Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH MSIOF SPI Controller Interface
   4 *
   5 * Copyright (c) 2009 Magnus Damm
   6 * Copyright (C) 2014 Renesas Electronics Corporation
   7 * Copyright (C) 2014-2017 Glider bvba
 
 
 
 
   8 */
   9
  10#include <linux/bitmap.h>
  11#include <linux/clk.h>
  12#include <linux/completion.h>
  13#include <linux/delay.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/dmaengine.h>
  16#include <linux/err.h>
 
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/iopoll.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/platform_device.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/sh_dma.h>
  27
  28#include <linux/spi/sh_msiof.h>
  29#include <linux/spi/spi.h>
  30
  31#include <asm/unaligned.h>
  32
 
  33struct sh_msiof_chipdata {
  34	u32 bits_per_word_mask;
  35	u16 tx_fifo_size;
  36	u16 rx_fifo_size;
  37	u16 ctlr_flags;
  38	u16 min_div_pow;
  39};
  40
  41struct sh_msiof_spi_priv {
  42	struct spi_controller *ctlr;
  43	void __iomem *mapbase;
  44	struct clk *clk;
  45	struct platform_device *pdev;
 
  46	struct sh_msiof_spi_info *info;
  47	struct completion done;
  48	struct completion done_txdma;
  49	unsigned int tx_fifo_size;
  50	unsigned int rx_fifo_size;
  51	unsigned int min_div_pow;
  52	void *tx_dma_page;
  53	void *rx_dma_page;
  54	dma_addr_t tx_dma_addr;
  55	dma_addr_t rx_dma_addr;
  56	bool native_cs_inited;
  57	bool native_cs_high;
  58	bool slave_aborted;
  59};
  60
  61#define MAX_SS	3	/* Maximum number of native chip selects */
  62
  63#define SITMDR1	0x00	/* Transmit Mode Register 1 */
  64#define SITMDR2	0x04	/* Transmit Mode Register 2 */
  65#define SITMDR3	0x08	/* Transmit Mode Register 3 */
  66#define SIRMDR1	0x10	/* Receive Mode Register 1 */
  67#define SIRMDR2	0x14	/* Receive Mode Register 2 */
  68#define SIRMDR3	0x18	/* Receive Mode Register 3 */
  69#define SITSCR	0x20	/* Transmit Clock Select Register */
  70#define SIRSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
  71#define SICTR	0x28	/* Control Register */
  72#define SIFCTR	0x30	/* FIFO Control Register */
  73#define SISTR	0x40	/* Status Register */
  74#define SIIER	0x44	/* Interrupt Enable Register */
  75#define SITDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
  76#define SITDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
  77#define SITFDR	0x50	/* Transmit FIFO Data Register */
  78#define SIRDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
  79#define SIRDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
  80#define SIRFDR	0x60	/* Receive FIFO Data Register */
  81
  82/* SITMDR1 and SIRMDR1 */
  83#define SIMDR1_TRMD		BIT(31)		/* Transfer Mode (1 = Master mode) */
  84#define SIMDR1_SYNCMD_MASK	GENMASK(29, 28)	/* SYNC Mode */
  85#define SIMDR1_SYNCMD_SPI	(2 << 28)	/*   Level mode/SPI */
  86#define SIMDR1_SYNCMD_LR	(3 << 28)	/*   L/R mode */
  87#define SIMDR1_SYNCAC_SHIFT	25		/* Sync Polarity (1 = Active-low) */
  88#define SIMDR1_BITLSB_SHIFT	24		/* MSB/LSB First (1 = LSB first) */
  89#define SIMDR1_DTDL_SHIFT	20		/* Data Pin Bit Delay for MSIOF_SYNC */
  90#define SIMDR1_SYNCDL_SHIFT	16		/* Frame Sync Signal Timing Delay */
  91#define SIMDR1_FLD_MASK		GENMASK(3, 2)	/* Frame Sync Signal Interval (0-3) */
  92#define SIMDR1_FLD_SHIFT	2
  93#define SIMDR1_XXSTP		BIT(0)		/* Transmission/Reception Stop on FIFO */
  94/* SITMDR1 */
  95#define SITMDR1_PCON		BIT(30)		/* Transfer Signal Connection */
  96#define SITMDR1_SYNCCH_MASK	GENMASK(27, 26)	/* Sync Signal Channel Select */
  97#define SITMDR1_SYNCCH_SHIFT	26		/* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
  98
  99/* SITMDR2 and SIRMDR2 */
 100#define SIMDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
 101#define SIMDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
 102#define SIMDR2_GRPMASK1		BIT(0)		/* Group Output Mask 1 (SH, A1) */
 103
 104/* SITSCR and SIRSCR */
 105#define SISCR_BRPS_MASK		GENMASK(12, 8)	/* Prescaler Setting (1-32) */
 106#define SISCR_BRPS(i)		(((i) - 1) << 8)
 107#define SISCR_BRDV_MASK		GENMASK(2, 0)	/* Baud Rate Generator's Division Ratio */
 108#define SISCR_BRDV_DIV_2	0
 109#define SISCR_BRDV_DIV_4	1
 110#define SISCR_BRDV_DIV_8	2
 111#define SISCR_BRDV_DIV_16	3
 112#define SISCR_BRDV_DIV_32	4
 113#define SISCR_BRDV_DIV_1	7
 114
 115/* SICTR */
 116#define SICTR_TSCKIZ_MASK	GENMASK(31, 30)	/* Transmit Clock I/O Polarity Select */
 117#define SICTR_TSCKIZ_SCK	BIT(31)		/*   Disable SCK when TX disabled */
 118#define SICTR_TSCKIZ_POL_SHIFT	30		/*   Transmit Clock Polarity */
 119#define SICTR_RSCKIZ_MASK	GENMASK(29, 28) /* Receive Clock Polarity Select */
 120#define SICTR_RSCKIZ_SCK	BIT(29)		/*   Must match CTR_TSCKIZ_SCK */
 121#define SICTR_RSCKIZ_POL_SHIFT	28		/*   Receive Clock Polarity */
 122#define SICTR_TEDG_SHIFT	27		/* Transmit Timing (1 = falling edge) */
 123#define SICTR_REDG_SHIFT	26		/* Receive Timing (1 = falling edge) */
 124#define SICTR_TXDIZ_MASK	GENMASK(23, 22)	/* Pin Output When TX is Disabled */
 125#define SICTR_TXDIZ_LOW		(0 << 22)	/*   0 */
 126#define SICTR_TXDIZ_HIGH	(1 << 22)	/*   1 */
 127#define SICTR_TXDIZ_HIZ		(2 << 22)	/*   High-impedance */
 128#define SICTR_TSCKE		BIT(15)		/* Transmit Serial Clock Output Enable */
 129#define SICTR_TFSE		BIT(14)		/* Transmit Frame Sync Signal Output Enable */
 130#define SICTR_TXE		BIT(9)		/* Transmit Enable */
 131#define SICTR_RXE		BIT(8)		/* Receive Enable */
 132#define SICTR_TXRST		BIT(1)		/* Transmit Reset */
 133#define SICTR_RXRST		BIT(0)		/* Receive Reset */
 134
 135/* SIFCTR */
 136#define SIFCTR_TFWM_MASK	GENMASK(31, 29)	/* Transmit FIFO Watermark */
 137#define SIFCTR_TFWM_64		(0 << 29)	/*  Transfer Request when 64 empty stages */
 138#define SIFCTR_TFWM_32		(1 << 29)	/*  Transfer Request when 32 empty stages */
 139#define SIFCTR_TFWM_24		(2 << 29)	/*  Transfer Request when 24 empty stages */
 140#define SIFCTR_TFWM_16		(3 << 29)	/*  Transfer Request when 16 empty stages */
 141#define SIFCTR_TFWM_12		(4 << 29)	/*  Transfer Request when 12 empty stages */
 142#define SIFCTR_TFWM_8		(5 << 29)	/*  Transfer Request when 8 empty stages */
 143#define SIFCTR_TFWM_4		(6 << 29)	/*  Transfer Request when 4 empty stages */
 144#define SIFCTR_TFWM_1		(7 << 29)	/*  Transfer Request when 1 empty stage */
 145#define SIFCTR_TFUA_MASK	GENMASK(26, 20) /* Transmit FIFO Usable Area */
 146#define SIFCTR_TFUA_SHIFT	20
 147#define SIFCTR_TFUA(i)		((i) << SIFCTR_TFUA_SHIFT)
 148#define SIFCTR_RFWM_MASK	GENMASK(15, 13)	/* Receive FIFO Watermark */
 149#define SIFCTR_RFWM_1		(0 << 13)	/*  Transfer Request when 1 valid stages */
 150#define SIFCTR_RFWM_4		(1 << 13)	/*  Transfer Request when 4 valid stages */
 151#define SIFCTR_RFWM_8		(2 << 13)	/*  Transfer Request when 8 valid stages */
 152#define SIFCTR_RFWM_16		(3 << 13)	/*  Transfer Request when 16 valid stages */
 153#define SIFCTR_RFWM_32		(4 << 13)	/*  Transfer Request when 32 valid stages */
 154#define SIFCTR_RFWM_64		(5 << 13)	/*  Transfer Request when 64 valid stages */
 155#define SIFCTR_RFWM_128		(6 << 13)	/*  Transfer Request when 128 valid stages */
 156#define SIFCTR_RFWM_256		(7 << 13)	/*  Transfer Request when 256 valid stages */
 157#define SIFCTR_RFUA_MASK	GENMASK(12, 4)	/* Receive FIFO Usable Area (0x40 = full) */
 158#define SIFCTR_RFUA_SHIFT	4
 159#define SIFCTR_RFUA(i)		((i) << SIFCTR_RFUA_SHIFT)
 160
 161/* SISTR */
 162#define SISTR_TFEMP		BIT(29) /* Transmit FIFO Empty */
 163#define SISTR_TDREQ		BIT(28) /* Transmit Data Transfer Request */
 164#define SISTR_TEOF		BIT(23) /* Frame Transmission End */
 165#define SISTR_TFSERR		BIT(21) /* Transmit Frame Synchronization Error */
 166#define SISTR_TFOVF		BIT(20) /* Transmit FIFO Overflow */
 167#define SISTR_TFUDF		BIT(19) /* Transmit FIFO Underflow */
 168#define SISTR_RFFUL		BIT(13) /* Receive FIFO Full */
 169#define SISTR_RDREQ		BIT(12) /* Receive Data Transfer Request */
 170#define SISTR_REOF		BIT(7)  /* Frame Reception End */
 171#define SISTR_RFSERR		BIT(5)  /* Receive Frame Synchronization Error */
 172#define SISTR_RFUDF		BIT(4)  /* Receive FIFO Underflow */
 173#define SISTR_RFOVF		BIT(3)  /* Receive FIFO Overflow */
 174
 175/* SIIER */
 176#define SIIER_TDMAE		BIT(31) /* Transmit Data DMA Transfer Req. Enable */
 177#define SIIER_TFEMPE		BIT(29) /* Transmit FIFO Empty Enable */
 178#define SIIER_TDREQE		BIT(28) /* Transmit Data Transfer Request Enable */
 179#define SIIER_TEOFE		BIT(23) /* Frame Transmission End Enable */
 180#define SIIER_TFSERRE		BIT(21) /* Transmit Frame Sync Error Enable */
 181#define SIIER_TFOVFE		BIT(20) /* Transmit FIFO Overflow Enable */
 182#define SIIER_TFUDFE		BIT(19) /* Transmit FIFO Underflow Enable */
 183#define SIIER_RDMAE		BIT(15) /* Receive Data DMA Transfer Req. Enable */
 184#define SIIER_RFFULE		BIT(13) /* Receive FIFO Full Enable */
 185#define SIIER_RDREQE		BIT(12) /* Receive Data Transfer Request Enable */
 186#define SIIER_REOFE		BIT(7)  /* Frame Reception End Enable */
 187#define SIIER_RFSERRE		BIT(5)  /* Receive Frame Sync Error Enable */
 188#define SIIER_RFUDFE		BIT(4)  /* Receive FIFO Underflow Enable */
 189#define SIIER_RFOVFE		BIT(3)  /* Receive FIFO Overflow Enable */
 190
 191
 192static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
 193{
 194	switch (reg_offs) {
 195	case SITSCR:
 196	case SIRSCR:
 197		return ioread16(p->mapbase + reg_offs);
 198	default:
 199		return ioread32(p->mapbase + reg_offs);
 200	}
 201}
 202
 203static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
 204			   u32 value)
 205{
 206	switch (reg_offs) {
 207	case SITSCR:
 208	case SIRSCR:
 209		iowrite16(value, p->mapbase + reg_offs);
 210		break;
 211	default:
 212		iowrite32(value, p->mapbase + reg_offs);
 213		break;
 214	}
 215}
 216
 217static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
 218				    u32 clr, u32 set)
 219{
 220	u32 mask = clr | set;
 221	u32 data;
 
 222
 223	data = sh_msiof_read(p, SICTR);
 224	data &= ~clr;
 225	data |= set;
 226	sh_msiof_write(p, SICTR, data);
 
 
 
 
 
 
 
 227
 228	return readl_poll_timeout_atomic(p->mapbase + SICTR, data,
 229					 (data & mask) == set, 1, 100);
 230}
 231
 232static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
 233{
 234	struct sh_msiof_spi_priv *p = data;
 235
 236	/* just disable the interrupt and wake up */
 237	sh_msiof_write(p, SIIER, 0);
 238	complete(&p->done);
 239
 240	return IRQ_HANDLED;
 241}
 242
 243static void sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv *p)
 244{
 245	u32 mask = SICTR_TXRST | SICTR_RXRST;
 246	u32 data;
 247
 248	data = sh_msiof_read(p, SICTR);
 249	data |= mask;
 250	sh_msiof_write(p, SICTR, data);
 251
 252	readl_poll_timeout_atomic(p->mapbase + SICTR, data, !(data & mask), 1,
 253				  100);
 254}
 255
 256static const u32 sh_msiof_spi_div_array[] = {
 257	SISCR_BRDV_DIV_1, SISCR_BRDV_DIV_2, SISCR_BRDV_DIV_4,
 258	SISCR_BRDV_DIV_8, SISCR_BRDV_DIV_16, SISCR_BRDV_DIV_32,
 259};
 260
 261static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
 262				      unsigned long parent_rate, u32 spi_hz)
 263{
 264	unsigned long div;
 265	u32 brps, scr;
 266	unsigned int div_pow = p->min_div_pow;
 267
 268	if (!spi_hz || !parent_rate) {
 269		WARN(1, "Invalid clock rate parameters %lu and %u\n",
 270		     parent_rate, spi_hz);
 271		return;
 272	}
 273
 274	div = DIV_ROUND_UP(parent_rate, spi_hz);
 275	if (div <= 1024) {
 276		/* SISCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
 277		if (!div_pow && div <= 32 && div > 2)
 278			div_pow = 1;
 279
 280		if (div_pow)
 281			brps = (div + 1) >> div_pow;
 282		else
 283			brps = div;
 284
 285		for (; brps > 32; div_pow++)
 286			brps = (brps + 1) >> 1;
 287	} else {
 288		/* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
 289		dev_err(&p->pdev->dev,
 290			"Requested SPI transfer rate %d is too low\n", spi_hz);
 291		div_pow = 5;
 292		brps = 32;
 293	}
 294
 295	scr = sh_msiof_spi_div_array[div_pow] | SISCR_BRPS(brps);
 296	sh_msiof_write(p, SITSCR, scr);
 297	if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
 298		sh_msiof_write(p, SIRSCR, scr);
 
 
 299}
 300
 301static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
 302{
 303	/*
 304	 * DTDL/SYNCDL bit	: p->info->dtdl or p->info->syncdl
 305	 * b'000		: 0
 306	 * b'001		: 100
 307	 * b'010		: 200
 308	 * b'011 (SYNCDL only)	: 300
 309	 * b'101		: 50
 310	 * b'110		: 150
 311	 */
 312	if (dtdl_or_syncdl % 100)
 313		return dtdl_or_syncdl / 100 + 5;
 314	else
 315		return dtdl_or_syncdl / 100;
 316}
 317
 318static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
 319{
 320	u32 val;
 321
 322	if (!p->info)
 323		return 0;
 324
 325	/* check if DTDL and SYNCDL is allowed value */
 326	if (p->info->dtdl > 200 || p->info->syncdl > 300) {
 327		dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
 328		return 0;
 329	}
 330
 331	/* check if the sum of DTDL and SYNCDL becomes an integer value  */
 332	if ((p->info->dtdl + p->info->syncdl) % 100) {
 333		dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
 334		return 0;
 335	}
 336
 337	val = sh_msiof_get_delay_bit(p->info->dtdl) << SIMDR1_DTDL_SHIFT;
 338	val |= sh_msiof_get_delay_bit(p->info->syncdl) << SIMDR1_SYNCDL_SHIFT;
 339
 340	return val;
 341}
 342
 343static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
 344				      u32 cpol, u32 cpha,
 345				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
 346{
 347	u32 tmp;
 348	int edge;
 349
 350	/*
 351	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
 352	 *    0    0         10     10    1    1
 353	 *    0    1         10     10    0    0
 354	 *    1    0         11     11    0    0
 355	 *    1    1         11     11    1    1
 356	 */
 357	tmp = SIMDR1_SYNCMD_SPI | 1 << SIMDR1_FLD_SHIFT | SIMDR1_XXSTP;
 358	tmp |= !cs_high << SIMDR1_SYNCAC_SHIFT;
 359	tmp |= lsb_first << SIMDR1_BITLSB_SHIFT;
 360	tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
 361	if (spi_controller_is_slave(p->ctlr)) {
 362		sh_msiof_write(p, SITMDR1, tmp | SITMDR1_PCON);
 363	} else {
 364		sh_msiof_write(p, SITMDR1,
 365			       tmp | SIMDR1_TRMD | SITMDR1_PCON |
 366			       (ss < MAX_SS ? ss : 0) << SITMDR1_SYNCCH_SHIFT);
 367	}
 368	if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) {
 369		/* These bits are reserved if RX needs TX */
 370		tmp &= ~0x0000ffff;
 371	}
 372	sh_msiof_write(p, SIRMDR1, tmp);
 373
 374	tmp = 0;
 375	tmp |= SICTR_TSCKIZ_SCK | cpol << SICTR_TSCKIZ_POL_SHIFT;
 376	tmp |= SICTR_RSCKIZ_SCK | cpol << SICTR_RSCKIZ_POL_SHIFT;
 377
 378	edge = cpol ^ !cpha;
 379
 380	tmp |= edge << SICTR_TEDG_SHIFT;
 381	tmp |= edge << SICTR_REDG_SHIFT;
 382	tmp |= tx_hi_z ? SICTR_TXDIZ_HIZ : SICTR_TXDIZ_LOW;
 383	sh_msiof_write(p, SICTR, tmp);
 384}
 385
 386static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
 387				       const void *tx_buf, void *rx_buf,
 388				       u32 bits, u32 words)
 389{
 390	u32 dr2 = SIMDR2_BITLEN1(bits) | SIMDR2_WDLEN1(words);
 391
 392	if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
 393		sh_msiof_write(p, SITMDR2, dr2);
 394	else
 395		sh_msiof_write(p, SITMDR2, dr2 | SIMDR2_GRPMASK1);
 396
 397	if (rx_buf)
 398		sh_msiof_write(p, SIRMDR2, dr2);
 399}
 400
 401static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
 402{
 403	sh_msiof_write(p, SISTR,
 404		       sh_msiof_read(p, SISTR) & ~(SISTR_TDREQ | SISTR_RDREQ));
 405}
 406
 407static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
 408				      const void *tx_buf, int words, int fs)
 409{
 410	const u8 *buf_8 = tx_buf;
 411	int k;
 412
 413	for (k = 0; k < words; k++)
 414		sh_msiof_write(p, SITFDR, buf_8[k] << fs);
 415}
 416
 417static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
 418				       const void *tx_buf, int words, int fs)
 419{
 420	const u16 *buf_16 = tx_buf;
 421	int k;
 422
 423	for (k = 0; k < words; k++)
 424		sh_msiof_write(p, SITFDR, buf_16[k] << fs);
 425}
 426
 427static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
 428					const void *tx_buf, int words, int fs)
 429{
 430	const u16 *buf_16 = tx_buf;
 431	int k;
 432
 433	for (k = 0; k < words; k++)
 434		sh_msiof_write(p, SITFDR, get_unaligned(&buf_16[k]) << fs);
 435}
 436
 437static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
 438				       const void *tx_buf, int words, int fs)
 439{
 440	const u32 *buf_32 = tx_buf;
 441	int k;
 442
 443	for (k = 0; k < words; k++)
 444		sh_msiof_write(p, SITFDR, buf_32[k] << fs);
 445}
 446
 447static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
 448					const void *tx_buf, int words, int fs)
 449{
 450	const u32 *buf_32 = tx_buf;
 451	int k;
 452
 453	for (k = 0; k < words; k++)
 454		sh_msiof_write(p, SITFDR, get_unaligned(&buf_32[k]) << fs);
 455}
 456
 457static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
 458					const void *tx_buf, int words, int fs)
 459{
 460	const u32 *buf_32 = tx_buf;
 461	int k;
 462
 463	for (k = 0; k < words; k++)
 464		sh_msiof_write(p, SITFDR, swab32(buf_32[k] << fs));
 465}
 466
 467static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
 468					 const void *tx_buf, int words, int fs)
 469{
 470	const u32 *buf_32 = tx_buf;
 471	int k;
 472
 473	for (k = 0; k < words; k++)
 474		sh_msiof_write(p, SITFDR, swab32(get_unaligned(&buf_32[k]) << fs));
 475}
 476
 477static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
 478				     void *rx_buf, int words, int fs)
 479{
 480	u8 *buf_8 = rx_buf;
 481	int k;
 482
 483	for (k = 0; k < words; k++)
 484		buf_8[k] = sh_msiof_read(p, SIRFDR) >> fs;
 485}
 486
 487static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
 488				      void *rx_buf, int words, int fs)
 489{
 490	u16 *buf_16 = rx_buf;
 491	int k;
 492
 493	for (k = 0; k < words; k++)
 494		buf_16[k] = sh_msiof_read(p, SIRFDR) >> fs;
 495}
 496
 497static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
 498				       void *rx_buf, int words, int fs)
 499{
 500	u16 *buf_16 = rx_buf;
 501	int k;
 502
 503	for (k = 0; k < words; k++)
 504		put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_16[k]);
 505}
 506
 507static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
 508				      void *rx_buf, int words, int fs)
 509{
 510	u32 *buf_32 = rx_buf;
 511	int k;
 512
 513	for (k = 0; k < words; k++)
 514		buf_32[k] = sh_msiof_read(p, SIRFDR) >> fs;
 515}
 516
 517static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
 518				       void *rx_buf, int words, int fs)
 519{
 520	u32 *buf_32 = rx_buf;
 521	int k;
 522
 523	for (k = 0; k < words; k++)
 524		put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_32[k]);
 525}
 526
 527static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
 528				       void *rx_buf, int words, int fs)
 529{
 530	u32 *buf_32 = rx_buf;
 531	int k;
 532
 533	for (k = 0; k < words; k++)
 534		buf_32[k] = swab32(sh_msiof_read(p, SIRFDR) >> fs);
 535}
 536
 537static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
 538				       void *rx_buf, int words, int fs)
 539{
 540	u32 *buf_32 = rx_buf;
 541	int k;
 542
 543	for (k = 0; k < words; k++)
 544		put_unaligned(swab32(sh_msiof_read(p, SIRFDR) >> fs), &buf_32[k]);
 545}
 546
 547static int sh_msiof_spi_setup(struct spi_device *spi)
 548{
 549	struct sh_msiof_spi_priv *p =
 550		spi_controller_get_devdata(spi->controller);
 551	u32 clr, set, tmp;
 552
 553	if (spi->cs_gpiod || spi_controller_is_slave(p->ctlr))
 554		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555
 556	if (p->native_cs_inited &&
 557	    (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
 558		return 0;
 559
 560	/* Configure native chip select mode/polarity early */
 561	clr = SIMDR1_SYNCMD_MASK;
 562	set = SIMDR1_SYNCMD_SPI;
 563	if (spi->mode & SPI_CS_HIGH)
 564		clr |= BIT(SIMDR1_SYNCAC_SHIFT);
 565	else
 566		set |= BIT(SIMDR1_SYNCAC_SHIFT);
 567	pm_runtime_get_sync(&p->pdev->dev);
 568	tmp = sh_msiof_read(p, SITMDR1) & ~clr;
 569	sh_msiof_write(p, SITMDR1, tmp | set | SIMDR1_TRMD | SITMDR1_PCON);
 570	tmp = sh_msiof_read(p, SIRMDR1) & ~clr;
 571	sh_msiof_write(p, SIRMDR1, tmp | set);
 572	pm_runtime_put(&p->pdev->dev);
 573	p->native_cs_high = spi->mode & SPI_CS_HIGH;
 574	p->native_cs_inited = true;
 575	return 0;
 576}
 577
 578static int sh_msiof_prepare_message(struct spi_controller *ctlr,
 579				    struct spi_message *msg)
 580{
 581	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
 582	const struct spi_device *spi = msg->spi;
 583	u32 ss, cs_high;
 584
 585	/* Configure pins before asserting CS */
 586	if (spi->cs_gpiod) {
 587		ss = ctlr->unused_native_cs;
 588		cs_high = p->native_cs_high;
 589	} else {
 590		ss = spi->chip_select;
 591		cs_high = !!(spi->mode & SPI_CS_HIGH);
 592	}
 593	sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
 594				  !!(spi->mode & SPI_CPHA),
 595				  !!(spi->mode & SPI_3WIRE),
 596				  !!(spi->mode & SPI_LSB_FIRST), cs_high);
 
 597	return 0;
 598}
 599
 600static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
 601{
 602	bool slave = spi_controller_is_slave(p->ctlr);
 603	int ret = 0;
 604
 605	/* setup clock and rx/tx signals */
 606	if (!slave)
 607		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TSCKE);
 608	if (rx_buf && !ret)
 609		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_RXE);
 610	if (!ret)
 611		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TXE);
 612
 613	/* start by setting frame bit */
 614	if (!ret && !slave)
 615		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TFSE);
 616
 617	return ret;
 618}
 619
 620static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
 621{
 622	bool slave = spi_controller_is_slave(p->ctlr);
 623	int ret = 0;
 624
 625	/* shut down frame, rx/tx and clock signals */
 626	if (!slave)
 627		ret = sh_msiof_modify_ctr_wait(p, SICTR_TFSE, 0);
 628	if (!ret)
 629		ret = sh_msiof_modify_ctr_wait(p, SICTR_TXE, 0);
 630	if (rx_buf && !ret)
 631		ret = sh_msiof_modify_ctr_wait(p, SICTR_RXE, 0);
 632	if (!ret && !slave)
 633		ret = sh_msiof_modify_ctr_wait(p, SICTR_TSCKE, 0);
 634
 635	return ret;
 636}
 637
 638static int sh_msiof_slave_abort(struct spi_controller *ctlr)
 639{
 640	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
 641
 642	p->slave_aborted = true;
 643	complete(&p->done);
 644	complete(&p->done_txdma);
 645	return 0;
 646}
 647
 648static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
 649					struct completion *x)
 650{
 651	if (spi_controller_is_slave(p->ctlr)) {
 652		if (wait_for_completion_interruptible(x) ||
 653		    p->slave_aborted) {
 654			dev_dbg(&p->pdev->dev, "interrupted\n");
 655			return -EINTR;
 656		}
 657	} else {
 658		if (!wait_for_completion_timeout(x, HZ)) {
 659			dev_err(&p->pdev->dev, "timeout\n");
 660			return -ETIMEDOUT;
 661		}
 662	}
 663
 664	return 0;
 665}
 666
 667static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
 668				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
 669						  const void *, int, int),
 670				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
 671						  void *, int, int),
 672				  const void *tx_buf, void *rx_buf,
 673				  int words, int bits)
 674{
 675	int fifo_shift;
 676	int ret;
 677
 678	/* limit maximum word transfer to rx/tx fifo size */
 679	if (tx_buf)
 680		words = min_t(int, words, p->tx_fifo_size);
 681	if (rx_buf)
 682		words = min_t(int, words, p->rx_fifo_size);
 683
 684	/* the fifo contents need shifting */
 685	fifo_shift = 32 - bits;
 686
 687	/* default FIFO watermarks for PIO */
 688	sh_msiof_write(p, SIFCTR, 0);
 689
 690	/* setup msiof transfer mode registers */
 691	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
 692	sh_msiof_write(p, SIIER, SIIER_TEOFE | SIIER_REOFE);
 693
 694	/* write tx fifo */
 695	if (tx_buf)
 696		tx_fifo(p, tx_buf, words, fifo_shift);
 697
 698	reinit_completion(&p->done);
 699	p->slave_aborted = false;
 700
 701	ret = sh_msiof_spi_start(p, rx_buf);
 702	if (ret) {
 703		dev_err(&p->pdev->dev, "failed to start hardware\n");
 704		goto stop_ier;
 705	}
 706
 707	/* wait for tx fifo to be emptied / rx fifo to be filled */
 708	ret = sh_msiof_wait_for_completion(p, &p->done);
 709	if (ret)
 
 710		goto stop_reset;
 
 711
 712	/* read rx fifo */
 713	if (rx_buf)
 714		rx_fifo(p, rx_buf, words, fifo_shift);
 715
 716	/* clear status bits */
 717	sh_msiof_reset_str(p);
 718
 719	ret = sh_msiof_spi_stop(p, rx_buf);
 720	if (ret) {
 721		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
 722		return ret;
 723	}
 724
 725	return words;
 726
 727stop_reset:
 728	sh_msiof_reset_str(p);
 729	sh_msiof_spi_stop(p, rx_buf);
 730stop_ier:
 731	sh_msiof_write(p, SIIER, 0);
 732	return ret;
 733}
 734
 735static void sh_msiof_dma_complete(void *arg)
 736{
 737	complete(arg);
 
 
 
 738}
 739
 740static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
 741			     void *rx, unsigned int len)
 742{
 743	u32 ier_bits = 0;
 744	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
 745	dma_cookie_t cookie;
 746	int ret;
 747
 748	/* First prepare and submit the DMA request(s), as this may fail */
 749	if (rx) {
 750		ier_bits |= SIIER_RDREQE | SIIER_RDMAE;
 751		desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx,
 752					p->rx_dma_addr, len, DMA_DEV_TO_MEM,
 753					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 754		if (!desc_rx)
 755			return -EAGAIN;
 756
 757		desc_rx->callback = sh_msiof_dma_complete;
 758		desc_rx->callback_param = &p->done;
 759		cookie = dmaengine_submit(desc_rx);
 760		if (dma_submit_error(cookie))
 761			return cookie;
 762	}
 763
 764	if (tx) {
 765		ier_bits |= SIIER_TDREQE | SIIER_TDMAE;
 766		dma_sync_single_for_device(p->ctlr->dma_tx->device->dev,
 767					   p->tx_dma_addr, len, DMA_TO_DEVICE);
 768		desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx,
 769					p->tx_dma_addr, len, DMA_MEM_TO_DEV,
 770					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 771		if (!desc_tx) {
 772			ret = -EAGAIN;
 773			goto no_dma_tx;
 774		}
 775
 776		desc_tx->callback = sh_msiof_dma_complete;
 777		desc_tx->callback_param = &p->done_txdma;
 
 
 
 
 
 778		cookie = dmaengine_submit(desc_tx);
 779		if (dma_submit_error(cookie)) {
 780			ret = cookie;
 781			goto no_dma_tx;
 782		}
 783	}
 784
 785	/* 1 stage FIFO watermarks for DMA */
 786	sh_msiof_write(p, SIFCTR, SIFCTR_TFWM_1 | SIFCTR_RFWM_1);
 787
 788	/* setup msiof transfer mode registers (32-bit words) */
 789	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
 790
 791	sh_msiof_write(p, SIIER, ier_bits);
 792
 793	reinit_completion(&p->done);
 794	if (tx)
 795		reinit_completion(&p->done_txdma);
 796	p->slave_aborted = false;
 797
 798	/* Now start DMA */
 799	if (rx)
 800		dma_async_issue_pending(p->ctlr->dma_rx);
 801	if (tx)
 802		dma_async_issue_pending(p->ctlr->dma_tx);
 803
 804	ret = sh_msiof_spi_start(p, rx);
 805	if (ret) {
 806		dev_err(&p->pdev->dev, "failed to start hardware\n");
 807		goto stop_dma;
 808	}
 809
 810	if (tx) {
 811		/* wait for tx DMA completion */
 812		ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
 813		if (ret)
 814			goto stop_reset;
 815	}
 816
 817	if (rx) {
 818		/* wait for rx DMA completion */
 819		ret = sh_msiof_wait_for_completion(p, &p->done);
 820		if (ret)
 821			goto stop_reset;
 822
 823		sh_msiof_write(p, SIIER, 0);
 824	} else {
 825		/* wait for tx fifo to be emptied */
 826		sh_msiof_write(p, SIIER, SIIER_TEOFE);
 827		ret = sh_msiof_wait_for_completion(p, &p->done);
 828		if (ret)
 829			goto stop_reset;
 830	}
 831
 832	/* clear status bits */
 833	sh_msiof_reset_str(p);
 834
 835	ret = sh_msiof_spi_stop(p, rx);
 836	if (ret) {
 837		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
 838		return ret;
 839	}
 840
 841	if (rx)
 842		dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev,
 843					p->rx_dma_addr, len, DMA_FROM_DEVICE);
 
 844
 845	return 0;
 846
 847stop_reset:
 848	sh_msiof_reset_str(p);
 849	sh_msiof_spi_stop(p, rx);
 850stop_dma:
 851	if (tx)
 852		dmaengine_terminate_all(p->ctlr->dma_tx);
 853no_dma_tx:
 854	if (rx)
 855		dmaengine_terminate_all(p->ctlr->dma_rx);
 856	sh_msiof_write(p, SIIER, 0);
 857	return ret;
 858}
 859
 860static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
 861{
 862	/* src or dst can be unaligned, but not both */
 863	if ((unsigned long)src & 3) {
 864		while (words--) {
 865			*dst++ = swab32(get_unaligned(src));
 866			src++;
 867		}
 868	} else if ((unsigned long)dst & 3) {
 869		while (words--) {
 870			put_unaligned(swab32(*src++), dst);
 871			dst++;
 872		}
 873	} else {
 874		while (words--)
 875			*dst++ = swab32(*src++);
 876	}
 877}
 878
 879static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
 880{
 881	/* src or dst can be unaligned, but not both */
 882	if ((unsigned long)src & 3) {
 883		while (words--) {
 884			*dst++ = swahw32(get_unaligned(src));
 885			src++;
 886		}
 887	} else if ((unsigned long)dst & 3) {
 888		while (words--) {
 889			put_unaligned(swahw32(*src++), dst);
 890			dst++;
 891		}
 892	} else {
 893		while (words--)
 894			*dst++ = swahw32(*src++);
 895	}
 896}
 897
 898static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
 899{
 900	memcpy(dst, src, words * 4);
 901}
 902
 903static int sh_msiof_transfer_one(struct spi_controller *ctlr,
 904				 struct spi_device *spi,
 905				 struct spi_transfer *t)
 906{
 907	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
 908	void (*copy32)(u32 *, const u32 *, unsigned int);
 909	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
 910	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
 911	const void *tx_buf = t->tx_buf;
 912	void *rx_buf = t->rx_buf;
 913	unsigned int len = t->len;
 914	unsigned int bits = t->bits_per_word;
 915	unsigned int bytes_per_word;
 916	unsigned int words;
 917	int n;
 918	bool swab;
 919	int ret;
 920
 921	/* reset registers */
 922	sh_msiof_spi_reset_regs(p);
 923
 924	/* setup clocks (clock already enabled in chipselect()) */
 925	if (!spi_controller_is_slave(p->ctlr))
 926		sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
 927
 928	while (ctlr->dma_tx && len > 15) {
 929		/*
 930		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
 931		 *  words, with byte resp. word swapping.
 932		 */
 933		unsigned int l = 0;
 934
 935		if (tx_buf)
 936			l = min(round_down(len, 4), p->tx_fifo_size * 4);
 937		if (rx_buf)
 938			l = min(round_down(len, 4), p->rx_fifo_size * 4);
 939
 940		if (bits <= 8) {
 
 
 941			copy32 = copy_bswap32;
 942		} else if (bits <= 16) {
 
 
 943			copy32 = copy_wswap32;
 944		} else {
 945			copy32 = copy_plain32;
 946		}
 947
 948		if (tx_buf)
 949			copy32(p->tx_dma_page, tx_buf, l / 4);
 950
 951		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
 952		if (ret == -EAGAIN) {
 953			dev_warn_once(&p->pdev->dev,
 954				"DMA not available, falling back to PIO\n");
 
 955			break;
 956		}
 957		if (ret)
 958			return ret;
 959
 960		if (rx_buf) {
 961			copy32(rx_buf, p->rx_dma_page, l / 4);
 962			rx_buf += l;
 963		}
 964		if (tx_buf)
 965			tx_buf += l;
 966
 967		len -= l;
 968		if (!len)
 969			return 0;
 970	}
 971
 972	if (bits <= 8 && len > 15) {
 973		bits = 32;
 974		swab = true;
 975	} else {
 976		swab = false;
 977	}
 978
 979	/* setup bytes per word and fifo read/write functions */
 980	if (bits <= 8) {
 981		bytes_per_word = 1;
 982		tx_fifo = sh_msiof_spi_write_fifo_8;
 983		rx_fifo = sh_msiof_spi_read_fifo_8;
 984	} else if (bits <= 16) {
 985		bytes_per_word = 2;
 986		if ((unsigned long)tx_buf & 0x01)
 987			tx_fifo = sh_msiof_spi_write_fifo_16u;
 988		else
 989			tx_fifo = sh_msiof_spi_write_fifo_16;
 990
 991		if ((unsigned long)rx_buf & 0x01)
 992			rx_fifo = sh_msiof_spi_read_fifo_16u;
 993		else
 994			rx_fifo = sh_msiof_spi_read_fifo_16;
 995	} else if (swab) {
 996		bytes_per_word = 4;
 997		if ((unsigned long)tx_buf & 0x03)
 998			tx_fifo = sh_msiof_spi_write_fifo_s32u;
 999		else
1000			tx_fifo = sh_msiof_spi_write_fifo_s32;
1001
1002		if ((unsigned long)rx_buf & 0x03)
1003			rx_fifo = sh_msiof_spi_read_fifo_s32u;
1004		else
1005			rx_fifo = sh_msiof_spi_read_fifo_s32;
1006	} else {
1007		bytes_per_word = 4;
1008		if ((unsigned long)tx_buf & 0x03)
1009			tx_fifo = sh_msiof_spi_write_fifo_32u;
1010		else
1011			tx_fifo = sh_msiof_spi_write_fifo_32;
1012
1013		if ((unsigned long)rx_buf & 0x03)
1014			rx_fifo = sh_msiof_spi_read_fifo_32u;
1015		else
1016			rx_fifo = sh_msiof_spi_read_fifo_32;
1017	}
1018
1019	/* transfer in fifo sized chunks */
1020	words = len / bytes_per_word;
1021
1022	while (words > 0) {
1023		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1024					   words, bits);
1025		if (n < 0)
1026			return n;
1027
1028		if (tx_buf)
1029			tx_buf += n * bytes_per_word;
1030		if (rx_buf)
1031			rx_buf += n * bytes_per_word;
1032		words -= n;
1033
1034		if (words == 0 && (len % bytes_per_word)) {
1035			words = len % bytes_per_word;
1036			bits = t->bits_per_word;
1037			bytes_per_word = 1;
1038			tx_fifo = sh_msiof_spi_write_fifo_8;
1039			rx_fifo = sh_msiof_spi_read_fifo_8;
1040		}
1041	}
1042
1043	return 0;
1044}
1045
1046static const struct sh_msiof_chipdata sh_data = {
1047	.bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32),
1048	.tx_fifo_size = 64,
1049	.rx_fifo_size = 64,
1050	.ctlr_flags = 0,
1051	.min_div_pow = 0,
1052};
1053
1054static const struct sh_msiof_chipdata rcar_gen2_data = {
1055	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1056			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1057	.tx_fifo_size = 64,
1058	.rx_fifo_size = 64,
1059	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
1060	.min_div_pow = 0,
1061};
1062
1063static const struct sh_msiof_chipdata rcar_gen3_data = {
1064	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1065			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1066	.tx_fifo_size = 64,
1067	.rx_fifo_size = 64,
1068	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
1069	.min_div_pow = 1,
1070};
1071
1072static const struct of_device_id sh_msiof_match[] = {
 
1073	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1074	{ .compatible = "renesas,msiof-r8a7743",   .data = &rcar_gen2_data },
1075	{ .compatible = "renesas,msiof-r8a7745",   .data = &rcar_gen2_data },
1076	{ .compatible = "renesas,msiof-r8a7790",   .data = &rcar_gen2_data },
1077	{ .compatible = "renesas,msiof-r8a7791",   .data = &rcar_gen2_data },
1078	{ .compatible = "renesas,msiof-r8a7792",   .data = &rcar_gen2_data },
1079	{ .compatible = "renesas,msiof-r8a7793",   .data = &rcar_gen2_data },
1080	{ .compatible = "renesas,msiof-r8a7794",   .data = &rcar_gen2_data },
1081	{ .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1082	{ .compatible = "renesas,msiof-r8a7796",   .data = &rcar_gen3_data },
1083	{ .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1084	{ .compatible = "renesas,sh-msiof",        .data = &sh_data }, /* Deprecated */
1085	{},
1086};
1087MODULE_DEVICE_TABLE(of, sh_msiof_match);
1088
1089#ifdef CONFIG_OF
1090static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1091{
1092	struct sh_msiof_spi_info *info;
1093	struct device_node *np = dev->of_node;
1094	u32 num_cs = 1;
1095
1096	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1097	if (!info)
1098		return NULL;
1099
1100	info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1101							    : MSIOF_SPI_MASTER;
1102
1103	/* Parse the MSIOF properties */
1104	if (info->mode == MSIOF_SPI_MASTER)
1105		of_property_read_u32(np, "num-cs", &num_cs);
1106	of_property_read_u32(np, "renesas,tx-fifo-size",
1107					&info->tx_fifo_override);
1108	of_property_read_u32(np, "renesas,rx-fifo-size",
1109					&info->rx_fifo_override);
1110	of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1111	of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1112
1113	info->num_chipselect = num_cs;
1114
1115	return info;
1116}
1117#else
1118static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1119{
1120	return NULL;
1121}
1122#endif
1123
1124static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1125	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1126{
1127	dma_cap_mask_t mask;
1128	struct dma_chan *chan;
1129	struct dma_slave_config cfg;
1130	int ret;
1131
1132	dma_cap_zero(mask);
1133	dma_cap_set(DMA_SLAVE, mask);
1134
1135	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1136				(void *)(unsigned long)id, dev,
1137				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1138	if (!chan) {
1139		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1140		return NULL;
1141	}
1142
1143	memset(&cfg, 0, sizeof(cfg));
1144	cfg.direction = dir;
1145	if (dir == DMA_MEM_TO_DEV) {
1146		cfg.dst_addr = port_addr;
1147		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1148	} else {
1149		cfg.src_addr = port_addr;
1150		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1151	}
1152
1153	ret = dmaengine_slave_config(chan, &cfg);
1154	if (ret) {
1155		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1156		dma_release_channel(chan);
1157		return NULL;
1158	}
1159
1160	return chan;
1161}
1162
1163static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1164{
1165	struct platform_device *pdev = p->pdev;
1166	struct device *dev = &pdev->dev;
1167	const struct sh_msiof_spi_info *info = p->info;
1168	unsigned int dma_tx_id, dma_rx_id;
1169	const struct resource *res;
1170	struct spi_controller *ctlr;
1171	struct device *tx_dev, *rx_dev;
1172
1173	if (dev->of_node) {
1174		/* In the OF case we will get the slave IDs from the DT */
1175		dma_tx_id = 0;
1176		dma_rx_id = 0;
1177	} else if (info && info->dma_tx_id && info->dma_rx_id) {
1178		dma_tx_id = info->dma_tx_id;
1179		dma_rx_id = info->dma_rx_id;
1180	} else {
1181		/* The driver assumes no error */
1182		return 0;
1183	}
1184
1185	/* The DMA engine uses the second register set, if present */
1186	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1187	if (!res)
1188		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1189
1190	ctlr = p->ctlr;
1191	ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1192						 dma_tx_id, res->start + SITFDR);
1193	if (!ctlr->dma_tx)
 
1194		return -ENODEV;
1195
1196	ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1197						 dma_rx_id, res->start + SIRFDR);
1198	if (!ctlr->dma_rx)
 
1199		goto free_tx_chan;
1200
1201	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1202	if (!p->tx_dma_page)
1203		goto free_rx_chan;
1204
1205	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1206	if (!p->rx_dma_page)
1207		goto free_tx_page;
1208
1209	tx_dev = ctlr->dma_tx->device->dev;
1210	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1211					DMA_TO_DEVICE);
1212	if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1213		goto free_rx_page;
1214
1215	rx_dev = ctlr->dma_rx->device->dev;
1216	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1217					DMA_FROM_DEVICE);
1218	if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1219		goto unmap_tx_page;
1220
1221	dev_info(dev, "DMA available");
1222	return 0;
1223
1224unmap_tx_page:
1225	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1226free_rx_page:
1227	free_page((unsigned long)p->rx_dma_page);
1228free_tx_page:
1229	free_page((unsigned long)p->tx_dma_page);
1230free_rx_chan:
1231	dma_release_channel(ctlr->dma_rx);
1232free_tx_chan:
1233	dma_release_channel(ctlr->dma_tx);
1234	ctlr->dma_tx = NULL;
1235	return -ENODEV;
1236}
1237
1238static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1239{
1240	struct spi_controller *ctlr = p->ctlr;
 
1241
1242	if (!ctlr->dma_tx)
1243		return;
1244
1245	dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE,
1246			 DMA_FROM_DEVICE);
1247	dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE,
1248			 DMA_TO_DEVICE);
 
1249	free_page((unsigned long)p->rx_dma_page);
1250	free_page((unsigned long)p->tx_dma_page);
1251	dma_release_channel(ctlr->dma_rx);
1252	dma_release_channel(ctlr->dma_tx);
1253}
1254
1255static int sh_msiof_spi_probe(struct platform_device *pdev)
1256{
1257	struct spi_controller *ctlr;
1258	const struct sh_msiof_chipdata *chipdata;
1259	struct sh_msiof_spi_info *info;
1260	struct sh_msiof_spi_priv *p;
1261	int i;
1262	int ret;
1263
1264	chipdata = of_device_get_match_data(&pdev->dev);
1265	if (chipdata) {
1266		info = sh_msiof_spi_parse_dt(&pdev->dev);
1267	} else {
1268		chipdata = (const void *)pdev->id_entry->driver_data;
1269		info = dev_get_platdata(&pdev->dev);
1270	}
1271
1272	if (!info) {
1273		dev_err(&pdev->dev, "failed to obtain device info\n");
1274		return -ENXIO;
1275	}
1276
1277	if (info->mode == MSIOF_SPI_SLAVE)
1278		ctlr = spi_alloc_slave(&pdev->dev,
1279				       sizeof(struct sh_msiof_spi_priv));
1280	else
1281		ctlr = spi_alloc_master(&pdev->dev,
1282					sizeof(struct sh_msiof_spi_priv));
1283	if (ctlr == NULL)
1284		return -ENOMEM;
1285
1286	p = spi_controller_get_devdata(ctlr);
 
 
 
 
 
 
 
1287
1288	platform_set_drvdata(pdev, p);
1289	p->ctlr = ctlr;
1290	p->info = info;
1291	p->min_div_pow = chipdata->min_div_pow;
 
1292
1293	init_completion(&p->done);
1294	init_completion(&p->done_txdma);
1295
1296	p->clk = devm_clk_get(&pdev->dev, NULL);
1297	if (IS_ERR(p->clk)) {
1298		dev_err(&pdev->dev, "cannot get clock\n");
1299		ret = PTR_ERR(p->clk);
1300		goto err1;
1301	}
1302
1303	i = platform_get_irq(pdev, 0);
1304	if (i < 0) {
1305		ret = i;
 
1306		goto err1;
1307	}
1308
1309	p->mapbase = devm_platform_ioremap_resource(pdev, 0);
 
1310	if (IS_ERR(p->mapbase)) {
1311		ret = PTR_ERR(p->mapbase);
1312		goto err1;
1313	}
1314
1315	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1316			       dev_name(&pdev->dev), p);
1317	if (ret) {
1318		dev_err(&pdev->dev, "unable to request irq\n");
1319		goto err1;
1320	}
1321
1322	p->pdev = pdev;
1323	pm_runtime_enable(&pdev->dev);
1324
1325	/* Platform data may override FIFO sizes */
1326	p->tx_fifo_size = chipdata->tx_fifo_size;
1327	p->rx_fifo_size = chipdata->rx_fifo_size;
1328	if (p->info->tx_fifo_override)
1329		p->tx_fifo_size = p->info->tx_fifo_override;
1330	if (p->info->rx_fifo_override)
1331		p->rx_fifo_size = p->info->rx_fifo_override;
1332
1333	/* init controller code */
1334	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1335	ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1336	ctlr->flags = chipdata->ctlr_flags;
1337	ctlr->bus_num = pdev->id;
1338	ctlr->num_chipselect = p->info->num_chipselect;
1339	ctlr->dev.of_node = pdev->dev.of_node;
1340	ctlr->setup = sh_msiof_spi_setup;
1341	ctlr->prepare_message = sh_msiof_prepare_message;
1342	ctlr->slave_abort = sh_msiof_slave_abort;
1343	ctlr->bits_per_word_mask = chipdata->bits_per_word_mask;
1344	ctlr->auto_runtime_pm = true;
1345	ctlr->transfer_one = sh_msiof_transfer_one;
1346	ctlr->use_gpio_descriptors = true;
1347	ctlr->max_native_cs = MAX_SS;
1348
1349	ret = sh_msiof_request_dma(p);
1350	if (ret < 0)
1351		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1352
1353	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1354	if (ret < 0) {
1355		dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1356		goto err2;
1357	}
1358
1359	return 0;
1360
1361 err2:
1362	sh_msiof_release_dma(p);
1363	pm_runtime_disable(&pdev->dev);
1364 err1:
1365	spi_controller_put(ctlr);
1366	return ret;
1367}
1368
1369static int sh_msiof_spi_remove(struct platform_device *pdev)
1370{
1371	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1372
1373	sh_msiof_release_dma(p);
1374	pm_runtime_disable(&pdev->dev);
1375	return 0;
1376}
1377
1378static const struct platform_device_id spi_driver_ids[] = {
1379	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
1380	{},
1381};
1382MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1383
1384#ifdef CONFIG_PM_SLEEP
1385static int sh_msiof_spi_suspend(struct device *dev)
1386{
1387	struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1388
1389	return spi_controller_suspend(p->ctlr);
1390}
1391
1392static int sh_msiof_spi_resume(struct device *dev)
1393{
1394	struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1395
1396	return spi_controller_resume(p->ctlr);
1397}
1398
1399static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
1400			 sh_msiof_spi_resume);
1401#define DEV_PM_OPS	(&sh_msiof_spi_pm_ops)
1402#else
1403#define DEV_PM_OPS	NULL
1404#endif /* CONFIG_PM_SLEEP */
1405
1406static struct platform_driver sh_msiof_spi_drv = {
1407	.probe		= sh_msiof_spi_probe,
1408	.remove		= sh_msiof_spi_remove,
1409	.id_table	= spi_driver_ids,
1410	.driver		= {
1411		.name		= "spi_sh_msiof",
1412		.pm		= DEV_PM_OPS,
1413		.of_match_table = of_match_ptr(sh_msiof_match),
1414	},
1415};
1416module_platform_driver(sh_msiof_spi_drv);
1417
1418MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver");
1419MODULE_AUTHOR("Magnus Damm");
1420MODULE_LICENSE("GPL v2");
1421MODULE_ALIAS("platform:spi_sh_msiof");
v4.6
 
   1/*
   2 * SuperH MSIOF SPI Master Interface
   3 *
   4 * Copyright (c) 2009 Magnus Damm
   5 * Copyright (C) 2014 Glider bvba
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 */
  12
  13#include <linux/bitmap.h>
  14#include <linux/clk.h>
  15#include <linux/completion.h>
  16#include <linux/delay.h>
  17#include <linux/dma-mapping.h>
  18#include <linux/dmaengine.h>
  19#include <linux/err.h>
  20#include <linux/gpio.h>
  21#include <linux/interrupt.h>
  22#include <linux/io.h>
 
  23#include <linux/kernel.h>
  24#include <linux/module.h>
  25#include <linux/of.h>
  26#include <linux/of_device.h>
  27#include <linux/platform_device.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/sh_dma.h>
  30
  31#include <linux/spi/sh_msiof.h>
  32#include <linux/spi/spi.h>
  33
  34#include <asm/unaligned.h>
  35
  36
  37struct sh_msiof_chipdata {
 
  38	u16 tx_fifo_size;
  39	u16 rx_fifo_size;
  40	u16 master_flags;
 
  41};
  42
  43struct sh_msiof_spi_priv {
  44	struct spi_master *master;
  45	void __iomem *mapbase;
  46	struct clk *clk;
  47	struct platform_device *pdev;
  48	const struct sh_msiof_chipdata *chipdata;
  49	struct sh_msiof_spi_info *info;
  50	struct completion done;
 
  51	unsigned int tx_fifo_size;
  52	unsigned int rx_fifo_size;
 
  53	void *tx_dma_page;
  54	void *rx_dma_page;
  55	dma_addr_t tx_dma_addr;
  56	dma_addr_t rx_dma_addr;
 
 
 
  57};
  58
  59#define TMDR1	0x00	/* Transmit Mode Register 1 */
  60#define TMDR2	0x04	/* Transmit Mode Register 2 */
  61#define TMDR3	0x08	/* Transmit Mode Register 3 */
  62#define RMDR1	0x10	/* Receive Mode Register 1 */
  63#define RMDR2	0x14	/* Receive Mode Register 2 */
  64#define RMDR3	0x18	/* Receive Mode Register 3 */
  65#define TSCR	0x20	/* Transmit Clock Select Register */
  66#define RSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
  67#define CTR	0x28	/* Control Register */
  68#define FCTR	0x30	/* FIFO Control Register */
  69#define STR	0x40	/* Status Register */
  70#define IER	0x44	/* Interrupt Enable Register */
  71#define TDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
  72#define TDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
  73#define TFDR	0x50	/* Transmit FIFO Data Register */
  74#define RDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
  75#define RDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
  76#define RFDR	0x60	/* Receive FIFO Data Register */
  77
  78/* TMDR1 and RMDR1 */
  79#define MDR1_TRMD	 0x80000000 /* Transfer Mode (1 = Master mode) */
  80#define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
  81#define MDR1_SYNCMD_SPI	 0x20000000 /*   Level mode/SPI */
  82#define MDR1_SYNCMD_LR	 0x30000000 /*   L/R mode */
  83#define MDR1_SYNCAC_SHIFT	 25 /* Sync Polarity (1 = Active-low) */
  84#define MDR1_BITLSB_SHIFT	 24 /* MSB/LSB First (1 = LSB first) */
  85#define MDR1_DTDL_SHIFT		 20 /* Data Pin Bit Delay for MSIOF_SYNC */
  86#define MDR1_SYNCDL_SHIFT	 16 /* Frame Sync Signal Timing Delay */
  87#define MDR1_FLD_MASK	 0x0000000c /* Frame Sync Signal Interval (0-3) */
  88#define MDR1_FLD_SHIFT		  2
  89#define MDR1_XXSTP	 0x00000001 /* Transmission/Reception Stop on FIFO */
  90/* TMDR1 */
  91#define TMDR1_PCON	 0x40000000 /* Transfer Signal Connection */
  92
  93/* TMDR2 and RMDR2 */
  94#define MDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
  95#define MDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
  96#define MDR2_GRPMASK1	0x00000001 /* Group Output Mask 1 (SH, A1) */
  97
  98/* TSCR and RSCR */
  99#define SCR_BRPS_MASK	    0x1f00 /* Prescaler Setting (1-32) */
 100#define SCR_BRPS(i)	(((i) - 1) << 8)
 101#define SCR_BRDV_MASK	    0x0007 /* Baud Rate Generator's Division Ratio */
 102#define SCR_BRDV_DIV_2	    0x0000
 103#define SCR_BRDV_DIV_4	    0x0001
 104#define SCR_BRDV_DIV_8	    0x0002
 105#define SCR_BRDV_DIV_16	    0x0003
 106#define SCR_BRDV_DIV_32	    0x0004
 107#define SCR_BRDV_DIV_1	    0x0007
 108
 109/* CTR */
 110#define CTR_TSCKIZ_MASK	0xc0000000 /* Transmit Clock I/O Polarity Select */
 111#define CTR_TSCKIZ_SCK	0x80000000 /*   Disable SCK when TX disabled */
 112#define CTR_TSCKIZ_POL_SHIFT	30 /*   Transmit Clock Polarity */
 113#define CTR_RSCKIZ_MASK	0x30000000 /* Receive Clock Polarity Select */
 114#define CTR_RSCKIZ_SCK	0x20000000 /*   Must match CTR_TSCKIZ_SCK */
 115#define CTR_RSCKIZ_POL_SHIFT	28 /*   Receive Clock Polarity */
 116#define CTR_TEDG_SHIFT		27 /* Transmit Timing (1 = falling edge) */
 117#define CTR_REDG_SHIFT		26 /* Receive Timing (1 = falling edge) */
 118#define CTR_TXDIZ_MASK	0x00c00000 /* Pin Output When TX is Disabled */
 119#define CTR_TXDIZ_LOW	0x00000000 /*   0 */
 120#define CTR_TXDIZ_HIGH	0x00400000 /*   1 */
 121#define CTR_TXDIZ_HIZ	0x00800000 /*   High-impedance */
 122#define CTR_TSCKE	0x00008000 /* Transmit Serial Clock Output Enable */
 123#define CTR_TFSE	0x00004000 /* Transmit Frame Sync Signal Output Enable */
 124#define CTR_TXE		0x00000200 /* Transmit Enable */
 125#define CTR_RXE		0x00000100 /* Receive Enable */
 126
 127/* FCTR */
 128#define FCTR_TFWM_MASK	0xe0000000 /* Transmit FIFO Watermark */
 129#define FCTR_TFWM_64	0x00000000 /*  Transfer Request when 64 empty stages */
 130#define FCTR_TFWM_32	0x20000000 /*  Transfer Request when 32 empty stages */
 131#define FCTR_TFWM_24	0x40000000 /*  Transfer Request when 24 empty stages */
 132#define FCTR_TFWM_16	0x60000000 /*  Transfer Request when 16 empty stages */
 133#define FCTR_TFWM_12	0x80000000 /*  Transfer Request when 12 empty stages */
 134#define FCTR_TFWM_8	0xa0000000 /*  Transfer Request when 8 empty stages */
 135#define FCTR_TFWM_4	0xc0000000 /*  Transfer Request when 4 empty stages */
 136#define FCTR_TFWM_1	0xe0000000 /*  Transfer Request when 1 empty stage */
 137#define FCTR_TFUA_MASK	0x07f00000 /* Transmit FIFO Usable Area */
 138#define FCTR_TFUA_SHIFT		20
 139#define FCTR_TFUA(i)	((i) << FCTR_TFUA_SHIFT)
 140#define FCTR_RFWM_MASK	0x0000e000 /* Receive FIFO Watermark */
 141#define FCTR_RFWM_1	0x00000000 /*  Transfer Request when 1 valid stages */
 142#define FCTR_RFWM_4	0x00002000 /*  Transfer Request when 4 valid stages */
 143#define FCTR_RFWM_8	0x00004000 /*  Transfer Request when 8 valid stages */
 144#define FCTR_RFWM_16	0x00006000 /*  Transfer Request when 16 valid stages */
 145#define FCTR_RFWM_32	0x00008000 /*  Transfer Request when 32 valid stages */
 146#define FCTR_RFWM_64	0x0000a000 /*  Transfer Request when 64 valid stages */
 147#define FCTR_RFWM_128	0x0000c000 /*  Transfer Request when 128 valid stages */
 148#define FCTR_RFWM_256	0x0000e000 /*  Transfer Request when 256 valid stages */
 149#define FCTR_RFUA_MASK	0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
 150#define FCTR_RFUA_SHIFT		 4
 151#define FCTR_RFUA(i)	((i) << FCTR_RFUA_SHIFT)
 152
 153/* STR */
 154#define STR_TFEMP	0x20000000 /* Transmit FIFO Empty */
 155#define STR_TDREQ	0x10000000 /* Transmit Data Transfer Request */
 156#define STR_TEOF	0x00800000 /* Frame Transmission End */
 157#define STR_TFSERR	0x00200000 /* Transmit Frame Synchronization Error */
 158#define STR_TFOVF	0x00100000 /* Transmit FIFO Overflow */
 159#define STR_TFUDF	0x00080000 /* Transmit FIFO Underflow */
 160#define STR_RFFUL	0x00002000 /* Receive FIFO Full */
 161#define STR_RDREQ	0x00001000 /* Receive Data Transfer Request */
 162#define STR_REOF	0x00000080 /* Frame Reception End */
 163#define STR_RFSERR	0x00000020 /* Receive Frame Synchronization Error */
 164#define STR_RFUDF	0x00000010 /* Receive FIFO Underflow */
 165#define STR_RFOVF	0x00000008 /* Receive FIFO Overflow */
 166
 167/* IER */
 168#define IER_TDMAE	0x80000000 /* Transmit Data DMA Transfer Req. Enable */
 169#define IER_TFEMPE	0x20000000 /* Transmit FIFO Empty Enable */
 170#define IER_TDREQE	0x10000000 /* Transmit Data Transfer Request Enable */
 171#define IER_TEOFE	0x00800000 /* Frame Transmission End Enable */
 172#define IER_TFSERRE	0x00200000 /* Transmit Frame Sync Error Enable */
 173#define IER_TFOVFE	0x00100000 /* Transmit FIFO Overflow Enable */
 174#define IER_TFUDFE	0x00080000 /* Transmit FIFO Underflow Enable */
 175#define IER_RDMAE	0x00008000 /* Receive Data DMA Transfer Req. Enable */
 176#define IER_RFFULE	0x00002000 /* Receive FIFO Full Enable */
 177#define IER_RDREQE	0x00001000 /* Receive Data Transfer Request Enable */
 178#define IER_REOFE	0x00000080 /* Frame Reception End Enable */
 179#define IER_RFSERRE	0x00000020 /* Receive Frame Sync Error Enable */
 180#define IER_RFUDFE	0x00000010 /* Receive FIFO Underflow Enable */
 181#define IER_RFOVFE	0x00000008 /* Receive FIFO Overflow Enable */
 
 
 
 
 
 
 182
 183
 184static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
 185{
 186	switch (reg_offs) {
 187	case TSCR:
 188	case RSCR:
 189		return ioread16(p->mapbase + reg_offs);
 190	default:
 191		return ioread32(p->mapbase + reg_offs);
 192	}
 193}
 194
 195static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
 196			   u32 value)
 197{
 198	switch (reg_offs) {
 199	case TSCR:
 200	case RSCR:
 201		iowrite16(value, p->mapbase + reg_offs);
 202		break;
 203	default:
 204		iowrite32(value, p->mapbase + reg_offs);
 205		break;
 206	}
 207}
 208
 209static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
 210				    u32 clr, u32 set)
 211{
 212	u32 mask = clr | set;
 213	u32 data;
 214	int k;
 215
 216	data = sh_msiof_read(p, CTR);
 217	data &= ~clr;
 218	data |= set;
 219	sh_msiof_write(p, CTR, data);
 220
 221	for (k = 100; k > 0; k--) {
 222		if ((sh_msiof_read(p, CTR) & mask) == set)
 223			break;
 224
 225		udelay(10);
 226	}
 227
 228	return k > 0 ? 0 : -ETIMEDOUT;
 
 229}
 230
 231static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
 232{
 233	struct sh_msiof_spi_priv *p = data;
 234
 235	/* just disable the interrupt and wake up */
 236	sh_msiof_write(p, IER, 0);
 237	complete(&p->done);
 238
 239	return IRQ_HANDLED;
 240}
 241
 242static struct {
 243	unsigned short div;
 244	unsigned short brdv;
 245} const sh_msiof_spi_div_table[] = {
 246	{ 1,	SCR_BRDV_DIV_1 },
 247	{ 2,	SCR_BRDV_DIV_2 },
 248	{ 4,	SCR_BRDV_DIV_4 },
 249	{ 8,	SCR_BRDV_DIV_8 },
 250	{ 16,	SCR_BRDV_DIV_16 },
 251	{ 32,	SCR_BRDV_DIV_32 },
 
 
 
 
 
 
 252};
 253
 254static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
 255				      unsigned long parent_rate, u32 spi_hz)
 256{
 257	unsigned long div = 1024;
 258	u32 brps, scr;
 259	size_t k;
 260
 261	if (!WARN_ON(!spi_hz || !parent_rate))
 262		div = DIV_ROUND_UP(parent_rate, spi_hz);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 263
 264	for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
 265		brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
 266		if (brps <= 32) /* max of brdv is 32 */
 267			break;
 
 
 
 
 268	}
 269
 270	k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
 271
 272	scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
 273	sh_msiof_write(p, TSCR, scr);
 274	if (!(p->chipdata->master_flags & SPI_MASTER_MUST_TX))
 275		sh_msiof_write(p, RSCR, scr);
 276}
 277
 278static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
 279{
 280	/*
 281	 * DTDL/SYNCDL bit	: p->info->dtdl or p->info->syncdl
 282	 * b'000		: 0
 283	 * b'001		: 100
 284	 * b'010		: 200
 285	 * b'011 (SYNCDL only)	: 300
 286	 * b'101		: 50
 287	 * b'110		: 150
 288	 */
 289	if (dtdl_or_syncdl % 100)
 290		return dtdl_or_syncdl / 100 + 5;
 291	else
 292		return dtdl_or_syncdl / 100;
 293}
 294
 295static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
 296{
 297	u32 val;
 298
 299	if (!p->info)
 300		return 0;
 301
 302	/* check if DTDL and SYNCDL is allowed value */
 303	if (p->info->dtdl > 200 || p->info->syncdl > 300) {
 304		dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
 305		return 0;
 306	}
 307
 308	/* check if the sum of DTDL and SYNCDL becomes an integer value  */
 309	if ((p->info->dtdl + p->info->syncdl) % 100) {
 310		dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
 311		return 0;
 312	}
 313
 314	val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
 315	val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
 316
 317	return val;
 318}
 319
 320static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
 321				      u32 cpol, u32 cpha,
 322				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
 323{
 324	u32 tmp;
 325	int edge;
 326
 327	/*
 328	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
 329	 *    0    0         10     10    1    1
 330	 *    0    1         10     10    0    0
 331	 *    1    0         11     11    0    0
 332	 *    1    1         11     11    1    1
 333	 */
 334	tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
 335	tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
 336	tmp |= lsb_first << MDR1_BITLSB_SHIFT;
 337	tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
 338	sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
 339	if (p->chipdata->master_flags & SPI_MASTER_MUST_TX) {
 
 
 
 
 
 
 340		/* These bits are reserved if RX needs TX */
 341		tmp &= ~0x0000ffff;
 342	}
 343	sh_msiof_write(p, RMDR1, tmp);
 344
 345	tmp = 0;
 346	tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
 347	tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
 348
 349	edge = cpol ^ !cpha;
 350
 351	tmp |= edge << CTR_TEDG_SHIFT;
 352	tmp |= edge << CTR_REDG_SHIFT;
 353	tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
 354	sh_msiof_write(p, CTR, tmp);
 355}
 356
 357static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
 358				       const void *tx_buf, void *rx_buf,
 359				       u32 bits, u32 words)
 360{
 361	u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
 362
 363	if (tx_buf || (p->chipdata->master_flags & SPI_MASTER_MUST_TX))
 364		sh_msiof_write(p, TMDR2, dr2);
 365	else
 366		sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
 367
 368	if (rx_buf)
 369		sh_msiof_write(p, RMDR2, dr2);
 370}
 371
 372static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
 373{
 374	sh_msiof_write(p, STR, sh_msiof_read(p, STR));
 
 375}
 376
 377static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
 378				      const void *tx_buf, int words, int fs)
 379{
 380	const u8 *buf_8 = tx_buf;
 381	int k;
 382
 383	for (k = 0; k < words; k++)
 384		sh_msiof_write(p, TFDR, buf_8[k] << fs);
 385}
 386
 387static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
 388				       const void *tx_buf, int words, int fs)
 389{
 390	const u16 *buf_16 = tx_buf;
 391	int k;
 392
 393	for (k = 0; k < words; k++)
 394		sh_msiof_write(p, TFDR, buf_16[k] << fs);
 395}
 396
 397static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
 398					const void *tx_buf, int words, int fs)
 399{
 400	const u16 *buf_16 = tx_buf;
 401	int k;
 402
 403	for (k = 0; k < words; k++)
 404		sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
 405}
 406
 407static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
 408				       const void *tx_buf, int words, int fs)
 409{
 410	const u32 *buf_32 = tx_buf;
 411	int k;
 412
 413	for (k = 0; k < words; k++)
 414		sh_msiof_write(p, TFDR, buf_32[k] << fs);
 415}
 416
 417static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
 418					const void *tx_buf, int words, int fs)
 419{
 420	const u32 *buf_32 = tx_buf;
 421	int k;
 422
 423	for (k = 0; k < words; k++)
 424		sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
 425}
 426
 427static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
 428					const void *tx_buf, int words, int fs)
 429{
 430	const u32 *buf_32 = tx_buf;
 431	int k;
 432
 433	for (k = 0; k < words; k++)
 434		sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
 435}
 436
 437static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
 438					 const void *tx_buf, int words, int fs)
 439{
 440	const u32 *buf_32 = tx_buf;
 441	int k;
 442
 443	for (k = 0; k < words; k++)
 444		sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
 445}
 446
 447static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
 448				     void *rx_buf, int words, int fs)
 449{
 450	u8 *buf_8 = rx_buf;
 451	int k;
 452
 453	for (k = 0; k < words; k++)
 454		buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
 455}
 456
 457static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
 458				      void *rx_buf, int words, int fs)
 459{
 460	u16 *buf_16 = rx_buf;
 461	int k;
 462
 463	for (k = 0; k < words; k++)
 464		buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
 465}
 466
 467static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
 468				       void *rx_buf, int words, int fs)
 469{
 470	u16 *buf_16 = rx_buf;
 471	int k;
 472
 473	for (k = 0; k < words; k++)
 474		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
 475}
 476
 477static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
 478				      void *rx_buf, int words, int fs)
 479{
 480	u32 *buf_32 = rx_buf;
 481	int k;
 482
 483	for (k = 0; k < words; k++)
 484		buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
 485}
 486
 487static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
 488				       void *rx_buf, int words, int fs)
 489{
 490	u32 *buf_32 = rx_buf;
 491	int k;
 492
 493	for (k = 0; k < words; k++)
 494		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
 495}
 496
 497static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
 498				       void *rx_buf, int words, int fs)
 499{
 500	u32 *buf_32 = rx_buf;
 501	int k;
 502
 503	for (k = 0; k < words; k++)
 504		buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
 505}
 506
 507static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
 508				       void *rx_buf, int words, int fs)
 509{
 510	u32 *buf_32 = rx_buf;
 511	int k;
 512
 513	for (k = 0; k < words; k++)
 514		put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
 515}
 516
 517static int sh_msiof_spi_setup(struct spi_device *spi)
 518{
 519	struct device_node	*np = spi->master->dev.of_node;
 520	struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
 
 521
 522	pm_runtime_get_sync(&p->pdev->dev);
 523
 524	if (!np) {
 525		/*
 526		 * Use spi->controller_data for CS (same strategy as spi_gpio),
 527		 * if any. otherwise let HW control CS
 528		 */
 529		spi->cs_gpio = (uintptr_t)spi->controller_data;
 530	}
 531
 532	/* Configure pins before deasserting CS */
 533	sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
 534				  !!(spi->mode & SPI_CPHA),
 535				  !!(spi->mode & SPI_3WIRE),
 536				  !!(spi->mode & SPI_LSB_FIRST),
 537				  !!(spi->mode & SPI_CS_HIGH));
 538
 539	if (spi->cs_gpio >= 0)
 540		gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
 541
 
 
 
 542
 
 
 
 
 
 
 
 
 
 
 
 
 543	pm_runtime_put(&p->pdev->dev);
 544
 
 545	return 0;
 546}
 547
 548static int sh_msiof_prepare_message(struct spi_master *master,
 549				    struct spi_message *msg)
 550{
 551	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
 552	const struct spi_device *spi = msg->spi;
 
 553
 554	/* Configure pins before asserting CS */
 555	sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
 
 
 
 
 
 
 
 556				  !!(spi->mode & SPI_CPHA),
 557				  !!(spi->mode & SPI_3WIRE),
 558				  !!(spi->mode & SPI_LSB_FIRST),
 559				  !!(spi->mode & SPI_CS_HIGH));
 560	return 0;
 561}
 562
 563static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
 564{
 565	int ret;
 
 566
 567	/* setup clock and rx/tx signals */
 568	ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
 
 569	if (rx_buf && !ret)
 570		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
 571	if (!ret)
 572		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
 573
 574	/* start by setting frame bit */
 575	if (!ret)
 576		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
 577
 578	return ret;
 579}
 580
 581static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
 582{
 583	int ret;
 
 584
 585	/* shut down frame, rx/tx and clock signals */
 586	ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
 
 587	if (!ret)
 588		ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
 589	if (rx_buf && !ret)
 590		ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
 591	if (!ret)
 592		ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
 593
 594	return ret;
 595}
 596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 597static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
 598				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
 599						  const void *, int, int),
 600				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
 601						  void *, int, int),
 602				  const void *tx_buf, void *rx_buf,
 603				  int words, int bits)
 604{
 605	int fifo_shift;
 606	int ret;
 607
 608	/* limit maximum word transfer to rx/tx fifo size */
 609	if (tx_buf)
 610		words = min_t(int, words, p->tx_fifo_size);
 611	if (rx_buf)
 612		words = min_t(int, words, p->rx_fifo_size);
 613
 614	/* the fifo contents need shifting */
 615	fifo_shift = 32 - bits;
 616
 617	/* default FIFO watermarks for PIO */
 618	sh_msiof_write(p, FCTR, 0);
 619
 620	/* setup msiof transfer mode registers */
 621	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
 622	sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
 623
 624	/* write tx fifo */
 625	if (tx_buf)
 626		tx_fifo(p, tx_buf, words, fifo_shift);
 627
 628	reinit_completion(&p->done);
 
 629
 630	ret = sh_msiof_spi_start(p, rx_buf);
 631	if (ret) {
 632		dev_err(&p->pdev->dev, "failed to start hardware\n");
 633		goto stop_ier;
 634	}
 635
 636	/* wait for tx fifo to be emptied / rx fifo to be filled */
 637	if (!wait_for_completion_timeout(&p->done, HZ)) {
 638		dev_err(&p->pdev->dev, "PIO timeout\n");
 639		ret = -ETIMEDOUT;
 640		goto stop_reset;
 641	}
 642
 643	/* read rx fifo */
 644	if (rx_buf)
 645		rx_fifo(p, rx_buf, words, fifo_shift);
 646
 647	/* clear status bits */
 648	sh_msiof_reset_str(p);
 649
 650	ret = sh_msiof_spi_stop(p, rx_buf);
 651	if (ret) {
 652		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
 653		return ret;
 654	}
 655
 656	return words;
 657
 658stop_reset:
 659	sh_msiof_reset_str(p);
 660	sh_msiof_spi_stop(p, rx_buf);
 661stop_ier:
 662	sh_msiof_write(p, IER, 0);
 663	return ret;
 664}
 665
 666static void sh_msiof_dma_complete(void *arg)
 667{
 668	struct sh_msiof_spi_priv *p = arg;
 669
 670	sh_msiof_write(p, IER, 0);
 671	complete(&p->done);
 672}
 673
 674static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
 675			     void *rx, unsigned int len)
 676{
 677	u32 ier_bits = 0;
 678	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
 679	dma_cookie_t cookie;
 680	int ret;
 681
 682	/* First prepare and submit the DMA request(s), as this may fail */
 683	if (rx) {
 684		ier_bits |= IER_RDREQE | IER_RDMAE;
 685		desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
 686					p->rx_dma_addr, len, DMA_FROM_DEVICE,
 687					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 688		if (!desc_rx)
 689			return -EAGAIN;
 690
 691		desc_rx->callback = sh_msiof_dma_complete;
 692		desc_rx->callback_param = p;
 693		cookie = dmaengine_submit(desc_rx);
 694		if (dma_submit_error(cookie))
 695			return cookie;
 696	}
 697
 698	if (tx) {
 699		ier_bits |= IER_TDREQE | IER_TDMAE;
 700		dma_sync_single_for_device(p->master->dma_tx->device->dev,
 701					   p->tx_dma_addr, len, DMA_TO_DEVICE);
 702		desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
 703					p->tx_dma_addr, len, DMA_TO_DEVICE,
 704					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 705		if (!desc_tx) {
 706			ret = -EAGAIN;
 707			goto no_dma_tx;
 708		}
 709
 710		if (rx) {
 711			/* No callback */
 712			desc_tx->callback = NULL;
 713		} else {
 714			desc_tx->callback = sh_msiof_dma_complete;
 715			desc_tx->callback_param = p;
 716		}
 717		cookie = dmaengine_submit(desc_tx);
 718		if (dma_submit_error(cookie)) {
 719			ret = cookie;
 720			goto no_dma_tx;
 721		}
 722	}
 723
 724	/* 1 stage FIFO watermarks for DMA */
 725	sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
 726
 727	/* setup msiof transfer mode registers (32-bit words) */
 728	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
 729
 730	sh_msiof_write(p, IER, ier_bits);
 731
 732	reinit_completion(&p->done);
 
 
 
 733
 734	/* Now start DMA */
 735	if (rx)
 736		dma_async_issue_pending(p->master->dma_rx);
 737	if (tx)
 738		dma_async_issue_pending(p->master->dma_tx);
 739
 740	ret = sh_msiof_spi_start(p, rx);
 741	if (ret) {
 742		dev_err(&p->pdev->dev, "failed to start hardware\n");
 743		goto stop_dma;
 744	}
 745
 746	/* wait for tx fifo to be emptied / rx fifo to be filled */
 747	if (!wait_for_completion_timeout(&p->done, HZ)) {
 748		dev_err(&p->pdev->dev, "DMA timeout\n");
 749		ret = -ETIMEDOUT;
 750		goto stop_reset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 751	}
 752
 753	/* clear status bits */
 754	sh_msiof_reset_str(p);
 755
 756	ret = sh_msiof_spi_stop(p, rx);
 757	if (ret) {
 758		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
 759		return ret;
 760	}
 761
 762	if (rx)
 763		dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
 764					p->rx_dma_addr, len,
 765					DMA_FROM_DEVICE);
 766
 767	return 0;
 768
 769stop_reset:
 770	sh_msiof_reset_str(p);
 771	sh_msiof_spi_stop(p, rx);
 772stop_dma:
 773	if (tx)
 774		dmaengine_terminate_all(p->master->dma_tx);
 775no_dma_tx:
 776	if (rx)
 777		dmaengine_terminate_all(p->master->dma_rx);
 778	sh_msiof_write(p, IER, 0);
 779	return ret;
 780}
 781
 782static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
 783{
 784	/* src or dst can be unaligned, but not both */
 785	if ((unsigned long)src & 3) {
 786		while (words--) {
 787			*dst++ = swab32(get_unaligned(src));
 788			src++;
 789		}
 790	} else if ((unsigned long)dst & 3) {
 791		while (words--) {
 792			put_unaligned(swab32(*src++), dst);
 793			dst++;
 794		}
 795	} else {
 796		while (words--)
 797			*dst++ = swab32(*src++);
 798	}
 799}
 800
 801static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
 802{
 803	/* src or dst can be unaligned, but not both */
 804	if ((unsigned long)src & 3) {
 805		while (words--) {
 806			*dst++ = swahw32(get_unaligned(src));
 807			src++;
 808		}
 809	} else if ((unsigned long)dst & 3) {
 810		while (words--) {
 811			put_unaligned(swahw32(*src++), dst);
 812			dst++;
 813		}
 814	} else {
 815		while (words--)
 816			*dst++ = swahw32(*src++);
 817	}
 818}
 819
 820static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
 821{
 822	memcpy(dst, src, words * 4);
 823}
 824
 825static int sh_msiof_transfer_one(struct spi_master *master,
 826				 struct spi_device *spi,
 827				 struct spi_transfer *t)
 828{
 829	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
 830	void (*copy32)(u32 *, const u32 *, unsigned int);
 831	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
 832	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
 833	const void *tx_buf = t->tx_buf;
 834	void *rx_buf = t->rx_buf;
 835	unsigned int len = t->len;
 836	unsigned int bits = t->bits_per_word;
 837	unsigned int bytes_per_word;
 838	unsigned int words;
 839	int n;
 840	bool swab;
 841	int ret;
 842
 
 
 
 843	/* setup clocks (clock already enabled in chipselect()) */
 844	sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
 
 845
 846	while (master->dma_tx && len > 15) {
 847		/*
 848		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
 849		 *  words, with byte resp. word swapping.
 850		 */
 851		unsigned int l = 0;
 852
 853		if (tx_buf)
 854			l = min(len, p->tx_fifo_size * 4);
 855		if (rx_buf)
 856			l = min(len, p->rx_fifo_size * 4);
 857
 858		if (bits <= 8) {
 859			if (l & 3)
 860				break;
 861			copy32 = copy_bswap32;
 862		} else if (bits <= 16) {
 863			if (l & 1)
 864				break;
 865			copy32 = copy_wswap32;
 866		} else {
 867			copy32 = copy_plain32;
 868		}
 869
 870		if (tx_buf)
 871			copy32(p->tx_dma_page, tx_buf, l / 4);
 872
 873		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
 874		if (ret == -EAGAIN) {
 875			pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
 876				     dev_driver_string(&p->pdev->dev),
 877				     dev_name(&p->pdev->dev));
 878			break;
 879		}
 880		if (ret)
 881			return ret;
 882
 883		if (rx_buf) {
 884			copy32(rx_buf, p->rx_dma_page, l / 4);
 885			rx_buf += l;
 886		}
 887		if (tx_buf)
 888			tx_buf += l;
 889
 890		len -= l;
 891		if (!len)
 892			return 0;
 893	}
 894
 895	if (bits <= 8 && len > 15 && !(len & 3)) {
 896		bits = 32;
 897		swab = true;
 898	} else {
 899		swab = false;
 900	}
 901
 902	/* setup bytes per word and fifo read/write functions */
 903	if (bits <= 8) {
 904		bytes_per_word = 1;
 905		tx_fifo = sh_msiof_spi_write_fifo_8;
 906		rx_fifo = sh_msiof_spi_read_fifo_8;
 907	} else if (bits <= 16) {
 908		bytes_per_word = 2;
 909		if ((unsigned long)tx_buf & 0x01)
 910			tx_fifo = sh_msiof_spi_write_fifo_16u;
 911		else
 912			tx_fifo = sh_msiof_spi_write_fifo_16;
 913
 914		if ((unsigned long)rx_buf & 0x01)
 915			rx_fifo = sh_msiof_spi_read_fifo_16u;
 916		else
 917			rx_fifo = sh_msiof_spi_read_fifo_16;
 918	} else if (swab) {
 919		bytes_per_word = 4;
 920		if ((unsigned long)tx_buf & 0x03)
 921			tx_fifo = sh_msiof_spi_write_fifo_s32u;
 922		else
 923			tx_fifo = sh_msiof_spi_write_fifo_s32;
 924
 925		if ((unsigned long)rx_buf & 0x03)
 926			rx_fifo = sh_msiof_spi_read_fifo_s32u;
 927		else
 928			rx_fifo = sh_msiof_spi_read_fifo_s32;
 929	} else {
 930		bytes_per_word = 4;
 931		if ((unsigned long)tx_buf & 0x03)
 932			tx_fifo = sh_msiof_spi_write_fifo_32u;
 933		else
 934			tx_fifo = sh_msiof_spi_write_fifo_32;
 935
 936		if ((unsigned long)rx_buf & 0x03)
 937			rx_fifo = sh_msiof_spi_read_fifo_32u;
 938		else
 939			rx_fifo = sh_msiof_spi_read_fifo_32;
 940	}
 941
 942	/* transfer in fifo sized chunks */
 943	words = len / bytes_per_word;
 944
 945	while (words > 0) {
 946		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
 947					   words, bits);
 948		if (n < 0)
 949			return n;
 950
 951		if (tx_buf)
 952			tx_buf += n * bytes_per_word;
 953		if (rx_buf)
 954			rx_buf += n * bytes_per_word;
 955		words -= n;
 
 
 
 
 
 
 
 
 956	}
 957
 958	return 0;
 959}
 960
 961static const struct sh_msiof_chipdata sh_data = {
 
 
 
 
 
 
 
 
 
 
 962	.tx_fifo_size = 64,
 963	.rx_fifo_size = 64,
 964	.master_flags = 0,
 
 965};
 966
 967static const struct sh_msiof_chipdata r8a779x_data = {
 
 
 968	.tx_fifo_size = 64,
 969	.rx_fifo_size = 64,
 970	.master_flags = SPI_MASTER_MUST_TX,
 
 971};
 972
 973static const struct of_device_id sh_msiof_match[] = {
 974	{ .compatible = "renesas,sh-msiof",        .data = &sh_data },
 975	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
 976	{ .compatible = "renesas,msiof-r8a7790",   .data = &r8a779x_data },
 977	{ .compatible = "renesas,msiof-r8a7791",   .data = &r8a779x_data },
 978	{ .compatible = "renesas,msiof-r8a7792",   .data = &r8a779x_data },
 979	{ .compatible = "renesas,msiof-r8a7793",   .data = &r8a779x_data },
 980	{ .compatible = "renesas,msiof-r8a7794",   .data = &r8a779x_data },
 
 
 
 
 
 
 981	{},
 982};
 983MODULE_DEVICE_TABLE(of, sh_msiof_match);
 984
 985#ifdef CONFIG_OF
 986static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
 987{
 988	struct sh_msiof_spi_info *info;
 989	struct device_node *np = dev->of_node;
 990	u32 num_cs = 1;
 991
 992	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
 993	if (!info)
 994		return NULL;
 995
 
 
 
 996	/* Parse the MSIOF properties */
 997	of_property_read_u32(np, "num-cs", &num_cs);
 
 998	of_property_read_u32(np, "renesas,tx-fifo-size",
 999					&info->tx_fifo_override);
1000	of_property_read_u32(np, "renesas,rx-fifo-size",
1001					&info->rx_fifo_override);
1002	of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1003	of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1004
1005	info->num_chipselect = num_cs;
1006
1007	return info;
1008}
1009#else
1010static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1011{
1012	return NULL;
1013}
1014#endif
1015
1016static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1017	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1018{
1019	dma_cap_mask_t mask;
1020	struct dma_chan *chan;
1021	struct dma_slave_config cfg;
1022	int ret;
1023
1024	dma_cap_zero(mask);
1025	dma_cap_set(DMA_SLAVE, mask);
1026
1027	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1028				(void *)(unsigned long)id, dev,
1029				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1030	if (!chan) {
1031		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1032		return NULL;
1033	}
1034
1035	memset(&cfg, 0, sizeof(cfg));
1036	cfg.direction = dir;
1037	if (dir == DMA_MEM_TO_DEV) {
1038		cfg.dst_addr = port_addr;
1039		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1040	} else {
1041		cfg.src_addr = port_addr;
1042		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1043	}
1044
1045	ret = dmaengine_slave_config(chan, &cfg);
1046	if (ret) {
1047		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1048		dma_release_channel(chan);
1049		return NULL;
1050	}
1051
1052	return chan;
1053}
1054
1055static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1056{
1057	struct platform_device *pdev = p->pdev;
1058	struct device *dev = &pdev->dev;
1059	const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1060	unsigned int dma_tx_id, dma_rx_id;
1061	const struct resource *res;
1062	struct spi_master *master;
1063	struct device *tx_dev, *rx_dev;
1064
1065	if (dev->of_node) {
1066		/* In the OF case we will get the slave IDs from the DT */
1067		dma_tx_id = 0;
1068		dma_rx_id = 0;
1069	} else if (info && info->dma_tx_id && info->dma_rx_id) {
1070		dma_tx_id = info->dma_tx_id;
1071		dma_rx_id = info->dma_rx_id;
1072	} else {
1073		/* The driver assumes no error */
1074		return 0;
1075	}
1076
1077	/* The DMA engine uses the second register set, if present */
1078	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1079	if (!res)
1080		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1081
1082	master = p->master;
1083	master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1084						   dma_tx_id,
1085						   res->start + TFDR);
1086	if (!master->dma_tx)
1087		return -ENODEV;
1088
1089	master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1090						   dma_rx_id,
1091						   res->start + RFDR);
1092	if (!master->dma_rx)
1093		goto free_tx_chan;
1094
1095	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1096	if (!p->tx_dma_page)
1097		goto free_rx_chan;
1098
1099	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1100	if (!p->rx_dma_page)
1101		goto free_tx_page;
1102
1103	tx_dev = master->dma_tx->device->dev;
1104	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1105					DMA_TO_DEVICE);
1106	if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1107		goto free_rx_page;
1108
1109	rx_dev = master->dma_rx->device->dev;
1110	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1111					DMA_FROM_DEVICE);
1112	if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1113		goto unmap_tx_page;
1114
1115	dev_info(dev, "DMA available");
1116	return 0;
1117
1118unmap_tx_page:
1119	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1120free_rx_page:
1121	free_page((unsigned long)p->rx_dma_page);
1122free_tx_page:
1123	free_page((unsigned long)p->tx_dma_page);
1124free_rx_chan:
1125	dma_release_channel(master->dma_rx);
1126free_tx_chan:
1127	dma_release_channel(master->dma_tx);
1128	master->dma_tx = NULL;
1129	return -ENODEV;
1130}
1131
1132static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1133{
1134	struct spi_master *master = p->master;
1135	struct device *dev;
1136
1137	if (!master->dma_tx)
1138		return;
1139
1140	dev = &p->pdev->dev;
1141	dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1142			 PAGE_SIZE, DMA_FROM_DEVICE);
1143	dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1144			 PAGE_SIZE, DMA_TO_DEVICE);
1145	free_page((unsigned long)p->rx_dma_page);
1146	free_page((unsigned long)p->tx_dma_page);
1147	dma_release_channel(master->dma_rx);
1148	dma_release_channel(master->dma_tx);
1149}
1150
1151static int sh_msiof_spi_probe(struct platform_device *pdev)
1152{
1153	struct resource	*r;
1154	struct spi_master *master;
1155	const struct of_device_id *of_id;
1156	struct sh_msiof_spi_priv *p;
1157	int i;
1158	int ret;
1159
1160	master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
1161	if (master == NULL) {
1162		dev_err(&pdev->dev, "failed to allocate spi master\n");
1163		return -ENOMEM;
 
 
1164	}
1165
1166	p = spi_master_get_devdata(master);
 
 
 
1167
1168	platform_set_drvdata(pdev, p);
1169	p->master = master;
 
 
 
 
 
 
1170
1171	of_id = of_match_device(sh_msiof_match, &pdev->dev);
1172	if (of_id) {
1173		p->chipdata = of_id->data;
1174		p->info = sh_msiof_spi_parse_dt(&pdev->dev);
1175	} else {
1176		p->chipdata = (const void *)pdev->id_entry->driver_data;
1177		p->info = dev_get_platdata(&pdev->dev);
1178	}
1179
1180	if (!p->info) {
1181		dev_err(&pdev->dev, "failed to obtain device info\n");
1182		ret = -ENXIO;
1183		goto err1;
1184	}
1185
1186	init_completion(&p->done);
 
1187
1188	p->clk = devm_clk_get(&pdev->dev, NULL);
1189	if (IS_ERR(p->clk)) {
1190		dev_err(&pdev->dev, "cannot get clock\n");
1191		ret = PTR_ERR(p->clk);
1192		goto err1;
1193	}
1194
1195	i = platform_get_irq(pdev, 0);
1196	if (i < 0) {
1197		dev_err(&pdev->dev, "cannot get platform IRQ\n");
1198		ret = -ENOENT;
1199		goto err1;
1200	}
1201
1202	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1203	p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1204	if (IS_ERR(p->mapbase)) {
1205		ret = PTR_ERR(p->mapbase);
1206		goto err1;
1207	}
1208
1209	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1210			       dev_name(&pdev->dev), p);
1211	if (ret) {
1212		dev_err(&pdev->dev, "unable to request irq\n");
1213		goto err1;
1214	}
1215
1216	p->pdev = pdev;
1217	pm_runtime_enable(&pdev->dev);
1218
1219	/* Platform data may override FIFO sizes */
1220	p->tx_fifo_size = p->chipdata->tx_fifo_size;
1221	p->rx_fifo_size = p->chipdata->rx_fifo_size;
1222	if (p->info->tx_fifo_override)
1223		p->tx_fifo_size = p->info->tx_fifo_override;
1224	if (p->info->rx_fifo_override)
1225		p->rx_fifo_size = p->info->rx_fifo_override;
1226
1227	/* init master code */
1228	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1229	master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1230	master->flags = p->chipdata->master_flags;
1231	master->bus_num = pdev->id;
1232	master->dev.of_node = pdev->dev.of_node;
1233	master->num_chipselect = p->info->num_chipselect;
1234	master->setup = sh_msiof_spi_setup;
1235	master->prepare_message = sh_msiof_prepare_message;
1236	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1237	master->auto_runtime_pm = true;
1238	master->transfer_one = sh_msiof_transfer_one;
 
 
 
1239
1240	ret = sh_msiof_request_dma(p);
1241	if (ret < 0)
1242		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1243
1244	ret = devm_spi_register_master(&pdev->dev, master);
1245	if (ret < 0) {
1246		dev_err(&pdev->dev, "spi_register_master error.\n");
1247		goto err2;
1248	}
1249
1250	return 0;
1251
1252 err2:
1253	sh_msiof_release_dma(p);
1254	pm_runtime_disable(&pdev->dev);
1255 err1:
1256	spi_master_put(master);
1257	return ret;
1258}
1259
1260static int sh_msiof_spi_remove(struct platform_device *pdev)
1261{
1262	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1263
1264	sh_msiof_release_dma(p);
1265	pm_runtime_disable(&pdev->dev);
1266	return 0;
1267}
1268
1269static const struct platform_device_id spi_driver_ids[] = {
1270	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
1271	{},
1272};
1273MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1275static struct platform_driver sh_msiof_spi_drv = {
1276	.probe		= sh_msiof_spi_probe,
1277	.remove		= sh_msiof_spi_remove,
1278	.id_table	= spi_driver_ids,
1279	.driver		= {
1280		.name		= "spi_sh_msiof",
 
1281		.of_match_table = of_match_ptr(sh_msiof_match),
1282	},
1283};
1284module_platform_driver(sh_msiof_spi_drv);
1285
1286MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1287MODULE_AUTHOR("Magnus Damm");
1288MODULE_LICENSE("GPL v2");
1289MODULE_ALIAS("platform:spi_sh_msiof");