;
126
127 spin_lock_irqsave(&rtc_lock, flags);
128 CMOS_WRITE(0xa, 0xf);
129 spin_unlock_irqrestore(&rtc_lock, flags);
130 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
131 start_eip >> 4;
132 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
133 start_eip & 0xf;
134}
135
136static inline void smpboot_restore_warm_reset_vector(void)
137{
138 unsigned long flags;
139
140 /*
141 * Paranoid: Set warm reset code and vector here back
142 * to default values.
143 */
144 spin_lock_irqsave(&rtc_lock, flags);
145 CMOS_WRITE(0, 0xf);
146 spin_unlock_irqrestore(&rtc_lock, flags);
147
148 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
149}
150
151static void init_freq_invariance(bool secondary);
152
153/*
154 * Report back to the Boot Processor during boot time or to the caller processor
155 * during CPU online.
156 */
157static void smp_callin(void)
158{
159 int cpuid;
160
161 /*
162 * If waken up by an INIT in an 82489DX configuration
163 * cpu_callout_mask guarantees we don't get here before
164 * an INIT_deassert IPI reaches our local APIC, so it is
165 * now safe to touch our local APIC.
166 */
167 cpuid = smp_processor_id();
168
169 /*
170 * the boot CPU has finished the init stage and is spinning
171 * on callin_map until we finish. We are free to set up this
172 * CPU, first the APIC. (this is probably redundant on most
173 * boards)
174 */
175 apic_ap_setup();
176
177 /*
178 * Save our processor parameters. Note: this information
179 * is needed for clock calibration.
180 */
181 smp_store_cpu_info(cpuid);
182
183 /*
184 * The topology information must be up to date before
185 * calibrate_delay() and notify_cpu_starting().
186 */
187 set_cpu_sibling_map(raw_smp_processor_id());
188
189 init_freq_invariance(true);
190
191 /*
192 * Get our bogomips.
193 * Update loops_per_jiffy in cpu_data. Previous call to
194 * smp_store_cpu_info() stored a value that is close but not as
195 * accurate as the value just calculated.
196 */
197 calibrate_delay();
198 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
199 pr_debug("Stack at about %p\n", &cpuid);
200
201 wmb();
202
203 notify_cpu_starting(cpuid);
204
205 /*
206 * Allow the master to continue.
207 */
208 cpumask_set_cpu(cpuid, cpu_callin_mask);
209}
210
211static int cpu0_logical_apicid;
212static int enable_start_cpu0;
213/*
214 * Activate a secondary processor.
215 */
216static void notrace start_secondary(void *unused)
217{
218 /*
219 * Don't put *anything* except direct CPU state initialization
220 * before cpu_init(), SMP booting is too fragile that we want to
221 * limit the things done here to the most necessary things.
222 */
223 cr4_init();
224
225#ifdef CONFIG_X86_32
226 /* switch away from the initial page table */
227 load_cr3(swapper_pg_dir);
228 __flush_tlb_all();
229#endif
230 load_current_idt();
231 cpu_init();
232 x86_cpuinit.early_percpu_clock_init();
233 preempt_disable();
234 smp_callin();
235
236 enable_start_cpu0 = 0;
237
238 /* otherwise gcc will move up smp_processor_id before the cpu_init */
239 barrier();
240 /*
241 * Check TSC synchronization with the boot CPU:
242 */
243 check_tsc_sync_target();
244
245 speculative_store_bypass_ht_init();
246
247 /*
248 * Lock vector_lock, set CPU online and bring the vector
249 * allocator online. Online must be set with vector_lock held
250 * to prevent a concurrent irq setup/teardown from seeing a
251 * half valid vector space.
252 */
253 lock_vector_lock();
254 set_cpu_online(smp_processor_id(), true);
255 lapic_online();
256 unlock_vector_lock();
257 cpu_set_state_online(smp_processor_id());
258 x86_platform.nmi_init();
259
260 /* enable local interrupts */
261 local_irq_enable();
262
263 x86_cpuinit.setup_percpu_clockev();
264
265 wmb();
266 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
267}
268
269/**
270 * topology_is_primary_thread - Check whether CPU is the primary SMT thread
271 * @cpu: CPU to check
272 */
273bool topology_is_primary_thread(unsigned int cpu)
274{
275 return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
276}
277
278/**
279 * topology_smt_supported - Check whether SMT is supported by the CPUs
280 */
281bool topology_smt_supported(void)
282{
283 return smp_num_siblings > 1;
284}
285
286/**
287 * topology_phys_to_logical_pkg - Map a physical package id to a logical
288 *
289 * Returns logical package id or -1 if not found
290 */
291int topology_phys_to_logical_pkg(unsigned int phys_pkg)
292{
293 int cpu;
294
295 for_each_possible_cpu(cpu) {
296 struct cpuinfo_x86 *c = &cpu_data(cpu);
297
298 if (c->initialized && c->phys_proc_id == phys_pkg)
299 return c->logical_proc_id;
300 }
301 return -1;
302}
303EXPORT_SYMBOL(topology_phys_to_logical_pkg);
304/**
305 * topology_phys_to_logical_die - Map a physical die id to logical
306 *
307 * Returns logical die id or -1 if not found
308 */
309int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
310{
311 int cpu;
312 int proc_id = cpu_data(cur_cpu).phys_proc_id;
313
314 for_each_possible_cpu(cpu) {
315 struct cpuinfo_x86 *c = &cpu_data(cpu);
316
317 if (c->initialized && c->cpu_die_id == die_id &&
318 c->phys_proc_id == proc_id)
319 return c->logical_die_id;
320 }
321 return -1;
322}
323EXPORT_SYMBOL(topology_phys_to_logical_die);
324
325/**
326 * topology_update_package_map - Update the physical to logical package map
327 * @pkg: The physical package id as retrieved via CPUID
328 * @cpu: The cpu for which this is updated
329 */
330int topology_update_package_map(unsigned int pkg, unsigned int cpu)
331{
332 int new;
333
334 /* Already available somewhere? */
335 new = topology_phys_to_logical_pkg(pkg);
336 if (new >= 0)
337 goto found;
338
339 new = logical_packages++;
340 if (new != pkg) {
341 pr_info("CPU %u Converting physical %u to logical package %u\n",
342 cpu, pkg, new);
343 }
344found:
345 cpu_data(cpu).logical_proc_id = new;
346 return 0;
347}
348/**
349 * topology_update_die_map - Update the physical to logical die map
350 * @die: The die id as retrieved via CPUID
351 * @cpu: The cpu for which this is updated
352 */
353int topology_update_die_map(unsigned int die, unsigned int cpu)
354{
355 int new;
356
357 /* Already available somewhere? */
358 new = topology_phys_to_logical_die(die, cpu);
359 if (new >= 0)
360 goto found;
361
362 new = logical_die++;
363 if (new != die) {
364 pr_info("CPU %u Converting physical %u to logical die %u\n",
365 cpu, die, new);
366 }
367found:
368 cpu_data(cpu).logical_die_id = new;
369 return 0;
370}
371
372void __init smp_store_boot_cpu_info(void)
373{
374 int id = 0; /* CPU 0 */
375 struct cpuinfo_x86 *c = &cpu_data(id);
376
377 *c = boot_cpu_data;
378 c->cpu_index = id;
379 topology_update_package_map(c->phys_proc_id, id);
380 topology_update_die_map(c->cpu_die_id, id);
381 c->initialized = true;
382}
383
384/*
385 * The bootstrap kernel entry code has set these up. Save them for
386 * a given CPU
387 */
388void smp_store_cpu_info(int id)
389{
390 struct cpuinfo_x86 *c = &cpu_data(id);
391
392 /* Copy boot_cpu_data only on the first bringup */
393 if (!c->initialized)
394 *c = boot_cpu_data;
395 c->cpu_index = id;
396 /*
397 * During boot time, CPU0 has this setup already. Save the info when
398 * bringing up AP or offlined CPU0.
399 */
400 identify_secondary_cpu(c);
401 c->initialized = true;
402}
403
404static bool
405topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
406{
407 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
408
409 return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
410}
411
412static bool
413topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
414{
415 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
416
417 return !WARN_ONCE(!topology_same_node(c, o),
418 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
419 "[node: %d != %d]. Ignoring dependency.\n",
420 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
421}
422
423#define link_mask(mfunc, c1, c2) \
424do { \
425 cpumask_set_cpu((c1), mfunc(c2)); \
426 cpumask_set_cpu((c2), mfunc(c1)); \
427} while (0)
428
429static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
430{
431 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
432 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
433
434 if (c->phys_proc_id == o->phys_proc_id &&
435 c->cpu_die_id == o->cpu_die_id &&
436 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
437 if (c->cpu_core_id == o->cpu_core_id)
438 return topology_sane(c, o, "smt");
439
440 if ((c->cu_id != 0xff) &&
441 (o->cu_id != 0xff) &&
442 (c->cu_id == o->cu_id))
443 return topology_sane(c, o, "smt");
444 }
445
446 } else if (c->phys_proc_id == o->phys_proc_id &&
447 c->cpu_die_id == o->cpu_die_id &&
448 c->cpu_core_id == o->cpu_core_id) {
449 return topology_sane(c, o, "smt");
450 }
451
452 return false;
453}
454
455/*
456 * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
457 *
458 * These are Intel CPUs that enumerate an LLC that is shared by
459 * multiple NUMA nodes. The LLC on these systems is shared for
460 * off-package data access but private to the NUMA node (half
461 * of the package) for on-package access.
462 *
463 * CPUID (the source of the information about the LLC) can only
464 * enumerate the cache as being shared *or* unshared, but not
465 * this particular configuration. The CPU in this case enumerates
466 * the cache to be shared across the entire package (spanning both
467 * NUMA nodes).
468 */
469
470static const struct x86_cpu_id snc_cpu[] = {
471 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, NULL),
472 {}
473};
474
475static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
476{
477 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
478
479 /* Do not match if we do not have a valid APICID for cpu: */
480 if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
481 return false;
482
483 /* Do not match if LLC id does not match: */
484 if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
485 return false;
486
487 /*
488 * Allow the SNC topology without warning. Return of false
489 * means 'c' does not share the LLC of 'o'. This will be
490 * reflected to userspace.
491 */
492 if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
493 return false;
494
495 return topology_sane(c, o, "llc");
496}
497
498/*
499 * Unlike the other levels, we do not enforce keeping a
500 * multicore group inside a NUMA node. If this happens, we will
501 * discard the MC level of the topology later.
502 */
503static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
504{
505 if (c->phys_proc_id == o->phys_proc_id)
506 return true;
507 return false;
508}
509
510static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
511{
512 if ((c->phys_proc_id == o->phys_proc_id) &&
513 (c->cpu_die_id == o->cpu_die_id))
514 return true;
515 return false;
516}
517
518
519#if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
520static inline int x86_sched_itmt_flags(void)
521{
522 return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
523}
524
525#ifdef CONFIG_SCHED_MC
526static int x86_core_flags(void)
527{
528 return cpu_core_flags() | x86_sched_itmt_flags();
529}
530#endif
531#ifdef CONFIG_SCHED_SMT
532static int x86_smt_flags(void)
533{
534 return cpu_smt_flags() | x86_sched_itmt_flags();
535}
536#endif
537#endif
538
539static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
540#ifdef CONFIG_SCHED_SMT
541 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
542#endif
543#ifdef CONFIG_SCHED_MC
544 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
545#endif
546 { NULL, },
547};
548
549static struct sched_domain_topology_level x86_topology[] = {
550#ifdef CONFIG_SCHED_SMT
551 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
552#endif
553#ifdef CONFIG_SCHED_MC
554 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
555#endif
556 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
557 { NULL, },
558};
559
560/*
561 * Set if a package/die has multiple NUMA nodes inside.
562 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
563 * Sub-NUMA Clustering have this.
564 */
565static bool x86_has_numa_in_package;
566
567void set_cpu_sibling_map(int cpu)
568{
569 bool has_smt = smp_num_siblings > 1;
570 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
571 struct cpuinfo_x86 *c = &cpu_data(cpu);
572 struct cpuinfo_x86 *o;
573 int i, threads;
574
575 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
576
577 if (!has_mp) {
578 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
579 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
580 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
581 cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
582 c->booted_cores = 1;
583 return;
584 }
585
586 for_each_cpu(i, cpu_sibling_setup_mask) {
587 o = &cpu_data(i);
588
589 if ((i == cpu) || (has_smt && match_smt(c, o)))
590 link_mask(topology_sibling_cpumask, cpu, i);
591
592 if ((i == cpu) || (has_mp && match_llc(c, o)))
593 link_mask(cpu_llc_shared_mask, cpu, i);
594
595 }
596
597 /*
598 * This needs a separate iteration over the cpus because we rely on all
599 * topology_sibling_cpumask links to be set-up.
600 */
601 for_each_cpu(i, cpu_sibling_setup_mask) {
602 o = &cpu_data(i);
603
604 if ((i == cpu) || (has_mp && match_pkg(c, o))) {
605 link_mask(topology_core_cpumask, cpu, i);
606
607 /*
608 * Does this new cpu bringup a new core?
609 */
610 if (cpumask_weight(
611 topology_sibling_cpumask(cpu)) == 1) {
612 /*
613 * for each core in package, increment
614 * the booted_cores for this new cpu
615 */
616 if (cpumask_first(
617 topology_sibling_cpumask(i)) == i)
618 c->booted_cores++;
619 /*
620 * increment the core count for all
621 * the other cpus in this package
622 */
623 if (i != cpu)
624 cpu_data(i).booted_cores++;
625 } else if (i != cpu && !c->booted_cores)
626 c->booted_cores = cpu_data(i).booted_cores;
627 }
628 if (match_pkg(c, o) && !topology_same_node(c, o))
629 x86_has_numa_in_package = true;
630
631 if ((i == cpu) || (has_mp && match_die(c, o)))
632 link_mask(topology_die_cpumask, cpu, i);
633 }
634
635 threads = cpumask_weight(topology_sibling_cpumask(cpu));
636 if (threads > __max_smt_threads)
637 __max_smt_threads = threads;
638}
639
640/* maps the cpu to the sched domain representing multi-core */
641const struct cpumask *cpu_coregroup_mask(int cpu)
642{
643 return cpu_llc_shared_mask(cpu);
644}
645
646static void impress_friends(void)
647{
648 int cpu;
649 unsigned long bogosum = 0;
650 /*
651 * Allow the user to impress friends.
652 */
653 pr_debug("Before bogomips\n");
654 for_each_possible_cpu(cpu)
655 if (cpumask_test_cpu(cpu, cpu_callout_mask))
656 bogosum += cpu_data(cpu).loops_per_jiffy;
657 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
658 num_online_cpus(),
659 bogosum/(500000/HZ),
660 (bogosum/(5000/HZ))%100);
661
662 pr_debug("Before bogocount - setting activated=1\n");
663}
664
665void __inquire_remote_apic(int apicid)
666{
667 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
668 const char * const names[] = { "ID", "VERSION", "SPIV" };
669 int timeout;
670 u32 status;
671
672 pr_info("Inquiring remote APIC 0x%x...\n", apicid);
673
674 for (i = 0; i < ARRAY_SIZE(regs); i++) {
675 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
676
677 /*
678 * Wait for idle.
679 */
680 status = safe_apic_wait_icr_idle();
681 if (status)
682 pr_cont("a previous APIC delivery may have failed\n");
683
684 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
685
686 timeout = 0;
687 do {
688 udelay(100);
689 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
690 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
691
692 switch (status) {
693 case APIC_ICR_RR_VALID:
694 status = apic_read(APIC_RRR);
695 pr_cont("%08x\n", status);
696 break;
697 default:
698 pr_cont("failed\n");
699 }
700 }
701}
702
703/*
704 * The Multiprocessor Specification 1.4 (1997) example code suggests
705 * that there should be a 10ms delay between the BSP asserting INIT
706 * and de-asserting INIT, when starting a remote processor.
707 * But that slows boot and resume on modern processors, which include
708 * many cores and don't require that delay.
709 *
710 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
711 * Modern processor families are quirked to remove the delay entirely.
712 */
713#define UDELAY_10MS_DEFAULT 10000
714
715static unsigned int init_udelay = UINT_MAX;
716
717static int __init cpu_init_udelay(char *str)
718{
719 get_option(&str, &init_udelay);
720
721 return 0;
722}
723early_param("cpu_init_udelay", cpu_init_udelay);
724
725static void __init smp_quirk_init_udelay(void)
726{
727 /* if cmdline changed it from default, leave it alone */
728 if (init_udelay != UINT_MAX)
729 return;
730
731 /* if modern processor, use no delay */
732 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
733 ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
734 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
735 init_udelay = 0;
736 return;
737 }
738 /* else, use legacy delay */
739 init_udelay = UDELAY_10MS_DEFAULT;
740}
741
742/*
743 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
744 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
745 * won't ... remember to clear down the APIC, etc later.
746 */
747int
748wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
749{
750 unsigned long send_status, accept_status = 0;
751 int maxlvt;
752
753 /* Target chip */
754 /* Boot on the stack */
755 /* Kick the second */
756 apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
757
758 pr_debug("Waiting for send to finish...\n");
759 send_status = safe_apic_wait_icr_idle();
760
761 /*
762 * Give the other CPU some time to accept the IPI.
763 */
764 udelay(200);
765 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
766 maxlvt = lapic_get_maxlvt();
767 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
768 apic_write(APIC_ESR, 0);
769 accept_status = (apic_read(APIC_ESR) & 0xEF);
770 }
771 pr_debug("NMI sent\n");
772
773 if (send_status)
774 pr_err("APIC never delivered???\n");
775 if (accept_status)
776 pr_err("APIC delivery error (%lx)\n", accept_status);
777
778 return (send_status | accept_status);
779}
780
781static int
782wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
783{
784 unsigned long send_status = 0, accept_status = 0;
785 int maxlvt, num_starts, j;
786
787 maxlvt = lapic_get_maxlvt();
788
789 /*
790 * Be paranoid about clearing APIC errors.
791 */
792 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
793 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
794 apic_write(APIC_ESR, 0);
795 apic_read(APIC_ESR);
796 }
797
798 pr_debug("Asserting INIT\n");
799
800 /*
801 * Turn INIT on target chip
802 */
803 /*
804 * Send IPI
805 */
806 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
807 phys_apicid);
808
809 pr_debug("Waiting for send to finish...\n");
810 send_status = safe_apic_wait_icr_idle();
811
812 udelay(init_udelay);
813
814 pr_debug("Deasserting INIT\n");
815
816 /* Target chip */
817 /* Send IPI */
818 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
819
820 pr_debug("Waiting for send to finish...\n");
821 send_status = safe_apic_wait_icr_idle();
822
823 mb();
824
825 /*
826 * Should we send STARTUP IPIs ?
827 *
828 * Determine this based on the APIC version.
829 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
830 */
831 if (APIC_INTEGRATED(boot_cpu_apic_version))
832 num_starts = 2;
833 else
834 num_starts = 0;
835
836 /*
837 * Run STARTUP IPI loop.
838 */
839 pr_debug("#startup loops: %d\n", num_starts);
840
841 for (j = 1; j <= num_starts; j++) {
842 pr_debug("Sending STARTUP #%d\n", j);
843 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
844 apic_write(APIC_ESR, 0);
845 apic_read(APIC_ESR);
846 pr_debug("After apic_write\n");
847
848 /*
849 * STARTUP IPI
850 */
851
852 /* Target chip */
853 /* Boot on the stack */
854 /* Kick the second */
855 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
856 phys_apicid);
857
858 /*
859 * Give the other CPU some time to accept the IPI.
860 */
861 if (init_udelay == 0)
862 udelay(10);
863 else
864 udelay(300);
865
866 pr_debug("Startup point 1\n");
867
868 pr_debug("Waiting for send to finish...\n");
869 send_status = safe_apic_wait_icr_idle();
870
871 /*
872 * Give the other CPU some time to accept the IPI.
873 */
874 if (init_udelay == 0)
875 udelay(10);
876 else
877 udelay(200);
878
879 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
880 apic_write(APIC_ESR, 0);
881 accept_status = (apic_read(APIC_ESR) & 0xEF);
882 if (send_status || accept_status)
883 break;
884 }
885 pr_debug("After Startup\n");
886
887 if (send_status)
888 pr_err("APIC never delivered???\n");
889 if (accept_status)
890 pr_err("APIC delivery error (%lx)\n", accept_status);
891
892 return (send_status | accept_status);
893}
894
895/* reduce the number of lines printed when booting a large cpu count system */
896static void announce_cpu(int cpu, int apicid)
897{
898 static int current_node = NUMA_NO_NODE;
899 int node = early_cpu_to_node(cpu);
900 static int width, node_width;
901
902 if (!width)
903 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
904
905 if (!node_width)
906 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
907
908 if (cpu == 1)
909 printk(KERN_INFO "x86: Booting SMP configuration:\n");
910
911 if (system_state < SYSTEM_RUNNING) {
912 if (node != current_node) {
913 if (current_node > (-1))
914 pr_cont("\n");
915 current_node = node;
916
917 printk(KERN_INFO ".... node %*s#%d, CPUs: ",
918 node_width - num_digits(node), " ", node);
919 }
920
921 /* Add padding for the BSP */
922 if (cpu == 1)
923 pr_cont("%*s", width + 1, " ");
924
925 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
926
927 } else
928 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
929 node, cpu, apicid);
930}
931
932static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
933{
934 int cpu;
935
936 cpu = smp_processor_id();
937 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
938 return NMI_HANDLED;
939
940 return NMI_DONE;
941}
942
943/*
944 * Wake up AP by INIT, INIT, STARTUP sequence.
945 *
946 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
947 * boot-strap code which is not a desired behavior for waking up BSP. To
948 * void the boot-strap code, wake up CPU0 by NMI instead.
949 *
950 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
951 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
952 * We'll change this code in the future to wake up hard offlined CPU0 if
953 * real platform and request are available.
954 */
955static int
956wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
957 int *cpu0_nmi_registered)
958{
959 int id;
960 int boot_error;
961
962 preempt_disable();
963
964 /*
965 * Wake up AP by INIT, INIT, STARTUP sequence.
966 */
967 if (cpu) {
968 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
969 goto out;
970 }
971
972 /*
973 * Wake up BSP by nmi.
974 *
975 * Register a NMI handler to help wake up CPU0.
976 */
977 boot_error = register_nmi_handler(NMI_LOCAL,
978 wakeup_cpu0_nmi, 0, "wake_cpu0");
979
980 if (!boot_error) {
981 enable_start_cpu0 = 1;
982 *cpu0_nmi_registered = 1;
983 if (apic->dest_logical == APIC_DEST_LOGICAL)
984 id = cpu0_logical_apicid;
985 else
986 id = apicid;
987 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
988 }
989
990out:
991 preempt_enable();
992
993 return boot_error;
994}
995
996int common_cpu_up(unsigned int cpu, struct task_struct *idle)
997{
998 int ret;
999
1000 /* Just in case we booted with a single CPU. */
1001 alternatives_enable_smp();
1002
1003 per_cpu(current_task, cpu) = idle;
1004 cpu_init_stack_canary(cpu, idle);
1005
1006 /* Initialize the interrupt stack(s) */
1007 ret = irq_init_percpu_irqstack(cpu);
1008 if (ret)
1009 return ret;
1010
1011#ifdef CONFIG_X86_32
1012 /* Stack for startup_32 can be just as for start_secondary onwards */
1013 per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1014#else
1015 initial_gs = per_cpu_offset(cpu);
1016#endif
1017 return 0;
1018}
1019
1020/*
1021 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1022 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1023 * Returns zero if CPU booted OK, else error code from
1024 * ->wakeup_secondary_cpu.
1025 */
1026static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1027 int *cpu0_nmi_registered)
1028{
1029 /* start_ip had better be page-aligned! */
1030 unsigned long start_ip = real_mode_header->trampoline_start;
1031
1032 unsigned long boot_error = 0;
1033 unsigned long timeout;
1034
1035 idle->thread.sp = (unsigned long)task_pt_regs(idle);
1036 early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1037 initial_code = (unsigned long)start_secondary;
1038 initial_stack = idle->thread.sp;
1039
1040 /* Enable the espfix hack for this CPU */
1041 init_espfix_ap(cpu);
1042
1043 /* So we see what's up */
1044 announce_cpu(cpu, apicid);
1045
1046 /*
1047 * This grunge runs the startup process for
1048 * the targeted processor.
1049 */
1050
1051 if (x86_platform.legacy.warm_reset) {
1052
1053 pr_debug("Setting warm reset code and vector.\n");
1054
1055 smpboot_setup_warm_reset_vector(start_ip);
1056 /*
1057 * Be paranoid about clearing APIC errors.
1058 */
1059 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1060 apic_write(APIC_ESR, 0);
1061 apic_read(APIC_ESR);
1062 }
1063 }
1064
1065 /*
1066 * AP might wait on cpu_callout_mask in cpu_init() with
1067 * cpu_initialized_mask set if previous attempt to online
1068 * it timed-out. Clear cpu_initialized_mask so that after
1069 * INIT/SIPI it could start with a clean state.
1070 */
1071 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1072 smp_mb();
1073
1074 /*
1075 * Wake up a CPU in difference cases:
1076 * - Use the method in the APIC driver if it's defined
1077 * Otherwise,
1078 * - Use an INIT boot APIC message for APs or NMI for BSP.
1079 */
1080 if (apic->wakeup_secondary_cpu)
1081 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1082 else
1083 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1084 cpu0_nmi_registered);
1085
1086 if (!boot_error) {
1087 /*
1088 * Wait 10s total for first sign of life from AP
1089 */
1090 boot_error = -1;
1091 timeout = jiffies + 10*HZ;
1092 while (time_before(jiffies, timeout)) {
1093 if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1094 /*
1095 * Tell AP to proceed with initialization
1096 */
1097 cpumask_set_cpu(cpu, cpu_callout_mask);
1098 boot_error = 0;
1099 break;
1100 }
1101 schedule();
1102 }
1103 }
1104
1105 if (!boot_error) {
1106 /*
1107 * Wait till AP completes initial initialization
1108 */
1109 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1110 /*
1111 * Allow other tasks to run while we wait for the
1112 * AP to come online. This also gives a chance
1113 * for the MTRR work(triggered by the AP coming online)
1114 * to be completed in the stop machine context.
1115 */
1116 schedule();
1117 }
1118 }
1119
1120 if (x86_platform.legacy.warm_reset) {
1121 /*
1122 * Cleanup possible dangling ends...
1123 */
1124 smpboot_restore_warm_reset_vector();
1125 }
1126
1127 return boot_error;
1128}
1129
1130int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1131{
1132 int apicid = apic->cpu_present_to_apicid(cpu);
1133 int cpu0_nmi_registered = 0;
1134 unsigned long flags;
1135 int err, ret = 0;
1136
1137 lockdep_assert_irqs_enabled();
1138
1139 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1140
1141 if (apicid == BAD_APICID ||
1142 !physid_isset(apicid, phys_cpu_present_map) ||
1143 !apic->apic_id_valid(apicid)) {
1144 pr_err("%s: bad cpu %d\n", __func__, cpu);
1145 return -EINVAL;
1146 }
1147
1148 /*
1149 * Already booted CPU?
1150 */
1151 if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1152 pr_debug("do_boot_cpu %d Already started\n", cpu);
1153 return -ENOSYS;
1154 }
1155
1156 /*
1157 * Save current MTRR state in case it was changed since early boot
1158 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1159 */
1160 mtrr_save_state();
1161
1162 /* x86 CPUs take themselves offline, so delayed offline is OK. */
1163 err = cpu_check_up_prepare(cpu);
1164 if (err && err != -EBUSY)
1165 return err;
1166
1167 /* the FPU context is blank, nobody can own it */
1168 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1169
1170 err = common_cpu_up(cpu, tidle);
1171 if (err)
1172 return err;
1173
1174 err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1175 if (err) {
1176 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1177 ret = -EIO;
1178 goto unreg_nmi;
1179 }
1180
1181 /*
1182 * Check TSC synchronization with the AP (keep irqs disabled
1183 * while doing so):
1184 */
1185 local_irq_save(flags);
1186 check_tsc_sync_source(cpu);
1187 local_irq_restore(flags);
1188
1189 while (!cpu_online(cpu)) {
1190 cpu_relax();
1191 touch_nmi_watchdog();
1192 }
1193
1194unreg_nmi:
1195 /*
1196 * Clean up the nmi handler. Do this after the callin and callout sync
1197 * to avoid impact of possible long unregister time.
1198 */
1199 if (cpu0_nmi_registered)
1200 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1201
1202 return ret;
1203}
1204
1205/**
1206 * arch_disable_smp_support() - disables SMP support for x86 at runtime
1207 */
1208void arch_disable_smp_support(void)
1209{
1210 disable_ioapic_support();
1211}
1212
1213/*
1214 * Fall back to non SMP mode after errors.
1215 *
1216 * RED-PEN audit/test this more. I bet there is more state messed up here.
1217 */
1218static __init void disable_smp(void)
1219{
1220 pr_info("SMP disabled\n");
1221
1222 disable_ioapic_support();
1223
1224 init_cpu_present(cpumask_of(0));
1225 init_cpu_possible(cpumask_of(0));
1226
1227 if (smp_found_config)
1228 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1229 else
1230 physid_set_mask_of_physid(0, &phys_cpu_present_map);
1231 cpumask_set_cpu(0, topology_sibling_cpumask(0));
1232 cpumask_set_cpu(0, topology_core_cpumask(0));
1233 cpumask_set_cpu(0, topology_die_cpumask(0));
1234}
1235
1236/*
1237 * Various sanity checks.
1238 */
1239static void __init smp_sanity_check(void)
1240{
1241 preempt_disable();
1242
1243#if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1244 if (def_to_bigsmp && nr_cpu_ids > 8) {
1245 unsigned int cpu;
1246 unsigned nr;
1247
1248 pr_warn("More than 8 CPUs detected - skipping them\n"
1249 "Use CONFIG_X86_BIGSMP\n");
1250
1251 nr = 0;
1252 for_each_present_cpu(cpu) {
1253 if (nr >= 8)
1254 set_cpu_present(cpu, false);
1255 nr++;
1256 }
1257
1258 nr = 0;
1259 for_each_possible_cpu(cpu) {
1260 if (nr >= 8)
1261 set_cpu_possible(cpu, false);
1262 nr++;
1263 }
1264
1265 nr_cpu_ids = 8;
1266 }
1267#endif
1268
1269 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1270 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1271 hard_smp_processor_id());
1272
1273 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1274 }
1275
1276 /*
1277 * Should not be necessary because the MP table should list the boot
1278 * CPU too, but we do it for the sake of robustness anyway.
1279 */
1280 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1281 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1282 boot_cpu_physical_apicid);
1283 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1284 }
1285 preempt_enable();
1286}
1287
1288static void __init smp_cpu_index_default(void)
1289{
1290 int i;
1291 struct cpuinfo_x86 *c;
1292
1293 for_each_possible_cpu(i) {
1294 c = &cpu_data(i);
1295 /* mark all to hotplug */
1296 c->cpu_index = nr_cpu_ids;
1297 }
1298}
1299
1300static void __init smp_get_logical_apicid(void)
1301{
1302 if (x2apic_mode)
1303 cpu0_logical_apicid = apic_read(APIC_LDR);
1304 else
1305 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1306}
1307
1308/*
1309 * Prepare for SMP bootup.
1310 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1311 * for common interface support.
1312 */
1313void __init native_smp_prepare_cpus(unsigned int max_cpus)
1314{
1315 unsigned int i;
1316
1317 smp_cpu_index_default();
1318
1319 /*
1320 * Setup boot CPU information
1321 */
1322 smp_store_boot_cpu_info(); /* Final full version of the data */
1323 cpumask_copy(cpu_callin_mask, cpumask_of(0));
1324 mb();
1325
1326 for_each_possible_cpu(i) {
1327 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1328 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1329 zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1330 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1331 }
1332
1333 /*
1334 * Set 'default' x86 topology, this matches default_topology() in that
1335 * it has NUMA nodes as a topology level. See also
1336 * native_smp_cpus_done().
1337 *
1338 * Must be done before set_cpus_sibling_map() is ran.
1339 */
1340 set_sched_topology(x86_topology);
1341
1342 set_cpu_sibling_map(0);
1343 init_freq_invariance(false);
1344 smp_sanity_check();
1345
1346 switch (apic_intr_mode) {
1347 case APIC_PIC:
1348 case APIC_VIRTUAL_WIRE_NO_CONFIG:
1349 disable_smp();
1350 return;
1351 case APIC_SYMMETRIC_IO_NO_ROUTING:
1352 disable_smp();
1353 /* Setup local timer */
1354 x86_init.timers.setup_percpu_clockev();
1355 return;
1356 case APIC_VIRTUAL_WIRE:
1357 case APIC_SYMMETRIC_IO:
1358 break;
1359 }
1360
1361 /* Setup local timer */
1362 x86_init.timers.setup_percpu_clockev();
1363
1364 smp_get_logical_apicid();
1365
1366 pr_info("CPU0: ");
1367 print_cpu_info(&cpu_data(0));
1368
1369 uv_system_init();
1370
1371 set_mtrr_aps_delayed_init();
1372
1373 smp_quirk_init_udelay();
1374
1375 speculative_store_bypass_ht_init();
1376}
1377
1378void arch_thaw_secondary_cpus_begin(void)
1379{
1380 set_mtrr_aps_delayed_init();
1381}
1382
1383void arch_thaw_secondary_cpus_end(void)
1384{
1385 mtrr_aps_init();
1386}
1387
1388/*
1389 * Early setup to make printk work.
1390 */
1391void __init native_smp_prepare_boot_cpu(void)
1392{
1393 int me = smp_processor_id();
1394 switch_to_new_gdt(me);
1395 /* already set me in cpu_online_mask in boot_cpu_init() */
1396 cpumask_set_cpu(me, cpu_callout_mask);
1397 cpu_set_state_online(me);
1398 native_pv_lock_init();
1399}
1400
1401void __init calculate_max_logical_packages(void)
1402{
1403 int ncpus;
1404
1405 /*
1406 * Today neither Intel nor AMD support heterogenous systems so
1407 * extrapolate the boot cpu's data to all packages.
1408 */
1409 ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1410 __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1411 pr_info("Max logical packages: %u\n", __max_logical_packages);
1412}
1413
1414void __init native_smp_cpus_done(unsigned int max_cpus)
1415{
1416 pr_debug("Boot done\n");
1417
1418 calculate_max_logical_packages();
1419
1420 if (x86_has_numa_in_package)
1421 set_sched_topology(x86_numa_in_package_topology);
1422
1423 nmi_selftest();
1424 impress_friends();
1425 mtrr_aps_init();
1426}
1427
1428static int __initdata setup_possible_cpus = -1;
1429static int __init _setup_possible_cpus(char *str)
1430{
1431 get_option(&str, &setup_possible_cpus);
1432 return 0;
1433}
1434early_param("possible_cpus", _setup_possible_cpus);
1435
1436
1437/*
1438 * cpu_possible_mask should be static, it cannot change as cpu's
1439 * are onlined, or offlined. The reason is per-cpu data-structures
1440 * are allocated by some modules at init time, and don't expect to
1441 * do this dynamically on cpu arrival/departure.
1442 * cpu_present_mask on the other hand can change dynamically.
1443 * In case when cpu_hotplug is not compiled, then we resort to current
1444 * behaviour, which is cpu_possible == cpu_present.
1445 * - Ashok Raj
1446 *
1447 * Three ways to find out the number of additional hotplug CPUs:
1448 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1449 * - The user can overwrite it with possible_cpus=NUM
1450 * - Otherwise don't reserve additional CPUs.
1451 * We do this because additional CPUs waste a lot of memory.
1452 * -AK
1453 */
1454__init void prefill_possible_map(void)
1455{
1456 int i, possible;
1457
1458 /* No boot processor was found in mptable or ACPI MADT */
1459 if (!num_processors) {
1460 if (boot_cpu_has(X86_FEATURE_APIC)) {
1461 int apicid = boot_cpu_physical_apicid;
1462 int cpu = hard_smp_processor_id();
1463
1464 pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1465
1466 /* Make sure boot cpu is enumerated */
1467 if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1468 apic->apic_id_valid(apicid))
1469 generic_processor_info(apicid, boot_cpu_apic_version);
1470 }
1471
1472 if (!num_processors)
1473 num_processors = 1;
1474 }
1475
1476 i = setup_max_cpus ?: 1;
1477 if (setup_possible_cpus == -1) {
1478 possible = num_processors;
1479#ifdef CONFIG_HOTPLUG_CPU
1480 if (setup_max_cpus)
1481 possible += disabled_cpus;
1482#else
1483 if (possible > i)
1484 possible = i;
1485#endif
1486 } else
1487 possible = setup_possible_cpus;
1488
1489 total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1490
1491 /* nr_cpu_ids could be reduced via nr_cpus= */
1492 if (possible > nr_cpu_ids) {
1493 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1494 possible, nr_cpu_ids);
1495 possible = nr_cpu_ids;
1496 }
1497
1498#ifdef CONFIG_HOTPLUG_CPU
1499 if (!setup_max_cpus)
1500#endif
1501 if (possible > i) {
1502 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1503 possible, setup_max_cpus);
1504 possible = i;
1505 }
1506
1507 nr_cpu_ids = possible;
1508
1509 pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1510 possible, max_t(int, possible - num_processors, 0));
1511
1512 reset_cpu_possible_mask();
1513
1514 for (i = 0; i < possible; i++)
1515 set_cpu_possible(i, true);
1516}
1517
1518#ifdef CONFIG_HOTPLUG_CPU
1519
1520/* Recompute SMT state for all CPUs on offline */
1521static void recompute_smt_state(void)
1522{
1523 int max_threads, cpu;
1524
1525 max_threads = 0;
1526 for_each_online_cpu (cpu) {
1527 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1528
1529 if (threads > max_threads)
1530 max_threads = threads;
1531 }
1532 __max_smt_threads = max_threads;
1533}
1534
1535static void remove_siblinginfo(int cpu)
1536{
1537 int sibling;
1538 struct cpuinfo_x86 *c = &cpu_data(cpu);
1539
1540 for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1541 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1542 /*/
1543 * last thread sibling in this cpu core going down
1544 */
1545 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1546 cpu_data(sibling).booted_cores--;
1547 }
1548
1549 for_each_cpu(sibling, topology_die_cpumask(cpu))
1550 cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1551 for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1552 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1553 for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1554 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1555 cpumask_clear(cpu_llc_shared_mask(cpu));
1556 cpumask_clear(topology_sibling_cpumask(cpu));
1557 cpumask_clear(topology_core_cpumask(cpu));
1558 cpumask_clear(topology_die_cpumask(cpu));
1559 c->cpu_core_id = 0;
1560 c->booted_cores = 0;
1561 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1562 recompute_smt_state();
1563}
1564
1565static void remove_cpu_from_maps(int cpu)
1566{
1567 set_cpu_online(cpu, false);
1568 cpumask_clear_cpu(cpu, cpu_callout_mask);
1569 cpumask_clear_cpu(cpu, cpu_callin_mask);
1570 /* was set by cpu_init() */
1571 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1572 numa_remove_cpu(cpu);
1573}
1574
1575void cpu_disable_common(void)
1576{
1577 int cpu = smp_processor_id();
1578
1579 remove_siblinginfo(cpu);
1580
1581 /* It's now safe to remove this processor from the online map */
1582 lock_vector_lock();
1583 remove_cpu_from_maps(cpu);
1584 unlock_vector_lock();
1585 fixup_irqs();
1586 lapic_offline();
1587}
1588
1589int native_cpu_disable(void)
1590{
1591 int ret;
1592
1593 ret = lapic_can_unplug_cpu();
1594 if (ret)
1595 return ret;
1596
1597 cpu_disable_common();
1598
1599 /*
1600 * Disable the local APIC. Otherwise IPI broadcasts will reach
1601 * it. It still responds normally to INIT, NMI, SMI, and SIPI
1602 * messages.
1603 *
1604 * Disabling the APIC must happen after cpu_disable_common()
1605 * which invokes fixup_irqs().
1606 *
1607 * Disabling the APIC preserves already set bits in IRR, but
1608 * an interrupt arriving after disabling the local APIC does not
1609 * set the corresponding IRR bit.
1610 *
1611 * fixup_irqs() scans IRR for set bits so it can raise a not
1612 * yet handled interrupt on the new destination CPU via an IPI
1613 * but obviously it can't do so for IRR bits which are not set.
1614 * IOW, interrupts arriving after disabling the local APIC will
1615 * be lost.
1616 */
1617 apic_soft_disable();
1618
1619 return 0;
1620}
1621
1622int common_cpu_die(unsigned int cpu)
1623{
1624 int ret = 0;
1625
1626 /* We don't do anything here: idle task is faking death itself. */
1627
1628 /* They ack this in play_dead() by setting CPU_DEAD */
1629 if (cpu_wait_death(cpu, 5)) {
1630 if (system_state == SYSTEM_RUNNING)
1631 pr_info("CPU %u is now offline\n", cpu);
1632 } else {
1633 pr_err("CPU %u didn't die...\n", cpu);
1634 ret = -1;
1635 }
1636
1637 return ret;
1638}
1639
1640void native_cpu_die(unsigned int cpu)
1641{
1642 common_cpu_die(cpu);
1643}
1644
1645void play_dead_common(void)
1646{
1647 idle_task_exit();
1648
1649 /* Ack it */
1650 (void)cpu_report_death();
1651
1652 /*
1653 * With physical CPU hotplug, we should halt the cpu
1654 */
1655 local_irq_disable();
1656}
1657
1658static bool wakeup_cpu0(void)
1659{
1660 if (smp_processor_id() == 0 && enable_start_cpu0)
1661 return true;
1662
1663 return false;
1664}
1665
1666/*
1667 * We need to flush the caches before going to sleep, lest we have
1668 * dirty data in our caches when we come back up.
1669 */
1670static inline void mwait_play_dead(void)
1671{
1672 unsigned int eax, ebx, ecx, edx;
1673 unsigned int highest_cstate = 0;
1674 unsigned int highest_subcstate = 0;
1675 void *mwait_ptr;
1676 int i;
1677
1678 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1679 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1680 return;
1681 if (!this_cpu_has(X86_FEATURE_MWAIT))
1682 return;
1683 if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1684 return;
1685 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1686 return;
1687
1688 eax = CPUID_MWAIT_LEAF;
1689 ecx = 0;
1690 native_cpuid(&eax, &ebx, &ecx, &edx);
1691
1692 /*
1693 * eax will be 0 if EDX enumeration is not valid.
1694 * Initialized below to cstate, sub_cstate value when EDX is valid.
1695 */
1696 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1697 eax = 0;
1698 } else {
1699 edx >>= MWAIT_SUBSTATE_SIZE;
1700 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1701 if (edx & MWAIT_SUBSTATE_MASK) {
1702 highest_cstate = i;
1703 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1704 }
1705 }
1706 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1707 (highest_subcstate - 1);
1708 }
1709
1710 /*
1711 * This should be a memory location in a cache line which is
1712 * unlikely to be touched by other processors. The actual
1713 * content is immaterial as it is not actually modified in any way.
1714 */
1715 mwait_ptr = ¤t_thread_info()->flags;
1716
1717 wbinvd();
1718
1719 while (1) {
1720 /*
1721 * The CLFLUSH is a workaround for erratum AAI65 for
1722 * the Xeon 7400 series. It's not clear it is actually
1723 * needed, but it should be harmless in either case.
1724 * The WBINVD is insufficient due to the spurious-wakeup
1725 * case where we return around the loop.
1726 */
1727 mb();
1728 clflush(mwait_ptr);
1729 mb();
1730 __monitor(mwait_ptr, 0, 0);
1731 mb();
1732 __mwait(eax, 0);
1733 /*
1734 * If NMI wants to wake up CPU0, start CPU0.
1735 */
1736 if (wakeup_cpu0())
1737 start_cpu0();
1738 }
1739}
1740
1741void hlt_play_dead(void)
1742{
1743 if (__this_cpu_read(cpu_info.x86) >= 4)
1744 wbinvd();
1745
1746 while (1) {
1747 native_halt();
1748 /*
1749 * If NMI wants to wake up CPU0, start CPU0.
1750 */
1751 if (wakeup_cpu0())
1752 start_cpu0();
1753 }
1754}
1755
1756void native_play_dead(void)
1757{
1758 play_dead_common();
1759 tboot_shutdown(TB_SHUTDOWN_WFS);
1760
1761 mwait_play_dead(); /* Only returns on failure */
1762 if (cpuidle_play_dead())
1763 hlt_play_dead();
1764}
1765
1766#else /* ... !CONFIG_HOTPLUG_CPU */
1767int native_cpu_disable(void)
1768{
1769 return -ENOSYS;
1770}
1771
1772void native_cpu_die(unsigned int cpu)
1773{
1774 /* We said "no" in __cpu_disable */
1775 BUG();
1776}
1777
1778void native_play_dead(void)
1779{
1780 BUG();
1781}
1782
1783#endif
1784
1785#ifdef CONFIG_X86_64
1786/*
1787 * APERF/MPERF frequency ratio computation.
1788 *
1789 * The scheduler wants to do frequency invariant accounting and needs a <1
1790 * ratio to account for the 'current' frequency, corresponding to
1791 * freq_curr / freq_max.
1792 *
1793 * Since the frequency freq_curr on x86 is controlled by micro-controller and
1794 * our P-state setting is little more than a request/hint, we need to observe
1795 * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1796 * interval after discarding idle time. This is given by:
1797 *
1798 * BusyMHz = delta_APERF / delta_MPERF * freq_base
1799 *
1800 * where freq_base is the max non-turbo P-state.
1801 *
1802 * The freq_max term has to be set to a somewhat arbitrary value, because we
1803 * can't know which turbo states will be available at a given point in time:
1804 * it all depends on the thermal headroom of the entire package. We set it to
1805 * the turbo level with 4 cores active.
1806 *
1807 * Benchmarks show that's a good compromise between the 1C turbo ratio
1808 * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1809 * which would ignore the entire turbo range (a conspicuous part, making
1810 * freq_curr/freq_max always maxed out).
1811 *
1812 * An exception to the heuristic above is the Atom uarch, where we choose the
1813 * highest turbo level for freq_max since Atom's are generally oriented towards
1814 * power efficiency.
1815 *
1816 * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1817 * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1818 */
1819
1820DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1821
1822static DEFINE_PER_CPU(u64, arch_prev_aperf);
1823static DEFINE_PER_CPU(u64, arch_prev_mperf);
1824static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1825static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1826
1827void arch_set_max_freq_ratio(bool turbo_disabled)
1828{
1829 arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1830 arch_turbo_freq_ratio;
1831}
1832
1833static bool turbo_disabled(void)
1834{
1835 u64 misc_en;
1836 int err;
1837
1838 err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1839 if (err)
1840 return false;
1841
1842 return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1843}
1844
1845static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1846{
1847 int err;
1848
1849 err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1850 if (err)
1851 return false;
1852
1853 err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1854 if (err)
1855 return false;
1856
1857 *base_freq = (*base_freq >> 16) & 0x3F; /* max P state */
1858 *turbo_freq = *turbo_freq & 0x3F; /* 1C turbo */
1859
1860 return true;
1861}
1862
1863#include <asm/cpu_device_id.h>
1864#include <asm/intel-family.h>
1865
1866#define X86_MATCH(model) \
1867 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, \
1868 INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
1869
1870static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1871 X86_MATCH(XEON_PHI_KNL),
1872 X86_MATCH(XEON_PHI_KNM),
1873 {}
1874};
1875
1876static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1877 X86_MATCH(SKYLAKE_X),
1878 {}
1879};
1880
1881static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1882 X86_MATCH(ATOM_GOLDMONT),
1883 X86_MATCH(ATOM_GOLDMONT_D),
1884 X86_MATCH(ATOM_GOLDMONT_PLUS),
1885 {}
1886};
1887
1888static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1889 int num_delta_fratio)
1890{
1891 int fratio, delta_fratio, found;
1892 int err, i;
1893 u64 msr;
1894
1895 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1896 if (err)
1897 return false;
1898
1899 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1900
1901 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1902 if (err)
1903 return false;
1904
1905 fratio = (msr >> 8) & 0xFF;
1906 i = 16;
1907 found = 0;
1908 do {
1909 if (found >= num_delta_fratio) {
1910 *turbo_freq = fratio;
1911 return true;
1912 }
1913
1914 delta_fratio = (msr >> (i + 5)) & 0x7;
1915
1916 if (delta_fratio) {
1917 found += 1;
1918 fratio -= delta_fratio;
1919 }
1920
1921 i += 8;
1922 } while (i < 64);
1923
1924 return true;
1925}
1926
1927static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1928{
1929 u64 ratios, counts;
1930 u32 group_size;
1931 int err, i;
1932
1933 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1934 if (err)
1935 return false;
1936
1937 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1938
1939 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1940 if (err)
1941 return false;
1942
1943 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1944 if (err)
1945 return false;
1946
1947 for (i = 0; i < 64; i += 8) {
1948 group_size = (counts >> i) & 0xFF;
1949 if (group_size >= size) {
1950 *turbo_freq = (ratios >> i) & 0xFF;
1951 return true;
1952 }
1953 }
1954
1955 return false;
1956}
1957
1958static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1959{
1960 u64 msr;
1961 int err;
1962
1963 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1964 if (err)
1965 return false;
1966
1967 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1968 if (err)
1969 return false;
1970
1971 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1972 *turbo_freq = (msr >> 24) & 0xFF; /* 4C turbo */
1973
1974 /* The CPU may have less than 4 cores */
1975 if (!*turbo_freq)
1976 *turbo_freq = msr & 0xFF; /* 1C turbo */
1977
1978 return true;
1979}
1980
1981static bool intel_set_max_freq_ratio(void)
1982{
1983 u64 base_freq, turbo_freq;
1984 u64 turbo_ratio;
1985
1986 if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1987 goto out;
1988
1989 if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
1990 skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1991 goto out;
1992
1993 if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
1994 knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1995 goto out;
1996
1997 if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
1998 skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
1999 goto out;
2000
2001 if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
2002 goto out;
2003
2004 return false;
2005
2006out:
2007 /*
2008 * Some hypervisors advertise X86_FEATURE_APERFMPERF
2009 * but then fill all MSR's with zeroes.
2010 * Some CPUs have turbo boost but don't declare any turbo ratio
2011 * in MSR_TURBO_RATIO_LIMIT.
2012 */
2013 if (!base_freq || !turbo_freq) {
2014 pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
2015 return false;
2016 }
2017
2018 turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
2019 if (!turbo_ratio) {
2020 pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
2021 return false;
2022 }
2023
2024 arch_turbo_freq_ratio = turbo_ratio;
2025 arch_set_max_freq_ratio(turbo_disabled());
2026
2027 return true;
2028}
2029
2030static void init_counter_refs(void)
2031{
2032 u64 aperf, mperf;
2033
2034 rdmsrl(MSR_IA32_APERF, aperf);
2035 rdmsrl(MSR_IA32_MPERF, mperf);
2036
2037 this_cpu_write(arch_prev_aperf, aperf);
2038 this_cpu_write(arch_prev_mperf, mperf);
2039}
2040
2041static void init_freq_invariance(bool secondary)
2042{
2043 bool ret = false;
2044
2045 if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
2046 return;
2047
2048 if (secondary) {
2049 if (static_branch_likely(&arch_scale_freq_key)) {
2050 init_counter_refs();
2051 }
2052 return;
2053 }
2054
2055 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2056 ret = intel_set_max_freq_ratio();
2057
2058 if (ret) {
2059 init_counter_refs();
2060 static_branch_enable(&arch_scale_freq_key);
2061 } else {
2062 pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2063 }
2064}
2065
2066static void disable_freq_invariance_workfn(struct work_struct *work)
2067{
2068 static_branch_disable(&arch_scale_freq_key);
2069}
2070
2071static DECLARE_WORK(disable_freq_invariance_work,
2072 disable_freq_invariance_workfn);
2073
2074DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2075
2076void arch_scale_freq_tick(void)
2077{
2078 u64 freq_scale = SCHED_CAPACITY_SCALE;
2079 u64 aperf, mperf;
2080 u64 acnt, mcnt;
2081
2082 if (!arch_scale_freq_invariant())
2083 return;
2084
2085 rdmsrl(MSR_IA32_APERF, aperf);
2086 rdmsrl(MSR_IA32_MPERF, mperf);
2087
2088 acnt = aperf - this_cpu_read(arch_prev_aperf);
2089 mcnt = mperf - this_cpu_read(arch_prev_mperf);
2090
2091 this_cpu_write(arch_prev_aperf, aperf);
2092 this_cpu_write(arch_prev_mperf, mperf);
2093
2094 if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
2095 goto error;
2096
2097 if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt)
2098 goto error;
2099
2100 freq_scale = div64_u64(acnt, mcnt);
2101 if (!freq_scale)
2102 goto error;
2103
2104 if (freq_scale > SCHED_CAPACITY_SCALE)
2105 freq_scale = SCHED_CAPACITY_SCALE;
2106
2107 this_cpu_write(arch_freq_scale, freq_scale);
2108 return;
2109
2110error:
2111 pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
2112 schedule_work(&disable_freq_invariance_work);
2113}
2114#else
2115static inline void init_freq_invariance(bool secondary)
2116{
2117}
2118#endif /* CONFIG_X86_64 */
1// SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * x86 SMP booting functions
4 *
5 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7 * Copyright 2001 Andi Kleen, SuSE Labs.
8 *
9 * Much of the core SMP work is based on previous work by Thomas Radke, to
10 * whom a great many thanks are extended.
11 *
12 * Thanks to Intel for making available several different Pentium,
13 * Pentium Pro and Pentium-II/Xeon MP machines.
14 * Original development of Linux SMP code supported by Caldera.
15 *
16 * Fixes
17 * Felix Koop : NR_CPUS used properly
18 * Jose Renau : Handle single CPU case.
19 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
20 * Greg Wright : Fix for kernel stacks panic.
21 * Erich Boleyn : MP v1.4 and additional changes.
22 * Matthias Sattler : Changes for 2.1 kernel map.
23 * Michel Lespinasse : Changes for 2.1 kernel map.
24 * Michael Chastain : Change trampoline.S to gnu as.
25 * Alan Cox : Dumb bug: 'B' step PPro's are fine
26 * Ingo Molnar : Added APIC timers, based on code
27 * from Jose Renau
28 * Ingo Molnar : various cleanups and rewrites
29 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
30 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
31 * Andi Kleen : Changed for SMP boot into long mode.
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
35 * Andi Kleen : Converted to new state machine.
36 * Ashok Raj : CPU hotplug support
37 * Glauber Costa : i386 and x86_64 integration
38 */
39
40#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
42#include <linux/init.h>
43#include <linux/smp.h>
44#include <linux/export.h>
45#include <linux/sched.h>
46#include <linux/sched/topology.h>
47#include <linux/sched/hotplug.h>
48#include <linux/sched/task_stack.h>
49#include <linux/percpu.h>
50#include <linux/memblock.h>
51#include <linux/err.h>
52#include <linux/nmi.h>
53#include <linux/tboot.h>
54#include <linux/gfp.h>
55#include <linux/cpuidle.h>
56#include <linux/numa.h>
57#include <linux/pgtable.h>
58#include <linux/overflow.h>
59#include <linux/syscore_ops.h>
60
61#include <asm/acpi.h>
62#include <asm/desc.h>
63#include <asm/nmi.h>
64#include <asm/irq.h>
65#include <asm/realmode.h>
66#include <asm/cpu.h>
67#include <asm/numa.h>
68#include <asm/tlbflush.h>
69#include <asm/mtrr.h>
70#include <asm/mwait.h>
71#include <asm/apic.h>
72#include <asm/io_apic.h>
73#include <asm/fpu/internal.h>
74#include <asm/setup.h>
75#include <asm/uv/uv.h>
76#include <linux/mc146818rtc.h>
77#include <asm/i8259.h>
78#include <asm/misc.h>
79#include <asm/qspinlock.h>
80#include <asm/intel-family.h>
81#include <asm/cpu_device_id.h>
82#include <asm/spec-ctrl.h>
83#include <asm/hw_irq.h>
84#include <asm/stackprotector.h>
85
86#ifdef CONFIG_ACPI_CPPC_LIB
87#include <acpi/cppc_acpi.h>
88#endif
89
90/* representing HT siblings of each logical CPU */
91DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
92EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
93
94/* representing HT and core siblings of each logical CPU */
95DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
96EXPORT_PER_CPU_SYMBOL(cpu_core_map);
97
98/* representing HT, core, and die siblings of each logical CPU */
99DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
100EXPORT_PER_CPU_SYMBOL(cpu_die_map);
101
102DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
103
104/* Per CPU bogomips and other parameters */
105DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
106EXPORT_PER_CPU_SYMBOL(cpu_info);
107
108/* Logical package management. We might want to allocate that dynamically */
109unsigned int __max_logical_packages __read_mostly;
110EXPORT_SYMBOL(__max_logical_packages);
111static unsigned int logical_packages __read_mostly;
112static unsigned int logical_die __read_mostly;
113
114/* Maximum number of SMT threads on any online core */
115int __read_mostly __max_smt_threads = 1;
116
117/* Flag to indicate if a complete sched domain rebuild is required */
118bool x86_topology_update;
119
120int arch_update_cpu_topology(void)
121{
122 int retval = x86_topology_update;
123
124 x86_topology_update = false;
125 return retval;
126}
127
128static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
129{
130 unsigned long flags;
131
132 spin_lock_irqsave(&rtc_lock, flags);
133 CMOS_WRITE(0xa, 0xf);
134 spin_unlock_irqrestore(&rtc_lock, flags);
135 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
136 start_eip >> 4;
137 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
138 start_eip & 0xf;
139}
140
141static inline void smpboot_restore_warm_reset_vector(void)
142{
143 unsigned long flags;
144
145 /*
146 * Paranoid: Set warm reset code and vector here back
147 * to default values.
148 */
149 spin_lock_irqsave(&rtc_lock, flags);
150 CMOS_WRITE(0, 0xf);
151 spin_unlock_irqrestore(&rtc_lock, flags);
152
153 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
154}
155
156static void init_freq_invariance(bool secondary, bool cppc_ready);
157
158/*
159 * Report back to the Boot Processor during boot time or to the caller processor
160 * during CPU online.
161 */
162static void smp_callin(void)
163{
164 int cpuid;
165
166 /*
167 * If waken up by an INIT in an 82489DX configuration
168 * cpu_callout_mask guarantees we don't get here before
169 * an INIT_deassert IPI reaches our local APIC, so it is
170 * now safe to touch our local APIC.
171 */
172 cpuid = smp_processor_id();
173
174 /*
175 * the boot CPU has finished the init stage and is spinning
176 * on callin_map until we finish. We are free to set up this
177 * CPU, first the APIC. (this is probably redundant on most
178 * boards)
179 */
180 apic_ap_setup();
181
182 /*
183 * Save our processor parameters. Note: this information
184 * is needed for clock calibration.
185 */
186 smp_store_cpu_info(cpuid);
187
188 /*
189 * The topology information must be up to date before
190 * calibrate_delay() and notify_cpu_starting().
191 */
192 set_cpu_sibling_map(raw_smp_processor_id());
193
194 init_freq_invariance(true, false);
195
196 /*
197 * Get our bogomips.
198 * Update loops_per_jiffy in cpu_data. Previous call to
199 * smp_store_cpu_info() stored a value that is close but not as
200 * accurate as the value just calculated.
201 */
202 calibrate_delay();
203 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
204 pr_debug("Stack at about %p\n", &cpuid);
205
206 wmb();
207
208 notify_cpu_starting(cpuid);
209
210 /*
211 * Allow the master to continue.
212 */
213 cpumask_set_cpu(cpuid, cpu_callin_mask);
214}
215
216static int cpu0_logical_apicid;
217static int enable_start_cpu0;
218/*
219 * Activate a secondary processor.
220 */
221static void notrace start_secondary(void *unused)
222{
223 /*
224 * Don't put *anything* except direct CPU state initialization
225 * before cpu_init(), SMP booting is too fragile that we want to
226 * limit the things done here to the most necessary things.
227 */
228 cr4_init();
229
230#ifdef CONFIG_X86_32
231 /* switch away from the initial page table */
232 load_cr3(swapper_pg_dir);
233 __flush_tlb_all();
234#endif
235 cpu_init_secondary();
236 rcu_cpu_starting(raw_smp_processor_id());
237 x86_cpuinit.early_percpu_clock_init();
238 smp_callin();
239
240 enable_start_cpu0 = 0;
241
242 /* otherwise gcc will move up smp_processor_id before the cpu_init */
243 barrier();
244 /*
245 * Check TSC synchronization with the boot CPU:
246 */
247 check_tsc_sync_target();
248
249 speculative_store_bypass_ht_init();
250
251 /*
252 * Lock vector_lock, set CPU online and bring the vector
253 * allocator online. Online must be set with vector_lock held
254 * to prevent a concurrent irq setup/teardown from seeing a
255 * half valid vector space.
256 */
257 lock_vector_lock();
258 set_cpu_online(smp_processor_id(), true);
259 lapic_online();
260 unlock_vector_lock();
261 cpu_set_state_online(smp_processor_id());
262 x86_platform.nmi_init();
263
264 /* enable local interrupts */
265 local_irq_enable();
266
267 x86_cpuinit.setup_percpu_clockev();
268
269 wmb();
270 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
271}
272
273/**
274 * topology_is_primary_thread - Check whether CPU is the primary SMT thread
275 * @cpu: CPU to check
276 */
277bool topology_is_primary_thread(unsigned int cpu)
278{
279 return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
280}
281
282/**
283 * topology_smt_supported - Check whether SMT is supported by the CPUs
284 */
285bool topology_smt_supported(void)
286{
287 return smp_num_siblings > 1;
288}
289
290/**
291 * topology_phys_to_logical_pkg - Map a physical package id to a logical
292 *
293 * Returns logical package id or -1 if not found
294 */
295int topology_phys_to_logical_pkg(unsigned int phys_pkg)
296{
297 int cpu;
298
299 for_each_possible_cpu(cpu) {
300 struct cpuinfo_x86 *c = &cpu_data(cpu);
301
302 if (c->initialized && c->phys_proc_id == phys_pkg)
303 return c->logical_proc_id;
304 }
305 return -1;
306}
307EXPORT_SYMBOL(topology_phys_to_logical_pkg);
308/**
309 * topology_phys_to_logical_die - Map a physical die id to logical
310 *
311 * Returns logical die id or -1 if not found
312 */
313int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
314{
315 int cpu;
316 int proc_id = cpu_data(cur_cpu).phys_proc_id;
317
318 for_each_possible_cpu(cpu) {
319 struct cpuinfo_x86 *c = &cpu_data(cpu);
320
321 if (c->initialized && c->cpu_die_id == die_id &&
322 c->phys_proc_id == proc_id)
323 return c->logical_die_id;
324 }
325 return -1;
326}
327EXPORT_SYMBOL(topology_phys_to_logical_die);
328
329/**
330 * topology_update_package_map - Update the physical to logical package map
331 * @pkg: The physical package id as retrieved via CPUID
332 * @cpu: The cpu for which this is updated
333 */
334int topology_update_package_map(unsigned int pkg, unsigned int cpu)
335{
336 int new;
337
338 /* Already available somewhere? */
339 new = topology_phys_to_logical_pkg(pkg);
340 if (new >= 0)
341 goto found;
342
343 new = logical_packages++;
344 if (new != pkg) {
345 pr_info("CPU %u Converting physical %u to logical package %u\n",
346 cpu, pkg, new);
347 }
348found:
349 cpu_data(cpu).logical_proc_id = new;
350 return 0;
351}
352/**
353 * topology_update_die_map - Update the physical to logical die map
354 * @die: The die id as retrieved via CPUID
355 * @cpu: The cpu for which this is updated
356 */
357int topology_update_die_map(unsigned int die, unsigned int cpu)
358{
359 int new;
360
361 /* Already available somewhere? */
362 new = topology_phys_to_logical_die(die, cpu);
363 if (new >= 0)
364 goto found;
365
366 new = logical_die++;
367 if (new != die) {
368 pr_info("CPU %u Converting physical %u to logical die %u\n",
369 cpu, die, new);
370 }
371found:
372 cpu_data(cpu).logical_die_id = new;
373 return 0;
374}
375
376void __init smp_store_boot_cpu_info(void)
377{
378 int id = 0; /* CPU 0 */
379 struct cpuinfo_x86 *c = &cpu_data(id);
380
381 *c = boot_cpu_data;
382 c->cpu_index = id;
383 topology_update_package_map(c->phys_proc_id, id);
384 topology_update_die_map(c->cpu_die_id, id);
385 c->initialized = true;
386}
387
388/*
389 * The bootstrap kernel entry code has set these up. Save them for
390 * a given CPU
391 */
392void smp_store_cpu_info(int id)
393{
394 struct cpuinfo_x86 *c = &cpu_data(id);
395
396 /* Copy boot_cpu_data only on the first bringup */
397 if (!c->initialized)
398 *c = boot_cpu_data;
399 c->cpu_index = id;
400 /*
401 * During boot time, CPU0 has this setup already. Save the info when
402 * bringing up AP or offlined CPU0.
403 */
404 identify_secondary_cpu(c);
405 c->initialized = true;
406}
407
408static bool
409topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
410{
411 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
412
413 return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
414}
415
416static bool
417topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
418{
419 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
420
421 return !WARN_ONCE(!topology_same_node(c, o),
422 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
423 "[node: %d != %d]. Ignoring dependency.\n",
424 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
425}
426
427#define link_mask(mfunc, c1, c2) \
428do { \
429 cpumask_set_cpu((c1), mfunc(c2)); \
430 cpumask_set_cpu((c2), mfunc(c1)); \
431} while (0)
432
433static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
434{
435 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
436 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
437
438 if (c->phys_proc_id == o->phys_proc_id &&
439 c->cpu_die_id == o->cpu_die_id &&
440 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
441 if (c->cpu_core_id == o->cpu_core_id)
442 return topology_sane(c, o, "smt");
443
444 if ((c->cu_id != 0xff) &&
445 (o->cu_id != 0xff) &&
446 (c->cu_id == o->cu_id))
447 return topology_sane(c, o, "smt");
448 }
449
450 } else if (c->phys_proc_id == o->phys_proc_id &&
451 c->cpu_die_id == o->cpu_die_id &&
452 c->cpu_core_id == o->cpu_core_id) {
453 return topology_sane(c, o, "smt");
454 }
455
456 return false;
457}
458
459static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
460{
461 if (c->phys_proc_id == o->phys_proc_id &&
462 c->cpu_die_id == o->cpu_die_id)
463 return true;
464 return false;
465}
466
467/*
468 * Unlike the other levels, we do not enforce keeping a
469 * multicore group inside a NUMA node. If this happens, we will
470 * discard the MC level of the topology later.
471 */
472static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
473{
474 if (c->phys_proc_id == o->phys_proc_id)
475 return true;
476 return false;
477}
478
479/*
480 * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
481 *
482 * Any Intel CPU that has multiple nodes per package and does not
483 * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
484 *
485 * When in SNC mode, these CPUs enumerate an LLC that is shared
486 * by multiple NUMA nodes. The LLC is shared for off-package data
487 * access but private to the NUMA node (half of the package) for
488 * on-package access. CPUID (the source of the information about
489 * the LLC) can only enumerate the cache as shared or unshared,
490 * but not this particular configuration.
491 */
492
493static const struct x86_cpu_id intel_cod_cpu[] = {
494 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0), /* COD */
495 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0), /* COD */
496 X86_MATCH_INTEL_FAM6_MODEL(ANY, 1), /* SNC */
497 {}
498};
499
500static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
501{
502 const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
503 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
504 bool intel_snc = id && id->driver_data;
505
506 /* Do not match if we do not have a valid APICID for cpu: */
507 if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
508 return false;
509
510 /* Do not match if LLC id does not match: */
511 if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
512 return false;
513
514 /*
515 * Allow the SNC topology without warning. Return of false
516 * means 'c' does not share the LLC of 'o'. This will be
517 * reflected to userspace.
518 */
519 if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
520 return false;
521
522 return topology_sane(c, o, "llc");
523}
524
525
526#if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
527static inline int x86_sched_itmt_flags(void)
528{
529 return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
530}
531
532#ifdef CONFIG_SCHED_MC
533static int x86_core_flags(void)
534{
535 return cpu_core_flags() | x86_sched_itmt_flags();
536}
537#endif
538#ifdef CONFIG_SCHED_SMT
539static int x86_smt_flags(void)
540{
541 return cpu_smt_flags() | x86_sched_itmt_flags();
542}
543#endif
544#endif
545
546static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
547#ifdef CONFIG_SCHED_SMT
548 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
549#endif
550#ifdef CONFIG_SCHED_MC
551 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
552#endif
553 { NULL, },
554};
555
556static struct sched_domain_topology_level x86_topology[] = {
557#ifdef CONFIG_SCHED_SMT
558 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
559#endif
560#ifdef CONFIG_SCHED_MC
561 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
562#endif
563 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
564 { NULL, },
565};
566
567/*
568 * Set if a package/die has multiple NUMA nodes inside.
569 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
570 * Sub-NUMA Clustering have this.
571 */
572static bool x86_has_numa_in_package;
573
574void set_cpu_sibling_map(int cpu)
575{
576 bool has_smt = smp_num_siblings > 1;
577 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
578 struct cpuinfo_x86 *c = &cpu_data(cpu);
579 struct cpuinfo_x86 *o;
580 int i, threads;
581
582 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
583
584 if (!has_mp) {
585 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
586 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
587 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
588 cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
589 c->booted_cores = 1;
590 return;
591 }
592
593 for_each_cpu(i, cpu_sibling_setup_mask) {
594 o = &cpu_data(i);
595
596 if (match_pkg(c, o) && !topology_same_node(c, o))
597 x86_has_numa_in_package = true;
598
599 if ((i == cpu) || (has_smt && match_smt(c, o)))
600 link_mask(topology_sibling_cpumask, cpu, i);
601
602 if ((i == cpu) || (has_mp && match_llc(c, o)))
603 link_mask(cpu_llc_shared_mask, cpu, i);
604
605 if ((i == cpu) || (has_mp && match_die(c, o)))
606 link_mask(topology_die_cpumask, cpu, i);
607 }
608
609 threads = cpumask_weight(topology_sibling_cpumask(cpu));
610 if (threads > __max_smt_threads)
611 __max_smt_threads = threads;
612
613 /*
614 * This needs a separate iteration over the cpus because we rely on all
615 * topology_sibling_cpumask links to be set-up.
616 */
617 for_each_cpu(i, cpu_sibling_setup_mask) {
618 o = &cpu_data(i);
619
620 if ((i == cpu) || (has_mp && match_pkg(c, o))) {
621 link_mask(topology_core_cpumask, cpu, i);
622
623 /*
624 * Does this new cpu bringup a new core?
625 */
626 if (threads == 1) {
627 /*
628 * for each core in package, increment
629 * the booted_cores for this new cpu
630 */
631 if (cpumask_first(
632 topology_sibling_cpumask(i)) == i)
633 c->booted_cores++;
634 /*
635 * increment the core count for all
636 * the other cpus in this package
637 */
638 if (i != cpu)
639 cpu_data(i).booted_cores++;
640 } else if (i != cpu && !c->booted_cores)
641 c->booted_cores = cpu_data(i).booted_cores;
642 }
643 }
644}
645
646/* maps the cpu to the sched domain representing multi-core */
647const struct cpumask *cpu_coregroup_mask(int cpu)
648{
649 return cpu_llc_shared_mask(cpu);
650}
651
652static void impress_friends(void)
653{
654 int cpu;
655 unsigned long bogosum = 0;
656 /*
657 * Allow the user to impress friends.
658 */
659 pr_debug("Before bogomips\n");
660 for_each_possible_cpu(cpu)
661 if (cpumask_test_cpu(cpu, cpu_callout_mask))
662 bogosum += cpu_data(cpu).loops_per_jiffy;
663 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
664 num_online_cpus(),
665 bogosum/(500000/HZ),
666 (bogosum/(5000/HZ))%100);
667
668 pr_debug("Before bogocount - setting activated=1\n");
669}
670
671void __inquire_remote_apic(int apicid)
672{
673 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
674 const char * const names[] = { "ID", "VERSION", "SPIV" };
675 int timeout;
676 u32 status;
677
678 pr_info("Inquiring remote APIC 0x%x...\n", apicid);
679
680 for (i = 0; i < ARRAY_SIZE(regs); i++) {
681 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
682
683 /*
684 * Wait for idle.
685 */
686 status = safe_apic_wait_icr_idle();
687 if (status)
688 pr_cont("a previous APIC delivery may have failed\n");
689
690 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
691
692 timeout = 0;
693 do {
694 udelay(100);
695 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
696 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
697
698 switch (status) {
699 case APIC_ICR_RR_VALID:
700 status = apic_read(APIC_RRR);
701 pr_cont("%08x\n", status);
702 break;
703 default:
704 pr_cont("failed\n");
705 }
706 }
707}
708
709/*
710 * The Multiprocessor Specification 1.4 (1997) example code suggests
711 * that there should be a 10ms delay between the BSP asserting INIT
712 * and de-asserting INIT, when starting a remote processor.
713 * But that slows boot and resume on modern processors, which include
714 * many cores and don't require that delay.
715 *
716 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
717 * Modern processor families are quirked to remove the delay entirely.
718 */
719#define UDELAY_10MS_DEFAULT 10000
720
721static unsigned int init_udelay = UINT_MAX;
722
723static int __init cpu_init_udelay(char *str)
724{
725 get_option(&str, &init_udelay);
726
727 return 0;
728}
729early_param("cpu_init_udelay", cpu_init_udelay);
730
731static void __init smp_quirk_init_udelay(void)
732{
733 /* if cmdline changed it from default, leave it alone */
734 if (init_udelay != UINT_MAX)
735 return;
736
737 /* if modern processor, use no delay */
738 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
739 ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
740 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
741 init_udelay = 0;
742 return;
743 }
744 /* else, use legacy delay */
745 init_udelay = UDELAY_10MS_DEFAULT;
746}
747
748/*
749 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
750 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
751 * won't ... remember to clear down the APIC, etc later.
752 */
753int
754wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
755{
756 u32 dm = apic->dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
757 unsigned long send_status, accept_status = 0;
758 int maxlvt;
759
760 /* Target chip */
761 /* Boot on the stack */
762 /* Kick the second */
763 apic_icr_write(APIC_DM_NMI | dm, apicid);
764
765 pr_debug("Waiting for send to finish...\n");
766 send_status = safe_apic_wait_icr_idle();
767
768 /*
769 * Give the other CPU some time to accept the IPI.
770 */
771 udelay(200);
772 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
773 maxlvt = lapic_get_maxlvt();
774 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
775 apic_write(APIC_ESR, 0);
776 accept_status = (apic_read(APIC_ESR) & 0xEF);
777 }
778 pr_debug("NMI sent\n");
779
780 if (send_status)
781 pr_err("APIC never delivered???\n");
782 if (accept_status)
783 pr_err("APIC delivery error (%lx)\n", accept_status);
784
785 return (send_status | accept_status);
786}
787
788static int
789wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
790{
791 unsigned long send_status = 0, accept_status = 0;
792 int maxlvt, num_starts, j;
793
794 maxlvt = lapic_get_maxlvt();
795
796 /*
797 * Be paranoid about clearing APIC errors.
798 */
799 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
800 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
801 apic_write(APIC_ESR, 0);
802 apic_read(APIC_ESR);
803 }
804
805 pr_debug("Asserting INIT\n");
806
807 /*
808 * Turn INIT on target chip
809 */
810 /*
811 * Send IPI
812 */
813 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
814 phys_apicid);
815
816 pr_debug("Waiting for send to finish...\n");
817 send_status = safe_apic_wait_icr_idle();
818
819 udelay(init_udelay);
820
821 pr_debug("Deasserting INIT\n");
822
823 /* Target chip */
824 /* Send IPI */
825 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
826
827 pr_debug("Waiting for send to finish...\n");
828 send_status = safe_apic_wait_icr_idle();
829
830 mb();
831
832 /*
833 * Should we send STARTUP IPIs ?
834 *
835 * Determine this based on the APIC version.
836 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
837 */
838 if (APIC_INTEGRATED(boot_cpu_apic_version))
839 num_starts = 2;
840 else
841 num_starts = 0;
842
843 /*
844 * Run STARTUP IPI loop.
845 */
846 pr_debug("#startup loops: %d\n", num_starts);
847
848 for (j = 1; j <= num_starts; j++) {
849 pr_debug("Sending STARTUP #%d\n", j);
850 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
851 apic_write(APIC_ESR, 0);
852 apic_read(APIC_ESR);
853 pr_debug("After apic_write\n");
854
855 /*
856 * STARTUP IPI
857 */
858
859 /* Target chip */
860 /* Boot on the stack */
861 /* Kick the second */
862 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
863 phys_apicid);
864
865 /*
866 * Give the other CPU some time to accept the IPI.
867 */
868 if (init_udelay == 0)
869 udelay(10);
870 else
871 udelay(300);
872
873 pr_debug("Startup point 1\n");
874
875 pr_debug("Waiting for send to finish...\n");
876 send_status = safe_apic_wait_icr_idle();
877
878 /*
879 * Give the other CPU some time to accept the IPI.
880 */
881 if (init_udelay == 0)
882 udelay(10);
883 else
884 udelay(200);
885
886 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
887 apic_write(APIC_ESR, 0);
888 accept_status = (apic_read(APIC_ESR) & 0xEF);
889 if (send_status || accept_status)
890 break;
891 }
892 pr_debug("After Startup\n");
893
894 if (send_status)
895 pr_err("APIC never delivered???\n");
896 if (accept_status)
897 pr_err("APIC delivery error (%lx)\n", accept_status);
898
899 return (send_status | accept_status);
900}
901
902/* reduce the number of lines printed when booting a large cpu count system */
903static void announce_cpu(int cpu, int apicid)
904{
905 static int current_node = NUMA_NO_NODE;
906 int node = early_cpu_to_node(cpu);
907 static int width, node_width;
908
909 if (!width)
910 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
911
912 if (!node_width)
913 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
914
915 if (cpu == 1)
916 printk(KERN_INFO "x86: Booting SMP configuration:\n");
917
918 if (system_state < SYSTEM_RUNNING) {
919 if (node != current_node) {
920 if (current_node > (-1))
921 pr_cont("\n");
922 current_node = node;
923
924 printk(KERN_INFO ".... node %*s#%d, CPUs: ",
925 node_width - num_digits(node), " ", node);
926 }
927
928 /* Add padding for the BSP */
929 if (cpu == 1)
930 pr_cont("%*s", width + 1, " ");
931
932 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
933
934 } else
935 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
936 node, cpu, apicid);
937}
938
939static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
940{
941 int cpu;
942
943 cpu = smp_processor_id();
944 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
945 return NMI_HANDLED;
946
947 return NMI_DONE;
948}
949
950/*
951 * Wake up AP by INIT, INIT, STARTUP sequence.
952 *
953 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
954 * boot-strap code which is not a desired behavior for waking up BSP. To
955 * void the boot-strap code, wake up CPU0 by NMI instead.
956 *
957 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
958 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
959 * We'll change this code in the future to wake up hard offlined CPU0 if
960 * real platform and request are available.
961 */
962static int
963wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
964 int *cpu0_nmi_registered)
965{
966 int id;
967 int boot_error;
968
969 preempt_disable();
970
971 /*
972 * Wake up AP by INIT, INIT, STARTUP sequence.
973 */
974 if (cpu) {
975 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
976 goto out;
977 }
978
979 /*
980 * Wake up BSP by nmi.
981 *
982 * Register a NMI handler to help wake up CPU0.
983 */
984 boot_error = register_nmi_handler(NMI_LOCAL,
985 wakeup_cpu0_nmi, 0, "wake_cpu0");
986
987 if (!boot_error) {
988 enable_start_cpu0 = 1;
989 *cpu0_nmi_registered = 1;
990 id = apic->dest_mode_logical ? cpu0_logical_apicid : apicid;
991 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
992 }
993
994out:
995 preempt_enable();
996
997 return boot_error;
998}
999
1000int common_cpu_up(unsigned int cpu, struct task_struct *idle)
1001{
1002 int ret;
1003
1004 /* Just in case we booted with a single CPU. */
1005 alternatives_enable_smp();
1006
1007 per_cpu(current_task, cpu) = idle;
1008 cpu_init_stack_canary(cpu, idle);
1009
1010 /* Initialize the interrupt stack(s) */
1011 ret = irq_init_percpu_irqstack(cpu);
1012 if (ret)
1013 return ret;
1014
1015#ifdef CONFIG_X86_32
1016 /* Stack for startup_32 can be just as for start_secondary onwards */
1017 per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1018#else
1019 initial_gs = per_cpu_offset(cpu);
1020#endif
1021 return 0;
1022}
1023
1024/*
1025 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1026 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1027 * Returns zero if CPU booted OK, else error code from
1028 * ->wakeup_secondary_cpu.
1029 */
1030static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1031 int *cpu0_nmi_registered)
1032{
1033 /* start_ip had better be page-aligned! */
1034 unsigned long start_ip = real_mode_header->trampoline_start;
1035
1036 unsigned long boot_error = 0;
1037 unsigned long timeout;
1038
1039 idle->thread.sp = (unsigned long)task_pt_regs(idle);
1040 early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1041 initial_code = (unsigned long)start_secondary;
1042 initial_stack = idle->thread.sp;
1043
1044 /* Enable the espfix hack for this CPU */
1045 init_espfix_ap(cpu);
1046
1047 /* So we see what's up */
1048 announce_cpu(cpu, apicid);
1049
1050 /*
1051 * This grunge runs the startup process for
1052 * the targeted processor.
1053 */
1054
1055 if (x86_platform.legacy.warm_reset) {
1056
1057 pr_debug("Setting warm reset code and vector.\n");
1058
1059 smpboot_setup_warm_reset_vector(start_ip);
1060 /*
1061 * Be paranoid about clearing APIC errors.
1062 */
1063 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1064 apic_write(APIC_ESR, 0);
1065 apic_read(APIC_ESR);
1066 }
1067 }
1068
1069 /*
1070 * AP might wait on cpu_callout_mask in cpu_init() with
1071 * cpu_initialized_mask set if previous attempt to online
1072 * it timed-out. Clear cpu_initialized_mask so that after
1073 * INIT/SIPI it could start with a clean state.
1074 */
1075 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1076 smp_mb();
1077
1078 /*
1079 * Wake up a CPU in difference cases:
1080 * - Use the method in the APIC driver if it's defined
1081 * Otherwise,
1082 * - Use an INIT boot APIC message for APs or NMI for BSP.
1083 */
1084 if (apic->wakeup_secondary_cpu)
1085 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1086 else
1087 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1088 cpu0_nmi_registered);
1089
1090 if (!boot_error) {
1091 /*
1092 * Wait 10s total for first sign of life from AP
1093 */
1094 boot_error = -1;
1095 timeout = jiffies + 10*HZ;
1096 while (time_before(jiffies, timeout)) {
1097 if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1098 /*
1099 * Tell AP to proceed with initialization
1100 */
1101 cpumask_set_cpu(cpu, cpu_callout_mask);
1102 boot_error = 0;
1103 break;
1104 }
1105 schedule();
1106 }
1107 }
1108
1109 if (!boot_error) {
1110 /*
1111 * Wait till AP completes initial initialization
1112 */
1113 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1114 /*
1115 * Allow other tasks to run while we wait for the
1116 * AP to come online. This also gives a chance
1117 * for the MTRR work(triggered by the AP coming online)
1118 * to be completed in the stop machine context.
1119 */
1120 schedule();
1121 }
1122 }
1123
1124 if (x86_platform.legacy.warm_reset) {
1125 /*
1126 * Cleanup possible dangling ends...
1127 */
1128 smpboot_restore_warm_reset_vector();
1129 }
1130
1131 return boot_error;
1132}
1133
1134int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1135{
1136 int apicid = apic->cpu_present_to_apicid(cpu);
1137 int cpu0_nmi_registered = 0;
1138 unsigned long flags;
1139 int err, ret = 0;
1140
1141 lockdep_assert_irqs_enabled();
1142
1143 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1144
1145 if (apicid == BAD_APICID ||
1146 !physid_isset(apicid, phys_cpu_present_map) ||
1147 !apic->apic_id_valid(apicid)) {
1148 pr_err("%s: bad cpu %d\n", __func__, cpu);
1149 return -EINVAL;
1150 }
1151
1152 /*
1153 * Already booted CPU?
1154 */
1155 if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1156 pr_debug("do_boot_cpu %d Already started\n", cpu);
1157 return -ENOSYS;
1158 }
1159
1160 /*
1161 * Save current MTRR state in case it was changed since early boot
1162 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1163 */
1164 mtrr_save_state();
1165
1166 /* x86 CPUs take themselves offline, so delayed offline is OK. */
1167 err = cpu_check_up_prepare(cpu);
1168 if (err && err != -EBUSY)
1169 return err;
1170
1171 /* the FPU context is blank, nobody can own it */
1172 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1173
1174 err = common_cpu_up(cpu, tidle);
1175 if (err)
1176 return err;
1177
1178 err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1179 if (err) {
1180 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1181 ret = -EIO;
1182 goto unreg_nmi;
1183 }
1184
1185 /*
1186 * Check TSC synchronization with the AP (keep irqs disabled
1187 * while doing so):
1188 */
1189 local_irq_save(flags);
1190 check_tsc_sync_source(cpu);
1191 local_irq_restore(flags);
1192
1193 while (!cpu_online(cpu)) {
1194 cpu_relax();
1195 touch_nmi_watchdog();
1196 }
1197
1198unreg_nmi:
1199 /*
1200 * Clean up the nmi handler. Do this after the callin and callout sync
1201 * to avoid impact of possible long unregister time.
1202 */
1203 if (cpu0_nmi_registered)
1204 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1205
1206 return ret;
1207}
1208
1209/**
1210 * arch_disable_smp_support() - disables SMP support for x86 at runtime
1211 */
1212void arch_disable_smp_support(void)
1213{
1214 disable_ioapic_support();
1215}
1216
1217/*
1218 * Fall back to non SMP mode after errors.
1219 *
1220 * RED-PEN audit/test this more. I bet there is more state messed up here.
1221 */
1222static __init void disable_smp(void)
1223{
1224 pr_info("SMP disabled\n");
1225
1226 disable_ioapic_support();
1227
1228 init_cpu_present(cpumask_of(0));
1229 init_cpu_possible(cpumask_of(0));
1230
1231 if (smp_found_config)
1232 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1233 else
1234 physid_set_mask_of_physid(0, &phys_cpu_present_map);
1235 cpumask_set_cpu(0, topology_sibling_cpumask(0));
1236 cpumask_set_cpu(0, topology_core_cpumask(0));
1237 cpumask_set_cpu(0, topology_die_cpumask(0));
1238}
1239
1240/*
1241 * Various sanity checks.
1242 */
1243static void __init smp_sanity_check(void)
1244{
1245 preempt_disable();
1246
1247#if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1248 if (def_to_bigsmp && nr_cpu_ids > 8) {
1249 unsigned int cpu;
1250 unsigned nr;
1251
1252 pr_warn("More than 8 CPUs detected - skipping them\n"
1253 "Use CONFIG_X86_BIGSMP\n");
1254
1255 nr = 0;
1256 for_each_present_cpu(cpu) {
1257 if (nr >= 8)
1258 set_cpu_present(cpu, false);
1259 nr++;
1260 }
1261
1262 nr = 0;
1263 for_each_possible_cpu(cpu) {
1264 if (nr >= 8)
1265 set_cpu_possible(cpu, false);
1266 nr++;
1267 }
1268
1269 nr_cpu_ids = 8;
1270 }
1271#endif
1272
1273 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1274 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1275 hard_smp_processor_id());
1276
1277 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1278 }
1279
1280 /*
1281 * Should not be necessary because the MP table should list the boot
1282 * CPU too, but we do it for the sake of robustness anyway.
1283 */
1284 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1285 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1286 boot_cpu_physical_apicid);
1287 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1288 }
1289 preempt_enable();
1290}
1291
1292static void __init smp_cpu_index_default(void)
1293{
1294 int i;
1295 struct cpuinfo_x86 *c;
1296
1297 for_each_possible_cpu(i) {
1298 c = &cpu_data(i);
1299 /* mark all to hotplug */
1300 c->cpu_index = nr_cpu_ids;
1301 }
1302}
1303
1304static void __init smp_get_logical_apicid(void)
1305{
1306 if (x2apic_mode)
1307 cpu0_logical_apicid = apic_read(APIC_LDR);
1308 else
1309 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1310}
1311
1312/*
1313 * Prepare for SMP bootup.
1314 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1315 * for common interface support.
1316 */
1317void __init native_smp_prepare_cpus(unsigned int max_cpus)
1318{
1319 unsigned int i;
1320
1321 smp_cpu_index_default();
1322
1323 /*
1324 * Setup boot CPU information
1325 */
1326 smp_store_boot_cpu_info(); /* Final full version of the data */
1327 cpumask_copy(cpu_callin_mask, cpumask_of(0));
1328 mb();
1329
1330 for_each_possible_cpu(i) {
1331 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1332 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1333 zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1334 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1335 }
1336
1337 /*
1338 * Set 'default' x86 topology, this matches default_topology() in that
1339 * it has NUMA nodes as a topology level. See also
1340 * native_smp_cpus_done().
1341 *
1342 * Must be done before set_cpus_sibling_map() is ran.
1343 */
1344 set_sched_topology(x86_topology);
1345
1346 set_cpu_sibling_map(0);
1347 init_freq_invariance(false, false);
1348 smp_sanity_check();
1349
1350 switch (apic_intr_mode) {
1351 case APIC_PIC:
1352 case APIC_VIRTUAL_WIRE_NO_CONFIG:
1353 disable_smp();
1354 return;
1355 case APIC_SYMMETRIC_IO_NO_ROUTING:
1356 disable_smp();
1357 /* Setup local timer */
1358 x86_init.timers.setup_percpu_clockev();
1359 return;
1360 case APIC_VIRTUAL_WIRE:
1361 case APIC_SYMMETRIC_IO:
1362 break;
1363 }
1364
1365 /* Setup local timer */
1366 x86_init.timers.setup_percpu_clockev();
1367
1368 smp_get_logical_apicid();
1369
1370 pr_info("CPU0: ");
1371 print_cpu_info(&cpu_data(0));
1372
1373 uv_system_init();
1374
1375 set_mtrr_aps_delayed_init();
1376
1377 smp_quirk_init_udelay();
1378
1379 speculative_store_bypass_ht_init();
1380}
1381
1382void arch_thaw_secondary_cpus_begin(void)
1383{
1384 set_mtrr_aps_delayed_init();
1385}
1386
1387void arch_thaw_secondary_cpus_end(void)
1388{
1389 mtrr_aps_init();
1390}
1391
1392/*
1393 * Early setup to make printk work.
1394 */
1395void __init native_smp_prepare_boot_cpu(void)
1396{
1397 int me = smp_processor_id();
1398 switch_to_new_gdt(me);
1399 /* already set me in cpu_online_mask in boot_cpu_init() */
1400 cpumask_set_cpu(me, cpu_callout_mask);
1401 cpu_set_state_online(me);
1402 native_pv_lock_init();
1403}
1404
1405void __init calculate_max_logical_packages(void)
1406{
1407 int ncpus;
1408
1409 /*
1410 * Today neither Intel nor AMD support heterogeneous systems so
1411 * extrapolate the boot cpu's data to all packages.
1412 */
1413 ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1414 __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1415 pr_info("Max logical packages: %u\n", __max_logical_packages);
1416}
1417
1418void __init native_smp_cpus_done(unsigned int max_cpus)
1419{
1420 pr_debug("Boot done\n");
1421
1422 calculate_max_logical_packages();
1423
1424 if (x86_has_numa_in_package)
1425 set_sched_topology(x86_numa_in_package_topology);
1426
1427 nmi_selftest();
1428 impress_friends();
1429 mtrr_aps_init();
1430}
1431
1432static int __initdata setup_possible_cpus = -1;
1433static int __init _setup_possible_cpus(char *str)
1434{
1435 get_option(&str, &setup_possible_cpus);
1436 return 0;
1437}
1438early_param("possible_cpus", _setup_possible_cpus);
1439
1440
1441/*
1442 * cpu_possible_mask should be static, it cannot change as cpu's
1443 * are onlined, or offlined. The reason is per-cpu data-structures
1444 * are allocated by some modules at init time, and don't expect to
1445 * do this dynamically on cpu arrival/departure.
1446 * cpu_present_mask on the other hand can change dynamically.
1447 * In case when cpu_hotplug is not compiled, then we resort to current
1448 * behaviour, which is cpu_possible == cpu_present.
1449 * - Ashok Raj
1450 *
1451 * Three ways to find out the number of additional hotplug CPUs:
1452 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1453 * - The user can overwrite it with possible_cpus=NUM
1454 * - Otherwise don't reserve additional CPUs.
1455 * We do this because additional CPUs waste a lot of memory.
1456 * -AK
1457 */
1458__init void prefill_possible_map(void)
1459{
1460 int i, possible;
1461
1462 /* No boot processor was found in mptable or ACPI MADT */
1463 if (!num_processors) {
1464 if (boot_cpu_has(X86_FEATURE_APIC)) {
1465 int apicid = boot_cpu_physical_apicid;
1466 int cpu = hard_smp_processor_id();
1467
1468 pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1469
1470 /* Make sure boot cpu is enumerated */
1471 if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1472 apic->apic_id_valid(apicid))
1473 generic_processor_info(apicid, boot_cpu_apic_version);
1474 }
1475
1476 if (!num_processors)
1477 num_processors = 1;
1478 }
1479
1480 i = setup_max_cpus ?: 1;
1481 if (setup_possible_cpus == -1) {
1482 possible = num_processors;
1483#ifdef CONFIG_HOTPLUG_CPU
1484 if (setup_max_cpus)
1485 possible += disabled_cpus;
1486#else
1487 if (possible > i)
1488 possible = i;
1489#endif
1490 } else
1491 possible = setup_possible_cpus;
1492
1493 total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1494
1495 /* nr_cpu_ids could be reduced via nr_cpus= */
1496 if (possible > nr_cpu_ids) {
1497 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1498 possible, nr_cpu_ids);
1499 possible = nr_cpu_ids;
1500 }
1501
1502#ifdef CONFIG_HOTPLUG_CPU
1503 if (!setup_max_cpus)
1504#endif
1505 if (possible > i) {
1506 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1507 possible, setup_max_cpus);
1508 possible = i;
1509 }
1510
1511 nr_cpu_ids = possible;
1512
1513 pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1514 possible, max_t(int, possible - num_processors, 0));
1515
1516 reset_cpu_possible_mask();
1517
1518 for (i = 0; i < possible; i++)
1519 set_cpu_possible(i, true);
1520}
1521
1522#ifdef CONFIG_HOTPLUG_CPU
1523
1524/* Recompute SMT state for all CPUs on offline */
1525static void recompute_smt_state(void)
1526{
1527 int max_threads, cpu;
1528
1529 max_threads = 0;
1530 for_each_online_cpu (cpu) {
1531 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1532
1533 if (threads > max_threads)
1534 max_threads = threads;
1535 }
1536 __max_smt_threads = max_threads;
1537}
1538
1539static void remove_siblinginfo(int cpu)
1540{
1541 int sibling;
1542 struct cpuinfo_x86 *c = &cpu_data(cpu);
1543
1544 for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1545 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1546 /*/
1547 * last thread sibling in this cpu core going down
1548 */
1549 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1550 cpu_data(sibling).booted_cores--;
1551 }
1552
1553 for_each_cpu(sibling, topology_die_cpumask(cpu))
1554 cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1555 for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1556 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1557 for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1558 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1559 cpumask_clear(cpu_llc_shared_mask(cpu));
1560 cpumask_clear(topology_sibling_cpumask(cpu));
1561 cpumask_clear(topology_core_cpumask(cpu));
1562 cpumask_clear(topology_die_cpumask(cpu));
1563 c->cpu_core_id = 0;
1564 c->booted_cores = 0;
1565 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1566 recompute_smt_state();
1567}
1568
1569static void remove_cpu_from_maps(int cpu)
1570{
1571 set_cpu_online(cpu, false);
1572 cpumask_clear_cpu(cpu, cpu_callout_mask);
1573 cpumask_clear_cpu(cpu, cpu_callin_mask);
1574 /* was set by cpu_init() */
1575 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1576 numa_remove_cpu(cpu);
1577}
1578
1579void cpu_disable_common(void)
1580{
1581 int cpu = smp_processor_id();
1582
1583 remove_siblinginfo(cpu);
1584
1585 /* It's now safe to remove this processor from the online map */
1586 lock_vector_lock();
1587 remove_cpu_from_maps(cpu);
1588 unlock_vector_lock();
1589 fixup_irqs();
1590 lapic_offline();
1591}
1592
1593int native_cpu_disable(void)
1594{
1595 int ret;
1596
1597 ret = lapic_can_unplug_cpu();
1598 if (ret)
1599 return ret;
1600
1601 cpu_disable_common();
1602
1603 /*
1604 * Disable the local APIC. Otherwise IPI broadcasts will reach
1605 * it. It still responds normally to INIT, NMI, SMI, and SIPI
1606 * messages.
1607 *
1608 * Disabling the APIC must happen after cpu_disable_common()
1609 * which invokes fixup_irqs().
1610 *
1611 * Disabling the APIC preserves already set bits in IRR, but
1612 * an interrupt arriving after disabling the local APIC does not
1613 * set the corresponding IRR bit.
1614 *
1615 * fixup_irqs() scans IRR for set bits so it can raise a not
1616 * yet handled interrupt on the new destination CPU via an IPI
1617 * but obviously it can't do so for IRR bits which are not set.
1618 * IOW, interrupts arriving after disabling the local APIC will
1619 * be lost.
1620 */
1621 apic_soft_disable();
1622
1623 return 0;
1624}
1625
1626int common_cpu_die(unsigned int cpu)
1627{
1628 int ret = 0;
1629
1630 /* We don't do anything here: idle task is faking death itself. */
1631
1632 /* They ack this in play_dead() by setting CPU_DEAD */
1633 if (cpu_wait_death(cpu, 5)) {
1634 if (system_state == SYSTEM_RUNNING)
1635 pr_info("CPU %u is now offline\n", cpu);
1636 } else {
1637 pr_err("CPU %u didn't die...\n", cpu);
1638 ret = -1;
1639 }
1640
1641 return ret;
1642}
1643
1644void native_cpu_die(unsigned int cpu)
1645{
1646 common_cpu_die(cpu);
1647}
1648
1649void play_dead_common(void)
1650{
1651 idle_task_exit();
1652
1653 /* Ack it */
1654 (void)cpu_report_death();
1655
1656 /*
1657 * With physical CPU hotplug, we should halt the cpu
1658 */
1659 local_irq_disable();
1660}
1661
1662/**
1663 * cond_wakeup_cpu0 - Wake up CPU0 if needed.
1664 *
1665 * If NMI wants to wake up CPU0, start CPU0.
1666 */
1667void cond_wakeup_cpu0(void)
1668{
1669 if (smp_processor_id() == 0 && enable_start_cpu0)
1670 start_cpu0();
1671}
1672EXPORT_SYMBOL_GPL(cond_wakeup_cpu0);
1673
1674/*
1675 * We need to flush the caches before going to sleep, lest we have
1676 * dirty data in our caches when we come back up.
1677 */
1678static inline void mwait_play_dead(void)
1679{
1680 unsigned int eax, ebx, ecx, edx;
1681 unsigned int highest_cstate = 0;
1682 unsigned int highest_subcstate = 0;
1683 void *mwait_ptr;
1684 int i;
1685
1686 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1687 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1688 return;
1689 if (!this_cpu_has(X86_FEATURE_MWAIT))
1690 return;
1691 if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1692 return;
1693 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1694 return;
1695
1696 eax = CPUID_MWAIT_LEAF;
1697 ecx = 0;
1698 native_cpuid(&eax, &ebx, &ecx, &edx);
1699
1700 /*
1701 * eax will be 0 if EDX enumeration is not valid.
1702 * Initialized below to cstate, sub_cstate value when EDX is valid.
1703 */
1704 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1705 eax = 0;
1706 } else {
1707 edx >>= MWAIT_SUBSTATE_SIZE;
1708 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1709 if (edx & MWAIT_SUBSTATE_MASK) {
1710 highest_cstate = i;
1711 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1712 }
1713 }
1714 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1715 (highest_subcstate - 1);
1716 }
1717
1718 /*
1719 * This should be a memory location in a cache line which is
1720 * unlikely to be touched by other processors. The actual
1721 * content is immaterial as it is not actually modified in any way.
1722 */
1723 mwait_ptr = ¤t_thread_info()->flags;
1724
1725 wbinvd();
1726
1727 while (1) {
1728 /*
1729 * The CLFLUSH is a workaround for erratum AAI65 for
1730 * the Xeon 7400 series. It's not clear it is actually
1731 * needed, but it should be harmless in either case.
1732 * The WBINVD is insufficient due to the spurious-wakeup
1733 * case where we return around the loop.
1734 */
1735 mb();
1736 clflush(mwait_ptr);
1737 mb();
1738 __monitor(mwait_ptr, 0, 0);
1739 mb();
1740 __mwait(eax, 0);
1741
1742 cond_wakeup_cpu0();
1743 }
1744}
1745
1746void hlt_play_dead(void)
1747{
1748 if (__this_cpu_read(cpu_info.x86) >= 4)
1749 wbinvd();
1750
1751 while (1) {
1752 native_halt();
1753
1754 cond_wakeup_cpu0();
1755 }
1756}
1757
1758void native_play_dead(void)
1759{
1760 play_dead_common();
1761 tboot_shutdown(TB_SHUTDOWN_WFS);
1762
1763 mwait_play_dead(); /* Only returns on failure */
1764 if (cpuidle_play_dead())
1765 hlt_play_dead();
1766}
1767
1768#else /* ... !CONFIG_HOTPLUG_CPU */
1769int native_cpu_disable(void)
1770{
1771 return -ENOSYS;
1772}
1773
1774void native_cpu_die(unsigned int cpu)
1775{
1776 /* We said "no" in __cpu_disable */
1777 BUG();
1778}
1779
1780void native_play_dead(void)
1781{
1782 BUG();
1783}
1784
1785#endif
1786
1787#ifdef CONFIG_X86_64
1788/*
1789 * APERF/MPERF frequency ratio computation.
1790 *
1791 * The scheduler wants to do frequency invariant accounting and needs a <1
1792 * ratio to account for the 'current' frequency, corresponding to
1793 * freq_curr / freq_max.
1794 *
1795 * Since the frequency freq_curr on x86 is controlled by micro-controller and
1796 * our P-state setting is little more than a request/hint, we need to observe
1797 * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1798 * interval after discarding idle time. This is given by:
1799 *
1800 * BusyMHz = delta_APERF / delta_MPERF * freq_base
1801 *
1802 * where freq_base is the max non-turbo P-state.
1803 *
1804 * The freq_max term has to be set to a somewhat arbitrary value, because we
1805 * can't know which turbo states will be available at a given point in time:
1806 * it all depends on the thermal headroom of the entire package. We set it to
1807 * the turbo level with 4 cores active.
1808 *
1809 * Benchmarks show that's a good compromise between the 1C turbo ratio
1810 * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1811 * which would ignore the entire turbo range (a conspicuous part, making
1812 * freq_curr/freq_max always maxed out).
1813 *
1814 * An exception to the heuristic above is the Atom uarch, where we choose the
1815 * highest turbo level for freq_max since Atom's are generally oriented towards
1816 * power efficiency.
1817 *
1818 * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1819 * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1820 */
1821
1822DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1823
1824static DEFINE_PER_CPU(u64, arch_prev_aperf);
1825static DEFINE_PER_CPU(u64, arch_prev_mperf);
1826static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1827static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1828
1829void arch_set_max_freq_ratio(bool turbo_disabled)
1830{
1831 arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1832 arch_turbo_freq_ratio;
1833}
1834EXPORT_SYMBOL_GPL(arch_set_max_freq_ratio);
1835
1836static bool turbo_disabled(void)
1837{
1838 u64 misc_en;
1839 int err;
1840
1841 err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1842 if (err)
1843 return false;
1844
1845 return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1846}
1847
1848static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1849{
1850 int err;
1851
1852 err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1853 if (err)
1854 return false;
1855
1856 err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1857 if (err)
1858 return false;
1859
1860 *base_freq = (*base_freq >> 16) & 0x3F; /* max P state */
1861 *turbo_freq = *turbo_freq & 0x3F; /* 1C turbo */
1862
1863 return true;
1864}
1865
1866#define X86_MATCH(model) \
1867 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, \
1868 INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
1869
1870static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1871 X86_MATCH(XEON_PHI_KNL),
1872 X86_MATCH(XEON_PHI_KNM),
1873 {}
1874};
1875
1876static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1877 X86_MATCH(SKYLAKE_X),
1878 {}
1879};
1880
1881static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1882 X86_MATCH(ATOM_GOLDMONT),
1883 X86_MATCH(ATOM_GOLDMONT_D),
1884 X86_MATCH(ATOM_GOLDMONT_PLUS),
1885 {}
1886};
1887
1888static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1889 int num_delta_fratio)
1890{
1891 int fratio, delta_fratio, found;
1892 int err, i;
1893 u64 msr;
1894
1895 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1896 if (err)
1897 return false;
1898
1899 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1900
1901 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1902 if (err)
1903 return false;
1904
1905 fratio = (msr >> 8) & 0xFF;
1906 i = 16;
1907 found = 0;
1908 do {
1909 if (found >= num_delta_fratio) {
1910 *turbo_freq = fratio;
1911 return true;
1912 }
1913
1914 delta_fratio = (msr >> (i + 5)) & 0x7;
1915
1916 if (delta_fratio) {
1917 found += 1;
1918 fratio -= delta_fratio;
1919 }
1920
1921 i += 8;
1922 } while (i < 64);
1923
1924 return true;
1925}
1926
1927static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1928{
1929 u64 ratios, counts;
1930 u32 group_size;
1931 int err, i;
1932
1933 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1934 if (err)
1935 return false;
1936
1937 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1938
1939 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1940 if (err)
1941 return false;
1942
1943 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1944 if (err)
1945 return false;
1946
1947 for (i = 0; i < 64; i += 8) {
1948 group_size = (counts >> i) & 0xFF;
1949 if (group_size >= size) {
1950 *turbo_freq = (ratios >> i) & 0xFF;
1951 return true;
1952 }
1953 }
1954
1955 return false;
1956}
1957
1958static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1959{
1960 u64 msr;
1961 int err;
1962
1963 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1964 if (err)
1965 return false;
1966
1967 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1968 if (err)
1969 return false;
1970
1971 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1972 *turbo_freq = (msr >> 24) & 0xFF; /* 4C turbo */
1973
1974 /* The CPU may have less than 4 cores */
1975 if (!*turbo_freq)
1976 *turbo_freq = msr & 0xFF; /* 1C turbo */
1977
1978 return true;
1979}
1980
1981static bool intel_set_max_freq_ratio(void)
1982{
1983 u64 base_freq, turbo_freq;
1984 u64 turbo_ratio;
1985
1986 if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1987 goto out;
1988
1989 if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
1990 skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1991 goto out;
1992
1993 if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
1994 knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1995 goto out;
1996
1997 if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
1998 skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
1999 goto out;
2000
2001 if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
2002 goto out;
2003
2004 return false;
2005
2006out:
2007 /*
2008 * Some hypervisors advertise X86_FEATURE_APERFMPERF
2009 * but then fill all MSR's with zeroes.
2010 * Some CPUs have turbo boost but don't declare any turbo ratio
2011 * in MSR_TURBO_RATIO_LIMIT.
2012 */
2013 if (!base_freq || !turbo_freq) {
2014 pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
2015 return false;
2016 }
2017
2018 turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
2019 if (!turbo_ratio) {
2020 pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
2021 return false;
2022 }
2023
2024 arch_turbo_freq_ratio = turbo_ratio;
2025 arch_set_max_freq_ratio(turbo_disabled());
2026
2027 return true;
2028}
2029
2030#ifdef CONFIG_ACPI_CPPC_LIB
2031static bool amd_set_max_freq_ratio(void)
2032{
2033 struct cppc_perf_caps perf_caps;
2034 u64 highest_perf, nominal_perf;
2035 u64 perf_ratio;
2036 int rc;
2037
2038 rc = cppc_get_perf_caps(0, &perf_caps);
2039 if (rc) {
2040 pr_debug("Could not retrieve perf counters (%d)\n", rc);
2041 return false;
2042 }
2043
2044 highest_perf = amd_get_highest_perf();
2045 nominal_perf = perf_caps.nominal_perf;
2046
2047 if (!highest_perf || !nominal_perf) {
2048 pr_debug("Could not retrieve highest or nominal performance\n");
2049 return false;
2050 }
2051
2052 perf_ratio = div_u64(highest_perf * SCHED_CAPACITY_SCALE, nominal_perf);
2053 /* midpoint between max_boost and max_P */
2054 perf_ratio = (perf_ratio + SCHED_CAPACITY_SCALE) >> 1;
2055 if (!perf_ratio) {
2056 pr_debug("Non-zero highest/nominal perf values led to a 0 ratio\n");
2057 return false;
2058 }
2059
2060 arch_turbo_freq_ratio = perf_ratio;
2061 arch_set_max_freq_ratio(false);
2062
2063 return true;
2064}
2065#else
2066static bool amd_set_max_freq_ratio(void)
2067{
2068 return false;
2069}
2070#endif
2071
2072static void init_counter_refs(void)
2073{
2074 u64 aperf, mperf;
2075
2076 rdmsrl(MSR_IA32_APERF, aperf);
2077 rdmsrl(MSR_IA32_MPERF, mperf);
2078
2079 this_cpu_write(arch_prev_aperf, aperf);
2080 this_cpu_write(arch_prev_mperf, mperf);
2081}
2082
2083#ifdef CONFIG_PM_SLEEP
2084static struct syscore_ops freq_invariance_syscore_ops = {
2085 .resume = init_counter_refs,
2086};
2087
2088static void register_freq_invariance_syscore_ops(void)
2089{
2090 /* Bail out if registered already. */
2091 if (freq_invariance_syscore_ops.node.prev)
2092 return;
2093
2094 register_syscore_ops(&freq_invariance_syscore_ops);
2095}
2096#else
2097static inline void register_freq_invariance_syscore_ops(void) {}
2098#endif
2099
2100static void init_freq_invariance(bool secondary, bool cppc_ready)
2101{
2102 bool ret = false;
2103
2104 if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
2105 return;
2106
2107 if (secondary) {
2108 if (static_branch_likely(&arch_scale_freq_key)) {
2109 init_counter_refs();
2110 }
2111 return;
2112 }
2113
2114 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2115 ret = intel_set_max_freq_ratio();
2116 else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
2117 if (!cppc_ready) {
2118 return;
2119 }
2120 ret = amd_set_max_freq_ratio();
2121 }
2122
2123 if (ret) {
2124 init_counter_refs();
2125 static_branch_enable(&arch_scale_freq_key);
2126 register_freq_invariance_syscore_ops();
2127 pr_info("Estimated ratio of average max frequency by base frequency (times 1024): %llu\n", arch_max_freq_ratio);
2128 } else {
2129 pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2130 }
2131}
2132
2133#ifdef CONFIG_ACPI_CPPC_LIB
2134static DEFINE_MUTEX(freq_invariance_lock);
2135
2136void init_freq_invariance_cppc(void)
2137{
2138 static bool secondary;
2139
2140 mutex_lock(&freq_invariance_lock);
2141
2142 init_freq_invariance(secondary, true);
2143 secondary = true;
2144
2145 mutex_unlock(&freq_invariance_lock);
2146}
2147#endif
2148
2149static void disable_freq_invariance_workfn(struct work_struct *work)
2150{
2151 static_branch_disable(&arch_scale_freq_key);
2152}
2153
2154static DECLARE_WORK(disable_freq_invariance_work,
2155 disable_freq_invariance_workfn);
2156
2157DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2158
2159void arch_scale_freq_tick(void)
2160{
2161 u64 freq_scale = SCHED_CAPACITY_SCALE;
2162 u64 aperf, mperf;
2163 u64 acnt, mcnt;
2164
2165 if (!arch_scale_freq_invariant())
2166 return;
2167
2168 rdmsrl(MSR_IA32_APERF, aperf);
2169 rdmsrl(MSR_IA32_MPERF, mperf);
2170
2171 acnt = aperf - this_cpu_read(arch_prev_aperf);
2172 mcnt = mperf - this_cpu_read(arch_prev_mperf);
2173
2174 this_cpu_write(arch_prev_aperf, aperf);
2175 this_cpu_write(arch_prev_mperf, mperf);
2176
2177 if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
2178 goto error;
2179
2180 if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt)
2181 goto error;
2182
2183 freq_scale = div64_u64(acnt, mcnt);
2184 if (!freq_scale)
2185 goto error;
2186
2187 if (freq_scale > SCHED_CAPACITY_SCALE)
2188 freq_scale = SCHED_CAPACITY_SCALE;
2189
2190 this_cpu_write(arch_freq_scale, freq_scale);
2191 return;
2192
2193error:
2194 pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
2195 schedule_work(&disable_freq_invariance_work);
2196}
2197#else
2198static inline void init_freq_invariance(bool secondary, bool cppc_ready)
2199{
2200}
2201#endif /* CONFIG_X86_64 */