Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright 2002-2005, Instant802 Networks, Inc.
4 * Copyright 2005-2006, Devicescape Software, Inc.
5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
7 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * Copyright 2015-2017 Intel Deutschland GmbH
9 * Copyright 2018-2020 Intel Corporation
10 */
11
12#include <linux/if_ether.h>
13#include <linux/etherdevice.h>
14#include <linux/list.h>
15#include <linux/rcupdate.h>
16#include <linux/rtnetlink.h>
17#include <linux/slab.h>
18#include <linux/export.h>
19#include <net/mac80211.h>
20#include <crypto/algapi.h>
21#include <asm/unaligned.h>
22#include "ieee80211_i.h"
23#include "driver-ops.h"
24#include "debugfs_key.h"
25#include "aes_ccm.h"
26#include "aes_cmac.h"
27#include "aes_gmac.h"
28#include "aes_gcm.h"
29
30
31/**
32 * DOC: Key handling basics
33 *
34 * Key handling in mac80211 is done based on per-interface (sub_if_data)
35 * keys and per-station keys. Since each station belongs to an interface,
36 * each station key also belongs to that interface.
37 *
38 * Hardware acceleration is done on a best-effort basis for algorithms
39 * that are implemented in software, for each key the hardware is asked
40 * to enable that key for offloading but if it cannot do that the key is
41 * simply kept for software encryption (unless it is for an algorithm
42 * that isn't implemented in software).
43 * There is currently no way of knowing whether a key is handled in SW
44 * or HW except by looking into debugfs.
45 *
46 * All key management is internally protected by a mutex. Within all
47 * other parts of mac80211, key references are, just as STA structure
48 * references, protected by RCU. Note, however, that some things are
49 * unprotected, namely the key->sta dereferences within the hardware
50 * acceleration functions. This means that sta_info_destroy() must
51 * remove the key which waits for an RCU grace period.
52 */
53
54static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
55
56static void assert_key_lock(struct ieee80211_local *local)
57{
58 lockdep_assert_held(&local->key_mtx);
59}
60
61static void
62update_vlan_tailroom_need_count(struct ieee80211_sub_if_data *sdata, int delta)
63{
64 struct ieee80211_sub_if_data *vlan;
65
66 if (sdata->vif.type != NL80211_IFTYPE_AP)
67 return;
68
69 /* crypto_tx_tailroom_needed_cnt is protected by this */
70 assert_key_lock(sdata->local);
71
72 rcu_read_lock();
73
74 list_for_each_entry_rcu(vlan, &sdata->u.ap.vlans, u.vlan.list)
75 vlan->crypto_tx_tailroom_needed_cnt += delta;
76
77 rcu_read_unlock();
78}
79
80static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
81{
82 /*
83 * When this count is zero, SKB resizing for allocating tailroom
84 * for IV or MMIC is skipped. But, this check has created two race
85 * cases in xmit path while transiting from zero count to one:
86 *
87 * 1. SKB resize was skipped because no key was added but just before
88 * the xmit key is added and SW encryption kicks off.
89 *
90 * 2. SKB resize was skipped because all the keys were hw planted but
91 * just before xmit one of the key is deleted and SW encryption kicks
92 * off.
93 *
94 * In both the above case SW encryption will find not enough space for
95 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
96 *
97 * Solution has been explained at
98 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
99 */
100
101 assert_key_lock(sdata->local);
102
103 update_vlan_tailroom_need_count(sdata, 1);
104
105 if (!sdata->crypto_tx_tailroom_needed_cnt++) {
106 /*
107 * Flush all XMIT packets currently using HW encryption or no
108 * encryption at all if the count transition is from 0 -> 1.
109 */
110 synchronize_net();
111 }
112}
113
114static void decrease_tailroom_need_count(struct ieee80211_sub_if_data *sdata,
115 int delta)
116{
117 assert_key_lock(sdata->local);
118
119 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt < delta);
120
121 update_vlan_tailroom_need_count(sdata, -delta);
122 sdata->crypto_tx_tailroom_needed_cnt -= delta;
123}
124
125static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
126{
127 struct ieee80211_sub_if_data *sdata = key->sdata;
128 struct sta_info *sta;
129 int ret = -EOPNOTSUPP;
130
131 might_sleep();
132
133 if (key->flags & KEY_FLAG_TAINTED) {
134 /* If we get here, it's during resume and the key is
135 * tainted so shouldn't be used/programmed any more.
136 * However, its flags may still indicate that it was
137 * programmed into the device (since we're in resume)
138 * so clear that flag now to avoid trying to remove
139 * it again later.
140 */
141 if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE &&
142 !(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
143 IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
144 IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
145 increment_tailroom_need_count(sdata);
146
147 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
148 return -EINVAL;
149 }
150
151 if (!key->local->ops->set_key)
152 goto out_unsupported;
153
154 assert_key_lock(key->local);
155
156 sta = key->sta;
157
158 /*
159 * If this is a per-STA GTK, check if it
160 * is supported; if not, return.
161 */
162 if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
163 !ieee80211_hw_check(&key->local->hw, SUPPORTS_PER_STA_GTK))
164 goto out_unsupported;
165
166 if (sta && !sta->uploaded)
167 goto out_unsupported;
168
169 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
170 /*
171 * The driver doesn't know anything about VLAN interfaces.
172 * Hence, don't send GTKs for VLAN interfaces to the driver.
173 */
174 if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
175 ret = 1;
176 goto out_unsupported;
177 }
178 }
179
180 /* TKIP countermeasures don't work in encap offload mode */
181 if (key->conf.cipher == WLAN_CIPHER_SUITE_TKIP &&
182 sdata->hw_80211_encap) {
183 sdata_dbg(sdata, "TKIP is not allowed in hw 80211 encap mode\n");
184 return -EINVAL;
185 }
186
187 ret = drv_set_key(key->local, SET_KEY, sdata,
188 sta ? &sta->sta : NULL, &key->conf);
189
190 if (!ret) {
191 key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
192
193 if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
194 IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
195 IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
196 decrease_tailroom_need_count(sdata, 1);
197
198 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
199 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
200
201 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_MIC_SPACE) &&
202 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC));
203
204 return 0;
205 }
206
207 if (ret != -ENOSPC && ret != -EOPNOTSUPP && ret != 1)
208 sdata_err(sdata,
209 "failed to set key (%d, %pM) to hardware (%d)\n",
210 key->conf.keyidx,
211 sta ? sta->sta.addr : bcast_addr, ret);
212
213 out_unsupported:
214 switch (key->conf.cipher) {
215 case WLAN_CIPHER_SUITE_WEP40:
216 case WLAN_CIPHER_SUITE_WEP104:
217 case WLAN_CIPHER_SUITE_TKIP:
218 case WLAN_CIPHER_SUITE_CCMP:
219 case WLAN_CIPHER_SUITE_CCMP_256:
220 case WLAN_CIPHER_SUITE_GCMP:
221 case WLAN_CIPHER_SUITE_GCMP_256:
222 /* We cannot do software crypto of data frames with
223 * encapsulation offload enabled. However for 802.11w to
224 * function properly we need cmac/gmac keys.
225 */
226 if (sdata->hw_80211_encap)
227 return -EINVAL;
228 fallthrough;
229
230 case WLAN_CIPHER_SUITE_AES_CMAC:
231 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
232 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
233 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
234 /* all of these we can do in software - if driver can */
235 if (ret == 1)
236 return 0;
237 if (ieee80211_hw_check(&key->local->hw, SW_CRYPTO_CONTROL))
238 return -EINVAL;
239 return 0;
240 default:
241 return -EINVAL;
242 }
243}
244
245static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
246{
247 struct ieee80211_sub_if_data *sdata;
248 struct sta_info *sta;
249 int ret;
250
251 might_sleep();
252
253 if (!key || !key->local->ops->set_key)
254 return;
255
256 assert_key_lock(key->local);
257
258 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
259 return;
260
261 sta = key->sta;
262 sdata = key->sdata;
263
264 if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
265 IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
266 IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
267 increment_tailroom_need_count(sdata);
268
269 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
270 ret = drv_set_key(key->local, DISABLE_KEY, sdata,
271 sta ? &sta->sta : NULL, &key->conf);
272
273 if (ret)
274 sdata_err(sdata,
275 "failed to remove key (%d, %pM) from hardware (%d)\n",
276 key->conf.keyidx,
277 sta ? sta->sta.addr : bcast_addr, ret);
278}
279
280static int _ieee80211_set_tx_key(struct ieee80211_key *key, bool force)
281{
282 struct sta_info *sta = key->sta;
283 struct ieee80211_local *local = key->local;
284
285 assert_key_lock(local);
286
287 set_sta_flag(sta, WLAN_STA_USES_ENCRYPTION);
288
289 sta->ptk_idx = key->conf.keyidx;
290
291 if (force || !ieee80211_hw_check(&local->hw, AMPDU_KEYBORDER_SUPPORT))
292 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
293 ieee80211_check_fast_xmit(sta);
294
295 return 0;
296}
297
298int ieee80211_set_tx_key(struct ieee80211_key *key)
299{
300 return _ieee80211_set_tx_key(key, false);
301}
302
303static void ieee80211_pairwise_rekey(struct ieee80211_key *old,
304 struct ieee80211_key *new)
305{
306 struct ieee80211_local *local = new->local;
307 struct sta_info *sta = new->sta;
308 int i;
309
310 assert_key_lock(local);
311
312 if (new->conf.flags & IEEE80211_KEY_FLAG_NO_AUTO_TX) {
313 /* Extended Key ID key install, initial one or rekey */
314
315 if (sta->ptk_idx != INVALID_PTK_KEYIDX &&
316 !ieee80211_hw_check(&local->hw, AMPDU_KEYBORDER_SUPPORT)) {
317 /* Aggregation Sessions with Extended Key ID must not
318 * mix MPDUs with different keyIDs within one A-MPDU.
319 * Tear down running Tx aggregation sessions and block
320 * new Rx/Tx aggregation requests during rekey to
321 * ensure there are no A-MPDUs when the driver is not
322 * supporting A-MPDU key borders. (Blocking Tx only
323 * would be sufficient but WLAN_STA_BLOCK_BA gets the
324 * job done for the few ms we need it.)
325 */
326 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
327 mutex_lock(&sta->ampdu_mlme.mtx);
328 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
329 ___ieee80211_stop_tx_ba_session(sta, i,
330 AGG_STOP_LOCAL_REQUEST);
331 mutex_unlock(&sta->ampdu_mlme.mtx);
332 }
333 } else if (old) {
334 /* Rekey without Extended Key ID.
335 * Aggregation sessions are OK when running on SW crypto.
336 * A broken remote STA may cause issues not observed with HW
337 * crypto, though.
338 */
339 if (!(old->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
340 return;
341
342 /* Stop Tx till we are on the new key */
343 old->flags |= KEY_FLAG_TAINTED;
344 ieee80211_clear_fast_xmit(sta);
345 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION)) {
346 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
347 ieee80211_sta_tear_down_BA_sessions(sta,
348 AGG_STOP_LOCAL_REQUEST);
349 }
350 if (!wiphy_ext_feature_isset(local->hw.wiphy,
351 NL80211_EXT_FEATURE_CAN_REPLACE_PTK0)) {
352 pr_warn_ratelimited("Rekeying PTK for STA %pM but driver can't safely do that.",
353 sta->sta.addr);
354 /* Flushing the driver queues *may* help prevent
355 * the clear text leaks and freezes.
356 */
357 ieee80211_flush_queues(local, old->sdata, false);
358 }
359 }
360}
361
362static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
363 int idx, bool uni, bool multi)
364{
365 struct ieee80211_key *key = NULL;
366
367 assert_key_lock(sdata->local);
368
369 if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
370 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
371
372 if (uni) {
373 rcu_assign_pointer(sdata->default_unicast_key, key);
374 ieee80211_check_fast_xmit_iface(sdata);
375 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
376 drv_set_default_unicast_key(sdata->local, sdata, idx);
377 }
378
379 if (multi)
380 rcu_assign_pointer(sdata->default_multicast_key, key);
381
382 ieee80211_debugfs_key_update_default(sdata);
383}
384
385void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
386 bool uni, bool multi)
387{
388 mutex_lock(&sdata->local->key_mtx);
389 __ieee80211_set_default_key(sdata, idx, uni, multi);
390 mutex_unlock(&sdata->local->key_mtx);
391}
392
393static void
394__ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
395{
396 struct ieee80211_key *key = NULL;
397
398 assert_key_lock(sdata->local);
399
400 if (idx >= NUM_DEFAULT_KEYS &&
401 idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
402 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
403
404 rcu_assign_pointer(sdata->default_mgmt_key, key);
405
406 ieee80211_debugfs_key_update_default(sdata);
407}
408
409void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
410 int idx)
411{
412 mutex_lock(&sdata->local->key_mtx);
413 __ieee80211_set_default_mgmt_key(sdata, idx);
414 mutex_unlock(&sdata->local->key_mtx);
415}
416
417static void
418__ieee80211_set_default_beacon_key(struct ieee80211_sub_if_data *sdata, int idx)
419{
420 struct ieee80211_key *key = NULL;
421
422 assert_key_lock(sdata->local);
423
424 if (idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS &&
425 idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
426 NUM_DEFAULT_BEACON_KEYS)
427 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
428
429 rcu_assign_pointer(sdata->default_beacon_key, key);
430
431 ieee80211_debugfs_key_update_default(sdata);
432}
433
434void ieee80211_set_default_beacon_key(struct ieee80211_sub_if_data *sdata,
435 int idx)
436{
437 mutex_lock(&sdata->local->key_mtx);
438 __ieee80211_set_default_beacon_key(sdata, idx);
439 mutex_unlock(&sdata->local->key_mtx);
440}
441
442static int ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
443 struct sta_info *sta,
444 bool pairwise,
445 struct ieee80211_key *old,
446 struct ieee80211_key *new)
447{
448 int idx;
449 int ret = 0;
450 bool defunikey, defmultikey, defmgmtkey, defbeaconkey;
451
452 /* caller must provide at least one old/new */
453 if (WARN_ON(!new && !old))
454 return 0;
455
456 if (new)
457 list_add_tail_rcu(&new->list, &sdata->key_list);
458
459 WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
460
461 if (new && sta && pairwise) {
462 /* Unicast rekey needs special handling. With Extended Key ID
463 * old is still NULL for the first rekey.
464 */
465 ieee80211_pairwise_rekey(old, new);
466 }
467
468 if (old) {
469 idx = old->conf.keyidx;
470
471 if (old->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
472 ieee80211_key_disable_hw_accel(old);
473
474 if (new)
475 ret = ieee80211_key_enable_hw_accel(new);
476 }
477 } else {
478 /* new must be provided in case old is not */
479 idx = new->conf.keyidx;
480 if (!new->local->wowlan)
481 ret = ieee80211_key_enable_hw_accel(new);
482 }
483
484 if (ret)
485 return ret;
486
487 if (sta) {
488 if (pairwise) {
489 rcu_assign_pointer(sta->ptk[idx], new);
490 if (new &&
491 !(new->conf.flags & IEEE80211_KEY_FLAG_NO_AUTO_TX))
492 _ieee80211_set_tx_key(new, true);
493 } else {
494 rcu_assign_pointer(sta->gtk[idx], new);
495 }
496 /* Only needed for transition from no key -> key.
497 * Still triggers unnecessary when using Extended Key ID
498 * and installing the second key ID the first time.
499 */
500 if (new && !old)
501 ieee80211_check_fast_rx(sta);
502 } else {
503 defunikey = old &&
504 old == key_mtx_dereference(sdata->local,
505 sdata->default_unicast_key);
506 defmultikey = old &&
507 old == key_mtx_dereference(sdata->local,
508 sdata->default_multicast_key);
509 defmgmtkey = old &&
510 old == key_mtx_dereference(sdata->local,
511 sdata->default_mgmt_key);
512 defbeaconkey = old &&
513 old == key_mtx_dereference(sdata->local,
514 sdata->default_beacon_key);
515
516 if (defunikey && !new)
517 __ieee80211_set_default_key(sdata, -1, true, false);
518 if (defmultikey && !new)
519 __ieee80211_set_default_key(sdata, -1, false, true);
520 if (defmgmtkey && !new)
521 __ieee80211_set_default_mgmt_key(sdata, -1);
522 if (defbeaconkey && !new)
523 __ieee80211_set_default_beacon_key(sdata, -1);
524
525 rcu_assign_pointer(sdata->keys[idx], new);
526 if (defunikey && new)
527 __ieee80211_set_default_key(sdata, new->conf.keyidx,
528 true, false);
529 if (defmultikey && new)
530 __ieee80211_set_default_key(sdata, new->conf.keyidx,
531 false, true);
532 if (defmgmtkey && new)
533 __ieee80211_set_default_mgmt_key(sdata,
534 new->conf.keyidx);
535 if (defbeaconkey && new)
536 __ieee80211_set_default_beacon_key(sdata,
537 new->conf.keyidx);
538 }
539
540 if (old)
541 list_del_rcu(&old->list);
542
543 return 0;
544}
545
546struct ieee80211_key *
547ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
548 const u8 *key_data,
549 size_t seq_len, const u8 *seq,
550 const struct ieee80211_cipher_scheme *cs)
551{
552 struct ieee80211_key *key;
553 int i, j, err;
554
555 if (WARN_ON(idx < 0 ||
556 idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
557 NUM_DEFAULT_BEACON_KEYS))
558 return ERR_PTR(-EINVAL);
559
560 key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
561 if (!key)
562 return ERR_PTR(-ENOMEM);
563
564 /*
565 * Default to software encryption; we'll later upload the
566 * key to the hardware if possible.
567 */
568 key->conf.flags = 0;
569 key->flags = 0;
570
571 key->conf.cipher = cipher;
572 key->conf.keyidx = idx;
573 key->conf.keylen = key_len;
574 switch (cipher) {
575 case WLAN_CIPHER_SUITE_WEP40:
576 case WLAN_CIPHER_SUITE_WEP104:
577 key->conf.iv_len = IEEE80211_WEP_IV_LEN;
578 key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
579 break;
580 case WLAN_CIPHER_SUITE_TKIP:
581 key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
582 key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
583 if (seq) {
584 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
585 key->u.tkip.rx[i].iv32 =
586 get_unaligned_le32(&seq[2]);
587 key->u.tkip.rx[i].iv16 =
588 get_unaligned_le16(seq);
589 }
590 }
591 spin_lock_init(&key->u.tkip.txlock);
592 break;
593 case WLAN_CIPHER_SUITE_CCMP:
594 key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
595 key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
596 if (seq) {
597 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
598 for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
599 key->u.ccmp.rx_pn[i][j] =
600 seq[IEEE80211_CCMP_PN_LEN - j - 1];
601 }
602 /*
603 * Initialize AES key state here as an optimization so that
604 * it does not need to be initialized for every packet.
605 */
606 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
607 key_data, key_len, IEEE80211_CCMP_MIC_LEN);
608 if (IS_ERR(key->u.ccmp.tfm)) {
609 err = PTR_ERR(key->u.ccmp.tfm);
610 kfree(key);
611 return ERR_PTR(err);
612 }
613 break;
614 case WLAN_CIPHER_SUITE_CCMP_256:
615 key->conf.iv_len = IEEE80211_CCMP_256_HDR_LEN;
616 key->conf.icv_len = IEEE80211_CCMP_256_MIC_LEN;
617 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
618 for (j = 0; j < IEEE80211_CCMP_256_PN_LEN; j++)
619 key->u.ccmp.rx_pn[i][j] =
620 seq[IEEE80211_CCMP_256_PN_LEN - j - 1];
621 /* Initialize AES key state here as an optimization so that
622 * it does not need to be initialized for every packet.
623 */
624 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
625 key_data, key_len, IEEE80211_CCMP_256_MIC_LEN);
626 if (IS_ERR(key->u.ccmp.tfm)) {
627 err = PTR_ERR(key->u.ccmp.tfm);
628 kfree(key);
629 return ERR_PTR(err);
630 }
631 break;
632 case WLAN_CIPHER_SUITE_AES_CMAC:
633 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
634 key->conf.iv_len = 0;
635 if (cipher == WLAN_CIPHER_SUITE_AES_CMAC)
636 key->conf.icv_len = sizeof(struct ieee80211_mmie);
637 else
638 key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
639 if (seq)
640 for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
641 key->u.aes_cmac.rx_pn[j] =
642 seq[IEEE80211_CMAC_PN_LEN - j - 1];
643 /*
644 * Initialize AES key state here as an optimization so that
645 * it does not need to be initialized for every packet.
646 */
647 key->u.aes_cmac.tfm =
648 ieee80211_aes_cmac_key_setup(key_data, key_len);
649 if (IS_ERR(key->u.aes_cmac.tfm)) {
650 err = PTR_ERR(key->u.aes_cmac.tfm);
651 kfree(key);
652 return ERR_PTR(err);
653 }
654 break;
655 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
656 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
657 key->conf.iv_len = 0;
658 key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
659 if (seq)
660 for (j = 0; j < IEEE80211_GMAC_PN_LEN; j++)
661 key->u.aes_gmac.rx_pn[j] =
662 seq[IEEE80211_GMAC_PN_LEN - j - 1];
663 /* Initialize AES key state here as an optimization so that
664 * it does not need to be initialized for every packet.
665 */
666 key->u.aes_gmac.tfm =
667 ieee80211_aes_gmac_key_setup(key_data, key_len);
668 if (IS_ERR(key->u.aes_gmac.tfm)) {
669 err = PTR_ERR(key->u.aes_gmac.tfm);
670 kfree(key);
671 return ERR_PTR(err);
672 }
673 break;
674 case WLAN_CIPHER_SUITE_GCMP:
675 case WLAN_CIPHER_SUITE_GCMP_256:
676 key->conf.iv_len = IEEE80211_GCMP_HDR_LEN;
677 key->conf.icv_len = IEEE80211_GCMP_MIC_LEN;
678 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
679 for (j = 0; j < IEEE80211_GCMP_PN_LEN; j++)
680 key->u.gcmp.rx_pn[i][j] =
681 seq[IEEE80211_GCMP_PN_LEN - j - 1];
682 /* Initialize AES key state here as an optimization so that
683 * it does not need to be initialized for every packet.
684 */
685 key->u.gcmp.tfm = ieee80211_aes_gcm_key_setup_encrypt(key_data,
686 key_len);
687 if (IS_ERR(key->u.gcmp.tfm)) {
688 err = PTR_ERR(key->u.gcmp.tfm);
689 kfree(key);
690 return ERR_PTR(err);
691 }
692 break;
693 default:
694 if (cs) {
695 if (seq_len && seq_len != cs->pn_len) {
696 kfree(key);
697 return ERR_PTR(-EINVAL);
698 }
699
700 key->conf.iv_len = cs->hdr_len;
701 key->conf.icv_len = cs->mic_len;
702 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
703 for (j = 0; j < seq_len; j++)
704 key->u.gen.rx_pn[i][j] =
705 seq[seq_len - j - 1];
706 key->flags |= KEY_FLAG_CIPHER_SCHEME;
707 }
708 }
709 memcpy(key->conf.key, key_data, key_len);
710 INIT_LIST_HEAD(&key->list);
711
712 return key;
713}
714
715static void ieee80211_key_free_common(struct ieee80211_key *key)
716{
717 switch (key->conf.cipher) {
718 case WLAN_CIPHER_SUITE_CCMP:
719 case WLAN_CIPHER_SUITE_CCMP_256:
720 ieee80211_aes_key_free(key->u.ccmp.tfm);
721 break;
722 case WLAN_CIPHER_SUITE_AES_CMAC:
723 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
724 ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
725 break;
726 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
727 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
728 ieee80211_aes_gmac_key_free(key->u.aes_gmac.tfm);
729 break;
730 case WLAN_CIPHER_SUITE_GCMP:
731 case WLAN_CIPHER_SUITE_GCMP_256:
732 ieee80211_aes_gcm_key_free(key->u.gcmp.tfm);
733 break;
734 }
735 kfree_sensitive(key);
736}
737
738static void __ieee80211_key_destroy(struct ieee80211_key *key,
739 bool delay_tailroom)
740{
741 if (key->local) {
742 struct ieee80211_sub_if_data *sdata = key->sdata;
743
744 ieee80211_debugfs_key_remove(key);
745
746 if (delay_tailroom) {
747 /* see ieee80211_delayed_tailroom_dec */
748 sdata->crypto_tx_tailroom_pending_dec++;
749 schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
750 HZ/2);
751 } else {
752 decrease_tailroom_need_count(sdata, 1);
753 }
754 }
755
756 ieee80211_key_free_common(key);
757}
758
759static void ieee80211_key_destroy(struct ieee80211_key *key,
760 bool delay_tailroom)
761{
762 if (!key)
763 return;
764
765 /*
766 * Synchronize so the TX path and rcu key iterators
767 * can no longer be using this key before we free/remove it.
768 */
769 synchronize_net();
770
771 __ieee80211_key_destroy(key, delay_tailroom);
772}
773
774void ieee80211_key_free_unused(struct ieee80211_key *key)
775{
776 WARN_ON(key->sdata || key->local);
777 ieee80211_key_free_common(key);
778}
779
780static bool ieee80211_key_identical(struct ieee80211_sub_if_data *sdata,
781 struct ieee80211_key *old,
782 struct ieee80211_key *new)
783{
784 u8 tkip_old[WLAN_KEY_LEN_TKIP], tkip_new[WLAN_KEY_LEN_TKIP];
785 u8 *tk_old, *tk_new;
786
787 if (!old || new->conf.keylen != old->conf.keylen)
788 return false;
789
790 tk_old = old->conf.key;
791 tk_new = new->conf.key;
792
793 /*
794 * In station mode, don't compare the TX MIC key, as it's never used
795 * and offloaded rekeying may not care to send it to the host. This
796 * is the case in iwlwifi, for example.
797 */
798 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
799 new->conf.cipher == WLAN_CIPHER_SUITE_TKIP &&
800 new->conf.keylen == WLAN_KEY_LEN_TKIP &&
801 !(new->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
802 memcpy(tkip_old, tk_old, WLAN_KEY_LEN_TKIP);
803 memcpy(tkip_new, tk_new, WLAN_KEY_LEN_TKIP);
804 memset(tkip_old + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8);
805 memset(tkip_new + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8);
806 tk_old = tkip_old;
807 tk_new = tkip_new;
808 }
809
810 return !crypto_memneq(tk_old, tk_new, new->conf.keylen);
811}
812
813int ieee80211_key_link(struct ieee80211_key *key,
814 struct ieee80211_sub_if_data *sdata,
815 struct sta_info *sta)
816{
817 struct ieee80211_key *old_key;
818 int idx = key->conf.keyidx;
819 bool pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
820 /*
821 * We want to delay tailroom updates only for station - in that
822 * case it helps roaming speed, but in other cases it hurts and
823 * can cause warnings to appear.
824 */
825 bool delay_tailroom = sdata->vif.type == NL80211_IFTYPE_STATION;
826 int ret = -EOPNOTSUPP;
827
828 mutex_lock(&sdata->local->key_mtx);
829
830 if (sta && pairwise) {
831 struct ieee80211_key *alt_key;
832
833 old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
834 alt_key = key_mtx_dereference(sdata->local, sta->ptk[idx ^ 1]);
835
836 /* The rekey code assumes that the old and new key are using
837 * the same cipher. Enforce the assumption for pairwise keys.
838 */
839 if ((alt_key && alt_key->conf.cipher != key->conf.cipher) ||
840 (old_key && old_key->conf.cipher != key->conf.cipher))
841 goto out;
842 } else if (sta) {
843 old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
844 } else {
845 old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
846 }
847
848 /* Non-pairwise keys must also not switch the cipher on rekey */
849 if (!pairwise) {
850 if (old_key && old_key->conf.cipher != key->conf.cipher)
851 goto out;
852 }
853
854 /*
855 * Silently accept key re-installation without really installing the
856 * new version of the key to avoid nonce reuse or replay issues.
857 */
858 if (ieee80211_key_identical(sdata, old_key, key)) {
859 ieee80211_key_free_unused(key);
860 ret = 0;
861 goto out;
862 }
863
864 key->local = sdata->local;
865 key->sdata = sdata;
866 key->sta = sta;
867
868 increment_tailroom_need_count(sdata);
869
870 ret = ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
871
872 if (!ret) {
873 ieee80211_debugfs_key_add(key);
874 ieee80211_key_destroy(old_key, delay_tailroom);
875 } else {
876 ieee80211_key_free(key, delay_tailroom);
877 }
878
879 out:
880 mutex_unlock(&sdata->local->key_mtx);
881
882 return ret;
883}
884
885void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
886{
887 if (!key)
888 return;
889
890 /*
891 * Replace key with nothingness if it was ever used.
892 */
893 if (key->sdata)
894 ieee80211_key_replace(key->sdata, key->sta,
895 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
896 key, NULL);
897 ieee80211_key_destroy(key, delay_tailroom);
898}
899
900void ieee80211_reenable_keys(struct ieee80211_sub_if_data *sdata)
901{
902 struct ieee80211_key *key;
903 struct ieee80211_sub_if_data *vlan;
904
905 ASSERT_RTNL();
906
907 mutex_lock(&sdata->local->key_mtx);
908
909 sdata->crypto_tx_tailroom_needed_cnt = 0;
910 sdata->crypto_tx_tailroom_pending_dec = 0;
911
912 if (sdata->vif.type == NL80211_IFTYPE_AP) {
913 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) {
914 vlan->crypto_tx_tailroom_needed_cnt = 0;
915 vlan->crypto_tx_tailroom_pending_dec = 0;
916 }
917 }
918
919 if (ieee80211_sdata_running(sdata)) {
920 list_for_each_entry(key, &sdata->key_list, list) {
921 increment_tailroom_need_count(sdata);
922 ieee80211_key_enable_hw_accel(key);
923 }
924 }
925
926 mutex_unlock(&sdata->local->key_mtx);
927}
928
929void ieee80211_iter_keys(struct ieee80211_hw *hw,
930 struct ieee80211_vif *vif,
931 void (*iter)(struct ieee80211_hw *hw,
932 struct ieee80211_vif *vif,
933 struct ieee80211_sta *sta,
934 struct ieee80211_key_conf *key,
935 void *data),
936 void *iter_data)
937{
938 struct ieee80211_local *local = hw_to_local(hw);
939 struct ieee80211_key *key, *tmp;
940 struct ieee80211_sub_if_data *sdata;
941
942 ASSERT_RTNL();
943
944 mutex_lock(&local->key_mtx);
945 if (vif) {
946 sdata = vif_to_sdata(vif);
947 list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
948 iter(hw, &sdata->vif,
949 key->sta ? &key->sta->sta : NULL,
950 &key->conf, iter_data);
951 } else {
952 list_for_each_entry(sdata, &local->interfaces, list)
953 list_for_each_entry_safe(key, tmp,
954 &sdata->key_list, list)
955 iter(hw, &sdata->vif,
956 key->sta ? &key->sta->sta : NULL,
957 &key->conf, iter_data);
958 }
959 mutex_unlock(&local->key_mtx);
960}
961EXPORT_SYMBOL(ieee80211_iter_keys);
962
963static void
964_ieee80211_iter_keys_rcu(struct ieee80211_hw *hw,
965 struct ieee80211_sub_if_data *sdata,
966 void (*iter)(struct ieee80211_hw *hw,
967 struct ieee80211_vif *vif,
968 struct ieee80211_sta *sta,
969 struct ieee80211_key_conf *key,
970 void *data),
971 void *iter_data)
972{
973 struct ieee80211_key *key;
974
975 list_for_each_entry_rcu(key, &sdata->key_list, list) {
976 /* skip keys of station in removal process */
977 if (key->sta && key->sta->removed)
978 continue;
979 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
980 continue;
981
982 iter(hw, &sdata->vif,
983 key->sta ? &key->sta->sta : NULL,
984 &key->conf, iter_data);
985 }
986}
987
988void ieee80211_iter_keys_rcu(struct ieee80211_hw *hw,
989 struct ieee80211_vif *vif,
990 void (*iter)(struct ieee80211_hw *hw,
991 struct ieee80211_vif *vif,
992 struct ieee80211_sta *sta,
993 struct ieee80211_key_conf *key,
994 void *data),
995 void *iter_data)
996{
997 struct ieee80211_local *local = hw_to_local(hw);
998 struct ieee80211_sub_if_data *sdata;
999
1000 if (vif) {
1001 sdata = vif_to_sdata(vif);
1002 _ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data);
1003 } else {
1004 list_for_each_entry_rcu(sdata, &local->interfaces, list)
1005 _ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data);
1006 }
1007}
1008EXPORT_SYMBOL(ieee80211_iter_keys_rcu);
1009
1010static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
1011 struct list_head *keys)
1012{
1013 struct ieee80211_key *key, *tmp;
1014
1015 decrease_tailroom_need_count(sdata,
1016 sdata->crypto_tx_tailroom_pending_dec);
1017 sdata->crypto_tx_tailroom_pending_dec = 0;
1018
1019 ieee80211_debugfs_key_remove_mgmt_default(sdata);
1020 ieee80211_debugfs_key_remove_beacon_default(sdata);
1021
1022 list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
1023 ieee80211_key_replace(key->sdata, key->sta,
1024 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
1025 key, NULL);
1026 list_add_tail(&key->list, keys);
1027 }
1028
1029 ieee80211_debugfs_key_update_default(sdata);
1030}
1031
1032void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
1033 bool force_synchronize)
1034{
1035 struct ieee80211_local *local = sdata->local;
1036 struct ieee80211_sub_if_data *vlan;
1037 struct ieee80211_sub_if_data *master;
1038 struct ieee80211_key *key, *tmp;
1039 LIST_HEAD(keys);
1040
1041 cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
1042
1043 mutex_lock(&local->key_mtx);
1044
1045 ieee80211_free_keys_iface(sdata, &keys);
1046
1047 if (sdata->vif.type == NL80211_IFTYPE_AP) {
1048 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
1049 ieee80211_free_keys_iface(vlan, &keys);
1050 }
1051
1052 if (!list_empty(&keys) || force_synchronize)
1053 synchronize_net();
1054 list_for_each_entry_safe(key, tmp, &keys, list)
1055 __ieee80211_key_destroy(key, false);
1056
1057 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
1058 if (sdata->bss) {
1059 master = container_of(sdata->bss,
1060 struct ieee80211_sub_if_data,
1061 u.ap);
1062
1063 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt !=
1064 master->crypto_tx_tailroom_needed_cnt);
1065 }
1066 } else {
1067 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
1068 sdata->crypto_tx_tailroom_pending_dec);
1069 }
1070
1071 if (sdata->vif.type == NL80211_IFTYPE_AP) {
1072 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
1073 WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
1074 vlan->crypto_tx_tailroom_pending_dec);
1075 }
1076
1077 mutex_unlock(&local->key_mtx);
1078}
1079
1080void ieee80211_free_sta_keys(struct ieee80211_local *local,
1081 struct sta_info *sta)
1082{
1083 struct ieee80211_key *key;
1084 int i;
1085
1086 mutex_lock(&local->key_mtx);
1087 for (i = 0; i < ARRAY_SIZE(sta->gtk); i++) {
1088 key = key_mtx_dereference(local, sta->gtk[i]);
1089 if (!key)
1090 continue;
1091 ieee80211_key_replace(key->sdata, key->sta,
1092 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
1093 key, NULL);
1094 __ieee80211_key_destroy(key, key->sdata->vif.type ==
1095 NL80211_IFTYPE_STATION);
1096 }
1097
1098 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1099 key = key_mtx_dereference(local, sta->ptk[i]);
1100 if (!key)
1101 continue;
1102 ieee80211_key_replace(key->sdata, key->sta,
1103 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
1104 key, NULL);
1105 __ieee80211_key_destroy(key, key->sdata->vif.type ==
1106 NL80211_IFTYPE_STATION);
1107 }
1108
1109 mutex_unlock(&local->key_mtx);
1110}
1111
1112void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
1113{
1114 struct ieee80211_sub_if_data *sdata;
1115
1116 sdata = container_of(wk, struct ieee80211_sub_if_data,
1117 dec_tailroom_needed_wk.work);
1118
1119 /*
1120 * The reason for the delayed tailroom needed decrementing is to
1121 * make roaming faster: during roaming, all keys are first deleted
1122 * and then new keys are installed. The first new key causes the
1123 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
1124 * the cost of synchronize_net() (which can be slow). Avoid this
1125 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
1126 * key removal for a while, so if we roam the value is larger than
1127 * zero and no 0->1 transition happens.
1128 *
1129 * The cost is that if the AP switching was from an AP with keys
1130 * to one without, we still allocate tailroom while it would no
1131 * longer be needed. However, in the typical (fast) roaming case
1132 * within an ESS this usually won't happen.
1133 */
1134
1135 mutex_lock(&sdata->local->key_mtx);
1136 decrease_tailroom_need_count(sdata,
1137 sdata->crypto_tx_tailroom_pending_dec);
1138 sdata->crypto_tx_tailroom_pending_dec = 0;
1139 mutex_unlock(&sdata->local->key_mtx);
1140}
1141
1142void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
1143 const u8 *replay_ctr, gfp_t gfp)
1144{
1145 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1146
1147 trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
1148
1149 cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
1150}
1151EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
1152
1153void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
1154 int tid, struct ieee80211_key_seq *seq)
1155{
1156 struct ieee80211_key *key;
1157 const u8 *pn;
1158
1159 key = container_of(keyconf, struct ieee80211_key, conf);
1160
1161 switch (key->conf.cipher) {
1162 case WLAN_CIPHER_SUITE_TKIP:
1163 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
1164 return;
1165 seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
1166 seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
1167 break;
1168 case WLAN_CIPHER_SUITE_CCMP:
1169 case WLAN_CIPHER_SUITE_CCMP_256:
1170 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1171 return;
1172 if (tid < 0)
1173 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
1174 else
1175 pn = key->u.ccmp.rx_pn[tid];
1176 memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
1177 break;
1178 case WLAN_CIPHER_SUITE_AES_CMAC:
1179 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1180 if (WARN_ON(tid != 0))
1181 return;
1182 pn = key->u.aes_cmac.rx_pn;
1183 memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
1184 break;
1185 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1186 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1187 if (WARN_ON(tid != 0))
1188 return;
1189 pn = key->u.aes_gmac.rx_pn;
1190 memcpy(seq->aes_gmac.pn, pn, IEEE80211_GMAC_PN_LEN);
1191 break;
1192 case WLAN_CIPHER_SUITE_GCMP:
1193 case WLAN_CIPHER_SUITE_GCMP_256:
1194 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1195 return;
1196 if (tid < 0)
1197 pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
1198 else
1199 pn = key->u.gcmp.rx_pn[tid];
1200 memcpy(seq->gcmp.pn, pn, IEEE80211_GCMP_PN_LEN);
1201 break;
1202 }
1203}
1204EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
1205
1206void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
1207 int tid, struct ieee80211_key_seq *seq)
1208{
1209 struct ieee80211_key *key;
1210 u8 *pn;
1211
1212 key = container_of(keyconf, struct ieee80211_key, conf);
1213
1214 switch (key->conf.cipher) {
1215 case WLAN_CIPHER_SUITE_TKIP:
1216 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
1217 return;
1218 key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
1219 key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
1220 break;
1221 case WLAN_CIPHER_SUITE_CCMP:
1222 case WLAN_CIPHER_SUITE_CCMP_256:
1223 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1224 return;
1225 if (tid < 0)
1226 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
1227 else
1228 pn = key->u.ccmp.rx_pn[tid];
1229 memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
1230 break;
1231 case WLAN_CIPHER_SUITE_AES_CMAC:
1232 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1233 if (WARN_ON(tid != 0))
1234 return;
1235 pn = key->u.aes_cmac.rx_pn;
1236 memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
1237 break;
1238 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1239 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1240 if (WARN_ON(tid != 0))
1241 return;
1242 pn = key->u.aes_gmac.rx_pn;
1243 memcpy(pn, seq->aes_gmac.pn, IEEE80211_GMAC_PN_LEN);
1244 break;
1245 case WLAN_CIPHER_SUITE_GCMP:
1246 case WLAN_CIPHER_SUITE_GCMP_256:
1247 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1248 return;
1249 if (tid < 0)
1250 pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
1251 else
1252 pn = key->u.gcmp.rx_pn[tid];
1253 memcpy(pn, seq->gcmp.pn, IEEE80211_GCMP_PN_LEN);
1254 break;
1255 default:
1256 WARN_ON(1);
1257 break;
1258 }
1259}
1260EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
1261
1262void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
1263{
1264 struct ieee80211_key *key;
1265
1266 key = container_of(keyconf, struct ieee80211_key, conf);
1267
1268 assert_key_lock(key->local);
1269
1270 /*
1271 * if key was uploaded, we assume the driver will/has remove(d)
1272 * it, so adjust bookkeeping accordingly
1273 */
1274 if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
1275 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
1276
1277 if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
1278 IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
1279 IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
1280 increment_tailroom_need_count(key->sdata);
1281 }
1282
1283 ieee80211_key_free(key, false);
1284}
1285EXPORT_SYMBOL_GPL(ieee80211_remove_key);
1286
1287struct ieee80211_key_conf *
1288ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
1289 struct ieee80211_key_conf *keyconf)
1290{
1291 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1292 struct ieee80211_local *local = sdata->local;
1293 struct ieee80211_key *key;
1294 int err;
1295
1296 if (WARN_ON(!local->wowlan))
1297 return ERR_PTR(-EINVAL);
1298
1299 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1300 return ERR_PTR(-EINVAL);
1301
1302 key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
1303 keyconf->keylen, keyconf->key,
1304 0, NULL, NULL);
1305 if (IS_ERR(key))
1306 return ERR_CAST(key);
1307
1308 if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
1309 key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
1310
1311 err = ieee80211_key_link(key, sdata, NULL);
1312 if (err)
1313 return ERR_PTR(err);
1314
1315 return &key->conf;
1316}
1317EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);
1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2015 Intel Deutschland GmbH
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14#include <linux/if_ether.h>
15#include <linux/etherdevice.h>
16#include <linux/list.h>
17#include <linux/rcupdate.h>
18#include <linux/rtnetlink.h>
19#include <linux/slab.h>
20#include <linux/export.h>
21#include <net/mac80211.h>
22#include <asm/unaligned.h>
23#include "ieee80211_i.h"
24#include "driver-ops.h"
25#include "debugfs_key.h"
26#include "aes_ccm.h"
27#include "aes_cmac.h"
28#include "aes_gmac.h"
29#include "aes_gcm.h"
30
31
32/**
33 * DOC: Key handling basics
34 *
35 * Key handling in mac80211 is done based on per-interface (sub_if_data)
36 * keys and per-station keys. Since each station belongs to an interface,
37 * each station key also belongs to that interface.
38 *
39 * Hardware acceleration is done on a best-effort basis for algorithms
40 * that are implemented in software, for each key the hardware is asked
41 * to enable that key for offloading but if it cannot do that the key is
42 * simply kept for software encryption (unless it is for an algorithm
43 * that isn't implemented in software).
44 * There is currently no way of knowing whether a key is handled in SW
45 * or HW except by looking into debugfs.
46 *
47 * All key management is internally protected by a mutex. Within all
48 * other parts of mac80211, key references are, just as STA structure
49 * references, protected by RCU. Note, however, that some things are
50 * unprotected, namely the key->sta dereferences within the hardware
51 * acceleration functions. This means that sta_info_destroy() must
52 * remove the key which waits for an RCU grace period.
53 */
54
55static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
56
57static void assert_key_lock(struct ieee80211_local *local)
58{
59 lockdep_assert_held(&local->key_mtx);
60}
61
62static void
63update_vlan_tailroom_need_count(struct ieee80211_sub_if_data *sdata, int delta)
64{
65 struct ieee80211_sub_if_data *vlan;
66
67 if (sdata->vif.type != NL80211_IFTYPE_AP)
68 return;
69
70 /* crypto_tx_tailroom_needed_cnt is protected by this */
71 assert_key_lock(sdata->local);
72
73 rcu_read_lock();
74
75 list_for_each_entry_rcu(vlan, &sdata->u.ap.vlans, u.vlan.list)
76 vlan->crypto_tx_tailroom_needed_cnt += delta;
77
78 rcu_read_unlock();
79}
80
81static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
82{
83 /*
84 * When this count is zero, SKB resizing for allocating tailroom
85 * for IV or MMIC is skipped. But, this check has created two race
86 * cases in xmit path while transiting from zero count to one:
87 *
88 * 1. SKB resize was skipped because no key was added but just before
89 * the xmit key is added and SW encryption kicks off.
90 *
91 * 2. SKB resize was skipped because all the keys were hw planted but
92 * just before xmit one of the key is deleted and SW encryption kicks
93 * off.
94 *
95 * In both the above case SW encryption will find not enough space for
96 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
97 *
98 * Solution has been explained at
99 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
100 */
101
102 assert_key_lock(sdata->local);
103
104 update_vlan_tailroom_need_count(sdata, 1);
105
106 if (!sdata->crypto_tx_tailroom_needed_cnt++) {
107 /*
108 * Flush all XMIT packets currently using HW encryption or no
109 * encryption at all if the count transition is from 0 -> 1.
110 */
111 synchronize_net();
112 }
113}
114
115static void decrease_tailroom_need_count(struct ieee80211_sub_if_data *sdata,
116 int delta)
117{
118 assert_key_lock(sdata->local);
119
120 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt < delta);
121
122 update_vlan_tailroom_need_count(sdata, -delta);
123 sdata->crypto_tx_tailroom_needed_cnt -= delta;
124}
125
126static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
127{
128 struct ieee80211_sub_if_data *sdata;
129 struct sta_info *sta;
130 int ret = -EOPNOTSUPP;
131
132 might_sleep();
133
134 if (key->flags & KEY_FLAG_TAINTED) {
135 /* If we get here, it's during resume and the key is
136 * tainted so shouldn't be used/programmed any more.
137 * However, its flags may still indicate that it was
138 * programmed into the device (since we're in resume)
139 * so clear that flag now to avoid trying to remove
140 * it again later.
141 */
142 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
143 return -EINVAL;
144 }
145
146 if (!key->local->ops->set_key)
147 goto out_unsupported;
148
149 assert_key_lock(key->local);
150
151 sta = key->sta;
152
153 /*
154 * If this is a per-STA GTK, check if it
155 * is supported; if not, return.
156 */
157 if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
158 !ieee80211_hw_check(&key->local->hw, SUPPORTS_PER_STA_GTK))
159 goto out_unsupported;
160
161 if (sta && !sta->uploaded)
162 goto out_unsupported;
163
164 sdata = key->sdata;
165 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
166 /*
167 * The driver doesn't know anything about VLAN interfaces.
168 * Hence, don't send GTKs for VLAN interfaces to the driver.
169 */
170 if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE))
171 goto out_unsupported;
172 }
173
174 ret = drv_set_key(key->local, SET_KEY, sdata,
175 sta ? &sta->sta : NULL, &key->conf);
176
177 if (!ret) {
178 key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
179
180 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
181 (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
182 decrease_tailroom_need_count(sdata, 1);
183
184 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
185 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
186
187 return 0;
188 }
189
190 if (ret != -ENOSPC && ret != -EOPNOTSUPP && ret != 1)
191 sdata_err(sdata,
192 "failed to set key (%d, %pM) to hardware (%d)\n",
193 key->conf.keyidx,
194 sta ? sta->sta.addr : bcast_addr, ret);
195
196 out_unsupported:
197 switch (key->conf.cipher) {
198 case WLAN_CIPHER_SUITE_WEP40:
199 case WLAN_CIPHER_SUITE_WEP104:
200 case WLAN_CIPHER_SUITE_TKIP:
201 case WLAN_CIPHER_SUITE_CCMP:
202 case WLAN_CIPHER_SUITE_CCMP_256:
203 case WLAN_CIPHER_SUITE_AES_CMAC:
204 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
205 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
206 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
207 case WLAN_CIPHER_SUITE_GCMP:
208 case WLAN_CIPHER_SUITE_GCMP_256:
209 /* all of these we can do in software - if driver can */
210 if (ret == 1)
211 return 0;
212 if (ieee80211_hw_check(&key->local->hw, SW_CRYPTO_CONTROL))
213 return -EINVAL;
214 return 0;
215 default:
216 return -EINVAL;
217 }
218}
219
220static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
221{
222 struct ieee80211_sub_if_data *sdata;
223 struct sta_info *sta;
224 int ret;
225
226 might_sleep();
227
228 if (!key || !key->local->ops->set_key)
229 return;
230
231 assert_key_lock(key->local);
232
233 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
234 return;
235
236 sta = key->sta;
237 sdata = key->sdata;
238
239 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
240 (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
241 increment_tailroom_need_count(sdata);
242
243 ret = drv_set_key(key->local, DISABLE_KEY, sdata,
244 sta ? &sta->sta : NULL, &key->conf);
245
246 if (ret)
247 sdata_err(sdata,
248 "failed to remove key (%d, %pM) from hardware (%d)\n",
249 key->conf.keyidx,
250 sta ? sta->sta.addr : bcast_addr, ret);
251
252 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
253}
254
255static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
256 int idx, bool uni, bool multi)
257{
258 struct ieee80211_key *key = NULL;
259
260 assert_key_lock(sdata->local);
261
262 if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
263 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
264
265 if (uni) {
266 rcu_assign_pointer(sdata->default_unicast_key, key);
267 ieee80211_check_fast_xmit_iface(sdata);
268 drv_set_default_unicast_key(sdata->local, sdata, idx);
269 }
270
271 if (multi)
272 rcu_assign_pointer(sdata->default_multicast_key, key);
273
274 ieee80211_debugfs_key_update_default(sdata);
275}
276
277void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
278 bool uni, bool multi)
279{
280 mutex_lock(&sdata->local->key_mtx);
281 __ieee80211_set_default_key(sdata, idx, uni, multi);
282 mutex_unlock(&sdata->local->key_mtx);
283}
284
285static void
286__ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
287{
288 struct ieee80211_key *key = NULL;
289
290 assert_key_lock(sdata->local);
291
292 if (idx >= NUM_DEFAULT_KEYS &&
293 idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
294 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
295
296 rcu_assign_pointer(sdata->default_mgmt_key, key);
297
298 ieee80211_debugfs_key_update_default(sdata);
299}
300
301void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
302 int idx)
303{
304 mutex_lock(&sdata->local->key_mtx);
305 __ieee80211_set_default_mgmt_key(sdata, idx);
306 mutex_unlock(&sdata->local->key_mtx);
307}
308
309
310static void ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
311 struct sta_info *sta,
312 bool pairwise,
313 struct ieee80211_key *old,
314 struct ieee80211_key *new)
315{
316 int idx;
317 bool defunikey, defmultikey, defmgmtkey;
318
319 /* caller must provide at least one old/new */
320 if (WARN_ON(!new && !old))
321 return;
322
323 if (new)
324 list_add_tail_rcu(&new->list, &sdata->key_list);
325
326 WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
327
328 if (old)
329 idx = old->conf.keyidx;
330 else
331 idx = new->conf.keyidx;
332
333 if (sta) {
334 if (pairwise) {
335 rcu_assign_pointer(sta->ptk[idx], new);
336 sta->ptk_idx = idx;
337 ieee80211_check_fast_xmit(sta);
338 } else {
339 rcu_assign_pointer(sta->gtk[idx], new);
340 }
341 } else {
342 defunikey = old &&
343 old == key_mtx_dereference(sdata->local,
344 sdata->default_unicast_key);
345 defmultikey = old &&
346 old == key_mtx_dereference(sdata->local,
347 sdata->default_multicast_key);
348 defmgmtkey = old &&
349 old == key_mtx_dereference(sdata->local,
350 sdata->default_mgmt_key);
351
352 if (defunikey && !new)
353 __ieee80211_set_default_key(sdata, -1, true, false);
354 if (defmultikey && !new)
355 __ieee80211_set_default_key(sdata, -1, false, true);
356 if (defmgmtkey && !new)
357 __ieee80211_set_default_mgmt_key(sdata, -1);
358
359 rcu_assign_pointer(sdata->keys[idx], new);
360 if (defunikey && new)
361 __ieee80211_set_default_key(sdata, new->conf.keyidx,
362 true, false);
363 if (defmultikey && new)
364 __ieee80211_set_default_key(sdata, new->conf.keyidx,
365 false, true);
366 if (defmgmtkey && new)
367 __ieee80211_set_default_mgmt_key(sdata,
368 new->conf.keyidx);
369 }
370
371 if (old)
372 list_del_rcu(&old->list);
373}
374
375struct ieee80211_key *
376ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
377 const u8 *key_data,
378 size_t seq_len, const u8 *seq,
379 const struct ieee80211_cipher_scheme *cs)
380{
381 struct ieee80211_key *key;
382 int i, j, err;
383
384 if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS))
385 return ERR_PTR(-EINVAL);
386
387 key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
388 if (!key)
389 return ERR_PTR(-ENOMEM);
390
391 /*
392 * Default to software encryption; we'll later upload the
393 * key to the hardware if possible.
394 */
395 key->conf.flags = 0;
396 key->flags = 0;
397
398 key->conf.cipher = cipher;
399 key->conf.keyidx = idx;
400 key->conf.keylen = key_len;
401 switch (cipher) {
402 case WLAN_CIPHER_SUITE_WEP40:
403 case WLAN_CIPHER_SUITE_WEP104:
404 key->conf.iv_len = IEEE80211_WEP_IV_LEN;
405 key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
406 break;
407 case WLAN_CIPHER_SUITE_TKIP:
408 key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
409 key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
410 if (seq) {
411 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
412 key->u.tkip.rx[i].iv32 =
413 get_unaligned_le32(&seq[2]);
414 key->u.tkip.rx[i].iv16 =
415 get_unaligned_le16(seq);
416 }
417 }
418 spin_lock_init(&key->u.tkip.txlock);
419 break;
420 case WLAN_CIPHER_SUITE_CCMP:
421 key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
422 key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
423 if (seq) {
424 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
425 for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
426 key->u.ccmp.rx_pn[i][j] =
427 seq[IEEE80211_CCMP_PN_LEN - j - 1];
428 }
429 /*
430 * Initialize AES key state here as an optimization so that
431 * it does not need to be initialized for every packet.
432 */
433 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
434 key_data, key_len, IEEE80211_CCMP_MIC_LEN);
435 if (IS_ERR(key->u.ccmp.tfm)) {
436 err = PTR_ERR(key->u.ccmp.tfm);
437 kfree(key);
438 return ERR_PTR(err);
439 }
440 break;
441 case WLAN_CIPHER_SUITE_CCMP_256:
442 key->conf.iv_len = IEEE80211_CCMP_256_HDR_LEN;
443 key->conf.icv_len = IEEE80211_CCMP_256_MIC_LEN;
444 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
445 for (j = 0; j < IEEE80211_CCMP_256_PN_LEN; j++)
446 key->u.ccmp.rx_pn[i][j] =
447 seq[IEEE80211_CCMP_256_PN_LEN - j - 1];
448 /* Initialize AES key state here as an optimization so that
449 * it does not need to be initialized for every packet.
450 */
451 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
452 key_data, key_len, IEEE80211_CCMP_256_MIC_LEN);
453 if (IS_ERR(key->u.ccmp.tfm)) {
454 err = PTR_ERR(key->u.ccmp.tfm);
455 kfree(key);
456 return ERR_PTR(err);
457 }
458 break;
459 case WLAN_CIPHER_SUITE_AES_CMAC:
460 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
461 key->conf.iv_len = 0;
462 if (cipher == WLAN_CIPHER_SUITE_AES_CMAC)
463 key->conf.icv_len = sizeof(struct ieee80211_mmie);
464 else
465 key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
466 if (seq)
467 for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
468 key->u.aes_cmac.rx_pn[j] =
469 seq[IEEE80211_CMAC_PN_LEN - j - 1];
470 /*
471 * Initialize AES key state here as an optimization so that
472 * it does not need to be initialized for every packet.
473 */
474 key->u.aes_cmac.tfm =
475 ieee80211_aes_cmac_key_setup(key_data, key_len);
476 if (IS_ERR(key->u.aes_cmac.tfm)) {
477 err = PTR_ERR(key->u.aes_cmac.tfm);
478 kfree(key);
479 return ERR_PTR(err);
480 }
481 break;
482 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
483 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
484 key->conf.iv_len = 0;
485 key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
486 if (seq)
487 for (j = 0; j < IEEE80211_GMAC_PN_LEN; j++)
488 key->u.aes_gmac.rx_pn[j] =
489 seq[IEEE80211_GMAC_PN_LEN - j - 1];
490 /* Initialize AES key state here as an optimization so that
491 * it does not need to be initialized for every packet.
492 */
493 key->u.aes_gmac.tfm =
494 ieee80211_aes_gmac_key_setup(key_data, key_len);
495 if (IS_ERR(key->u.aes_gmac.tfm)) {
496 err = PTR_ERR(key->u.aes_gmac.tfm);
497 kfree(key);
498 return ERR_PTR(err);
499 }
500 break;
501 case WLAN_CIPHER_SUITE_GCMP:
502 case WLAN_CIPHER_SUITE_GCMP_256:
503 key->conf.iv_len = IEEE80211_GCMP_HDR_LEN;
504 key->conf.icv_len = IEEE80211_GCMP_MIC_LEN;
505 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
506 for (j = 0; j < IEEE80211_GCMP_PN_LEN; j++)
507 key->u.gcmp.rx_pn[i][j] =
508 seq[IEEE80211_GCMP_PN_LEN - j - 1];
509 /* Initialize AES key state here as an optimization so that
510 * it does not need to be initialized for every packet.
511 */
512 key->u.gcmp.tfm = ieee80211_aes_gcm_key_setup_encrypt(key_data,
513 key_len);
514 if (IS_ERR(key->u.gcmp.tfm)) {
515 err = PTR_ERR(key->u.gcmp.tfm);
516 kfree(key);
517 return ERR_PTR(err);
518 }
519 break;
520 default:
521 if (cs) {
522 if (seq_len && seq_len != cs->pn_len) {
523 kfree(key);
524 return ERR_PTR(-EINVAL);
525 }
526
527 key->conf.iv_len = cs->hdr_len;
528 key->conf.icv_len = cs->mic_len;
529 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
530 for (j = 0; j < seq_len; j++)
531 key->u.gen.rx_pn[i][j] =
532 seq[seq_len - j - 1];
533 key->flags |= KEY_FLAG_CIPHER_SCHEME;
534 }
535 }
536 memcpy(key->conf.key, key_data, key_len);
537 INIT_LIST_HEAD(&key->list);
538
539 return key;
540}
541
542static void ieee80211_key_free_common(struct ieee80211_key *key)
543{
544 switch (key->conf.cipher) {
545 case WLAN_CIPHER_SUITE_CCMP:
546 case WLAN_CIPHER_SUITE_CCMP_256:
547 ieee80211_aes_key_free(key->u.ccmp.tfm);
548 break;
549 case WLAN_CIPHER_SUITE_AES_CMAC:
550 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
551 ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
552 break;
553 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
554 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
555 ieee80211_aes_gmac_key_free(key->u.aes_gmac.tfm);
556 break;
557 case WLAN_CIPHER_SUITE_GCMP:
558 case WLAN_CIPHER_SUITE_GCMP_256:
559 ieee80211_aes_gcm_key_free(key->u.gcmp.tfm);
560 break;
561 }
562 kzfree(key);
563}
564
565static void __ieee80211_key_destroy(struct ieee80211_key *key,
566 bool delay_tailroom)
567{
568 if (key->local)
569 ieee80211_key_disable_hw_accel(key);
570
571 if (key->local) {
572 struct ieee80211_sub_if_data *sdata = key->sdata;
573
574 ieee80211_debugfs_key_remove(key);
575
576 if (delay_tailroom) {
577 /* see ieee80211_delayed_tailroom_dec */
578 sdata->crypto_tx_tailroom_pending_dec++;
579 schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
580 HZ/2);
581 } else {
582 decrease_tailroom_need_count(sdata, 1);
583 }
584 }
585
586 ieee80211_key_free_common(key);
587}
588
589static void ieee80211_key_destroy(struct ieee80211_key *key,
590 bool delay_tailroom)
591{
592 if (!key)
593 return;
594
595 /*
596 * Synchronize so the TX path and rcu key iterators
597 * can no longer be using this key before we free/remove it.
598 */
599 synchronize_net();
600
601 __ieee80211_key_destroy(key, delay_tailroom);
602}
603
604void ieee80211_key_free_unused(struct ieee80211_key *key)
605{
606 WARN_ON(key->sdata || key->local);
607 ieee80211_key_free_common(key);
608}
609
610int ieee80211_key_link(struct ieee80211_key *key,
611 struct ieee80211_sub_if_data *sdata,
612 struct sta_info *sta)
613{
614 struct ieee80211_local *local = sdata->local;
615 struct ieee80211_key *old_key;
616 int idx, ret;
617 bool pairwise;
618
619 pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
620 idx = key->conf.keyidx;
621 key->local = sdata->local;
622 key->sdata = sdata;
623 key->sta = sta;
624
625 mutex_lock(&sdata->local->key_mtx);
626
627 if (sta && pairwise)
628 old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
629 else if (sta)
630 old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
631 else
632 old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
633
634 increment_tailroom_need_count(sdata);
635
636 ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
637 ieee80211_key_destroy(old_key, true);
638
639 ieee80211_debugfs_key_add(key);
640
641 if (!local->wowlan) {
642 ret = ieee80211_key_enable_hw_accel(key);
643 if (ret)
644 ieee80211_key_free(key, true);
645 } else {
646 ret = 0;
647 }
648
649 mutex_unlock(&sdata->local->key_mtx);
650
651 return ret;
652}
653
654void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
655{
656 if (!key)
657 return;
658
659 /*
660 * Replace key with nothingness if it was ever used.
661 */
662 if (key->sdata)
663 ieee80211_key_replace(key->sdata, key->sta,
664 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
665 key, NULL);
666 ieee80211_key_destroy(key, delay_tailroom);
667}
668
669void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata)
670{
671 struct ieee80211_key *key;
672 struct ieee80211_sub_if_data *vlan;
673
674 ASSERT_RTNL();
675
676 if (WARN_ON(!ieee80211_sdata_running(sdata)))
677 return;
678
679 mutex_lock(&sdata->local->key_mtx);
680
681 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
682 sdata->crypto_tx_tailroom_pending_dec);
683
684 if (sdata->vif.type == NL80211_IFTYPE_AP) {
685 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
686 WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
687 vlan->crypto_tx_tailroom_pending_dec);
688 }
689
690 list_for_each_entry(key, &sdata->key_list, list) {
691 increment_tailroom_need_count(sdata);
692 ieee80211_key_enable_hw_accel(key);
693 }
694
695 mutex_unlock(&sdata->local->key_mtx);
696}
697
698void ieee80211_reset_crypto_tx_tailroom(struct ieee80211_sub_if_data *sdata)
699{
700 struct ieee80211_sub_if_data *vlan;
701
702 mutex_lock(&sdata->local->key_mtx);
703
704 sdata->crypto_tx_tailroom_needed_cnt = 0;
705
706 if (sdata->vif.type == NL80211_IFTYPE_AP) {
707 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
708 vlan->crypto_tx_tailroom_needed_cnt = 0;
709 }
710
711 mutex_unlock(&sdata->local->key_mtx);
712}
713
714void ieee80211_iter_keys(struct ieee80211_hw *hw,
715 struct ieee80211_vif *vif,
716 void (*iter)(struct ieee80211_hw *hw,
717 struct ieee80211_vif *vif,
718 struct ieee80211_sta *sta,
719 struct ieee80211_key_conf *key,
720 void *data),
721 void *iter_data)
722{
723 struct ieee80211_local *local = hw_to_local(hw);
724 struct ieee80211_key *key, *tmp;
725 struct ieee80211_sub_if_data *sdata;
726
727 ASSERT_RTNL();
728
729 mutex_lock(&local->key_mtx);
730 if (vif) {
731 sdata = vif_to_sdata(vif);
732 list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
733 iter(hw, &sdata->vif,
734 key->sta ? &key->sta->sta : NULL,
735 &key->conf, iter_data);
736 } else {
737 list_for_each_entry(sdata, &local->interfaces, list)
738 list_for_each_entry_safe(key, tmp,
739 &sdata->key_list, list)
740 iter(hw, &sdata->vif,
741 key->sta ? &key->sta->sta : NULL,
742 &key->conf, iter_data);
743 }
744 mutex_unlock(&local->key_mtx);
745}
746EXPORT_SYMBOL(ieee80211_iter_keys);
747
748static void
749_ieee80211_iter_keys_rcu(struct ieee80211_hw *hw,
750 struct ieee80211_sub_if_data *sdata,
751 void (*iter)(struct ieee80211_hw *hw,
752 struct ieee80211_vif *vif,
753 struct ieee80211_sta *sta,
754 struct ieee80211_key_conf *key,
755 void *data),
756 void *iter_data)
757{
758 struct ieee80211_key *key;
759
760 list_for_each_entry_rcu(key, &sdata->key_list, list) {
761 /* skip keys of station in removal process */
762 if (key->sta && key->sta->removed)
763 continue;
764 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
765 continue;
766
767 iter(hw, &sdata->vif,
768 key->sta ? &key->sta->sta : NULL,
769 &key->conf, iter_data);
770 }
771}
772
773void ieee80211_iter_keys_rcu(struct ieee80211_hw *hw,
774 struct ieee80211_vif *vif,
775 void (*iter)(struct ieee80211_hw *hw,
776 struct ieee80211_vif *vif,
777 struct ieee80211_sta *sta,
778 struct ieee80211_key_conf *key,
779 void *data),
780 void *iter_data)
781{
782 struct ieee80211_local *local = hw_to_local(hw);
783 struct ieee80211_sub_if_data *sdata;
784
785 if (vif) {
786 sdata = vif_to_sdata(vif);
787 _ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data);
788 } else {
789 list_for_each_entry_rcu(sdata, &local->interfaces, list)
790 _ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data);
791 }
792}
793EXPORT_SYMBOL(ieee80211_iter_keys_rcu);
794
795static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
796 struct list_head *keys)
797{
798 struct ieee80211_key *key, *tmp;
799
800 decrease_tailroom_need_count(sdata,
801 sdata->crypto_tx_tailroom_pending_dec);
802 sdata->crypto_tx_tailroom_pending_dec = 0;
803
804 ieee80211_debugfs_key_remove_mgmt_default(sdata);
805
806 list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
807 ieee80211_key_replace(key->sdata, key->sta,
808 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
809 key, NULL);
810 list_add_tail(&key->list, keys);
811 }
812
813 ieee80211_debugfs_key_update_default(sdata);
814}
815
816void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
817 bool force_synchronize)
818{
819 struct ieee80211_local *local = sdata->local;
820 struct ieee80211_sub_if_data *vlan;
821 struct ieee80211_sub_if_data *master;
822 struct ieee80211_key *key, *tmp;
823 LIST_HEAD(keys);
824
825 cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
826
827 mutex_lock(&local->key_mtx);
828
829 ieee80211_free_keys_iface(sdata, &keys);
830
831 if (sdata->vif.type == NL80211_IFTYPE_AP) {
832 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
833 ieee80211_free_keys_iface(vlan, &keys);
834 }
835
836 if (!list_empty(&keys) || force_synchronize)
837 synchronize_net();
838 list_for_each_entry_safe(key, tmp, &keys, list)
839 __ieee80211_key_destroy(key, false);
840
841 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
842 if (sdata->bss) {
843 master = container_of(sdata->bss,
844 struct ieee80211_sub_if_data,
845 u.ap);
846
847 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt !=
848 master->crypto_tx_tailroom_needed_cnt);
849 }
850 } else {
851 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
852 sdata->crypto_tx_tailroom_pending_dec);
853 }
854
855 if (sdata->vif.type == NL80211_IFTYPE_AP) {
856 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
857 WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
858 vlan->crypto_tx_tailroom_pending_dec);
859 }
860
861 mutex_unlock(&local->key_mtx);
862}
863
864void ieee80211_free_sta_keys(struct ieee80211_local *local,
865 struct sta_info *sta)
866{
867 struct ieee80211_key *key;
868 int i;
869
870 mutex_lock(&local->key_mtx);
871 for (i = 0; i < ARRAY_SIZE(sta->gtk); i++) {
872 key = key_mtx_dereference(local, sta->gtk[i]);
873 if (!key)
874 continue;
875 ieee80211_key_replace(key->sdata, key->sta,
876 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
877 key, NULL);
878 __ieee80211_key_destroy(key, true);
879 }
880
881 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
882 key = key_mtx_dereference(local, sta->ptk[i]);
883 if (!key)
884 continue;
885 ieee80211_key_replace(key->sdata, key->sta,
886 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
887 key, NULL);
888 __ieee80211_key_destroy(key, true);
889 }
890
891 mutex_unlock(&local->key_mtx);
892}
893
894void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
895{
896 struct ieee80211_sub_if_data *sdata;
897
898 sdata = container_of(wk, struct ieee80211_sub_if_data,
899 dec_tailroom_needed_wk.work);
900
901 /*
902 * The reason for the delayed tailroom needed decrementing is to
903 * make roaming faster: during roaming, all keys are first deleted
904 * and then new keys are installed. The first new key causes the
905 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
906 * the cost of synchronize_net() (which can be slow). Avoid this
907 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
908 * key removal for a while, so if we roam the value is larger than
909 * zero and no 0->1 transition happens.
910 *
911 * The cost is that if the AP switching was from an AP with keys
912 * to one without, we still allocate tailroom while it would no
913 * longer be needed. However, in the typical (fast) roaming case
914 * within an ESS this usually won't happen.
915 */
916
917 mutex_lock(&sdata->local->key_mtx);
918 decrease_tailroom_need_count(sdata,
919 sdata->crypto_tx_tailroom_pending_dec);
920 sdata->crypto_tx_tailroom_pending_dec = 0;
921 mutex_unlock(&sdata->local->key_mtx);
922}
923
924void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
925 const u8 *replay_ctr, gfp_t gfp)
926{
927 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
928
929 trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
930
931 cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
932}
933EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
934
935void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
936 int tid, struct ieee80211_key_seq *seq)
937{
938 struct ieee80211_key *key;
939 const u8 *pn;
940
941 key = container_of(keyconf, struct ieee80211_key, conf);
942
943 switch (key->conf.cipher) {
944 case WLAN_CIPHER_SUITE_TKIP:
945 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
946 return;
947 seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
948 seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
949 break;
950 case WLAN_CIPHER_SUITE_CCMP:
951 case WLAN_CIPHER_SUITE_CCMP_256:
952 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
953 return;
954 if (tid < 0)
955 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
956 else
957 pn = key->u.ccmp.rx_pn[tid];
958 memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
959 break;
960 case WLAN_CIPHER_SUITE_AES_CMAC:
961 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
962 if (WARN_ON(tid != 0))
963 return;
964 pn = key->u.aes_cmac.rx_pn;
965 memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
966 break;
967 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
968 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
969 if (WARN_ON(tid != 0))
970 return;
971 pn = key->u.aes_gmac.rx_pn;
972 memcpy(seq->aes_gmac.pn, pn, IEEE80211_GMAC_PN_LEN);
973 break;
974 case WLAN_CIPHER_SUITE_GCMP:
975 case WLAN_CIPHER_SUITE_GCMP_256:
976 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
977 return;
978 if (tid < 0)
979 pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
980 else
981 pn = key->u.gcmp.rx_pn[tid];
982 memcpy(seq->gcmp.pn, pn, IEEE80211_GCMP_PN_LEN);
983 break;
984 }
985}
986EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
987
988void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
989 int tid, struct ieee80211_key_seq *seq)
990{
991 struct ieee80211_key *key;
992 u8 *pn;
993
994 key = container_of(keyconf, struct ieee80211_key, conf);
995
996 switch (key->conf.cipher) {
997 case WLAN_CIPHER_SUITE_TKIP:
998 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
999 return;
1000 key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
1001 key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
1002 break;
1003 case WLAN_CIPHER_SUITE_CCMP:
1004 case WLAN_CIPHER_SUITE_CCMP_256:
1005 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1006 return;
1007 if (tid < 0)
1008 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
1009 else
1010 pn = key->u.ccmp.rx_pn[tid];
1011 memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
1012 break;
1013 case WLAN_CIPHER_SUITE_AES_CMAC:
1014 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1015 if (WARN_ON(tid != 0))
1016 return;
1017 pn = key->u.aes_cmac.rx_pn;
1018 memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
1019 break;
1020 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1021 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1022 if (WARN_ON(tid != 0))
1023 return;
1024 pn = key->u.aes_gmac.rx_pn;
1025 memcpy(pn, seq->aes_gmac.pn, IEEE80211_GMAC_PN_LEN);
1026 break;
1027 case WLAN_CIPHER_SUITE_GCMP:
1028 case WLAN_CIPHER_SUITE_GCMP_256:
1029 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1030 return;
1031 if (tid < 0)
1032 pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
1033 else
1034 pn = key->u.gcmp.rx_pn[tid];
1035 memcpy(pn, seq->gcmp.pn, IEEE80211_GCMP_PN_LEN);
1036 break;
1037 default:
1038 WARN_ON(1);
1039 break;
1040 }
1041}
1042EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
1043
1044void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
1045{
1046 struct ieee80211_key *key;
1047
1048 key = container_of(keyconf, struct ieee80211_key, conf);
1049
1050 assert_key_lock(key->local);
1051
1052 /*
1053 * if key was uploaded, we assume the driver will/has remove(d)
1054 * it, so adjust bookkeeping accordingly
1055 */
1056 if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
1057 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
1058
1059 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
1060 (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
1061 increment_tailroom_need_count(key->sdata);
1062 }
1063
1064 ieee80211_key_free(key, false);
1065}
1066EXPORT_SYMBOL_GPL(ieee80211_remove_key);
1067
1068struct ieee80211_key_conf *
1069ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
1070 struct ieee80211_key_conf *keyconf)
1071{
1072 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1073 struct ieee80211_local *local = sdata->local;
1074 struct ieee80211_key *key;
1075 int err;
1076
1077 if (WARN_ON(!local->wowlan))
1078 return ERR_PTR(-EINVAL);
1079
1080 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1081 return ERR_PTR(-EINVAL);
1082
1083 key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
1084 keyconf->keylen, keyconf->key,
1085 0, NULL, NULL);
1086 if (IS_ERR(key))
1087 return ERR_CAST(key);
1088
1089 if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
1090 key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
1091
1092 err = ieee80211_key_link(key, sdata, NULL);
1093 if (err)
1094 return ERR_PTR(err);
1095
1096 return &key->conf;
1097}
1098EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);