Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/kernel.h>
   3#include <linux/errno.h>
   4#include <linux/err.h>
   5#include <linux/spinlock.h>
   6
   7#include <linux/mm.h>
   8#include <linux/memremap.h>
   9#include <linux/pagemap.h>
  10#include <linux/rmap.h>
  11#include <linux/swap.h>
  12#include <linux/swapops.h>
  13
  14#include <linux/sched/signal.h>
  15#include <linux/rwsem.h>
  16#include <linux/hugetlb.h>
  17#include <linux/migrate.h>
  18#include <linux/mm_inline.h>
  19#include <linux/sched/mm.h>
  20
  21#include <asm/mmu_context.h>
 
  22#include <asm/tlbflush.h>
  23
  24#include "internal.h"
  25
  26struct follow_page_context {
  27	struct dev_pagemap *pgmap;
  28	unsigned int page_mask;
  29};
  30
  31static void hpage_pincount_add(struct page *page, int refs)
  32{
  33	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
  34	VM_BUG_ON_PAGE(page != compound_head(page), page);
  35
  36	atomic_add(refs, compound_pincount_ptr(page));
  37}
  38
  39static void hpage_pincount_sub(struct page *page, int refs)
  40{
  41	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
  42	VM_BUG_ON_PAGE(page != compound_head(page), page);
  43
  44	atomic_sub(refs, compound_pincount_ptr(page));
  45}
  46
  47/*
  48 * Return the compound head page with ref appropriately incremented,
  49 * or NULL if that failed.
  50 */
  51static inline struct page *try_get_compound_head(struct page *page, int refs)
  52{
  53	struct page *head = compound_head(page);
  54
  55	if (WARN_ON_ONCE(page_ref_count(head) < 0))
  56		return NULL;
  57	if (unlikely(!page_cache_add_speculative(head, refs)))
  58		return NULL;
  59	return head;
  60}
  61
  62/*
  63 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
  64 * flags-dependent amount.
  65 *
  66 * "grab" names in this file mean, "look at flags to decide whether to use
  67 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
  68 *
  69 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
  70 * same time. (That's true throughout the get_user_pages*() and
  71 * pin_user_pages*() APIs.) Cases:
  72 *
  73 *    FOLL_GET: page's refcount will be incremented by 1.
  74 *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
  75 *
  76 * Return: head page (with refcount appropriately incremented) for success, or
  77 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
  78 * considered failure, and furthermore, a likely bug in the caller, so a warning
  79 * is also emitted.
  80 */
  81static __maybe_unused struct page *try_grab_compound_head(struct page *page,
  82							  int refs,
  83							  unsigned int flags)
  84{
  85	if (flags & FOLL_GET)
  86		return try_get_compound_head(page, refs);
  87	else if (flags & FOLL_PIN) {
  88		int orig_refs = refs;
  89
  90		/*
  91		 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
  92		 * path, so fail and let the caller fall back to the slow path.
  93		 */
  94		if (unlikely(flags & FOLL_LONGTERM) &&
  95				is_migrate_cma_page(page))
  96			return NULL;
  97
  98		/*
  99		 * When pinning a compound page of order > 1 (which is what
 100		 * hpage_pincount_available() checks for), use an exact count to
 101		 * track it, via hpage_pincount_add/_sub().
 102		 *
 103		 * However, be sure to *also* increment the normal page refcount
 104		 * field at least once, so that the page really is pinned.
 105		 */
 106		if (!hpage_pincount_available(page))
 107			refs *= GUP_PIN_COUNTING_BIAS;
 108
 109		page = try_get_compound_head(page, refs);
 110		if (!page)
 111			return NULL;
 112
 113		if (hpage_pincount_available(page))
 114			hpage_pincount_add(page, refs);
 115
 116		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
 117				    orig_refs);
 118
 119		return page;
 120	}
 121
 122	WARN_ON_ONCE(1);
 123	return NULL;
 124}
 125
 126/**
 127 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
 128 *
 129 * This might not do anything at all, depending on the flags argument.
 130 *
 131 * "grab" names in this file mean, "look at flags to decide whether to use
 132 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 133 *
 134 * @page:    pointer to page to be grabbed
 135 * @flags:   gup flags: these are the FOLL_* flag values.
 136 *
 137 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
 138 * time. Cases:
 139 *
 140 *    FOLL_GET: page's refcount will be incremented by 1.
 141 *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
 142 *
 143 * Return: true for success, or if no action was required (if neither FOLL_PIN
 144 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
 145 * FOLL_PIN was set, but the page could not be grabbed.
 146 */
 147bool __must_check try_grab_page(struct page *page, unsigned int flags)
 148{
 149	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
 150
 151	if (flags & FOLL_GET)
 152		return try_get_page(page);
 153	else if (flags & FOLL_PIN) {
 154		int refs = 1;
 155
 156		page = compound_head(page);
 157
 158		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
 159			return false;
 160
 161		if (hpage_pincount_available(page))
 162			hpage_pincount_add(page, 1);
 163		else
 164			refs = GUP_PIN_COUNTING_BIAS;
 165
 166		/*
 167		 * Similar to try_grab_compound_head(): even if using the
 168		 * hpage_pincount_add/_sub() routines, be sure to
 169		 * *also* increment the normal page refcount field at least
 170		 * once, so that the page really is pinned.
 171		 */
 172		page_ref_add(page, refs);
 173
 174		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
 175	}
 176
 177	return true;
 178}
 179
 180#ifdef CONFIG_DEV_PAGEMAP_OPS
 181static bool __unpin_devmap_managed_user_page(struct page *page)
 182{
 183	int count, refs = 1;
 184
 185	if (!page_is_devmap_managed(page))
 186		return false;
 187
 188	if (hpage_pincount_available(page))
 189		hpage_pincount_sub(page, 1);
 190	else
 191		refs = GUP_PIN_COUNTING_BIAS;
 192
 193	count = page_ref_sub_return(page, refs);
 194
 195	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
 196	/*
 197	 * devmap page refcounts are 1-based, rather than 0-based: if
 198	 * refcount is 1, then the page is free and the refcount is
 199	 * stable because nobody holds a reference on the page.
 200	 */
 201	if (count == 1)
 202		free_devmap_managed_page(page);
 203	else if (!count)
 204		__put_page(page);
 205
 206	return true;
 207}
 208#else
 209static bool __unpin_devmap_managed_user_page(struct page *page)
 210{
 211	return false;
 212}
 213#endif /* CONFIG_DEV_PAGEMAP_OPS */
 214
 215/**
 216 * unpin_user_page() - release a dma-pinned page
 217 * @page:            pointer to page to be released
 218 *
 219 * Pages that were pinned via pin_user_pages*() must be released via either
 220 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
 221 * that such pages can be separately tracked and uniquely handled. In
 222 * particular, interactions with RDMA and filesystems need special handling.
 223 */
 224void unpin_user_page(struct page *page)
 225{
 226	int refs = 1;
 227
 228	page = compound_head(page);
 229
 230	/*
 231	 * For devmap managed pages we need to catch refcount transition from
 232	 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
 233	 * page is free and we need to inform the device driver through
 234	 * callback. See include/linux/memremap.h and HMM for details.
 235	 */
 236	if (__unpin_devmap_managed_user_page(page))
 237		return;
 238
 239	if (hpage_pincount_available(page))
 240		hpage_pincount_sub(page, 1);
 241	else
 242		refs = GUP_PIN_COUNTING_BIAS;
 243
 244	if (page_ref_sub_and_test(page, refs))
 245		__put_page(page);
 246
 247	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
 248}
 249EXPORT_SYMBOL(unpin_user_page);
 250
 251/**
 252 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
 253 * @pages:  array of pages to be maybe marked dirty, and definitely released.
 254 * @npages: number of pages in the @pages array.
 255 * @make_dirty: whether to mark the pages dirty
 256 *
 257 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
 258 * variants called on that page.
 259 *
 260 * For each page in the @pages array, make that page (or its head page, if a
 261 * compound page) dirty, if @make_dirty is true, and if the page was previously
 262 * listed as clean. In any case, releases all pages using unpin_user_page(),
 263 * possibly via unpin_user_pages(), for the non-dirty case.
 264 *
 265 * Please see the unpin_user_page() documentation for details.
 266 *
 267 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 268 * required, then the caller should a) verify that this is really correct,
 269 * because _lock() is usually required, and b) hand code it:
 270 * set_page_dirty_lock(), unpin_user_page().
 271 *
 272 */
 273void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
 274				 bool make_dirty)
 275{
 276	unsigned long index;
 277
 278	/*
 279	 * TODO: this can be optimized for huge pages: if a series of pages is
 280	 * physically contiguous and part of the same compound page, then a
 281	 * single operation to the head page should suffice.
 282	 */
 283
 284	if (!make_dirty) {
 285		unpin_user_pages(pages, npages);
 286		return;
 287	}
 288
 289	for (index = 0; index < npages; index++) {
 290		struct page *page = compound_head(pages[index]);
 291		/*
 292		 * Checking PageDirty at this point may race with
 293		 * clear_page_dirty_for_io(), but that's OK. Two key
 294		 * cases:
 295		 *
 296		 * 1) This code sees the page as already dirty, so it
 297		 * skips the call to set_page_dirty(). That could happen
 298		 * because clear_page_dirty_for_io() called
 299		 * page_mkclean(), followed by set_page_dirty().
 300		 * However, now the page is going to get written back,
 301		 * which meets the original intention of setting it
 302		 * dirty, so all is well: clear_page_dirty_for_io() goes
 303		 * on to call TestClearPageDirty(), and write the page
 304		 * back.
 305		 *
 306		 * 2) This code sees the page as clean, so it calls
 307		 * set_page_dirty(). The page stays dirty, despite being
 308		 * written back, so it gets written back again in the
 309		 * next writeback cycle. This is harmless.
 310		 */
 311		if (!PageDirty(page))
 312			set_page_dirty_lock(page);
 313		unpin_user_page(page);
 314	}
 315}
 316EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
 317
 318/**
 319 * unpin_user_pages() - release an array of gup-pinned pages.
 320 * @pages:  array of pages to be marked dirty and released.
 321 * @npages: number of pages in the @pages array.
 322 *
 323 * For each page in the @pages array, release the page using unpin_user_page().
 324 *
 325 * Please see the unpin_user_page() documentation for details.
 326 */
 327void unpin_user_pages(struct page **pages, unsigned long npages)
 328{
 329	unsigned long index;
 330
 331	/*
 332	 * TODO: this can be optimized for huge pages: if a series of pages is
 333	 * physically contiguous and part of the same compound page, then a
 334	 * single operation to the head page should suffice.
 335	 */
 336	for (index = 0; index < npages; index++)
 337		unpin_user_page(pages[index]);
 338}
 339EXPORT_SYMBOL(unpin_user_pages);
 340
 341#ifdef CONFIG_MMU
 342static struct page *no_page_table(struct vm_area_struct *vma,
 343		unsigned int flags)
 344{
 345	/*
 346	 * When core dumping an enormous anonymous area that nobody
 347	 * has touched so far, we don't want to allocate unnecessary pages or
 348	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
 349	 * then get_dump_page() will return NULL to leave a hole in the dump.
 350	 * But we can only make this optimization where a hole would surely
 351	 * be zero-filled if handle_mm_fault() actually did handle it.
 352	 */
 353	if ((flags & FOLL_DUMP) &&
 354			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
 355		return ERR_PTR(-EFAULT);
 356	return NULL;
 357}
 358
 359static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
 360		pte_t *pte, unsigned int flags)
 361{
 362	/* No page to get reference */
 363	if (flags & FOLL_GET)
 364		return -EFAULT;
 365
 366	if (flags & FOLL_TOUCH) {
 367		pte_t entry = *pte;
 368
 369		if (flags & FOLL_WRITE)
 370			entry = pte_mkdirty(entry);
 371		entry = pte_mkyoung(entry);
 372
 373		if (!pte_same(*pte, entry)) {
 374			set_pte_at(vma->vm_mm, address, pte, entry);
 375			update_mmu_cache(vma, address, pte);
 376		}
 377	}
 378
 379	/* Proper page table entry exists, but no corresponding struct page */
 380	return -EEXIST;
 381}
 382
 383/*
 384 * FOLL_FORCE can write to even unwritable pte's, but only
 385 * after we've gone through a COW cycle and they are dirty.
 386 */
 387static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
 388{
 389	return pte_write(pte) ||
 390		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
 391}
 392
 393static struct page *follow_page_pte(struct vm_area_struct *vma,
 394		unsigned long address, pmd_t *pmd, unsigned int flags,
 395		struct dev_pagemap **pgmap)
 396{
 397	struct mm_struct *mm = vma->vm_mm;
 
 398	struct page *page;
 399	spinlock_t *ptl;
 400	pte_t *ptep, pte;
 401	int ret;
 402
 403	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
 404	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
 405			 (FOLL_PIN | FOLL_GET)))
 406		return ERR_PTR(-EINVAL);
 407retry:
 408	if (unlikely(pmd_bad(*pmd)))
 409		return no_page_table(vma, flags);
 410
 411	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
 412	pte = *ptep;
 413	if (!pte_present(pte)) {
 414		swp_entry_t entry;
 415		/*
 416		 * KSM's break_ksm() relies upon recognizing a ksm page
 417		 * even while it is being migrated, so for that case we
 418		 * need migration_entry_wait().
 419		 */
 420		if (likely(!(flags & FOLL_MIGRATION)))
 421			goto no_page;
 422		if (pte_none(pte))
 423			goto no_page;
 424		entry = pte_to_swp_entry(pte);
 425		if (!is_migration_entry(entry))
 426			goto no_page;
 427		pte_unmap_unlock(ptep, ptl);
 428		migration_entry_wait(mm, pmd, address);
 429		goto retry;
 430	}
 431	if ((flags & FOLL_NUMA) && pte_protnone(pte))
 432		goto no_page;
 433	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
 434		pte_unmap_unlock(ptep, ptl);
 435		return NULL;
 436	}
 437
 438	page = vm_normal_page(vma, address, pte);
 439	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
 440		/*
 441		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
 442		 * case since they are only valid while holding the pgmap
 443		 * reference.
 444		 */
 445		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
 446		if (*pgmap)
 447			page = pte_page(pte);
 448		else
 449			goto no_page;
 450	} else if (unlikely(!page)) {
 451		if (flags & FOLL_DUMP) {
 452			/* Avoid special (like zero) pages in core dumps */
 453			page = ERR_PTR(-EFAULT);
 454			goto out;
 455		}
 456
 457		if (is_zero_pfn(pte_pfn(pte))) {
 458			page = pte_page(pte);
 459		} else {
 
 
 460			ret = follow_pfn_pte(vma, address, ptep, flags);
 461			page = ERR_PTR(ret);
 462			goto out;
 463		}
 464	}
 465
 466	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
 
 467		get_page(page);
 468		pte_unmap_unlock(ptep, ptl);
 469		lock_page(page);
 470		ret = split_huge_page(page);
 471		unlock_page(page);
 472		put_page(page);
 473		if (ret)
 474			return ERR_PTR(ret);
 475		goto retry;
 476	}
 477
 478	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
 479	if (unlikely(!try_grab_page(page, flags))) {
 480		page = ERR_PTR(-ENOMEM);
 481		goto out;
 482	}
 483	/*
 484	 * We need to make the page accessible if and only if we are going
 485	 * to access its content (the FOLL_PIN case).  Please see
 486	 * Documentation/core-api/pin_user_pages.rst for details.
 487	 */
 488	if (flags & FOLL_PIN) {
 489		ret = arch_make_page_accessible(page);
 490		if (ret) {
 491			unpin_user_page(page);
 492			page = ERR_PTR(ret);
 493			goto out;
 494		}
 495	}
 496	if (flags & FOLL_TOUCH) {
 497		if ((flags & FOLL_WRITE) &&
 498		    !pte_dirty(pte) && !PageDirty(page))
 499			set_page_dirty(page);
 500		/*
 501		 * pte_mkyoung() would be more correct here, but atomic care
 502		 * is needed to avoid losing the dirty bit: it is easier to use
 503		 * mark_page_accessed().
 504		 */
 505		mark_page_accessed(page);
 506	}
 507	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
 508		/* Do not mlock pte-mapped THP */
 509		if (PageTransCompound(page))
 510			goto out;
 511
 512		/*
 513		 * The preliminary mapping check is mainly to avoid the
 514		 * pointless overhead of lock_page on the ZERO_PAGE
 515		 * which might bounce very badly if there is contention.
 516		 *
 517		 * If the page is already locked, we don't need to
 518		 * handle it now - vmscan will handle it later if and
 519		 * when it attempts to reclaim the page.
 520		 */
 521		if (page->mapping && trylock_page(page)) {
 522			lru_add_drain();  /* push cached pages to LRU */
 523			/*
 524			 * Because we lock page here, and migration is
 525			 * blocked by the pte's page reference, and we
 526			 * know the page is still mapped, we don't even
 527			 * need to check for file-cache page truncation.
 528			 */
 529			mlock_vma_page(page);
 530			unlock_page(page);
 531		}
 532	}
 533out:
 534	pte_unmap_unlock(ptep, ptl);
 535	return page;
 536no_page:
 537	pte_unmap_unlock(ptep, ptl);
 538	if (!pte_none(pte))
 539		return NULL;
 540	return no_page_table(vma, flags);
 541}
 542
 543static struct page *follow_pmd_mask(struct vm_area_struct *vma,
 544				    unsigned long address, pud_t *pudp,
 545				    unsigned int flags,
 546				    struct follow_page_context *ctx)
 
 
 
 
 
 
 
 
 
 
 
 
 547{
 548	pmd_t *pmd, pmdval;
 
 
 549	spinlock_t *ptl;
 550	struct page *page;
 551	struct mm_struct *mm = vma->vm_mm;
 552
 553	pmd = pmd_offset(pudp, address);
 554	/*
 555	 * The READ_ONCE() will stabilize the pmdval in a register or
 556	 * on the stack so that it will stop changing under the code.
 557	 */
 558	pmdval = READ_ONCE(*pmd);
 559	if (pmd_none(pmdval))
 
 
 
 560		return no_page_table(vma, flags);
 561	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
 562		page = follow_huge_pmd(mm, address, pmd, flags);
 
 
 
 
 563		if (page)
 564			return page;
 565		return no_page_table(vma, flags);
 566	}
 567	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
 568		page = follow_huge_pd(vma, address,
 569				      __hugepd(pmd_val(pmdval)), flags,
 570				      PMD_SHIFT);
 
 
 
 
 571		if (page)
 572			return page;
 573		return no_page_table(vma, flags);
 574	}
 575retry:
 576	if (!pmd_present(pmdval)) {
 577		if (likely(!(flags & FOLL_MIGRATION)))
 578			return no_page_table(vma, flags);
 579		VM_BUG_ON(thp_migration_supported() &&
 580				  !is_pmd_migration_entry(pmdval));
 581		if (is_pmd_migration_entry(pmdval))
 582			pmd_migration_entry_wait(mm, pmd);
 583		pmdval = READ_ONCE(*pmd);
 584		/*
 585		 * MADV_DONTNEED may convert the pmd to null because
 586		 * mmap_lock is held in read mode
 587		 */
 588		if (pmd_none(pmdval))
 589			return no_page_table(vma, flags);
 590		goto retry;
 591	}
 592	if (pmd_devmap(pmdval)) {
 593		ptl = pmd_lock(mm, pmd);
 594		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
 595		spin_unlock(ptl);
 596		if (page)
 597			return page;
 598	}
 599	if (likely(!pmd_trans_huge(pmdval)))
 600		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 601
 602	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
 603		return no_page_table(vma, flags);
 604
 605retry_locked:
 606	ptl = pmd_lock(mm, pmd);
 607	if (unlikely(pmd_none(*pmd))) {
 608		spin_unlock(ptl);
 609		return no_page_table(vma, flags);
 610	}
 611	if (unlikely(!pmd_present(*pmd))) {
 612		spin_unlock(ptl);
 613		if (likely(!(flags & FOLL_MIGRATION)))
 614			return no_page_table(vma, flags);
 615		pmd_migration_entry_wait(mm, pmd);
 616		goto retry_locked;
 617	}
 618	if (unlikely(!pmd_trans_huge(*pmd))) {
 619		spin_unlock(ptl);
 620		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 621	}
 622	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
 623		int ret;
 624		page = pmd_page(*pmd);
 625		if (is_huge_zero_page(page)) {
 626			spin_unlock(ptl);
 627			ret = 0;
 628			split_huge_pmd(vma, pmd, address);
 629			if (pmd_trans_unstable(pmd))
 630				ret = -EBUSY;
 631		} else if (flags & FOLL_SPLIT) {
 632			if (unlikely(!try_get_page(page))) {
 633				spin_unlock(ptl);
 634				return ERR_PTR(-ENOMEM);
 635			}
 636			spin_unlock(ptl);
 637			lock_page(page);
 638			ret = split_huge_page(page);
 639			unlock_page(page);
 640			put_page(page);
 641			if (pmd_none(*pmd))
 642				return no_page_table(vma, flags);
 643		} else {  /* flags & FOLL_SPLIT_PMD */
 644			spin_unlock(ptl);
 645			split_huge_pmd(vma, pmd, address);
 646			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
 647		}
 648
 649		return ret ? ERR_PTR(ret) :
 650			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 651	}
 
 652	page = follow_trans_huge_pmd(vma, address, pmd, flags);
 653	spin_unlock(ptl);
 654	ctx->page_mask = HPAGE_PMD_NR - 1;
 655	return page;
 656}
 657
 658static struct page *follow_pud_mask(struct vm_area_struct *vma,
 659				    unsigned long address, p4d_t *p4dp,
 660				    unsigned int flags,
 661				    struct follow_page_context *ctx)
 662{
 663	pud_t *pud;
 664	spinlock_t *ptl;
 665	struct page *page;
 666	struct mm_struct *mm = vma->vm_mm;
 667
 668	pud = pud_offset(p4dp, address);
 669	if (pud_none(*pud))
 670		return no_page_table(vma, flags);
 671	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
 672		page = follow_huge_pud(mm, address, pud, flags);
 673		if (page)
 674			return page;
 675		return no_page_table(vma, flags);
 676	}
 677	if (is_hugepd(__hugepd(pud_val(*pud)))) {
 678		page = follow_huge_pd(vma, address,
 679				      __hugepd(pud_val(*pud)), flags,
 680				      PUD_SHIFT);
 681		if (page)
 682			return page;
 683		return no_page_table(vma, flags);
 684	}
 685	if (pud_devmap(*pud)) {
 686		ptl = pud_lock(mm, pud);
 687		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
 688		spin_unlock(ptl);
 689		if (page)
 690			return page;
 691	}
 692	if (unlikely(pud_bad(*pud)))
 693		return no_page_table(vma, flags);
 694
 695	return follow_pmd_mask(vma, address, pud, flags, ctx);
 696}
 697
 698static struct page *follow_p4d_mask(struct vm_area_struct *vma,
 699				    unsigned long address, pgd_t *pgdp,
 700				    unsigned int flags,
 701				    struct follow_page_context *ctx)
 702{
 703	p4d_t *p4d;
 704	struct page *page;
 705
 706	p4d = p4d_offset(pgdp, address);
 707	if (p4d_none(*p4d))
 708		return no_page_table(vma, flags);
 709	BUILD_BUG_ON(p4d_huge(*p4d));
 710	if (unlikely(p4d_bad(*p4d)))
 711		return no_page_table(vma, flags);
 712
 713	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
 714		page = follow_huge_pd(vma, address,
 715				      __hugepd(p4d_val(*p4d)), flags,
 716				      P4D_SHIFT);
 717		if (page)
 718			return page;
 719		return no_page_table(vma, flags);
 720	}
 721	return follow_pud_mask(vma, address, p4d, flags, ctx);
 722}
 723
 724/**
 725 * follow_page_mask - look up a page descriptor from a user-virtual address
 726 * @vma: vm_area_struct mapping @address
 727 * @address: virtual address to look up
 728 * @flags: flags modifying lookup behaviour
 729 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 730 *       pointer to output page_mask
 731 *
 732 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 733 *
 734 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 735 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 736 *
 737 * On output, the @ctx->page_mask is set according to the size of the page.
 738 *
 739 * Return: the mapped (struct page *), %NULL if no mapping exists, or
 740 * an error pointer if there is a mapping to something not represented
 741 * by a page descriptor (see also vm_normal_page()).
 742 */
 743static struct page *follow_page_mask(struct vm_area_struct *vma,
 744			      unsigned long address, unsigned int flags,
 745			      struct follow_page_context *ctx)
 746{
 747	pgd_t *pgd;
 748	struct page *page;
 749	struct mm_struct *mm = vma->vm_mm;
 750
 751	ctx->page_mask = 0;
 752
 753	/* make this handle hugepd */
 754	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
 755	if (!IS_ERR(page)) {
 756		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
 757		return page;
 758	}
 759
 760	pgd = pgd_offset(mm, address);
 761
 762	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
 763		return no_page_table(vma, flags);
 764
 765	if (pgd_huge(*pgd)) {
 766		page = follow_huge_pgd(mm, address, pgd, flags);
 767		if (page)
 768			return page;
 769		return no_page_table(vma, flags);
 770	}
 771	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
 772		page = follow_huge_pd(vma, address,
 773				      __hugepd(pgd_val(*pgd)), flags,
 774				      PGDIR_SHIFT);
 775		if (page)
 776			return page;
 777		return no_page_table(vma, flags);
 778	}
 779
 780	return follow_p4d_mask(vma, address, pgd, flags, ctx);
 781}
 782
 783struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
 784			 unsigned int foll_flags)
 785{
 786	struct follow_page_context ctx = { NULL };
 787	struct page *page;
 788
 789	page = follow_page_mask(vma, address, foll_flags, &ctx);
 790	if (ctx.pgmap)
 791		put_dev_pagemap(ctx.pgmap);
 792	return page;
 793}
 794
 795static int get_gate_page(struct mm_struct *mm, unsigned long address,
 796		unsigned int gup_flags, struct vm_area_struct **vma,
 797		struct page **page)
 798{
 799	pgd_t *pgd;
 800	p4d_t *p4d;
 801	pud_t *pud;
 802	pmd_t *pmd;
 803	pte_t *pte;
 804	int ret = -EFAULT;
 805
 806	/* user gate pages are read-only */
 807	if (gup_flags & FOLL_WRITE)
 808		return -EFAULT;
 809	if (address > TASK_SIZE)
 810		pgd = pgd_offset_k(address);
 811	else
 812		pgd = pgd_offset_gate(mm, address);
 813	if (pgd_none(*pgd))
 814		return -EFAULT;
 815	p4d = p4d_offset(pgd, address);
 816	if (p4d_none(*p4d))
 817		return -EFAULT;
 818	pud = pud_offset(p4d, address);
 819	if (pud_none(*pud))
 820		return -EFAULT;
 821	pmd = pmd_offset(pud, address);
 822	if (!pmd_present(*pmd))
 823		return -EFAULT;
 824	VM_BUG_ON(pmd_trans_huge(*pmd));
 825	pte = pte_offset_map(pmd, address);
 826	if (pte_none(*pte))
 827		goto unmap;
 828	*vma = get_gate_vma(mm);
 829	if (!page)
 830		goto out;
 831	*page = vm_normal_page(*vma, address, *pte);
 832	if (!*page) {
 833		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
 834			goto unmap;
 835		*page = pte_page(*pte);
 836	}
 837	if (unlikely(!try_grab_page(*page, gup_flags))) {
 838		ret = -ENOMEM;
 839		goto unmap;
 840	}
 841out:
 842	ret = 0;
 843unmap:
 844	pte_unmap(pte);
 845	return ret;
 846}
 847
 848/*
 849 * mmap_lock must be held on entry.  If @locked != NULL and *@flags
 850 * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
 851 * is, *@locked will be set to 0 and -EBUSY returned.
 852 */
 853static int faultin_page(struct vm_area_struct *vma,
 854		unsigned long address, unsigned int *flags, int *locked)
 855{
 
 856	unsigned int fault_flags = 0;
 857	vm_fault_t ret;
 858
 859	/* mlock all present pages, but do not fault in new pages */
 860	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
 861		return -ENOENT;
 
 
 
 
 
 862	if (*flags & FOLL_WRITE)
 863		fault_flags |= FAULT_FLAG_WRITE;
 864	if (*flags & FOLL_REMOTE)
 865		fault_flags |= FAULT_FLAG_REMOTE;
 866	if (locked)
 867		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
 868	if (*flags & FOLL_NOWAIT)
 869		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
 870	if (*flags & FOLL_TRIED) {
 871		/*
 872		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
 873		 * can co-exist
 874		 */
 875		fault_flags |= FAULT_FLAG_TRIED;
 876	}
 877
 878	ret = handle_mm_fault(vma, address, fault_flags, NULL);
 879	if (ret & VM_FAULT_ERROR) {
 880		int err = vm_fault_to_errno(ret, *flags);
 881
 882		if (err)
 883			return err;
 
 
 884		BUG();
 885	}
 886
 
 
 
 
 
 
 
 887	if (ret & VM_FAULT_RETRY) {
 888		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
 889			*locked = 0;
 890		return -EBUSY;
 891	}
 892
 893	/*
 894	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
 895	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
 896	 * can thus safely do subsequent page lookups as if they were reads.
 897	 * But only do so when looping for pte_write is futile: in some cases
 898	 * userspace may also be wanting to write to the gotten user page,
 899	 * which a read fault here might prevent (a readonly page might get
 900	 * reCOWed by userspace write).
 901	 */
 902	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
 903		*flags |= FOLL_COW;
 904	return 0;
 905}
 906
 907static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
 908{
 909	vm_flags_t vm_flags = vma->vm_flags;
 910	int write = (gup_flags & FOLL_WRITE);
 911	int foreign = (gup_flags & FOLL_REMOTE);
 912
 913	if (vm_flags & (VM_IO | VM_PFNMAP))
 914		return -EFAULT;
 915
 916	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
 917		return -EFAULT;
 918
 919	if (write) {
 920		if (!(vm_flags & VM_WRITE)) {
 921			if (!(gup_flags & FOLL_FORCE))
 922				return -EFAULT;
 923			/*
 924			 * We used to let the write,force case do COW in a
 925			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
 926			 * set a breakpoint in a read-only mapping of an
 927			 * executable, without corrupting the file (yet only
 928			 * when that file had been opened for writing!).
 929			 * Anon pages in shared mappings are surprising: now
 930			 * just reject it.
 931			 */
 932			if (!is_cow_mapping(vm_flags))
 933				return -EFAULT;
 934		}
 935	} else if (!(vm_flags & VM_READ)) {
 936		if (!(gup_flags & FOLL_FORCE))
 937			return -EFAULT;
 938		/*
 939		 * Is there actually any vma we can reach here which does not
 940		 * have VM_MAYREAD set?
 941		 */
 942		if (!(vm_flags & VM_MAYREAD))
 943			return -EFAULT;
 944	}
 945	/*
 946	 * gups are always data accesses, not instruction
 947	 * fetches, so execute=false here
 948	 */
 949	if (!arch_vma_access_permitted(vma, write, false, foreign))
 950		return -EFAULT;
 951	return 0;
 952}
 953
 954/**
 955 * __get_user_pages() - pin user pages in memory
 
 956 * @mm:		mm_struct of target mm
 957 * @start:	starting user address
 958 * @nr_pages:	number of pages from start to pin
 959 * @gup_flags:	flags modifying pin behaviour
 960 * @pages:	array that receives pointers to the pages pinned.
 961 *		Should be at least nr_pages long. Or NULL, if caller
 962 *		only intends to ensure the pages are faulted in.
 963 * @vmas:	array of pointers to vmas corresponding to each page.
 964 *		Or NULL if the caller does not require them.
 965 * @locked:     whether we're still with the mmap_lock held
 966 *
 967 * Returns either number of pages pinned (which may be less than the
 968 * number requested), or an error. Details about the return value:
 
 
 
 969 *
 970 * -- If nr_pages is 0, returns 0.
 971 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 972 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 973 *    pages pinned. Again, this may be less than nr_pages.
 974 * -- 0 return value is possible when the fault would need to be retried.
 975 *
 976 * The caller is responsible for releasing returned @pages, via put_page().
 977 *
 978 * @vmas are valid only as long as mmap_lock is held.
 979 *
 980 * Must be called with mmap_lock held.  It may be released.  See below.
 981 *
 982 * __get_user_pages walks a process's page tables and takes a reference to
 983 * each struct page that each user address corresponds to at a given
 984 * instant. That is, it takes the page that would be accessed if a user
 985 * thread accesses the given user virtual address at that instant.
 986 *
 987 * This does not guarantee that the page exists in the user mappings when
 988 * __get_user_pages returns, and there may even be a completely different
 989 * page there in some cases (eg. if mmapped pagecache has been invalidated
 990 * and subsequently re faulted). However it does guarantee that the page
 991 * won't be freed completely. And mostly callers simply care that the page
 992 * contains data that was valid *at some point in time*. Typically, an IO
 993 * or similar operation cannot guarantee anything stronger anyway because
 994 * locks can't be held over the syscall boundary.
 995 *
 996 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 997 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 998 * appropriate) must be called after the page is finished with, and
 999 * before put_page is called.
1000 *
1001 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1002 * released by an up_read().  That can happen if @gup_flags does not
1003 * have FOLL_NOWAIT.
 
 
1004 *
1005 * A caller using such a combination of @locked and @gup_flags
1006 * must therefore hold the mmap_lock for reading only, and recognize
1007 * when it's been released.  Otherwise, it must be held for either
1008 * reading or writing and will not be released.
1009 *
1010 * In most cases, get_user_pages or get_user_pages_fast should be used
1011 * instead of __get_user_pages. __get_user_pages should be used only if
1012 * you need some special @gup_flags.
1013 */
1014static long __get_user_pages(struct mm_struct *mm,
1015		unsigned long start, unsigned long nr_pages,
1016		unsigned int gup_flags, struct page **pages,
1017		struct vm_area_struct **vmas, int *locked)
1018{
1019	long ret = 0, i = 0;
 
1020	struct vm_area_struct *vma = NULL;
1021	struct follow_page_context ctx = { NULL };
1022
1023	if (!nr_pages)
1024		return 0;
1025
1026	start = untagged_addr(start);
1027
1028	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1029
1030	/*
1031	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1032	 * fault information is unrelated to the reference behaviour of a task
1033	 * using the address space
1034	 */
1035	if (!(gup_flags & FOLL_FORCE))
1036		gup_flags |= FOLL_NUMA;
1037
1038	do {
1039		struct page *page;
1040		unsigned int foll_flags = gup_flags;
1041		unsigned int page_increm;
1042
1043		/* first iteration or cross vma bound */
1044		if (!vma || start >= vma->vm_end) {
1045			vma = find_extend_vma(mm, start);
1046			if (!vma && in_gate_area(mm, start)) {
 
1047				ret = get_gate_page(mm, start & PAGE_MASK,
1048						gup_flags, &vma,
1049						pages ? &pages[i] : NULL);
1050				if (ret)
1051					goto out;
1052				ctx.page_mask = 0;
1053				goto next_page;
1054			}
1055
1056			if (!vma || check_vma_flags(vma, gup_flags)) {
1057				ret = -EFAULT;
1058				goto out;
1059			}
1060			if (is_vm_hugetlb_page(vma)) {
1061				i = follow_hugetlb_page(mm, vma, pages, vmas,
1062						&start, &nr_pages, i,
1063						gup_flags, locked);
1064				if (locked && *locked == 0) {
1065					/*
1066					 * We've got a VM_FAULT_RETRY
1067					 * and we've lost mmap_lock.
1068					 * We must stop here.
1069					 */
1070					BUG_ON(gup_flags & FOLL_NOWAIT);
1071					BUG_ON(ret != 0);
1072					goto out;
1073				}
1074				continue;
1075			}
1076		}
1077retry:
1078		/*
1079		 * If we have a pending SIGKILL, don't keep faulting pages and
1080		 * potentially allocating memory.
1081		 */
1082		if (fatal_signal_pending(current)) {
1083			ret = -EINTR;
1084			goto out;
1085		}
1086		cond_resched();
1087
1088		page = follow_page_mask(vma, start, foll_flags, &ctx);
1089		if (!page) {
1090			ret = faultin_page(vma, start, &foll_flags, locked);
 
 
1091			switch (ret) {
1092			case 0:
1093				goto retry;
1094			case -EBUSY:
1095				ret = 0;
1096				fallthrough;
1097			case -EFAULT:
1098			case -ENOMEM:
1099			case -EHWPOISON:
1100				goto out;
 
 
1101			case -ENOENT:
1102				goto next_page;
1103			}
1104			BUG();
1105		} else if (PTR_ERR(page) == -EEXIST) {
1106			/*
1107			 * Proper page table entry exists, but no corresponding
1108			 * struct page.
1109			 */
1110			goto next_page;
1111		} else if (IS_ERR(page)) {
1112			ret = PTR_ERR(page);
1113			goto out;
1114		}
1115		if (pages) {
1116			pages[i] = page;
1117			flush_anon_page(vma, page, start);
1118			flush_dcache_page(page);
1119			ctx.page_mask = 0;
1120		}
1121next_page:
1122		if (vmas) {
1123			vmas[i] = vma;
1124			ctx.page_mask = 0;
1125		}
1126		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1127		if (page_increm > nr_pages)
1128			page_increm = nr_pages;
1129		i += page_increm;
1130		start += page_increm * PAGE_SIZE;
1131		nr_pages -= page_increm;
1132	} while (nr_pages);
1133out:
1134	if (ctx.pgmap)
1135		put_dev_pagemap(ctx.pgmap);
1136	return i ? i : ret;
1137}
 
1138
1139static bool vma_permits_fault(struct vm_area_struct *vma,
1140			      unsigned int fault_flags)
1141{
1142	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1143	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1144	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1145
1146	if (!(vm_flags & vma->vm_flags))
1147		return false;
1148
1149	/*
1150	 * The architecture might have a hardware protection
1151	 * mechanism other than read/write that can deny access.
1152	 *
1153	 * gup always represents data access, not instruction
1154	 * fetches, so execute=false here:
1155	 */
1156	if (!arch_vma_access_permitted(vma, write, false, foreign))
1157		return false;
1158
1159	return true;
1160}
1161
1162/**
1163 * fixup_user_fault() - manually resolve a user page fault
 
 
1164 * @mm:		mm_struct of target mm
1165 * @address:	user address
1166 * @fault_flags:flags to pass down to handle_mm_fault()
1167 * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1168 *		does not allow retry. If NULL, the caller must guarantee
1169 *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1170 *
1171 * This is meant to be called in the specific scenario where for locking reasons
1172 * we try to access user memory in atomic context (within a pagefault_disable()
1173 * section), this returns -EFAULT, and we want to resolve the user fault before
1174 * trying again.
1175 *
1176 * Typically this is meant to be used by the futex code.
1177 *
1178 * The main difference with get_user_pages() is that this function will
1179 * unconditionally call handle_mm_fault() which will in turn perform all the
1180 * necessary SW fixup of the dirty and young bits in the PTE, while
1181 * get_user_pages() only guarantees to update these in the struct page.
1182 *
1183 * This is important for some architectures where those bits also gate the
1184 * access permission to the page because they are maintained in software.  On
1185 * such architectures, gup() will not be enough to make a subsequent access
1186 * succeed.
1187 *
1188 * This function will not return with an unlocked mmap_lock. So it has not the
1189 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1190 */
1191int fixup_user_fault(struct mm_struct *mm,
1192		     unsigned long address, unsigned int fault_flags,
1193		     bool *unlocked)
1194{
1195	struct vm_area_struct *vma;
1196	vm_fault_t ret, major = 0;
1197
1198	address = untagged_addr(address);
1199
1200	if (unlocked)
1201		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1202
1203retry:
1204	vma = find_extend_vma(mm, address);
1205	if (!vma || address < vma->vm_start)
1206		return -EFAULT;
1207
1208	if (!vma_permits_fault(vma, fault_flags))
1209		return -EFAULT;
1210
1211	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1212	    fatal_signal_pending(current))
1213		return -EINTR;
1214
1215	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1216	major |= ret & VM_FAULT_MAJOR;
1217	if (ret & VM_FAULT_ERROR) {
1218		int err = vm_fault_to_errno(ret, 0);
1219
1220		if (err)
1221			return err;
 
 
1222		BUG();
1223	}
1224
1225	if (ret & VM_FAULT_RETRY) {
1226		mmap_read_lock(mm);
1227		*unlocked = true;
1228		fault_flags |= FAULT_FLAG_TRIED;
1229		goto retry;
 
 
 
1230	}
1231
 
 
 
 
 
 
1232	return 0;
1233}
1234EXPORT_SYMBOL_GPL(fixup_user_fault);
1235
1236/*
1237 * Please note that this function, unlike __get_user_pages will not
1238 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1239 */
1240static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1241						unsigned long start,
1242						unsigned long nr_pages,
 
1243						struct page **pages,
1244						struct vm_area_struct **vmas,
1245						int *locked,
1246						unsigned int flags)
1247{
1248	long ret, pages_done;
1249	bool lock_dropped;
1250
1251	if (locked) {
1252		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1253		BUG_ON(vmas);
1254		/* check caller initialized locked */
1255		BUG_ON(*locked != 1);
1256	}
1257
1258	if (flags & FOLL_PIN)
1259		atomic_set(&mm->has_pinned, 1);
1260
1261	/*
1262	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1263	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1264	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1265	 * for FOLL_GET, not for the newer FOLL_PIN.
1266	 *
1267	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1268	 * that here, as any failures will be obvious enough.
1269	 */
1270	if (pages && !(flags & FOLL_PIN))
1271		flags |= FOLL_GET;
 
 
 
 
1272
1273	pages_done = 0;
1274	lock_dropped = false;
1275	for (;;) {
1276		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1277				       vmas, locked);
1278		if (!locked)
1279			/* VM_FAULT_RETRY couldn't trigger, bypass */
1280			return ret;
1281
1282		/* VM_FAULT_RETRY cannot return errors */
1283		if (!*locked) {
1284			BUG_ON(ret < 0);
1285			BUG_ON(ret >= nr_pages);
1286		}
1287
 
 
 
 
1288		if (ret > 0) {
1289			nr_pages -= ret;
1290			pages_done += ret;
1291			if (!nr_pages)
1292				break;
1293		}
1294		if (*locked) {
1295			/*
1296			 * VM_FAULT_RETRY didn't trigger or it was a
1297			 * FOLL_NOWAIT.
1298			 */
1299			if (!pages_done)
1300				pages_done = ret;
1301			break;
1302		}
1303		/*
1304		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1305		 * For the prefault case (!pages) we only update counts.
1306		 */
1307		if (likely(pages))
1308			pages += ret;
1309		start += ret << PAGE_SHIFT;
1310		lock_dropped = true;
1311
1312retry:
1313		/*
1314		 * Repeat on the address that fired VM_FAULT_RETRY
1315		 * with both FAULT_FLAG_ALLOW_RETRY and
1316		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1317		 * by fatal signals, so we need to check it before we
1318		 * start trying again otherwise it can loop forever.
1319		 */
1320
1321		if (fatal_signal_pending(current)) {
1322			if (!pages_done)
1323				pages_done = -EINTR;
1324			break;
1325		}
1326
1327		ret = mmap_read_lock_killable(mm);
1328		if (ret) {
1329			BUG_ON(ret > 0);
1330			if (!pages_done)
1331				pages_done = ret;
1332			break;
1333		}
1334
1335		*locked = 1;
1336		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1337				       pages, NULL, locked);
1338		if (!*locked) {
1339			/* Continue to retry until we succeeded */
1340			BUG_ON(ret != 0);
1341			goto retry;
1342		}
1343		if (ret != 1) {
1344			BUG_ON(ret > 1);
1345			if (!pages_done)
1346				pages_done = ret;
1347			break;
1348		}
1349		nr_pages--;
1350		pages_done++;
1351		if (!nr_pages)
1352			break;
1353		if (likely(pages))
1354			pages++;
1355		start += PAGE_SIZE;
1356	}
1357	if (lock_dropped && *locked) {
1358		/*
1359		 * We must let the caller know we temporarily dropped the lock
1360		 * and so the critical section protected by it was lost.
1361		 */
1362		mmap_read_unlock(mm);
1363		*locked = 0;
1364	}
1365	return pages_done;
1366}
1367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1368/**
1369 * populate_vma_page_range() -  populate a range of pages in the vma.
1370 * @vma:   target vma
1371 * @start: start address
1372 * @end:   end address
1373 * @locked: whether the mmap_lock is still held
1374 *
1375 * This takes care of mlocking the pages too if VM_LOCKED is set.
1376 *
1377 * Return either number of pages pinned in the vma, or a negative error
1378 * code on error.
1379 *
1380 * vma->vm_mm->mmap_lock must be held.
1381 *
1382 * If @locked is NULL, it may be held for read or write and will
1383 * be unperturbed.
1384 *
1385 * If @locked is non-NULL, it must held for read only and may be
1386 * released.  If it's released, *@locked will be set to 0.
1387 */
1388long populate_vma_page_range(struct vm_area_struct *vma,
1389		unsigned long start, unsigned long end, int *locked)
1390{
1391	struct mm_struct *mm = vma->vm_mm;
1392	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1393	int gup_flags;
1394
1395	VM_BUG_ON(start & ~PAGE_MASK);
1396	VM_BUG_ON(end   & ~PAGE_MASK);
1397	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1398	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1399	mmap_assert_locked(mm);
1400
1401	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1402	if (vma->vm_flags & VM_LOCKONFAULT)
1403		gup_flags &= ~FOLL_POPULATE;
1404	/*
1405	 * We want to touch writable mappings with a write fault in order
1406	 * to break COW, except for shared mappings because these don't COW
1407	 * and we would not want to dirty them for nothing.
1408	 */
1409	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1410		gup_flags |= FOLL_WRITE;
1411
1412	/*
1413	 * We want mlock to succeed for regions that have any permissions
1414	 * other than PROT_NONE.
1415	 */
1416	if (vma_is_accessible(vma))
1417		gup_flags |= FOLL_FORCE;
1418
1419	/*
1420	 * We made sure addr is within a VMA, so the following will
1421	 * not result in a stack expansion that recurses back here.
1422	 */
1423	return __get_user_pages(mm, start, nr_pages, gup_flags,
1424				NULL, NULL, locked);
1425}
1426
1427/*
1428 * __mm_populate - populate and/or mlock pages within a range of address space.
1429 *
1430 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1431 * flags. VMAs must be already marked with the desired vm_flags, and
1432 * mmap_lock must not be held.
1433 */
1434int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1435{
1436	struct mm_struct *mm = current->mm;
1437	unsigned long end, nstart, nend;
1438	struct vm_area_struct *vma = NULL;
1439	int locked = 0;
1440	long ret = 0;
1441
 
 
1442	end = start + len;
1443
1444	for (nstart = start; nstart < end; nstart = nend) {
1445		/*
1446		 * We want to fault in pages for [nstart; end) address range.
1447		 * Find first corresponding VMA.
1448		 */
1449		if (!locked) {
1450			locked = 1;
1451			mmap_read_lock(mm);
1452			vma = find_vma(mm, nstart);
1453		} else if (nstart >= vma->vm_end)
1454			vma = vma->vm_next;
1455		if (!vma || vma->vm_start >= end)
1456			break;
1457		/*
1458		 * Set [nstart; nend) to intersection of desired address
1459		 * range with the first VMA. Also, skip undesirable VMA types.
1460		 */
1461		nend = min(end, vma->vm_end);
1462		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1463			continue;
1464		if (nstart < vma->vm_start)
1465			nstart = vma->vm_start;
1466		/*
1467		 * Now fault in a range of pages. populate_vma_page_range()
1468		 * double checks the vma flags, so that it won't mlock pages
1469		 * if the vma was already munlocked.
1470		 */
1471		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1472		if (ret < 0) {
1473			if (ignore_errors) {
1474				ret = 0;
1475				continue;	/* continue at next VMA */
1476			}
1477			break;
1478		}
1479		nend = nstart + ret * PAGE_SIZE;
1480		ret = 0;
1481	}
1482	if (locked)
1483		mmap_read_unlock(mm);
1484	return ret;	/* 0 or negative error code */
1485}
1486
1487/**
1488 * get_dump_page() - pin user page in memory while writing it to core dump
1489 * @addr: user address
1490 *
1491 * Returns struct page pointer of user page pinned for dump,
1492 * to be freed afterwards by put_page().
1493 *
1494 * Returns NULL on any kind of failure - a hole must then be inserted into
1495 * the corefile, to preserve alignment with its headers; and also returns
1496 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1497 * allowing a hole to be left in the corefile to save diskspace.
1498 *
1499 * Called without mmap_lock, but after all other threads have been killed.
1500 */
1501#ifdef CONFIG_ELF_CORE
1502struct page *get_dump_page(unsigned long addr)
1503{
1504	struct vm_area_struct *vma;
1505	struct page *page;
1506
1507	if (__get_user_pages(current->mm, addr, 1,
1508			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1509			     NULL) < 1)
1510		return NULL;
1511	flush_cache_page(vma, addr, page_to_pfn(page));
1512	return page;
1513}
1514#endif /* CONFIG_ELF_CORE */
1515#else /* CONFIG_MMU */
1516static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1517		unsigned long nr_pages, struct page **pages,
1518		struct vm_area_struct **vmas, int *locked,
1519		unsigned int foll_flags)
1520{
1521	struct vm_area_struct *vma;
1522	unsigned long vm_flags;
1523	int i;
1524
1525	/* calculate required read or write permissions.
1526	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1527	 */
1528	vm_flags  = (foll_flags & FOLL_WRITE) ?
1529			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1530	vm_flags &= (foll_flags & FOLL_FORCE) ?
1531			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1532
1533	for (i = 0; i < nr_pages; i++) {
1534		vma = find_vma(mm, start);
1535		if (!vma)
1536			goto finish_or_fault;
1537
1538		/* protect what we can, including chardevs */
1539		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1540		    !(vm_flags & vma->vm_flags))
1541			goto finish_or_fault;
1542
1543		if (pages) {
1544			pages[i] = virt_to_page(start);
1545			if (pages[i])
1546				get_page(pages[i]);
1547		}
1548		if (vmas)
1549			vmas[i] = vma;
1550		start = (start + PAGE_SIZE) & PAGE_MASK;
1551	}
1552
1553	return i;
1554
1555finish_or_fault:
1556	return i ? : -EFAULT;
1557}
1558#endif /* !CONFIG_MMU */
1559
1560#if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1561static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1562{
1563	long i;
1564	struct vm_area_struct *vma_prev = NULL;
1565
1566	for (i = 0; i < nr_pages; i++) {
1567		struct vm_area_struct *vma = vmas[i];
1568
1569		if (vma == vma_prev)
1570			continue;
1571
1572		vma_prev = vma;
1573
1574		if (vma_is_fsdax(vma))
1575			return true;
1576	}
1577	return false;
1578}
1579
1580#ifdef CONFIG_CMA
1581static long check_and_migrate_cma_pages(struct mm_struct *mm,
1582					unsigned long start,
1583					unsigned long nr_pages,
1584					struct page **pages,
1585					struct vm_area_struct **vmas,
1586					unsigned int gup_flags)
1587{
1588	unsigned long i;
1589	unsigned long step;
1590	bool drain_allow = true;
1591	bool migrate_allow = true;
1592	LIST_HEAD(cma_page_list);
1593	long ret = nr_pages;
1594	struct migration_target_control mtc = {
1595		.nid = NUMA_NO_NODE,
1596		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
1597	};
1598
1599check_again:
1600	for (i = 0; i < nr_pages;) {
1601
1602		struct page *head = compound_head(pages[i]);
1603
1604		/*
1605		 * gup may start from a tail page. Advance step by the left
1606		 * part.
1607		 */
1608		step = compound_nr(head) - (pages[i] - head);
1609		/*
1610		 * If we get a page from the CMA zone, since we are going to
1611		 * be pinning these entries, we might as well move them out
1612		 * of the CMA zone if possible.
1613		 */
1614		if (is_migrate_cma_page(head)) {
1615			if (PageHuge(head))
1616				isolate_huge_page(head, &cma_page_list);
1617			else {
1618				if (!PageLRU(head) && drain_allow) {
1619					lru_add_drain_all();
1620					drain_allow = false;
1621				}
1622
1623				if (!isolate_lru_page(head)) {
1624					list_add_tail(&head->lru, &cma_page_list);
1625					mod_node_page_state(page_pgdat(head),
1626							    NR_ISOLATED_ANON +
1627							    page_is_file_lru(head),
1628							    thp_nr_pages(head));
1629				}
1630			}
1631		}
1632
1633		i += step;
1634	}
1635
1636	if (!list_empty(&cma_page_list)) {
1637		/*
1638		 * drop the above get_user_pages reference.
1639		 */
1640		for (i = 0; i < nr_pages; i++)
1641			put_page(pages[i]);
1642
1643		if (migrate_pages(&cma_page_list, alloc_migration_target, NULL,
1644			(unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1645			/*
1646			 * some of the pages failed migration. Do get_user_pages
1647			 * without migration.
1648			 */
1649			migrate_allow = false;
1650
1651			if (!list_empty(&cma_page_list))
1652				putback_movable_pages(&cma_page_list);
1653		}
1654		/*
1655		 * We did migrate all the pages, Try to get the page references
1656		 * again migrating any new CMA pages which we failed to isolate
1657		 * earlier.
1658		 */
1659		ret = __get_user_pages_locked(mm, start, nr_pages,
1660						   pages, vmas, NULL,
1661						   gup_flags);
1662
1663		if ((ret > 0) && migrate_allow) {
1664			nr_pages = ret;
1665			drain_allow = true;
1666			goto check_again;
1667		}
1668	}
1669
1670	return ret;
1671}
1672#else
1673static long check_and_migrate_cma_pages(struct mm_struct *mm,
1674					unsigned long start,
1675					unsigned long nr_pages,
1676					struct page **pages,
1677					struct vm_area_struct **vmas,
1678					unsigned int gup_flags)
1679{
1680	return nr_pages;
1681}
1682#endif /* CONFIG_CMA */
1683
1684/*
1685 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1686 * allows us to process the FOLL_LONGTERM flag.
1687 */
1688static long __gup_longterm_locked(struct mm_struct *mm,
1689				  unsigned long start,
1690				  unsigned long nr_pages,
1691				  struct page **pages,
1692				  struct vm_area_struct **vmas,
1693				  unsigned int gup_flags)
1694{
1695	struct vm_area_struct **vmas_tmp = vmas;
1696	unsigned long flags = 0;
1697	long rc, i;
1698
1699	if (gup_flags & FOLL_LONGTERM) {
1700		if (!pages)
1701			return -EINVAL;
1702
1703		if (!vmas_tmp) {
1704			vmas_tmp = kcalloc(nr_pages,
1705					   sizeof(struct vm_area_struct *),
1706					   GFP_KERNEL);
1707			if (!vmas_tmp)
1708				return -ENOMEM;
1709		}
1710		flags = memalloc_nocma_save();
1711	}
1712
1713	rc = __get_user_pages_locked(mm, start, nr_pages, pages,
1714				     vmas_tmp, NULL, gup_flags);
1715
1716	if (gup_flags & FOLL_LONGTERM) {
1717		if (rc < 0)
1718			goto out;
1719
1720		if (check_dax_vmas(vmas_tmp, rc)) {
1721			for (i = 0; i < rc; i++)
1722				put_page(pages[i]);
1723			rc = -EOPNOTSUPP;
1724			goto out;
1725		}
1726
1727		rc = check_and_migrate_cma_pages(mm, start, rc, pages,
1728						 vmas_tmp, gup_flags);
1729out:
1730		memalloc_nocma_restore(flags);
1731	}
1732
1733	if (vmas_tmp != vmas)
1734		kfree(vmas_tmp);
1735	return rc;
1736}
1737#else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1738static __always_inline long __gup_longterm_locked(struct mm_struct *mm,
1739						  unsigned long start,
1740						  unsigned long nr_pages,
1741						  struct page **pages,
1742						  struct vm_area_struct **vmas,
1743						  unsigned int flags)
1744{
1745	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1746				       NULL, flags);
1747}
1748#endif /* CONFIG_FS_DAX || CONFIG_CMA */
1749
1750#ifdef CONFIG_MMU
1751static long __get_user_pages_remote(struct mm_struct *mm,
1752				    unsigned long start, unsigned long nr_pages,
1753				    unsigned int gup_flags, struct page **pages,
1754				    struct vm_area_struct **vmas, int *locked)
1755{
1756	/*
1757	 * Parts of FOLL_LONGTERM behavior are incompatible with
1758	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1759	 * vmas. However, this only comes up if locked is set, and there are
1760	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1761	 * allow what we can.
1762	 */
1763	if (gup_flags & FOLL_LONGTERM) {
1764		if (WARN_ON_ONCE(locked))
1765			return -EINVAL;
1766		/*
1767		 * This will check the vmas (even if our vmas arg is NULL)
1768		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1769		 */
1770		return __gup_longterm_locked(mm, start, nr_pages, pages,
1771					     vmas, gup_flags | FOLL_TOUCH |
1772					     FOLL_REMOTE);
1773	}
1774
1775	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1776				       locked,
1777				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1778}
1779
1780/**
1781 * get_user_pages_remote() - pin user pages in memory
1782 * @mm:		mm_struct of target mm
1783 * @start:	starting user address
1784 * @nr_pages:	number of pages from start to pin
1785 * @gup_flags:	flags modifying lookup behaviour
1786 * @pages:	array that receives pointers to the pages pinned.
1787 *		Should be at least nr_pages long. Or NULL, if caller
1788 *		only intends to ensure the pages are faulted in.
1789 * @vmas:	array of pointers to vmas corresponding to each page.
1790 *		Or NULL if the caller does not require them.
1791 * @locked:	pointer to lock flag indicating whether lock is held and
1792 *		subsequently whether VM_FAULT_RETRY functionality can be
1793 *		utilised. Lock must initially be held.
1794 *
1795 * Returns either number of pages pinned (which may be less than the
1796 * number requested), or an error. Details about the return value:
1797 *
1798 * -- If nr_pages is 0, returns 0.
1799 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1800 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1801 *    pages pinned. Again, this may be less than nr_pages.
1802 *
1803 * The caller is responsible for releasing returned @pages, via put_page().
1804 *
1805 * @vmas are valid only as long as mmap_lock is held.
1806 *
1807 * Must be called with mmap_lock held for read or write.
1808 *
1809 * get_user_pages_remote walks a process's page tables and takes a reference
1810 * to each struct page that each user address corresponds to at a given
1811 * instant. That is, it takes the page that would be accessed if a user
1812 * thread accesses the given user virtual address at that instant.
1813 *
1814 * This does not guarantee that the page exists in the user mappings when
1815 * get_user_pages_remote returns, and there may even be a completely different
1816 * page there in some cases (eg. if mmapped pagecache has been invalidated
1817 * and subsequently re faulted). However it does guarantee that the page
1818 * won't be freed completely. And mostly callers simply care that the page
1819 * contains data that was valid *at some point in time*. Typically, an IO
1820 * or similar operation cannot guarantee anything stronger anyway because
1821 * locks can't be held over the syscall boundary.
1822 *
1823 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1824 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1825 * be called after the page is finished with, and before put_page is called.
1826 *
1827 * get_user_pages_remote is typically used for fewer-copy IO operations,
1828 * to get a handle on the memory by some means other than accesses
1829 * via the user virtual addresses. The pages may be submitted for
1830 * DMA to devices or accessed via their kernel linear mapping (via the
1831 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1832 *
1833 * See also get_user_pages_fast, for performance critical applications.
1834 *
1835 * get_user_pages_remote should be phased out in favor of
1836 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1837 * should use get_user_pages_remote because it cannot pass
1838 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1839 */
1840long get_user_pages_remote(struct mm_struct *mm,
1841		unsigned long start, unsigned long nr_pages,
1842		unsigned int gup_flags, struct page **pages,
1843		struct vm_area_struct **vmas, int *locked)
1844{
1845	/*
1846	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1847	 * never directly by the caller, so enforce that with an assertion:
1848	 */
1849	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1850		return -EINVAL;
1851
1852	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1853				       pages, vmas, locked);
1854}
1855EXPORT_SYMBOL(get_user_pages_remote);
1856
1857#else /* CONFIG_MMU */
1858long get_user_pages_remote(struct mm_struct *mm,
1859			   unsigned long start, unsigned long nr_pages,
1860			   unsigned int gup_flags, struct page **pages,
1861			   struct vm_area_struct **vmas, int *locked)
1862{
1863	return 0;
1864}
1865
1866static long __get_user_pages_remote(struct mm_struct *mm,
1867				    unsigned long start, unsigned long nr_pages,
1868				    unsigned int gup_flags, struct page **pages,
1869				    struct vm_area_struct **vmas, int *locked)
1870{
1871	return 0;
1872}
1873#endif /* !CONFIG_MMU */
1874
1875/**
1876 * get_user_pages() - pin user pages in memory
1877 * @start:      starting user address
1878 * @nr_pages:   number of pages from start to pin
1879 * @gup_flags:  flags modifying lookup behaviour
1880 * @pages:      array that receives pointers to the pages pinned.
1881 *              Should be at least nr_pages long. Or NULL, if caller
1882 *              only intends to ensure the pages are faulted in.
1883 * @vmas:       array of pointers to vmas corresponding to each page.
1884 *              Or NULL if the caller does not require them.
1885 *
1886 * This is the same as get_user_pages_remote(), just with a less-flexible
1887 * calling convention where we assume that the mm being operated on belongs to
1888 * the current task, and doesn't allow passing of a locked parameter.  We also
1889 * obviously don't pass FOLL_REMOTE in here.
1890 */
1891long get_user_pages(unsigned long start, unsigned long nr_pages,
1892		unsigned int gup_flags, struct page **pages,
1893		struct vm_area_struct **vmas)
1894{
1895	/*
1896	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1897	 * never directly by the caller, so enforce that with an assertion:
1898	 */
1899	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1900		return -EINVAL;
1901
1902	return __gup_longterm_locked(current->mm, start, nr_pages,
1903				     pages, vmas, gup_flags | FOLL_TOUCH);
1904}
1905EXPORT_SYMBOL(get_user_pages);
1906
1907/**
1908 * get_user_pages_locked() is suitable to replace the form:
1909 *
1910 *      mmap_read_lock(mm);
1911 *      do_something()
1912 *      get_user_pages(mm, ..., pages, NULL);
1913 *      mmap_read_unlock(mm);
1914 *
1915 *  to:
1916 *
1917 *      int locked = 1;
1918 *      mmap_read_lock(mm);
1919 *      do_something()
1920 *      get_user_pages_locked(mm, ..., pages, &locked);
1921 *      if (locked)
1922 *          mmap_read_unlock(mm);
1923 *
1924 * @start:      starting user address
1925 * @nr_pages:   number of pages from start to pin
1926 * @gup_flags:  flags modifying lookup behaviour
1927 * @pages:      array that receives pointers to the pages pinned.
1928 *              Should be at least nr_pages long. Or NULL, if caller
1929 *              only intends to ensure the pages are faulted in.
1930 * @locked:     pointer to lock flag indicating whether lock is held and
1931 *              subsequently whether VM_FAULT_RETRY functionality can be
1932 *              utilised. Lock must initially be held.
1933 *
1934 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1935 * paths better by using either get_user_pages_locked() or
1936 * get_user_pages_unlocked().
1937 *
1938 */
1939long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1940			   unsigned int gup_flags, struct page **pages,
1941			   int *locked)
1942{
1943	/*
1944	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1945	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1946	 * vmas.  As there are no users of this flag in this call we simply
1947	 * disallow this option for now.
1948	 */
1949	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1950		return -EINVAL;
1951	/*
1952	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1953	 * never directly by the caller, so enforce that:
1954	 */
1955	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1956		return -EINVAL;
1957
1958	return __get_user_pages_locked(current->mm, start, nr_pages,
1959				       pages, NULL, locked,
1960				       gup_flags | FOLL_TOUCH);
1961}
1962EXPORT_SYMBOL(get_user_pages_locked);
1963
1964/*
1965 * get_user_pages_unlocked() is suitable to replace the form:
1966 *
1967 *      mmap_read_lock(mm);
1968 *      get_user_pages(mm, ..., pages, NULL);
1969 *      mmap_read_unlock(mm);
1970 *
1971 *  with:
1972 *
1973 *      get_user_pages_unlocked(mm, ..., pages);
1974 *
1975 * It is functionally equivalent to get_user_pages_fast so
1976 * get_user_pages_fast should be used instead if specific gup_flags
1977 * (e.g. FOLL_FORCE) are not required.
1978 */
1979long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1980			     struct page **pages, unsigned int gup_flags)
1981{
1982	struct mm_struct *mm = current->mm;
1983	int locked = 1;
1984	long ret;
1985
1986	/*
1987	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1988	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1989	 * vmas.  As there are no users of this flag in this call we simply
1990	 * disallow this option for now.
1991	 */
1992	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1993		return -EINVAL;
1994
1995	mmap_read_lock(mm);
1996	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
1997				      &locked, gup_flags | FOLL_TOUCH);
1998	if (locked)
1999		mmap_read_unlock(mm);
2000	return ret;
2001}
2002EXPORT_SYMBOL(get_user_pages_unlocked);
2003
2004/*
2005 * Fast GUP
2006 *
2007 * get_user_pages_fast attempts to pin user pages by walking the page
2008 * tables directly and avoids taking locks. Thus the walker needs to be
2009 * protected from page table pages being freed from under it, and should
2010 * block any THP splits.
2011 *
2012 * One way to achieve this is to have the walker disable interrupts, and
2013 * rely on IPIs from the TLB flushing code blocking before the page table
2014 * pages are freed. This is unsuitable for architectures that do not need
2015 * to broadcast an IPI when invalidating TLBs.
2016 *
2017 * Another way to achieve this is to batch up page table containing pages
2018 * belonging to more than one mm_user, then rcu_sched a callback to free those
2019 * pages. Disabling interrupts will allow the fast_gup walker to both block
2020 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2021 * (which is a relatively rare event). The code below adopts this strategy.
2022 *
2023 * Before activating this code, please be aware that the following assumptions
2024 * are currently made:
2025 *
2026 *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2027 *  free pages containing page tables or TLB flushing requires IPI broadcast.
2028 *
2029 *  *) ptes can be read atomically by the architecture.
2030 *
2031 *  *) access_ok is sufficient to validate userspace address ranges.
2032 *
2033 * The last two assumptions can be relaxed by the addition of helper functions.
2034 *
2035 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2036 */
2037#ifdef CONFIG_HAVE_FAST_GUP
2038
2039static void put_compound_head(struct page *page, int refs, unsigned int flags)
2040{
2041	if (flags & FOLL_PIN) {
2042		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2043				    refs);
2044
2045		if (hpage_pincount_available(page))
2046			hpage_pincount_sub(page, refs);
2047		else
2048			refs *= GUP_PIN_COUNTING_BIAS;
2049	}
2050
2051	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2052	/*
2053	 * Calling put_page() for each ref is unnecessarily slow. Only the last
2054	 * ref needs a put_page().
2055	 */
2056	if (refs > 1)
2057		page_ref_sub(page, refs - 1);
2058	put_page(page);
2059}
2060
2061#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
2062
2063/*
2064 * WARNING: only to be used in the get_user_pages_fast() implementation.
2065 *
2066 * With get_user_pages_fast(), we walk down the pagetables without taking any
2067 * locks.  For this we would like to load the pointers atomically, but sometimes
2068 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
2069 * we do have is the guarantee that a PTE will only either go from not present
2070 * to present, or present to not present or both -- it will not switch to a
2071 * completely different present page without a TLB flush in between; something
2072 * that we are blocking by holding interrupts off.
2073 *
2074 * Setting ptes from not present to present goes:
2075 *
2076 *   ptep->pte_high = h;
2077 *   smp_wmb();
2078 *   ptep->pte_low = l;
2079 *
2080 * And present to not present goes:
2081 *
2082 *   ptep->pte_low = 0;
2083 *   smp_wmb();
2084 *   ptep->pte_high = 0;
2085 *
2086 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2087 * We load pte_high *after* loading pte_low, which ensures we don't see an older
2088 * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
2089 * picked up a changed pte high. We might have gotten rubbish values from
2090 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2091 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2092 * operates on present ptes we're safe.
2093 */
2094static inline pte_t gup_get_pte(pte_t *ptep)
2095{
2096	pte_t pte;
2097
2098	do {
2099		pte.pte_low = ptep->pte_low;
2100		smp_rmb();
2101		pte.pte_high = ptep->pte_high;
2102		smp_rmb();
2103	} while (unlikely(pte.pte_low != ptep->pte_low));
2104
2105	return pte;
2106}
2107#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2108/*
2109 * We require that the PTE can be read atomically.
2110 */
2111static inline pte_t gup_get_pte(pte_t *ptep)
2112{
2113	return ptep_get(ptep);
2114}
2115#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2116
2117static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2118					    unsigned int flags,
2119					    struct page **pages)
2120{
2121	while ((*nr) - nr_start) {
2122		struct page *page = pages[--(*nr)];
2123
2124		ClearPageReferenced(page);
2125		if (flags & FOLL_PIN)
2126			unpin_user_page(page);
2127		else
2128			put_page(page);
2129	}
2130}
2131
2132#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2133static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2134			 unsigned int flags, struct page **pages, int *nr)
2135{
2136	struct dev_pagemap *pgmap = NULL;
2137	int nr_start = *nr, ret = 0;
2138	pte_t *ptep, *ptem;
 
2139
2140	ptem = ptep = pte_offset_map(&pmd, addr);
2141	do {
2142		pte_t pte = gup_get_pte(ptep);
 
 
 
 
 
 
 
2143		struct page *head, *page;
2144
2145		/*
2146		 * Similar to the PMD case below, NUMA hinting must take slow
2147		 * path using the pte_protnone check.
2148		 */
2149		if (pte_protnone(pte))
2150			goto pte_unmap;
2151
2152		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2153			goto pte_unmap;
2154
2155		if (pte_devmap(pte)) {
2156			if (unlikely(flags & FOLL_LONGTERM))
2157				goto pte_unmap;
2158
2159			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2160			if (unlikely(!pgmap)) {
2161				undo_dev_pagemap(nr, nr_start, flags, pages);
2162				goto pte_unmap;
2163			}
2164		} else if (pte_special(pte))
2165			goto pte_unmap;
2166
2167		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2168		page = pte_page(pte);
 
2169
2170		head = try_grab_compound_head(page, 1, flags);
2171		if (!head)
2172			goto pte_unmap;
2173
2174		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2175			put_compound_head(head, 1, flags);
2176			goto pte_unmap;
2177		}
2178
2179		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2180
2181		/*
2182		 * We need to make the page accessible if and only if we are
2183		 * going to access its content (the FOLL_PIN case).  Please
2184		 * see Documentation/core-api/pin_user_pages.rst for
2185		 * details.
2186		 */
2187		if (flags & FOLL_PIN) {
2188			ret = arch_make_page_accessible(page);
2189			if (ret) {
2190				unpin_user_page(page);
2191				goto pte_unmap;
2192			}
2193		}
2194		SetPageReferenced(page);
2195		pages[*nr] = page;
2196		(*nr)++;
2197
2198	} while (ptep++, addr += PAGE_SIZE, addr != end);
2199
2200	ret = 1;
2201
2202pte_unmap:
2203	if (pgmap)
2204		put_dev_pagemap(pgmap);
2205	pte_unmap(ptem);
2206	return ret;
2207}
2208#else
2209
2210/*
2211 * If we can't determine whether or not a pte is special, then fail immediately
2212 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2213 * to be special.
2214 *
2215 * For a futex to be placed on a THP tail page, get_futex_key requires a
2216 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2217 * useful to have gup_huge_pmd even if we can't operate on ptes.
2218 */
2219static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2220			 unsigned int flags, struct page **pages, int *nr)
2221{
2222	return 0;
2223}
2224#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2225
2226#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2227static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2228			     unsigned long end, unsigned int flags,
2229			     struct page **pages, int *nr)
2230{
2231	int nr_start = *nr;
2232	struct dev_pagemap *pgmap = NULL;
2233
2234	do {
2235		struct page *page = pfn_to_page(pfn);
2236
2237		pgmap = get_dev_pagemap(pfn, pgmap);
2238		if (unlikely(!pgmap)) {
2239			undo_dev_pagemap(nr, nr_start, flags, pages);
2240			return 0;
2241		}
2242		SetPageReferenced(page);
2243		pages[*nr] = page;
2244		if (unlikely(!try_grab_page(page, flags))) {
2245			undo_dev_pagemap(nr, nr_start, flags, pages);
2246			return 0;
2247		}
2248		(*nr)++;
2249		pfn++;
2250	} while (addr += PAGE_SIZE, addr != end);
2251
2252	if (pgmap)
2253		put_dev_pagemap(pgmap);
2254	return 1;
2255}
2256
2257static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2258				 unsigned long end, unsigned int flags,
2259				 struct page **pages, int *nr)
2260{
2261	unsigned long fault_pfn;
2262	int nr_start = *nr;
2263
2264	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2265	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2266		return 0;
2267
2268	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2269		undo_dev_pagemap(nr, nr_start, flags, pages);
2270		return 0;
2271	}
2272	return 1;
2273}
2274
2275static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2276				 unsigned long end, unsigned int flags,
2277				 struct page **pages, int *nr)
2278{
2279	unsigned long fault_pfn;
2280	int nr_start = *nr;
2281
2282	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2283	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2284		return 0;
2285
2286	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2287		undo_dev_pagemap(nr, nr_start, flags, pages);
2288		return 0;
2289	}
2290	return 1;
2291}
2292#else
2293static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2294				 unsigned long end, unsigned int flags,
2295				 struct page **pages, int *nr)
2296{
2297	BUILD_BUG();
2298	return 0;
2299}
2300
2301static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2302				 unsigned long end, unsigned int flags,
2303				 struct page **pages, int *nr)
2304{
2305	BUILD_BUG();
2306	return 0;
2307}
2308#endif
2309
2310static int record_subpages(struct page *page, unsigned long addr,
2311			   unsigned long end, struct page **pages)
2312{
2313	int nr;
2314
2315	for (nr = 0; addr != end; addr += PAGE_SIZE)
2316		pages[nr++] = page++;
2317
2318	return nr;
2319}
2320
2321#ifdef CONFIG_ARCH_HAS_HUGEPD
2322static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2323				      unsigned long sz)
2324{
2325	unsigned long __boundary = (addr + sz) & ~(sz-1);
2326	return (__boundary - 1 < end - 1) ? __boundary : end;
2327}
2328
2329static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2330		       unsigned long end, unsigned int flags,
2331		       struct page **pages, int *nr)
2332{
2333	unsigned long pte_end;
2334	struct page *head, *page;
2335	pte_t pte;
2336	int refs;
2337
2338	pte_end = (addr + sz) & ~(sz-1);
2339	if (pte_end < end)
2340		end = pte_end;
2341
2342	pte = huge_ptep_get(ptep);
2343
2344	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2345		return 0;
2346
2347	/* hugepages are never "special" */
2348	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2349
2350	head = pte_page(pte);
2351	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2352	refs = record_subpages(page, addr, end, pages + *nr);
2353
2354	head = try_grab_compound_head(head, refs, flags);
2355	if (!head)
2356		return 0;
2357
2358	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2359		put_compound_head(head, refs, flags);
2360		return 0;
2361	}
2362
2363	*nr += refs;
2364	SetPageReferenced(head);
2365	return 1;
2366}
2367
2368static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2369		unsigned int pdshift, unsigned long end, unsigned int flags,
2370		struct page **pages, int *nr)
2371{
2372	pte_t *ptep;
2373	unsigned long sz = 1UL << hugepd_shift(hugepd);
2374	unsigned long next;
2375
2376	ptep = hugepte_offset(hugepd, addr, pdshift);
2377	do {
2378		next = hugepte_addr_end(addr, end, sz);
2379		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2380			return 0;
2381	} while (ptep++, addr = next, addr != end);
2382
2383	return 1;
2384}
2385#else
2386static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2387		unsigned int pdshift, unsigned long end, unsigned int flags,
2388		struct page **pages, int *nr)
2389{
2390	return 0;
2391}
2392#endif /* CONFIG_ARCH_HAS_HUGEPD */
2393
2394static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2395			unsigned long end, unsigned int flags,
2396			struct page **pages, int *nr)
2397{
2398	struct page *head, *page;
2399	int refs;
2400
2401	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
 
2402		return 0;
2403
2404	if (pmd_devmap(orig)) {
2405		if (unlikely(flags & FOLL_LONGTERM))
2406			return 0;
2407		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2408					     pages, nr);
2409	}
2410
2411	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2412	refs = record_subpages(page, addr, end, pages + *nr);
2413
2414	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2415	if (!head)
2416		return 0;
2417
2418	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2419		put_compound_head(head, refs, flags);
 
 
2420		return 0;
2421	}
2422
2423	*nr += refs;
2424	SetPageReferenced(head);
2425	return 1;
2426}
2427
2428static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2429			unsigned long end, unsigned int flags,
2430			struct page **pages, int *nr)
2431{
2432	struct page *head, *page;
2433	int refs;
2434
2435	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2436		return 0;
2437
2438	if (pud_devmap(orig)) {
2439		if (unlikely(flags & FOLL_LONGTERM))
2440			return 0;
2441		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2442					     pages, nr);
2443	}
2444
2445	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2446	refs = record_subpages(page, addr, end, pages + *nr);
 
2447
2448	head = try_grab_compound_head(pud_page(orig), refs, flags);
2449	if (!head)
2450		return 0;
 
2451
2452	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2453		put_compound_head(head, refs, flags);
 
 
2454		return 0;
2455	}
2456
2457	*nr += refs;
2458	SetPageReferenced(head);
2459	return 1;
2460}
2461
2462static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2463			unsigned long end, unsigned int flags,
2464			struct page **pages, int *nr)
2465{
2466	int refs;
2467	struct page *head, *page;
2468
2469	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2470		return 0;
2471
2472	BUILD_BUG_ON(pgd_devmap(orig));
2473
2474	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2475	refs = record_subpages(page, addr, end, pages + *nr);
 
 
 
 
 
 
2476
2477	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2478	if (!head)
2479		return 0;
 
2480
2481	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2482		put_compound_head(head, refs, flags);
 
 
2483		return 0;
2484	}
2485
2486	*nr += refs;
2487	SetPageReferenced(head);
2488	return 1;
2489}
2490
2491static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2492		unsigned int flags, struct page **pages, int *nr)
2493{
2494	unsigned long next;
2495	pmd_t *pmdp;
2496
2497	pmdp = pmd_offset_lockless(pudp, pud, addr);
2498	do {
2499		pmd_t pmd = READ_ONCE(*pmdp);
2500
2501		next = pmd_addr_end(addr, end);
2502		if (!pmd_present(pmd))
2503			return 0;
2504
2505		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2506			     pmd_devmap(pmd))) {
2507			/*
2508			 * NUMA hinting faults need to be handled in the GUP
2509			 * slowpath for accounting purposes and so that they
2510			 * can be serialised against THP migration.
2511			 */
2512			if (pmd_protnone(pmd))
2513				return 0;
2514
2515			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2516				pages, nr))
2517				return 0;
2518
2519		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2520			/*
2521			 * architecture have different format for hugetlbfs
2522			 * pmd format and THP pmd format
2523			 */
2524			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2525					 PMD_SHIFT, next, flags, pages, nr))
 
 
2526				return 0;
2527		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2528			return 0;
2529	} while (pmdp++, addr = next, addr != end);
2530
2531	return 1;
2532}
2533
2534static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2535			 unsigned int flags, struct page **pages, int *nr)
2536{
2537	unsigned long next;
2538	pud_t *pudp;
2539
2540	pudp = pud_offset_lockless(p4dp, p4d, addr);
2541	do {
2542		pud_t pud = READ_ONCE(*pudp);
2543
2544		next = pud_addr_end(addr, end);
2545		if (unlikely(!pud_present(pud)))
2546			return 0;
2547		if (unlikely(pud_huge(pud))) {
2548			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2549					  pages, nr))
2550				return 0;
2551		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2552			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2553					 PUD_SHIFT, next, flags, pages, nr))
2554				return 0;
2555		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2556			return 0;
2557	} while (pudp++, addr = next, addr != end);
2558
2559	return 1;
2560}
2561
2562static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2563			 unsigned int flags, struct page **pages, int *nr)
2564{
2565	unsigned long next;
2566	p4d_t *p4dp;
2567
2568	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2569	do {
2570		p4d_t p4d = READ_ONCE(*p4dp);
2571
2572		next = p4d_addr_end(addr, end);
2573		if (p4d_none(p4d))
2574			return 0;
2575		BUILD_BUG_ON(p4d_huge(p4d));
2576		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2577			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2578					 P4D_SHIFT, next, flags, pages, nr))
2579				return 0;
2580		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2581			return 0;
2582	} while (p4dp++, addr = next, addr != end);
2583
2584	return 1;
2585}
2586
2587static void gup_pgd_range(unsigned long addr, unsigned long end,
2588		unsigned int flags, struct page **pages, int *nr)
2589{
2590	unsigned long next;
2591	pgd_t *pgdp;
2592
2593	pgdp = pgd_offset(current->mm, addr);
2594	do {
2595		pgd_t pgd = READ_ONCE(*pgdp);
2596
2597		next = pgd_addr_end(addr, end);
2598		if (pgd_none(pgd))
2599			return;
2600		if (unlikely(pgd_huge(pgd))) {
2601			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2602					  pages, nr))
2603				return;
2604		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2605			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2606					 PGDIR_SHIFT, next, flags, pages, nr))
2607				return;
2608		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2609			return;
2610	} while (pgdp++, addr = next, addr != end);
2611}
2612#else
2613static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2614		unsigned int flags, struct page **pages, int *nr)
2615{
2616}
2617#endif /* CONFIG_HAVE_FAST_GUP */
2618
2619#ifndef gup_fast_permitted
2620/*
2621 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2622 * we need to fall back to the slow version:
2623 */
2624static bool gup_fast_permitted(unsigned long start, unsigned long end)
2625{
2626	return true;
2627}
2628#endif
2629
2630static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2631				   unsigned int gup_flags, struct page **pages)
2632{
2633	int ret;
2634
2635	/*
2636	 * FIXME: FOLL_LONGTERM does not work with
2637	 * get_user_pages_unlocked() (see comments in that function)
2638	 */
2639	if (gup_flags & FOLL_LONGTERM) {
2640		mmap_read_lock(current->mm);
2641		ret = __gup_longterm_locked(current->mm,
2642					    start, nr_pages,
2643					    pages, NULL, gup_flags);
2644		mmap_read_unlock(current->mm);
2645	} else {
2646		ret = get_user_pages_unlocked(start, nr_pages,
2647					      pages, gup_flags);
2648	}
2649
2650	return ret;
2651}
2652
2653static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2654					unsigned int gup_flags,
2655					struct page **pages)
2656{
 
2657	unsigned long addr, len, end;
2658	unsigned long flags;
2659	int nr_pinned = 0, ret = 0;
2660
2661	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2662				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2663				       FOLL_FAST_ONLY)))
2664		return -EINVAL;
2665
2666	if (gup_flags & FOLL_PIN)
2667		atomic_set(&current->mm->has_pinned, 1);
2668
2669	if (!(gup_flags & FOLL_FAST_ONLY))
2670		might_lock_read(&current->mm->mmap_lock);
2671
2672	start = untagged_addr(start) & PAGE_MASK;
2673	addr = start;
2674	len = (unsigned long) nr_pages << PAGE_SHIFT;
2675	end = start + len;
2676
2677	if (end <= start)
 
2678		return 0;
2679	if (unlikely(!access_ok((void __user *)start, len)))
2680		return -EFAULT;
2681
2682	/*
2683	 * Disable interrupts. The nested form is used, in order to allow
2684	 * full, general purpose use of this routine.
2685	 *
2686	 * With interrupts disabled, we block page table pages from being
2687	 * freed from under us. See struct mmu_table_batch comments in
2688	 * include/asm-generic/tlb.h for more details.
2689	 *
2690	 * We do not adopt an rcu_read_lock(.) here as we also want to
2691	 * block IPIs that come from THPs splitting.
2692	 */
2693	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) {
2694		unsigned long fast_flags = gup_flags;
2695
2696		local_irq_save(flags);
2697		gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned);
2698		local_irq_restore(flags);
2699		ret = nr_pinned;
2700	}
2701
2702	if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) {
2703		/* Try to get the remaining pages with get_user_pages */
2704		start += nr_pinned << PAGE_SHIFT;
2705		pages += nr_pinned;
2706
2707		ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
2708					      gup_flags, pages);
2709
2710		/* Have to be a bit careful with return values */
2711		if (nr_pinned > 0) {
2712			if (ret < 0)
2713				ret = nr_pinned;
2714			else
2715				ret += nr_pinned;
2716		}
2717	}
2718
2719	return ret;
2720}
2721/**
2722 * get_user_pages_fast_only() - pin user pages in memory
2723 * @start:      starting user address
2724 * @nr_pages:   number of pages from start to pin
2725 * @gup_flags:  flags modifying pin behaviour
2726 * @pages:      array that receives pointers to the pages pinned.
2727 *              Should be at least nr_pages long.
2728 *
2729 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2730 * the regular GUP.
2731 * Note a difference with get_user_pages_fast: this always returns the
2732 * number of pages pinned, 0 if no pages were pinned.
2733 *
2734 * If the architecture does not support this function, simply return with no
2735 * pages pinned.
2736 *
2737 * Careful, careful! COW breaking can go either way, so a non-write
2738 * access can get ambiguous page results. If you call this function without
2739 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2740 */
2741int get_user_pages_fast_only(unsigned long start, int nr_pages,
2742			     unsigned int gup_flags, struct page **pages)
2743{
2744	int nr_pinned;
2745	/*
2746	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2747	 * because gup fast is always a "pin with a +1 page refcount" request.
2748	 *
2749	 * FOLL_FAST_ONLY is required in order to match the API description of
2750	 * this routine: no fall back to regular ("slow") GUP.
2751	 */
2752	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2753
2754	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2755						 pages);
 
 
2756
2757	/*
2758	 * As specified in the API description above, this routine is not
2759	 * allowed to return negative values. However, the common core
2760	 * routine internal_get_user_pages_fast() *can* return -errno.
2761	 * Therefore, correct for that here:
2762	 */
2763	if (nr_pinned < 0)
2764		nr_pinned = 0;
 
 
 
 
 
 
 
2765
2766	return nr_pinned;
2767}
2768EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2769
2770/**
2771 * get_user_pages_fast() - pin user pages in memory
2772 * @start:      starting user address
2773 * @nr_pages:   number of pages from start to pin
2774 * @gup_flags:  flags modifying pin behaviour
2775 * @pages:      array that receives pointers to the pages pinned.
2776 *              Should be at least nr_pages long.
2777 *
2778 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2779 * If not successful, it will fall back to taking the lock and
2780 * calling get_user_pages().
2781 *
2782 * Returns number of pages pinned. This may be fewer than the number requested.
2783 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2784 * -errno.
2785 */
2786int get_user_pages_fast(unsigned long start, int nr_pages,
2787			unsigned int gup_flags, struct page **pages)
2788{
2789	/*
2790	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2791	 * never directly by the caller, so enforce that:
2792	 */
2793	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2794		return -EINVAL;
2795
2796	/*
2797	 * The caller may or may not have explicitly set FOLL_GET; either way is
2798	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2799	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2800	 * request.
2801	 */
2802	gup_flags |= FOLL_GET;
2803	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2804}
2805EXPORT_SYMBOL_GPL(get_user_pages_fast);
2806
2807/**
2808 * pin_user_pages_fast() - pin user pages in memory without taking locks
2809 *
2810 * @start:      starting user address
2811 * @nr_pages:   number of pages from start to pin
2812 * @gup_flags:  flags modifying pin behaviour
2813 * @pages:      array that receives pointers to the pages pinned.
2814 *              Should be at least nr_pages long.
2815 *
2816 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2817 * get_user_pages_fast() for documentation on the function arguments, because
2818 * the arguments here are identical.
2819 *
2820 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2821 * see Documentation/core-api/pin_user_pages.rst for further details.
2822 */
2823int pin_user_pages_fast(unsigned long start, int nr_pages,
2824			unsigned int gup_flags, struct page **pages)
2825{
2826	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2827	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2828		return -EINVAL;
2829
2830	gup_flags |= FOLL_PIN;
2831	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2832}
2833EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2834
2835/*
2836 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2837 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2838 *
2839 * The API rules are the same, too: no negative values may be returned.
2840 */
2841int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2842			     unsigned int gup_flags, struct page **pages)
2843{
2844	int nr_pinned;
2845
2846	/*
2847	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2848	 * rules require returning 0, rather than -errno:
2849	 */
2850	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2851		return 0;
2852	/*
2853	 * FOLL_FAST_ONLY is required in order to match the API description of
2854	 * this routine: no fall back to regular ("slow") GUP.
2855	 */
2856	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2857	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2858						 pages);
2859	/*
2860	 * This routine is not allowed to return negative values. However,
2861	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2862	 * correct for that here:
2863	 */
2864	if (nr_pinned < 0)
2865		nr_pinned = 0;
2866
2867	return nr_pinned;
2868}
2869EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2870
2871/**
2872 * pin_user_pages_remote() - pin pages of a remote process
2873 *
2874 * @mm:		mm_struct of target mm
2875 * @start:	starting user address
2876 * @nr_pages:	number of pages from start to pin
2877 * @gup_flags:	flags modifying lookup behaviour
2878 * @pages:	array that receives pointers to the pages pinned.
2879 *		Should be at least nr_pages long. Or NULL, if caller
2880 *		only intends to ensure the pages are faulted in.
2881 * @vmas:	array of pointers to vmas corresponding to each page.
2882 *		Or NULL if the caller does not require them.
2883 * @locked:	pointer to lock flag indicating whether lock is held and
2884 *		subsequently whether VM_FAULT_RETRY functionality can be
2885 *		utilised. Lock must initially be held.
2886 *
2887 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2888 * get_user_pages_remote() for documentation on the function arguments, because
2889 * the arguments here are identical.
2890 *
2891 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2892 * see Documentation/core-api/pin_user_pages.rst for details.
2893 */
2894long pin_user_pages_remote(struct mm_struct *mm,
2895			   unsigned long start, unsigned long nr_pages,
2896			   unsigned int gup_flags, struct page **pages,
2897			   struct vm_area_struct **vmas, int *locked)
2898{
2899	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2900	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2901		return -EINVAL;
2902
2903	gup_flags |= FOLL_PIN;
2904	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2905				       pages, vmas, locked);
2906}
2907EXPORT_SYMBOL(pin_user_pages_remote);
2908
2909/**
2910 * pin_user_pages() - pin user pages in memory for use by other devices
2911 *
2912 * @start:	starting user address
2913 * @nr_pages:	number of pages from start to pin
2914 * @gup_flags:	flags modifying lookup behaviour
2915 * @pages:	array that receives pointers to the pages pinned.
2916 *		Should be at least nr_pages long. Or NULL, if caller
2917 *		only intends to ensure the pages are faulted in.
2918 * @vmas:	array of pointers to vmas corresponding to each page.
2919 *		Or NULL if the caller does not require them.
2920 *
2921 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2922 * FOLL_PIN is set.
2923 *
2924 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2925 * see Documentation/core-api/pin_user_pages.rst for details.
2926 */
2927long pin_user_pages(unsigned long start, unsigned long nr_pages,
2928		    unsigned int gup_flags, struct page **pages,
2929		    struct vm_area_struct **vmas)
2930{
2931	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2932	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2933		return -EINVAL;
2934
2935	gup_flags |= FOLL_PIN;
2936	return __gup_longterm_locked(current->mm, start, nr_pages,
2937				     pages, vmas, gup_flags);
2938}
2939EXPORT_SYMBOL(pin_user_pages);
2940
2941/*
2942 * pin_user_pages_unlocked() is the FOLL_PIN variant of
2943 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2944 * FOLL_PIN and rejects FOLL_GET.
2945 */
2946long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2947			     struct page **pages, unsigned int gup_flags)
2948{
2949	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2950	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2951		return -EINVAL;
2952
2953	gup_flags |= FOLL_PIN;
2954	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2955}
2956EXPORT_SYMBOL(pin_user_pages_unlocked);
2957
2958/*
2959 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2960 * Behavior is the same, except that this one sets FOLL_PIN and rejects
2961 * FOLL_GET.
2962 */
2963long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
2964			   unsigned int gup_flags, struct page **pages,
2965			   int *locked)
2966{
2967	/*
2968	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2969	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2970	 * vmas.  As there are no users of this flag in this call we simply
2971	 * disallow this option for now.
2972	 */
2973	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2974		return -EINVAL;
2975
2976	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2977	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2978		return -EINVAL;
2979
2980	gup_flags |= FOLL_PIN;
2981	return __get_user_pages_locked(current->mm, start, nr_pages,
2982				       pages, NULL, locked,
2983				       gup_flags | FOLL_TOUCH);
2984}
2985EXPORT_SYMBOL(pin_user_pages_locked);
v4.6
 
   1#include <linux/kernel.h>
   2#include <linux/errno.h>
   3#include <linux/err.h>
   4#include <linux/spinlock.h>
   5
   6#include <linux/mm.h>
   7#include <linux/memremap.h>
   8#include <linux/pagemap.h>
   9#include <linux/rmap.h>
  10#include <linux/swap.h>
  11#include <linux/swapops.h>
  12
  13#include <linux/sched.h>
  14#include <linux/rwsem.h>
  15#include <linux/hugetlb.h>
 
 
 
  16
  17#include <asm/mmu_context.h>
  18#include <asm/pgtable.h>
  19#include <asm/tlbflush.h>
  20
  21#include "internal.h"
  22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  23static struct page *no_page_table(struct vm_area_struct *vma,
  24		unsigned int flags)
  25{
  26	/*
  27	 * When core dumping an enormous anonymous area that nobody
  28	 * has touched so far, we don't want to allocate unnecessary pages or
  29	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
  30	 * then get_dump_page() will return NULL to leave a hole in the dump.
  31	 * But we can only make this optimization where a hole would surely
  32	 * be zero-filled if handle_mm_fault() actually did handle it.
  33	 */
  34	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
 
  35		return ERR_PTR(-EFAULT);
  36	return NULL;
  37}
  38
  39static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
  40		pte_t *pte, unsigned int flags)
  41{
  42	/* No page to get reference */
  43	if (flags & FOLL_GET)
  44		return -EFAULT;
  45
  46	if (flags & FOLL_TOUCH) {
  47		pte_t entry = *pte;
  48
  49		if (flags & FOLL_WRITE)
  50			entry = pte_mkdirty(entry);
  51		entry = pte_mkyoung(entry);
  52
  53		if (!pte_same(*pte, entry)) {
  54			set_pte_at(vma->vm_mm, address, pte, entry);
  55			update_mmu_cache(vma, address, pte);
  56		}
  57	}
  58
  59	/* Proper page table entry exists, but no corresponding struct page */
  60	return -EEXIST;
  61}
  62
 
 
 
 
 
 
 
 
 
 
  63static struct page *follow_page_pte(struct vm_area_struct *vma,
  64		unsigned long address, pmd_t *pmd, unsigned int flags)
 
  65{
  66	struct mm_struct *mm = vma->vm_mm;
  67	struct dev_pagemap *pgmap = NULL;
  68	struct page *page;
  69	spinlock_t *ptl;
  70	pte_t *ptep, pte;
 
  71
 
 
 
 
  72retry:
  73	if (unlikely(pmd_bad(*pmd)))
  74		return no_page_table(vma, flags);
  75
  76	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  77	pte = *ptep;
  78	if (!pte_present(pte)) {
  79		swp_entry_t entry;
  80		/*
  81		 * KSM's break_ksm() relies upon recognizing a ksm page
  82		 * even while it is being migrated, so for that case we
  83		 * need migration_entry_wait().
  84		 */
  85		if (likely(!(flags & FOLL_MIGRATION)))
  86			goto no_page;
  87		if (pte_none(pte))
  88			goto no_page;
  89		entry = pte_to_swp_entry(pte);
  90		if (!is_migration_entry(entry))
  91			goto no_page;
  92		pte_unmap_unlock(ptep, ptl);
  93		migration_entry_wait(mm, pmd, address);
  94		goto retry;
  95	}
  96	if ((flags & FOLL_NUMA) && pte_protnone(pte))
  97		goto no_page;
  98	if ((flags & FOLL_WRITE) && !pte_write(pte)) {
  99		pte_unmap_unlock(ptep, ptl);
 100		return NULL;
 101	}
 102
 103	page = vm_normal_page(vma, address, pte);
 104	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
 105		/*
 106		 * Only return device mapping pages in the FOLL_GET case since
 107		 * they are only valid while holding the pgmap reference.
 
 108		 */
 109		pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
 110		if (pgmap)
 111			page = pte_page(pte);
 112		else
 113			goto no_page;
 114	} else if (unlikely(!page)) {
 115		if (flags & FOLL_DUMP) {
 116			/* Avoid special (like zero) pages in core dumps */
 117			page = ERR_PTR(-EFAULT);
 118			goto out;
 119		}
 120
 121		if (is_zero_pfn(pte_pfn(pte))) {
 122			page = pte_page(pte);
 123		} else {
 124			int ret;
 125
 126			ret = follow_pfn_pte(vma, address, ptep, flags);
 127			page = ERR_PTR(ret);
 128			goto out;
 129		}
 130	}
 131
 132	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
 133		int ret;
 134		get_page(page);
 135		pte_unmap_unlock(ptep, ptl);
 136		lock_page(page);
 137		ret = split_huge_page(page);
 138		unlock_page(page);
 139		put_page(page);
 140		if (ret)
 141			return ERR_PTR(ret);
 142		goto retry;
 143	}
 144
 145	if (flags & FOLL_GET) {
 146		get_page(page);
 147
 148		/* drop the pgmap reference now that we hold the page */
 149		if (pgmap) {
 150			put_dev_pagemap(pgmap);
 151			pgmap = NULL;
 
 
 
 
 
 
 
 
 
 152		}
 153	}
 154	if (flags & FOLL_TOUCH) {
 155		if ((flags & FOLL_WRITE) &&
 156		    !pte_dirty(pte) && !PageDirty(page))
 157			set_page_dirty(page);
 158		/*
 159		 * pte_mkyoung() would be more correct here, but atomic care
 160		 * is needed to avoid losing the dirty bit: it is easier to use
 161		 * mark_page_accessed().
 162		 */
 163		mark_page_accessed(page);
 164	}
 165	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
 166		/* Do not mlock pte-mapped THP */
 167		if (PageTransCompound(page))
 168			goto out;
 169
 170		/*
 171		 * The preliminary mapping check is mainly to avoid the
 172		 * pointless overhead of lock_page on the ZERO_PAGE
 173		 * which might bounce very badly if there is contention.
 174		 *
 175		 * If the page is already locked, we don't need to
 176		 * handle it now - vmscan will handle it later if and
 177		 * when it attempts to reclaim the page.
 178		 */
 179		if (page->mapping && trylock_page(page)) {
 180			lru_add_drain();  /* push cached pages to LRU */
 181			/*
 182			 * Because we lock page here, and migration is
 183			 * blocked by the pte's page reference, and we
 184			 * know the page is still mapped, we don't even
 185			 * need to check for file-cache page truncation.
 186			 */
 187			mlock_vma_page(page);
 188			unlock_page(page);
 189		}
 190	}
 191out:
 192	pte_unmap_unlock(ptep, ptl);
 193	return page;
 194no_page:
 195	pte_unmap_unlock(ptep, ptl);
 196	if (!pte_none(pte))
 197		return NULL;
 198	return no_page_table(vma, flags);
 199}
 200
 201/**
 202 * follow_page_mask - look up a page descriptor from a user-virtual address
 203 * @vma: vm_area_struct mapping @address
 204 * @address: virtual address to look up
 205 * @flags: flags modifying lookup behaviour
 206 * @page_mask: on output, *page_mask is set according to the size of the page
 207 *
 208 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 209 *
 210 * Returns the mapped (struct page *), %NULL if no mapping exists, or
 211 * an error pointer if there is a mapping to something not represented
 212 * by a page descriptor (see also vm_normal_page()).
 213 */
 214struct page *follow_page_mask(struct vm_area_struct *vma,
 215			      unsigned long address, unsigned int flags,
 216			      unsigned int *page_mask)
 217{
 218	pgd_t *pgd;
 219	pud_t *pud;
 220	pmd_t *pmd;
 221	spinlock_t *ptl;
 222	struct page *page;
 223	struct mm_struct *mm = vma->vm_mm;
 224
 225	*page_mask = 0;
 226
 227	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
 228	if (!IS_ERR(page)) {
 229		BUG_ON(flags & FOLL_GET);
 230		return page;
 231	}
 232
 233	pgd = pgd_offset(mm, address);
 234	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
 235		return no_page_table(vma, flags);
 236
 237	pud = pud_offset(pgd, address);
 238	if (pud_none(*pud))
 239		return no_page_table(vma, flags);
 240	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
 241		page = follow_huge_pud(mm, address, pud, flags);
 242		if (page)
 243			return page;
 244		return no_page_table(vma, flags);
 245	}
 246	if (unlikely(pud_bad(*pud)))
 247		return no_page_table(vma, flags);
 248
 249	pmd = pmd_offset(pud, address);
 250	if (pmd_none(*pmd))
 251		return no_page_table(vma, flags);
 252	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
 253		page = follow_huge_pmd(mm, address, pmd, flags);
 254		if (page)
 255			return page;
 256		return no_page_table(vma, flags);
 257	}
 258	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
 259		return no_page_table(vma, flags);
 260	if (pmd_devmap(*pmd)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 261		ptl = pmd_lock(mm, pmd);
 262		page = follow_devmap_pmd(vma, address, pmd, flags);
 263		spin_unlock(ptl);
 264		if (page)
 265			return page;
 266	}
 267	if (likely(!pmd_trans_huge(*pmd)))
 268		return follow_page_pte(vma, address, pmd, flags);
 
 
 
 269
 
 270	ptl = pmd_lock(mm, pmd);
 
 
 
 
 
 
 
 
 
 
 
 271	if (unlikely(!pmd_trans_huge(*pmd))) {
 272		spin_unlock(ptl);
 273		return follow_page_pte(vma, address, pmd, flags);
 274	}
 275	if (flags & FOLL_SPLIT) {
 276		int ret;
 277		page = pmd_page(*pmd);
 278		if (is_huge_zero_page(page)) {
 279			spin_unlock(ptl);
 280			ret = 0;
 281			split_huge_pmd(vma, pmd, address);
 282		} else {
 283			get_page(page);
 
 
 
 
 
 284			spin_unlock(ptl);
 285			lock_page(page);
 286			ret = split_huge_page(page);
 287			unlock_page(page);
 288			put_page(page);
 
 
 
 
 
 
 289		}
 290
 291		return ret ? ERR_PTR(ret) :
 292			follow_page_pte(vma, address, pmd, flags);
 293	}
 294
 295	page = follow_trans_huge_pmd(vma, address, pmd, flags);
 296	spin_unlock(ptl);
 297	*page_mask = HPAGE_PMD_NR - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 298	return page;
 299}
 300
 301static int get_gate_page(struct mm_struct *mm, unsigned long address,
 302		unsigned int gup_flags, struct vm_area_struct **vma,
 303		struct page **page)
 304{
 305	pgd_t *pgd;
 
 306	pud_t *pud;
 307	pmd_t *pmd;
 308	pte_t *pte;
 309	int ret = -EFAULT;
 310
 311	/* user gate pages are read-only */
 312	if (gup_flags & FOLL_WRITE)
 313		return -EFAULT;
 314	if (address > TASK_SIZE)
 315		pgd = pgd_offset_k(address);
 316	else
 317		pgd = pgd_offset_gate(mm, address);
 318	BUG_ON(pgd_none(*pgd));
 319	pud = pud_offset(pgd, address);
 320	BUG_ON(pud_none(*pud));
 
 
 
 
 
 321	pmd = pmd_offset(pud, address);
 322	if (pmd_none(*pmd))
 323		return -EFAULT;
 324	VM_BUG_ON(pmd_trans_huge(*pmd));
 325	pte = pte_offset_map(pmd, address);
 326	if (pte_none(*pte))
 327		goto unmap;
 328	*vma = get_gate_vma(mm);
 329	if (!page)
 330		goto out;
 331	*page = vm_normal_page(*vma, address, *pte);
 332	if (!*page) {
 333		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
 334			goto unmap;
 335		*page = pte_page(*pte);
 336	}
 337	get_page(*page);
 
 
 
 338out:
 339	ret = 0;
 340unmap:
 341	pte_unmap(pte);
 342	return ret;
 343}
 344
 345/*
 346 * mmap_sem must be held on entry.  If @nonblocking != NULL and
 347 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
 348 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
 349 */
 350static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
 351		unsigned long address, unsigned int *flags, int *nonblocking)
 352{
 353	struct mm_struct *mm = vma->vm_mm;
 354	unsigned int fault_flags = 0;
 355	int ret;
 356
 357	/* mlock all present pages, but do not fault in new pages */
 358	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
 359		return -ENOENT;
 360	/* For mm_populate(), just skip the stack guard page. */
 361	if ((*flags & FOLL_POPULATE) &&
 362			(stack_guard_page_start(vma, address) ||
 363			 stack_guard_page_end(vma, address + PAGE_SIZE)))
 364		return -ENOENT;
 365	if (*flags & FOLL_WRITE)
 366		fault_flags |= FAULT_FLAG_WRITE;
 367	if (*flags & FOLL_REMOTE)
 368		fault_flags |= FAULT_FLAG_REMOTE;
 369	if (nonblocking)
 370		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
 371	if (*flags & FOLL_NOWAIT)
 372		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
 373	if (*flags & FOLL_TRIED) {
 374		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
 
 
 
 375		fault_flags |= FAULT_FLAG_TRIED;
 376	}
 377
 378	ret = handle_mm_fault(mm, vma, address, fault_flags);
 379	if (ret & VM_FAULT_ERROR) {
 380		if (ret & VM_FAULT_OOM)
 381			return -ENOMEM;
 382		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
 383			return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
 384		if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
 385			return -EFAULT;
 386		BUG();
 387	}
 388
 389	if (tsk) {
 390		if (ret & VM_FAULT_MAJOR)
 391			tsk->maj_flt++;
 392		else
 393			tsk->min_flt++;
 394	}
 395
 396	if (ret & VM_FAULT_RETRY) {
 397		if (nonblocking)
 398			*nonblocking = 0;
 399		return -EBUSY;
 400	}
 401
 402	/*
 403	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
 404	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
 405	 * can thus safely do subsequent page lookups as if they were reads.
 406	 * But only do so when looping for pte_write is futile: in some cases
 407	 * userspace may also be wanting to write to the gotten user page,
 408	 * which a read fault here might prevent (a readonly page might get
 409	 * reCOWed by userspace write).
 410	 */
 411	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
 412		*flags &= ~FOLL_WRITE;
 413	return 0;
 414}
 415
 416static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
 417{
 418	vm_flags_t vm_flags = vma->vm_flags;
 419	int write = (gup_flags & FOLL_WRITE);
 420	int foreign = (gup_flags & FOLL_REMOTE);
 421
 422	if (vm_flags & (VM_IO | VM_PFNMAP))
 423		return -EFAULT;
 424
 
 
 
 425	if (write) {
 426		if (!(vm_flags & VM_WRITE)) {
 427			if (!(gup_flags & FOLL_FORCE))
 428				return -EFAULT;
 429			/*
 430			 * We used to let the write,force case do COW in a
 431			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
 432			 * set a breakpoint in a read-only mapping of an
 433			 * executable, without corrupting the file (yet only
 434			 * when that file had been opened for writing!).
 435			 * Anon pages in shared mappings are surprising: now
 436			 * just reject it.
 437			 */
 438			if (!is_cow_mapping(vm_flags))
 439				return -EFAULT;
 440		}
 441	} else if (!(vm_flags & VM_READ)) {
 442		if (!(gup_flags & FOLL_FORCE))
 443			return -EFAULT;
 444		/*
 445		 * Is there actually any vma we can reach here which does not
 446		 * have VM_MAYREAD set?
 447		 */
 448		if (!(vm_flags & VM_MAYREAD))
 449			return -EFAULT;
 450	}
 451	/*
 452	 * gups are always data accesses, not instruction
 453	 * fetches, so execute=false here
 454	 */
 455	if (!arch_vma_access_permitted(vma, write, false, foreign))
 456		return -EFAULT;
 457	return 0;
 458}
 459
 460/**
 461 * __get_user_pages() - pin user pages in memory
 462 * @tsk:	task_struct of target task
 463 * @mm:		mm_struct of target mm
 464 * @start:	starting user address
 465 * @nr_pages:	number of pages from start to pin
 466 * @gup_flags:	flags modifying pin behaviour
 467 * @pages:	array that receives pointers to the pages pinned.
 468 *		Should be at least nr_pages long. Or NULL, if caller
 469 *		only intends to ensure the pages are faulted in.
 470 * @vmas:	array of pointers to vmas corresponding to each page.
 471 *		Or NULL if the caller does not require them.
 472 * @nonblocking: whether waiting for disk IO or mmap_sem contention
 473 *
 474 * Returns number of pages pinned. This may be fewer than the number
 475 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 476 * were pinned, returns -errno. Each page returned must be released
 477 * with a put_page() call when it is finished with. vmas will only
 478 * remain valid while mmap_sem is held.
 479 *
 480 * Must be called with mmap_sem held.  It may be released.  See below.
 
 
 
 
 
 
 
 
 
 
 481 *
 482 * __get_user_pages walks a process's page tables and takes a reference to
 483 * each struct page that each user address corresponds to at a given
 484 * instant. That is, it takes the page that would be accessed if a user
 485 * thread accesses the given user virtual address at that instant.
 486 *
 487 * This does not guarantee that the page exists in the user mappings when
 488 * __get_user_pages returns, and there may even be a completely different
 489 * page there in some cases (eg. if mmapped pagecache has been invalidated
 490 * and subsequently re faulted). However it does guarantee that the page
 491 * won't be freed completely. And mostly callers simply care that the page
 492 * contains data that was valid *at some point in time*. Typically, an IO
 493 * or similar operation cannot guarantee anything stronger anyway because
 494 * locks can't be held over the syscall boundary.
 495 *
 496 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 497 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 498 * appropriate) must be called after the page is finished with, and
 499 * before put_page is called.
 500 *
 501 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
 502 * or mmap_sem contention, and if waiting is needed to pin all pages,
 503 * *@nonblocking will be set to 0.  Further, if @gup_flags does not
 504 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
 505 * this case.
 506 *
 507 * A caller using such a combination of @nonblocking and @gup_flags
 508 * must therefore hold the mmap_sem for reading only, and recognize
 509 * when it's been released.  Otherwise, it must be held for either
 510 * reading or writing and will not be released.
 511 *
 512 * In most cases, get_user_pages or get_user_pages_fast should be used
 513 * instead of __get_user_pages. __get_user_pages should be used only if
 514 * you need some special @gup_flags.
 515 */
 516long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
 517		unsigned long start, unsigned long nr_pages,
 518		unsigned int gup_flags, struct page **pages,
 519		struct vm_area_struct **vmas, int *nonblocking)
 520{
 521	long i = 0;
 522	unsigned int page_mask;
 523	struct vm_area_struct *vma = NULL;
 
 524
 525	if (!nr_pages)
 526		return 0;
 527
 528	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
 
 
 529
 530	/*
 531	 * If FOLL_FORCE is set then do not force a full fault as the hinting
 532	 * fault information is unrelated to the reference behaviour of a task
 533	 * using the address space
 534	 */
 535	if (!(gup_flags & FOLL_FORCE))
 536		gup_flags |= FOLL_NUMA;
 537
 538	do {
 539		struct page *page;
 540		unsigned int foll_flags = gup_flags;
 541		unsigned int page_increm;
 542
 543		/* first iteration or cross vma bound */
 544		if (!vma || start >= vma->vm_end) {
 545			vma = find_extend_vma(mm, start);
 546			if (!vma && in_gate_area(mm, start)) {
 547				int ret;
 548				ret = get_gate_page(mm, start & PAGE_MASK,
 549						gup_flags, &vma,
 550						pages ? &pages[i] : NULL);
 551				if (ret)
 552					return i ? : ret;
 553				page_mask = 0;
 554				goto next_page;
 555			}
 556
 557			if (!vma || check_vma_flags(vma, gup_flags))
 558				return i ? : -EFAULT;
 
 
 559			if (is_vm_hugetlb_page(vma)) {
 560				i = follow_hugetlb_page(mm, vma, pages, vmas,
 561						&start, &nr_pages, i,
 562						gup_flags);
 
 
 
 
 
 
 
 
 
 
 563				continue;
 564			}
 565		}
 566retry:
 567		/*
 568		 * If we have a pending SIGKILL, don't keep faulting pages and
 569		 * potentially allocating memory.
 570		 */
 571		if (unlikely(fatal_signal_pending(current)))
 572			return i ? i : -ERESTARTSYS;
 
 
 573		cond_resched();
 574		page = follow_page_mask(vma, start, foll_flags, &page_mask);
 
 575		if (!page) {
 576			int ret;
 577			ret = faultin_page(tsk, vma, start, &foll_flags,
 578					nonblocking);
 579			switch (ret) {
 580			case 0:
 581				goto retry;
 
 
 
 582			case -EFAULT:
 583			case -ENOMEM:
 584			case -EHWPOISON:
 585				return i ? i : ret;
 586			case -EBUSY:
 587				return i;
 588			case -ENOENT:
 589				goto next_page;
 590			}
 591			BUG();
 592		} else if (PTR_ERR(page) == -EEXIST) {
 593			/*
 594			 * Proper page table entry exists, but no corresponding
 595			 * struct page.
 596			 */
 597			goto next_page;
 598		} else if (IS_ERR(page)) {
 599			return i ? i : PTR_ERR(page);
 
 600		}
 601		if (pages) {
 602			pages[i] = page;
 603			flush_anon_page(vma, page, start);
 604			flush_dcache_page(page);
 605			page_mask = 0;
 606		}
 607next_page:
 608		if (vmas) {
 609			vmas[i] = vma;
 610			page_mask = 0;
 611		}
 612		page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
 613		if (page_increm > nr_pages)
 614			page_increm = nr_pages;
 615		i += page_increm;
 616		start += page_increm * PAGE_SIZE;
 617		nr_pages -= page_increm;
 618	} while (nr_pages);
 619	return i;
 
 
 
 620}
 621EXPORT_SYMBOL(__get_user_pages);
 622
 623bool vma_permits_fault(struct vm_area_struct *vma, unsigned int fault_flags)
 
 624{
 625	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
 626	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
 627	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
 628
 629	if (!(vm_flags & vma->vm_flags))
 630		return false;
 631
 632	/*
 633	 * The architecture might have a hardware protection
 634	 * mechanism other than read/write that can deny access.
 635	 *
 636	 * gup always represents data access, not instruction
 637	 * fetches, so execute=false here:
 638	 */
 639	if (!arch_vma_access_permitted(vma, write, false, foreign))
 640		return false;
 641
 642	return true;
 643}
 644
 645/*
 646 * fixup_user_fault() - manually resolve a user page fault
 647 * @tsk:	the task_struct to use for page fault accounting, or
 648 *		NULL if faults are not to be recorded.
 649 * @mm:		mm_struct of target mm
 650 * @address:	user address
 651 * @fault_flags:flags to pass down to handle_mm_fault()
 652 * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
 653 *		does not allow retry
 
 654 *
 655 * This is meant to be called in the specific scenario where for locking reasons
 656 * we try to access user memory in atomic context (within a pagefault_disable()
 657 * section), this returns -EFAULT, and we want to resolve the user fault before
 658 * trying again.
 659 *
 660 * Typically this is meant to be used by the futex code.
 661 *
 662 * The main difference with get_user_pages() is that this function will
 663 * unconditionally call handle_mm_fault() which will in turn perform all the
 664 * necessary SW fixup of the dirty and young bits in the PTE, while
 665 * get_user_pages() only guarantees to update these in the struct page.
 666 *
 667 * This is important for some architectures where those bits also gate the
 668 * access permission to the page because they are maintained in software.  On
 669 * such architectures, gup() will not be enough to make a subsequent access
 670 * succeed.
 671 *
 672 * This function will not return with an unlocked mmap_sem. So it has not the
 673 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
 674 */
 675int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
 676		     unsigned long address, unsigned int fault_flags,
 677		     bool *unlocked)
 678{
 679	struct vm_area_struct *vma;
 680	int ret, major = 0;
 
 
 681
 682	if (unlocked)
 683		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
 684
 685retry:
 686	vma = find_extend_vma(mm, address);
 687	if (!vma || address < vma->vm_start)
 688		return -EFAULT;
 689
 690	if (!vma_permits_fault(vma, fault_flags))
 691		return -EFAULT;
 692
 693	ret = handle_mm_fault(mm, vma, address, fault_flags);
 
 
 
 
 694	major |= ret & VM_FAULT_MAJOR;
 695	if (ret & VM_FAULT_ERROR) {
 696		if (ret & VM_FAULT_OOM)
 697			return -ENOMEM;
 698		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
 699			return -EHWPOISON;
 700		if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
 701			return -EFAULT;
 702		BUG();
 703	}
 704
 705	if (ret & VM_FAULT_RETRY) {
 706		down_read(&mm->mmap_sem);
 707		if (!(fault_flags & FAULT_FLAG_TRIED)) {
 708			*unlocked = true;
 709			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
 710			fault_flags |= FAULT_FLAG_TRIED;
 711			goto retry;
 712		}
 713	}
 714
 715	if (tsk) {
 716		if (major)
 717			tsk->maj_flt++;
 718		else
 719			tsk->min_flt++;
 720	}
 721	return 0;
 722}
 
 723
 724static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
 725						struct mm_struct *mm,
 
 
 
 726						unsigned long start,
 727						unsigned long nr_pages,
 728						int write, int force,
 729						struct page **pages,
 730						struct vm_area_struct **vmas,
 731						int *locked, bool notify_drop,
 732						unsigned int flags)
 733{
 734	long ret, pages_done;
 735	bool lock_dropped;
 736
 737	if (locked) {
 738		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
 739		BUG_ON(vmas);
 740		/* check caller initialized locked */
 741		BUG_ON(*locked != 1);
 742	}
 743
 744	if (pages)
 
 
 
 
 
 
 
 
 
 
 
 
 745		flags |= FOLL_GET;
 746	if (write)
 747		flags |= FOLL_WRITE;
 748	if (force)
 749		flags |= FOLL_FORCE;
 750
 751	pages_done = 0;
 752	lock_dropped = false;
 753	for (;;) {
 754		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
 755				       vmas, locked);
 756		if (!locked)
 757			/* VM_FAULT_RETRY couldn't trigger, bypass */
 758			return ret;
 759
 760		/* VM_FAULT_RETRY cannot return errors */
 761		if (!*locked) {
 762			BUG_ON(ret < 0);
 763			BUG_ON(ret >= nr_pages);
 764		}
 765
 766		if (!pages)
 767			/* If it's a prefault don't insist harder */
 768			return ret;
 769
 770		if (ret > 0) {
 771			nr_pages -= ret;
 772			pages_done += ret;
 773			if (!nr_pages)
 774				break;
 775		}
 776		if (*locked) {
 777			/* VM_FAULT_RETRY didn't trigger */
 
 
 
 778			if (!pages_done)
 779				pages_done = ret;
 780			break;
 781		}
 782		/* VM_FAULT_RETRY triggered, so seek to the faulting offset */
 783		pages += ret;
 
 
 
 
 784		start += ret << PAGE_SHIFT;
 
 785
 
 786		/*
 787		 * Repeat on the address that fired VM_FAULT_RETRY
 788		 * without FAULT_FLAG_ALLOW_RETRY but with
 789		 * FAULT_FLAG_TRIED.
 
 
 790		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 791		*locked = 1;
 792		lock_dropped = true;
 793		down_read(&mm->mmap_sem);
 794		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
 795				       pages, NULL, NULL);
 
 
 
 796		if (ret != 1) {
 797			BUG_ON(ret > 1);
 798			if (!pages_done)
 799				pages_done = ret;
 800			break;
 801		}
 802		nr_pages--;
 803		pages_done++;
 804		if (!nr_pages)
 805			break;
 806		pages++;
 
 807		start += PAGE_SIZE;
 808	}
 809	if (notify_drop && lock_dropped && *locked) {
 810		/*
 811		 * We must let the caller know we temporarily dropped the lock
 812		 * and so the critical section protected by it was lost.
 813		 */
 814		up_read(&mm->mmap_sem);
 815		*locked = 0;
 816	}
 817	return pages_done;
 818}
 819
 820/*
 821 * We can leverage the VM_FAULT_RETRY functionality in the page fault
 822 * paths better by using either get_user_pages_locked() or
 823 * get_user_pages_unlocked().
 824 *
 825 * get_user_pages_locked() is suitable to replace the form:
 826 *
 827 *      down_read(&mm->mmap_sem);
 828 *      do_something()
 829 *      get_user_pages(tsk, mm, ..., pages, NULL);
 830 *      up_read(&mm->mmap_sem);
 831 *
 832 *  to:
 833 *
 834 *      int locked = 1;
 835 *      down_read(&mm->mmap_sem);
 836 *      do_something()
 837 *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
 838 *      if (locked)
 839 *          up_read(&mm->mmap_sem);
 840 */
 841long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
 842			   int write, int force, struct page **pages,
 843			   int *locked)
 844{
 845	return __get_user_pages_locked(current, current->mm, start, nr_pages,
 846				       write, force, pages, NULL, locked, true,
 847				       FOLL_TOUCH);
 848}
 849EXPORT_SYMBOL(get_user_pages_locked);
 850
 851/*
 852 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to
 853 * pass additional gup_flags as last parameter (like FOLL_HWPOISON).
 854 *
 855 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
 856 * caller if required (just like with __get_user_pages). "FOLL_GET",
 857 * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed
 858 * according to the parameters "pages", "write", "force"
 859 * respectively.
 860 */
 861__always_inline long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
 862					       unsigned long start, unsigned long nr_pages,
 863					       int write, int force, struct page **pages,
 864					       unsigned int gup_flags)
 865{
 866	long ret;
 867	int locked = 1;
 868	down_read(&mm->mmap_sem);
 869	ret = __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
 870				      pages, NULL, &locked, false, gup_flags);
 871	if (locked)
 872		up_read(&mm->mmap_sem);
 873	return ret;
 874}
 875EXPORT_SYMBOL(__get_user_pages_unlocked);
 876
 877/*
 878 * get_user_pages_unlocked() is suitable to replace the form:
 879 *
 880 *      down_read(&mm->mmap_sem);
 881 *      get_user_pages(tsk, mm, ..., pages, NULL);
 882 *      up_read(&mm->mmap_sem);
 883 *
 884 *  with:
 885 *
 886 *      get_user_pages_unlocked(tsk, mm, ..., pages);
 887 *
 888 * It is functionally equivalent to get_user_pages_fast so
 889 * get_user_pages_fast should be used instead, if the two parameters
 890 * "tsk" and "mm" are respectively equal to current and current->mm,
 891 * or if "force" shall be set to 1 (get_user_pages_fast misses the
 892 * "force" parameter).
 893 */
 894long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
 895			     int write, int force, struct page **pages)
 896{
 897	return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
 898					 write, force, pages, FOLL_TOUCH);
 899}
 900EXPORT_SYMBOL(get_user_pages_unlocked);
 901
 902/*
 903 * get_user_pages_remote() - pin user pages in memory
 904 * @tsk:	the task_struct to use for page fault accounting, or
 905 *		NULL if faults are not to be recorded.
 906 * @mm:		mm_struct of target mm
 907 * @start:	starting user address
 908 * @nr_pages:	number of pages from start to pin
 909 * @write:	whether pages will be written to by the caller
 910 * @force:	whether to force access even when user mapping is currently
 911 *		protected (but never forces write access to shared mapping).
 912 * @pages:	array that receives pointers to the pages pinned.
 913 *		Should be at least nr_pages long. Or NULL, if caller
 914 *		only intends to ensure the pages are faulted in.
 915 * @vmas:	array of pointers to vmas corresponding to each page.
 916 *		Or NULL if the caller does not require them.
 917 *
 918 * Returns number of pages pinned. This may be fewer than the number
 919 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 920 * were pinned, returns -errno. Each page returned must be released
 921 * with a put_page() call when it is finished with. vmas will only
 922 * remain valid while mmap_sem is held.
 923 *
 924 * Must be called with mmap_sem held for read or write.
 925 *
 926 * get_user_pages walks a process's page tables and takes a reference to
 927 * each struct page that each user address corresponds to at a given
 928 * instant. That is, it takes the page that would be accessed if a user
 929 * thread accesses the given user virtual address at that instant.
 930 *
 931 * This does not guarantee that the page exists in the user mappings when
 932 * get_user_pages returns, and there may even be a completely different
 933 * page there in some cases (eg. if mmapped pagecache has been invalidated
 934 * and subsequently re faulted). However it does guarantee that the page
 935 * won't be freed completely. And mostly callers simply care that the page
 936 * contains data that was valid *at some point in time*. Typically, an IO
 937 * or similar operation cannot guarantee anything stronger anyway because
 938 * locks can't be held over the syscall boundary.
 939 *
 940 * If write=0, the page must not be written to. If the page is written to,
 941 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
 942 * after the page is finished with, and before put_page is called.
 943 *
 944 * get_user_pages is typically used for fewer-copy IO operations, to get a
 945 * handle on the memory by some means other than accesses via the user virtual
 946 * addresses. The pages may be submitted for DMA to devices or accessed via
 947 * their kernel linear mapping (via the kmap APIs). Care should be taken to
 948 * use the correct cache flushing APIs.
 949 *
 950 * See also get_user_pages_fast, for performance critical applications.
 951 *
 952 * get_user_pages should be phased out in favor of
 953 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
 954 * should use get_user_pages because it cannot pass
 955 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
 956 */
 957long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
 958		unsigned long start, unsigned long nr_pages,
 959		int write, int force, struct page **pages,
 960		struct vm_area_struct **vmas)
 961{
 962	return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
 963				       pages, vmas, NULL, false,
 964				       FOLL_TOUCH | FOLL_REMOTE);
 965}
 966EXPORT_SYMBOL(get_user_pages_remote);
 967
 968/*
 969 * This is the same as get_user_pages_remote(), just with a
 970 * less-flexible calling convention where we assume that the task
 971 * and mm being operated on are the current task's.  We also
 972 * obviously don't pass FOLL_REMOTE in here.
 973 */
 974long get_user_pages(unsigned long start, unsigned long nr_pages,
 975		int write, int force, struct page **pages,
 976		struct vm_area_struct **vmas)
 977{
 978	return __get_user_pages_locked(current, current->mm, start, nr_pages,
 979				       write, force, pages, vmas, NULL, false,
 980				       FOLL_TOUCH);
 981}
 982EXPORT_SYMBOL(get_user_pages);
 983
 984/**
 985 * populate_vma_page_range() -  populate a range of pages in the vma.
 986 * @vma:   target vma
 987 * @start: start address
 988 * @end:   end address
 989 * @nonblocking:
 990 *
 991 * This takes care of mlocking the pages too if VM_LOCKED is set.
 992 *
 993 * return 0 on success, negative error code on error.
 
 994 *
 995 * vma->vm_mm->mmap_sem must be held.
 996 *
 997 * If @nonblocking is NULL, it may be held for read or write and will
 998 * be unperturbed.
 999 *
1000 * If @nonblocking is non-NULL, it must held for read only and may be
1001 * released.  If it's released, *@nonblocking will be set to 0.
1002 */
1003long populate_vma_page_range(struct vm_area_struct *vma,
1004		unsigned long start, unsigned long end, int *nonblocking)
1005{
1006	struct mm_struct *mm = vma->vm_mm;
1007	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1008	int gup_flags;
1009
1010	VM_BUG_ON(start & ~PAGE_MASK);
1011	VM_BUG_ON(end   & ~PAGE_MASK);
1012	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1013	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1014	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1015
1016	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1017	if (vma->vm_flags & VM_LOCKONFAULT)
1018		gup_flags &= ~FOLL_POPULATE;
1019	/*
1020	 * We want to touch writable mappings with a write fault in order
1021	 * to break COW, except for shared mappings because these don't COW
1022	 * and we would not want to dirty them for nothing.
1023	 */
1024	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1025		gup_flags |= FOLL_WRITE;
1026
1027	/*
1028	 * We want mlock to succeed for regions that have any permissions
1029	 * other than PROT_NONE.
1030	 */
1031	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1032		gup_flags |= FOLL_FORCE;
1033
1034	/*
1035	 * We made sure addr is within a VMA, so the following will
1036	 * not result in a stack expansion that recurses back here.
1037	 */
1038	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1039				NULL, NULL, nonblocking);
1040}
1041
1042/*
1043 * __mm_populate - populate and/or mlock pages within a range of address space.
1044 *
1045 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1046 * flags. VMAs must be already marked with the desired vm_flags, and
1047 * mmap_sem must not be held.
1048 */
1049int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1050{
1051	struct mm_struct *mm = current->mm;
1052	unsigned long end, nstart, nend;
1053	struct vm_area_struct *vma = NULL;
1054	int locked = 0;
1055	long ret = 0;
1056
1057	VM_BUG_ON(start & ~PAGE_MASK);
1058	VM_BUG_ON(len != PAGE_ALIGN(len));
1059	end = start + len;
1060
1061	for (nstart = start; nstart < end; nstart = nend) {
1062		/*
1063		 * We want to fault in pages for [nstart; end) address range.
1064		 * Find first corresponding VMA.
1065		 */
1066		if (!locked) {
1067			locked = 1;
1068			down_read(&mm->mmap_sem);
1069			vma = find_vma(mm, nstart);
1070		} else if (nstart >= vma->vm_end)
1071			vma = vma->vm_next;
1072		if (!vma || vma->vm_start >= end)
1073			break;
1074		/*
1075		 * Set [nstart; nend) to intersection of desired address
1076		 * range with the first VMA. Also, skip undesirable VMA types.
1077		 */
1078		nend = min(end, vma->vm_end);
1079		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1080			continue;
1081		if (nstart < vma->vm_start)
1082			nstart = vma->vm_start;
1083		/*
1084		 * Now fault in a range of pages. populate_vma_page_range()
1085		 * double checks the vma flags, so that it won't mlock pages
1086		 * if the vma was already munlocked.
1087		 */
1088		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1089		if (ret < 0) {
1090			if (ignore_errors) {
1091				ret = 0;
1092				continue;	/* continue at next VMA */
1093			}
1094			break;
1095		}
1096		nend = nstart + ret * PAGE_SIZE;
1097		ret = 0;
1098	}
1099	if (locked)
1100		up_read(&mm->mmap_sem);
1101	return ret;	/* 0 or negative error code */
1102}
1103
1104/**
1105 * get_dump_page() - pin user page in memory while writing it to core dump
1106 * @addr: user address
1107 *
1108 * Returns struct page pointer of user page pinned for dump,
1109 * to be freed afterwards by put_page().
1110 *
1111 * Returns NULL on any kind of failure - a hole must then be inserted into
1112 * the corefile, to preserve alignment with its headers; and also returns
1113 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1114 * allowing a hole to be left in the corefile to save diskspace.
1115 *
1116 * Called without mmap_sem, but after all other threads have been killed.
1117 */
1118#ifdef CONFIG_ELF_CORE
1119struct page *get_dump_page(unsigned long addr)
1120{
1121	struct vm_area_struct *vma;
1122	struct page *page;
1123
1124	if (__get_user_pages(current, current->mm, addr, 1,
1125			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1126			     NULL) < 1)
1127		return NULL;
1128	flush_cache_page(vma, addr, page_to_pfn(page));
1129	return page;
1130}
1131#endif /* CONFIG_ELF_CORE */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1132
1133/*
1134 * Generic RCU Fast GUP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1135 *
1136 * get_user_pages_fast attempts to pin user pages by walking the page
1137 * tables directly and avoids taking locks. Thus the walker needs to be
1138 * protected from page table pages being freed from under it, and should
1139 * block any THP splits.
1140 *
1141 * One way to achieve this is to have the walker disable interrupts, and
1142 * rely on IPIs from the TLB flushing code blocking before the page table
1143 * pages are freed. This is unsuitable for architectures that do not need
1144 * to broadcast an IPI when invalidating TLBs.
1145 *
1146 * Another way to achieve this is to batch up page table containing pages
1147 * belonging to more than one mm_user, then rcu_sched a callback to free those
1148 * pages. Disabling interrupts will allow the fast_gup walker to both block
1149 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1150 * (which is a relatively rare event). The code below adopts this strategy.
1151 *
1152 * Before activating this code, please be aware that the following assumptions
1153 * are currently made:
1154 *
1155 *  *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1156 *      pages containing page tables.
1157 *
1158 *  *) ptes can be read atomically by the architecture.
1159 *
1160 *  *) access_ok is sufficient to validate userspace address ranges.
1161 *
1162 * The last two assumptions can be relaxed by the addition of helper functions.
1163 *
1164 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1165 */
1166#ifdef CONFIG_HAVE_GENERIC_RCU_GUP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1167
1168#ifdef __HAVE_ARCH_PTE_SPECIAL
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1169static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1170			 int write, struct page **pages, int *nr)
1171{
 
 
1172	pte_t *ptep, *ptem;
1173	int ret = 0;
1174
1175	ptem = ptep = pte_offset_map(&pmd, addr);
1176	do {
1177		/*
1178		 * In the line below we are assuming that the pte can be read
1179		 * atomically. If this is not the case for your architecture,
1180		 * please wrap this in a helper function!
1181		 *
1182		 * for an example see gup_get_pte in arch/x86/mm/gup.c
1183		 */
1184		pte_t pte = READ_ONCE(*ptep);
1185		struct page *head, *page;
1186
1187		/*
1188		 * Similar to the PMD case below, NUMA hinting must take slow
1189		 * path using the pte_protnone check.
1190		 */
1191		if (!pte_present(pte) || pte_special(pte) ||
1192			pte_protnone(pte) || (write && !pte_write(pte)))
 
 
1193			goto pte_unmap;
1194
1195		if (!arch_pte_access_permitted(pte, write))
 
 
 
 
 
 
 
 
 
1196			goto pte_unmap;
1197
1198		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1199		page = pte_page(pte);
1200		head = compound_head(page);
1201
1202		if (!page_cache_get_speculative(head))
 
1203			goto pte_unmap;
1204
1205		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1206			put_page(head);
1207			goto pte_unmap;
1208		}
1209
1210		VM_BUG_ON_PAGE(compound_head(page) != head, page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1211		pages[*nr] = page;
1212		(*nr)++;
1213
1214	} while (ptep++, addr += PAGE_SIZE, addr != end);
1215
1216	ret = 1;
1217
1218pte_unmap:
 
 
1219	pte_unmap(ptem);
1220	return ret;
1221}
1222#else
1223
1224/*
1225 * If we can't determine whether or not a pte is special, then fail immediately
1226 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1227 * to be special.
1228 *
1229 * For a futex to be placed on a THP tail page, get_futex_key requires a
1230 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1231 * useful to have gup_huge_pmd even if we can't operate on ptes.
1232 */
1233static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1234			 int write, struct page **pages, int *nr)
1235{
1236	return 0;
1237}
1238#endif /* __HAVE_ARCH_PTE_SPECIAL */
1239
1240static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1241		unsigned long end, int write, struct page **pages, int *nr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1242{
 
1243	struct page *head, *page;
 
1244	int refs;
1245
1246	if (write && !pmd_write(orig))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1247		return 0;
1248
1249	refs = 0;
1250	head = pmd_page(orig);
1251	page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1252	do {
1253		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1254		pages[*nr] = page;
1255		(*nr)++;
1256		page++;
1257		refs++;
1258	} while (addr += PAGE_SIZE, addr != end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1259
1260	if (!page_cache_add_speculative(head, refs)) {
1261		*nr -= refs;
1262		return 0;
 
 
 
 
 
 
1263	}
1264
 
 
 
 
 
 
 
1265	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1266		*nr -= refs;
1267		while (refs--)
1268			put_page(head);
1269		return 0;
1270	}
1271
 
 
1272	return 1;
1273}
1274
1275static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1276		unsigned long end, int write, struct page **pages, int *nr)
 
1277{
1278	struct page *head, *page;
1279	int refs;
1280
1281	if (write && !pud_write(orig))
1282		return 0;
1283
1284	refs = 0;
1285	head = pud_page(orig);
1286	page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1287	do {
1288		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1289		pages[*nr] = page;
1290		(*nr)++;
1291		page++;
1292		refs++;
1293	} while (addr += PAGE_SIZE, addr != end);
1294
1295	if (!page_cache_add_speculative(head, refs)) {
1296		*nr -= refs;
1297		return 0;
1298	}
1299
1300	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1301		*nr -= refs;
1302		while (refs--)
1303			put_page(head);
1304		return 0;
1305	}
1306
 
 
1307	return 1;
1308}
1309
1310static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1311			unsigned long end, int write,
1312			struct page **pages, int *nr)
1313{
1314	int refs;
1315	struct page *head, *page;
1316
1317	if (write && !pgd_write(orig))
1318		return 0;
1319
1320	refs = 0;
1321	head = pgd_page(orig);
1322	page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1323	do {
1324		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1325		pages[*nr] = page;
1326		(*nr)++;
1327		page++;
1328		refs++;
1329	} while (addr += PAGE_SIZE, addr != end);
1330
1331	if (!page_cache_add_speculative(head, refs)) {
1332		*nr -= refs;
1333		return 0;
1334	}
1335
1336	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1337		*nr -= refs;
1338		while (refs--)
1339			put_page(head);
1340		return 0;
1341	}
1342
 
 
1343	return 1;
1344}
1345
1346static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1347		int write, struct page **pages, int *nr)
1348{
1349	unsigned long next;
1350	pmd_t *pmdp;
1351
1352	pmdp = pmd_offset(&pud, addr);
1353	do {
1354		pmd_t pmd = READ_ONCE(*pmdp);
1355
1356		next = pmd_addr_end(addr, end);
1357		if (pmd_none(pmd))
1358			return 0;
1359
1360		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
 
1361			/*
1362			 * NUMA hinting faults need to be handled in the GUP
1363			 * slowpath for accounting purposes and so that they
1364			 * can be serialised against THP migration.
1365			 */
1366			if (pmd_protnone(pmd))
1367				return 0;
1368
1369			if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1370				pages, nr))
1371				return 0;
1372
1373		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1374			/*
1375			 * architecture have different format for hugetlbfs
1376			 * pmd format and THP pmd format
1377			 */
1378			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1379					 PMD_SHIFT, next, write, pages, nr))
1380				return 0;
1381		} else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1382				return 0;
 
 
1383	} while (pmdp++, addr = next, addr != end);
1384
1385	return 1;
1386}
1387
1388static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
1389			 int write, struct page **pages, int *nr)
1390{
1391	unsigned long next;
1392	pud_t *pudp;
1393
1394	pudp = pud_offset(&pgd, addr);
1395	do {
1396		pud_t pud = READ_ONCE(*pudp);
1397
1398		next = pud_addr_end(addr, end);
1399		if (pud_none(pud))
1400			return 0;
1401		if (unlikely(pud_huge(pud))) {
1402			if (!gup_huge_pud(pud, pudp, addr, next, write,
1403					  pages, nr))
1404				return 0;
1405		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1406			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1407					 PUD_SHIFT, next, write, pages, nr))
1408				return 0;
1409		} else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1410			return 0;
1411	} while (pudp++, addr = next, addr != end);
1412
1413	return 1;
1414}
1415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1416/*
1417 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1418 * the regular GUP. It will only return non-negative values.
1419 */
1420int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1421			  struct page **pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1422{
1423	struct mm_struct *mm = current->mm;
1424	unsigned long addr, len, end;
1425	unsigned long next, flags;
1426	pgd_t *pgdp;
1427	int nr = 0;
 
 
 
 
 
 
 
 
 
 
1428
1429	start &= PAGE_MASK;
1430	addr = start;
1431	len = (unsigned long) nr_pages << PAGE_SHIFT;
1432	end = start + len;
1433
1434	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1435					start, len)))
1436		return 0;
 
 
1437
1438	/*
1439	 * Disable interrupts.  We use the nested form as we can already have
1440	 * interrupts disabled by get_futex_key.
1441	 *
1442	 * With interrupts disabled, we block page table pages from being
1443	 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1444	 * for more details.
1445	 *
1446	 * We do not adopt an rcu_read_lock(.) here as we also want to
1447	 * block IPIs that come from THPs splitting.
1448	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1449
1450	local_irq_save(flags);
1451	pgdp = pgd_offset(mm, addr);
1452	do {
1453		pgd_t pgd = READ_ONCE(*pgdp);
1454
1455		next = pgd_addr_end(addr, end);
1456		if (pgd_none(pgd))
1457			break;
1458		if (unlikely(pgd_huge(pgd))) {
1459			if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1460					  pages, &nr))
1461				break;
1462		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1463			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1464					 PGDIR_SHIFT, next, write, pages, &nr))
1465				break;
1466		} else if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
1467			break;
1468	} while (pgdp++, addr = next, addr != end);
1469	local_irq_restore(flags);
1470
1471	return nr;
1472}
 
1473
1474/**
1475 * get_user_pages_fast() - pin user pages in memory
1476 * @start:	starting user address
1477 * @nr_pages:	number of pages from start to pin
1478 * @write:	whether pages will be written to
1479 * @pages:	array that receives pointers to the pages pinned.
1480 *		Should be at least nr_pages long.
1481 *
1482 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1483 * If not successful, it will fall back to taking the lock and
1484 * calling get_user_pages().
1485 *
1486 * Returns number of pages pinned. This may be fewer than the number
1487 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1488 * were pinned, returns -errno.
1489 */
1490int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1491			struct page **pages)
1492{
1493	int nr, ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1494
1495	start &= PAGE_MASK;
1496	nr = __get_user_pages_fast(start, nr_pages, write, pages);
1497	ret = nr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1498
1499	if (nr < nr_pages) {
1500		/* Try to get the remaining pages with get_user_pages */
1501		start += nr << PAGE_SHIFT;
1502		pages += nr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1503
1504		ret = get_user_pages_unlocked(start, nr_pages - nr, write, 0, pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1505
1506		/* Have to be a bit careful with return values */
1507		if (nr > 0) {
1508			if (ret < 0)
1509				ret = nr;
1510			else
1511				ret += nr;
1512		}
1513	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1514
1515	return ret;
 
1516}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1517
1518#endif /* CONFIG_HAVE_GENERIC_RCU_GUP */