Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2015, Sony Mobile Communications AB.
4 * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
5 */
6
7#include <linux/hwspinlock.h>
8#include <linux/io.h>
9#include <linux/module.h>
10#include <linux/of.h>
11#include <linux/of_address.h>
12#include <linux/platform_device.h>
13#include <linux/sizes.h>
14#include <linux/slab.h>
15#include <linux/soc/qcom/smem.h>
16
17/*
18 * The Qualcomm shared memory system is a allocate only heap structure that
19 * consists of one of more memory areas that can be accessed by the processors
20 * in the SoC.
21 *
22 * All systems contains a global heap, accessible by all processors in the SoC,
23 * with a table of contents data structure (@smem_header) at the beginning of
24 * the main shared memory block.
25 *
26 * The global header contains meta data for allocations as well as a fixed list
27 * of 512 entries (@smem_global_entry) that can be initialized to reference
28 * parts of the shared memory space.
29 *
30 *
31 * In addition to this global heap a set of "private" heaps can be set up at
32 * boot time with access restrictions so that only certain processor pairs can
33 * access the data.
34 *
35 * These partitions are referenced from an optional partition table
36 * (@smem_ptable), that is found 4kB from the end of the main smem region. The
37 * partition table entries (@smem_ptable_entry) lists the involved processors
38 * (or hosts) and their location in the main shared memory region.
39 *
40 * Each partition starts with a header (@smem_partition_header) that identifies
41 * the partition and holds properties for the two internal memory regions. The
42 * two regions are cached and non-cached memory respectively. Each region
43 * contain a link list of allocation headers (@smem_private_entry) followed by
44 * their data.
45 *
46 * Items in the non-cached region are allocated from the start of the partition
47 * while items in the cached region are allocated from the end. The free area
48 * is hence the region between the cached and non-cached offsets. The header of
49 * cached items comes after the data.
50 *
51 * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure
52 * for the global heap. A new global partition is created from the global heap
53 * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is
54 * set by the bootloader.
55 *
56 * To synchronize allocations in the shared memory heaps a remote spinlock must
57 * be held - currently lock number 3 of the sfpb or tcsr is used for this on all
58 * platforms.
59 *
60 */
61
62/*
63 * The version member of the smem header contains an array of versions for the
64 * various software components in the SoC. We verify that the boot loader
65 * version is a valid version as a sanity check.
66 */
67#define SMEM_MASTER_SBL_VERSION_INDEX 7
68#define SMEM_GLOBAL_HEAP_VERSION 11
69#define SMEM_GLOBAL_PART_VERSION 12
70
71/*
72 * The first 8 items are only to be allocated by the boot loader while
73 * initializing the heap.
74 */
75#define SMEM_ITEM_LAST_FIXED 8
76
77/* Highest accepted item number, for both global and private heaps */
78#define SMEM_ITEM_COUNT 512
79
80/* Processor/host identifier for the application processor */
81#define SMEM_HOST_APPS 0
82
83/* Processor/host identifier for the global partition */
84#define SMEM_GLOBAL_HOST 0xfffe
85
86/* Max number of processors/hosts in a system */
87#define SMEM_HOST_COUNT 11
88
89/**
90 * struct smem_proc_comm - proc_comm communication struct (legacy)
91 * @command: current command to be executed
92 * @status: status of the currently requested command
93 * @params: parameters to the command
94 */
95struct smem_proc_comm {
96 __le32 command;
97 __le32 status;
98 __le32 params[2];
99};
100
101/**
102 * struct smem_global_entry - entry to reference smem items on the heap
103 * @allocated: boolean to indicate if this entry is used
104 * @offset: offset to the allocated space
105 * @size: size of the allocated space, 8 byte aligned
106 * @aux_base: base address for the memory region used by this unit, or 0 for
107 * the default region. bits 0,1 are reserved
108 */
109struct smem_global_entry {
110 __le32 allocated;
111 __le32 offset;
112 __le32 size;
113 __le32 aux_base; /* bits 1:0 reserved */
114};
115#define AUX_BASE_MASK 0xfffffffc
116
117/**
118 * struct smem_header - header found in beginning of primary smem region
119 * @proc_comm: proc_comm communication interface (legacy)
120 * @version: array of versions for the various subsystems
121 * @initialized: boolean to indicate that smem is initialized
122 * @free_offset: index of the first unallocated byte in smem
123 * @available: number of bytes available for allocation
124 * @reserved: reserved field, must be 0
125 * toc: array of references to items
126 */
127struct smem_header {
128 struct smem_proc_comm proc_comm[4];
129 __le32 version[32];
130 __le32 initialized;
131 __le32 free_offset;
132 __le32 available;
133 __le32 reserved;
134 struct smem_global_entry toc[SMEM_ITEM_COUNT];
135};
136
137/**
138 * struct smem_ptable_entry - one entry in the @smem_ptable list
139 * @offset: offset, within the main shared memory region, of the partition
140 * @size: size of the partition
141 * @flags: flags for the partition (currently unused)
142 * @host0: first processor/host with access to this partition
143 * @host1: second processor/host with access to this partition
144 * @cacheline: alignment for "cached" entries
145 * @reserved: reserved entries for later use
146 */
147struct smem_ptable_entry {
148 __le32 offset;
149 __le32 size;
150 __le32 flags;
151 __le16 host0;
152 __le16 host1;
153 __le32 cacheline;
154 __le32 reserved[7];
155};
156
157/**
158 * struct smem_ptable - partition table for the private partitions
159 * @magic: magic number, must be SMEM_PTABLE_MAGIC
160 * @version: version of the partition table
161 * @num_entries: number of partitions in the table
162 * @reserved: for now reserved entries
163 * @entry: list of @smem_ptable_entry for the @num_entries partitions
164 */
165struct smem_ptable {
166 u8 magic[4];
167 __le32 version;
168 __le32 num_entries;
169 __le32 reserved[5];
170 struct smem_ptable_entry entry[];
171};
172
173static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */
174
175/**
176 * struct smem_partition_header - header of the partitions
177 * @magic: magic number, must be SMEM_PART_MAGIC
178 * @host0: first processor/host with access to this partition
179 * @host1: second processor/host with access to this partition
180 * @size: size of the partition
181 * @offset_free_uncached: offset to the first free byte of uncached memory in
182 * this partition
183 * @offset_free_cached: offset to the first free byte of cached memory in this
184 * partition
185 * @reserved: for now reserved entries
186 */
187struct smem_partition_header {
188 u8 magic[4];
189 __le16 host0;
190 __le16 host1;
191 __le32 size;
192 __le32 offset_free_uncached;
193 __le32 offset_free_cached;
194 __le32 reserved[3];
195};
196
197static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 };
198
199/**
200 * struct smem_private_entry - header of each item in the private partition
201 * @canary: magic number, must be SMEM_PRIVATE_CANARY
202 * @item: identifying number of the smem item
203 * @size: size of the data, including padding bytes
204 * @padding_data: number of bytes of padding of data
205 * @padding_hdr: number of bytes of padding between the header and the data
206 * @reserved: for now reserved entry
207 */
208struct smem_private_entry {
209 u16 canary; /* bytes are the same so no swapping needed */
210 __le16 item;
211 __le32 size; /* includes padding bytes */
212 __le16 padding_data;
213 __le16 padding_hdr;
214 __le32 reserved;
215};
216#define SMEM_PRIVATE_CANARY 0xa5a5
217
218/**
219 * struct smem_info - smem region info located after the table of contents
220 * @magic: magic number, must be SMEM_INFO_MAGIC
221 * @size: size of the smem region
222 * @base_addr: base address of the smem region
223 * @reserved: for now reserved entry
224 * @num_items: highest accepted item number
225 */
226struct smem_info {
227 u8 magic[4];
228 __le32 size;
229 __le32 base_addr;
230 __le32 reserved;
231 __le16 num_items;
232};
233
234static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */
235
236/**
237 * struct smem_region - representation of a chunk of memory used for smem
238 * @aux_base: identifier of aux_mem base
239 * @virt_base: virtual base address of memory with this aux_mem identifier
240 * @size: size of the memory region
241 */
242struct smem_region {
243 u32 aux_base;
244 void __iomem *virt_base;
245 size_t size;
246};
247
248/**
249 * struct qcom_smem - device data for the smem device
250 * @dev: device pointer
251 * @hwlock: reference to a hwspinlock
252 * @global_partition: pointer to global partition when in use
253 * @global_cacheline: cacheline size for global partition
254 * @partitions: list of pointers to partitions affecting the current
255 * processor/host
256 * @cacheline: list of cacheline sizes for each host
257 * @item_count: max accepted item number
258 * @num_regions: number of @regions
259 * @regions: list of the memory regions defining the shared memory
260 */
261struct qcom_smem {
262 struct device *dev;
263
264 struct hwspinlock *hwlock;
265
266 struct smem_partition_header *global_partition;
267 size_t global_cacheline;
268 struct smem_partition_header *partitions[SMEM_HOST_COUNT];
269 size_t cacheline[SMEM_HOST_COUNT];
270 u32 item_count;
271 struct platform_device *socinfo;
272
273 unsigned num_regions;
274 struct smem_region regions[];
275};
276
277static void *
278phdr_to_last_uncached_entry(struct smem_partition_header *phdr)
279{
280 void *p = phdr;
281
282 return p + le32_to_cpu(phdr->offset_free_uncached);
283}
284
285static struct smem_private_entry *
286phdr_to_first_cached_entry(struct smem_partition_header *phdr,
287 size_t cacheline)
288{
289 void *p = phdr;
290 struct smem_private_entry *e;
291
292 return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline);
293}
294
295static void *
296phdr_to_last_cached_entry(struct smem_partition_header *phdr)
297{
298 void *p = phdr;
299
300 return p + le32_to_cpu(phdr->offset_free_cached);
301}
302
303static struct smem_private_entry *
304phdr_to_first_uncached_entry(struct smem_partition_header *phdr)
305{
306 void *p = phdr;
307
308 return p + sizeof(*phdr);
309}
310
311static struct smem_private_entry *
312uncached_entry_next(struct smem_private_entry *e)
313{
314 void *p = e;
315
316 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) +
317 le32_to_cpu(e->size);
318}
319
320static struct smem_private_entry *
321cached_entry_next(struct smem_private_entry *e, size_t cacheline)
322{
323 void *p = e;
324
325 return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline);
326}
327
328static void *uncached_entry_to_item(struct smem_private_entry *e)
329{
330 void *p = e;
331
332 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr);
333}
334
335static void *cached_entry_to_item(struct smem_private_entry *e)
336{
337 void *p = e;
338
339 return p - le32_to_cpu(e->size);
340}
341
342/* Pointer to the one and only smem handle */
343static struct qcom_smem *__smem;
344
345/* Timeout (ms) for the trylock of remote spinlocks */
346#define HWSPINLOCK_TIMEOUT 1000
347
348static int qcom_smem_alloc_private(struct qcom_smem *smem,
349 struct smem_partition_header *phdr,
350 unsigned item,
351 size_t size)
352{
353 struct smem_private_entry *hdr, *end;
354 size_t alloc_size;
355 void *cached;
356
357 hdr = phdr_to_first_uncached_entry(phdr);
358 end = phdr_to_last_uncached_entry(phdr);
359 cached = phdr_to_last_cached_entry(phdr);
360
361 while (hdr < end) {
362 if (hdr->canary != SMEM_PRIVATE_CANARY)
363 goto bad_canary;
364 if (le16_to_cpu(hdr->item) == item)
365 return -EEXIST;
366
367 hdr = uncached_entry_next(hdr);
368 }
369
370 /* Check that we don't grow into the cached region */
371 alloc_size = sizeof(*hdr) + ALIGN(size, 8);
372 if ((void *)hdr + alloc_size > cached) {
373 dev_err(smem->dev, "Out of memory\n");
374 return -ENOSPC;
375 }
376
377 hdr->canary = SMEM_PRIVATE_CANARY;
378 hdr->item = cpu_to_le16(item);
379 hdr->size = cpu_to_le32(ALIGN(size, 8));
380 hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size);
381 hdr->padding_hdr = 0;
382
383 /*
384 * Ensure the header is written before we advance the free offset, so
385 * that remote processors that does not take the remote spinlock still
386 * gets a consistent view of the linked list.
387 */
388 wmb();
389 le32_add_cpu(&phdr->offset_free_uncached, alloc_size);
390
391 return 0;
392bad_canary:
393 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
394 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
395
396 return -EINVAL;
397}
398
399static int qcom_smem_alloc_global(struct qcom_smem *smem,
400 unsigned item,
401 size_t size)
402{
403 struct smem_global_entry *entry;
404 struct smem_header *header;
405
406 header = smem->regions[0].virt_base;
407 entry = &header->toc[item];
408 if (entry->allocated)
409 return -EEXIST;
410
411 size = ALIGN(size, 8);
412 if (WARN_ON(size > le32_to_cpu(header->available)))
413 return -ENOMEM;
414
415 entry->offset = header->free_offset;
416 entry->size = cpu_to_le32(size);
417
418 /*
419 * Ensure the header is consistent before we mark the item allocated,
420 * so that remote processors will get a consistent view of the item
421 * even though they do not take the spinlock on read.
422 */
423 wmb();
424 entry->allocated = cpu_to_le32(1);
425
426 le32_add_cpu(&header->free_offset, size);
427 le32_add_cpu(&header->available, -size);
428
429 return 0;
430}
431
432/**
433 * qcom_smem_alloc() - allocate space for a smem item
434 * @host: remote processor id, or -1
435 * @item: smem item handle
436 * @size: number of bytes to be allocated
437 *
438 * Allocate space for a given smem item of size @size, given that the item is
439 * not yet allocated.
440 */
441int qcom_smem_alloc(unsigned host, unsigned item, size_t size)
442{
443 struct smem_partition_header *phdr;
444 unsigned long flags;
445 int ret;
446
447 if (!__smem)
448 return -EPROBE_DEFER;
449
450 if (item < SMEM_ITEM_LAST_FIXED) {
451 dev_err(__smem->dev,
452 "Rejecting allocation of static entry %d\n", item);
453 return -EINVAL;
454 }
455
456 if (WARN_ON(item >= __smem->item_count))
457 return -EINVAL;
458
459 ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
460 HWSPINLOCK_TIMEOUT,
461 &flags);
462 if (ret)
463 return ret;
464
465 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
466 phdr = __smem->partitions[host];
467 ret = qcom_smem_alloc_private(__smem, phdr, item, size);
468 } else if (__smem->global_partition) {
469 phdr = __smem->global_partition;
470 ret = qcom_smem_alloc_private(__smem, phdr, item, size);
471 } else {
472 ret = qcom_smem_alloc_global(__smem, item, size);
473 }
474
475 hwspin_unlock_irqrestore(__smem->hwlock, &flags);
476
477 return ret;
478}
479EXPORT_SYMBOL(qcom_smem_alloc);
480
481static void *qcom_smem_get_global(struct qcom_smem *smem,
482 unsigned item,
483 size_t *size)
484{
485 struct smem_header *header;
486 struct smem_region *region;
487 struct smem_global_entry *entry;
488 u32 aux_base;
489 unsigned i;
490
491 header = smem->regions[0].virt_base;
492 entry = &header->toc[item];
493 if (!entry->allocated)
494 return ERR_PTR(-ENXIO);
495
496 aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK;
497
498 for (i = 0; i < smem->num_regions; i++) {
499 region = &smem->regions[i];
500
501 if (region->aux_base == aux_base || !aux_base) {
502 if (size != NULL)
503 *size = le32_to_cpu(entry->size);
504 return region->virt_base + le32_to_cpu(entry->offset);
505 }
506 }
507
508 return ERR_PTR(-ENOENT);
509}
510
511static void *qcom_smem_get_private(struct qcom_smem *smem,
512 struct smem_partition_header *phdr,
513 size_t cacheline,
514 unsigned item,
515 size_t *size)
516{
517 struct smem_private_entry *e, *end;
518
519 e = phdr_to_first_uncached_entry(phdr);
520 end = phdr_to_last_uncached_entry(phdr);
521
522 while (e < end) {
523 if (e->canary != SMEM_PRIVATE_CANARY)
524 goto invalid_canary;
525
526 if (le16_to_cpu(e->item) == item) {
527 if (size != NULL)
528 *size = le32_to_cpu(e->size) -
529 le16_to_cpu(e->padding_data);
530
531 return uncached_entry_to_item(e);
532 }
533
534 e = uncached_entry_next(e);
535 }
536
537 /* Item was not found in the uncached list, search the cached list */
538
539 e = phdr_to_first_cached_entry(phdr, cacheline);
540 end = phdr_to_last_cached_entry(phdr);
541
542 while (e > end) {
543 if (e->canary != SMEM_PRIVATE_CANARY)
544 goto invalid_canary;
545
546 if (le16_to_cpu(e->item) == item) {
547 if (size != NULL)
548 *size = le32_to_cpu(e->size) -
549 le16_to_cpu(e->padding_data);
550
551 return cached_entry_to_item(e);
552 }
553
554 e = cached_entry_next(e, cacheline);
555 }
556
557 return ERR_PTR(-ENOENT);
558
559invalid_canary:
560 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
561 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
562
563 return ERR_PTR(-EINVAL);
564}
565
566/**
567 * qcom_smem_get() - resolve ptr of size of a smem item
568 * @host: the remote processor, or -1
569 * @item: smem item handle
570 * @size: pointer to be filled out with size of the item
571 *
572 * Looks up smem item and returns pointer to it. Size of smem
573 * item is returned in @size.
574 */
575void *qcom_smem_get(unsigned host, unsigned item, size_t *size)
576{
577 struct smem_partition_header *phdr;
578 unsigned long flags;
579 size_t cacheln;
580 int ret;
581 void *ptr = ERR_PTR(-EPROBE_DEFER);
582
583 if (!__smem)
584 return ptr;
585
586 if (WARN_ON(item >= __smem->item_count))
587 return ERR_PTR(-EINVAL);
588
589 ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
590 HWSPINLOCK_TIMEOUT,
591 &flags);
592 if (ret)
593 return ERR_PTR(ret);
594
595 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
596 phdr = __smem->partitions[host];
597 cacheln = __smem->cacheline[host];
598 ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
599 } else if (__smem->global_partition) {
600 phdr = __smem->global_partition;
601 cacheln = __smem->global_cacheline;
602 ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
603 } else {
604 ptr = qcom_smem_get_global(__smem, item, size);
605 }
606
607 hwspin_unlock_irqrestore(__smem->hwlock, &flags);
608
609 return ptr;
610
611}
612EXPORT_SYMBOL(qcom_smem_get);
613
614/**
615 * qcom_smem_get_free_space() - retrieve amount of free space in a partition
616 * @host: the remote processor identifying a partition, or -1
617 *
618 * To be used by smem clients as a quick way to determine if any new
619 * allocations has been made.
620 */
621int qcom_smem_get_free_space(unsigned host)
622{
623 struct smem_partition_header *phdr;
624 struct smem_header *header;
625 unsigned ret;
626
627 if (!__smem)
628 return -EPROBE_DEFER;
629
630 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
631 phdr = __smem->partitions[host];
632 ret = le32_to_cpu(phdr->offset_free_cached) -
633 le32_to_cpu(phdr->offset_free_uncached);
634 } else if (__smem->global_partition) {
635 phdr = __smem->global_partition;
636 ret = le32_to_cpu(phdr->offset_free_cached) -
637 le32_to_cpu(phdr->offset_free_uncached);
638 } else {
639 header = __smem->regions[0].virt_base;
640 ret = le32_to_cpu(header->available);
641 }
642
643 return ret;
644}
645EXPORT_SYMBOL(qcom_smem_get_free_space);
646
647/**
648 * qcom_smem_virt_to_phys() - return the physical address associated
649 * with an smem item pointer (previously returned by qcom_smem_get()
650 * @p: the virtual address to convert
651 *
652 * Returns 0 if the pointer provided is not within any smem region.
653 */
654phys_addr_t qcom_smem_virt_to_phys(void *p)
655{
656 unsigned i;
657
658 for (i = 0; i < __smem->num_regions; i++) {
659 struct smem_region *region = &__smem->regions[i];
660
661 if (p < region->virt_base)
662 continue;
663 if (p < region->virt_base + region->size) {
664 u64 offset = p - region->virt_base;
665
666 return (phys_addr_t)region->aux_base + offset;
667 }
668 }
669
670 return 0;
671}
672EXPORT_SYMBOL(qcom_smem_virt_to_phys);
673
674static int qcom_smem_get_sbl_version(struct qcom_smem *smem)
675{
676 struct smem_header *header;
677 __le32 *versions;
678
679 header = smem->regions[0].virt_base;
680 versions = header->version;
681
682 return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]);
683}
684
685static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem)
686{
687 struct smem_ptable *ptable;
688 u32 version;
689
690 ptable = smem->regions[0].virt_base + smem->regions[0].size - SZ_4K;
691 if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic)))
692 return ERR_PTR(-ENOENT);
693
694 version = le32_to_cpu(ptable->version);
695 if (version != 1) {
696 dev_err(smem->dev,
697 "Unsupported partition header version %d\n", version);
698 return ERR_PTR(-EINVAL);
699 }
700 return ptable;
701}
702
703static u32 qcom_smem_get_item_count(struct qcom_smem *smem)
704{
705 struct smem_ptable *ptable;
706 struct smem_info *info;
707
708 ptable = qcom_smem_get_ptable(smem);
709 if (IS_ERR_OR_NULL(ptable))
710 return SMEM_ITEM_COUNT;
711
712 info = (struct smem_info *)&ptable->entry[ptable->num_entries];
713 if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic)))
714 return SMEM_ITEM_COUNT;
715
716 return le16_to_cpu(info->num_items);
717}
718
719/*
720 * Validate the partition header for a partition whose partition
721 * table entry is supplied. Returns a pointer to its header if
722 * valid, or a null pointer otherwise.
723 */
724static struct smem_partition_header *
725qcom_smem_partition_header(struct qcom_smem *smem,
726 struct smem_ptable_entry *entry, u16 host0, u16 host1)
727{
728 struct smem_partition_header *header;
729 u32 size;
730
731 header = smem->regions[0].virt_base + le32_to_cpu(entry->offset);
732
733 if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) {
734 dev_err(smem->dev, "bad partition magic %02x %02x %02x %02x\n",
735 header->magic[0], header->magic[1],
736 header->magic[2], header->magic[3]);
737 return NULL;
738 }
739
740 if (host0 != le16_to_cpu(header->host0)) {
741 dev_err(smem->dev, "bad host0 (%hu != %hu)\n",
742 host0, le16_to_cpu(header->host0));
743 return NULL;
744 }
745 if (host1 != le16_to_cpu(header->host1)) {
746 dev_err(smem->dev, "bad host1 (%hu != %hu)\n",
747 host1, le16_to_cpu(header->host1));
748 return NULL;
749 }
750
751 size = le32_to_cpu(header->size);
752 if (size != le32_to_cpu(entry->size)) {
753 dev_err(smem->dev, "bad partition size (%u != %u)\n",
754 size, le32_to_cpu(entry->size));
755 return NULL;
756 }
757
758 if (le32_to_cpu(header->offset_free_uncached) > size) {
759 dev_err(smem->dev, "bad partition free uncached (%u > %u)\n",
760 le32_to_cpu(header->offset_free_uncached), size);
761 return NULL;
762 }
763
764 return header;
765}
766
767static int qcom_smem_set_global_partition(struct qcom_smem *smem)
768{
769 struct smem_partition_header *header;
770 struct smem_ptable_entry *entry;
771 struct smem_ptable *ptable;
772 bool found = false;
773 int i;
774
775 if (smem->global_partition) {
776 dev_err(smem->dev, "Already found the global partition\n");
777 return -EINVAL;
778 }
779
780 ptable = qcom_smem_get_ptable(smem);
781 if (IS_ERR(ptable))
782 return PTR_ERR(ptable);
783
784 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
785 entry = &ptable->entry[i];
786 if (!le32_to_cpu(entry->offset))
787 continue;
788 if (!le32_to_cpu(entry->size))
789 continue;
790
791 if (le16_to_cpu(entry->host0) != SMEM_GLOBAL_HOST)
792 continue;
793
794 if (le16_to_cpu(entry->host1) == SMEM_GLOBAL_HOST) {
795 found = true;
796 break;
797 }
798 }
799
800 if (!found) {
801 dev_err(smem->dev, "Missing entry for global partition\n");
802 return -EINVAL;
803 }
804
805 header = qcom_smem_partition_header(smem, entry,
806 SMEM_GLOBAL_HOST, SMEM_GLOBAL_HOST);
807 if (!header)
808 return -EINVAL;
809
810 smem->global_partition = header;
811 smem->global_cacheline = le32_to_cpu(entry->cacheline);
812
813 return 0;
814}
815
816static int
817qcom_smem_enumerate_partitions(struct qcom_smem *smem, u16 local_host)
818{
819 struct smem_partition_header *header;
820 struct smem_ptable_entry *entry;
821 struct smem_ptable *ptable;
822 unsigned int remote_host;
823 u16 host0, host1;
824 int i;
825
826 ptable = qcom_smem_get_ptable(smem);
827 if (IS_ERR(ptable))
828 return PTR_ERR(ptable);
829
830 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
831 entry = &ptable->entry[i];
832 if (!le32_to_cpu(entry->offset))
833 continue;
834 if (!le32_to_cpu(entry->size))
835 continue;
836
837 host0 = le16_to_cpu(entry->host0);
838 host1 = le16_to_cpu(entry->host1);
839 if (host0 == local_host)
840 remote_host = host1;
841 else if (host1 == local_host)
842 remote_host = host0;
843 else
844 continue;
845
846 if (remote_host >= SMEM_HOST_COUNT) {
847 dev_err(smem->dev, "bad host %hu\n", remote_host);
848 return -EINVAL;
849 }
850
851 if (smem->partitions[remote_host]) {
852 dev_err(smem->dev, "duplicate host %hu\n", remote_host);
853 return -EINVAL;
854 }
855
856 header = qcom_smem_partition_header(smem, entry, host0, host1);
857 if (!header)
858 return -EINVAL;
859
860 smem->partitions[remote_host] = header;
861 smem->cacheline[remote_host] = le32_to_cpu(entry->cacheline);
862 }
863
864 return 0;
865}
866
867static int qcom_smem_map_memory(struct qcom_smem *smem, struct device *dev,
868 const char *name, int i)
869{
870 struct device_node *np;
871 struct resource r;
872 resource_size_t size;
873 int ret;
874
875 np = of_parse_phandle(dev->of_node, name, 0);
876 if (!np) {
877 dev_err(dev, "No %s specified\n", name);
878 return -EINVAL;
879 }
880
881 ret = of_address_to_resource(np, 0, &r);
882 of_node_put(np);
883 if (ret)
884 return ret;
885 size = resource_size(&r);
886
887 smem->regions[i].virt_base = devm_ioremap_wc(dev, r.start, size);
888 if (!smem->regions[i].virt_base)
889 return -ENOMEM;
890 smem->regions[i].aux_base = (u32)r.start;
891 smem->regions[i].size = size;
892
893 return 0;
894}
895
896static int qcom_smem_probe(struct platform_device *pdev)
897{
898 struct smem_header *header;
899 struct qcom_smem *smem;
900 size_t array_size;
901 int num_regions;
902 int hwlock_id;
903 u32 version;
904 int ret;
905
906 num_regions = 1;
907 if (of_find_property(pdev->dev.of_node, "qcom,rpm-msg-ram", NULL))
908 num_regions++;
909
910 array_size = num_regions * sizeof(struct smem_region);
911 smem = devm_kzalloc(&pdev->dev, sizeof(*smem) + array_size, GFP_KERNEL);
912 if (!smem)
913 return -ENOMEM;
914
915 smem->dev = &pdev->dev;
916 smem->num_regions = num_regions;
917
918 ret = qcom_smem_map_memory(smem, &pdev->dev, "memory-region", 0);
919 if (ret)
920 return ret;
921
922 if (num_regions > 1 && (ret = qcom_smem_map_memory(smem, &pdev->dev,
923 "qcom,rpm-msg-ram", 1)))
924 return ret;
925
926 header = smem->regions[0].virt_base;
927 if (le32_to_cpu(header->initialized) != 1 ||
928 le32_to_cpu(header->reserved)) {
929 dev_err(&pdev->dev, "SMEM is not initialized by SBL\n");
930 return -EINVAL;
931 }
932
933 version = qcom_smem_get_sbl_version(smem);
934 switch (version >> 16) {
935 case SMEM_GLOBAL_PART_VERSION:
936 ret = qcom_smem_set_global_partition(smem);
937 if (ret < 0)
938 return ret;
939 smem->item_count = qcom_smem_get_item_count(smem);
940 break;
941 case SMEM_GLOBAL_HEAP_VERSION:
942 smem->item_count = SMEM_ITEM_COUNT;
943 break;
944 default:
945 dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version);
946 return -EINVAL;
947 }
948
949 BUILD_BUG_ON(SMEM_HOST_APPS >= SMEM_HOST_COUNT);
950 ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS);
951 if (ret < 0 && ret != -ENOENT)
952 return ret;
953
954 hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0);
955 if (hwlock_id < 0) {
956 if (hwlock_id != -EPROBE_DEFER)
957 dev_err(&pdev->dev, "failed to retrieve hwlock\n");
958 return hwlock_id;
959 }
960
961 smem->hwlock = hwspin_lock_request_specific(hwlock_id);
962 if (!smem->hwlock)
963 return -ENXIO;
964
965 __smem = smem;
966
967 smem->socinfo = platform_device_register_data(&pdev->dev, "qcom-socinfo",
968 PLATFORM_DEVID_NONE, NULL,
969 0);
970 if (IS_ERR(smem->socinfo))
971 dev_dbg(&pdev->dev, "failed to register socinfo device\n");
972
973 return 0;
974}
975
976static int qcom_smem_remove(struct platform_device *pdev)
977{
978 platform_device_unregister(__smem->socinfo);
979
980 hwspin_lock_free(__smem->hwlock);
981 __smem = NULL;
982
983 return 0;
984}
985
986static const struct of_device_id qcom_smem_of_match[] = {
987 { .compatible = "qcom,smem" },
988 {}
989};
990MODULE_DEVICE_TABLE(of, qcom_smem_of_match);
991
992static struct platform_driver qcom_smem_driver = {
993 .probe = qcom_smem_probe,
994 .remove = qcom_smem_remove,
995 .driver = {
996 .name = "qcom-smem",
997 .of_match_table = qcom_smem_of_match,
998 .suppress_bind_attrs = true,
999 },
1000};
1001
1002static int __init qcom_smem_init(void)
1003{
1004 return platform_driver_register(&qcom_smem_driver);
1005}
1006arch_initcall(qcom_smem_init);
1007
1008static void __exit qcom_smem_exit(void)
1009{
1010 platform_driver_unregister(&qcom_smem_driver);
1011}
1012module_exit(qcom_smem_exit)
1013
1014MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>");
1015MODULE_DESCRIPTION("Qualcomm Shared Memory Manager");
1016MODULE_LICENSE("GPL v2");
1/*
2 * Copyright (c) 2015, Sony Mobile Communications AB.
3 * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 and
7 * only version 2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14
15#include <linux/hwspinlock.h>
16#include <linux/io.h>
17#include <linux/module.h>
18#include <linux/of.h>
19#include <linux/of_address.h>
20#include <linux/platform_device.h>
21#include <linux/slab.h>
22#include <linux/soc/qcom/smem.h>
23
24/*
25 * The Qualcomm shared memory system is a allocate only heap structure that
26 * consists of one of more memory areas that can be accessed by the processors
27 * in the SoC.
28 *
29 * All systems contains a global heap, accessible by all processors in the SoC,
30 * with a table of contents data structure (@smem_header) at the beginning of
31 * the main shared memory block.
32 *
33 * The global header contains meta data for allocations as well as a fixed list
34 * of 512 entries (@smem_global_entry) that can be initialized to reference
35 * parts of the shared memory space.
36 *
37 *
38 * In addition to this global heap a set of "private" heaps can be set up at
39 * boot time with access restrictions so that only certain processor pairs can
40 * access the data.
41 *
42 * These partitions are referenced from an optional partition table
43 * (@smem_ptable), that is found 4kB from the end of the main smem region. The
44 * partition table entries (@smem_ptable_entry) lists the involved processors
45 * (or hosts) and their location in the main shared memory region.
46 *
47 * Each partition starts with a header (@smem_partition_header) that identifies
48 * the partition and holds properties for the two internal memory regions. The
49 * two regions are cached and non-cached memory respectively. Each region
50 * contain a link list of allocation headers (@smem_private_entry) followed by
51 * their data.
52 *
53 * Items in the non-cached region are allocated from the start of the partition
54 * while items in the cached region are allocated from the end. The free area
55 * is hence the region between the cached and non-cached offsets.
56 *
57 *
58 * To synchronize allocations in the shared memory heaps a remote spinlock must
59 * be held - currently lock number 3 of the sfpb or tcsr is used for this on all
60 * platforms.
61 *
62 */
63
64/*
65 * Item 3 of the global heap contains an array of versions for the various
66 * software components in the SoC. We verify that the boot loader version is
67 * what the expected version (SMEM_EXPECTED_VERSION) as a sanity check.
68 */
69#define SMEM_ITEM_VERSION 3
70#define SMEM_MASTER_SBL_VERSION_INDEX 7
71#define SMEM_EXPECTED_VERSION 11
72
73/*
74 * The first 8 items are only to be allocated by the boot loader while
75 * initializing the heap.
76 */
77#define SMEM_ITEM_LAST_FIXED 8
78
79/* Highest accepted item number, for both global and private heaps */
80#define SMEM_ITEM_COUNT 512
81
82/* Processor/host identifier for the application processor */
83#define SMEM_HOST_APPS 0
84
85/* Max number of processors/hosts in a system */
86#define SMEM_HOST_COUNT 9
87
88/**
89 * struct smem_proc_comm - proc_comm communication struct (legacy)
90 * @command: current command to be executed
91 * @status: status of the currently requested command
92 * @params: parameters to the command
93 */
94struct smem_proc_comm {
95 __le32 command;
96 __le32 status;
97 __le32 params[2];
98};
99
100/**
101 * struct smem_global_entry - entry to reference smem items on the heap
102 * @allocated: boolean to indicate if this entry is used
103 * @offset: offset to the allocated space
104 * @size: size of the allocated space, 8 byte aligned
105 * @aux_base: base address for the memory region used by this unit, or 0 for
106 * the default region. bits 0,1 are reserved
107 */
108struct smem_global_entry {
109 __le32 allocated;
110 __le32 offset;
111 __le32 size;
112 __le32 aux_base; /* bits 1:0 reserved */
113};
114#define AUX_BASE_MASK 0xfffffffc
115
116/**
117 * struct smem_header - header found in beginning of primary smem region
118 * @proc_comm: proc_comm communication interface (legacy)
119 * @version: array of versions for the various subsystems
120 * @initialized: boolean to indicate that smem is initialized
121 * @free_offset: index of the first unallocated byte in smem
122 * @available: number of bytes available for allocation
123 * @reserved: reserved field, must be 0
124 * toc: array of references to items
125 */
126struct smem_header {
127 struct smem_proc_comm proc_comm[4];
128 __le32 version[32];
129 __le32 initialized;
130 __le32 free_offset;
131 __le32 available;
132 __le32 reserved;
133 struct smem_global_entry toc[SMEM_ITEM_COUNT];
134};
135
136/**
137 * struct smem_ptable_entry - one entry in the @smem_ptable list
138 * @offset: offset, within the main shared memory region, of the partition
139 * @size: size of the partition
140 * @flags: flags for the partition (currently unused)
141 * @host0: first processor/host with access to this partition
142 * @host1: second processor/host with access to this partition
143 * @reserved: reserved entries for later use
144 */
145struct smem_ptable_entry {
146 __le32 offset;
147 __le32 size;
148 __le32 flags;
149 __le16 host0;
150 __le16 host1;
151 __le32 reserved[8];
152};
153
154/**
155 * struct smem_ptable - partition table for the private partitions
156 * @magic: magic number, must be SMEM_PTABLE_MAGIC
157 * @version: version of the partition table
158 * @num_entries: number of partitions in the table
159 * @reserved: for now reserved entries
160 * @entry: list of @smem_ptable_entry for the @num_entries partitions
161 */
162struct smem_ptable {
163 u8 magic[4];
164 __le32 version;
165 __le32 num_entries;
166 __le32 reserved[5];
167 struct smem_ptable_entry entry[];
168};
169
170static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */
171
172/**
173 * struct smem_partition_header - header of the partitions
174 * @magic: magic number, must be SMEM_PART_MAGIC
175 * @host0: first processor/host with access to this partition
176 * @host1: second processor/host with access to this partition
177 * @size: size of the partition
178 * @offset_free_uncached: offset to the first free byte of uncached memory in
179 * this partition
180 * @offset_free_cached: offset to the first free byte of cached memory in this
181 * partition
182 * @reserved: for now reserved entries
183 */
184struct smem_partition_header {
185 u8 magic[4];
186 __le16 host0;
187 __le16 host1;
188 __le32 size;
189 __le32 offset_free_uncached;
190 __le32 offset_free_cached;
191 __le32 reserved[3];
192};
193
194static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 };
195
196/**
197 * struct smem_private_entry - header of each item in the private partition
198 * @canary: magic number, must be SMEM_PRIVATE_CANARY
199 * @item: identifying number of the smem item
200 * @size: size of the data, including padding bytes
201 * @padding_data: number of bytes of padding of data
202 * @padding_hdr: number of bytes of padding between the header and the data
203 * @reserved: for now reserved entry
204 */
205struct smem_private_entry {
206 u16 canary; /* bytes are the same so no swapping needed */
207 __le16 item;
208 __le32 size; /* includes padding bytes */
209 __le16 padding_data;
210 __le16 padding_hdr;
211 __le32 reserved;
212};
213#define SMEM_PRIVATE_CANARY 0xa5a5
214
215/**
216 * struct smem_region - representation of a chunk of memory used for smem
217 * @aux_base: identifier of aux_mem base
218 * @virt_base: virtual base address of memory with this aux_mem identifier
219 * @size: size of the memory region
220 */
221struct smem_region {
222 u32 aux_base;
223 void __iomem *virt_base;
224 size_t size;
225};
226
227/**
228 * struct qcom_smem - device data for the smem device
229 * @dev: device pointer
230 * @hwlock: reference to a hwspinlock
231 * @partitions: list of pointers to partitions affecting the current
232 * processor/host
233 * @num_regions: number of @regions
234 * @regions: list of the memory regions defining the shared memory
235 */
236struct qcom_smem {
237 struct device *dev;
238
239 struct hwspinlock *hwlock;
240
241 struct smem_partition_header *partitions[SMEM_HOST_COUNT];
242
243 unsigned num_regions;
244 struct smem_region regions[0];
245};
246
247static struct smem_private_entry *
248phdr_to_last_private_entry(struct smem_partition_header *phdr)
249{
250 void *p = phdr;
251
252 return p + le32_to_cpu(phdr->offset_free_uncached);
253}
254
255static void *phdr_to_first_cached_entry(struct smem_partition_header *phdr)
256{
257 void *p = phdr;
258
259 return p + le32_to_cpu(phdr->offset_free_cached);
260}
261
262static struct smem_private_entry *
263phdr_to_first_private_entry(struct smem_partition_header *phdr)
264{
265 void *p = phdr;
266
267 return p + sizeof(*phdr);
268}
269
270static struct smem_private_entry *
271private_entry_next(struct smem_private_entry *e)
272{
273 void *p = e;
274
275 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) +
276 le32_to_cpu(e->size);
277}
278
279static void *entry_to_item(struct smem_private_entry *e)
280{
281 void *p = e;
282
283 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr);
284}
285
286/* Pointer to the one and only smem handle */
287static struct qcom_smem *__smem;
288
289/* Timeout (ms) for the trylock of remote spinlocks */
290#define HWSPINLOCK_TIMEOUT 1000
291
292static int qcom_smem_alloc_private(struct qcom_smem *smem,
293 unsigned host,
294 unsigned item,
295 size_t size)
296{
297 struct smem_partition_header *phdr;
298 struct smem_private_entry *hdr, *end;
299 size_t alloc_size;
300 void *cached;
301
302 phdr = smem->partitions[host];
303 hdr = phdr_to_first_private_entry(phdr);
304 end = phdr_to_last_private_entry(phdr);
305 cached = phdr_to_first_cached_entry(phdr);
306
307 while (hdr < end) {
308 if (hdr->canary != SMEM_PRIVATE_CANARY) {
309 dev_err(smem->dev,
310 "Found invalid canary in host %d partition\n",
311 host);
312 return -EINVAL;
313 }
314
315 if (le16_to_cpu(hdr->item) == item)
316 return -EEXIST;
317
318 hdr = private_entry_next(hdr);
319 }
320
321 /* Check that we don't grow into the cached region */
322 alloc_size = sizeof(*hdr) + ALIGN(size, 8);
323 if ((void *)hdr + alloc_size >= cached) {
324 dev_err(smem->dev, "Out of memory\n");
325 return -ENOSPC;
326 }
327
328 hdr->canary = SMEM_PRIVATE_CANARY;
329 hdr->item = cpu_to_le16(item);
330 hdr->size = cpu_to_le32(ALIGN(size, 8));
331 hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size);
332 hdr->padding_hdr = 0;
333
334 /*
335 * Ensure the header is written before we advance the free offset, so
336 * that remote processors that does not take the remote spinlock still
337 * gets a consistent view of the linked list.
338 */
339 wmb();
340 le32_add_cpu(&phdr->offset_free_uncached, alloc_size);
341
342 return 0;
343}
344
345static int qcom_smem_alloc_global(struct qcom_smem *smem,
346 unsigned item,
347 size_t size)
348{
349 struct smem_header *header;
350 struct smem_global_entry *entry;
351
352 if (WARN_ON(item >= SMEM_ITEM_COUNT))
353 return -EINVAL;
354
355 header = smem->regions[0].virt_base;
356 entry = &header->toc[item];
357 if (entry->allocated)
358 return -EEXIST;
359
360 size = ALIGN(size, 8);
361 if (WARN_ON(size > le32_to_cpu(header->available)))
362 return -ENOMEM;
363
364 entry->offset = header->free_offset;
365 entry->size = cpu_to_le32(size);
366
367 /*
368 * Ensure the header is consistent before we mark the item allocated,
369 * so that remote processors will get a consistent view of the item
370 * even though they do not take the spinlock on read.
371 */
372 wmb();
373 entry->allocated = cpu_to_le32(1);
374
375 le32_add_cpu(&header->free_offset, size);
376 le32_add_cpu(&header->available, -size);
377
378 return 0;
379}
380
381/**
382 * qcom_smem_alloc() - allocate space for a smem item
383 * @host: remote processor id, or -1
384 * @item: smem item handle
385 * @size: number of bytes to be allocated
386 *
387 * Allocate space for a given smem item of size @size, given that the item is
388 * not yet allocated.
389 */
390int qcom_smem_alloc(unsigned host, unsigned item, size_t size)
391{
392 unsigned long flags;
393 int ret;
394
395 if (!__smem)
396 return -EPROBE_DEFER;
397
398 if (item < SMEM_ITEM_LAST_FIXED) {
399 dev_err(__smem->dev,
400 "Rejecting allocation of static entry %d\n", item);
401 return -EINVAL;
402 }
403
404 ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
405 HWSPINLOCK_TIMEOUT,
406 &flags);
407 if (ret)
408 return ret;
409
410 if (host < SMEM_HOST_COUNT && __smem->partitions[host])
411 ret = qcom_smem_alloc_private(__smem, host, item, size);
412 else
413 ret = qcom_smem_alloc_global(__smem, item, size);
414
415 hwspin_unlock_irqrestore(__smem->hwlock, &flags);
416
417 return ret;
418}
419EXPORT_SYMBOL(qcom_smem_alloc);
420
421static void *qcom_smem_get_global(struct qcom_smem *smem,
422 unsigned item,
423 size_t *size)
424{
425 struct smem_header *header;
426 struct smem_region *area;
427 struct smem_global_entry *entry;
428 u32 aux_base;
429 unsigned i;
430
431 if (WARN_ON(item >= SMEM_ITEM_COUNT))
432 return ERR_PTR(-EINVAL);
433
434 header = smem->regions[0].virt_base;
435 entry = &header->toc[item];
436 if (!entry->allocated)
437 return ERR_PTR(-ENXIO);
438
439 aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK;
440
441 for (i = 0; i < smem->num_regions; i++) {
442 area = &smem->regions[i];
443
444 if (area->aux_base == aux_base || !aux_base) {
445 if (size != NULL)
446 *size = le32_to_cpu(entry->size);
447 return area->virt_base + le32_to_cpu(entry->offset);
448 }
449 }
450
451 return ERR_PTR(-ENOENT);
452}
453
454static void *qcom_smem_get_private(struct qcom_smem *smem,
455 unsigned host,
456 unsigned item,
457 size_t *size)
458{
459 struct smem_partition_header *phdr;
460 struct smem_private_entry *e, *end;
461
462 phdr = smem->partitions[host];
463 e = phdr_to_first_private_entry(phdr);
464 end = phdr_to_last_private_entry(phdr);
465
466 while (e < end) {
467 if (e->canary != SMEM_PRIVATE_CANARY) {
468 dev_err(smem->dev,
469 "Found invalid canary in host %d partition\n",
470 host);
471 return ERR_PTR(-EINVAL);
472 }
473
474 if (le16_to_cpu(e->item) == item) {
475 if (size != NULL)
476 *size = le32_to_cpu(e->size) -
477 le16_to_cpu(e->padding_data);
478
479 return entry_to_item(e);
480 }
481
482 e = private_entry_next(e);
483 }
484
485 return ERR_PTR(-ENOENT);
486}
487
488/**
489 * qcom_smem_get() - resolve ptr of size of a smem item
490 * @host: the remote processor, or -1
491 * @item: smem item handle
492 * @size: pointer to be filled out with size of the item
493 *
494 * Looks up smem item and returns pointer to it. Size of smem
495 * item is returned in @size.
496 */
497void *qcom_smem_get(unsigned host, unsigned item, size_t *size)
498{
499 unsigned long flags;
500 int ret;
501 void *ptr = ERR_PTR(-EPROBE_DEFER);
502
503 if (!__smem)
504 return ptr;
505
506 ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
507 HWSPINLOCK_TIMEOUT,
508 &flags);
509 if (ret)
510 return ERR_PTR(ret);
511
512 if (host < SMEM_HOST_COUNT && __smem->partitions[host])
513 ptr = qcom_smem_get_private(__smem, host, item, size);
514 else
515 ptr = qcom_smem_get_global(__smem, item, size);
516
517 hwspin_unlock_irqrestore(__smem->hwlock, &flags);
518
519 return ptr;
520
521}
522EXPORT_SYMBOL(qcom_smem_get);
523
524/**
525 * qcom_smem_get_free_space() - retrieve amount of free space in a partition
526 * @host: the remote processor identifying a partition, or -1
527 *
528 * To be used by smem clients as a quick way to determine if any new
529 * allocations has been made.
530 */
531int qcom_smem_get_free_space(unsigned host)
532{
533 struct smem_partition_header *phdr;
534 struct smem_header *header;
535 unsigned ret;
536
537 if (!__smem)
538 return -EPROBE_DEFER;
539
540 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
541 phdr = __smem->partitions[host];
542 ret = le32_to_cpu(phdr->offset_free_cached) -
543 le32_to_cpu(phdr->offset_free_uncached);
544 } else {
545 header = __smem->regions[0].virt_base;
546 ret = le32_to_cpu(header->available);
547 }
548
549 return ret;
550}
551EXPORT_SYMBOL(qcom_smem_get_free_space);
552
553static int qcom_smem_get_sbl_version(struct qcom_smem *smem)
554{
555 __le32 *versions;
556 size_t size;
557
558 versions = qcom_smem_get_global(smem, SMEM_ITEM_VERSION, &size);
559 if (IS_ERR(versions)) {
560 dev_err(smem->dev, "Unable to read the version item\n");
561 return -ENOENT;
562 }
563
564 if (size < sizeof(unsigned) * SMEM_MASTER_SBL_VERSION_INDEX) {
565 dev_err(smem->dev, "Version item is too small\n");
566 return -EINVAL;
567 }
568
569 return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]);
570}
571
572static int qcom_smem_enumerate_partitions(struct qcom_smem *smem,
573 unsigned local_host)
574{
575 struct smem_partition_header *header;
576 struct smem_ptable_entry *entry;
577 struct smem_ptable *ptable;
578 unsigned remote_host;
579 u32 version, host0, host1;
580 int i;
581
582 ptable = smem->regions[0].virt_base + smem->regions[0].size - SZ_4K;
583 if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic)))
584 return 0;
585
586 version = le32_to_cpu(ptable->version);
587 if (version != 1) {
588 dev_err(smem->dev,
589 "Unsupported partition header version %d\n", version);
590 return -EINVAL;
591 }
592
593 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
594 entry = &ptable->entry[i];
595 host0 = le16_to_cpu(entry->host0);
596 host1 = le16_to_cpu(entry->host1);
597
598 if (host0 != local_host && host1 != local_host)
599 continue;
600
601 if (!le32_to_cpu(entry->offset))
602 continue;
603
604 if (!le32_to_cpu(entry->size))
605 continue;
606
607 if (host0 == local_host)
608 remote_host = host1;
609 else
610 remote_host = host0;
611
612 if (remote_host >= SMEM_HOST_COUNT) {
613 dev_err(smem->dev,
614 "Invalid remote host %d\n",
615 remote_host);
616 return -EINVAL;
617 }
618
619 if (smem->partitions[remote_host]) {
620 dev_err(smem->dev,
621 "Already found a partition for host %d\n",
622 remote_host);
623 return -EINVAL;
624 }
625
626 header = smem->regions[0].virt_base + le32_to_cpu(entry->offset);
627 host0 = le16_to_cpu(header->host0);
628 host1 = le16_to_cpu(header->host1);
629
630 if (memcmp(header->magic, SMEM_PART_MAGIC,
631 sizeof(header->magic))) {
632 dev_err(smem->dev,
633 "Partition %d has invalid magic\n", i);
634 return -EINVAL;
635 }
636
637 if (host0 != local_host && host1 != local_host) {
638 dev_err(smem->dev,
639 "Partition %d hosts are invalid\n", i);
640 return -EINVAL;
641 }
642
643 if (host0 != remote_host && host1 != remote_host) {
644 dev_err(smem->dev,
645 "Partition %d hosts are invalid\n", i);
646 return -EINVAL;
647 }
648
649 if (header->size != entry->size) {
650 dev_err(smem->dev,
651 "Partition %d has invalid size\n", i);
652 return -EINVAL;
653 }
654
655 if (le32_to_cpu(header->offset_free_uncached) > le32_to_cpu(header->size)) {
656 dev_err(smem->dev,
657 "Partition %d has invalid free pointer\n", i);
658 return -EINVAL;
659 }
660
661 smem->partitions[remote_host] = header;
662 }
663
664 return 0;
665}
666
667static int qcom_smem_map_memory(struct qcom_smem *smem, struct device *dev,
668 const char *name, int i)
669{
670 struct device_node *np;
671 struct resource r;
672 int ret;
673
674 np = of_parse_phandle(dev->of_node, name, 0);
675 if (!np) {
676 dev_err(dev, "No %s specified\n", name);
677 return -EINVAL;
678 }
679
680 ret = of_address_to_resource(np, 0, &r);
681 of_node_put(np);
682 if (ret)
683 return ret;
684
685 smem->regions[i].aux_base = (u32)r.start;
686 smem->regions[i].size = resource_size(&r);
687 smem->regions[i].virt_base = devm_ioremap_nocache(dev, r.start,
688 resource_size(&r));
689 if (!smem->regions[i].virt_base)
690 return -ENOMEM;
691
692 return 0;
693}
694
695static int qcom_smem_probe(struct platform_device *pdev)
696{
697 struct smem_header *header;
698 struct qcom_smem *smem;
699 size_t array_size;
700 int num_regions;
701 int hwlock_id;
702 u32 version;
703 int ret;
704
705 num_regions = 1;
706 if (of_find_property(pdev->dev.of_node, "qcom,rpm-msg-ram", NULL))
707 num_regions++;
708
709 array_size = num_regions * sizeof(struct smem_region);
710 smem = devm_kzalloc(&pdev->dev, sizeof(*smem) + array_size, GFP_KERNEL);
711 if (!smem)
712 return -ENOMEM;
713
714 smem->dev = &pdev->dev;
715 smem->num_regions = num_regions;
716
717 ret = qcom_smem_map_memory(smem, &pdev->dev, "memory-region", 0);
718 if (ret)
719 return ret;
720
721 if (num_regions > 1 && (ret = qcom_smem_map_memory(smem, &pdev->dev,
722 "qcom,rpm-msg-ram", 1)))
723 return ret;
724
725 header = smem->regions[0].virt_base;
726 if (le32_to_cpu(header->initialized) != 1 ||
727 le32_to_cpu(header->reserved)) {
728 dev_err(&pdev->dev, "SMEM is not initialized by SBL\n");
729 return -EINVAL;
730 }
731
732 version = qcom_smem_get_sbl_version(smem);
733 if (version >> 16 != SMEM_EXPECTED_VERSION) {
734 dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version);
735 return -EINVAL;
736 }
737
738 ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS);
739 if (ret < 0)
740 return ret;
741
742 hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0);
743 if (hwlock_id < 0) {
744 dev_err(&pdev->dev, "failed to retrieve hwlock\n");
745 return hwlock_id;
746 }
747
748 smem->hwlock = hwspin_lock_request_specific(hwlock_id);
749 if (!smem->hwlock)
750 return -ENXIO;
751
752 __smem = smem;
753
754 return 0;
755}
756
757static int qcom_smem_remove(struct platform_device *pdev)
758{
759 hwspin_lock_free(__smem->hwlock);
760 __smem = NULL;
761
762 return 0;
763}
764
765static const struct of_device_id qcom_smem_of_match[] = {
766 { .compatible = "qcom,smem" },
767 {}
768};
769MODULE_DEVICE_TABLE(of, qcom_smem_of_match);
770
771static struct platform_driver qcom_smem_driver = {
772 .probe = qcom_smem_probe,
773 .remove = qcom_smem_remove,
774 .driver = {
775 .name = "qcom-smem",
776 .of_match_table = qcom_smem_of_match,
777 .suppress_bind_attrs = true,
778 },
779};
780
781static int __init qcom_smem_init(void)
782{
783 return platform_driver_register(&qcom_smem_driver);
784}
785arch_initcall(qcom_smem_init);
786
787static void __exit qcom_smem_exit(void)
788{
789 platform_driver_unregister(&qcom_smem_driver);
790}
791module_exit(qcom_smem_exit)
792
793MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>");
794MODULE_DESCRIPTION("Qualcomm Shared Memory Manager");
795MODULE_LICENSE("GPL v2");