Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This file contains common generic and tag-based KASAN code.
  4 *
  5 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
  6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
  7 *
  8 * Some code borrowed from https://github.com/xairy/kasan-prototype by
  9 *        Andrey Konovalov <andreyknvl@gmail.com>
 10 *
 11 * This program is free software; you can redistribute it and/or modify
 12 * it under the terms of the GNU General Public License version 2 as
 13 * published by the Free Software Foundation.
 14 *
 15 */
 16
 17#include <linux/export.h>
 18#include <linux/init.h>
 19#include <linux/kasan.h>
 20#include <linux/kernel.h>
 21#include <linux/kmemleak.h>
 22#include <linux/linkage.h>
 23#include <linux/memblock.h>
 24#include <linux/memory.h>
 25#include <linux/mm.h>
 26#include <linux/module.h>
 27#include <linux/printk.h>
 28#include <linux/sched.h>
 29#include <linux/sched/task_stack.h>
 30#include <linux/slab.h>
 31#include <linux/stacktrace.h>
 32#include <linux/string.h>
 33#include <linux/types.h>
 34#include <linux/vmalloc.h>
 35#include <linux/bug.h>
 36
 37#include <asm/cacheflush.h>
 38#include <asm/tlbflush.h>
 39
 40#include "kasan.h"
 41#include "../slab.h"
 42
 43depot_stack_handle_t kasan_save_stack(gfp_t flags)
 44{
 45	unsigned long entries[KASAN_STACK_DEPTH];
 46	unsigned int nr_entries;
 47
 48	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
 49	nr_entries = filter_irq_stacks(entries, nr_entries);
 50	return stack_depot_save(entries, nr_entries, flags);
 51}
 52
 53void kasan_set_track(struct kasan_track *track, gfp_t flags)
 54{
 55	track->pid = current->pid;
 56	track->stack = kasan_save_stack(flags);
 57}
 58
 59void kasan_enable_current(void)
 60{
 61	current->kasan_depth++;
 62}
 63
 64void kasan_disable_current(void)
 65{
 66	current->kasan_depth--;
 67}
 68
 69bool __kasan_check_read(const volatile void *p, unsigned int size)
 70{
 71	return check_memory_region((unsigned long)p, size, false, _RET_IP_);
 72}
 73EXPORT_SYMBOL(__kasan_check_read);
 74
 75bool __kasan_check_write(const volatile void *p, unsigned int size)
 76{
 77	return check_memory_region((unsigned long)p, size, true, _RET_IP_);
 78}
 79EXPORT_SYMBOL(__kasan_check_write);
 80
 81#undef memset
 82void *memset(void *addr, int c, size_t len)
 83{
 84	if (!check_memory_region((unsigned long)addr, len, true, _RET_IP_))
 85		return NULL;
 86
 87	return __memset(addr, c, len);
 88}
 89
 90#ifdef __HAVE_ARCH_MEMMOVE
 91#undef memmove
 92void *memmove(void *dest, const void *src, size_t len)
 93{
 94	if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
 95	    !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
 96		return NULL;
 97
 98	return __memmove(dest, src, len);
 99}
100#endif
101
102#undef memcpy
103void *memcpy(void *dest, const void *src, size_t len)
104{
105	if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
106	    !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
107		return NULL;
108
109	return __memcpy(dest, src, len);
110}
111
112/*
113 * Poisons the shadow memory for 'size' bytes starting from 'addr'.
114 * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
115 */
116void kasan_poison_shadow(const void *address, size_t size, u8 value)
117{
118	void *shadow_start, *shadow_end;
119
120	/*
121	 * Perform shadow offset calculation based on untagged address, as
122	 * some of the callers (e.g. kasan_poison_object_data) pass tagged
123	 * addresses to this function.
124	 */
125	address = reset_tag(address);
126
127	shadow_start = kasan_mem_to_shadow(address);
128	shadow_end = kasan_mem_to_shadow(address + size);
129
130	__memset(shadow_start, value, shadow_end - shadow_start);
131}
132
133void kasan_unpoison_shadow(const void *address, size_t size)
134{
135	u8 tag = get_tag(address);
136
137	/*
138	 * Perform shadow offset calculation based on untagged address, as
139	 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
140	 * addresses to this function.
141	 */
142	address = reset_tag(address);
143
144	kasan_poison_shadow(address, size, tag);
145
146	if (size & KASAN_SHADOW_MASK) {
147		u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
148
149		if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
150			*shadow = tag;
151		else
152			*shadow = size & KASAN_SHADOW_MASK;
153	}
154}
155
156static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
157{
158	void *base = task_stack_page(task);
159	size_t size = sp - base;
160
161	kasan_unpoison_shadow(base, size);
162}
163
164/* Unpoison the entire stack for a task. */
165void kasan_unpoison_task_stack(struct task_struct *task)
166{
167	__kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
168}
169
170/* Unpoison the stack for the current task beyond a watermark sp value. */
171asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
172{
173	/*
174	 * Calculate the task stack base address.  Avoid using 'current'
175	 * because this function is called by early resume code which hasn't
176	 * yet set up the percpu register (%gs).
177	 */
178	void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
179
180	kasan_unpoison_shadow(base, watermark - base);
181}
182
183void kasan_alloc_pages(struct page *page, unsigned int order)
184{
185	u8 tag;
186	unsigned long i;
187
188	if (unlikely(PageHighMem(page)))
189		return;
190
191	tag = random_tag();
192	for (i = 0; i < (1 << order); i++)
193		page_kasan_tag_set(page + i, tag);
194	kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
195}
196
197void kasan_free_pages(struct page *page, unsigned int order)
198{
199	if (likely(!PageHighMem(page)))
200		kasan_poison_shadow(page_address(page),
201				PAGE_SIZE << order,
202				KASAN_FREE_PAGE);
203}
204
205/*
206 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
207 * For larger allocations larger redzones are used.
208 */
209static inline unsigned int optimal_redzone(unsigned int object_size)
210{
211	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
212		return 0;
213
214	return
215		object_size <= 64        - 16   ? 16 :
216		object_size <= 128       - 32   ? 32 :
217		object_size <= 512       - 64   ? 64 :
218		object_size <= 4096      - 128  ? 128 :
219		object_size <= (1 << 14) - 256  ? 256 :
220		object_size <= (1 << 15) - 512  ? 512 :
221		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
222}
223
224void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
225			slab_flags_t *flags)
226{
227	unsigned int orig_size = *size;
228	unsigned int redzone_size;
229	int redzone_adjust;
230
231	/* Add alloc meta. */
232	cache->kasan_info.alloc_meta_offset = *size;
233	*size += sizeof(struct kasan_alloc_meta);
234
235	/* Add free meta. */
236	if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
237	    (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
238	     cache->object_size < sizeof(struct kasan_free_meta))) {
239		cache->kasan_info.free_meta_offset = *size;
240		*size += sizeof(struct kasan_free_meta);
241	}
242
243	redzone_size = optimal_redzone(cache->object_size);
244	redzone_adjust = redzone_size -	(*size - cache->object_size);
245	if (redzone_adjust > 0)
246		*size += redzone_adjust;
247
248	*size = min_t(unsigned int, KMALLOC_MAX_SIZE,
249			max(*size, cache->object_size + redzone_size));
250
251	/*
252	 * If the metadata doesn't fit, don't enable KASAN at all.
253	 */
254	if (*size <= cache->kasan_info.alloc_meta_offset ||
255			*size <= cache->kasan_info.free_meta_offset) {
256		cache->kasan_info.alloc_meta_offset = 0;
257		cache->kasan_info.free_meta_offset = 0;
258		*size = orig_size;
259		return;
260	}
261
262	*flags |= SLAB_KASAN;
263}
264
265size_t kasan_metadata_size(struct kmem_cache *cache)
266{
267	return (cache->kasan_info.alloc_meta_offset ?
268		sizeof(struct kasan_alloc_meta) : 0) +
269		(cache->kasan_info.free_meta_offset ?
270		sizeof(struct kasan_free_meta) : 0);
271}
272
273struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
274					const void *object)
275{
276	return (void *)object + cache->kasan_info.alloc_meta_offset;
277}
278
279struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
280				      const void *object)
281{
282	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
283	return (void *)object + cache->kasan_info.free_meta_offset;
284}
285
286void kasan_poison_slab(struct page *page)
287{
288	unsigned long i;
289
290	for (i = 0; i < compound_nr(page); i++)
291		page_kasan_tag_reset(page + i);
292	kasan_poison_shadow(page_address(page), page_size(page),
293			KASAN_KMALLOC_REDZONE);
294}
295
296void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
297{
298	kasan_unpoison_shadow(object, cache->object_size);
299}
300
301void kasan_poison_object_data(struct kmem_cache *cache, void *object)
302{
303	kasan_poison_shadow(object,
304			round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
305			KASAN_KMALLOC_REDZONE);
306}
307
308/*
309 * This function assigns a tag to an object considering the following:
310 * 1. A cache might have a constructor, which might save a pointer to a slab
311 *    object somewhere (e.g. in the object itself). We preassign a tag for
312 *    each object in caches with constructors during slab creation and reuse
313 *    the same tag each time a particular object is allocated.
314 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
315 *    accessed after being freed. We preassign tags for objects in these
316 *    caches as well.
317 * 3. For SLAB allocator we can't preassign tags randomly since the freelist
318 *    is stored as an array of indexes instead of a linked list. Assign tags
319 *    based on objects indexes, so that objects that are next to each other
320 *    get different tags.
321 */
322static u8 assign_tag(struct kmem_cache *cache, const void *object,
323			bool init, bool keep_tag)
324{
325	/*
326	 * 1. When an object is kmalloc()'ed, two hooks are called:
327	 *    kasan_slab_alloc() and kasan_kmalloc(). We assign the
328	 *    tag only in the first one.
329	 * 2. We reuse the same tag for krealloc'ed objects.
330	 */
331	if (keep_tag)
332		return get_tag(object);
333
334	/*
335	 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
336	 * set, assign a tag when the object is being allocated (init == false).
337	 */
338	if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
339		return init ? KASAN_TAG_KERNEL : random_tag();
340
341	/* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
342#ifdef CONFIG_SLAB
343	/* For SLAB assign tags based on the object index in the freelist. */
344	return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
345#else
346	/*
347	 * For SLUB assign a random tag during slab creation, otherwise reuse
348	 * the already assigned tag.
349	 */
350	return init ? random_tag() : get_tag(object);
351#endif
352}
353
354void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
355						const void *object)
356{
357	struct kasan_alloc_meta *alloc_info;
358
359	if (!(cache->flags & SLAB_KASAN))
360		return (void *)object;
361
362	alloc_info = get_alloc_info(cache, object);
363	__memset(alloc_info, 0, sizeof(*alloc_info));
364
365	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
366		object = set_tag(object,
367				assign_tag(cache, object, true, false));
368
369	return (void *)object;
370}
371
372static inline bool shadow_invalid(u8 tag, s8 shadow_byte)
373{
374	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
375		return shadow_byte < 0 ||
376			shadow_byte >= KASAN_SHADOW_SCALE_SIZE;
377
378	/* else CONFIG_KASAN_SW_TAGS: */
379	if ((u8)shadow_byte == KASAN_TAG_INVALID)
380		return true;
381	if ((tag != KASAN_TAG_KERNEL) && (tag != (u8)shadow_byte))
382		return true;
383
384	return false;
385}
386
387static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
388			      unsigned long ip, bool quarantine)
389{
390	s8 shadow_byte;
391	u8 tag;
392	void *tagged_object;
393	unsigned long rounded_up_size;
394
395	tag = get_tag(object);
396	tagged_object = object;
397	object = reset_tag(object);
398
399	if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
400	    object)) {
401		kasan_report_invalid_free(tagged_object, ip);
402		return true;
403	}
404
405	/* RCU slabs could be legally used after free within the RCU period */
406	if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
407		return false;
408
409	shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
410	if (shadow_invalid(tag, shadow_byte)) {
411		kasan_report_invalid_free(tagged_object, ip);
412		return true;
413	}
414
415	rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
416	kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
417
418	if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
419			unlikely(!(cache->flags & SLAB_KASAN)))
420		return false;
421
422	kasan_set_free_info(cache, object, tag);
423
424	quarantine_put(get_free_info(cache, object), cache);
425
426	return IS_ENABLED(CONFIG_KASAN_GENERIC);
427}
428
429bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
430{
431	return __kasan_slab_free(cache, object, ip, true);
432}
433
434static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object,
435				size_t size, gfp_t flags, bool keep_tag)
436{
437	unsigned long redzone_start;
438	unsigned long redzone_end;
439	u8 tag = 0xff;
440
441	if (gfpflags_allow_blocking(flags))
442		quarantine_reduce();
443
444	if (unlikely(object == NULL))
445		return NULL;
446
447	redzone_start = round_up((unsigned long)(object + size),
448				KASAN_SHADOW_SCALE_SIZE);
449	redzone_end = round_up((unsigned long)object + cache->object_size,
450				KASAN_SHADOW_SCALE_SIZE);
451
452	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
453		tag = assign_tag(cache, object, false, keep_tag);
454
455	/* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
456	kasan_unpoison_shadow(set_tag(object, tag), size);
457	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
458		KASAN_KMALLOC_REDZONE);
459
460	if (cache->flags & SLAB_KASAN)
461		kasan_set_track(&get_alloc_info(cache, object)->alloc_track, flags);
462
463	return set_tag(object, tag);
464}
465
466void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
467					gfp_t flags)
468{
469	return __kasan_kmalloc(cache, object, cache->object_size, flags, false);
470}
471
472void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
473				size_t size, gfp_t flags)
474{
475	return __kasan_kmalloc(cache, object, size, flags, true);
476}
477EXPORT_SYMBOL(kasan_kmalloc);
478
479void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
480						gfp_t flags)
481{
482	struct page *page;
483	unsigned long redzone_start;
484	unsigned long redzone_end;
485
486	if (gfpflags_allow_blocking(flags))
487		quarantine_reduce();
488
489	if (unlikely(ptr == NULL))
490		return NULL;
491
492	page = virt_to_page(ptr);
493	redzone_start = round_up((unsigned long)(ptr + size),
494				KASAN_SHADOW_SCALE_SIZE);
495	redzone_end = (unsigned long)ptr + page_size(page);
496
497	kasan_unpoison_shadow(ptr, size);
498	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
499		KASAN_PAGE_REDZONE);
500
501	return (void *)ptr;
502}
503
504void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
505{
506	struct page *page;
507
508	if (unlikely(object == ZERO_SIZE_PTR))
509		return (void *)object;
510
511	page = virt_to_head_page(object);
512
513	if (unlikely(!PageSlab(page)))
514		return kasan_kmalloc_large(object, size, flags);
515	else
516		return __kasan_kmalloc(page->slab_cache, object, size,
517						flags, true);
518}
519
520void kasan_poison_kfree(void *ptr, unsigned long ip)
521{
522	struct page *page;
523
524	page = virt_to_head_page(ptr);
525
526	if (unlikely(!PageSlab(page))) {
527		if (ptr != page_address(page)) {
528			kasan_report_invalid_free(ptr, ip);
529			return;
530		}
531		kasan_poison_shadow(ptr, page_size(page), KASAN_FREE_PAGE);
532	} else {
533		__kasan_slab_free(page->slab_cache, ptr, ip, false);
534	}
535}
536
537void kasan_kfree_large(void *ptr, unsigned long ip)
538{
539	if (ptr != page_address(virt_to_head_page(ptr)))
540		kasan_report_invalid_free(ptr, ip);
541	/* The object will be poisoned by page_alloc. */
542}
543
544#ifndef CONFIG_KASAN_VMALLOC
545int kasan_module_alloc(void *addr, size_t size)
546{
547	void *ret;
548	size_t scaled_size;
549	size_t shadow_size;
550	unsigned long shadow_start;
551
552	shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
553	scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
554	shadow_size = round_up(scaled_size, PAGE_SIZE);
555
556	if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
557		return -EINVAL;
558
559	ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
560			shadow_start + shadow_size,
561			GFP_KERNEL,
562			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
563			__builtin_return_address(0));
564
565	if (ret) {
566		__memset(ret, KASAN_SHADOW_INIT, shadow_size);
567		find_vm_area(addr)->flags |= VM_KASAN;
568		kmemleak_ignore(ret);
569		return 0;
570	}
571
572	return -ENOMEM;
573}
574
575void kasan_free_shadow(const struct vm_struct *vm)
576{
577	if (vm->flags & VM_KASAN)
578		vfree(kasan_mem_to_shadow(vm->addr));
579}
580#endif
581
582#ifdef CONFIG_MEMORY_HOTPLUG
583static bool shadow_mapped(unsigned long addr)
584{
585	pgd_t *pgd = pgd_offset_k(addr);
586	p4d_t *p4d;
587	pud_t *pud;
588	pmd_t *pmd;
589	pte_t *pte;
590
591	if (pgd_none(*pgd))
592		return false;
593	p4d = p4d_offset(pgd, addr);
594	if (p4d_none(*p4d))
595		return false;
596	pud = pud_offset(p4d, addr);
597	if (pud_none(*pud))
598		return false;
599
600	/*
601	 * We can't use pud_large() or pud_huge(), the first one is
602	 * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
603	 * pud_bad(), if pud is bad then it's bad because it's huge.
604	 */
605	if (pud_bad(*pud))
606		return true;
607	pmd = pmd_offset(pud, addr);
608	if (pmd_none(*pmd))
609		return false;
610
611	if (pmd_bad(*pmd))
612		return true;
613	pte = pte_offset_kernel(pmd, addr);
614	return !pte_none(*pte);
615}
616
617static int __meminit kasan_mem_notifier(struct notifier_block *nb,
618			unsigned long action, void *data)
619{
620	struct memory_notify *mem_data = data;
621	unsigned long nr_shadow_pages, start_kaddr, shadow_start;
622	unsigned long shadow_end, shadow_size;
623
624	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
625	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
626	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
627	shadow_size = nr_shadow_pages << PAGE_SHIFT;
628	shadow_end = shadow_start + shadow_size;
629
630	if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
631		WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
632		return NOTIFY_BAD;
633
634	switch (action) {
635	case MEM_GOING_ONLINE: {
636		void *ret;
637
638		/*
639		 * If shadow is mapped already than it must have been mapped
640		 * during the boot. This could happen if we onlining previously
641		 * offlined memory.
642		 */
643		if (shadow_mapped(shadow_start))
644			return NOTIFY_OK;
645
646		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
647					shadow_end, GFP_KERNEL,
648					PAGE_KERNEL, VM_NO_GUARD,
649					pfn_to_nid(mem_data->start_pfn),
650					__builtin_return_address(0));
651		if (!ret)
652			return NOTIFY_BAD;
653
654		kmemleak_ignore(ret);
655		return NOTIFY_OK;
656	}
657	case MEM_CANCEL_ONLINE:
658	case MEM_OFFLINE: {
659		struct vm_struct *vm;
660
661		/*
662		 * shadow_start was either mapped during boot by kasan_init()
663		 * or during memory online by __vmalloc_node_range().
664		 * In the latter case we can use vfree() to free shadow.
665		 * Non-NULL result of the find_vm_area() will tell us if
666		 * that was the second case.
667		 *
668		 * Currently it's not possible to free shadow mapped
669		 * during boot by kasan_init(). It's because the code
670		 * to do that hasn't been written yet. So we'll just
671		 * leak the memory.
672		 */
673		vm = find_vm_area((void *)shadow_start);
674		if (vm)
675			vfree((void *)shadow_start);
676	}
677	}
678
679	return NOTIFY_OK;
680}
681
682static int __init kasan_memhotplug_init(void)
683{
684	hotplug_memory_notifier(kasan_mem_notifier, 0);
685
686	return 0;
687}
688
689core_initcall(kasan_memhotplug_init);
690#endif
691
692#ifdef CONFIG_KASAN_VMALLOC
693static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
694				      void *unused)
695{
696	unsigned long page;
697	pte_t pte;
698
699	if (likely(!pte_none(*ptep)))
700		return 0;
701
702	page = __get_free_page(GFP_KERNEL);
703	if (!page)
704		return -ENOMEM;
705
706	memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
707	pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
708
709	spin_lock(&init_mm.page_table_lock);
710	if (likely(pte_none(*ptep))) {
711		set_pte_at(&init_mm, addr, ptep, pte);
712		page = 0;
713	}
714	spin_unlock(&init_mm.page_table_lock);
715	if (page)
716		free_page(page);
717	return 0;
718}
719
720int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
721{
722	unsigned long shadow_start, shadow_end;
723	int ret;
724
725	if (!is_vmalloc_or_module_addr((void *)addr))
726		return 0;
727
728	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
729	shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
730	shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
731	shadow_end = ALIGN(shadow_end, PAGE_SIZE);
732
733	ret = apply_to_page_range(&init_mm, shadow_start,
734				  shadow_end - shadow_start,
735				  kasan_populate_vmalloc_pte, NULL);
736	if (ret)
737		return ret;
738
739	flush_cache_vmap(shadow_start, shadow_end);
740
741	/*
742	 * We need to be careful about inter-cpu effects here. Consider:
743	 *
744	 *   CPU#0				  CPU#1
745	 * WRITE_ONCE(p, vmalloc(100));		while (x = READ_ONCE(p)) ;
746	 *					p[99] = 1;
747	 *
748	 * With compiler instrumentation, that ends up looking like this:
749	 *
750	 *   CPU#0				  CPU#1
751	 * // vmalloc() allocates memory
752	 * // let a = area->addr
753	 * // we reach kasan_populate_vmalloc
754	 * // and call kasan_unpoison_shadow:
755	 * STORE shadow(a), unpoison_val
756	 * ...
757	 * STORE shadow(a+99), unpoison_val	x = LOAD p
758	 * // rest of vmalloc process		<data dependency>
759	 * STORE p, a				LOAD shadow(x+99)
760	 *
761	 * If there is no barrier between the end of unpoisioning the shadow
762	 * and the store of the result to p, the stores could be committed
763	 * in a different order by CPU#0, and CPU#1 could erroneously observe
764	 * poison in the shadow.
765	 *
766	 * We need some sort of barrier between the stores.
767	 *
768	 * In the vmalloc() case, this is provided by a smp_wmb() in
769	 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
770	 * get_vm_area() and friends, the caller gets shadow allocated but
771	 * doesn't have any pages mapped into the virtual address space that
772	 * has been reserved. Mapping those pages in will involve taking and
773	 * releasing a page-table lock, which will provide the barrier.
774	 */
775
776	return 0;
777}
778
779/*
780 * Poison the shadow for a vmalloc region. Called as part of the
781 * freeing process at the time the region is freed.
782 */
783void kasan_poison_vmalloc(const void *start, unsigned long size)
784{
785	if (!is_vmalloc_or_module_addr(start))
786		return;
787
788	size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
789	kasan_poison_shadow(start, size, KASAN_VMALLOC_INVALID);
790}
791
792void kasan_unpoison_vmalloc(const void *start, unsigned long size)
793{
794	if (!is_vmalloc_or_module_addr(start))
795		return;
796
797	kasan_unpoison_shadow(start, size);
798}
799
800static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
801					void *unused)
802{
803	unsigned long page;
804
805	page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
806
807	spin_lock(&init_mm.page_table_lock);
808
809	if (likely(!pte_none(*ptep))) {
810		pte_clear(&init_mm, addr, ptep);
811		free_page(page);
812	}
813	spin_unlock(&init_mm.page_table_lock);
814
815	return 0;
816}
817
818/*
819 * Release the backing for the vmalloc region [start, end), which
820 * lies within the free region [free_region_start, free_region_end).
821 *
822 * This can be run lazily, long after the region was freed. It runs
823 * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
824 * infrastructure.
825 *
826 * How does this work?
827 * -------------------
828 *
829 * We have a region that is page aligned, labelled as A.
830 * That might not map onto the shadow in a way that is page-aligned:
831 *
832 *                    start                     end
833 *                    v                         v
834 * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
835 *  -------- -------- --------          -------- --------
836 *      |        |       |                 |        |
837 *      |        |       |         /-------/        |
838 *      \-------\|/------/         |/---------------/
839 *              |||                ||
840 *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
841 *                 (1)      (2)      (3)
842 *
843 * First we align the start upwards and the end downwards, so that the
844 * shadow of the region aligns with shadow page boundaries. In the
845 * example, this gives us the shadow page (2). This is the shadow entirely
846 * covered by this allocation.
847 *
848 * Then we have the tricky bits. We want to know if we can free the
849 * partially covered shadow pages - (1) and (3) in the example. For this,
850 * we are given the start and end of the free region that contains this
851 * allocation. Extending our previous example, we could have:
852 *
853 *  free_region_start                                    free_region_end
854 *  |                 start                     end      |
855 *  v                 v                         v        v
856 * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
857 *  -------- -------- --------          -------- --------
858 *      |        |       |                 |        |
859 *      |        |       |         /-------/        |
860 *      \-------\|/------/         |/---------------/
861 *              |||                ||
862 *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
863 *                 (1)      (2)      (3)
864 *
865 * Once again, we align the start of the free region up, and the end of
866 * the free region down so that the shadow is page aligned. So we can free
867 * page (1) - we know no allocation currently uses anything in that page,
868 * because all of it is in the vmalloc free region. But we cannot free
869 * page (3), because we can't be sure that the rest of it is unused.
870 *
871 * We only consider pages that contain part of the original region for
872 * freeing: we don't try to free other pages from the free region or we'd
873 * end up trying to free huge chunks of virtual address space.
874 *
875 * Concurrency
876 * -----------
877 *
878 * How do we know that we're not freeing a page that is simultaneously
879 * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
880 *
881 * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
882 * at the same time. While we run under free_vmap_area_lock, the population
883 * code does not.
884 *
885 * free_vmap_area_lock instead operates to ensure that the larger range
886 * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
887 * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
888 * no space identified as free will become used while we are running. This
889 * means that so long as we are careful with alignment and only free shadow
890 * pages entirely covered by the free region, we will not run in to any
891 * trouble - any simultaneous allocations will be for disjoint regions.
892 */
893void kasan_release_vmalloc(unsigned long start, unsigned long end,
894			   unsigned long free_region_start,
895			   unsigned long free_region_end)
896{
897	void *shadow_start, *shadow_end;
898	unsigned long region_start, region_end;
899	unsigned long size;
900
901	region_start = ALIGN(start, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
902	region_end = ALIGN_DOWN(end, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
903
904	free_region_start = ALIGN(free_region_start,
905				  PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
906
907	if (start != region_start &&
908	    free_region_start < region_start)
909		region_start -= PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE;
910
911	free_region_end = ALIGN_DOWN(free_region_end,
912				     PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
913
914	if (end != region_end &&
915	    free_region_end > region_end)
916		region_end += PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE;
917
918	shadow_start = kasan_mem_to_shadow((void *)region_start);
919	shadow_end = kasan_mem_to_shadow((void *)region_end);
920
921	if (shadow_end > shadow_start) {
922		size = shadow_end - shadow_start;
923		apply_to_existing_page_range(&init_mm,
924					     (unsigned long)shadow_start,
925					     size, kasan_depopulate_vmalloc_pte,
926					     NULL);
927		flush_tlb_kernel_range((unsigned long)shadow_start,
928				       (unsigned long)shadow_end);
929	}
930}
931#endif