Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Driver for SanDisk SDDR-09 SmartMedia reader
4 *
5 * (c) 2000, 2001 Robert Baruch (autophile@starband.net)
6 * (c) 2002 Andries Brouwer (aeb@cwi.nl)
7 * Developed with the assistance of:
8 * (c) 2002 Alan Stern <stern@rowland.org>
9 *
10 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
11 * This chip is a programmable USB controller. In the SDDR-09, it has
12 * been programmed to obey a certain limited set of SCSI commands.
13 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
14 * commands.
15 */
16
17/*
18 * Known vendor commands: 12 bytes, first byte is opcode
19 *
20 * E7: read scatter gather
21 * E8: read
22 * E9: write
23 * EA: erase
24 * EB: reset
25 * EC: read status
26 * ED: read ID
27 * EE: write CIS (?)
28 * EF: compute checksum (?)
29 */
30
31#include <linux/errno.h>
32#include <linux/module.h>
33#include <linux/slab.h>
34
35#include <scsi/scsi.h>
36#include <scsi/scsi_cmnd.h>
37#include <scsi/scsi_device.h>
38
39#include "usb.h"
40#include "transport.h"
41#include "protocol.h"
42#include "debug.h"
43#include "scsiglue.h"
44
45#define DRV_NAME "ums-sddr09"
46
47MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
48MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
49MODULE_LICENSE("GPL");
50MODULE_IMPORT_NS(USB_STORAGE);
51
52static int usb_stor_sddr09_dpcm_init(struct us_data *us);
53static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
54static int usb_stor_sddr09_init(struct us_data *us);
55
56
57/*
58 * The table of devices
59 */
60#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
61 vendorName, productName, useProtocol, useTransport, \
62 initFunction, flags) \
63{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
64 .driver_info = (flags) }
65
66static struct usb_device_id sddr09_usb_ids[] = {
67# include "unusual_sddr09.h"
68 { } /* Terminating entry */
69};
70MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
71
72#undef UNUSUAL_DEV
73
74/*
75 * The flags table
76 */
77#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
78 vendor_name, product_name, use_protocol, use_transport, \
79 init_function, Flags) \
80{ \
81 .vendorName = vendor_name, \
82 .productName = product_name, \
83 .useProtocol = use_protocol, \
84 .useTransport = use_transport, \
85 .initFunction = init_function, \
86}
87
88static struct us_unusual_dev sddr09_unusual_dev_list[] = {
89# include "unusual_sddr09.h"
90 { } /* Terminating entry */
91};
92
93#undef UNUSUAL_DEV
94
95
96#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
97#define LSB_of(s) ((s)&0xFF)
98#define MSB_of(s) ((s)>>8)
99
100/*
101 * First some stuff that does not belong here:
102 * data on SmartMedia and other cards, completely
103 * unrelated to this driver.
104 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
105 */
106
107struct nand_flash_dev {
108 int model_id;
109 int chipshift; /* 1<<cs bytes total capacity */
110 char pageshift; /* 1<<ps bytes in a page */
111 char blockshift; /* 1<<bs pages in an erase block */
112 char zoneshift; /* 1<<zs blocks in a zone */
113 /* # of logical blocks is 125/128 of this */
114 char pageadrlen; /* length of an address in bytes - 1 */
115};
116
117/*
118 * NAND Flash Manufacturer ID Codes
119 */
120#define NAND_MFR_AMD 0x01
121#define NAND_MFR_NATSEMI 0x8f
122#define NAND_MFR_TOSHIBA 0x98
123#define NAND_MFR_SAMSUNG 0xec
124
125static inline char *nand_flash_manufacturer(int manuf_id) {
126 switch(manuf_id) {
127 case NAND_MFR_AMD:
128 return "AMD";
129 case NAND_MFR_NATSEMI:
130 return "NATSEMI";
131 case NAND_MFR_TOSHIBA:
132 return "Toshiba";
133 case NAND_MFR_SAMSUNG:
134 return "Samsung";
135 default:
136 return "unknown";
137 }
138}
139
140/*
141 * It looks like it is unnecessary to attach manufacturer to the
142 * remaining data: SSFDC prescribes manufacturer-independent id codes.
143 *
144 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
145 */
146
147static struct nand_flash_dev nand_flash_ids[] = {
148 /* NAND flash */
149 { 0x6e, 20, 8, 4, 8, 2}, /* 1 MB */
150 { 0xe8, 20, 8, 4, 8, 2}, /* 1 MB */
151 { 0xec, 20, 8, 4, 8, 2}, /* 1 MB */
152 { 0x64, 21, 8, 4, 9, 2}, /* 2 MB */
153 { 0xea, 21, 8, 4, 9, 2}, /* 2 MB */
154 { 0x6b, 22, 9, 4, 9, 2}, /* 4 MB */
155 { 0xe3, 22, 9, 4, 9, 2}, /* 4 MB */
156 { 0xe5, 22, 9, 4, 9, 2}, /* 4 MB */
157 { 0xe6, 23, 9, 4, 10, 2}, /* 8 MB */
158 { 0x73, 24, 9, 5, 10, 2}, /* 16 MB */
159 { 0x75, 25, 9, 5, 10, 2}, /* 32 MB */
160 { 0x76, 26, 9, 5, 10, 3}, /* 64 MB */
161 { 0x79, 27, 9, 5, 10, 3}, /* 128 MB */
162
163 /* MASK ROM */
164 { 0x5d, 21, 9, 4, 8, 2}, /* 2 MB */
165 { 0xd5, 22, 9, 4, 9, 2}, /* 4 MB */
166 { 0xd6, 23, 9, 4, 10, 2}, /* 8 MB */
167 { 0x57, 24, 9, 4, 11, 2}, /* 16 MB */
168 { 0x58, 25, 9, 4, 12, 2}, /* 32 MB */
169 { 0,}
170};
171
172static struct nand_flash_dev *
173nand_find_id(unsigned char id) {
174 int i;
175
176 for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
177 if (nand_flash_ids[i].model_id == id)
178 return &(nand_flash_ids[i]);
179 return NULL;
180}
181
182/*
183 * ECC computation.
184 */
185static unsigned char parity[256];
186static unsigned char ecc2[256];
187
188static void nand_init_ecc(void) {
189 int i, j, a;
190
191 parity[0] = 0;
192 for (i = 1; i < 256; i++)
193 parity[i] = (parity[i&(i-1)] ^ 1);
194
195 for (i = 0; i < 256; i++) {
196 a = 0;
197 for (j = 0; j < 8; j++) {
198 if (i & (1<<j)) {
199 if ((j & 1) == 0)
200 a ^= 0x04;
201 if ((j & 2) == 0)
202 a ^= 0x10;
203 if ((j & 4) == 0)
204 a ^= 0x40;
205 }
206 }
207 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
208 }
209}
210
211/* compute 3-byte ecc on 256 bytes */
212static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
213 int i, j, a;
214 unsigned char par = 0, bit, bits[8] = {0};
215
216 /* collect 16 checksum bits */
217 for (i = 0; i < 256; i++) {
218 par ^= data[i];
219 bit = parity[data[i]];
220 for (j = 0; j < 8; j++)
221 if ((i & (1<<j)) == 0)
222 bits[j] ^= bit;
223 }
224
225 /* put 4+4+4 = 12 bits in the ecc */
226 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
227 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
228
229 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
230 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
231
232 ecc[2] = ecc2[par];
233}
234
235static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
236 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
237}
238
239static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
240 memcpy(data, ecc, 3);
241}
242
243/*
244 * The actual driver starts here.
245 */
246
247struct sddr09_card_info {
248 unsigned long capacity; /* Size of card in bytes */
249 int pagesize; /* Size of page in bytes */
250 int pageshift; /* log2 of pagesize */
251 int blocksize; /* Size of block in pages */
252 int blockshift; /* log2 of blocksize */
253 int blockmask; /* 2^blockshift - 1 */
254 int *lba_to_pba; /* logical to physical map */
255 int *pba_to_lba; /* physical to logical map */
256 int lbact; /* number of available pages */
257 int flags;
258#define SDDR09_WP 1 /* write protected */
259};
260
261/*
262 * On my 16MB card, control blocks have size 64 (16 real control bytes,
263 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
264 * so the reader makes up the remaining 48. Don't know whether these numbers
265 * depend on the card. For now a constant.
266 */
267#define CONTROL_SHIFT 6
268
269/*
270 * On my Combo CF/SM reader, the SM reader has LUN 1.
271 * (and things fail with LUN 0).
272 * It seems LUN is irrelevant for others.
273 */
274#define LUN 1
275#define LUNBITS (LUN << 5)
276
277/*
278 * LBA and PBA are unsigned ints. Special values.
279 */
280#define UNDEF 0xffffffff
281#define SPARE 0xfffffffe
282#define UNUSABLE 0xfffffffd
283
284static const int erase_bad_lba_entries = 0;
285
286/* send vendor interface command (0x41) */
287/* called for requests 0, 1, 8 */
288static int
289sddr09_send_command(struct us_data *us,
290 unsigned char request,
291 unsigned char direction,
292 unsigned char *xfer_data,
293 unsigned int xfer_len) {
294 unsigned int pipe;
295 unsigned char requesttype = (0x41 | direction);
296 int rc;
297
298 // Get the receive or send control pipe number
299
300 if (direction == USB_DIR_IN)
301 pipe = us->recv_ctrl_pipe;
302 else
303 pipe = us->send_ctrl_pipe;
304
305 rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
306 0, 0, xfer_data, xfer_len);
307 switch (rc) {
308 case USB_STOR_XFER_GOOD: return 0;
309 case USB_STOR_XFER_STALLED: return -EPIPE;
310 default: return -EIO;
311 }
312}
313
314static int
315sddr09_send_scsi_command(struct us_data *us,
316 unsigned char *command,
317 unsigned int command_len) {
318 return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
319}
320
321#if 0
322/*
323 * Test Unit Ready Command: 12 bytes.
324 * byte 0: opcode: 00
325 */
326static int
327sddr09_test_unit_ready(struct us_data *us) {
328 unsigned char *command = us->iobuf;
329 int result;
330
331 memset(command, 0, 6);
332 command[1] = LUNBITS;
333
334 result = sddr09_send_scsi_command(us, command, 6);
335
336 usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
337
338 return result;
339}
340#endif
341
342/*
343 * Request Sense Command: 12 bytes.
344 * byte 0: opcode: 03
345 * byte 4: data length
346 */
347static int
348sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
349 unsigned char *command = us->iobuf;
350 int result;
351
352 memset(command, 0, 12);
353 command[0] = 0x03;
354 command[1] = LUNBITS;
355 command[4] = buflen;
356
357 result = sddr09_send_scsi_command(us, command, 12);
358 if (result)
359 return result;
360
361 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
362 sensebuf, buflen, NULL);
363 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
364}
365
366/*
367 * Read Command: 12 bytes.
368 * byte 0: opcode: E8
369 * byte 1: last two bits: 00: read data, 01: read blockwise control,
370 * 10: read both, 11: read pagewise control.
371 * It turns out we need values 20, 21, 22, 23 here (LUN 1).
372 * bytes 2-5: address (interpretation depends on byte 1, see below)
373 * bytes 10-11: count (idem)
374 *
375 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
376 * A read data command gets data in 512-byte pages.
377 * A read control command gets control in 64-byte chunks.
378 * A read both command gets data+control in 576-byte chunks.
379 *
380 * Blocks are groups of 32 pages, and read blockwise control jumps to the
381 * next block, while read pagewise control jumps to the next page after
382 * reading a group of 64 control bytes.
383 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
384 *
385 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
386 */
387
388static int
389sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
390 int nr_of_pages, int bulklen, unsigned char *buf,
391 int use_sg) {
392
393 unsigned char *command = us->iobuf;
394 int result;
395
396 command[0] = 0xE8;
397 command[1] = LUNBITS | x;
398 command[2] = MSB_of(fromaddress>>16);
399 command[3] = LSB_of(fromaddress>>16);
400 command[4] = MSB_of(fromaddress & 0xFFFF);
401 command[5] = LSB_of(fromaddress & 0xFFFF);
402 command[6] = 0;
403 command[7] = 0;
404 command[8] = 0;
405 command[9] = 0;
406 command[10] = MSB_of(nr_of_pages);
407 command[11] = LSB_of(nr_of_pages);
408
409 result = sddr09_send_scsi_command(us, command, 12);
410
411 if (result) {
412 usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
413 x, result);
414 return result;
415 }
416
417 result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
418 buf, bulklen, use_sg, NULL);
419
420 if (result != USB_STOR_XFER_GOOD) {
421 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
422 x, result);
423 return -EIO;
424 }
425 return 0;
426}
427
428/*
429 * Read Data
430 *
431 * fromaddress counts data shorts:
432 * increasing it by 256 shifts the bytestream by 512 bytes;
433 * the last 8 bits are ignored.
434 *
435 * nr_of_pages counts pages of size (1 << pageshift).
436 */
437static int
438sddr09_read20(struct us_data *us, unsigned long fromaddress,
439 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
440 int bulklen = nr_of_pages << pageshift;
441
442 /* The last 8 bits of fromaddress are ignored. */
443 return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
444 buf, use_sg);
445}
446
447/*
448 * Read Blockwise Control
449 *
450 * fromaddress gives the starting position (as in read data;
451 * the last 8 bits are ignored); increasing it by 32*256 shifts
452 * the output stream by 64 bytes.
453 *
454 * count counts control groups of size (1 << controlshift).
455 * For me, controlshift = 6. Is this constant?
456 *
457 * After getting one control group, jump to the next block
458 * (fromaddress += 8192).
459 */
460static int
461sddr09_read21(struct us_data *us, unsigned long fromaddress,
462 int count, int controlshift, unsigned char *buf, int use_sg) {
463
464 int bulklen = (count << controlshift);
465 return sddr09_readX(us, 1, fromaddress, count, bulklen,
466 buf, use_sg);
467}
468
469/*
470 * Read both Data and Control
471 *
472 * fromaddress counts data shorts, ignoring control:
473 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
474 * the last 8 bits are ignored.
475 *
476 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
477 */
478static int
479sddr09_read22(struct us_data *us, unsigned long fromaddress,
480 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
481
482 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
483 usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
484 return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
485 buf, use_sg);
486}
487
488#if 0
489/*
490 * Read Pagewise Control
491 *
492 * fromaddress gives the starting position (as in read data;
493 * the last 8 bits are ignored); increasing it by 256 shifts
494 * the output stream by 64 bytes.
495 *
496 * count counts control groups of size (1 << controlshift).
497 * For me, controlshift = 6. Is this constant?
498 *
499 * After getting one control group, jump to the next page
500 * (fromaddress += 256).
501 */
502static int
503sddr09_read23(struct us_data *us, unsigned long fromaddress,
504 int count, int controlshift, unsigned char *buf, int use_sg) {
505
506 int bulklen = (count << controlshift);
507 return sddr09_readX(us, 3, fromaddress, count, bulklen,
508 buf, use_sg);
509}
510#endif
511
512/*
513 * Erase Command: 12 bytes.
514 * byte 0: opcode: EA
515 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
516 *
517 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
518 * The byte address being erased is 2*Eaddress.
519 * The CIS cannot be erased.
520 */
521static int
522sddr09_erase(struct us_data *us, unsigned long Eaddress) {
523 unsigned char *command = us->iobuf;
524 int result;
525
526 usb_stor_dbg(us, "erase address %lu\n", Eaddress);
527
528 memset(command, 0, 12);
529 command[0] = 0xEA;
530 command[1] = LUNBITS;
531 command[6] = MSB_of(Eaddress>>16);
532 command[7] = LSB_of(Eaddress>>16);
533 command[8] = MSB_of(Eaddress & 0xFFFF);
534 command[9] = LSB_of(Eaddress & 0xFFFF);
535
536 result = sddr09_send_scsi_command(us, command, 12);
537
538 if (result)
539 usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
540 result);
541
542 return result;
543}
544
545/*
546 * Write CIS Command: 12 bytes.
547 * byte 0: opcode: EE
548 * bytes 2-5: write address in shorts
549 * bytes 10-11: sector count
550 *
551 * This writes at the indicated address. Don't know how it differs
552 * from E9. Maybe it does not erase? However, it will also write to
553 * the CIS.
554 *
555 * When two such commands on the same page follow each other directly,
556 * the second one is not done.
557 */
558
559/*
560 * Write Command: 12 bytes.
561 * byte 0: opcode: E9
562 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
563 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
564 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
565 *
566 * If write address equals erase address, the erase is done first,
567 * otherwise the write is done first. When erase address equals zero
568 * no erase is done?
569 */
570static int
571sddr09_writeX(struct us_data *us,
572 unsigned long Waddress, unsigned long Eaddress,
573 int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
574
575 unsigned char *command = us->iobuf;
576 int result;
577
578 command[0] = 0xE9;
579 command[1] = LUNBITS;
580
581 command[2] = MSB_of(Waddress>>16);
582 command[3] = LSB_of(Waddress>>16);
583 command[4] = MSB_of(Waddress & 0xFFFF);
584 command[5] = LSB_of(Waddress & 0xFFFF);
585
586 command[6] = MSB_of(Eaddress>>16);
587 command[7] = LSB_of(Eaddress>>16);
588 command[8] = MSB_of(Eaddress & 0xFFFF);
589 command[9] = LSB_of(Eaddress & 0xFFFF);
590
591 command[10] = MSB_of(nr_of_pages);
592 command[11] = LSB_of(nr_of_pages);
593
594 result = sddr09_send_scsi_command(us, command, 12);
595
596 if (result) {
597 usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
598 result);
599 return result;
600 }
601
602 result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
603 buf, bulklen, use_sg, NULL);
604
605 if (result != USB_STOR_XFER_GOOD) {
606 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
607 result);
608 return -EIO;
609 }
610 return 0;
611}
612
613/* erase address, write same address */
614static int
615sddr09_write_inplace(struct us_data *us, unsigned long address,
616 int nr_of_pages, int pageshift, unsigned char *buf,
617 int use_sg) {
618 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
619 return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
620 buf, use_sg);
621}
622
623#if 0
624/*
625 * Read Scatter Gather Command: 3+4n bytes.
626 * byte 0: opcode E7
627 * byte 2: n
628 * bytes 4i-1,4i,4i+1: page address
629 * byte 4i+2: page count
630 * (i=1..n)
631 *
632 * This reads several pages from the card to a single memory buffer.
633 * The last two bits of byte 1 have the same meaning as for E8.
634 */
635static int
636sddr09_read_sg_test_only(struct us_data *us) {
637 unsigned char *command = us->iobuf;
638 int result, bulklen, nsg, ct;
639 unsigned char *buf;
640 unsigned long address;
641
642 nsg = bulklen = 0;
643 command[0] = 0xE7;
644 command[1] = LUNBITS;
645 command[2] = 0;
646 address = 040000; ct = 1;
647 nsg++;
648 bulklen += (ct << 9);
649 command[4*nsg+2] = ct;
650 command[4*nsg+1] = ((address >> 9) & 0xFF);
651 command[4*nsg+0] = ((address >> 17) & 0xFF);
652 command[4*nsg-1] = ((address >> 25) & 0xFF);
653
654 address = 0340000; ct = 1;
655 nsg++;
656 bulklen += (ct << 9);
657 command[4*nsg+2] = ct;
658 command[4*nsg+1] = ((address >> 9) & 0xFF);
659 command[4*nsg+0] = ((address >> 17) & 0xFF);
660 command[4*nsg-1] = ((address >> 25) & 0xFF);
661
662 address = 01000000; ct = 2;
663 nsg++;
664 bulklen += (ct << 9);
665 command[4*nsg+2] = ct;
666 command[4*nsg+1] = ((address >> 9) & 0xFF);
667 command[4*nsg+0] = ((address >> 17) & 0xFF);
668 command[4*nsg-1] = ((address >> 25) & 0xFF);
669
670 command[2] = nsg;
671
672 result = sddr09_send_scsi_command(us, command, 4*nsg+3);
673
674 if (result) {
675 usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
676 result);
677 return result;
678 }
679
680 buf = kmalloc(bulklen, GFP_NOIO);
681 if (!buf)
682 return -ENOMEM;
683
684 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
685 buf, bulklen, NULL);
686 kfree(buf);
687 if (result != USB_STOR_XFER_GOOD) {
688 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
689 result);
690 return -EIO;
691 }
692
693 return 0;
694}
695#endif
696
697/*
698 * Read Status Command: 12 bytes.
699 * byte 0: opcode: EC
700 *
701 * Returns 64 bytes, all zero except for the first.
702 * bit 0: 1: Error
703 * bit 5: 1: Suspended
704 * bit 6: 1: Ready
705 * bit 7: 1: Not write-protected
706 */
707
708static int
709sddr09_read_status(struct us_data *us, unsigned char *status) {
710
711 unsigned char *command = us->iobuf;
712 unsigned char *data = us->iobuf;
713 int result;
714
715 usb_stor_dbg(us, "Reading status...\n");
716
717 memset(command, 0, 12);
718 command[0] = 0xEC;
719 command[1] = LUNBITS;
720
721 result = sddr09_send_scsi_command(us, command, 12);
722 if (result)
723 return result;
724
725 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
726 data, 64, NULL);
727 *status = data[0];
728 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
729}
730
731static int
732sddr09_read_data(struct us_data *us,
733 unsigned long address,
734 unsigned int sectors) {
735
736 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
737 unsigned char *buffer;
738 unsigned int lba, maxlba, pba;
739 unsigned int page, pages;
740 unsigned int len, offset;
741 struct scatterlist *sg;
742 int result;
743
744 // Figure out the initial LBA and page
745 lba = address >> info->blockshift;
746 page = (address & info->blockmask);
747 maxlba = info->capacity >> (info->pageshift + info->blockshift);
748 if (lba >= maxlba)
749 return -EIO;
750
751 // Since we only read in one block at a time, we have to create
752 // a bounce buffer and move the data a piece at a time between the
753 // bounce buffer and the actual transfer buffer.
754
755 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
756 buffer = kmalloc(len, GFP_NOIO);
757 if (!buffer)
758 return -ENOMEM;
759
760 // This could be made much more efficient by checking for
761 // contiguous LBA's. Another exercise left to the student.
762
763 result = 0;
764 offset = 0;
765 sg = NULL;
766
767 while (sectors > 0) {
768
769 /* Find number of pages we can read in this block */
770 pages = min(sectors, info->blocksize - page);
771 len = pages << info->pageshift;
772
773 /* Not overflowing capacity? */
774 if (lba >= maxlba) {
775 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
776 lba, maxlba);
777 result = -EIO;
778 break;
779 }
780
781 /* Find where this lba lives on disk */
782 pba = info->lba_to_pba[lba];
783
784 if (pba == UNDEF) { /* this lba was never written */
785
786 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
787 pages, lba, page);
788
789 /*
790 * This is not really an error. It just means
791 * that the block has never been written.
792 * Instead of returning an error
793 * it is better to return all zero data.
794 */
795
796 memset(buffer, 0, len);
797
798 } else {
799 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
800 pages, pba, lba, page);
801
802 address = ((pba << info->blockshift) + page) <<
803 info->pageshift;
804
805 result = sddr09_read20(us, address>>1,
806 pages, info->pageshift, buffer, 0);
807 if (result)
808 break;
809 }
810
811 // Store the data in the transfer buffer
812 usb_stor_access_xfer_buf(buffer, len, us->srb,
813 &sg, &offset, TO_XFER_BUF);
814
815 page = 0;
816 lba++;
817 sectors -= pages;
818 }
819
820 kfree(buffer);
821 return result;
822}
823
824static unsigned int
825sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
826 static unsigned int lastpba = 1;
827 int zonestart, end, i;
828
829 zonestart = (lba/1000) << 10;
830 end = info->capacity >> (info->blockshift + info->pageshift);
831 end -= zonestart;
832 if (end > 1024)
833 end = 1024;
834
835 for (i = lastpba+1; i < end; i++) {
836 if (info->pba_to_lba[zonestart+i] == UNDEF) {
837 lastpba = i;
838 return zonestart+i;
839 }
840 }
841 for (i = 0; i <= lastpba; i++) {
842 if (info->pba_to_lba[zonestart+i] == UNDEF) {
843 lastpba = i;
844 return zonestart+i;
845 }
846 }
847 return 0;
848}
849
850static int
851sddr09_write_lba(struct us_data *us, unsigned int lba,
852 unsigned int page, unsigned int pages,
853 unsigned char *ptr, unsigned char *blockbuffer) {
854
855 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
856 unsigned long address;
857 unsigned int pba, lbap;
858 unsigned int pagelen;
859 unsigned char *bptr, *cptr, *xptr;
860 unsigned char ecc[3];
861 int i, result;
862
863 lbap = ((lba % 1000) << 1) | 0x1000;
864 if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
865 lbap ^= 1;
866 pba = info->lba_to_pba[lba];
867
868 if (pba == UNDEF) {
869 pba = sddr09_find_unused_pba(info, lba);
870 if (!pba) {
871 printk(KERN_WARNING
872 "sddr09_write_lba: Out of unused blocks\n");
873 return -ENOSPC;
874 }
875 info->pba_to_lba[pba] = lba;
876 info->lba_to_pba[lba] = pba;
877 }
878
879 if (pba == 1) {
880 /*
881 * Maybe it is impossible to write to PBA 1.
882 * Fake success, but don't do anything.
883 */
884 printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
885 return 0;
886 }
887
888 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
889
890 /* read old contents */
891 address = (pba << (info->pageshift + info->blockshift));
892 result = sddr09_read22(us, address>>1, info->blocksize,
893 info->pageshift, blockbuffer, 0);
894 if (result)
895 return result;
896
897 /* check old contents and fill lba */
898 for (i = 0; i < info->blocksize; i++) {
899 bptr = blockbuffer + i*pagelen;
900 cptr = bptr + info->pagesize;
901 nand_compute_ecc(bptr, ecc);
902 if (!nand_compare_ecc(cptr+13, ecc)) {
903 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
904 i, pba);
905 nand_store_ecc(cptr+13, ecc);
906 }
907 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
908 if (!nand_compare_ecc(cptr+8, ecc)) {
909 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
910 i, pba);
911 nand_store_ecc(cptr+8, ecc);
912 }
913 cptr[6] = cptr[11] = MSB_of(lbap);
914 cptr[7] = cptr[12] = LSB_of(lbap);
915 }
916
917 /* copy in new stuff and compute ECC */
918 xptr = ptr;
919 for (i = page; i < page+pages; i++) {
920 bptr = blockbuffer + i*pagelen;
921 cptr = bptr + info->pagesize;
922 memcpy(bptr, xptr, info->pagesize);
923 xptr += info->pagesize;
924 nand_compute_ecc(bptr, ecc);
925 nand_store_ecc(cptr+13, ecc);
926 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
927 nand_store_ecc(cptr+8, ecc);
928 }
929
930 usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
931
932 result = sddr09_write_inplace(us, address>>1, info->blocksize,
933 info->pageshift, blockbuffer, 0);
934
935 usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
936
937#if 0
938 {
939 unsigned char status = 0;
940 int result2 = sddr09_read_status(us, &status);
941 if (result2)
942 usb_stor_dbg(us, "cannot read status\n");
943 else if (status != 0xc0)
944 usb_stor_dbg(us, "status after write: 0x%x\n", status);
945 }
946#endif
947
948#if 0
949 {
950 int result2 = sddr09_test_unit_ready(us);
951 }
952#endif
953
954 return result;
955}
956
957static int
958sddr09_write_data(struct us_data *us,
959 unsigned long address,
960 unsigned int sectors) {
961
962 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
963 unsigned int lba, maxlba, page, pages;
964 unsigned int pagelen, blocklen;
965 unsigned char *blockbuffer;
966 unsigned char *buffer;
967 unsigned int len, offset;
968 struct scatterlist *sg;
969 int result;
970
971 /* Figure out the initial LBA and page */
972 lba = address >> info->blockshift;
973 page = (address & info->blockmask);
974 maxlba = info->capacity >> (info->pageshift + info->blockshift);
975 if (lba >= maxlba)
976 return -EIO;
977
978 /*
979 * blockbuffer is used for reading in the old data, overwriting
980 * with the new data, and performing ECC calculations
981 */
982
983 /*
984 * TODO: instead of doing kmalloc/kfree for each write,
985 * add a bufferpointer to the info structure
986 */
987
988 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
989 blocklen = (pagelen << info->blockshift);
990 blockbuffer = kmalloc(blocklen, GFP_NOIO);
991 if (!blockbuffer)
992 return -ENOMEM;
993
994 /*
995 * Since we don't write the user data directly to the device,
996 * we have to create a bounce buffer and move the data a piece
997 * at a time between the bounce buffer and the actual transfer buffer.
998 */
999
1000 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1001 buffer = kmalloc(len, GFP_NOIO);
1002 if (!buffer) {
1003 kfree(blockbuffer);
1004 return -ENOMEM;
1005 }
1006
1007 result = 0;
1008 offset = 0;
1009 sg = NULL;
1010
1011 while (sectors > 0) {
1012
1013 /* Write as many sectors as possible in this block */
1014
1015 pages = min(sectors, info->blocksize - page);
1016 len = (pages << info->pageshift);
1017
1018 /* Not overflowing capacity? */
1019 if (lba >= maxlba) {
1020 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
1021 lba, maxlba);
1022 result = -EIO;
1023 break;
1024 }
1025
1026 /* Get the data from the transfer buffer */
1027 usb_stor_access_xfer_buf(buffer, len, us->srb,
1028 &sg, &offset, FROM_XFER_BUF);
1029
1030 result = sddr09_write_lba(us, lba, page, pages,
1031 buffer, blockbuffer);
1032 if (result)
1033 break;
1034
1035 page = 0;
1036 lba++;
1037 sectors -= pages;
1038 }
1039
1040 kfree(buffer);
1041 kfree(blockbuffer);
1042
1043 return result;
1044}
1045
1046static int
1047sddr09_read_control(struct us_data *us,
1048 unsigned long address,
1049 unsigned int blocks,
1050 unsigned char *content,
1051 int use_sg) {
1052
1053 usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
1054 address, blocks);
1055
1056 return sddr09_read21(us, address, blocks,
1057 CONTROL_SHIFT, content, use_sg);
1058}
1059
1060/*
1061 * Read Device ID Command: 12 bytes.
1062 * byte 0: opcode: ED
1063 *
1064 * Returns 2 bytes: Manufacturer ID and Device ID.
1065 * On more recent cards 3 bytes: the third byte is an option code A5
1066 * signifying that the secret command to read an 128-bit ID is available.
1067 * On still more recent cards 4 bytes: the fourth byte C0 means that
1068 * a second read ID cmd is available.
1069 */
1070static int
1071sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1072 unsigned char *command = us->iobuf;
1073 unsigned char *content = us->iobuf;
1074 int result, i;
1075
1076 memset(command, 0, 12);
1077 command[0] = 0xED;
1078 command[1] = LUNBITS;
1079
1080 result = sddr09_send_scsi_command(us, command, 12);
1081 if (result)
1082 return result;
1083
1084 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1085 content, 64, NULL);
1086
1087 for (i = 0; i < 4; i++)
1088 deviceID[i] = content[i];
1089
1090 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1091}
1092
1093static int
1094sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1095 int result;
1096 unsigned char status;
1097 const char *wp_fmt;
1098
1099 result = sddr09_read_status(us, &status);
1100 if (result) {
1101 usb_stor_dbg(us, "read_status fails\n");
1102 return result;
1103 }
1104 if ((status & 0x80) == 0) {
1105 info->flags |= SDDR09_WP; /* write protected */
1106 wp_fmt = " WP";
1107 } else {
1108 wp_fmt = "";
1109 }
1110 usb_stor_dbg(us, "status 0x%02X%s%s%s%s\n", status, wp_fmt,
1111 status & 0x40 ? " Ready" : "",
1112 status & LUNBITS ? " Suspended" : "",
1113 status & 0x01 ? " Error" : "");
1114
1115 return 0;
1116}
1117
1118#if 0
1119/*
1120 * Reset Command: 12 bytes.
1121 * byte 0: opcode: EB
1122 */
1123static int
1124sddr09_reset(struct us_data *us) {
1125
1126 unsigned char *command = us->iobuf;
1127
1128 memset(command, 0, 12);
1129 command[0] = 0xEB;
1130 command[1] = LUNBITS;
1131
1132 return sddr09_send_scsi_command(us, command, 12);
1133}
1134#endif
1135
1136static struct nand_flash_dev *
1137sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1138 struct nand_flash_dev *cardinfo;
1139 unsigned char deviceID[4];
1140 char blurbtxt[256];
1141 int result;
1142
1143 usb_stor_dbg(us, "Reading capacity...\n");
1144
1145 result = sddr09_read_deviceID(us, deviceID);
1146
1147 if (result) {
1148 usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
1149 printk(KERN_WARNING "sddr09: could not read card info\n");
1150 return NULL;
1151 }
1152
1153 sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID);
1154
1155 /* Byte 0 is the manufacturer */
1156 sprintf(blurbtxt + strlen(blurbtxt),
1157 ": Manuf. %s",
1158 nand_flash_manufacturer(deviceID[0]));
1159
1160 /* Byte 1 is the device type */
1161 cardinfo = nand_find_id(deviceID[1]);
1162 if (cardinfo) {
1163 /*
1164 * MB or MiB? It is neither. A 16 MB card has
1165 * 17301504 raw bytes, of which 16384000 are
1166 * usable for user data.
1167 */
1168 sprintf(blurbtxt + strlen(blurbtxt),
1169 ", %d MB", 1<<(cardinfo->chipshift - 20));
1170 } else {
1171 sprintf(blurbtxt + strlen(blurbtxt),
1172 ", type unrecognized");
1173 }
1174
1175 /* Byte 2 is code to signal availability of 128-bit ID */
1176 if (deviceID[2] == 0xa5) {
1177 sprintf(blurbtxt + strlen(blurbtxt),
1178 ", 128-bit ID");
1179 }
1180
1181 /* Byte 3 announces the availability of another read ID command */
1182 if (deviceID[3] == 0xc0) {
1183 sprintf(blurbtxt + strlen(blurbtxt),
1184 ", extra cmd");
1185 }
1186
1187 if (flags & SDDR09_WP)
1188 sprintf(blurbtxt + strlen(blurbtxt),
1189 ", WP");
1190
1191 printk(KERN_WARNING "%s\n", blurbtxt);
1192
1193 return cardinfo;
1194}
1195
1196static int
1197sddr09_read_map(struct us_data *us) {
1198
1199 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1200 int numblocks, alloc_len, alloc_blocks;
1201 int i, j, result;
1202 unsigned char *buffer, *buffer_end, *ptr;
1203 unsigned int lba, lbact;
1204
1205 if (!info->capacity)
1206 return -1;
1207
1208 /*
1209 * size of a block is 1 << (blockshift + pageshift) bytes
1210 * divide into the total capacity to get the number of blocks
1211 */
1212
1213 numblocks = info->capacity >> (info->blockshift + info->pageshift);
1214
1215 /*
1216 * read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1217 * but only use a 64 KB buffer
1218 * buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1219 */
1220#define SDDR09_READ_MAP_BUFSZ 65536
1221
1222 alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1223 alloc_len = (alloc_blocks << CONTROL_SHIFT);
1224 buffer = kmalloc(alloc_len, GFP_NOIO);
1225 if (!buffer) {
1226 result = -1;
1227 goto done;
1228 }
1229 buffer_end = buffer + alloc_len;
1230
1231#undef SDDR09_READ_MAP_BUFSZ
1232
1233 kfree(info->lba_to_pba);
1234 kfree(info->pba_to_lba);
1235 info->lba_to_pba = kmalloc_array(numblocks, sizeof(int), GFP_NOIO);
1236 info->pba_to_lba = kmalloc_array(numblocks, sizeof(int), GFP_NOIO);
1237
1238 if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1239 printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1240 result = -1;
1241 goto done;
1242 }
1243
1244 for (i = 0; i < numblocks; i++)
1245 info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1246
1247 /*
1248 * Define lba-pba translation table
1249 */
1250
1251 ptr = buffer_end;
1252 for (i = 0; i < numblocks; i++) {
1253 ptr += (1 << CONTROL_SHIFT);
1254 if (ptr >= buffer_end) {
1255 unsigned long address;
1256
1257 address = i << (info->pageshift + info->blockshift);
1258 result = sddr09_read_control(
1259 us, address>>1,
1260 min(alloc_blocks, numblocks - i),
1261 buffer, 0);
1262 if (result) {
1263 result = -1;
1264 goto done;
1265 }
1266 ptr = buffer;
1267 }
1268
1269 if (i == 0 || i == 1) {
1270 info->pba_to_lba[i] = UNUSABLE;
1271 continue;
1272 }
1273
1274 /* special PBAs have control field 0^16 */
1275 for (j = 0; j < 16; j++)
1276 if (ptr[j] != 0)
1277 goto nonz;
1278 info->pba_to_lba[i] = UNUSABLE;
1279 printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1280 i);
1281 continue;
1282
1283 nonz:
1284 /* unwritten PBAs have control field FF^16 */
1285 for (j = 0; j < 16; j++)
1286 if (ptr[j] != 0xff)
1287 goto nonff;
1288 continue;
1289
1290 nonff:
1291 /* normal PBAs start with six FFs */
1292 if (j < 6) {
1293 printk(KERN_WARNING
1294 "sddr09: PBA %d has no logical mapping: "
1295 "reserved area = %02X%02X%02X%02X "
1296 "data status %02X block status %02X\n",
1297 i, ptr[0], ptr[1], ptr[2], ptr[3],
1298 ptr[4], ptr[5]);
1299 info->pba_to_lba[i] = UNUSABLE;
1300 continue;
1301 }
1302
1303 if ((ptr[6] >> 4) != 0x01) {
1304 printk(KERN_WARNING
1305 "sddr09: PBA %d has invalid address field "
1306 "%02X%02X/%02X%02X\n",
1307 i, ptr[6], ptr[7], ptr[11], ptr[12]);
1308 info->pba_to_lba[i] = UNUSABLE;
1309 continue;
1310 }
1311
1312 /* check even parity */
1313 if (parity[ptr[6] ^ ptr[7]]) {
1314 printk(KERN_WARNING
1315 "sddr09: Bad parity in LBA for block %d"
1316 " (%02X %02X)\n", i, ptr[6], ptr[7]);
1317 info->pba_to_lba[i] = UNUSABLE;
1318 continue;
1319 }
1320
1321 lba = short_pack(ptr[7], ptr[6]);
1322 lba = (lba & 0x07FF) >> 1;
1323
1324 /*
1325 * Every 1024 physical blocks ("zone"), the LBA numbers
1326 * go back to zero, but are within a higher block of LBA's.
1327 * Also, there is a maximum of 1000 LBA's per zone.
1328 * In other words, in PBA 1024-2047 you will find LBA 0-999
1329 * which are really LBA 1000-1999. This allows for 24 bad
1330 * or special physical blocks per zone.
1331 */
1332
1333 if (lba >= 1000) {
1334 printk(KERN_WARNING
1335 "sddr09: Bad low LBA %d for block %d\n",
1336 lba, i);
1337 goto possibly_erase;
1338 }
1339
1340 lba += 1000*(i/0x400);
1341
1342 if (info->lba_to_pba[lba] != UNDEF) {
1343 printk(KERN_WARNING
1344 "sddr09: LBA %d seen for PBA %d and %d\n",
1345 lba, info->lba_to_pba[lba], i);
1346 goto possibly_erase;
1347 }
1348
1349 info->pba_to_lba[i] = lba;
1350 info->lba_to_pba[lba] = i;
1351 continue;
1352
1353 possibly_erase:
1354 if (erase_bad_lba_entries) {
1355 unsigned long address;
1356
1357 address = (i << (info->pageshift + info->blockshift));
1358 sddr09_erase(us, address>>1);
1359 info->pba_to_lba[i] = UNDEF;
1360 } else
1361 info->pba_to_lba[i] = UNUSABLE;
1362 }
1363
1364 /*
1365 * Approximate capacity. This is not entirely correct yet,
1366 * since a zone with less than 1000 usable pages leads to
1367 * missing LBAs. Especially if it is the last zone, some
1368 * LBAs can be past capacity.
1369 */
1370 lbact = 0;
1371 for (i = 0; i < numblocks; i += 1024) {
1372 int ct = 0;
1373
1374 for (j = 0; j < 1024 && i+j < numblocks; j++) {
1375 if (info->pba_to_lba[i+j] != UNUSABLE) {
1376 if (ct >= 1000)
1377 info->pba_to_lba[i+j] = SPARE;
1378 else
1379 ct++;
1380 }
1381 }
1382 lbact += ct;
1383 }
1384 info->lbact = lbact;
1385 usb_stor_dbg(us, "Found %d LBA's\n", lbact);
1386 result = 0;
1387
1388 done:
1389 if (result != 0) {
1390 kfree(info->lba_to_pba);
1391 kfree(info->pba_to_lba);
1392 info->lba_to_pba = NULL;
1393 info->pba_to_lba = NULL;
1394 }
1395 kfree(buffer);
1396 return result;
1397}
1398
1399static void
1400sddr09_card_info_destructor(void *extra) {
1401 struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1402
1403 if (!info)
1404 return;
1405
1406 kfree(info->lba_to_pba);
1407 kfree(info->pba_to_lba);
1408}
1409
1410static int
1411sddr09_common_init(struct us_data *us) {
1412 int result;
1413
1414 /* set the configuration -- STALL is an acceptable response here */
1415 if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1416 usb_stor_dbg(us, "active config #%d != 1 ??\n",
1417 us->pusb_dev->actconfig->desc.bConfigurationValue);
1418 return -EINVAL;
1419 }
1420
1421 result = usb_reset_configuration(us->pusb_dev);
1422 usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
1423 if (result == -EPIPE) {
1424 usb_stor_dbg(us, "-- stall on control interface\n");
1425 } else if (result != 0) {
1426 /* it's not a stall, but another error -- time to bail */
1427 usb_stor_dbg(us, "-- Unknown error. Rejecting device\n");
1428 return -EINVAL;
1429 }
1430
1431 us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1432 if (!us->extra)
1433 return -ENOMEM;
1434 us->extra_destructor = sddr09_card_info_destructor;
1435
1436 nand_init_ecc();
1437 return 0;
1438}
1439
1440
1441/*
1442 * This is needed at a very early stage. If this is not listed in the
1443 * unusual devices list but called from here then LUN 0 of the combo reader
1444 * is not recognized. But I do not know what precisely these calls do.
1445 */
1446static int
1447usb_stor_sddr09_dpcm_init(struct us_data *us) {
1448 int result;
1449 unsigned char *data = us->iobuf;
1450
1451 result = sddr09_common_init(us);
1452 if (result)
1453 return result;
1454
1455 result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1456 if (result) {
1457 usb_stor_dbg(us, "send_command fails\n");
1458 return result;
1459 }
1460
1461 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1462 // get 07 02
1463
1464 result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1465 if (result) {
1466 usb_stor_dbg(us, "2nd send_command fails\n");
1467 return result;
1468 }
1469
1470 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1471 // get 07 00
1472
1473 result = sddr09_request_sense(us, data, 18);
1474 if (result == 0 && data[2] != 0) {
1475 int j;
1476 for (j=0; j<18; j++)
1477 printk(" %02X", data[j]);
1478 printk("\n");
1479 // get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1480 // 70: current command
1481 // sense key 0, sense code 0, extd sense code 0
1482 // additional transfer length * = sizeof(data) - 7
1483 // Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1484 // sense key 06, sense code 28: unit attention,
1485 // not ready to ready transition
1486 }
1487
1488 // test unit ready
1489
1490 return 0; /* not result */
1491}
1492
1493/*
1494 * Transport for the Microtech DPCM-USB
1495 */
1496static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1497{
1498 int ret;
1499
1500 usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun);
1501
1502 switch (srb->device->lun) {
1503 case 0:
1504
1505 /*
1506 * LUN 0 corresponds to the CompactFlash card reader.
1507 */
1508 ret = usb_stor_CB_transport(srb, us);
1509 break;
1510
1511 case 1:
1512
1513 /*
1514 * LUN 1 corresponds to the SmartMedia card reader.
1515 */
1516
1517 /*
1518 * Set the LUN to 0 (just in case).
1519 */
1520 srb->device->lun = 0;
1521 ret = sddr09_transport(srb, us);
1522 srb->device->lun = 1;
1523 break;
1524
1525 default:
1526 usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun);
1527 ret = USB_STOR_TRANSPORT_ERROR;
1528 break;
1529 }
1530 return ret;
1531}
1532
1533
1534/*
1535 * Transport for the Sandisk SDDR-09
1536 */
1537static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1538{
1539 static unsigned char sensekey = 0, sensecode = 0;
1540 static unsigned char havefakesense = 0;
1541 int result, i;
1542 unsigned char *ptr = us->iobuf;
1543 unsigned long capacity;
1544 unsigned int page, pages;
1545
1546 struct sddr09_card_info *info;
1547
1548 static unsigned char inquiry_response[8] = {
1549 0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1550 };
1551
1552 /* note: no block descriptor support */
1553 static unsigned char mode_page_01[19] = {
1554 0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1555 0x01, 0x0A,
1556 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1557 };
1558
1559 info = (struct sddr09_card_info *)us->extra;
1560
1561 if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1562 /* for a faked command, we have to follow with a faked sense */
1563 memset(ptr, 0, 18);
1564 ptr[0] = 0x70;
1565 ptr[2] = sensekey;
1566 ptr[7] = 11;
1567 ptr[12] = sensecode;
1568 usb_stor_set_xfer_buf(ptr, 18, srb);
1569 sensekey = sensecode = havefakesense = 0;
1570 return USB_STOR_TRANSPORT_GOOD;
1571 }
1572
1573 havefakesense = 1;
1574
1575 /*
1576 * Dummy up a response for INQUIRY since SDDR09 doesn't
1577 * respond to INQUIRY commands
1578 */
1579
1580 if (srb->cmnd[0] == INQUIRY) {
1581 memcpy(ptr, inquiry_response, 8);
1582 fill_inquiry_response(us, ptr, 36);
1583 return USB_STOR_TRANSPORT_GOOD;
1584 }
1585
1586 if (srb->cmnd[0] == READ_CAPACITY) {
1587 struct nand_flash_dev *cardinfo;
1588
1589 sddr09_get_wp(us, info); /* read WP bit */
1590
1591 cardinfo = sddr09_get_cardinfo(us, info->flags);
1592 if (!cardinfo) {
1593 /* probably no media */
1594 init_error:
1595 sensekey = 0x02; /* not ready */
1596 sensecode = 0x3a; /* medium not present */
1597 return USB_STOR_TRANSPORT_FAILED;
1598 }
1599
1600 info->capacity = (1 << cardinfo->chipshift);
1601 info->pageshift = cardinfo->pageshift;
1602 info->pagesize = (1 << info->pageshift);
1603 info->blockshift = cardinfo->blockshift;
1604 info->blocksize = (1 << info->blockshift);
1605 info->blockmask = info->blocksize - 1;
1606
1607 // map initialization, must follow get_cardinfo()
1608 if (sddr09_read_map(us)) {
1609 /* probably out of memory */
1610 goto init_error;
1611 }
1612
1613 // Report capacity
1614
1615 capacity = (info->lbact << info->blockshift) - 1;
1616
1617 ((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1618
1619 // Report page size
1620
1621 ((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1622 usb_stor_set_xfer_buf(ptr, 8, srb);
1623
1624 return USB_STOR_TRANSPORT_GOOD;
1625 }
1626
1627 if (srb->cmnd[0] == MODE_SENSE_10) {
1628 int modepage = (srb->cmnd[2] & 0x3F);
1629
1630 /*
1631 * They ask for the Read/Write error recovery page,
1632 * or for all pages.
1633 */
1634 /* %% We should check DBD %% */
1635 if (modepage == 0x01 || modepage == 0x3F) {
1636 usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
1637 modepage);
1638
1639 memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1640 ((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1641 ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1642 usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1643 return USB_STOR_TRANSPORT_GOOD;
1644 }
1645
1646 sensekey = 0x05; /* illegal request */
1647 sensecode = 0x24; /* invalid field in CDB */
1648 return USB_STOR_TRANSPORT_FAILED;
1649 }
1650
1651 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1652 return USB_STOR_TRANSPORT_GOOD;
1653
1654 havefakesense = 0;
1655
1656 if (srb->cmnd[0] == READ_10) {
1657
1658 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1659 page <<= 16;
1660 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1661 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1662
1663 usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
1664 page, pages);
1665
1666 result = sddr09_read_data(us, page, pages);
1667 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1668 USB_STOR_TRANSPORT_ERROR);
1669 }
1670
1671 if (srb->cmnd[0] == WRITE_10) {
1672
1673 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1674 page <<= 16;
1675 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1676 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1677
1678 usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
1679 page, pages);
1680
1681 result = sddr09_write_data(us, page, pages);
1682 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1683 USB_STOR_TRANSPORT_ERROR);
1684 }
1685
1686 /*
1687 * catch-all for all other commands, except
1688 * pass TEST_UNIT_READY and REQUEST_SENSE through
1689 */
1690 if (srb->cmnd[0] != TEST_UNIT_READY &&
1691 srb->cmnd[0] != REQUEST_SENSE) {
1692 sensekey = 0x05; /* illegal request */
1693 sensecode = 0x20; /* invalid command */
1694 havefakesense = 1;
1695 return USB_STOR_TRANSPORT_FAILED;
1696 }
1697
1698 for (; srb->cmd_len<12; srb->cmd_len++)
1699 srb->cmnd[srb->cmd_len] = 0;
1700
1701 srb->cmnd[1] = LUNBITS;
1702
1703 ptr[0] = 0;
1704 for (i=0; i<12; i++)
1705 sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1706
1707 usb_stor_dbg(us, "Send control for command %s\n", ptr);
1708
1709 result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1710 if (result) {
1711 usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
1712 result);
1713 return USB_STOR_TRANSPORT_ERROR;
1714 }
1715
1716 if (scsi_bufflen(srb) == 0)
1717 return USB_STOR_TRANSPORT_GOOD;
1718
1719 if (srb->sc_data_direction == DMA_TO_DEVICE ||
1720 srb->sc_data_direction == DMA_FROM_DEVICE) {
1721 unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1722 ? us->send_bulk_pipe : us->recv_bulk_pipe;
1723
1724 usb_stor_dbg(us, "%s %d bytes\n",
1725 (srb->sc_data_direction == DMA_TO_DEVICE) ?
1726 "sending" : "receiving",
1727 scsi_bufflen(srb));
1728
1729 result = usb_stor_bulk_srb(us, pipe, srb);
1730
1731 return (result == USB_STOR_XFER_GOOD ?
1732 USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1733 }
1734
1735 return USB_STOR_TRANSPORT_GOOD;
1736}
1737
1738/*
1739 * Initialization routine for the sddr09 subdriver
1740 */
1741static int
1742usb_stor_sddr09_init(struct us_data *us) {
1743 return sddr09_common_init(us);
1744}
1745
1746static struct scsi_host_template sddr09_host_template;
1747
1748static int sddr09_probe(struct usb_interface *intf,
1749 const struct usb_device_id *id)
1750{
1751 struct us_data *us;
1752 int result;
1753
1754 result = usb_stor_probe1(&us, intf, id,
1755 (id - sddr09_usb_ids) + sddr09_unusual_dev_list,
1756 &sddr09_host_template);
1757 if (result)
1758 return result;
1759
1760 if (us->protocol == USB_PR_DPCM_USB) {
1761 us->transport_name = "Control/Bulk-EUSB/SDDR09";
1762 us->transport = dpcm_transport;
1763 us->transport_reset = usb_stor_CB_reset;
1764 us->max_lun = 1;
1765 } else {
1766 us->transport_name = "EUSB/SDDR09";
1767 us->transport = sddr09_transport;
1768 us->transport_reset = usb_stor_CB_reset;
1769 us->max_lun = 0;
1770 }
1771
1772 result = usb_stor_probe2(us);
1773 return result;
1774}
1775
1776static struct usb_driver sddr09_driver = {
1777 .name = DRV_NAME,
1778 .probe = sddr09_probe,
1779 .disconnect = usb_stor_disconnect,
1780 .suspend = usb_stor_suspend,
1781 .resume = usb_stor_resume,
1782 .reset_resume = usb_stor_reset_resume,
1783 .pre_reset = usb_stor_pre_reset,
1784 .post_reset = usb_stor_post_reset,
1785 .id_table = sddr09_usb_ids,
1786 .soft_unbind = 1,
1787 .no_dynamic_id = 1,
1788};
1789
1790module_usb_stor_driver(sddr09_driver, sddr09_host_template, DRV_NAME);
1/* Driver for SanDisk SDDR-09 SmartMedia reader
2 *
3 * (c) 2000, 2001 Robert Baruch (autophile@starband.net)
4 * (c) 2002 Andries Brouwer (aeb@cwi.nl)
5 * Developed with the assistance of:
6 * (c) 2002 Alan Stern <stern@rowland.org>
7 *
8 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
9 * This chip is a programmable USB controller. In the SDDR-09, it has
10 * been programmed to obey a certain limited set of SCSI commands.
11 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
12 * commands.
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2, or (at your option) any
17 * later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 675 Mass Ave, Cambridge, MA 02139, USA.
27 */
28
29/*
30 * Known vendor commands: 12 bytes, first byte is opcode
31 *
32 * E7: read scatter gather
33 * E8: read
34 * E9: write
35 * EA: erase
36 * EB: reset
37 * EC: read status
38 * ED: read ID
39 * EE: write CIS (?)
40 * EF: compute checksum (?)
41 */
42
43#include <linux/errno.h>
44#include <linux/module.h>
45#include <linux/slab.h>
46
47#include <scsi/scsi.h>
48#include <scsi/scsi_cmnd.h>
49#include <scsi/scsi_device.h>
50
51#include "usb.h"
52#include "transport.h"
53#include "protocol.h"
54#include "debug.h"
55#include "scsiglue.h"
56
57#define DRV_NAME "ums-sddr09"
58
59MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
60MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
61MODULE_LICENSE("GPL");
62
63static int usb_stor_sddr09_dpcm_init(struct us_data *us);
64static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
65static int usb_stor_sddr09_init(struct us_data *us);
66
67
68/*
69 * The table of devices
70 */
71#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
72 vendorName, productName, useProtocol, useTransport, \
73 initFunction, flags) \
74{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
75 .driver_info = (flags) }
76
77static struct usb_device_id sddr09_usb_ids[] = {
78# include "unusual_sddr09.h"
79 { } /* Terminating entry */
80};
81MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
82
83#undef UNUSUAL_DEV
84
85/*
86 * The flags table
87 */
88#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
89 vendor_name, product_name, use_protocol, use_transport, \
90 init_function, Flags) \
91{ \
92 .vendorName = vendor_name, \
93 .productName = product_name, \
94 .useProtocol = use_protocol, \
95 .useTransport = use_transport, \
96 .initFunction = init_function, \
97}
98
99static struct us_unusual_dev sddr09_unusual_dev_list[] = {
100# include "unusual_sddr09.h"
101 { } /* Terminating entry */
102};
103
104#undef UNUSUAL_DEV
105
106
107#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
108#define LSB_of(s) ((s)&0xFF)
109#define MSB_of(s) ((s)>>8)
110
111/*
112 * First some stuff that does not belong here:
113 * data on SmartMedia and other cards, completely
114 * unrelated to this driver.
115 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
116 */
117
118struct nand_flash_dev {
119 int model_id;
120 int chipshift; /* 1<<cs bytes total capacity */
121 char pageshift; /* 1<<ps bytes in a page */
122 char blockshift; /* 1<<bs pages in an erase block */
123 char zoneshift; /* 1<<zs blocks in a zone */
124 /* # of logical blocks is 125/128 of this */
125 char pageadrlen; /* length of an address in bytes - 1 */
126};
127
128/*
129 * NAND Flash Manufacturer ID Codes
130 */
131#define NAND_MFR_AMD 0x01
132#define NAND_MFR_NATSEMI 0x8f
133#define NAND_MFR_TOSHIBA 0x98
134#define NAND_MFR_SAMSUNG 0xec
135
136static inline char *nand_flash_manufacturer(int manuf_id) {
137 switch(manuf_id) {
138 case NAND_MFR_AMD:
139 return "AMD";
140 case NAND_MFR_NATSEMI:
141 return "NATSEMI";
142 case NAND_MFR_TOSHIBA:
143 return "Toshiba";
144 case NAND_MFR_SAMSUNG:
145 return "Samsung";
146 default:
147 return "unknown";
148 }
149}
150
151/*
152 * It looks like it is unnecessary to attach manufacturer to the
153 * remaining data: SSFDC prescribes manufacturer-independent id codes.
154 *
155 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
156 */
157
158static struct nand_flash_dev nand_flash_ids[] = {
159 /* NAND flash */
160 { 0x6e, 20, 8, 4, 8, 2}, /* 1 MB */
161 { 0xe8, 20, 8, 4, 8, 2}, /* 1 MB */
162 { 0xec, 20, 8, 4, 8, 2}, /* 1 MB */
163 { 0x64, 21, 8, 4, 9, 2}, /* 2 MB */
164 { 0xea, 21, 8, 4, 9, 2}, /* 2 MB */
165 { 0x6b, 22, 9, 4, 9, 2}, /* 4 MB */
166 { 0xe3, 22, 9, 4, 9, 2}, /* 4 MB */
167 { 0xe5, 22, 9, 4, 9, 2}, /* 4 MB */
168 { 0xe6, 23, 9, 4, 10, 2}, /* 8 MB */
169 { 0x73, 24, 9, 5, 10, 2}, /* 16 MB */
170 { 0x75, 25, 9, 5, 10, 2}, /* 32 MB */
171 { 0x76, 26, 9, 5, 10, 3}, /* 64 MB */
172 { 0x79, 27, 9, 5, 10, 3}, /* 128 MB */
173
174 /* MASK ROM */
175 { 0x5d, 21, 9, 4, 8, 2}, /* 2 MB */
176 { 0xd5, 22, 9, 4, 9, 2}, /* 4 MB */
177 { 0xd6, 23, 9, 4, 10, 2}, /* 8 MB */
178 { 0x57, 24, 9, 4, 11, 2}, /* 16 MB */
179 { 0x58, 25, 9, 4, 12, 2}, /* 32 MB */
180 { 0,}
181};
182
183static struct nand_flash_dev *
184nand_find_id(unsigned char id) {
185 int i;
186
187 for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
188 if (nand_flash_ids[i].model_id == id)
189 return &(nand_flash_ids[i]);
190 return NULL;
191}
192
193/*
194 * ECC computation.
195 */
196static unsigned char parity[256];
197static unsigned char ecc2[256];
198
199static void nand_init_ecc(void) {
200 int i, j, a;
201
202 parity[0] = 0;
203 for (i = 1; i < 256; i++)
204 parity[i] = (parity[i&(i-1)] ^ 1);
205
206 for (i = 0; i < 256; i++) {
207 a = 0;
208 for (j = 0; j < 8; j++) {
209 if (i & (1<<j)) {
210 if ((j & 1) == 0)
211 a ^= 0x04;
212 if ((j & 2) == 0)
213 a ^= 0x10;
214 if ((j & 4) == 0)
215 a ^= 0x40;
216 }
217 }
218 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
219 }
220}
221
222/* compute 3-byte ecc on 256 bytes */
223static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
224 int i, j, a;
225 unsigned char par = 0, bit, bits[8] = {0};
226
227 /* collect 16 checksum bits */
228 for (i = 0; i < 256; i++) {
229 par ^= data[i];
230 bit = parity[data[i]];
231 for (j = 0; j < 8; j++)
232 if ((i & (1<<j)) == 0)
233 bits[j] ^= bit;
234 }
235
236 /* put 4+4+4 = 12 bits in the ecc */
237 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
238 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
239
240 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
241 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
242
243 ecc[2] = ecc2[par];
244}
245
246static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
247 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
248}
249
250static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
251 memcpy(data, ecc, 3);
252}
253
254/*
255 * The actual driver starts here.
256 */
257
258struct sddr09_card_info {
259 unsigned long capacity; /* Size of card in bytes */
260 int pagesize; /* Size of page in bytes */
261 int pageshift; /* log2 of pagesize */
262 int blocksize; /* Size of block in pages */
263 int blockshift; /* log2 of blocksize */
264 int blockmask; /* 2^blockshift - 1 */
265 int *lba_to_pba; /* logical to physical map */
266 int *pba_to_lba; /* physical to logical map */
267 int lbact; /* number of available pages */
268 int flags;
269#define SDDR09_WP 1 /* write protected */
270};
271
272/*
273 * On my 16MB card, control blocks have size 64 (16 real control bytes,
274 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
275 * so the reader makes up the remaining 48. Don't know whether these numbers
276 * depend on the card. For now a constant.
277 */
278#define CONTROL_SHIFT 6
279
280/*
281 * On my Combo CF/SM reader, the SM reader has LUN 1.
282 * (and things fail with LUN 0).
283 * It seems LUN is irrelevant for others.
284 */
285#define LUN 1
286#define LUNBITS (LUN << 5)
287
288/*
289 * LBA and PBA are unsigned ints. Special values.
290 */
291#define UNDEF 0xffffffff
292#define SPARE 0xfffffffe
293#define UNUSABLE 0xfffffffd
294
295static const int erase_bad_lba_entries = 0;
296
297/* send vendor interface command (0x41) */
298/* called for requests 0, 1, 8 */
299static int
300sddr09_send_command(struct us_data *us,
301 unsigned char request,
302 unsigned char direction,
303 unsigned char *xfer_data,
304 unsigned int xfer_len) {
305 unsigned int pipe;
306 unsigned char requesttype = (0x41 | direction);
307 int rc;
308
309 // Get the receive or send control pipe number
310
311 if (direction == USB_DIR_IN)
312 pipe = us->recv_ctrl_pipe;
313 else
314 pipe = us->send_ctrl_pipe;
315
316 rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
317 0, 0, xfer_data, xfer_len);
318 switch (rc) {
319 case USB_STOR_XFER_GOOD: return 0;
320 case USB_STOR_XFER_STALLED: return -EPIPE;
321 default: return -EIO;
322 }
323}
324
325static int
326sddr09_send_scsi_command(struct us_data *us,
327 unsigned char *command,
328 unsigned int command_len) {
329 return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
330}
331
332#if 0
333/*
334 * Test Unit Ready Command: 12 bytes.
335 * byte 0: opcode: 00
336 */
337static int
338sddr09_test_unit_ready(struct us_data *us) {
339 unsigned char *command = us->iobuf;
340 int result;
341
342 memset(command, 0, 6);
343 command[1] = LUNBITS;
344
345 result = sddr09_send_scsi_command(us, command, 6);
346
347 usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
348
349 return result;
350}
351#endif
352
353/*
354 * Request Sense Command: 12 bytes.
355 * byte 0: opcode: 03
356 * byte 4: data length
357 */
358static int
359sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
360 unsigned char *command = us->iobuf;
361 int result;
362
363 memset(command, 0, 12);
364 command[0] = 0x03;
365 command[1] = LUNBITS;
366 command[4] = buflen;
367
368 result = sddr09_send_scsi_command(us, command, 12);
369 if (result)
370 return result;
371
372 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
373 sensebuf, buflen, NULL);
374 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
375}
376
377/*
378 * Read Command: 12 bytes.
379 * byte 0: opcode: E8
380 * byte 1: last two bits: 00: read data, 01: read blockwise control,
381 * 10: read both, 11: read pagewise control.
382 * It turns out we need values 20, 21, 22, 23 here (LUN 1).
383 * bytes 2-5: address (interpretation depends on byte 1, see below)
384 * bytes 10-11: count (idem)
385 *
386 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
387 * A read data command gets data in 512-byte pages.
388 * A read control command gets control in 64-byte chunks.
389 * A read both command gets data+control in 576-byte chunks.
390 *
391 * Blocks are groups of 32 pages, and read blockwise control jumps to the
392 * next block, while read pagewise control jumps to the next page after
393 * reading a group of 64 control bytes.
394 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
395 *
396 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
397 */
398
399static int
400sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
401 int nr_of_pages, int bulklen, unsigned char *buf,
402 int use_sg) {
403
404 unsigned char *command = us->iobuf;
405 int result;
406
407 command[0] = 0xE8;
408 command[1] = LUNBITS | x;
409 command[2] = MSB_of(fromaddress>>16);
410 command[3] = LSB_of(fromaddress>>16);
411 command[4] = MSB_of(fromaddress & 0xFFFF);
412 command[5] = LSB_of(fromaddress & 0xFFFF);
413 command[6] = 0;
414 command[7] = 0;
415 command[8] = 0;
416 command[9] = 0;
417 command[10] = MSB_of(nr_of_pages);
418 command[11] = LSB_of(nr_of_pages);
419
420 result = sddr09_send_scsi_command(us, command, 12);
421
422 if (result) {
423 usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
424 x, result);
425 return result;
426 }
427
428 result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
429 buf, bulklen, use_sg, NULL);
430
431 if (result != USB_STOR_XFER_GOOD) {
432 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
433 x, result);
434 return -EIO;
435 }
436 return 0;
437}
438
439/*
440 * Read Data
441 *
442 * fromaddress counts data shorts:
443 * increasing it by 256 shifts the bytestream by 512 bytes;
444 * the last 8 bits are ignored.
445 *
446 * nr_of_pages counts pages of size (1 << pageshift).
447 */
448static int
449sddr09_read20(struct us_data *us, unsigned long fromaddress,
450 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
451 int bulklen = nr_of_pages << pageshift;
452
453 /* The last 8 bits of fromaddress are ignored. */
454 return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
455 buf, use_sg);
456}
457
458/*
459 * Read Blockwise Control
460 *
461 * fromaddress gives the starting position (as in read data;
462 * the last 8 bits are ignored); increasing it by 32*256 shifts
463 * the output stream by 64 bytes.
464 *
465 * count counts control groups of size (1 << controlshift).
466 * For me, controlshift = 6. Is this constant?
467 *
468 * After getting one control group, jump to the next block
469 * (fromaddress += 8192).
470 */
471static int
472sddr09_read21(struct us_data *us, unsigned long fromaddress,
473 int count, int controlshift, unsigned char *buf, int use_sg) {
474
475 int bulklen = (count << controlshift);
476 return sddr09_readX(us, 1, fromaddress, count, bulklen,
477 buf, use_sg);
478}
479
480/*
481 * Read both Data and Control
482 *
483 * fromaddress counts data shorts, ignoring control:
484 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
485 * the last 8 bits are ignored.
486 *
487 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
488 */
489static int
490sddr09_read22(struct us_data *us, unsigned long fromaddress,
491 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
492
493 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
494 usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
495 return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
496 buf, use_sg);
497}
498
499#if 0
500/*
501 * Read Pagewise Control
502 *
503 * fromaddress gives the starting position (as in read data;
504 * the last 8 bits are ignored); increasing it by 256 shifts
505 * the output stream by 64 bytes.
506 *
507 * count counts control groups of size (1 << controlshift).
508 * For me, controlshift = 6. Is this constant?
509 *
510 * After getting one control group, jump to the next page
511 * (fromaddress += 256).
512 */
513static int
514sddr09_read23(struct us_data *us, unsigned long fromaddress,
515 int count, int controlshift, unsigned char *buf, int use_sg) {
516
517 int bulklen = (count << controlshift);
518 return sddr09_readX(us, 3, fromaddress, count, bulklen,
519 buf, use_sg);
520}
521#endif
522
523/*
524 * Erase Command: 12 bytes.
525 * byte 0: opcode: EA
526 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
527 *
528 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
529 * The byte address being erased is 2*Eaddress.
530 * The CIS cannot be erased.
531 */
532static int
533sddr09_erase(struct us_data *us, unsigned long Eaddress) {
534 unsigned char *command = us->iobuf;
535 int result;
536
537 usb_stor_dbg(us, "erase address %lu\n", Eaddress);
538
539 memset(command, 0, 12);
540 command[0] = 0xEA;
541 command[1] = LUNBITS;
542 command[6] = MSB_of(Eaddress>>16);
543 command[7] = LSB_of(Eaddress>>16);
544 command[8] = MSB_of(Eaddress & 0xFFFF);
545 command[9] = LSB_of(Eaddress & 0xFFFF);
546
547 result = sddr09_send_scsi_command(us, command, 12);
548
549 if (result)
550 usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
551 result);
552
553 return result;
554}
555
556/*
557 * Write CIS Command: 12 bytes.
558 * byte 0: opcode: EE
559 * bytes 2-5: write address in shorts
560 * bytes 10-11: sector count
561 *
562 * This writes at the indicated address. Don't know how it differs
563 * from E9. Maybe it does not erase? However, it will also write to
564 * the CIS.
565 *
566 * When two such commands on the same page follow each other directly,
567 * the second one is not done.
568 */
569
570/*
571 * Write Command: 12 bytes.
572 * byte 0: opcode: E9
573 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
574 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
575 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
576 *
577 * If write address equals erase address, the erase is done first,
578 * otherwise the write is done first. When erase address equals zero
579 * no erase is done?
580 */
581static int
582sddr09_writeX(struct us_data *us,
583 unsigned long Waddress, unsigned long Eaddress,
584 int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
585
586 unsigned char *command = us->iobuf;
587 int result;
588
589 command[0] = 0xE9;
590 command[1] = LUNBITS;
591
592 command[2] = MSB_of(Waddress>>16);
593 command[3] = LSB_of(Waddress>>16);
594 command[4] = MSB_of(Waddress & 0xFFFF);
595 command[5] = LSB_of(Waddress & 0xFFFF);
596
597 command[6] = MSB_of(Eaddress>>16);
598 command[7] = LSB_of(Eaddress>>16);
599 command[8] = MSB_of(Eaddress & 0xFFFF);
600 command[9] = LSB_of(Eaddress & 0xFFFF);
601
602 command[10] = MSB_of(nr_of_pages);
603 command[11] = LSB_of(nr_of_pages);
604
605 result = sddr09_send_scsi_command(us, command, 12);
606
607 if (result) {
608 usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
609 result);
610 return result;
611 }
612
613 result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
614 buf, bulklen, use_sg, NULL);
615
616 if (result != USB_STOR_XFER_GOOD) {
617 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
618 result);
619 return -EIO;
620 }
621 return 0;
622}
623
624/* erase address, write same address */
625static int
626sddr09_write_inplace(struct us_data *us, unsigned long address,
627 int nr_of_pages, int pageshift, unsigned char *buf,
628 int use_sg) {
629 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
630 return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
631 buf, use_sg);
632}
633
634#if 0
635/*
636 * Read Scatter Gather Command: 3+4n bytes.
637 * byte 0: opcode E7
638 * byte 2: n
639 * bytes 4i-1,4i,4i+1: page address
640 * byte 4i+2: page count
641 * (i=1..n)
642 *
643 * This reads several pages from the card to a single memory buffer.
644 * The last two bits of byte 1 have the same meaning as for E8.
645 */
646static int
647sddr09_read_sg_test_only(struct us_data *us) {
648 unsigned char *command = us->iobuf;
649 int result, bulklen, nsg, ct;
650 unsigned char *buf;
651 unsigned long address;
652
653 nsg = bulklen = 0;
654 command[0] = 0xE7;
655 command[1] = LUNBITS;
656 command[2] = 0;
657 address = 040000; ct = 1;
658 nsg++;
659 bulklen += (ct << 9);
660 command[4*nsg+2] = ct;
661 command[4*nsg+1] = ((address >> 9) & 0xFF);
662 command[4*nsg+0] = ((address >> 17) & 0xFF);
663 command[4*nsg-1] = ((address >> 25) & 0xFF);
664
665 address = 0340000; ct = 1;
666 nsg++;
667 bulklen += (ct << 9);
668 command[4*nsg+2] = ct;
669 command[4*nsg+1] = ((address >> 9) & 0xFF);
670 command[4*nsg+0] = ((address >> 17) & 0xFF);
671 command[4*nsg-1] = ((address >> 25) & 0xFF);
672
673 address = 01000000; ct = 2;
674 nsg++;
675 bulklen += (ct << 9);
676 command[4*nsg+2] = ct;
677 command[4*nsg+1] = ((address >> 9) & 0xFF);
678 command[4*nsg+0] = ((address >> 17) & 0xFF);
679 command[4*nsg-1] = ((address >> 25) & 0xFF);
680
681 command[2] = nsg;
682
683 result = sddr09_send_scsi_command(us, command, 4*nsg+3);
684
685 if (result) {
686 usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
687 result);
688 return result;
689 }
690
691 buf = kmalloc(bulklen, GFP_NOIO);
692 if (!buf)
693 return -ENOMEM;
694
695 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
696 buf, bulklen, NULL);
697 kfree(buf);
698 if (result != USB_STOR_XFER_GOOD) {
699 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
700 result);
701 return -EIO;
702 }
703
704 return 0;
705}
706#endif
707
708/*
709 * Read Status Command: 12 bytes.
710 * byte 0: opcode: EC
711 *
712 * Returns 64 bytes, all zero except for the first.
713 * bit 0: 1: Error
714 * bit 5: 1: Suspended
715 * bit 6: 1: Ready
716 * bit 7: 1: Not write-protected
717 */
718
719static int
720sddr09_read_status(struct us_data *us, unsigned char *status) {
721
722 unsigned char *command = us->iobuf;
723 unsigned char *data = us->iobuf;
724 int result;
725
726 usb_stor_dbg(us, "Reading status...\n");
727
728 memset(command, 0, 12);
729 command[0] = 0xEC;
730 command[1] = LUNBITS;
731
732 result = sddr09_send_scsi_command(us, command, 12);
733 if (result)
734 return result;
735
736 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
737 data, 64, NULL);
738 *status = data[0];
739 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
740}
741
742static int
743sddr09_read_data(struct us_data *us,
744 unsigned long address,
745 unsigned int sectors) {
746
747 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
748 unsigned char *buffer;
749 unsigned int lba, maxlba, pba;
750 unsigned int page, pages;
751 unsigned int len, offset;
752 struct scatterlist *sg;
753 int result;
754
755 // Figure out the initial LBA and page
756 lba = address >> info->blockshift;
757 page = (address & info->blockmask);
758 maxlba = info->capacity >> (info->pageshift + info->blockshift);
759 if (lba >= maxlba)
760 return -EIO;
761
762 // Since we only read in one block at a time, we have to create
763 // a bounce buffer and move the data a piece at a time between the
764 // bounce buffer and the actual transfer buffer.
765
766 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
767 buffer = kmalloc(len, GFP_NOIO);
768 if (buffer == NULL) {
769 printk(KERN_WARNING "sddr09_read_data: Out of memory\n");
770 return -ENOMEM;
771 }
772
773 // This could be made much more efficient by checking for
774 // contiguous LBA's. Another exercise left to the student.
775
776 result = 0;
777 offset = 0;
778 sg = NULL;
779
780 while (sectors > 0) {
781
782 /* Find number of pages we can read in this block */
783 pages = min(sectors, info->blocksize - page);
784 len = pages << info->pageshift;
785
786 /* Not overflowing capacity? */
787 if (lba >= maxlba) {
788 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
789 lba, maxlba);
790 result = -EIO;
791 break;
792 }
793
794 /* Find where this lba lives on disk */
795 pba = info->lba_to_pba[lba];
796
797 if (pba == UNDEF) { /* this lba was never written */
798
799 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
800 pages, lba, page);
801
802 /* This is not really an error. It just means
803 that the block has never been written.
804 Instead of returning an error
805 it is better to return all zero data. */
806
807 memset(buffer, 0, len);
808
809 } else {
810 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
811 pages, pba, lba, page);
812
813 address = ((pba << info->blockshift) + page) <<
814 info->pageshift;
815
816 result = sddr09_read20(us, address>>1,
817 pages, info->pageshift, buffer, 0);
818 if (result)
819 break;
820 }
821
822 // Store the data in the transfer buffer
823 usb_stor_access_xfer_buf(buffer, len, us->srb,
824 &sg, &offset, TO_XFER_BUF);
825
826 page = 0;
827 lba++;
828 sectors -= pages;
829 }
830
831 kfree(buffer);
832 return result;
833}
834
835static unsigned int
836sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
837 static unsigned int lastpba = 1;
838 int zonestart, end, i;
839
840 zonestart = (lba/1000) << 10;
841 end = info->capacity >> (info->blockshift + info->pageshift);
842 end -= zonestart;
843 if (end > 1024)
844 end = 1024;
845
846 for (i = lastpba+1; i < end; i++) {
847 if (info->pba_to_lba[zonestart+i] == UNDEF) {
848 lastpba = i;
849 return zonestart+i;
850 }
851 }
852 for (i = 0; i <= lastpba; i++) {
853 if (info->pba_to_lba[zonestart+i] == UNDEF) {
854 lastpba = i;
855 return zonestart+i;
856 }
857 }
858 return 0;
859}
860
861static int
862sddr09_write_lba(struct us_data *us, unsigned int lba,
863 unsigned int page, unsigned int pages,
864 unsigned char *ptr, unsigned char *blockbuffer) {
865
866 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
867 unsigned long address;
868 unsigned int pba, lbap;
869 unsigned int pagelen;
870 unsigned char *bptr, *cptr, *xptr;
871 unsigned char ecc[3];
872 int i, result, isnew;
873
874 lbap = ((lba % 1000) << 1) | 0x1000;
875 if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
876 lbap ^= 1;
877 pba = info->lba_to_pba[lba];
878 isnew = 0;
879
880 if (pba == UNDEF) {
881 pba = sddr09_find_unused_pba(info, lba);
882 if (!pba) {
883 printk(KERN_WARNING
884 "sddr09_write_lba: Out of unused blocks\n");
885 return -ENOSPC;
886 }
887 info->pba_to_lba[pba] = lba;
888 info->lba_to_pba[lba] = pba;
889 isnew = 1;
890 }
891
892 if (pba == 1) {
893 /* Maybe it is impossible to write to PBA 1.
894 Fake success, but don't do anything. */
895 printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
896 return 0;
897 }
898
899 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
900
901 /* read old contents */
902 address = (pba << (info->pageshift + info->blockshift));
903 result = sddr09_read22(us, address>>1, info->blocksize,
904 info->pageshift, blockbuffer, 0);
905 if (result)
906 return result;
907
908 /* check old contents and fill lba */
909 for (i = 0; i < info->blocksize; i++) {
910 bptr = blockbuffer + i*pagelen;
911 cptr = bptr + info->pagesize;
912 nand_compute_ecc(bptr, ecc);
913 if (!nand_compare_ecc(cptr+13, ecc)) {
914 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
915 i, pba);
916 nand_store_ecc(cptr+13, ecc);
917 }
918 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
919 if (!nand_compare_ecc(cptr+8, ecc)) {
920 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
921 i, pba);
922 nand_store_ecc(cptr+8, ecc);
923 }
924 cptr[6] = cptr[11] = MSB_of(lbap);
925 cptr[7] = cptr[12] = LSB_of(lbap);
926 }
927
928 /* copy in new stuff and compute ECC */
929 xptr = ptr;
930 for (i = page; i < page+pages; i++) {
931 bptr = blockbuffer + i*pagelen;
932 cptr = bptr + info->pagesize;
933 memcpy(bptr, xptr, info->pagesize);
934 xptr += info->pagesize;
935 nand_compute_ecc(bptr, ecc);
936 nand_store_ecc(cptr+13, ecc);
937 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
938 nand_store_ecc(cptr+8, ecc);
939 }
940
941 usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
942
943 result = sddr09_write_inplace(us, address>>1, info->blocksize,
944 info->pageshift, blockbuffer, 0);
945
946 usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
947
948#if 0
949 {
950 unsigned char status = 0;
951 int result2 = sddr09_read_status(us, &status);
952 if (result2)
953 usb_stor_dbg(us, "cannot read status\n");
954 else if (status != 0xc0)
955 usb_stor_dbg(us, "status after write: 0x%x\n", status);
956 }
957#endif
958
959#if 0
960 {
961 int result2 = sddr09_test_unit_ready(us);
962 }
963#endif
964
965 return result;
966}
967
968static int
969sddr09_write_data(struct us_data *us,
970 unsigned long address,
971 unsigned int sectors) {
972
973 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
974 unsigned int lba, maxlba, page, pages;
975 unsigned int pagelen, blocklen;
976 unsigned char *blockbuffer;
977 unsigned char *buffer;
978 unsigned int len, offset;
979 struct scatterlist *sg;
980 int result;
981
982 // Figure out the initial LBA and page
983 lba = address >> info->blockshift;
984 page = (address & info->blockmask);
985 maxlba = info->capacity >> (info->pageshift + info->blockshift);
986 if (lba >= maxlba)
987 return -EIO;
988
989 // blockbuffer is used for reading in the old data, overwriting
990 // with the new data, and performing ECC calculations
991
992 /* TODO: instead of doing kmalloc/kfree for each write,
993 add a bufferpointer to the info structure */
994
995 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
996 blocklen = (pagelen << info->blockshift);
997 blockbuffer = kmalloc(blocklen, GFP_NOIO);
998 if (!blockbuffer) {
999 printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1000 return -ENOMEM;
1001 }
1002
1003 // Since we don't write the user data directly to the device,
1004 // we have to create a bounce buffer and move the data a piece
1005 // at a time between the bounce buffer and the actual transfer buffer.
1006
1007 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1008 buffer = kmalloc(len, GFP_NOIO);
1009 if (buffer == NULL) {
1010 printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1011 kfree(blockbuffer);
1012 return -ENOMEM;
1013 }
1014
1015 result = 0;
1016 offset = 0;
1017 sg = NULL;
1018
1019 while (sectors > 0) {
1020
1021 // Write as many sectors as possible in this block
1022
1023 pages = min(sectors, info->blocksize - page);
1024 len = (pages << info->pageshift);
1025
1026 /* Not overflowing capacity? */
1027 if (lba >= maxlba) {
1028 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
1029 lba, maxlba);
1030 result = -EIO;
1031 break;
1032 }
1033
1034 // Get the data from the transfer buffer
1035 usb_stor_access_xfer_buf(buffer, len, us->srb,
1036 &sg, &offset, FROM_XFER_BUF);
1037
1038 result = sddr09_write_lba(us, lba, page, pages,
1039 buffer, blockbuffer);
1040 if (result)
1041 break;
1042
1043 page = 0;
1044 lba++;
1045 sectors -= pages;
1046 }
1047
1048 kfree(buffer);
1049 kfree(blockbuffer);
1050
1051 return result;
1052}
1053
1054static int
1055sddr09_read_control(struct us_data *us,
1056 unsigned long address,
1057 unsigned int blocks,
1058 unsigned char *content,
1059 int use_sg) {
1060
1061 usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
1062 address, blocks);
1063
1064 return sddr09_read21(us, address, blocks,
1065 CONTROL_SHIFT, content, use_sg);
1066}
1067
1068/*
1069 * Read Device ID Command: 12 bytes.
1070 * byte 0: opcode: ED
1071 *
1072 * Returns 2 bytes: Manufacturer ID and Device ID.
1073 * On more recent cards 3 bytes: the third byte is an option code A5
1074 * signifying that the secret command to read an 128-bit ID is available.
1075 * On still more recent cards 4 bytes: the fourth byte C0 means that
1076 * a second read ID cmd is available.
1077 */
1078static int
1079sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1080 unsigned char *command = us->iobuf;
1081 unsigned char *content = us->iobuf;
1082 int result, i;
1083
1084 memset(command, 0, 12);
1085 command[0] = 0xED;
1086 command[1] = LUNBITS;
1087
1088 result = sddr09_send_scsi_command(us, command, 12);
1089 if (result)
1090 return result;
1091
1092 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1093 content, 64, NULL);
1094
1095 for (i = 0; i < 4; i++)
1096 deviceID[i] = content[i];
1097
1098 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1099}
1100
1101static int
1102sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1103 int result;
1104 unsigned char status;
1105 const char *wp_fmt;
1106
1107 result = sddr09_read_status(us, &status);
1108 if (result) {
1109 usb_stor_dbg(us, "read_status fails\n");
1110 return result;
1111 }
1112 if ((status & 0x80) == 0) {
1113 info->flags |= SDDR09_WP; /* write protected */
1114 wp_fmt = " WP";
1115 } else {
1116 wp_fmt = "";
1117 }
1118 usb_stor_dbg(us, "status 0x%02X%s%s%s%s\n", status, wp_fmt,
1119 status & 0x40 ? " Ready" : "",
1120 status & LUNBITS ? " Suspended" : "",
1121 status & 0x01 ? " Error" : "");
1122
1123 return 0;
1124}
1125
1126#if 0
1127/*
1128 * Reset Command: 12 bytes.
1129 * byte 0: opcode: EB
1130 */
1131static int
1132sddr09_reset(struct us_data *us) {
1133
1134 unsigned char *command = us->iobuf;
1135
1136 memset(command, 0, 12);
1137 command[0] = 0xEB;
1138 command[1] = LUNBITS;
1139
1140 return sddr09_send_scsi_command(us, command, 12);
1141}
1142#endif
1143
1144static struct nand_flash_dev *
1145sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1146 struct nand_flash_dev *cardinfo;
1147 unsigned char deviceID[4];
1148 char blurbtxt[256];
1149 int result;
1150
1151 usb_stor_dbg(us, "Reading capacity...\n");
1152
1153 result = sddr09_read_deviceID(us, deviceID);
1154
1155 if (result) {
1156 usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
1157 printk(KERN_WARNING "sddr09: could not read card info\n");
1158 return NULL;
1159 }
1160
1161 sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID);
1162
1163 /* Byte 0 is the manufacturer */
1164 sprintf(blurbtxt + strlen(blurbtxt),
1165 ": Manuf. %s",
1166 nand_flash_manufacturer(deviceID[0]));
1167
1168 /* Byte 1 is the device type */
1169 cardinfo = nand_find_id(deviceID[1]);
1170 if (cardinfo) {
1171 /* MB or MiB? It is neither. A 16 MB card has
1172 17301504 raw bytes, of which 16384000 are
1173 usable for user data. */
1174 sprintf(blurbtxt + strlen(blurbtxt),
1175 ", %d MB", 1<<(cardinfo->chipshift - 20));
1176 } else {
1177 sprintf(blurbtxt + strlen(blurbtxt),
1178 ", type unrecognized");
1179 }
1180
1181 /* Byte 2 is code to signal availability of 128-bit ID */
1182 if (deviceID[2] == 0xa5) {
1183 sprintf(blurbtxt + strlen(blurbtxt),
1184 ", 128-bit ID");
1185 }
1186
1187 /* Byte 3 announces the availability of another read ID command */
1188 if (deviceID[3] == 0xc0) {
1189 sprintf(blurbtxt + strlen(blurbtxt),
1190 ", extra cmd");
1191 }
1192
1193 if (flags & SDDR09_WP)
1194 sprintf(blurbtxt + strlen(blurbtxt),
1195 ", WP");
1196
1197 printk(KERN_WARNING "%s\n", blurbtxt);
1198
1199 return cardinfo;
1200}
1201
1202static int
1203sddr09_read_map(struct us_data *us) {
1204
1205 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1206 int numblocks, alloc_len, alloc_blocks;
1207 int i, j, result;
1208 unsigned char *buffer, *buffer_end, *ptr;
1209 unsigned int lba, lbact;
1210
1211 if (!info->capacity)
1212 return -1;
1213
1214 // size of a block is 1 << (blockshift + pageshift) bytes
1215 // divide into the total capacity to get the number of blocks
1216
1217 numblocks = info->capacity >> (info->blockshift + info->pageshift);
1218
1219 // read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1220 // but only use a 64 KB buffer
1221 // buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1222#define SDDR09_READ_MAP_BUFSZ 65536
1223
1224 alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1225 alloc_len = (alloc_blocks << CONTROL_SHIFT);
1226 buffer = kmalloc(alloc_len, GFP_NOIO);
1227 if (buffer == NULL) {
1228 printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1229 result = -1;
1230 goto done;
1231 }
1232 buffer_end = buffer + alloc_len;
1233
1234#undef SDDR09_READ_MAP_BUFSZ
1235
1236 kfree(info->lba_to_pba);
1237 kfree(info->pba_to_lba);
1238 info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1239 info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1240
1241 if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1242 printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1243 result = -1;
1244 goto done;
1245 }
1246
1247 for (i = 0; i < numblocks; i++)
1248 info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1249
1250 /*
1251 * Define lba-pba translation table
1252 */
1253
1254 ptr = buffer_end;
1255 for (i = 0; i < numblocks; i++) {
1256 ptr += (1 << CONTROL_SHIFT);
1257 if (ptr >= buffer_end) {
1258 unsigned long address;
1259
1260 address = i << (info->pageshift + info->blockshift);
1261 result = sddr09_read_control(
1262 us, address>>1,
1263 min(alloc_blocks, numblocks - i),
1264 buffer, 0);
1265 if (result) {
1266 result = -1;
1267 goto done;
1268 }
1269 ptr = buffer;
1270 }
1271
1272 if (i == 0 || i == 1) {
1273 info->pba_to_lba[i] = UNUSABLE;
1274 continue;
1275 }
1276
1277 /* special PBAs have control field 0^16 */
1278 for (j = 0; j < 16; j++)
1279 if (ptr[j] != 0)
1280 goto nonz;
1281 info->pba_to_lba[i] = UNUSABLE;
1282 printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1283 i);
1284 continue;
1285
1286 nonz:
1287 /* unwritten PBAs have control field FF^16 */
1288 for (j = 0; j < 16; j++)
1289 if (ptr[j] != 0xff)
1290 goto nonff;
1291 continue;
1292
1293 nonff:
1294 /* normal PBAs start with six FFs */
1295 if (j < 6) {
1296 printk(KERN_WARNING
1297 "sddr09: PBA %d has no logical mapping: "
1298 "reserved area = %02X%02X%02X%02X "
1299 "data status %02X block status %02X\n",
1300 i, ptr[0], ptr[1], ptr[2], ptr[3],
1301 ptr[4], ptr[5]);
1302 info->pba_to_lba[i] = UNUSABLE;
1303 continue;
1304 }
1305
1306 if ((ptr[6] >> 4) != 0x01) {
1307 printk(KERN_WARNING
1308 "sddr09: PBA %d has invalid address field "
1309 "%02X%02X/%02X%02X\n",
1310 i, ptr[6], ptr[7], ptr[11], ptr[12]);
1311 info->pba_to_lba[i] = UNUSABLE;
1312 continue;
1313 }
1314
1315 /* check even parity */
1316 if (parity[ptr[6] ^ ptr[7]]) {
1317 printk(KERN_WARNING
1318 "sddr09: Bad parity in LBA for block %d"
1319 " (%02X %02X)\n", i, ptr[6], ptr[7]);
1320 info->pba_to_lba[i] = UNUSABLE;
1321 continue;
1322 }
1323
1324 lba = short_pack(ptr[7], ptr[6]);
1325 lba = (lba & 0x07FF) >> 1;
1326
1327 /*
1328 * Every 1024 physical blocks ("zone"), the LBA numbers
1329 * go back to zero, but are within a higher block of LBA's.
1330 * Also, there is a maximum of 1000 LBA's per zone.
1331 * In other words, in PBA 1024-2047 you will find LBA 0-999
1332 * which are really LBA 1000-1999. This allows for 24 bad
1333 * or special physical blocks per zone.
1334 */
1335
1336 if (lba >= 1000) {
1337 printk(KERN_WARNING
1338 "sddr09: Bad low LBA %d for block %d\n",
1339 lba, i);
1340 goto possibly_erase;
1341 }
1342
1343 lba += 1000*(i/0x400);
1344
1345 if (info->lba_to_pba[lba] != UNDEF) {
1346 printk(KERN_WARNING
1347 "sddr09: LBA %d seen for PBA %d and %d\n",
1348 lba, info->lba_to_pba[lba], i);
1349 goto possibly_erase;
1350 }
1351
1352 info->pba_to_lba[i] = lba;
1353 info->lba_to_pba[lba] = i;
1354 continue;
1355
1356 possibly_erase:
1357 if (erase_bad_lba_entries) {
1358 unsigned long address;
1359
1360 address = (i << (info->pageshift + info->blockshift));
1361 sddr09_erase(us, address>>1);
1362 info->pba_to_lba[i] = UNDEF;
1363 } else
1364 info->pba_to_lba[i] = UNUSABLE;
1365 }
1366
1367 /*
1368 * Approximate capacity. This is not entirely correct yet,
1369 * since a zone with less than 1000 usable pages leads to
1370 * missing LBAs. Especially if it is the last zone, some
1371 * LBAs can be past capacity.
1372 */
1373 lbact = 0;
1374 for (i = 0; i < numblocks; i += 1024) {
1375 int ct = 0;
1376
1377 for (j = 0; j < 1024 && i+j < numblocks; j++) {
1378 if (info->pba_to_lba[i+j] != UNUSABLE) {
1379 if (ct >= 1000)
1380 info->pba_to_lba[i+j] = SPARE;
1381 else
1382 ct++;
1383 }
1384 }
1385 lbact += ct;
1386 }
1387 info->lbact = lbact;
1388 usb_stor_dbg(us, "Found %d LBA's\n", lbact);
1389 result = 0;
1390
1391 done:
1392 if (result != 0) {
1393 kfree(info->lba_to_pba);
1394 kfree(info->pba_to_lba);
1395 info->lba_to_pba = NULL;
1396 info->pba_to_lba = NULL;
1397 }
1398 kfree(buffer);
1399 return result;
1400}
1401
1402static void
1403sddr09_card_info_destructor(void *extra) {
1404 struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1405
1406 if (!info)
1407 return;
1408
1409 kfree(info->lba_to_pba);
1410 kfree(info->pba_to_lba);
1411}
1412
1413static int
1414sddr09_common_init(struct us_data *us) {
1415 int result;
1416
1417 /* set the configuration -- STALL is an acceptable response here */
1418 if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1419 usb_stor_dbg(us, "active config #%d != 1 ??\n",
1420 us->pusb_dev->actconfig->desc.bConfigurationValue);
1421 return -EINVAL;
1422 }
1423
1424 result = usb_reset_configuration(us->pusb_dev);
1425 usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
1426 if (result == -EPIPE) {
1427 usb_stor_dbg(us, "-- stall on control interface\n");
1428 } else if (result != 0) {
1429 /* it's not a stall, but another error -- time to bail */
1430 usb_stor_dbg(us, "-- Unknown error. Rejecting device\n");
1431 return -EINVAL;
1432 }
1433
1434 us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1435 if (!us->extra)
1436 return -ENOMEM;
1437 us->extra_destructor = sddr09_card_info_destructor;
1438
1439 nand_init_ecc();
1440 return 0;
1441}
1442
1443
1444/*
1445 * This is needed at a very early stage. If this is not listed in the
1446 * unusual devices list but called from here then LUN 0 of the combo reader
1447 * is not recognized. But I do not know what precisely these calls do.
1448 */
1449static int
1450usb_stor_sddr09_dpcm_init(struct us_data *us) {
1451 int result;
1452 unsigned char *data = us->iobuf;
1453
1454 result = sddr09_common_init(us);
1455 if (result)
1456 return result;
1457
1458 result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1459 if (result) {
1460 usb_stor_dbg(us, "send_command fails\n");
1461 return result;
1462 }
1463
1464 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1465 // get 07 02
1466
1467 result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1468 if (result) {
1469 usb_stor_dbg(us, "2nd send_command fails\n");
1470 return result;
1471 }
1472
1473 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1474 // get 07 00
1475
1476 result = sddr09_request_sense(us, data, 18);
1477 if (result == 0 && data[2] != 0) {
1478 int j;
1479 for (j=0; j<18; j++)
1480 printk(" %02X", data[j]);
1481 printk("\n");
1482 // get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1483 // 70: current command
1484 // sense key 0, sense code 0, extd sense code 0
1485 // additional transfer length * = sizeof(data) - 7
1486 // Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1487 // sense key 06, sense code 28: unit attention,
1488 // not ready to ready transition
1489 }
1490
1491 // test unit ready
1492
1493 return 0; /* not result */
1494}
1495
1496/*
1497 * Transport for the Microtech DPCM-USB
1498 */
1499static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1500{
1501 int ret;
1502
1503 usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun);
1504
1505 switch (srb->device->lun) {
1506 case 0:
1507
1508 /*
1509 * LUN 0 corresponds to the CompactFlash card reader.
1510 */
1511 ret = usb_stor_CB_transport(srb, us);
1512 break;
1513
1514 case 1:
1515
1516 /*
1517 * LUN 1 corresponds to the SmartMedia card reader.
1518 */
1519
1520 /*
1521 * Set the LUN to 0 (just in case).
1522 */
1523 srb->device->lun = 0;
1524 ret = sddr09_transport(srb, us);
1525 srb->device->lun = 1;
1526 break;
1527
1528 default:
1529 usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun);
1530 ret = USB_STOR_TRANSPORT_ERROR;
1531 break;
1532 }
1533 return ret;
1534}
1535
1536
1537/*
1538 * Transport for the Sandisk SDDR-09
1539 */
1540static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1541{
1542 static unsigned char sensekey = 0, sensecode = 0;
1543 static unsigned char havefakesense = 0;
1544 int result, i;
1545 unsigned char *ptr = us->iobuf;
1546 unsigned long capacity;
1547 unsigned int page, pages;
1548
1549 struct sddr09_card_info *info;
1550
1551 static unsigned char inquiry_response[8] = {
1552 0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1553 };
1554
1555 /* note: no block descriptor support */
1556 static unsigned char mode_page_01[19] = {
1557 0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1558 0x01, 0x0A,
1559 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1560 };
1561
1562 info = (struct sddr09_card_info *)us->extra;
1563
1564 if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1565 /* for a faked command, we have to follow with a faked sense */
1566 memset(ptr, 0, 18);
1567 ptr[0] = 0x70;
1568 ptr[2] = sensekey;
1569 ptr[7] = 11;
1570 ptr[12] = sensecode;
1571 usb_stor_set_xfer_buf(ptr, 18, srb);
1572 sensekey = sensecode = havefakesense = 0;
1573 return USB_STOR_TRANSPORT_GOOD;
1574 }
1575
1576 havefakesense = 1;
1577
1578 /* Dummy up a response for INQUIRY since SDDR09 doesn't
1579 respond to INQUIRY commands */
1580
1581 if (srb->cmnd[0] == INQUIRY) {
1582 memcpy(ptr, inquiry_response, 8);
1583 fill_inquiry_response(us, ptr, 36);
1584 return USB_STOR_TRANSPORT_GOOD;
1585 }
1586
1587 if (srb->cmnd[0] == READ_CAPACITY) {
1588 struct nand_flash_dev *cardinfo;
1589
1590 sddr09_get_wp(us, info); /* read WP bit */
1591
1592 cardinfo = sddr09_get_cardinfo(us, info->flags);
1593 if (!cardinfo) {
1594 /* probably no media */
1595 init_error:
1596 sensekey = 0x02; /* not ready */
1597 sensecode = 0x3a; /* medium not present */
1598 return USB_STOR_TRANSPORT_FAILED;
1599 }
1600
1601 info->capacity = (1 << cardinfo->chipshift);
1602 info->pageshift = cardinfo->pageshift;
1603 info->pagesize = (1 << info->pageshift);
1604 info->blockshift = cardinfo->blockshift;
1605 info->blocksize = (1 << info->blockshift);
1606 info->blockmask = info->blocksize - 1;
1607
1608 // map initialization, must follow get_cardinfo()
1609 if (sddr09_read_map(us)) {
1610 /* probably out of memory */
1611 goto init_error;
1612 }
1613
1614 // Report capacity
1615
1616 capacity = (info->lbact << info->blockshift) - 1;
1617
1618 ((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1619
1620 // Report page size
1621
1622 ((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1623 usb_stor_set_xfer_buf(ptr, 8, srb);
1624
1625 return USB_STOR_TRANSPORT_GOOD;
1626 }
1627
1628 if (srb->cmnd[0] == MODE_SENSE_10) {
1629 int modepage = (srb->cmnd[2] & 0x3F);
1630
1631 /* They ask for the Read/Write error recovery page,
1632 or for all pages. */
1633 /* %% We should check DBD %% */
1634 if (modepage == 0x01 || modepage == 0x3F) {
1635 usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
1636 modepage);
1637
1638 memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1639 ((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1640 ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1641 usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1642 return USB_STOR_TRANSPORT_GOOD;
1643 }
1644
1645 sensekey = 0x05; /* illegal request */
1646 sensecode = 0x24; /* invalid field in CDB */
1647 return USB_STOR_TRANSPORT_FAILED;
1648 }
1649
1650 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1651 return USB_STOR_TRANSPORT_GOOD;
1652
1653 havefakesense = 0;
1654
1655 if (srb->cmnd[0] == READ_10) {
1656
1657 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1658 page <<= 16;
1659 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1660 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1661
1662 usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
1663 page, pages);
1664
1665 result = sddr09_read_data(us, page, pages);
1666 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1667 USB_STOR_TRANSPORT_ERROR);
1668 }
1669
1670 if (srb->cmnd[0] == WRITE_10) {
1671
1672 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1673 page <<= 16;
1674 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1675 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1676
1677 usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
1678 page, pages);
1679
1680 result = sddr09_write_data(us, page, pages);
1681 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1682 USB_STOR_TRANSPORT_ERROR);
1683 }
1684
1685 /* catch-all for all other commands, except
1686 * pass TEST_UNIT_READY and REQUEST_SENSE through
1687 */
1688 if (srb->cmnd[0] != TEST_UNIT_READY &&
1689 srb->cmnd[0] != REQUEST_SENSE) {
1690 sensekey = 0x05; /* illegal request */
1691 sensecode = 0x20; /* invalid command */
1692 havefakesense = 1;
1693 return USB_STOR_TRANSPORT_FAILED;
1694 }
1695
1696 for (; srb->cmd_len<12; srb->cmd_len++)
1697 srb->cmnd[srb->cmd_len] = 0;
1698
1699 srb->cmnd[1] = LUNBITS;
1700
1701 ptr[0] = 0;
1702 for (i=0; i<12; i++)
1703 sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1704
1705 usb_stor_dbg(us, "Send control for command %s\n", ptr);
1706
1707 result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1708 if (result) {
1709 usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
1710 result);
1711 return USB_STOR_TRANSPORT_ERROR;
1712 }
1713
1714 if (scsi_bufflen(srb) == 0)
1715 return USB_STOR_TRANSPORT_GOOD;
1716
1717 if (srb->sc_data_direction == DMA_TO_DEVICE ||
1718 srb->sc_data_direction == DMA_FROM_DEVICE) {
1719 unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1720 ? us->send_bulk_pipe : us->recv_bulk_pipe;
1721
1722 usb_stor_dbg(us, "%s %d bytes\n",
1723 (srb->sc_data_direction == DMA_TO_DEVICE) ?
1724 "sending" : "receiving",
1725 scsi_bufflen(srb));
1726
1727 result = usb_stor_bulk_srb(us, pipe, srb);
1728
1729 return (result == USB_STOR_XFER_GOOD ?
1730 USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1731 }
1732
1733 return USB_STOR_TRANSPORT_GOOD;
1734}
1735
1736/*
1737 * Initialization routine for the sddr09 subdriver
1738 */
1739static int
1740usb_stor_sddr09_init(struct us_data *us) {
1741 return sddr09_common_init(us);
1742}
1743
1744static struct scsi_host_template sddr09_host_template;
1745
1746static int sddr09_probe(struct usb_interface *intf,
1747 const struct usb_device_id *id)
1748{
1749 struct us_data *us;
1750 int result;
1751
1752 result = usb_stor_probe1(&us, intf, id,
1753 (id - sddr09_usb_ids) + sddr09_unusual_dev_list,
1754 &sddr09_host_template);
1755 if (result)
1756 return result;
1757
1758 if (us->protocol == USB_PR_DPCM_USB) {
1759 us->transport_name = "Control/Bulk-EUSB/SDDR09";
1760 us->transport = dpcm_transport;
1761 us->transport_reset = usb_stor_CB_reset;
1762 us->max_lun = 1;
1763 } else {
1764 us->transport_name = "EUSB/SDDR09";
1765 us->transport = sddr09_transport;
1766 us->transport_reset = usb_stor_CB_reset;
1767 us->max_lun = 0;
1768 }
1769
1770 result = usb_stor_probe2(us);
1771 return result;
1772}
1773
1774static struct usb_driver sddr09_driver = {
1775 .name = DRV_NAME,
1776 .probe = sddr09_probe,
1777 .disconnect = usb_stor_disconnect,
1778 .suspend = usb_stor_suspend,
1779 .resume = usb_stor_resume,
1780 .reset_resume = usb_stor_reset_resume,
1781 .pre_reset = usb_stor_pre_reset,
1782 .post_reset = usb_stor_post_reset,
1783 .id_table = sddr09_usb_ids,
1784 .soft_unbind = 1,
1785 .no_dynamic_id = 1,
1786};
1787
1788module_usb_stor_driver(sddr09_driver, sddr09_host_template, DRV_NAME);