Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Driver for SanDisk SDDR-09 SmartMedia reader
   4 *
   5 *   (c) 2000, 2001 Robert Baruch (autophile@starband.net)
   6 *   (c) 2002 Andries Brouwer (aeb@cwi.nl)
   7 * Developed with the assistance of:
   8 *   (c) 2002 Alan Stern <stern@rowland.org>
   9 *
  10 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
  11 * This chip is a programmable USB controller. In the SDDR-09, it has
  12 * been programmed to obey a certain limited set of SCSI commands.
  13 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
  14 * commands.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  15 */
  16
  17/*
  18 * Known vendor commands: 12 bytes, first byte is opcode
  19 *
  20 * E7: read scatter gather
  21 * E8: read
  22 * E9: write
  23 * EA: erase
  24 * EB: reset
  25 * EC: read status
  26 * ED: read ID
  27 * EE: write CIS (?)
  28 * EF: compute checksum (?)
  29 */
  30
  31#include <linux/errno.h>
  32#include <linux/module.h>
  33#include <linux/slab.h>
  34
  35#include <scsi/scsi.h>
  36#include <scsi/scsi_cmnd.h>
  37#include <scsi/scsi_device.h>
  38
  39#include "usb.h"
  40#include "transport.h"
  41#include "protocol.h"
  42#include "debug.h"
  43#include "scsiglue.h"
  44
  45#define DRV_NAME "ums-sddr09"
  46
  47MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
  48MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
  49MODULE_LICENSE("GPL");
  50MODULE_IMPORT_NS(USB_STORAGE);
  51
  52static int usb_stor_sddr09_dpcm_init(struct us_data *us);
  53static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
  54static int usb_stor_sddr09_init(struct us_data *us);
  55
  56
  57/*
  58 * The table of devices
  59 */
  60#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
  61		    vendorName, productName, useProtocol, useTransport, \
  62		    initFunction, flags) \
  63{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
  64  .driver_info = (flags) }
  65
  66static struct usb_device_id sddr09_usb_ids[] = {
  67#	include "unusual_sddr09.h"
  68	{ }		/* Terminating entry */
  69};
  70MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
  71
  72#undef UNUSUAL_DEV
  73
  74/*
  75 * The flags table
  76 */
  77#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
  78		    vendor_name, product_name, use_protocol, use_transport, \
  79		    init_function, Flags) \
  80{ \
  81	.vendorName = vendor_name,	\
  82	.productName = product_name,	\
  83	.useProtocol = use_protocol,	\
  84	.useTransport = use_transport,	\
  85	.initFunction = init_function,	\
  86}
  87
  88static struct us_unusual_dev sddr09_unusual_dev_list[] = {
  89#	include "unusual_sddr09.h"
  90	{ }		/* Terminating entry */
  91};
  92
  93#undef UNUSUAL_DEV
  94
  95
  96#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
  97#define LSB_of(s) ((s)&0xFF)
  98#define MSB_of(s) ((s)>>8)
  99
 100/*
 101 * First some stuff that does not belong here:
 102 * data on SmartMedia and other cards, completely
 103 * unrelated to this driver.
 104 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
 105 */
 106
 107struct nand_flash_dev {
 108	int model_id;
 109	int chipshift;		/* 1<<cs bytes total capacity */
 110	char pageshift;		/* 1<<ps bytes in a page */
 111	char blockshift;	/* 1<<bs pages in an erase block */
 112	char zoneshift;		/* 1<<zs blocks in a zone */
 113				/* # of logical blocks is 125/128 of this */
 114	char pageadrlen;	/* length of an address in bytes - 1 */
 115};
 116
 117/*
 118 * NAND Flash Manufacturer ID Codes
 119 */
 120#define NAND_MFR_AMD		0x01
 121#define NAND_MFR_NATSEMI	0x8f
 122#define NAND_MFR_TOSHIBA	0x98
 123#define NAND_MFR_SAMSUNG	0xec
 124
 125static inline char *nand_flash_manufacturer(int manuf_id) {
 126	switch(manuf_id) {
 127	case NAND_MFR_AMD:
 128		return "AMD";
 129	case NAND_MFR_NATSEMI:
 130		return "NATSEMI";
 131	case NAND_MFR_TOSHIBA:
 132		return "Toshiba";
 133	case NAND_MFR_SAMSUNG:
 134		return "Samsung";
 135	default:
 136		return "unknown";
 137	}
 138}
 139
 140/*
 141 * It looks like it is unnecessary to attach manufacturer to the
 142 * remaining data: SSFDC prescribes manufacturer-independent id codes.
 143 *
 144 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
 145 */
 146
 147static struct nand_flash_dev nand_flash_ids[] = {
 148	/* NAND flash */
 149	{ 0x6e, 20, 8, 4, 8, 2},	/* 1 MB */
 150	{ 0xe8, 20, 8, 4, 8, 2},	/* 1 MB */
 151	{ 0xec, 20, 8, 4, 8, 2},	/* 1 MB */
 152	{ 0x64, 21, 8, 4, 9, 2}, 	/* 2 MB */
 153	{ 0xea, 21, 8, 4, 9, 2},	/* 2 MB */
 154	{ 0x6b, 22, 9, 4, 9, 2},	/* 4 MB */
 155	{ 0xe3, 22, 9, 4, 9, 2},	/* 4 MB */
 156	{ 0xe5, 22, 9, 4, 9, 2},	/* 4 MB */
 157	{ 0xe6, 23, 9, 4, 10, 2},	/* 8 MB */
 158	{ 0x73, 24, 9, 5, 10, 2},	/* 16 MB */
 159	{ 0x75, 25, 9, 5, 10, 2},	/* 32 MB */
 160	{ 0x76, 26, 9, 5, 10, 3},	/* 64 MB */
 161	{ 0x79, 27, 9, 5, 10, 3},	/* 128 MB */
 162
 163	/* MASK ROM */
 164	{ 0x5d, 21, 9, 4, 8, 2},	/* 2 MB */
 165	{ 0xd5, 22, 9, 4, 9, 2},	/* 4 MB */
 166	{ 0xd6, 23, 9, 4, 10, 2},	/* 8 MB */
 167	{ 0x57, 24, 9, 4, 11, 2},	/* 16 MB */
 168	{ 0x58, 25, 9, 4, 12, 2},	/* 32 MB */
 169	{ 0,}
 170};
 171
 172static struct nand_flash_dev *
 173nand_find_id(unsigned char id) {
 174	int i;
 175
 176	for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
 177		if (nand_flash_ids[i].model_id == id)
 178			return &(nand_flash_ids[i]);
 179	return NULL;
 180}
 181
 182/*
 183 * ECC computation.
 184 */
 185static unsigned char parity[256];
 186static unsigned char ecc2[256];
 187
 188static void nand_init_ecc(void) {
 189	int i, j, a;
 190
 191	parity[0] = 0;
 192	for (i = 1; i < 256; i++)
 193		parity[i] = (parity[i&(i-1)] ^ 1);
 194
 195	for (i = 0; i < 256; i++) {
 196		a = 0;
 197		for (j = 0; j < 8; j++) {
 198			if (i & (1<<j)) {
 199				if ((j & 1) == 0)
 200					a ^= 0x04;
 201				if ((j & 2) == 0)
 202					a ^= 0x10;
 203				if ((j & 4) == 0)
 204					a ^= 0x40;
 205			}
 206		}
 207		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
 208	}
 209}
 210
 211/* compute 3-byte ecc on 256 bytes */
 212static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
 213	int i, j, a;
 214	unsigned char par = 0, bit, bits[8] = {0};
 215
 216	/* collect 16 checksum bits */
 217	for (i = 0; i < 256; i++) {
 218		par ^= data[i];
 219		bit = parity[data[i]];
 220		for (j = 0; j < 8; j++)
 221			if ((i & (1<<j)) == 0)
 222				bits[j] ^= bit;
 223	}
 224
 225	/* put 4+4+4 = 12 bits in the ecc */
 226	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
 227	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 228
 229	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
 230	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 231
 232	ecc[2] = ecc2[par];
 233}
 234
 235static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
 236	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
 237}
 238
 239static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
 240	memcpy(data, ecc, 3);
 241}
 242
 243/*
 244 * The actual driver starts here.
 245 */
 246
 247struct sddr09_card_info {
 248	unsigned long	capacity;	/* Size of card in bytes */
 249	int		pagesize;	/* Size of page in bytes */
 250	int		pageshift;	/* log2 of pagesize */
 251	int		blocksize;	/* Size of block in pages */
 252	int		blockshift;	/* log2 of blocksize */
 253	int		blockmask;	/* 2^blockshift - 1 */
 254	int		*lba_to_pba;	/* logical to physical map */
 255	int		*pba_to_lba;	/* physical to logical map */
 256	int		lbact;		/* number of available pages */
 257	int		flags;
 258#define	SDDR09_WP	1		/* write protected */
 259};
 260
 261/*
 262 * On my 16MB card, control blocks have size 64 (16 real control bytes,
 263 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
 264 * so the reader makes up the remaining 48. Don't know whether these numbers
 265 * depend on the card. For now a constant.
 266 */
 267#define CONTROL_SHIFT 6
 268
 269/*
 270 * On my Combo CF/SM reader, the SM reader has LUN 1.
 271 * (and things fail with LUN 0).
 272 * It seems LUN is irrelevant for others.
 273 */
 274#define LUN	1
 275#define	LUNBITS	(LUN << 5)
 276
 277/*
 278 * LBA and PBA are unsigned ints. Special values.
 279 */
 280#define UNDEF    0xffffffff
 281#define SPARE    0xfffffffe
 282#define UNUSABLE 0xfffffffd
 283
 284static const int erase_bad_lba_entries = 0;
 285
 286/* send vendor interface command (0x41) */
 287/* called for requests 0, 1, 8 */
 288static int
 289sddr09_send_command(struct us_data *us,
 290		    unsigned char request,
 291		    unsigned char direction,
 292		    unsigned char *xfer_data,
 293		    unsigned int xfer_len) {
 294	unsigned int pipe;
 295	unsigned char requesttype = (0x41 | direction);
 296	int rc;
 297
 298	// Get the receive or send control pipe number
 299
 300	if (direction == USB_DIR_IN)
 301		pipe = us->recv_ctrl_pipe;
 302	else
 303		pipe = us->send_ctrl_pipe;
 304
 305	rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
 306				   0, 0, xfer_data, xfer_len);
 307	switch (rc) {
 308		case USB_STOR_XFER_GOOD:	return 0;
 309		case USB_STOR_XFER_STALLED:	return -EPIPE;
 310		default:			return -EIO;
 311	}
 312}
 313
 314static int
 315sddr09_send_scsi_command(struct us_data *us,
 316			 unsigned char *command,
 317			 unsigned int command_len) {
 318	return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
 319}
 320
 321#if 0
 322/*
 323 * Test Unit Ready Command: 12 bytes.
 324 * byte 0: opcode: 00
 325 */
 326static int
 327sddr09_test_unit_ready(struct us_data *us) {
 328	unsigned char *command = us->iobuf;
 329	int result;
 330
 331	memset(command, 0, 6);
 332	command[1] = LUNBITS;
 333
 334	result = sddr09_send_scsi_command(us, command, 6);
 335
 336	usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
 337
 338	return result;
 339}
 340#endif
 341
 342/*
 343 * Request Sense Command: 12 bytes.
 344 * byte 0: opcode: 03
 345 * byte 4: data length
 346 */
 347static int
 348sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
 349	unsigned char *command = us->iobuf;
 350	int result;
 351
 352	memset(command, 0, 12);
 353	command[0] = 0x03;
 354	command[1] = LUNBITS;
 355	command[4] = buflen;
 356
 357	result = sddr09_send_scsi_command(us, command, 12);
 358	if (result)
 359		return result;
 360
 361	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 362			sensebuf, buflen, NULL);
 363	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 364}
 365
 366/*
 367 * Read Command: 12 bytes.
 368 * byte 0: opcode: E8
 369 * byte 1: last two bits: 00: read data, 01: read blockwise control,
 370 *			10: read both, 11: read pagewise control.
 371 *	 It turns out we need values 20, 21, 22, 23 here (LUN 1).
 372 * bytes 2-5: address (interpretation depends on byte 1, see below)
 373 * bytes 10-11: count (idem)
 374 *
 375 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
 376 * A read data command gets data in 512-byte pages.
 377 * A read control command gets control in 64-byte chunks.
 378 * A read both command gets data+control in 576-byte chunks.
 379 *
 380 * Blocks are groups of 32 pages, and read blockwise control jumps to the
 381 * next block, while read pagewise control jumps to the next page after
 382 * reading a group of 64 control bytes.
 383 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
 384 *
 385 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
 386 */
 387
 388static int
 389sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
 390	     int nr_of_pages, int bulklen, unsigned char *buf,
 391	     int use_sg) {
 392
 393	unsigned char *command = us->iobuf;
 394	int result;
 395
 396	command[0] = 0xE8;
 397	command[1] = LUNBITS | x;
 398	command[2] = MSB_of(fromaddress>>16);
 399	command[3] = LSB_of(fromaddress>>16); 
 400	command[4] = MSB_of(fromaddress & 0xFFFF);
 401	command[5] = LSB_of(fromaddress & 0xFFFF); 
 402	command[6] = 0;
 403	command[7] = 0;
 404	command[8] = 0;
 405	command[9] = 0;
 406	command[10] = MSB_of(nr_of_pages);
 407	command[11] = LSB_of(nr_of_pages);
 408
 409	result = sddr09_send_scsi_command(us, command, 12);
 410
 411	if (result) {
 412		usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
 413			     x, result);
 414		return result;
 415	}
 416
 417	result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
 418				       buf, bulklen, use_sg, NULL);
 419
 420	if (result != USB_STOR_XFER_GOOD) {
 421		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
 422			     x, result);
 423		return -EIO;
 424	}
 425	return 0;
 426}
 427
 428/*
 429 * Read Data
 430 *
 431 * fromaddress counts data shorts:
 432 * increasing it by 256 shifts the bytestream by 512 bytes;
 433 * the last 8 bits are ignored.
 434 *
 435 * nr_of_pages counts pages of size (1 << pageshift).
 436 */
 437static int
 438sddr09_read20(struct us_data *us, unsigned long fromaddress,
 439	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 440	int bulklen = nr_of_pages << pageshift;
 441
 442	/* The last 8 bits of fromaddress are ignored. */
 443	return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
 444			    buf, use_sg);
 445}
 446
 447/*
 448 * Read Blockwise Control
 449 *
 450 * fromaddress gives the starting position (as in read data;
 451 * the last 8 bits are ignored); increasing it by 32*256 shifts
 452 * the output stream by 64 bytes.
 453 *
 454 * count counts control groups of size (1 << controlshift).
 455 * For me, controlshift = 6. Is this constant?
 456 *
 457 * After getting one control group, jump to the next block
 458 * (fromaddress += 8192).
 459 */
 460static int
 461sddr09_read21(struct us_data *us, unsigned long fromaddress,
 462	      int count, int controlshift, unsigned char *buf, int use_sg) {
 463
 464	int bulklen = (count << controlshift);
 465	return sddr09_readX(us, 1, fromaddress, count, bulklen,
 466			    buf, use_sg);
 467}
 468
 469/*
 470 * Read both Data and Control
 471 *
 472 * fromaddress counts data shorts, ignoring control:
 473 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
 474 * the last 8 bits are ignored.
 475 *
 476 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
 477 */
 478static int
 479sddr09_read22(struct us_data *us, unsigned long fromaddress,
 480	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 481
 482	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 483	usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
 484	return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
 485			    buf, use_sg);
 486}
 487
 488#if 0
 489/*
 490 * Read Pagewise Control
 491 *
 492 * fromaddress gives the starting position (as in read data;
 493 * the last 8 bits are ignored); increasing it by 256 shifts
 494 * the output stream by 64 bytes.
 495 *
 496 * count counts control groups of size (1 << controlshift).
 497 * For me, controlshift = 6. Is this constant?
 498 *
 499 * After getting one control group, jump to the next page
 500 * (fromaddress += 256).
 501 */
 502static int
 503sddr09_read23(struct us_data *us, unsigned long fromaddress,
 504	      int count, int controlshift, unsigned char *buf, int use_sg) {
 505
 506	int bulklen = (count << controlshift);
 507	return sddr09_readX(us, 3, fromaddress, count, bulklen,
 508			    buf, use_sg);
 509}
 510#endif
 511
 512/*
 513 * Erase Command: 12 bytes.
 514 * byte 0: opcode: EA
 515 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 516 * 
 517 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
 518 * The byte address being erased is 2*Eaddress.
 519 * The CIS cannot be erased.
 520 */
 521static int
 522sddr09_erase(struct us_data *us, unsigned long Eaddress) {
 523	unsigned char *command = us->iobuf;
 524	int result;
 525
 526	usb_stor_dbg(us, "erase address %lu\n", Eaddress);
 527
 528	memset(command, 0, 12);
 529	command[0] = 0xEA;
 530	command[1] = LUNBITS;
 531	command[6] = MSB_of(Eaddress>>16);
 532	command[7] = LSB_of(Eaddress>>16);
 533	command[8] = MSB_of(Eaddress & 0xFFFF);
 534	command[9] = LSB_of(Eaddress & 0xFFFF);
 535
 536	result = sddr09_send_scsi_command(us, command, 12);
 537
 538	if (result)
 539		usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
 540			     result);
 541
 542	return result;
 543}
 544
 545/*
 546 * Write CIS Command: 12 bytes.
 547 * byte 0: opcode: EE
 548 * bytes 2-5: write address in shorts
 549 * bytes 10-11: sector count
 550 *
 551 * This writes at the indicated address. Don't know how it differs
 552 * from E9. Maybe it does not erase? However, it will also write to
 553 * the CIS.
 554 *
 555 * When two such commands on the same page follow each other directly,
 556 * the second one is not done.
 557 */
 558
 559/*
 560 * Write Command: 12 bytes.
 561 * byte 0: opcode: E9
 562 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
 563 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 564 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
 565 *
 566 * If write address equals erase address, the erase is done first,
 567 * otherwise the write is done first. When erase address equals zero
 568 * no erase is done?
 569 */
 570static int
 571sddr09_writeX(struct us_data *us,
 572	      unsigned long Waddress, unsigned long Eaddress,
 573	      int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
 574
 575	unsigned char *command = us->iobuf;
 576	int result;
 577
 578	command[0] = 0xE9;
 579	command[1] = LUNBITS;
 580
 581	command[2] = MSB_of(Waddress>>16);
 582	command[3] = LSB_of(Waddress>>16);
 583	command[4] = MSB_of(Waddress & 0xFFFF);
 584	command[5] = LSB_of(Waddress & 0xFFFF);
 585
 586	command[6] = MSB_of(Eaddress>>16);
 587	command[7] = LSB_of(Eaddress>>16);
 588	command[8] = MSB_of(Eaddress & 0xFFFF);
 589	command[9] = LSB_of(Eaddress & 0xFFFF);
 590
 591	command[10] = MSB_of(nr_of_pages);
 592	command[11] = LSB_of(nr_of_pages);
 593
 594	result = sddr09_send_scsi_command(us, command, 12);
 595
 596	if (result) {
 597		usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
 598			     result);
 599		return result;
 600	}
 601
 602	result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
 603				       buf, bulklen, use_sg, NULL);
 604
 605	if (result != USB_STOR_XFER_GOOD) {
 606		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
 607			     result);
 608		return -EIO;
 609	}
 610	return 0;
 611}
 612
 613/* erase address, write same address */
 614static int
 615sddr09_write_inplace(struct us_data *us, unsigned long address,
 616		     int nr_of_pages, int pageshift, unsigned char *buf,
 617		     int use_sg) {
 618	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 619	return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
 620			     buf, use_sg);
 621}
 622
 623#if 0
 624/*
 625 * Read Scatter Gather Command: 3+4n bytes.
 626 * byte 0: opcode E7
 627 * byte 2: n
 628 * bytes 4i-1,4i,4i+1: page address
 629 * byte 4i+2: page count
 630 * (i=1..n)
 631 *
 632 * This reads several pages from the card to a single memory buffer.
 633 * The last two bits of byte 1 have the same meaning as for E8.
 634 */
 635static int
 636sddr09_read_sg_test_only(struct us_data *us) {
 637	unsigned char *command = us->iobuf;
 638	int result, bulklen, nsg, ct;
 639	unsigned char *buf;
 640	unsigned long address;
 641
 642	nsg = bulklen = 0;
 643	command[0] = 0xE7;
 644	command[1] = LUNBITS;
 645	command[2] = 0;
 646	address = 040000; ct = 1;
 647	nsg++;
 648	bulklen += (ct << 9);
 649	command[4*nsg+2] = ct;
 650	command[4*nsg+1] = ((address >> 9) & 0xFF);
 651	command[4*nsg+0] = ((address >> 17) & 0xFF);
 652	command[4*nsg-1] = ((address >> 25) & 0xFF);
 653
 654	address = 0340000; ct = 1;
 655	nsg++;
 656	bulklen += (ct << 9);
 657	command[4*nsg+2] = ct;
 658	command[4*nsg+1] = ((address >> 9) & 0xFF);
 659	command[4*nsg+0] = ((address >> 17) & 0xFF);
 660	command[4*nsg-1] = ((address >> 25) & 0xFF);
 661
 662	address = 01000000; ct = 2;
 663	nsg++;
 664	bulklen += (ct << 9);
 665	command[4*nsg+2] = ct;
 666	command[4*nsg+1] = ((address >> 9) & 0xFF);
 667	command[4*nsg+0] = ((address >> 17) & 0xFF);
 668	command[4*nsg-1] = ((address >> 25) & 0xFF);
 669
 670	command[2] = nsg;
 671
 672	result = sddr09_send_scsi_command(us, command, 4*nsg+3);
 673
 674	if (result) {
 675		usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
 676			     result);
 677		return result;
 678	}
 679
 680	buf = kmalloc(bulklen, GFP_NOIO);
 681	if (!buf)
 682		return -ENOMEM;
 683
 684	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 685				       buf, bulklen, NULL);
 686	kfree(buf);
 687	if (result != USB_STOR_XFER_GOOD) {
 688		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
 689			     result);
 690		return -EIO;
 691	}
 692
 693	return 0;
 694}
 695#endif
 696
 697/*
 698 * Read Status Command: 12 bytes.
 699 * byte 0: opcode: EC
 700 *
 701 * Returns 64 bytes, all zero except for the first.
 702 * bit 0: 1: Error
 703 * bit 5: 1: Suspended
 704 * bit 6: 1: Ready
 705 * bit 7: 1: Not write-protected
 706 */
 707
 708static int
 709sddr09_read_status(struct us_data *us, unsigned char *status) {
 710
 711	unsigned char *command = us->iobuf;
 712	unsigned char *data = us->iobuf;
 713	int result;
 714
 715	usb_stor_dbg(us, "Reading status...\n");
 716
 717	memset(command, 0, 12);
 718	command[0] = 0xEC;
 719	command[1] = LUNBITS;
 720
 721	result = sddr09_send_scsi_command(us, command, 12);
 722	if (result)
 723		return result;
 724
 725	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 726				       data, 64, NULL);
 727	*status = data[0];
 728	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 729}
 730
 731static int
 732sddr09_read_data(struct us_data *us,
 733		 unsigned long address,
 734		 unsigned int sectors) {
 735
 736	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 737	unsigned char *buffer;
 738	unsigned int lba, maxlba, pba;
 739	unsigned int page, pages;
 740	unsigned int len, offset;
 741	struct scatterlist *sg;
 742	int result;
 743
 744	// Figure out the initial LBA and page
 745	lba = address >> info->blockshift;
 746	page = (address & info->blockmask);
 747	maxlba = info->capacity >> (info->pageshift + info->blockshift);
 748	if (lba >= maxlba)
 749		return -EIO;
 750
 751	// Since we only read in one block at a time, we have to create
 752	// a bounce buffer and move the data a piece at a time between the
 753	// bounce buffer and the actual transfer buffer.
 754
 755	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
 756	buffer = kmalloc(len, GFP_NOIO);
 757	if (!buffer)
 
 758		return -ENOMEM;
 
 759
 760	// This could be made much more efficient by checking for
 761	// contiguous LBA's. Another exercise left to the student.
 762
 763	result = 0;
 764	offset = 0;
 765	sg = NULL;
 766
 767	while (sectors > 0) {
 768
 769		/* Find number of pages we can read in this block */
 770		pages = min(sectors, info->blocksize - page);
 771		len = pages << info->pageshift;
 772
 773		/* Not overflowing capacity? */
 774		if (lba >= maxlba) {
 775			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
 776				     lba, maxlba);
 777			result = -EIO;
 778			break;
 779		}
 780
 781		/* Find where this lba lives on disk */
 782		pba = info->lba_to_pba[lba];
 783
 784		if (pba == UNDEF) {	/* this lba was never written */
 785
 786			usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
 787				     pages, lba, page);
 788
 789			/*
 790			 * This is not really an error. It just means
 791			 * that the block has never been written.
 792			 * Instead of returning an error
 793			 * it is better to return all zero data.
 794			 */
 795
 796			memset(buffer, 0, len);
 797
 798		} else {
 799			usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
 800				     pages, pba, lba, page);
 801
 802			address = ((pba << info->blockshift) + page) << 
 803				info->pageshift;
 804
 805			result = sddr09_read20(us, address>>1,
 806					pages, info->pageshift, buffer, 0);
 807			if (result)
 808				break;
 809		}
 810
 811		// Store the data in the transfer buffer
 812		usb_stor_access_xfer_buf(buffer, len, us->srb,
 813				&sg, &offset, TO_XFER_BUF);
 814
 815		page = 0;
 816		lba++;
 817		sectors -= pages;
 818	}
 819
 820	kfree(buffer);
 821	return result;
 822}
 823
 824static unsigned int
 825sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
 826	static unsigned int lastpba = 1;
 827	int zonestart, end, i;
 828
 829	zonestart = (lba/1000) << 10;
 830	end = info->capacity >> (info->blockshift + info->pageshift);
 831	end -= zonestart;
 832	if (end > 1024)
 833		end = 1024;
 834
 835	for (i = lastpba+1; i < end; i++) {
 836		if (info->pba_to_lba[zonestart+i] == UNDEF) {
 837			lastpba = i;
 838			return zonestart+i;
 839		}
 840	}
 841	for (i = 0; i <= lastpba; i++) {
 842		if (info->pba_to_lba[zonestart+i] == UNDEF) {
 843			lastpba = i;
 844			return zonestart+i;
 845		}
 846	}
 847	return 0;
 848}
 849
 850static int
 851sddr09_write_lba(struct us_data *us, unsigned int lba,
 852		 unsigned int page, unsigned int pages,
 853		 unsigned char *ptr, unsigned char *blockbuffer) {
 854
 855	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 856	unsigned long address;
 857	unsigned int pba, lbap;
 858	unsigned int pagelen;
 859	unsigned char *bptr, *cptr, *xptr;
 860	unsigned char ecc[3];
 861	int i, result;
 862
 863	lbap = ((lba % 1000) << 1) | 0x1000;
 864	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
 865		lbap ^= 1;
 866	pba = info->lba_to_pba[lba];
 
 867
 868	if (pba == UNDEF) {
 869		pba = sddr09_find_unused_pba(info, lba);
 870		if (!pba) {
 871			printk(KERN_WARNING
 872			       "sddr09_write_lba: Out of unused blocks\n");
 873			return -ENOSPC;
 874		}
 875		info->pba_to_lba[pba] = lba;
 876		info->lba_to_pba[lba] = pba;
 
 877	}
 878
 879	if (pba == 1) {
 880		/*
 881		 * Maybe it is impossible to write to PBA 1.
 882		 * Fake success, but don't do anything.
 883		 */
 884		printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
 885		return 0;
 886	}
 887
 888	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
 889
 890	/* read old contents */
 891	address = (pba << (info->pageshift + info->blockshift));
 892	result = sddr09_read22(us, address>>1, info->blocksize,
 893			       info->pageshift, blockbuffer, 0);
 894	if (result)
 895		return result;
 896
 897	/* check old contents and fill lba */
 898	for (i = 0; i < info->blocksize; i++) {
 899		bptr = blockbuffer + i*pagelen;
 900		cptr = bptr + info->pagesize;
 901		nand_compute_ecc(bptr, ecc);
 902		if (!nand_compare_ecc(cptr+13, ecc)) {
 903			usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
 904				     i, pba);
 905			nand_store_ecc(cptr+13, ecc);
 906		}
 907		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 908		if (!nand_compare_ecc(cptr+8, ecc)) {
 909			usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
 910				     i, pba);
 911			nand_store_ecc(cptr+8, ecc);
 912		}
 913		cptr[6] = cptr[11] = MSB_of(lbap);
 914		cptr[7] = cptr[12] = LSB_of(lbap);
 915	}
 916
 917	/* copy in new stuff and compute ECC */
 918	xptr = ptr;
 919	for (i = page; i < page+pages; i++) {
 920		bptr = blockbuffer + i*pagelen;
 921		cptr = bptr + info->pagesize;
 922		memcpy(bptr, xptr, info->pagesize);
 923		xptr += info->pagesize;
 924		nand_compute_ecc(bptr, ecc);
 925		nand_store_ecc(cptr+13, ecc);
 926		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 927		nand_store_ecc(cptr+8, ecc);
 928	}
 929
 930	usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
 931
 932	result = sddr09_write_inplace(us, address>>1, info->blocksize,
 933				      info->pageshift, blockbuffer, 0);
 934
 935	usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
 936
 937#if 0
 938	{
 939		unsigned char status = 0;
 940		int result2 = sddr09_read_status(us, &status);
 941		if (result2)
 942			usb_stor_dbg(us, "cannot read status\n");
 943		else if (status != 0xc0)
 944			usb_stor_dbg(us, "status after write: 0x%x\n", status);
 945	}
 946#endif
 947
 948#if 0
 949	{
 950		int result2 = sddr09_test_unit_ready(us);
 951	}
 952#endif
 953
 954	return result;
 955}
 956
 957static int
 958sddr09_write_data(struct us_data *us,
 959		  unsigned long address,
 960		  unsigned int sectors) {
 961
 962	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 963	unsigned int lba, maxlba, page, pages;
 964	unsigned int pagelen, blocklen;
 965	unsigned char *blockbuffer;
 966	unsigned char *buffer;
 967	unsigned int len, offset;
 968	struct scatterlist *sg;
 969	int result;
 970
 971	/* Figure out the initial LBA and page */
 972	lba = address >> info->blockshift;
 973	page = (address & info->blockmask);
 974	maxlba = info->capacity >> (info->pageshift + info->blockshift);
 975	if (lba >= maxlba)
 976		return -EIO;
 977
 978	/*
 979	 * blockbuffer is used for reading in the old data, overwriting
 980	 * with the new data, and performing ECC calculations
 981	 */
 982
 983	/*
 984	 * TODO: instead of doing kmalloc/kfree for each write,
 985	 * add a bufferpointer to the info structure
 986	 */
 987
 988	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
 989	blocklen = (pagelen << info->blockshift);
 990	blockbuffer = kmalloc(blocklen, GFP_NOIO);
 991	if (!blockbuffer)
 
 992		return -ENOMEM;
 
 993
 994	/*
 995	 * Since we don't write the user data directly to the device,
 996	 * we have to create a bounce buffer and move the data a piece
 997	 * at a time between the bounce buffer and the actual transfer buffer.
 998	 */
 999
1000	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1001	buffer = kmalloc(len, GFP_NOIO);
1002	if (!buffer) {
 
1003		kfree(blockbuffer);
1004		return -ENOMEM;
1005	}
1006
1007	result = 0;
1008	offset = 0;
1009	sg = NULL;
1010
1011	while (sectors > 0) {
1012
1013		/* Write as many sectors as possible in this block */
1014
1015		pages = min(sectors, info->blocksize - page);
1016		len = (pages << info->pageshift);
1017
1018		/* Not overflowing capacity? */
1019		if (lba >= maxlba) {
1020			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
1021				     lba, maxlba);
1022			result = -EIO;
1023			break;
1024		}
1025
1026		/* Get the data from the transfer buffer */
1027		usb_stor_access_xfer_buf(buffer, len, us->srb,
1028				&sg, &offset, FROM_XFER_BUF);
1029
1030		result = sddr09_write_lba(us, lba, page, pages,
1031				buffer, blockbuffer);
1032		if (result)
1033			break;
1034
1035		page = 0;
1036		lba++;
1037		sectors -= pages;
1038	}
1039
1040	kfree(buffer);
1041	kfree(blockbuffer);
1042
1043	return result;
1044}
1045
1046static int
1047sddr09_read_control(struct us_data *us,
1048		unsigned long address,
1049		unsigned int blocks,
1050		unsigned char *content,
1051		int use_sg) {
1052
1053	usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
1054		     address, blocks);
1055
1056	return sddr09_read21(us, address, blocks,
1057			     CONTROL_SHIFT, content, use_sg);
1058}
1059
1060/*
1061 * Read Device ID Command: 12 bytes.
1062 * byte 0: opcode: ED
1063 *
1064 * Returns 2 bytes: Manufacturer ID and Device ID.
1065 * On more recent cards 3 bytes: the third byte is an option code A5
1066 * signifying that the secret command to read an 128-bit ID is available.
1067 * On still more recent cards 4 bytes: the fourth byte C0 means that
1068 * a second read ID cmd is available.
1069 */
1070static int
1071sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1072	unsigned char *command = us->iobuf;
1073	unsigned char *content = us->iobuf;
1074	int result, i;
1075
1076	memset(command, 0, 12);
1077	command[0] = 0xED;
1078	command[1] = LUNBITS;
1079
1080	result = sddr09_send_scsi_command(us, command, 12);
1081	if (result)
1082		return result;
1083
1084	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1085			content, 64, NULL);
1086
1087	for (i = 0; i < 4; i++)
1088		deviceID[i] = content[i];
1089
1090	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1091}
1092
1093static int
1094sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1095	int result;
1096	unsigned char status;
1097	const char *wp_fmt;
1098
1099	result = sddr09_read_status(us, &status);
1100	if (result) {
1101		usb_stor_dbg(us, "read_status fails\n");
1102		return result;
1103	}
1104	if ((status & 0x80) == 0) {
1105		info->flags |= SDDR09_WP;	/* write protected */
1106		wp_fmt = " WP";
1107	} else {
1108		wp_fmt = "";
1109	}
1110	usb_stor_dbg(us, "status 0x%02X%s%s%s%s\n", status, wp_fmt,
1111		     status & 0x40 ? " Ready" : "",
1112		     status & LUNBITS ? " Suspended" : "",
1113		     status & 0x01 ? " Error" : "");
1114
1115	return 0;
1116}
1117
1118#if 0
1119/*
1120 * Reset Command: 12 bytes.
1121 * byte 0: opcode: EB
1122 */
1123static int
1124sddr09_reset(struct us_data *us) {
1125
1126	unsigned char *command = us->iobuf;
1127
1128	memset(command, 0, 12);
1129	command[0] = 0xEB;
1130	command[1] = LUNBITS;
1131
1132	return sddr09_send_scsi_command(us, command, 12);
1133}
1134#endif
1135
1136static struct nand_flash_dev *
1137sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1138	struct nand_flash_dev *cardinfo;
1139	unsigned char deviceID[4];
1140	char blurbtxt[256];
1141	int result;
1142
1143	usb_stor_dbg(us, "Reading capacity...\n");
1144
1145	result = sddr09_read_deviceID(us, deviceID);
1146
1147	if (result) {
1148		usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
1149		printk(KERN_WARNING "sddr09: could not read card info\n");
1150		return NULL;
1151	}
1152
1153	sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID);
1154
1155	/* Byte 0 is the manufacturer */
1156	sprintf(blurbtxt + strlen(blurbtxt),
1157		": Manuf. %s",
1158		nand_flash_manufacturer(deviceID[0]));
1159
1160	/* Byte 1 is the device type */
1161	cardinfo = nand_find_id(deviceID[1]);
1162	if (cardinfo) {
1163		/*
1164		 * MB or MiB? It is neither. A 16 MB card has
1165		 * 17301504 raw bytes, of which 16384000 are
1166		 * usable for user data.
1167		 */
1168		sprintf(blurbtxt + strlen(blurbtxt),
1169			", %d MB", 1<<(cardinfo->chipshift - 20));
1170	} else {
1171		sprintf(blurbtxt + strlen(blurbtxt),
1172			", type unrecognized");
1173	}
1174
1175	/* Byte 2 is code to signal availability of 128-bit ID */
1176	if (deviceID[2] == 0xa5) {
1177		sprintf(blurbtxt + strlen(blurbtxt),
1178			", 128-bit ID");
1179	}
1180
1181	/* Byte 3 announces the availability of another read ID command */
1182	if (deviceID[3] == 0xc0) {
1183		sprintf(blurbtxt + strlen(blurbtxt),
1184			", extra cmd");
1185	}
1186
1187	if (flags & SDDR09_WP)
1188		sprintf(blurbtxt + strlen(blurbtxt),
1189			", WP");
1190
1191	printk(KERN_WARNING "%s\n", blurbtxt);
1192
1193	return cardinfo;
1194}
1195
1196static int
1197sddr09_read_map(struct us_data *us) {
1198
1199	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1200	int numblocks, alloc_len, alloc_blocks;
1201	int i, j, result;
1202	unsigned char *buffer, *buffer_end, *ptr;
1203	unsigned int lba, lbact;
1204
1205	if (!info->capacity)
1206		return -1;
1207
1208	/*
1209	 * size of a block is 1 << (blockshift + pageshift) bytes
1210	 * divide into the total capacity to get the number of blocks
1211	 */
1212
1213	numblocks = info->capacity >> (info->blockshift + info->pageshift);
1214
1215	/*
1216	 * read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1217	 * but only use a 64 KB buffer
1218	 * buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1219	 */
1220#define SDDR09_READ_MAP_BUFSZ 65536
1221
1222	alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1223	alloc_len = (alloc_blocks << CONTROL_SHIFT);
1224	buffer = kmalloc(alloc_len, GFP_NOIO);
1225	if (!buffer) {
 
1226		result = -1;
1227		goto done;
1228	}
1229	buffer_end = buffer + alloc_len;
1230
1231#undef SDDR09_READ_MAP_BUFSZ
1232
1233	kfree(info->lba_to_pba);
1234	kfree(info->pba_to_lba);
1235	info->lba_to_pba = kmalloc_array(numblocks, sizeof(int), GFP_NOIO);
1236	info->pba_to_lba = kmalloc_array(numblocks, sizeof(int), GFP_NOIO);
1237
1238	if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1239		printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1240		result = -1;
1241		goto done;
1242	}
1243
1244	for (i = 0; i < numblocks; i++)
1245		info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1246
1247	/*
1248	 * Define lba-pba translation table
1249	 */
1250
1251	ptr = buffer_end;
1252	for (i = 0; i < numblocks; i++) {
1253		ptr += (1 << CONTROL_SHIFT);
1254		if (ptr >= buffer_end) {
1255			unsigned long address;
1256
1257			address = i << (info->pageshift + info->blockshift);
1258			result = sddr09_read_control(
1259				us, address>>1,
1260				min(alloc_blocks, numblocks - i),
1261				buffer, 0);
1262			if (result) {
1263				result = -1;
1264				goto done;
1265			}
1266			ptr = buffer;
1267		}
1268
1269		if (i == 0 || i == 1) {
1270			info->pba_to_lba[i] = UNUSABLE;
1271			continue;
1272		}
1273
1274		/* special PBAs have control field 0^16 */
1275		for (j = 0; j < 16; j++)
1276			if (ptr[j] != 0)
1277				goto nonz;
1278		info->pba_to_lba[i] = UNUSABLE;
1279		printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1280		       i);
1281		continue;
1282
1283	nonz:
1284		/* unwritten PBAs have control field FF^16 */
1285		for (j = 0; j < 16; j++)
1286			if (ptr[j] != 0xff)
1287				goto nonff;
1288		continue;
1289
1290	nonff:
1291		/* normal PBAs start with six FFs */
1292		if (j < 6) {
1293			printk(KERN_WARNING
1294			       "sddr09: PBA %d has no logical mapping: "
1295			       "reserved area = %02X%02X%02X%02X "
1296			       "data status %02X block status %02X\n",
1297			       i, ptr[0], ptr[1], ptr[2], ptr[3],
1298			       ptr[4], ptr[5]);
1299			info->pba_to_lba[i] = UNUSABLE;
1300			continue;
1301		}
1302
1303		if ((ptr[6] >> 4) != 0x01) {
1304			printk(KERN_WARNING
1305			       "sddr09: PBA %d has invalid address field "
1306			       "%02X%02X/%02X%02X\n",
1307			       i, ptr[6], ptr[7], ptr[11], ptr[12]);
1308			info->pba_to_lba[i] = UNUSABLE;
1309			continue;
1310		}
1311
1312		/* check even parity */
1313		if (parity[ptr[6] ^ ptr[7]]) {
1314			printk(KERN_WARNING
1315			       "sddr09: Bad parity in LBA for block %d"
1316			       " (%02X %02X)\n", i, ptr[6], ptr[7]);
1317			info->pba_to_lba[i] = UNUSABLE;
1318			continue;
1319		}
1320
1321		lba = short_pack(ptr[7], ptr[6]);
1322		lba = (lba & 0x07FF) >> 1;
1323
1324		/*
1325		 * Every 1024 physical blocks ("zone"), the LBA numbers
1326		 * go back to zero, but are within a higher block of LBA's.
1327		 * Also, there is a maximum of 1000 LBA's per zone.
1328		 * In other words, in PBA 1024-2047 you will find LBA 0-999
1329		 * which are really LBA 1000-1999. This allows for 24 bad
1330		 * or special physical blocks per zone.
1331		 */
1332
1333		if (lba >= 1000) {
1334			printk(KERN_WARNING
1335			       "sddr09: Bad low LBA %d for block %d\n",
1336			       lba, i);
1337			goto possibly_erase;
1338		}
1339
1340		lba += 1000*(i/0x400);
1341
1342		if (info->lba_to_pba[lba] != UNDEF) {
1343			printk(KERN_WARNING
1344			       "sddr09: LBA %d seen for PBA %d and %d\n",
1345			       lba, info->lba_to_pba[lba], i);
1346			goto possibly_erase;
1347		}
1348
1349		info->pba_to_lba[i] = lba;
1350		info->lba_to_pba[lba] = i;
1351		continue;
1352
1353	possibly_erase:
1354		if (erase_bad_lba_entries) {
1355			unsigned long address;
1356
1357			address = (i << (info->pageshift + info->blockshift));
1358			sddr09_erase(us, address>>1);
1359			info->pba_to_lba[i] = UNDEF;
1360		} else
1361			info->pba_to_lba[i] = UNUSABLE;
1362	}
1363
1364	/*
1365	 * Approximate capacity. This is not entirely correct yet,
1366	 * since a zone with less than 1000 usable pages leads to
1367	 * missing LBAs. Especially if it is the last zone, some
1368	 * LBAs can be past capacity.
1369	 */
1370	lbact = 0;
1371	for (i = 0; i < numblocks; i += 1024) {
1372		int ct = 0;
1373
1374		for (j = 0; j < 1024 && i+j < numblocks; j++) {
1375			if (info->pba_to_lba[i+j] != UNUSABLE) {
1376				if (ct >= 1000)
1377					info->pba_to_lba[i+j] = SPARE;
1378				else
1379					ct++;
1380			}
1381		}
1382		lbact += ct;
1383	}
1384	info->lbact = lbact;
1385	usb_stor_dbg(us, "Found %d LBA's\n", lbact);
1386	result = 0;
1387
1388 done:
1389	if (result != 0) {
1390		kfree(info->lba_to_pba);
1391		kfree(info->pba_to_lba);
1392		info->lba_to_pba = NULL;
1393		info->pba_to_lba = NULL;
1394	}
1395	kfree(buffer);
1396	return result;
1397}
1398
1399static void
1400sddr09_card_info_destructor(void *extra) {
1401	struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1402
1403	if (!info)
1404		return;
1405
1406	kfree(info->lba_to_pba);
1407	kfree(info->pba_to_lba);
1408}
1409
1410static int
1411sddr09_common_init(struct us_data *us) {
1412	int result;
1413
1414	/* set the configuration -- STALL is an acceptable response here */
1415	if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1416		usb_stor_dbg(us, "active config #%d != 1 ??\n",
1417			     us->pusb_dev->actconfig->desc.bConfigurationValue);
1418		return -EINVAL;
1419	}
1420
1421	result = usb_reset_configuration(us->pusb_dev);
1422	usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
1423	if (result == -EPIPE) {
1424		usb_stor_dbg(us, "-- stall on control interface\n");
1425	} else if (result != 0) {
1426		/* it's not a stall, but another error -- time to bail */
1427		usb_stor_dbg(us, "-- Unknown error.  Rejecting device\n");
1428		return -EINVAL;
1429	}
1430
1431	us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1432	if (!us->extra)
1433		return -ENOMEM;
1434	us->extra_destructor = sddr09_card_info_destructor;
1435
1436	nand_init_ecc();
1437	return 0;
1438}
1439
1440
1441/*
1442 * This is needed at a very early stage. If this is not listed in the
1443 * unusual devices list but called from here then LUN 0 of the combo reader
1444 * is not recognized. But I do not know what precisely these calls do.
1445 */
1446static int
1447usb_stor_sddr09_dpcm_init(struct us_data *us) {
1448	int result;
1449	unsigned char *data = us->iobuf;
1450
1451	result = sddr09_common_init(us);
1452	if (result)
1453		return result;
1454
1455	result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1456	if (result) {
1457		usb_stor_dbg(us, "send_command fails\n");
1458		return result;
1459	}
1460
1461	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1462	// get 07 02
1463
1464	result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1465	if (result) {
1466		usb_stor_dbg(us, "2nd send_command fails\n");
1467		return result;
1468	}
1469
1470	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1471	// get 07 00
1472
1473	result = sddr09_request_sense(us, data, 18);
1474	if (result == 0 && data[2] != 0) {
1475		int j;
1476		for (j=0; j<18; j++)
1477			printk(" %02X", data[j]);
1478		printk("\n");
1479		// get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1480		// 70: current command
1481		// sense key 0, sense code 0, extd sense code 0
1482		// additional transfer length * = sizeof(data) - 7
1483		// Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1484		// sense key 06, sense code 28: unit attention,
1485		// not ready to ready transition
1486	}
1487
1488	// test unit ready
1489
1490	return 0;		/* not result */
1491}
1492
1493/*
1494 * Transport for the Microtech DPCM-USB
1495 */
1496static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1497{
1498	int ret;
1499
1500	usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun);
1501
1502	switch (srb->device->lun) {
1503	case 0:
1504
1505		/*
1506		 * LUN 0 corresponds to the CompactFlash card reader.
1507		 */
1508		ret = usb_stor_CB_transport(srb, us);
1509		break;
1510
1511	case 1:
1512
1513		/*
1514		 * LUN 1 corresponds to the SmartMedia card reader.
1515		 */
1516
1517		/*
1518		 * Set the LUN to 0 (just in case).
1519		 */
1520		srb->device->lun = 0;
1521		ret = sddr09_transport(srb, us);
1522		srb->device->lun = 1;
1523		break;
1524
1525	default:
1526	    usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun);
1527		ret = USB_STOR_TRANSPORT_ERROR;
1528		break;
1529	}
1530	return ret;
1531}
1532
1533
1534/*
1535 * Transport for the Sandisk SDDR-09
1536 */
1537static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1538{
1539	static unsigned char sensekey = 0, sensecode = 0;
1540	static unsigned char havefakesense = 0;
1541	int result, i;
1542	unsigned char *ptr = us->iobuf;
1543	unsigned long capacity;
1544	unsigned int page, pages;
1545
1546	struct sddr09_card_info *info;
1547
1548	static unsigned char inquiry_response[8] = {
1549		0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1550	};
1551
1552	/* note: no block descriptor support */
1553	static unsigned char mode_page_01[19] = {
1554		0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1555		0x01, 0x0A,
1556		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1557	};
1558
1559	info = (struct sddr09_card_info *)us->extra;
1560
1561	if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1562		/* for a faked command, we have to follow with a faked sense */
1563		memset(ptr, 0, 18);
1564		ptr[0] = 0x70;
1565		ptr[2] = sensekey;
1566		ptr[7] = 11;
1567		ptr[12] = sensecode;
1568		usb_stor_set_xfer_buf(ptr, 18, srb);
1569		sensekey = sensecode = havefakesense = 0;
1570		return USB_STOR_TRANSPORT_GOOD;
1571	}
1572
1573	havefakesense = 1;
1574
1575	/*
1576	 * Dummy up a response for INQUIRY since SDDR09 doesn't
1577	 * respond to INQUIRY commands
1578	 */
1579
1580	if (srb->cmnd[0] == INQUIRY) {
1581		memcpy(ptr, inquiry_response, 8);
1582		fill_inquiry_response(us, ptr, 36);
1583		return USB_STOR_TRANSPORT_GOOD;
1584	}
1585
1586	if (srb->cmnd[0] == READ_CAPACITY) {
1587		struct nand_flash_dev *cardinfo;
1588
1589		sddr09_get_wp(us, info);	/* read WP bit */
1590
1591		cardinfo = sddr09_get_cardinfo(us, info->flags);
1592		if (!cardinfo) {
1593			/* probably no media */
1594		init_error:
1595			sensekey = 0x02;	/* not ready */
1596			sensecode = 0x3a;	/* medium not present */
1597			return USB_STOR_TRANSPORT_FAILED;
1598		}
1599
1600		info->capacity = (1 << cardinfo->chipshift);
1601		info->pageshift = cardinfo->pageshift;
1602		info->pagesize = (1 << info->pageshift);
1603		info->blockshift = cardinfo->blockshift;
1604		info->blocksize = (1 << info->blockshift);
1605		info->blockmask = info->blocksize - 1;
1606
1607		// map initialization, must follow get_cardinfo()
1608		if (sddr09_read_map(us)) {
1609			/* probably out of memory */
1610			goto init_error;
1611		}
1612
1613		// Report capacity
1614
1615		capacity = (info->lbact << info->blockshift) - 1;
1616
1617		((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1618
1619		// Report page size
1620
1621		((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1622		usb_stor_set_xfer_buf(ptr, 8, srb);
1623
1624		return USB_STOR_TRANSPORT_GOOD;
1625	}
1626
1627	if (srb->cmnd[0] == MODE_SENSE_10) {
1628		int modepage = (srb->cmnd[2] & 0x3F);
1629
1630		/*
1631		 * They ask for the Read/Write error recovery page,
1632		 * or for all pages.
1633		 */
1634		/* %% We should check DBD %% */
1635		if (modepage == 0x01 || modepage == 0x3F) {
1636			usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
1637				     modepage);
1638
1639			memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1640			((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1641			ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1642			usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1643			return USB_STOR_TRANSPORT_GOOD;
1644		}
1645
1646		sensekey = 0x05;	/* illegal request */
1647		sensecode = 0x24;	/* invalid field in CDB */
1648		return USB_STOR_TRANSPORT_FAILED;
1649	}
1650
1651	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1652		return USB_STOR_TRANSPORT_GOOD;
1653
1654	havefakesense = 0;
1655
1656	if (srb->cmnd[0] == READ_10) {
1657
1658		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1659		page <<= 16;
1660		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1661		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1662
1663		usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
1664			     page, pages);
1665
1666		result = sddr09_read_data(us, page, pages);
1667		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1668				USB_STOR_TRANSPORT_ERROR);
1669	}
1670
1671	if (srb->cmnd[0] == WRITE_10) {
1672
1673		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1674		page <<= 16;
1675		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1676		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1677
1678		usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
1679			     page, pages);
1680
1681		result = sddr09_write_data(us, page, pages);
1682		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1683				USB_STOR_TRANSPORT_ERROR);
1684	}
1685
1686	/*
1687	 * catch-all for all other commands, except
1688	 * pass TEST_UNIT_READY and REQUEST_SENSE through
1689	 */
1690	if (srb->cmnd[0] != TEST_UNIT_READY &&
1691	    srb->cmnd[0] != REQUEST_SENSE) {
1692		sensekey = 0x05;	/* illegal request */
1693		sensecode = 0x20;	/* invalid command */
1694		havefakesense = 1;
1695		return USB_STOR_TRANSPORT_FAILED;
1696	}
1697
1698	for (; srb->cmd_len<12; srb->cmd_len++)
1699		srb->cmnd[srb->cmd_len] = 0;
1700
1701	srb->cmnd[1] = LUNBITS;
1702
1703	ptr[0] = 0;
1704	for (i=0; i<12; i++)
1705		sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1706
1707	usb_stor_dbg(us, "Send control for command %s\n", ptr);
1708
1709	result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1710	if (result) {
1711		usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
1712			     result);
1713		return USB_STOR_TRANSPORT_ERROR;
1714	}
1715
1716	if (scsi_bufflen(srb) == 0)
1717		return USB_STOR_TRANSPORT_GOOD;
1718
1719	if (srb->sc_data_direction == DMA_TO_DEVICE ||
1720	    srb->sc_data_direction == DMA_FROM_DEVICE) {
1721		unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1722				? us->send_bulk_pipe : us->recv_bulk_pipe;
1723
1724		usb_stor_dbg(us, "%s %d bytes\n",
1725			     (srb->sc_data_direction == DMA_TO_DEVICE) ?
1726			     "sending" : "receiving",
1727			     scsi_bufflen(srb));
1728
1729		result = usb_stor_bulk_srb(us, pipe, srb);
1730
1731		return (result == USB_STOR_XFER_GOOD ?
1732			USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1733	} 
1734
1735	return USB_STOR_TRANSPORT_GOOD;
1736}
1737
1738/*
1739 * Initialization routine for the sddr09 subdriver
1740 */
1741static int
1742usb_stor_sddr09_init(struct us_data *us) {
1743	return sddr09_common_init(us);
1744}
1745
1746static struct scsi_host_template sddr09_host_template;
1747
1748static int sddr09_probe(struct usb_interface *intf,
1749			 const struct usb_device_id *id)
1750{
1751	struct us_data *us;
1752	int result;
1753
1754	result = usb_stor_probe1(&us, intf, id,
1755			(id - sddr09_usb_ids) + sddr09_unusual_dev_list,
1756			&sddr09_host_template);
1757	if (result)
1758		return result;
1759
1760	if (us->protocol == USB_PR_DPCM_USB) {
1761		us->transport_name = "Control/Bulk-EUSB/SDDR09";
1762		us->transport = dpcm_transport;
1763		us->transport_reset = usb_stor_CB_reset;
1764		us->max_lun = 1;
1765	} else {
1766		us->transport_name = "EUSB/SDDR09";
1767		us->transport = sddr09_transport;
1768		us->transport_reset = usb_stor_CB_reset;
1769		us->max_lun = 0;
1770	}
1771
1772	result = usb_stor_probe2(us);
1773	return result;
1774}
1775
1776static struct usb_driver sddr09_driver = {
1777	.name =		DRV_NAME,
1778	.probe =	sddr09_probe,
1779	.disconnect =	usb_stor_disconnect,
1780	.suspend =	usb_stor_suspend,
1781	.resume =	usb_stor_resume,
1782	.reset_resume =	usb_stor_reset_resume,
1783	.pre_reset =	usb_stor_pre_reset,
1784	.post_reset =	usb_stor_post_reset,
1785	.id_table =	sddr09_usb_ids,
1786	.soft_unbind =	1,
1787	.no_dynamic_id = 1,
1788};
1789
1790module_usb_stor_driver(sddr09_driver, sddr09_host_template, DRV_NAME);
v4.6
   1/* Driver for SanDisk SDDR-09 SmartMedia reader
 
 
   2 *
   3 *   (c) 2000, 2001 Robert Baruch (autophile@starband.net)
   4 *   (c) 2002 Andries Brouwer (aeb@cwi.nl)
   5 * Developed with the assistance of:
   6 *   (c) 2002 Alan Stern <stern@rowland.org>
   7 *
   8 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
   9 * This chip is a programmable USB controller. In the SDDR-09, it has
  10 * been programmed to obey a certain limited set of SCSI commands.
  11 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
  12 * commands.
  13 *
  14 * This program is free software; you can redistribute it and/or modify it
  15 * under the terms of the GNU General Public License as published by the
  16 * Free Software Foundation; either version 2, or (at your option) any
  17 * later version.
  18 *
  19 * This program is distributed in the hope that it will be useful, but
  20 * WITHOUT ANY WARRANTY; without even the implied warranty of
  21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  22 * General Public License for more details.
  23 *
  24 * You should have received a copy of the GNU General Public License along
  25 * with this program; if not, write to the Free Software Foundation, Inc.,
  26 * 675 Mass Ave, Cambridge, MA 02139, USA.
  27 */
  28
  29/*
  30 * Known vendor commands: 12 bytes, first byte is opcode
  31 *
  32 * E7: read scatter gather
  33 * E8: read
  34 * E9: write
  35 * EA: erase
  36 * EB: reset
  37 * EC: read status
  38 * ED: read ID
  39 * EE: write CIS (?)
  40 * EF: compute checksum (?)
  41 */
  42
  43#include <linux/errno.h>
  44#include <linux/module.h>
  45#include <linux/slab.h>
  46
  47#include <scsi/scsi.h>
  48#include <scsi/scsi_cmnd.h>
  49#include <scsi/scsi_device.h>
  50
  51#include "usb.h"
  52#include "transport.h"
  53#include "protocol.h"
  54#include "debug.h"
  55#include "scsiglue.h"
  56
  57#define DRV_NAME "ums-sddr09"
  58
  59MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
  60MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
  61MODULE_LICENSE("GPL");
 
  62
  63static int usb_stor_sddr09_dpcm_init(struct us_data *us);
  64static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
  65static int usb_stor_sddr09_init(struct us_data *us);
  66
  67
  68/*
  69 * The table of devices
  70 */
  71#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
  72		    vendorName, productName, useProtocol, useTransport, \
  73		    initFunction, flags) \
  74{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
  75  .driver_info = (flags) }
  76
  77static struct usb_device_id sddr09_usb_ids[] = {
  78#	include "unusual_sddr09.h"
  79	{ }		/* Terminating entry */
  80};
  81MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
  82
  83#undef UNUSUAL_DEV
  84
  85/*
  86 * The flags table
  87 */
  88#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
  89		    vendor_name, product_name, use_protocol, use_transport, \
  90		    init_function, Flags) \
  91{ \
  92	.vendorName = vendor_name,	\
  93	.productName = product_name,	\
  94	.useProtocol = use_protocol,	\
  95	.useTransport = use_transport,	\
  96	.initFunction = init_function,	\
  97}
  98
  99static struct us_unusual_dev sddr09_unusual_dev_list[] = {
 100#	include "unusual_sddr09.h"
 101	{ }		/* Terminating entry */
 102};
 103
 104#undef UNUSUAL_DEV
 105
 106
 107#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
 108#define LSB_of(s) ((s)&0xFF)
 109#define MSB_of(s) ((s)>>8)
 110
 111/*
 112 * First some stuff that does not belong here:
 113 * data on SmartMedia and other cards, completely
 114 * unrelated to this driver.
 115 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
 116 */
 117
 118struct nand_flash_dev {
 119	int model_id;
 120	int chipshift;		/* 1<<cs bytes total capacity */
 121	char pageshift;		/* 1<<ps bytes in a page */
 122	char blockshift;	/* 1<<bs pages in an erase block */
 123	char zoneshift;		/* 1<<zs blocks in a zone */
 124				/* # of logical blocks is 125/128 of this */
 125	char pageadrlen;	/* length of an address in bytes - 1 */
 126};
 127
 128/*
 129 * NAND Flash Manufacturer ID Codes
 130 */
 131#define NAND_MFR_AMD		0x01
 132#define NAND_MFR_NATSEMI	0x8f
 133#define NAND_MFR_TOSHIBA	0x98
 134#define NAND_MFR_SAMSUNG	0xec
 135
 136static inline char *nand_flash_manufacturer(int manuf_id) {
 137	switch(manuf_id) {
 138	case NAND_MFR_AMD:
 139		return "AMD";
 140	case NAND_MFR_NATSEMI:
 141		return "NATSEMI";
 142	case NAND_MFR_TOSHIBA:
 143		return "Toshiba";
 144	case NAND_MFR_SAMSUNG:
 145		return "Samsung";
 146	default:
 147		return "unknown";
 148	}
 149}
 150
 151/*
 152 * It looks like it is unnecessary to attach manufacturer to the
 153 * remaining data: SSFDC prescribes manufacturer-independent id codes.
 154 *
 155 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
 156 */
 157
 158static struct nand_flash_dev nand_flash_ids[] = {
 159	/* NAND flash */
 160	{ 0x6e, 20, 8, 4, 8, 2},	/* 1 MB */
 161	{ 0xe8, 20, 8, 4, 8, 2},	/* 1 MB */
 162	{ 0xec, 20, 8, 4, 8, 2},	/* 1 MB */
 163	{ 0x64, 21, 8, 4, 9, 2}, 	/* 2 MB */
 164	{ 0xea, 21, 8, 4, 9, 2},	/* 2 MB */
 165	{ 0x6b, 22, 9, 4, 9, 2},	/* 4 MB */
 166	{ 0xe3, 22, 9, 4, 9, 2},	/* 4 MB */
 167	{ 0xe5, 22, 9, 4, 9, 2},	/* 4 MB */
 168	{ 0xe6, 23, 9, 4, 10, 2},	/* 8 MB */
 169	{ 0x73, 24, 9, 5, 10, 2},	/* 16 MB */
 170	{ 0x75, 25, 9, 5, 10, 2},	/* 32 MB */
 171	{ 0x76, 26, 9, 5, 10, 3},	/* 64 MB */
 172	{ 0x79, 27, 9, 5, 10, 3},	/* 128 MB */
 173
 174	/* MASK ROM */
 175	{ 0x5d, 21, 9, 4, 8, 2},	/* 2 MB */
 176	{ 0xd5, 22, 9, 4, 9, 2},	/* 4 MB */
 177	{ 0xd6, 23, 9, 4, 10, 2},	/* 8 MB */
 178	{ 0x57, 24, 9, 4, 11, 2},	/* 16 MB */
 179	{ 0x58, 25, 9, 4, 12, 2},	/* 32 MB */
 180	{ 0,}
 181};
 182
 183static struct nand_flash_dev *
 184nand_find_id(unsigned char id) {
 185	int i;
 186
 187	for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
 188		if (nand_flash_ids[i].model_id == id)
 189			return &(nand_flash_ids[i]);
 190	return NULL;
 191}
 192
 193/*
 194 * ECC computation.
 195 */
 196static unsigned char parity[256];
 197static unsigned char ecc2[256];
 198
 199static void nand_init_ecc(void) {
 200	int i, j, a;
 201
 202	parity[0] = 0;
 203	for (i = 1; i < 256; i++)
 204		parity[i] = (parity[i&(i-1)] ^ 1);
 205
 206	for (i = 0; i < 256; i++) {
 207		a = 0;
 208		for (j = 0; j < 8; j++) {
 209			if (i & (1<<j)) {
 210				if ((j & 1) == 0)
 211					a ^= 0x04;
 212				if ((j & 2) == 0)
 213					a ^= 0x10;
 214				if ((j & 4) == 0)
 215					a ^= 0x40;
 216			}
 217		}
 218		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
 219	}
 220}
 221
 222/* compute 3-byte ecc on 256 bytes */
 223static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
 224	int i, j, a;
 225	unsigned char par = 0, bit, bits[8] = {0};
 226
 227	/* collect 16 checksum bits */
 228	for (i = 0; i < 256; i++) {
 229		par ^= data[i];
 230		bit = parity[data[i]];
 231		for (j = 0; j < 8; j++)
 232			if ((i & (1<<j)) == 0)
 233				bits[j] ^= bit;
 234	}
 235
 236	/* put 4+4+4 = 12 bits in the ecc */
 237	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
 238	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 239
 240	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
 241	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 242
 243	ecc[2] = ecc2[par];
 244}
 245
 246static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
 247	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
 248}
 249
 250static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
 251	memcpy(data, ecc, 3);
 252}
 253
 254/*
 255 * The actual driver starts here.
 256 */
 257
 258struct sddr09_card_info {
 259	unsigned long	capacity;	/* Size of card in bytes */
 260	int		pagesize;	/* Size of page in bytes */
 261	int		pageshift;	/* log2 of pagesize */
 262	int		blocksize;	/* Size of block in pages */
 263	int		blockshift;	/* log2 of blocksize */
 264	int		blockmask;	/* 2^blockshift - 1 */
 265	int		*lba_to_pba;	/* logical to physical map */
 266	int		*pba_to_lba;	/* physical to logical map */
 267	int		lbact;		/* number of available pages */
 268	int		flags;
 269#define	SDDR09_WP	1		/* write protected */
 270};
 271
 272/*
 273 * On my 16MB card, control blocks have size 64 (16 real control bytes,
 274 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
 275 * so the reader makes up the remaining 48. Don't know whether these numbers
 276 * depend on the card. For now a constant.
 277 */
 278#define CONTROL_SHIFT 6
 279
 280/*
 281 * On my Combo CF/SM reader, the SM reader has LUN 1.
 282 * (and things fail with LUN 0).
 283 * It seems LUN is irrelevant for others.
 284 */
 285#define LUN	1
 286#define	LUNBITS	(LUN << 5)
 287
 288/*
 289 * LBA and PBA are unsigned ints. Special values.
 290 */
 291#define UNDEF    0xffffffff
 292#define SPARE    0xfffffffe
 293#define UNUSABLE 0xfffffffd
 294
 295static const int erase_bad_lba_entries = 0;
 296
 297/* send vendor interface command (0x41) */
 298/* called for requests 0, 1, 8 */
 299static int
 300sddr09_send_command(struct us_data *us,
 301		    unsigned char request,
 302		    unsigned char direction,
 303		    unsigned char *xfer_data,
 304		    unsigned int xfer_len) {
 305	unsigned int pipe;
 306	unsigned char requesttype = (0x41 | direction);
 307	int rc;
 308
 309	// Get the receive or send control pipe number
 310
 311	if (direction == USB_DIR_IN)
 312		pipe = us->recv_ctrl_pipe;
 313	else
 314		pipe = us->send_ctrl_pipe;
 315
 316	rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
 317				   0, 0, xfer_data, xfer_len);
 318	switch (rc) {
 319		case USB_STOR_XFER_GOOD:	return 0;
 320		case USB_STOR_XFER_STALLED:	return -EPIPE;
 321		default:			return -EIO;
 322	}
 323}
 324
 325static int
 326sddr09_send_scsi_command(struct us_data *us,
 327			 unsigned char *command,
 328			 unsigned int command_len) {
 329	return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
 330}
 331
 332#if 0
 333/*
 334 * Test Unit Ready Command: 12 bytes.
 335 * byte 0: opcode: 00
 336 */
 337static int
 338sddr09_test_unit_ready(struct us_data *us) {
 339	unsigned char *command = us->iobuf;
 340	int result;
 341
 342	memset(command, 0, 6);
 343	command[1] = LUNBITS;
 344
 345	result = sddr09_send_scsi_command(us, command, 6);
 346
 347	usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
 348
 349	return result;
 350}
 351#endif
 352
 353/*
 354 * Request Sense Command: 12 bytes.
 355 * byte 0: opcode: 03
 356 * byte 4: data length
 357 */
 358static int
 359sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
 360	unsigned char *command = us->iobuf;
 361	int result;
 362
 363	memset(command, 0, 12);
 364	command[0] = 0x03;
 365	command[1] = LUNBITS;
 366	command[4] = buflen;
 367
 368	result = sddr09_send_scsi_command(us, command, 12);
 369	if (result)
 370		return result;
 371
 372	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 373			sensebuf, buflen, NULL);
 374	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 375}
 376
 377/*
 378 * Read Command: 12 bytes.
 379 * byte 0: opcode: E8
 380 * byte 1: last two bits: 00: read data, 01: read blockwise control,
 381 *			10: read both, 11: read pagewise control.
 382 *	 It turns out we need values 20, 21, 22, 23 here (LUN 1).
 383 * bytes 2-5: address (interpretation depends on byte 1, see below)
 384 * bytes 10-11: count (idem)
 385 *
 386 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
 387 * A read data command gets data in 512-byte pages.
 388 * A read control command gets control in 64-byte chunks.
 389 * A read both command gets data+control in 576-byte chunks.
 390 *
 391 * Blocks are groups of 32 pages, and read blockwise control jumps to the
 392 * next block, while read pagewise control jumps to the next page after
 393 * reading a group of 64 control bytes.
 394 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
 395 *
 396 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
 397 */
 398
 399static int
 400sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
 401	     int nr_of_pages, int bulklen, unsigned char *buf,
 402	     int use_sg) {
 403
 404	unsigned char *command = us->iobuf;
 405	int result;
 406
 407	command[0] = 0xE8;
 408	command[1] = LUNBITS | x;
 409	command[2] = MSB_of(fromaddress>>16);
 410	command[3] = LSB_of(fromaddress>>16); 
 411	command[4] = MSB_of(fromaddress & 0xFFFF);
 412	command[5] = LSB_of(fromaddress & 0xFFFF); 
 413	command[6] = 0;
 414	command[7] = 0;
 415	command[8] = 0;
 416	command[9] = 0;
 417	command[10] = MSB_of(nr_of_pages);
 418	command[11] = LSB_of(nr_of_pages);
 419
 420	result = sddr09_send_scsi_command(us, command, 12);
 421
 422	if (result) {
 423		usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
 424			     x, result);
 425		return result;
 426	}
 427
 428	result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
 429				       buf, bulklen, use_sg, NULL);
 430
 431	if (result != USB_STOR_XFER_GOOD) {
 432		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
 433			     x, result);
 434		return -EIO;
 435	}
 436	return 0;
 437}
 438
 439/*
 440 * Read Data
 441 *
 442 * fromaddress counts data shorts:
 443 * increasing it by 256 shifts the bytestream by 512 bytes;
 444 * the last 8 bits are ignored.
 445 *
 446 * nr_of_pages counts pages of size (1 << pageshift).
 447 */
 448static int
 449sddr09_read20(struct us_data *us, unsigned long fromaddress,
 450	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 451	int bulklen = nr_of_pages << pageshift;
 452
 453	/* The last 8 bits of fromaddress are ignored. */
 454	return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
 455			    buf, use_sg);
 456}
 457
 458/*
 459 * Read Blockwise Control
 460 *
 461 * fromaddress gives the starting position (as in read data;
 462 * the last 8 bits are ignored); increasing it by 32*256 shifts
 463 * the output stream by 64 bytes.
 464 *
 465 * count counts control groups of size (1 << controlshift).
 466 * For me, controlshift = 6. Is this constant?
 467 *
 468 * After getting one control group, jump to the next block
 469 * (fromaddress += 8192).
 470 */
 471static int
 472sddr09_read21(struct us_data *us, unsigned long fromaddress,
 473	      int count, int controlshift, unsigned char *buf, int use_sg) {
 474
 475	int bulklen = (count << controlshift);
 476	return sddr09_readX(us, 1, fromaddress, count, bulklen,
 477			    buf, use_sg);
 478}
 479
 480/*
 481 * Read both Data and Control
 482 *
 483 * fromaddress counts data shorts, ignoring control:
 484 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
 485 * the last 8 bits are ignored.
 486 *
 487 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
 488 */
 489static int
 490sddr09_read22(struct us_data *us, unsigned long fromaddress,
 491	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 492
 493	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 494	usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
 495	return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
 496			    buf, use_sg);
 497}
 498
 499#if 0
 500/*
 501 * Read Pagewise Control
 502 *
 503 * fromaddress gives the starting position (as in read data;
 504 * the last 8 bits are ignored); increasing it by 256 shifts
 505 * the output stream by 64 bytes.
 506 *
 507 * count counts control groups of size (1 << controlshift).
 508 * For me, controlshift = 6. Is this constant?
 509 *
 510 * After getting one control group, jump to the next page
 511 * (fromaddress += 256).
 512 */
 513static int
 514sddr09_read23(struct us_data *us, unsigned long fromaddress,
 515	      int count, int controlshift, unsigned char *buf, int use_sg) {
 516
 517	int bulklen = (count << controlshift);
 518	return sddr09_readX(us, 3, fromaddress, count, bulklen,
 519			    buf, use_sg);
 520}
 521#endif
 522
 523/*
 524 * Erase Command: 12 bytes.
 525 * byte 0: opcode: EA
 526 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 527 * 
 528 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
 529 * The byte address being erased is 2*Eaddress.
 530 * The CIS cannot be erased.
 531 */
 532static int
 533sddr09_erase(struct us_data *us, unsigned long Eaddress) {
 534	unsigned char *command = us->iobuf;
 535	int result;
 536
 537	usb_stor_dbg(us, "erase address %lu\n", Eaddress);
 538
 539	memset(command, 0, 12);
 540	command[0] = 0xEA;
 541	command[1] = LUNBITS;
 542	command[6] = MSB_of(Eaddress>>16);
 543	command[7] = LSB_of(Eaddress>>16);
 544	command[8] = MSB_of(Eaddress & 0xFFFF);
 545	command[9] = LSB_of(Eaddress & 0xFFFF);
 546
 547	result = sddr09_send_scsi_command(us, command, 12);
 548
 549	if (result)
 550		usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
 551			     result);
 552
 553	return result;
 554}
 555
 556/*
 557 * Write CIS Command: 12 bytes.
 558 * byte 0: opcode: EE
 559 * bytes 2-5: write address in shorts
 560 * bytes 10-11: sector count
 561 *
 562 * This writes at the indicated address. Don't know how it differs
 563 * from E9. Maybe it does not erase? However, it will also write to
 564 * the CIS.
 565 *
 566 * When two such commands on the same page follow each other directly,
 567 * the second one is not done.
 568 */
 569
 570/*
 571 * Write Command: 12 bytes.
 572 * byte 0: opcode: E9
 573 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
 574 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 575 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
 576 *
 577 * If write address equals erase address, the erase is done first,
 578 * otherwise the write is done first. When erase address equals zero
 579 * no erase is done?
 580 */
 581static int
 582sddr09_writeX(struct us_data *us,
 583	      unsigned long Waddress, unsigned long Eaddress,
 584	      int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
 585
 586	unsigned char *command = us->iobuf;
 587	int result;
 588
 589	command[0] = 0xE9;
 590	command[1] = LUNBITS;
 591
 592	command[2] = MSB_of(Waddress>>16);
 593	command[3] = LSB_of(Waddress>>16);
 594	command[4] = MSB_of(Waddress & 0xFFFF);
 595	command[5] = LSB_of(Waddress & 0xFFFF);
 596
 597	command[6] = MSB_of(Eaddress>>16);
 598	command[7] = LSB_of(Eaddress>>16);
 599	command[8] = MSB_of(Eaddress & 0xFFFF);
 600	command[9] = LSB_of(Eaddress & 0xFFFF);
 601
 602	command[10] = MSB_of(nr_of_pages);
 603	command[11] = LSB_of(nr_of_pages);
 604
 605	result = sddr09_send_scsi_command(us, command, 12);
 606
 607	if (result) {
 608		usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
 609			     result);
 610		return result;
 611	}
 612
 613	result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
 614				       buf, bulklen, use_sg, NULL);
 615
 616	if (result != USB_STOR_XFER_GOOD) {
 617		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
 618			     result);
 619		return -EIO;
 620	}
 621	return 0;
 622}
 623
 624/* erase address, write same address */
 625static int
 626sddr09_write_inplace(struct us_data *us, unsigned long address,
 627		     int nr_of_pages, int pageshift, unsigned char *buf,
 628		     int use_sg) {
 629	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 630	return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
 631			     buf, use_sg);
 632}
 633
 634#if 0
 635/*
 636 * Read Scatter Gather Command: 3+4n bytes.
 637 * byte 0: opcode E7
 638 * byte 2: n
 639 * bytes 4i-1,4i,4i+1: page address
 640 * byte 4i+2: page count
 641 * (i=1..n)
 642 *
 643 * This reads several pages from the card to a single memory buffer.
 644 * The last two bits of byte 1 have the same meaning as for E8.
 645 */
 646static int
 647sddr09_read_sg_test_only(struct us_data *us) {
 648	unsigned char *command = us->iobuf;
 649	int result, bulklen, nsg, ct;
 650	unsigned char *buf;
 651	unsigned long address;
 652
 653	nsg = bulklen = 0;
 654	command[0] = 0xE7;
 655	command[1] = LUNBITS;
 656	command[2] = 0;
 657	address = 040000; ct = 1;
 658	nsg++;
 659	bulklen += (ct << 9);
 660	command[4*nsg+2] = ct;
 661	command[4*nsg+1] = ((address >> 9) & 0xFF);
 662	command[4*nsg+0] = ((address >> 17) & 0xFF);
 663	command[4*nsg-1] = ((address >> 25) & 0xFF);
 664
 665	address = 0340000; ct = 1;
 666	nsg++;
 667	bulklen += (ct << 9);
 668	command[4*nsg+2] = ct;
 669	command[4*nsg+1] = ((address >> 9) & 0xFF);
 670	command[4*nsg+0] = ((address >> 17) & 0xFF);
 671	command[4*nsg-1] = ((address >> 25) & 0xFF);
 672
 673	address = 01000000; ct = 2;
 674	nsg++;
 675	bulklen += (ct << 9);
 676	command[4*nsg+2] = ct;
 677	command[4*nsg+1] = ((address >> 9) & 0xFF);
 678	command[4*nsg+0] = ((address >> 17) & 0xFF);
 679	command[4*nsg-1] = ((address >> 25) & 0xFF);
 680
 681	command[2] = nsg;
 682
 683	result = sddr09_send_scsi_command(us, command, 4*nsg+3);
 684
 685	if (result) {
 686		usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
 687			     result);
 688		return result;
 689	}
 690
 691	buf = kmalloc(bulklen, GFP_NOIO);
 692	if (!buf)
 693		return -ENOMEM;
 694
 695	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 696				       buf, bulklen, NULL);
 697	kfree(buf);
 698	if (result != USB_STOR_XFER_GOOD) {
 699		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
 700			     result);
 701		return -EIO;
 702	}
 703
 704	return 0;
 705}
 706#endif
 707
 708/*
 709 * Read Status Command: 12 bytes.
 710 * byte 0: opcode: EC
 711 *
 712 * Returns 64 bytes, all zero except for the first.
 713 * bit 0: 1: Error
 714 * bit 5: 1: Suspended
 715 * bit 6: 1: Ready
 716 * bit 7: 1: Not write-protected
 717 */
 718
 719static int
 720sddr09_read_status(struct us_data *us, unsigned char *status) {
 721
 722	unsigned char *command = us->iobuf;
 723	unsigned char *data = us->iobuf;
 724	int result;
 725
 726	usb_stor_dbg(us, "Reading status...\n");
 727
 728	memset(command, 0, 12);
 729	command[0] = 0xEC;
 730	command[1] = LUNBITS;
 731
 732	result = sddr09_send_scsi_command(us, command, 12);
 733	if (result)
 734		return result;
 735
 736	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 737				       data, 64, NULL);
 738	*status = data[0];
 739	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 740}
 741
 742static int
 743sddr09_read_data(struct us_data *us,
 744		 unsigned long address,
 745		 unsigned int sectors) {
 746
 747	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 748	unsigned char *buffer;
 749	unsigned int lba, maxlba, pba;
 750	unsigned int page, pages;
 751	unsigned int len, offset;
 752	struct scatterlist *sg;
 753	int result;
 754
 755	// Figure out the initial LBA and page
 756	lba = address >> info->blockshift;
 757	page = (address & info->blockmask);
 758	maxlba = info->capacity >> (info->pageshift + info->blockshift);
 759	if (lba >= maxlba)
 760		return -EIO;
 761
 762	// Since we only read in one block at a time, we have to create
 763	// a bounce buffer and move the data a piece at a time between the
 764	// bounce buffer and the actual transfer buffer.
 765
 766	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
 767	buffer = kmalloc(len, GFP_NOIO);
 768	if (buffer == NULL) {
 769		printk(KERN_WARNING "sddr09_read_data: Out of memory\n");
 770		return -ENOMEM;
 771	}
 772
 773	// This could be made much more efficient by checking for
 774	// contiguous LBA's. Another exercise left to the student.
 775
 776	result = 0;
 777	offset = 0;
 778	sg = NULL;
 779
 780	while (sectors > 0) {
 781
 782		/* Find number of pages we can read in this block */
 783		pages = min(sectors, info->blocksize - page);
 784		len = pages << info->pageshift;
 785
 786		/* Not overflowing capacity? */
 787		if (lba >= maxlba) {
 788			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
 789				     lba, maxlba);
 790			result = -EIO;
 791			break;
 792		}
 793
 794		/* Find where this lba lives on disk */
 795		pba = info->lba_to_pba[lba];
 796
 797		if (pba == UNDEF) {	/* this lba was never written */
 798
 799			usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
 800				     pages, lba, page);
 801
 802			/* This is not really an error. It just means
 803			   that the block has never been written.
 804			   Instead of returning an error
 805			   it is better to return all zero data. */
 
 
 806
 807			memset(buffer, 0, len);
 808
 809		} else {
 810			usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
 811				     pages, pba, lba, page);
 812
 813			address = ((pba << info->blockshift) + page) << 
 814				info->pageshift;
 815
 816			result = sddr09_read20(us, address>>1,
 817					pages, info->pageshift, buffer, 0);
 818			if (result)
 819				break;
 820		}
 821
 822		// Store the data in the transfer buffer
 823		usb_stor_access_xfer_buf(buffer, len, us->srb,
 824				&sg, &offset, TO_XFER_BUF);
 825
 826		page = 0;
 827		lba++;
 828		sectors -= pages;
 829	}
 830
 831	kfree(buffer);
 832	return result;
 833}
 834
 835static unsigned int
 836sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
 837	static unsigned int lastpba = 1;
 838	int zonestart, end, i;
 839
 840	zonestart = (lba/1000) << 10;
 841	end = info->capacity >> (info->blockshift + info->pageshift);
 842	end -= zonestart;
 843	if (end > 1024)
 844		end = 1024;
 845
 846	for (i = lastpba+1; i < end; i++) {
 847		if (info->pba_to_lba[zonestart+i] == UNDEF) {
 848			lastpba = i;
 849			return zonestart+i;
 850		}
 851	}
 852	for (i = 0; i <= lastpba; i++) {
 853		if (info->pba_to_lba[zonestart+i] == UNDEF) {
 854			lastpba = i;
 855			return zonestart+i;
 856		}
 857	}
 858	return 0;
 859}
 860
 861static int
 862sddr09_write_lba(struct us_data *us, unsigned int lba,
 863		 unsigned int page, unsigned int pages,
 864		 unsigned char *ptr, unsigned char *blockbuffer) {
 865
 866	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 867	unsigned long address;
 868	unsigned int pba, lbap;
 869	unsigned int pagelen;
 870	unsigned char *bptr, *cptr, *xptr;
 871	unsigned char ecc[3];
 872	int i, result, isnew;
 873
 874	lbap = ((lba % 1000) << 1) | 0x1000;
 875	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
 876		lbap ^= 1;
 877	pba = info->lba_to_pba[lba];
 878	isnew = 0;
 879
 880	if (pba == UNDEF) {
 881		pba = sddr09_find_unused_pba(info, lba);
 882		if (!pba) {
 883			printk(KERN_WARNING
 884			       "sddr09_write_lba: Out of unused blocks\n");
 885			return -ENOSPC;
 886		}
 887		info->pba_to_lba[pba] = lba;
 888		info->lba_to_pba[lba] = pba;
 889		isnew = 1;
 890	}
 891
 892	if (pba == 1) {
 893		/* Maybe it is impossible to write to PBA 1.
 894		   Fake success, but don't do anything. */
 
 
 895		printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
 896		return 0;
 897	}
 898
 899	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
 900
 901	/* read old contents */
 902	address = (pba << (info->pageshift + info->blockshift));
 903	result = sddr09_read22(us, address>>1, info->blocksize,
 904			       info->pageshift, blockbuffer, 0);
 905	if (result)
 906		return result;
 907
 908	/* check old contents and fill lba */
 909	for (i = 0; i < info->blocksize; i++) {
 910		bptr = blockbuffer + i*pagelen;
 911		cptr = bptr + info->pagesize;
 912		nand_compute_ecc(bptr, ecc);
 913		if (!nand_compare_ecc(cptr+13, ecc)) {
 914			usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
 915				     i, pba);
 916			nand_store_ecc(cptr+13, ecc);
 917		}
 918		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 919		if (!nand_compare_ecc(cptr+8, ecc)) {
 920			usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
 921				     i, pba);
 922			nand_store_ecc(cptr+8, ecc);
 923		}
 924		cptr[6] = cptr[11] = MSB_of(lbap);
 925		cptr[7] = cptr[12] = LSB_of(lbap);
 926	}
 927
 928	/* copy in new stuff and compute ECC */
 929	xptr = ptr;
 930	for (i = page; i < page+pages; i++) {
 931		bptr = blockbuffer + i*pagelen;
 932		cptr = bptr + info->pagesize;
 933		memcpy(bptr, xptr, info->pagesize);
 934		xptr += info->pagesize;
 935		nand_compute_ecc(bptr, ecc);
 936		nand_store_ecc(cptr+13, ecc);
 937		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 938		nand_store_ecc(cptr+8, ecc);
 939	}
 940
 941	usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
 942
 943	result = sddr09_write_inplace(us, address>>1, info->blocksize,
 944				      info->pageshift, blockbuffer, 0);
 945
 946	usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
 947
 948#if 0
 949	{
 950		unsigned char status = 0;
 951		int result2 = sddr09_read_status(us, &status);
 952		if (result2)
 953			usb_stor_dbg(us, "cannot read status\n");
 954		else if (status != 0xc0)
 955			usb_stor_dbg(us, "status after write: 0x%x\n", status);
 956	}
 957#endif
 958
 959#if 0
 960	{
 961		int result2 = sddr09_test_unit_ready(us);
 962	}
 963#endif
 964
 965	return result;
 966}
 967
 968static int
 969sddr09_write_data(struct us_data *us,
 970		  unsigned long address,
 971		  unsigned int sectors) {
 972
 973	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 974	unsigned int lba, maxlba, page, pages;
 975	unsigned int pagelen, blocklen;
 976	unsigned char *blockbuffer;
 977	unsigned char *buffer;
 978	unsigned int len, offset;
 979	struct scatterlist *sg;
 980	int result;
 981
 982	// Figure out the initial LBA and page
 983	lba = address >> info->blockshift;
 984	page = (address & info->blockmask);
 985	maxlba = info->capacity >> (info->pageshift + info->blockshift);
 986	if (lba >= maxlba)
 987		return -EIO;
 988
 989	// blockbuffer is used for reading in the old data, overwriting
 990	// with the new data, and performing ECC calculations
 
 
 991
 992	/* TODO: instead of doing kmalloc/kfree for each write,
 993	   add a bufferpointer to the info structure */
 
 
 994
 995	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
 996	blocklen = (pagelen << info->blockshift);
 997	blockbuffer = kmalloc(blocklen, GFP_NOIO);
 998	if (!blockbuffer) {
 999		printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1000		return -ENOMEM;
1001	}
1002
1003	// Since we don't write the user data directly to the device,
1004	// we have to create a bounce buffer and move the data a piece
1005	// at a time between the bounce buffer and the actual transfer buffer.
 
 
1006
1007	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1008	buffer = kmalloc(len, GFP_NOIO);
1009	if (buffer == NULL) {
1010		printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1011		kfree(blockbuffer);
1012		return -ENOMEM;
1013	}
1014
1015	result = 0;
1016	offset = 0;
1017	sg = NULL;
1018
1019	while (sectors > 0) {
1020
1021		// Write as many sectors as possible in this block
1022
1023		pages = min(sectors, info->blocksize - page);
1024		len = (pages << info->pageshift);
1025
1026		/* Not overflowing capacity? */
1027		if (lba >= maxlba) {
1028			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
1029				     lba, maxlba);
1030			result = -EIO;
1031			break;
1032		}
1033
1034		// Get the data from the transfer buffer
1035		usb_stor_access_xfer_buf(buffer, len, us->srb,
1036				&sg, &offset, FROM_XFER_BUF);
1037
1038		result = sddr09_write_lba(us, lba, page, pages,
1039				buffer, blockbuffer);
1040		if (result)
1041			break;
1042
1043		page = 0;
1044		lba++;
1045		sectors -= pages;
1046	}
1047
1048	kfree(buffer);
1049	kfree(blockbuffer);
1050
1051	return result;
1052}
1053
1054static int
1055sddr09_read_control(struct us_data *us,
1056		unsigned long address,
1057		unsigned int blocks,
1058		unsigned char *content,
1059		int use_sg) {
1060
1061	usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
1062		     address, blocks);
1063
1064	return sddr09_read21(us, address, blocks,
1065			     CONTROL_SHIFT, content, use_sg);
1066}
1067
1068/*
1069 * Read Device ID Command: 12 bytes.
1070 * byte 0: opcode: ED
1071 *
1072 * Returns 2 bytes: Manufacturer ID and Device ID.
1073 * On more recent cards 3 bytes: the third byte is an option code A5
1074 * signifying that the secret command to read an 128-bit ID is available.
1075 * On still more recent cards 4 bytes: the fourth byte C0 means that
1076 * a second read ID cmd is available.
1077 */
1078static int
1079sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1080	unsigned char *command = us->iobuf;
1081	unsigned char *content = us->iobuf;
1082	int result, i;
1083
1084	memset(command, 0, 12);
1085	command[0] = 0xED;
1086	command[1] = LUNBITS;
1087
1088	result = sddr09_send_scsi_command(us, command, 12);
1089	if (result)
1090		return result;
1091
1092	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1093			content, 64, NULL);
1094
1095	for (i = 0; i < 4; i++)
1096		deviceID[i] = content[i];
1097
1098	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1099}
1100
1101static int
1102sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1103	int result;
1104	unsigned char status;
1105	const char *wp_fmt;
1106
1107	result = sddr09_read_status(us, &status);
1108	if (result) {
1109		usb_stor_dbg(us, "read_status fails\n");
1110		return result;
1111	}
1112	if ((status & 0x80) == 0) {
1113		info->flags |= SDDR09_WP;	/* write protected */
1114		wp_fmt = " WP";
1115	} else {
1116		wp_fmt = "";
1117	}
1118	usb_stor_dbg(us, "status 0x%02X%s%s%s%s\n", status, wp_fmt,
1119		     status & 0x40 ? " Ready" : "",
1120		     status & LUNBITS ? " Suspended" : "",
1121		     status & 0x01 ? " Error" : "");
1122
1123	return 0;
1124}
1125
1126#if 0
1127/*
1128 * Reset Command: 12 bytes.
1129 * byte 0: opcode: EB
1130 */
1131static int
1132sddr09_reset(struct us_data *us) {
1133
1134	unsigned char *command = us->iobuf;
1135
1136	memset(command, 0, 12);
1137	command[0] = 0xEB;
1138	command[1] = LUNBITS;
1139
1140	return sddr09_send_scsi_command(us, command, 12);
1141}
1142#endif
1143
1144static struct nand_flash_dev *
1145sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1146	struct nand_flash_dev *cardinfo;
1147	unsigned char deviceID[4];
1148	char blurbtxt[256];
1149	int result;
1150
1151	usb_stor_dbg(us, "Reading capacity...\n");
1152
1153	result = sddr09_read_deviceID(us, deviceID);
1154
1155	if (result) {
1156		usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
1157		printk(KERN_WARNING "sddr09: could not read card info\n");
1158		return NULL;
1159	}
1160
1161	sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID);
1162
1163	/* Byte 0 is the manufacturer */
1164	sprintf(blurbtxt + strlen(blurbtxt),
1165		": Manuf. %s",
1166		nand_flash_manufacturer(deviceID[0]));
1167
1168	/* Byte 1 is the device type */
1169	cardinfo = nand_find_id(deviceID[1]);
1170	if (cardinfo) {
1171		/* MB or MiB? It is neither. A 16 MB card has
1172		   17301504 raw bytes, of which 16384000 are
1173		   usable for user data. */
 
 
1174		sprintf(blurbtxt + strlen(blurbtxt),
1175			", %d MB", 1<<(cardinfo->chipshift - 20));
1176	} else {
1177		sprintf(blurbtxt + strlen(blurbtxt),
1178			", type unrecognized");
1179	}
1180
1181	/* Byte 2 is code to signal availability of 128-bit ID */
1182	if (deviceID[2] == 0xa5) {
1183		sprintf(blurbtxt + strlen(blurbtxt),
1184			", 128-bit ID");
1185	}
1186
1187	/* Byte 3 announces the availability of another read ID command */
1188	if (deviceID[3] == 0xc0) {
1189		sprintf(blurbtxt + strlen(blurbtxt),
1190			", extra cmd");
1191	}
1192
1193	if (flags & SDDR09_WP)
1194		sprintf(blurbtxt + strlen(blurbtxt),
1195			", WP");
1196
1197	printk(KERN_WARNING "%s\n", blurbtxt);
1198
1199	return cardinfo;
1200}
1201
1202static int
1203sddr09_read_map(struct us_data *us) {
1204
1205	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1206	int numblocks, alloc_len, alloc_blocks;
1207	int i, j, result;
1208	unsigned char *buffer, *buffer_end, *ptr;
1209	unsigned int lba, lbact;
1210
1211	if (!info->capacity)
1212		return -1;
1213
1214	// size of a block is 1 << (blockshift + pageshift) bytes
1215	// divide into the total capacity to get the number of blocks
 
 
1216
1217	numblocks = info->capacity >> (info->blockshift + info->pageshift);
1218
1219	// read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1220	// but only use a 64 KB buffer
1221	// buffer size used must be a multiple of (1 << CONTROL_SHIFT)
 
 
1222#define SDDR09_READ_MAP_BUFSZ 65536
1223
1224	alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1225	alloc_len = (alloc_blocks << CONTROL_SHIFT);
1226	buffer = kmalloc(alloc_len, GFP_NOIO);
1227	if (buffer == NULL) {
1228		printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1229		result = -1;
1230		goto done;
1231	}
1232	buffer_end = buffer + alloc_len;
1233
1234#undef SDDR09_READ_MAP_BUFSZ
1235
1236	kfree(info->lba_to_pba);
1237	kfree(info->pba_to_lba);
1238	info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1239	info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1240
1241	if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1242		printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1243		result = -1;
1244		goto done;
1245	}
1246
1247	for (i = 0; i < numblocks; i++)
1248		info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1249
1250	/*
1251	 * Define lba-pba translation table
1252	 */
1253
1254	ptr = buffer_end;
1255	for (i = 0; i < numblocks; i++) {
1256		ptr += (1 << CONTROL_SHIFT);
1257		if (ptr >= buffer_end) {
1258			unsigned long address;
1259
1260			address = i << (info->pageshift + info->blockshift);
1261			result = sddr09_read_control(
1262				us, address>>1,
1263				min(alloc_blocks, numblocks - i),
1264				buffer, 0);
1265			if (result) {
1266				result = -1;
1267				goto done;
1268			}
1269			ptr = buffer;
1270		}
1271
1272		if (i == 0 || i == 1) {
1273			info->pba_to_lba[i] = UNUSABLE;
1274			continue;
1275		}
1276
1277		/* special PBAs have control field 0^16 */
1278		for (j = 0; j < 16; j++)
1279			if (ptr[j] != 0)
1280				goto nonz;
1281		info->pba_to_lba[i] = UNUSABLE;
1282		printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1283		       i);
1284		continue;
1285
1286	nonz:
1287		/* unwritten PBAs have control field FF^16 */
1288		for (j = 0; j < 16; j++)
1289			if (ptr[j] != 0xff)
1290				goto nonff;
1291		continue;
1292
1293	nonff:
1294		/* normal PBAs start with six FFs */
1295		if (j < 6) {
1296			printk(KERN_WARNING
1297			       "sddr09: PBA %d has no logical mapping: "
1298			       "reserved area = %02X%02X%02X%02X "
1299			       "data status %02X block status %02X\n",
1300			       i, ptr[0], ptr[1], ptr[2], ptr[3],
1301			       ptr[4], ptr[5]);
1302			info->pba_to_lba[i] = UNUSABLE;
1303			continue;
1304		}
1305
1306		if ((ptr[6] >> 4) != 0x01) {
1307			printk(KERN_WARNING
1308			       "sddr09: PBA %d has invalid address field "
1309			       "%02X%02X/%02X%02X\n",
1310			       i, ptr[6], ptr[7], ptr[11], ptr[12]);
1311			info->pba_to_lba[i] = UNUSABLE;
1312			continue;
1313		}
1314
1315		/* check even parity */
1316		if (parity[ptr[6] ^ ptr[7]]) {
1317			printk(KERN_WARNING
1318			       "sddr09: Bad parity in LBA for block %d"
1319			       " (%02X %02X)\n", i, ptr[6], ptr[7]);
1320			info->pba_to_lba[i] = UNUSABLE;
1321			continue;
1322		}
1323
1324		lba = short_pack(ptr[7], ptr[6]);
1325		lba = (lba & 0x07FF) >> 1;
1326
1327		/*
1328		 * Every 1024 physical blocks ("zone"), the LBA numbers
1329		 * go back to zero, but are within a higher block of LBA's.
1330		 * Also, there is a maximum of 1000 LBA's per zone.
1331		 * In other words, in PBA 1024-2047 you will find LBA 0-999
1332		 * which are really LBA 1000-1999. This allows for 24 bad
1333		 * or special physical blocks per zone.
1334		 */
1335
1336		if (lba >= 1000) {
1337			printk(KERN_WARNING
1338			       "sddr09: Bad low LBA %d for block %d\n",
1339			       lba, i);
1340			goto possibly_erase;
1341		}
1342
1343		lba += 1000*(i/0x400);
1344
1345		if (info->lba_to_pba[lba] != UNDEF) {
1346			printk(KERN_WARNING
1347			       "sddr09: LBA %d seen for PBA %d and %d\n",
1348			       lba, info->lba_to_pba[lba], i);
1349			goto possibly_erase;
1350		}
1351
1352		info->pba_to_lba[i] = lba;
1353		info->lba_to_pba[lba] = i;
1354		continue;
1355
1356	possibly_erase:
1357		if (erase_bad_lba_entries) {
1358			unsigned long address;
1359
1360			address = (i << (info->pageshift + info->blockshift));
1361			sddr09_erase(us, address>>1);
1362			info->pba_to_lba[i] = UNDEF;
1363		} else
1364			info->pba_to_lba[i] = UNUSABLE;
1365	}
1366
1367	/*
1368	 * Approximate capacity. This is not entirely correct yet,
1369	 * since a zone with less than 1000 usable pages leads to
1370	 * missing LBAs. Especially if it is the last zone, some
1371	 * LBAs can be past capacity.
1372	 */
1373	lbact = 0;
1374	for (i = 0; i < numblocks; i += 1024) {
1375		int ct = 0;
1376
1377		for (j = 0; j < 1024 && i+j < numblocks; j++) {
1378			if (info->pba_to_lba[i+j] != UNUSABLE) {
1379				if (ct >= 1000)
1380					info->pba_to_lba[i+j] = SPARE;
1381				else
1382					ct++;
1383			}
1384		}
1385		lbact += ct;
1386	}
1387	info->lbact = lbact;
1388	usb_stor_dbg(us, "Found %d LBA's\n", lbact);
1389	result = 0;
1390
1391 done:
1392	if (result != 0) {
1393		kfree(info->lba_to_pba);
1394		kfree(info->pba_to_lba);
1395		info->lba_to_pba = NULL;
1396		info->pba_to_lba = NULL;
1397	}
1398	kfree(buffer);
1399	return result;
1400}
1401
1402static void
1403sddr09_card_info_destructor(void *extra) {
1404	struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1405
1406	if (!info)
1407		return;
1408
1409	kfree(info->lba_to_pba);
1410	kfree(info->pba_to_lba);
1411}
1412
1413static int
1414sddr09_common_init(struct us_data *us) {
1415	int result;
1416
1417	/* set the configuration -- STALL is an acceptable response here */
1418	if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1419		usb_stor_dbg(us, "active config #%d != 1 ??\n",
1420			     us->pusb_dev->actconfig->desc.bConfigurationValue);
1421		return -EINVAL;
1422	}
1423
1424	result = usb_reset_configuration(us->pusb_dev);
1425	usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
1426	if (result == -EPIPE) {
1427		usb_stor_dbg(us, "-- stall on control interface\n");
1428	} else if (result != 0) {
1429		/* it's not a stall, but another error -- time to bail */
1430		usb_stor_dbg(us, "-- Unknown error.  Rejecting device\n");
1431		return -EINVAL;
1432	}
1433
1434	us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1435	if (!us->extra)
1436		return -ENOMEM;
1437	us->extra_destructor = sddr09_card_info_destructor;
1438
1439	nand_init_ecc();
1440	return 0;
1441}
1442
1443
1444/*
1445 * This is needed at a very early stage. If this is not listed in the
1446 * unusual devices list but called from here then LUN 0 of the combo reader
1447 * is not recognized. But I do not know what precisely these calls do.
1448 */
1449static int
1450usb_stor_sddr09_dpcm_init(struct us_data *us) {
1451	int result;
1452	unsigned char *data = us->iobuf;
1453
1454	result = sddr09_common_init(us);
1455	if (result)
1456		return result;
1457
1458	result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1459	if (result) {
1460		usb_stor_dbg(us, "send_command fails\n");
1461		return result;
1462	}
1463
1464	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1465	// get 07 02
1466
1467	result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1468	if (result) {
1469		usb_stor_dbg(us, "2nd send_command fails\n");
1470		return result;
1471	}
1472
1473	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1474	// get 07 00
1475
1476	result = sddr09_request_sense(us, data, 18);
1477	if (result == 0 && data[2] != 0) {
1478		int j;
1479		for (j=0; j<18; j++)
1480			printk(" %02X", data[j]);
1481		printk("\n");
1482		// get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1483		// 70: current command
1484		// sense key 0, sense code 0, extd sense code 0
1485		// additional transfer length * = sizeof(data) - 7
1486		// Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1487		// sense key 06, sense code 28: unit attention,
1488		// not ready to ready transition
1489	}
1490
1491	// test unit ready
1492
1493	return 0;		/* not result */
1494}
1495
1496/*
1497 * Transport for the Microtech DPCM-USB
1498 */
1499static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1500{
1501	int ret;
1502
1503	usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun);
1504
1505	switch (srb->device->lun) {
1506	case 0:
1507
1508		/*
1509		 * LUN 0 corresponds to the CompactFlash card reader.
1510		 */
1511		ret = usb_stor_CB_transport(srb, us);
1512		break;
1513
1514	case 1:
1515
1516		/*
1517		 * LUN 1 corresponds to the SmartMedia card reader.
1518		 */
1519
1520		/*
1521		 * Set the LUN to 0 (just in case).
1522		 */
1523		srb->device->lun = 0;
1524		ret = sddr09_transport(srb, us);
1525		srb->device->lun = 1;
1526		break;
1527
1528	default:
1529	    usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun);
1530		ret = USB_STOR_TRANSPORT_ERROR;
1531		break;
1532	}
1533	return ret;
1534}
1535
1536
1537/*
1538 * Transport for the Sandisk SDDR-09
1539 */
1540static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1541{
1542	static unsigned char sensekey = 0, sensecode = 0;
1543	static unsigned char havefakesense = 0;
1544	int result, i;
1545	unsigned char *ptr = us->iobuf;
1546	unsigned long capacity;
1547	unsigned int page, pages;
1548
1549	struct sddr09_card_info *info;
1550
1551	static unsigned char inquiry_response[8] = {
1552		0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1553	};
1554
1555	/* note: no block descriptor support */
1556	static unsigned char mode_page_01[19] = {
1557		0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1558		0x01, 0x0A,
1559		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1560	};
1561
1562	info = (struct sddr09_card_info *)us->extra;
1563
1564	if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1565		/* for a faked command, we have to follow with a faked sense */
1566		memset(ptr, 0, 18);
1567		ptr[0] = 0x70;
1568		ptr[2] = sensekey;
1569		ptr[7] = 11;
1570		ptr[12] = sensecode;
1571		usb_stor_set_xfer_buf(ptr, 18, srb);
1572		sensekey = sensecode = havefakesense = 0;
1573		return USB_STOR_TRANSPORT_GOOD;
1574	}
1575
1576	havefakesense = 1;
1577
1578	/* Dummy up a response for INQUIRY since SDDR09 doesn't
1579	   respond to INQUIRY commands */
 
 
1580
1581	if (srb->cmnd[0] == INQUIRY) {
1582		memcpy(ptr, inquiry_response, 8);
1583		fill_inquiry_response(us, ptr, 36);
1584		return USB_STOR_TRANSPORT_GOOD;
1585	}
1586
1587	if (srb->cmnd[0] == READ_CAPACITY) {
1588		struct nand_flash_dev *cardinfo;
1589
1590		sddr09_get_wp(us, info);	/* read WP bit */
1591
1592		cardinfo = sddr09_get_cardinfo(us, info->flags);
1593		if (!cardinfo) {
1594			/* probably no media */
1595		init_error:
1596			sensekey = 0x02;	/* not ready */
1597			sensecode = 0x3a;	/* medium not present */
1598			return USB_STOR_TRANSPORT_FAILED;
1599		}
1600
1601		info->capacity = (1 << cardinfo->chipshift);
1602		info->pageshift = cardinfo->pageshift;
1603		info->pagesize = (1 << info->pageshift);
1604		info->blockshift = cardinfo->blockshift;
1605		info->blocksize = (1 << info->blockshift);
1606		info->blockmask = info->blocksize - 1;
1607
1608		// map initialization, must follow get_cardinfo()
1609		if (sddr09_read_map(us)) {
1610			/* probably out of memory */
1611			goto init_error;
1612		}
1613
1614		// Report capacity
1615
1616		capacity = (info->lbact << info->blockshift) - 1;
1617
1618		((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1619
1620		// Report page size
1621
1622		((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1623		usb_stor_set_xfer_buf(ptr, 8, srb);
1624
1625		return USB_STOR_TRANSPORT_GOOD;
1626	}
1627
1628	if (srb->cmnd[0] == MODE_SENSE_10) {
1629		int modepage = (srb->cmnd[2] & 0x3F);
1630
1631		/* They ask for the Read/Write error recovery page,
1632		   or for all pages. */
 
 
1633		/* %% We should check DBD %% */
1634		if (modepage == 0x01 || modepage == 0x3F) {
1635			usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
1636				     modepage);
1637
1638			memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1639			((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1640			ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1641			usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1642			return USB_STOR_TRANSPORT_GOOD;
1643		}
1644
1645		sensekey = 0x05;	/* illegal request */
1646		sensecode = 0x24;	/* invalid field in CDB */
1647		return USB_STOR_TRANSPORT_FAILED;
1648	}
1649
1650	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1651		return USB_STOR_TRANSPORT_GOOD;
1652
1653	havefakesense = 0;
1654
1655	if (srb->cmnd[0] == READ_10) {
1656
1657		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1658		page <<= 16;
1659		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1660		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1661
1662		usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
1663			     page, pages);
1664
1665		result = sddr09_read_data(us, page, pages);
1666		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1667				USB_STOR_TRANSPORT_ERROR);
1668	}
1669
1670	if (srb->cmnd[0] == WRITE_10) {
1671
1672		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1673		page <<= 16;
1674		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1675		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1676
1677		usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
1678			     page, pages);
1679
1680		result = sddr09_write_data(us, page, pages);
1681		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1682				USB_STOR_TRANSPORT_ERROR);
1683	}
1684
1685	/* catch-all for all other commands, except
 
1686	 * pass TEST_UNIT_READY and REQUEST_SENSE through
1687	 */
1688	if (srb->cmnd[0] != TEST_UNIT_READY &&
1689	    srb->cmnd[0] != REQUEST_SENSE) {
1690		sensekey = 0x05;	/* illegal request */
1691		sensecode = 0x20;	/* invalid command */
1692		havefakesense = 1;
1693		return USB_STOR_TRANSPORT_FAILED;
1694	}
1695
1696	for (; srb->cmd_len<12; srb->cmd_len++)
1697		srb->cmnd[srb->cmd_len] = 0;
1698
1699	srb->cmnd[1] = LUNBITS;
1700
1701	ptr[0] = 0;
1702	for (i=0; i<12; i++)
1703		sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1704
1705	usb_stor_dbg(us, "Send control for command %s\n", ptr);
1706
1707	result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1708	if (result) {
1709		usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
1710			     result);
1711		return USB_STOR_TRANSPORT_ERROR;
1712	}
1713
1714	if (scsi_bufflen(srb) == 0)
1715		return USB_STOR_TRANSPORT_GOOD;
1716
1717	if (srb->sc_data_direction == DMA_TO_DEVICE ||
1718	    srb->sc_data_direction == DMA_FROM_DEVICE) {
1719		unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1720				? us->send_bulk_pipe : us->recv_bulk_pipe;
1721
1722		usb_stor_dbg(us, "%s %d bytes\n",
1723			     (srb->sc_data_direction == DMA_TO_DEVICE) ?
1724			     "sending" : "receiving",
1725			     scsi_bufflen(srb));
1726
1727		result = usb_stor_bulk_srb(us, pipe, srb);
1728
1729		return (result == USB_STOR_XFER_GOOD ?
1730			USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1731	} 
1732
1733	return USB_STOR_TRANSPORT_GOOD;
1734}
1735
1736/*
1737 * Initialization routine for the sddr09 subdriver
1738 */
1739static int
1740usb_stor_sddr09_init(struct us_data *us) {
1741	return sddr09_common_init(us);
1742}
1743
1744static struct scsi_host_template sddr09_host_template;
1745
1746static int sddr09_probe(struct usb_interface *intf,
1747			 const struct usb_device_id *id)
1748{
1749	struct us_data *us;
1750	int result;
1751
1752	result = usb_stor_probe1(&us, intf, id,
1753			(id - sddr09_usb_ids) + sddr09_unusual_dev_list,
1754			&sddr09_host_template);
1755	if (result)
1756		return result;
1757
1758	if (us->protocol == USB_PR_DPCM_USB) {
1759		us->transport_name = "Control/Bulk-EUSB/SDDR09";
1760		us->transport = dpcm_transport;
1761		us->transport_reset = usb_stor_CB_reset;
1762		us->max_lun = 1;
1763	} else {
1764		us->transport_name = "EUSB/SDDR09";
1765		us->transport = sddr09_transport;
1766		us->transport_reset = usb_stor_CB_reset;
1767		us->max_lun = 0;
1768	}
1769
1770	result = usb_stor_probe2(us);
1771	return result;
1772}
1773
1774static struct usb_driver sddr09_driver = {
1775	.name =		DRV_NAME,
1776	.probe =	sddr09_probe,
1777	.disconnect =	usb_stor_disconnect,
1778	.suspend =	usb_stor_suspend,
1779	.resume =	usb_stor_resume,
1780	.reset_resume =	usb_stor_reset_resume,
1781	.pre_reset =	usb_stor_pre_reset,
1782	.post_reset =	usb_stor_post_reset,
1783	.id_table =	sddr09_usb_ids,
1784	.soft_unbind =	1,
1785	.no_dynamic_id = 1,
1786};
1787
1788module_usb_stor_driver(sddr09_driver, sddr09_host_template, DRV_NAME);