Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2009 Sunplus Core Technology Co., Ltd.
4 * Lennox Wu <lennox.wu@sunplusct.com>
5 * Chen Liqin <liqin.chen@sunplusct.com>
6 * Copyright (C) 2012 Regents of the University of California
7 */
8
9
10#include <linux/mm.h>
11#include <linux/kernel.h>
12#include <linux/interrupt.h>
13#include <linux/perf_event.h>
14#include <linux/signal.h>
15#include <linux/uaccess.h>
16
17#include <asm/ptrace.h>
18#include <asm/tlbflush.h>
19
20#include "../kernel/head.h"
21
22/*
23 * This routine handles page faults. It determines the address and the
24 * problem, and then passes it off to one of the appropriate routines.
25 */
26asmlinkage void do_page_fault(struct pt_regs *regs)
27{
28 struct task_struct *tsk;
29 struct vm_area_struct *vma;
30 struct mm_struct *mm;
31 unsigned long addr, cause;
32 unsigned int flags = FAULT_FLAG_DEFAULT;
33 int code = SEGV_MAPERR;
34 vm_fault_t fault;
35
36 cause = regs->cause;
37 addr = regs->badaddr;
38
39 tsk = current;
40 mm = tsk->mm;
41
42 /*
43 * Fault-in kernel-space virtual memory on-demand.
44 * The 'reference' page table is init_mm.pgd.
45 *
46 * NOTE! We MUST NOT take any locks for this case. We may
47 * be in an interrupt or a critical region, and should
48 * only copy the information from the master page table,
49 * nothing more.
50 */
51 if (unlikely((addr >= VMALLOC_START) && (addr <= VMALLOC_END)))
52 goto vmalloc_fault;
53
54 /* Enable interrupts if they were enabled in the parent context. */
55 if (likely(regs->status & SR_PIE))
56 local_irq_enable();
57
58 /*
59 * If we're in an interrupt, have no user context, or are running
60 * in an atomic region, then we must not take the fault.
61 */
62 if (unlikely(faulthandler_disabled() || !mm))
63 goto no_context;
64
65 if (user_mode(regs))
66 flags |= FAULT_FLAG_USER;
67
68 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
69
70retry:
71 mmap_read_lock(mm);
72 vma = find_vma(mm, addr);
73 if (unlikely(!vma))
74 goto bad_area;
75 if (likely(vma->vm_start <= addr))
76 goto good_area;
77 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
78 goto bad_area;
79 if (unlikely(expand_stack(vma, addr)))
80 goto bad_area;
81
82 /*
83 * Ok, we have a good vm_area for this memory access, so
84 * we can handle it.
85 */
86good_area:
87 code = SEGV_ACCERR;
88
89 switch (cause) {
90 case EXC_INST_PAGE_FAULT:
91 if (!(vma->vm_flags & VM_EXEC))
92 goto bad_area;
93 break;
94 case EXC_LOAD_PAGE_FAULT:
95 if (!(vma->vm_flags & VM_READ))
96 goto bad_area;
97 break;
98 case EXC_STORE_PAGE_FAULT:
99 if (!(vma->vm_flags & VM_WRITE))
100 goto bad_area;
101 flags |= FAULT_FLAG_WRITE;
102 break;
103 default:
104 panic("%s: unhandled cause %lu", __func__, cause);
105 }
106
107 /*
108 * If for any reason at all we could not handle the fault,
109 * make sure we exit gracefully rather than endlessly redo
110 * the fault.
111 */
112 fault = handle_mm_fault(vma, addr, flags, regs);
113
114 /*
115 * If we need to retry but a fatal signal is pending, handle the
116 * signal first. We do not need to release the mmap_lock because it
117 * would already be released in __lock_page_or_retry in mm/filemap.c.
118 */
119 if (fault_signal_pending(fault, regs))
120 return;
121
122 if (unlikely(fault & VM_FAULT_ERROR)) {
123 if (fault & VM_FAULT_OOM)
124 goto out_of_memory;
125 else if (fault & VM_FAULT_SIGBUS)
126 goto do_sigbus;
127 BUG();
128 }
129
130 if (flags & FAULT_FLAG_ALLOW_RETRY) {
131 if (fault & VM_FAULT_RETRY) {
132 flags |= FAULT_FLAG_TRIED;
133
134 /*
135 * No need to mmap_read_unlock(mm) as we would
136 * have already released it in __lock_page_or_retry
137 * in mm/filemap.c.
138 */
139 goto retry;
140 }
141 }
142
143 mmap_read_unlock(mm);
144 return;
145
146 /*
147 * Something tried to access memory that isn't in our memory map.
148 * Fix it, but check if it's kernel or user first.
149 */
150bad_area:
151 mmap_read_unlock(mm);
152 /* User mode accesses just cause a SIGSEGV */
153 if (user_mode(regs)) {
154 do_trap(regs, SIGSEGV, code, addr);
155 return;
156 }
157
158no_context:
159 /* Are we prepared to handle this kernel fault? */
160 if (fixup_exception(regs))
161 return;
162
163 /*
164 * Oops. The kernel tried to access some bad page. We'll have to
165 * terminate things with extreme prejudice.
166 */
167 bust_spinlocks(1);
168 pr_alert("Unable to handle kernel %s at virtual address " REG_FMT "\n",
169 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
170 "paging request", addr);
171 die(regs, "Oops");
172 do_exit(SIGKILL);
173
174 /*
175 * We ran out of memory, call the OOM killer, and return the userspace
176 * (which will retry the fault, or kill us if we got oom-killed).
177 */
178out_of_memory:
179 mmap_read_unlock(mm);
180 if (!user_mode(regs))
181 goto no_context;
182 pagefault_out_of_memory();
183 return;
184
185do_sigbus:
186 mmap_read_unlock(mm);
187 /* Kernel mode? Handle exceptions or die */
188 if (!user_mode(regs))
189 goto no_context;
190 do_trap(regs, SIGBUS, BUS_ADRERR, addr);
191 return;
192
193vmalloc_fault:
194 {
195 pgd_t *pgd, *pgd_k;
196 pud_t *pud, *pud_k;
197 p4d_t *p4d, *p4d_k;
198 pmd_t *pmd, *pmd_k;
199 pte_t *pte_k;
200 int index;
201
202 /* User mode accesses just cause a SIGSEGV */
203 if (user_mode(regs))
204 return do_trap(regs, SIGSEGV, code, addr);
205
206 /*
207 * Synchronize this task's top level page-table
208 * with the 'reference' page table.
209 *
210 * Do _not_ use "tsk->active_mm->pgd" here.
211 * We might be inside an interrupt in the middle
212 * of a task switch.
213 */
214 index = pgd_index(addr);
215 pgd = (pgd_t *)pfn_to_virt(csr_read(CSR_SATP)) + index;
216 pgd_k = init_mm.pgd + index;
217
218 if (!pgd_present(*pgd_k))
219 goto no_context;
220 set_pgd(pgd, *pgd_k);
221
222 p4d = p4d_offset(pgd, addr);
223 p4d_k = p4d_offset(pgd_k, addr);
224 if (!p4d_present(*p4d_k))
225 goto no_context;
226
227 pud = pud_offset(p4d, addr);
228 pud_k = pud_offset(p4d_k, addr);
229 if (!pud_present(*pud_k))
230 goto no_context;
231
232 /*
233 * Since the vmalloc area is global, it is unnecessary
234 * to copy individual PTEs
235 */
236 pmd = pmd_offset(pud, addr);
237 pmd_k = pmd_offset(pud_k, addr);
238 if (!pmd_present(*pmd_k))
239 goto no_context;
240 set_pmd(pmd, *pmd_k);
241
242 /*
243 * Make sure the actual PTE exists as well to
244 * catch kernel vmalloc-area accesses to non-mapped
245 * addresses. If we don't do this, this will just
246 * silently loop forever.
247 */
248 pte_k = pte_offset_kernel(pmd_k, addr);
249 if (!pte_present(*pte_k))
250 goto no_context;
251
252 /*
253 * The kernel assumes that TLBs don't cache invalid
254 * entries, but in RISC-V, SFENCE.VMA specifies an
255 * ordering constraint, not a cache flush; it is
256 * necessary even after writing invalid entries.
257 */
258 local_flush_tlb_page(addr);
259
260 return;
261 }
262}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2009 Sunplus Core Technology Co., Ltd.
4 * Lennox Wu <lennox.wu@sunplusct.com>
5 * Chen Liqin <liqin.chen@sunplusct.com>
6 * Copyright (C) 2012 Regents of the University of California
7 */
8
9
10#include <linux/mm.h>
11#include <linux/kernel.h>
12#include <linux/interrupt.h>
13#include <linux/perf_event.h>
14#include <linux/signal.h>
15#include <linux/uaccess.h>
16#include <linux/kprobes.h>
17#include <linux/kfence.h>
18
19#include <asm/ptrace.h>
20#include <asm/tlbflush.h>
21
22#include "../kernel/head.h"
23
24static void die_kernel_fault(const char *msg, unsigned long addr,
25 struct pt_regs *regs)
26{
27 bust_spinlocks(1);
28
29 pr_alert("Unable to handle kernel %s at virtual address " REG_FMT "\n", msg,
30 addr);
31
32 bust_spinlocks(0);
33 die(regs, "Oops");
34 do_exit(SIGKILL);
35}
36
37static inline void no_context(struct pt_regs *regs, unsigned long addr)
38{
39 const char *msg;
40
41 /* Are we prepared to handle this kernel fault? */
42 if (fixup_exception(regs))
43 return;
44
45 /*
46 * Oops. The kernel tried to access some bad page. We'll have to
47 * terminate things with extreme prejudice.
48 */
49 if (addr < PAGE_SIZE)
50 msg = "NULL pointer dereference";
51 else {
52 if (kfence_handle_page_fault(addr, regs->cause == EXC_STORE_PAGE_FAULT, regs))
53 return;
54
55 msg = "paging request";
56 }
57
58 die_kernel_fault(msg, addr, regs);
59}
60
61static inline void mm_fault_error(struct pt_regs *regs, unsigned long addr, vm_fault_t fault)
62{
63 if (fault & VM_FAULT_OOM) {
64 /*
65 * We ran out of memory, call the OOM killer, and return the userspace
66 * (which will retry the fault, or kill us if we got oom-killed).
67 */
68 if (!user_mode(regs)) {
69 no_context(regs, addr);
70 return;
71 }
72 pagefault_out_of_memory();
73 return;
74 } else if (fault & VM_FAULT_SIGBUS) {
75 /* Kernel mode? Handle exceptions or die */
76 if (!user_mode(regs)) {
77 no_context(regs, addr);
78 return;
79 }
80 do_trap(regs, SIGBUS, BUS_ADRERR, addr);
81 return;
82 }
83 BUG();
84}
85
86static inline void bad_area(struct pt_regs *regs, struct mm_struct *mm, int code, unsigned long addr)
87{
88 /*
89 * Something tried to access memory that isn't in our memory map.
90 * Fix it, but check if it's kernel or user first.
91 */
92 mmap_read_unlock(mm);
93 /* User mode accesses just cause a SIGSEGV */
94 if (user_mode(regs)) {
95 do_trap(regs, SIGSEGV, code, addr);
96 return;
97 }
98
99 no_context(regs, addr);
100}
101
102static inline void vmalloc_fault(struct pt_regs *regs, int code, unsigned long addr)
103{
104 pgd_t *pgd, *pgd_k;
105 pud_t *pud, *pud_k;
106 p4d_t *p4d, *p4d_k;
107 pmd_t *pmd, *pmd_k;
108 pte_t *pte_k;
109 int index;
110 unsigned long pfn;
111
112 /* User mode accesses just cause a SIGSEGV */
113 if (user_mode(regs))
114 return do_trap(regs, SIGSEGV, code, addr);
115
116 /*
117 * Synchronize this task's top level page-table
118 * with the 'reference' page table.
119 *
120 * Do _not_ use "tsk->active_mm->pgd" here.
121 * We might be inside an interrupt in the middle
122 * of a task switch.
123 */
124 index = pgd_index(addr);
125 pfn = csr_read(CSR_SATP) & SATP_PPN;
126 pgd = (pgd_t *)pfn_to_virt(pfn) + index;
127 pgd_k = init_mm.pgd + index;
128
129 if (!pgd_present(*pgd_k)) {
130 no_context(regs, addr);
131 return;
132 }
133 set_pgd(pgd, *pgd_k);
134
135 p4d = p4d_offset(pgd, addr);
136 p4d_k = p4d_offset(pgd_k, addr);
137 if (!p4d_present(*p4d_k)) {
138 no_context(regs, addr);
139 return;
140 }
141
142 pud = pud_offset(p4d, addr);
143 pud_k = pud_offset(p4d_k, addr);
144 if (!pud_present(*pud_k)) {
145 no_context(regs, addr);
146 return;
147 }
148
149 /*
150 * Since the vmalloc area is global, it is unnecessary
151 * to copy individual PTEs
152 */
153 pmd = pmd_offset(pud, addr);
154 pmd_k = pmd_offset(pud_k, addr);
155 if (!pmd_present(*pmd_k)) {
156 no_context(regs, addr);
157 return;
158 }
159 set_pmd(pmd, *pmd_k);
160
161 /*
162 * Make sure the actual PTE exists as well to
163 * catch kernel vmalloc-area accesses to non-mapped
164 * addresses. If we don't do this, this will just
165 * silently loop forever.
166 */
167 pte_k = pte_offset_kernel(pmd_k, addr);
168 if (!pte_present(*pte_k)) {
169 no_context(regs, addr);
170 return;
171 }
172
173 /*
174 * The kernel assumes that TLBs don't cache invalid
175 * entries, but in RISC-V, SFENCE.VMA specifies an
176 * ordering constraint, not a cache flush; it is
177 * necessary even after writing invalid entries.
178 */
179 local_flush_tlb_page(addr);
180}
181
182static inline bool access_error(unsigned long cause, struct vm_area_struct *vma)
183{
184 switch (cause) {
185 case EXC_INST_PAGE_FAULT:
186 if (!(vma->vm_flags & VM_EXEC)) {
187 return true;
188 }
189 break;
190 case EXC_LOAD_PAGE_FAULT:
191 if (!(vma->vm_flags & VM_READ)) {
192 return true;
193 }
194 break;
195 case EXC_STORE_PAGE_FAULT:
196 if (!(vma->vm_flags & VM_WRITE)) {
197 return true;
198 }
199 break;
200 default:
201 panic("%s: unhandled cause %lu", __func__, cause);
202 }
203 return false;
204}
205
206/*
207 * This routine handles page faults. It determines the address and the
208 * problem, and then passes it off to one of the appropriate routines.
209 */
210asmlinkage void do_page_fault(struct pt_regs *regs)
211{
212 struct task_struct *tsk;
213 struct vm_area_struct *vma;
214 struct mm_struct *mm;
215 unsigned long addr, cause;
216 unsigned int flags = FAULT_FLAG_DEFAULT;
217 int code = SEGV_MAPERR;
218 vm_fault_t fault;
219
220 cause = regs->cause;
221 addr = regs->badaddr;
222
223 tsk = current;
224 mm = tsk->mm;
225
226 if (kprobe_page_fault(regs, cause))
227 return;
228
229 /*
230 * Fault-in kernel-space virtual memory on-demand.
231 * The 'reference' page table is init_mm.pgd.
232 *
233 * NOTE! We MUST NOT take any locks for this case. We may
234 * be in an interrupt or a critical region, and should
235 * only copy the information from the master page table,
236 * nothing more.
237 */
238 if (unlikely((addr >= VMALLOC_START) && (addr <= VMALLOC_END))) {
239 vmalloc_fault(regs, code, addr);
240 return;
241 }
242
243#ifdef CONFIG_64BIT
244 /*
245 * Modules in 64bit kernels lie in their own virtual region which is not
246 * in the vmalloc region, but dealing with page faults in this region
247 * or the vmalloc region amounts to doing the same thing: checking that
248 * the mapping exists in init_mm.pgd and updating user page table, so
249 * just use vmalloc_fault.
250 */
251 if (unlikely(addr >= MODULES_VADDR && addr < MODULES_END)) {
252 vmalloc_fault(regs, code, addr);
253 return;
254 }
255#endif
256 /* Enable interrupts if they were enabled in the parent context. */
257 if (likely(regs->status & SR_PIE))
258 local_irq_enable();
259
260 /*
261 * If we're in an interrupt, have no user context, or are running
262 * in an atomic region, then we must not take the fault.
263 */
264 if (unlikely(faulthandler_disabled() || !mm)) {
265 tsk->thread.bad_cause = cause;
266 no_context(regs, addr);
267 return;
268 }
269
270 if (user_mode(regs))
271 flags |= FAULT_FLAG_USER;
272
273 if (!user_mode(regs) && addr < TASK_SIZE &&
274 unlikely(!(regs->status & SR_SUM)))
275 die_kernel_fault("access to user memory without uaccess routines",
276 addr, regs);
277
278 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
279
280 if (cause == EXC_STORE_PAGE_FAULT)
281 flags |= FAULT_FLAG_WRITE;
282 else if (cause == EXC_INST_PAGE_FAULT)
283 flags |= FAULT_FLAG_INSTRUCTION;
284retry:
285 mmap_read_lock(mm);
286 vma = find_vma(mm, addr);
287 if (unlikely(!vma)) {
288 tsk->thread.bad_cause = cause;
289 bad_area(regs, mm, code, addr);
290 return;
291 }
292 if (likely(vma->vm_start <= addr))
293 goto good_area;
294 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
295 tsk->thread.bad_cause = cause;
296 bad_area(regs, mm, code, addr);
297 return;
298 }
299 if (unlikely(expand_stack(vma, addr))) {
300 tsk->thread.bad_cause = cause;
301 bad_area(regs, mm, code, addr);
302 return;
303 }
304
305 /*
306 * Ok, we have a good vm_area for this memory access, so
307 * we can handle it.
308 */
309good_area:
310 code = SEGV_ACCERR;
311
312 if (unlikely(access_error(cause, vma))) {
313 tsk->thread.bad_cause = cause;
314 bad_area(regs, mm, code, addr);
315 return;
316 }
317
318 /*
319 * If for any reason at all we could not handle the fault,
320 * make sure we exit gracefully rather than endlessly redo
321 * the fault.
322 */
323 fault = handle_mm_fault(vma, addr, flags, regs);
324
325 /*
326 * If we need to retry but a fatal signal is pending, handle the
327 * signal first. We do not need to release the mmap_lock because it
328 * would already be released in __lock_page_or_retry in mm/filemap.c.
329 */
330 if (fault_signal_pending(fault, regs))
331 return;
332
333 if (unlikely((fault & VM_FAULT_RETRY) && (flags & FAULT_FLAG_ALLOW_RETRY))) {
334 flags |= FAULT_FLAG_TRIED;
335
336 /*
337 * No need to mmap_read_unlock(mm) as we would
338 * have already released it in __lock_page_or_retry
339 * in mm/filemap.c.
340 */
341 goto retry;
342 }
343
344 mmap_read_unlock(mm);
345
346 if (unlikely(fault & VM_FAULT_ERROR)) {
347 tsk->thread.bad_cause = cause;
348 mm_fault_error(regs, addr, fault);
349 return;
350 }
351 return;
352}
353NOKPROBE_SYMBOL(do_page_fault);