Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Core driver for the pin control subsystem
4 *
5 * Copyright (C) 2011-2012 ST-Ericsson SA
6 * Written on behalf of Linaro for ST-Ericsson
7 * Based on bits of regulator core, gpio core and clk core
8 *
9 * Author: Linus Walleij <linus.walleij@linaro.org>
10 *
11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12 */
13#define pr_fmt(fmt) "pinctrl core: " fmt
14
15#include <linux/kernel.h>
16#include <linux/kref.h>
17#include <linux/export.h>
18#include <linux/init.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/err.h>
22#include <linux/list.h>
23#include <linux/debugfs.h>
24#include <linux/seq_file.h>
25#include <linux/pinctrl/consumer.h>
26#include <linux/pinctrl/pinctrl.h>
27#include <linux/pinctrl/machine.h>
28
29#ifdef CONFIG_GPIOLIB
30#include "../gpio/gpiolib.h"
31#include <asm-generic/gpio.h>
32#endif
33
34#include "core.h"
35#include "devicetree.h"
36#include "pinmux.h"
37#include "pinconf.h"
38
39
40static bool pinctrl_dummy_state;
41
42/* Mutex taken to protect pinctrl_list */
43static DEFINE_MUTEX(pinctrl_list_mutex);
44
45/* Mutex taken to protect pinctrl_maps */
46DEFINE_MUTEX(pinctrl_maps_mutex);
47
48/* Mutex taken to protect pinctrldev_list */
49static DEFINE_MUTEX(pinctrldev_list_mutex);
50
51/* Global list of pin control devices (struct pinctrl_dev) */
52static LIST_HEAD(pinctrldev_list);
53
54/* List of pin controller handles (struct pinctrl) */
55static LIST_HEAD(pinctrl_list);
56
57/* List of pinctrl maps (struct pinctrl_maps) */
58LIST_HEAD(pinctrl_maps);
59
60
61/**
62 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
63 *
64 * Usually this function is called by platforms without pinctrl driver support
65 * but run with some shared drivers using pinctrl APIs.
66 * After calling this function, the pinctrl core will return successfully
67 * with creating a dummy state for the driver to keep going smoothly.
68 */
69void pinctrl_provide_dummies(void)
70{
71 pinctrl_dummy_state = true;
72}
73
74const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
75{
76 /* We're not allowed to register devices without name */
77 return pctldev->desc->name;
78}
79EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
80
81const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
82{
83 return dev_name(pctldev->dev);
84}
85EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
86
87void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
88{
89 return pctldev->driver_data;
90}
91EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
92
93/**
94 * get_pinctrl_dev_from_devname() - look up pin controller device
95 * @devname: the name of a device instance, as returned by dev_name()
96 *
97 * Looks up a pin control device matching a certain device name or pure device
98 * pointer, the pure device pointer will take precedence.
99 */
100struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
101{
102 struct pinctrl_dev *pctldev;
103
104 if (!devname)
105 return NULL;
106
107 mutex_lock(&pinctrldev_list_mutex);
108
109 list_for_each_entry(pctldev, &pinctrldev_list, node) {
110 if (!strcmp(dev_name(pctldev->dev), devname)) {
111 /* Matched on device name */
112 mutex_unlock(&pinctrldev_list_mutex);
113 return pctldev;
114 }
115 }
116
117 mutex_unlock(&pinctrldev_list_mutex);
118
119 return NULL;
120}
121
122struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
123{
124 struct pinctrl_dev *pctldev;
125
126 mutex_lock(&pinctrldev_list_mutex);
127
128 list_for_each_entry(pctldev, &pinctrldev_list, node)
129 if (pctldev->dev->of_node == np) {
130 mutex_unlock(&pinctrldev_list_mutex);
131 return pctldev;
132 }
133
134 mutex_unlock(&pinctrldev_list_mutex);
135
136 return NULL;
137}
138
139/**
140 * pin_get_from_name() - look up a pin number from a name
141 * @pctldev: the pin control device to lookup the pin on
142 * @name: the name of the pin to look up
143 */
144int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
145{
146 unsigned i, pin;
147
148 /* The pin number can be retrived from the pin controller descriptor */
149 for (i = 0; i < pctldev->desc->npins; i++) {
150 struct pin_desc *desc;
151
152 pin = pctldev->desc->pins[i].number;
153 desc = pin_desc_get(pctldev, pin);
154 /* Pin space may be sparse */
155 if (desc && !strcmp(name, desc->name))
156 return pin;
157 }
158
159 return -EINVAL;
160}
161
162/**
163 * pin_get_name_from_id() - look up a pin name from a pin id
164 * @pctldev: the pin control device to lookup the pin on
165 * @pin: pin number/id to look up
166 */
167const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
168{
169 const struct pin_desc *desc;
170
171 desc = pin_desc_get(pctldev, pin);
172 if (!desc) {
173 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
174 pin);
175 return NULL;
176 }
177
178 return desc->name;
179}
180EXPORT_SYMBOL_GPL(pin_get_name);
181
182/* Deletes a range of pin descriptors */
183static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
184 const struct pinctrl_pin_desc *pins,
185 unsigned num_pins)
186{
187 int i;
188
189 for (i = 0; i < num_pins; i++) {
190 struct pin_desc *pindesc;
191
192 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
193 pins[i].number);
194 if (pindesc) {
195 radix_tree_delete(&pctldev->pin_desc_tree,
196 pins[i].number);
197 if (pindesc->dynamic_name)
198 kfree(pindesc->name);
199 }
200 kfree(pindesc);
201 }
202}
203
204static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
205 const struct pinctrl_pin_desc *pin)
206{
207 struct pin_desc *pindesc;
208
209 pindesc = pin_desc_get(pctldev, pin->number);
210 if (pindesc) {
211 dev_err(pctldev->dev, "pin %d already registered\n",
212 pin->number);
213 return -EINVAL;
214 }
215
216 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
217 if (!pindesc)
218 return -ENOMEM;
219
220 /* Set owner */
221 pindesc->pctldev = pctldev;
222
223 /* Copy basic pin info */
224 if (pin->name) {
225 pindesc->name = pin->name;
226 } else {
227 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
228 if (!pindesc->name) {
229 kfree(pindesc);
230 return -ENOMEM;
231 }
232 pindesc->dynamic_name = true;
233 }
234
235 pindesc->drv_data = pin->drv_data;
236
237 radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
238 pr_debug("registered pin %d (%s) on %s\n",
239 pin->number, pindesc->name, pctldev->desc->name);
240 return 0;
241}
242
243static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
244 const struct pinctrl_pin_desc *pins,
245 unsigned num_descs)
246{
247 unsigned i;
248 int ret = 0;
249
250 for (i = 0; i < num_descs; i++) {
251 ret = pinctrl_register_one_pin(pctldev, &pins[i]);
252 if (ret)
253 return ret;
254 }
255
256 return 0;
257}
258
259/**
260 * gpio_to_pin() - GPIO range GPIO number to pin number translation
261 * @range: GPIO range used for the translation
262 * @gpio: gpio pin to translate to a pin number
263 *
264 * Finds the pin number for a given GPIO using the specified GPIO range
265 * as a base for translation. The distinction between linear GPIO ranges
266 * and pin list based GPIO ranges is managed correctly by this function.
267 *
268 * This function assumes the gpio is part of the specified GPIO range, use
269 * only after making sure this is the case (e.g. by calling it on the
270 * result of successful pinctrl_get_device_gpio_range calls)!
271 */
272static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
273 unsigned int gpio)
274{
275 unsigned int offset = gpio - range->base;
276 if (range->pins)
277 return range->pins[offset];
278 else
279 return range->pin_base + offset;
280}
281
282/**
283 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
284 * @pctldev: pin controller device to check
285 * @gpio: gpio pin to check taken from the global GPIO pin space
286 *
287 * Tries to match a GPIO pin number to the ranges handled by a certain pin
288 * controller, return the range or NULL
289 */
290static struct pinctrl_gpio_range *
291pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
292{
293 struct pinctrl_gpio_range *range;
294
295 mutex_lock(&pctldev->mutex);
296 /* Loop over the ranges */
297 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
298 /* Check if we're in the valid range */
299 if (gpio >= range->base &&
300 gpio < range->base + range->npins) {
301 mutex_unlock(&pctldev->mutex);
302 return range;
303 }
304 }
305 mutex_unlock(&pctldev->mutex);
306 return NULL;
307}
308
309/**
310 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
311 * the same GPIO chip are in range
312 * @gpio: gpio pin to check taken from the global GPIO pin space
313 *
314 * This function is complement of pinctrl_match_gpio_range(). If the return
315 * value of pinctrl_match_gpio_range() is NULL, this function could be used
316 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
317 * of the same GPIO chip don't have back-end pinctrl interface.
318 * If the return value is true, it means that pinctrl device is ready & the
319 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
320 * is false, it means that pinctrl device may not be ready.
321 */
322#ifdef CONFIG_GPIOLIB
323static bool pinctrl_ready_for_gpio_range(unsigned gpio)
324{
325 struct pinctrl_dev *pctldev;
326 struct pinctrl_gpio_range *range = NULL;
327 struct gpio_chip *chip = gpio_to_chip(gpio);
328
329 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
330 return false;
331
332 mutex_lock(&pinctrldev_list_mutex);
333
334 /* Loop over the pin controllers */
335 list_for_each_entry(pctldev, &pinctrldev_list, node) {
336 /* Loop over the ranges */
337 mutex_lock(&pctldev->mutex);
338 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
339 /* Check if any gpio range overlapped with gpio chip */
340 if (range->base + range->npins - 1 < chip->base ||
341 range->base > chip->base + chip->ngpio - 1)
342 continue;
343 mutex_unlock(&pctldev->mutex);
344 mutex_unlock(&pinctrldev_list_mutex);
345 return true;
346 }
347 mutex_unlock(&pctldev->mutex);
348 }
349
350 mutex_unlock(&pinctrldev_list_mutex);
351
352 return false;
353}
354#else
355static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
356#endif
357
358/**
359 * pinctrl_get_device_gpio_range() - find device for GPIO range
360 * @gpio: the pin to locate the pin controller for
361 * @outdev: the pin control device if found
362 * @outrange: the GPIO range if found
363 *
364 * Find the pin controller handling a certain GPIO pin from the pinspace of
365 * the GPIO subsystem, return the device and the matching GPIO range. Returns
366 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
367 * may still have not been registered.
368 */
369static int pinctrl_get_device_gpio_range(unsigned gpio,
370 struct pinctrl_dev **outdev,
371 struct pinctrl_gpio_range **outrange)
372{
373 struct pinctrl_dev *pctldev;
374
375 mutex_lock(&pinctrldev_list_mutex);
376
377 /* Loop over the pin controllers */
378 list_for_each_entry(pctldev, &pinctrldev_list, node) {
379 struct pinctrl_gpio_range *range;
380
381 range = pinctrl_match_gpio_range(pctldev, gpio);
382 if (range) {
383 *outdev = pctldev;
384 *outrange = range;
385 mutex_unlock(&pinctrldev_list_mutex);
386 return 0;
387 }
388 }
389
390 mutex_unlock(&pinctrldev_list_mutex);
391
392 return -EPROBE_DEFER;
393}
394
395/**
396 * pinctrl_add_gpio_range() - register a GPIO range for a controller
397 * @pctldev: pin controller device to add the range to
398 * @range: the GPIO range to add
399 *
400 * This adds a range of GPIOs to be handled by a certain pin controller. Call
401 * this to register handled ranges after registering your pin controller.
402 */
403void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
404 struct pinctrl_gpio_range *range)
405{
406 mutex_lock(&pctldev->mutex);
407 list_add_tail(&range->node, &pctldev->gpio_ranges);
408 mutex_unlock(&pctldev->mutex);
409}
410EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
411
412void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
413 struct pinctrl_gpio_range *ranges,
414 unsigned nranges)
415{
416 int i;
417
418 for (i = 0; i < nranges; i++)
419 pinctrl_add_gpio_range(pctldev, &ranges[i]);
420}
421EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
422
423struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
424 struct pinctrl_gpio_range *range)
425{
426 struct pinctrl_dev *pctldev;
427
428 pctldev = get_pinctrl_dev_from_devname(devname);
429
430 /*
431 * If we can't find this device, let's assume that is because
432 * it has not probed yet, so the driver trying to register this
433 * range need to defer probing.
434 */
435 if (!pctldev) {
436 return ERR_PTR(-EPROBE_DEFER);
437 }
438 pinctrl_add_gpio_range(pctldev, range);
439
440 return pctldev;
441}
442EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
443
444int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
445 const unsigned **pins, unsigned *num_pins)
446{
447 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
448 int gs;
449
450 if (!pctlops->get_group_pins)
451 return -EINVAL;
452
453 gs = pinctrl_get_group_selector(pctldev, pin_group);
454 if (gs < 0)
455 return gs;
456
457 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
458}
459EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
460
461struct pinctrl_gpio_range *
462pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
463 unsigned int pin)
464{
465 struct pinctrl_gpio_range *range;
466
467 /* Loop over the ranges */
468 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
469 /* Check if we're in the valid range */
470 if (range->pins) {
471 int a;
472 for (a = 0; a < range->npins; a++) {
473 if (range->pins[a] == pin)
474 return range;
475 }
476 } else if (pin >= range->pin_base &&
477 pin < range->pin_base + range->npins)
478 return range;
479 }
480
481 return NULL;
482}
483EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
484
485/**
486 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
487 * @pctldev: the pin controller device to look in
488 * @pin: a controller-local number to find the range for
489 */
490struct pinctrl_gpio_range *
491pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
492 unsigned int pin)
493{
494 struct pinctrl_gpio_range *range;
495
496 mutex_lock(&pctldev->mutex);
497 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
498 mutex_unlock(&pctldev->mutex);
499
500 return range;
501}
502EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
503
504/**
505 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
506 * @pctldev: pin controller device to remove the range from
507 * @range: the GPIO range to remove
508 */
509void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
510 struct pinctrl_gpio_range *range)
511{
512 mutex_lock(&pctldev->mutex);
513 list_del(&range->node);
514 mutex_unlock(&pctldev->mutex);
515}
516EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
517
518#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
519
520/**
521 * pinctrl_generic_get_group_count() - returns the number of pin groups
522 * @pctldev: pin controller device
523 */
524int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
525{
526 return pctldev->num_groups;
527}
528EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
529
530/**
531 * pinctrl_generic_get_group_name() - returns the name of a pin group
532 * @pctldev: pin controller device
533 * @selector: group number
534 */
535const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
536 unsigned int selector)
537{
538 struct group_desc *group;
539
540 group = radix_tree_lookup(&pctldev->pin_group_tree,
541 selector);
542 if (!group)
543 return NULL;
544
545 return group->name;
546}
547EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
548
549/**
550 * pinctrl_generic_get_group_pins() - gets the pin group pins
551 * @pctldev: pin controller device
552 * @selector: group number
553 * @pins: pins in the group
554 * @num_pins: number of pins in the group
555 */
556int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
557 unsigned int selector,
558 const unsigned int **pins,
559 unsigned int *num_pins)
560{
561 struct group_desc *group;
562
563 group = radix_tree_lookup(&pctldev->pin_group_tree,
564 selector);
565 if (!group) {
566 dev_err(pctldev->dev, "%s could not find pingroup%i\n",
567 __func__, selector);
568 return -EINVAL;
569 }
570
571 *pins = group->pins;
572 *num_pins = group->num_pins;
573
574 return 0;
575}
576EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
577
578/**
579 * pinctrl_generic_get_group() - returns a pin group based on the number
580 * @pctldev: pin controller device
581 * @selector: group number
582 */
583struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
584 unsigned int selector)
585{
586 struct group_desc *group;
587
588 group = radix_tree_lookup(&pctldev->pin_group_tree,
589 selector);
590 if (!group)
591 return NULL;
592
593 return group;
594}
595EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
596
597static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
598 const char *function)
599{
600 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
601 int ngroups = ops->get_groups_count(pctldev);
602 int selector = 0;
603
604 /* See if this pctldev has this group */
605 while (selector < ngroups) {
606 const char *gname = ops->get_group_name(pctldev, selector);
607
608 if (gname && !strcmp(function, gname))
609 return selector;
610
611 selector++;
612 }
613
614 return -EINVAL;
615}
616
617/**
618 * pinctrl_generic_add_group() - adds a new pin group
619 * @pctldev: pin controller device
620 * @name: name of the pin group
621 * @pins: pins in the pin group
622 * @num_pins: number of pins in the pin group
623 * @data: pin controller driver specific data
624 *
625 * Note that the caller must take care of locking.
626 */
627int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
628 int *pins, int num_pins, void *data)
629{
630 struct group_desc *group;
631 int selector;
632
633 if (!name)
634 return -EINVAL;
635
636 selector = pinctrl_generic_group_name_to_selector(pctldev, name);
637 if (selector >= 0)
638 return selector;
639
640 selector = pctldev->num_groups;
641
642 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
643 if (!group)
644 return -ENOMEM;
645
646 group->name = name;
647 group->pins = pins;
648 group->num_pins = num_pins;
649 group->data = data;
650
651 radix_tree_insert(&pctldev->pin_group_tree, selector, group);
652
653 pctldev->num_groups++;
654
655 return selector;
656}
657EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
658
659/**
660 * pinctrl_generic_remove_group() - removes a numbered pin group
661 * @pctldev: pin controller device
662 * @selector: group number
663 *
664 * Note that the caller must take care of locking.
665 */
666int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
667 unsigned int selector)
668{
669 struct group_desc *group;
670
671 group = radix_tree_lookup(&pctldev->pin_group_tree,
672 selector);
673 if (!group)
674 return -ENOENT;
675
676 radix_tree_delete(&pctldev->pin_group_tree, selector);
677 devm_kfree(pctldev->dev, group);
678
679 pctldev->num_groups--;
680
681 return 0;
682}
683EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
684
685/**
686 * pinctrl_generic_free_groups() - removes all pin groups
687 * @pctldev: pin controller device
688 *
689 * Note that the caller must take care of locking. The pinctrl groups
690 * are allocated with devm_kzalloc() so no need to free them here.
691 */
692static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
693{
694 struct radix_tree_iter iter;
695 void __rcu **slot;
696
697 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
698 radix_tree_delete(&pctldev->pin_group_tree, iter.index);
699
700 pctldev->num_groups = 0;
701}
702
703#else
704static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
705{
706}
707#endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
708
709/**
710 * pinctrl_get_group_selector() - returns the group selector for a group
711 * @pctldev: the pin controller handling the group
712 * @pin_group: the pin group to look up
713 */
714int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
715 const char *pin_group)
716{
717 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
718 unsigned ngroups = pctlops->get_groups_count(pctldev);
719 unsigned group_selector = 0;
720
721 while (group_selector < ngroups) {
722 const char *gname = pctlops->get_group_name(pctldev,
723 group_selector);
724 if (gname && !strcmp(gname, pin_group)) {
725 dev_dbg(pctldev->dev,
726 "found group selector %u for %s\n",
727 group_selector,
728 pin_group);
729 return group_selector;
730 }
731
732 group_selector++;
733 }
734
735 dev_err(pctldev->dev, "does not have pin group %s\n",
736 pin_group);
737
738 return -EINVAL;
739}
740
741bool pinctrl_gpio_can_use_line(unsigned gpio)
742{
743 struct pinctrl_dev *pctldev;
744 struct pinctrl_gpio_range *range;
745 bool result;
746 int pin;
747
748 /*
749 * Try to obtain GPIO range, if it fails
750 * we're probably dealing with GPIO driver
751 * without a backing pin controller - bail out.
752 */
753 if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range))
754 return true;
755
756 mutex_lock(&pctldev->mutex);
757
758 /* Convert to the pin controllers number space */
759 pin = gpio_to_pin(range, gpio);
760
761 result = pinmux_can_be_used_for_gpio(pctldev, pin);
762
763 mutex_unlock(&pctldev->mutex);
764
765 return result;
766}
767EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
768
769/**
770 * pinctrl_gpio_request() - request a single pin to be used as GPIO
771 * @gpio: the GPIO pin number from the GPIO subsystem number space
772 *
773 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
774 * as part of their gpio_request() semantics, platforms and individual drivers
775 * shall *NOT* request GPIO pins to be muxed in.
776 */
777int pinctrl_gpio_request(unsigned gpio)
778{
779 struct pinctrl_dev *pctldev;
780 struct pinctrl_gpio_range *range;
781 int ret;
782 int pin;
783
784 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
785 if (ret) {
786 if (pinctrl_ready_for_gpio_range(gpio))
787 ret = 0;
788 return ret;
789 }
790
791 mutex_lock(&pctldev->mutex);
792
793 /* Convert to the pin controllers number space */
794 pin = gpio_to_pin(range, gpio);
795
796 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
797
798 mutex_unlock(&pctldev->mutex);
799
800 return ret;
801}
802EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
803
804/**
805 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
806 * @gpio: the GPIO pin number from the GPIO subsystem number space
807 *
808 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
809 * as part of their gpio_free() semantics, platforms and individual drivers
810 * shall *NOT* request GPIO pins to be muxed out.
811 */
812void pinctrl_gpio_free(unsigned gpio)
813{
814 struct pinctrl_dev *pctldev;
815 struct pinctrl_gpio_range *range;
816 int ret;
817 int pin;
818
819 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
820 if (ret) {
821 return;
822 }
823 mutex_lock(&pctldev->mutex);
824
825 /* Convert to the pin controllers number space */
826 pin = gpio_to_pin(range, gpio);
827
828 pinmux_free_gpio(pctldev, pin, range);
829
830 mutex_unlock(&pctldev->mutex);
831}
832EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
833
834static int pinctrl_gpio_direction(unsigned gpio, bool input)
835{
836 struct pinctrl_dev *pctldev;
837 struct pinctrl_gpio_range *range;
838 int ret;
839 int pin;
840
841 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
842 if (ret) {
843 return ret;
844 }
845
846 mutex_lock(&pctldev->mutex);
847
848 /* Convert to the pin controllers number space */
849 pin = gpio_to_pin(range, gpio);
850 ret = pinmux_gpio_direction(pctldev, range, pin, input);
851
852 mutex_unlock(&pctldev->mutex);
853
854 return ret;
855}
856
857/**
858 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
859 * @gpio: the GPIO pin number from the GPIO subsystem number space
860 *
861 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
862 * as part of their gpio_direction_input() semantics, platforms and individual
863 * drivers shall *NOT* touch pin control GPIO calls.
864 */
865int pinctrl_gpio_direction_input(unsigned gpio)
866{
867 return pinctrl_gpio_direction(gpio, true);
868}
869EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
870
871/**
872 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
873 * @gpio: the GPIO pin number from the GPIO subsystem number space
874 *
875 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
876 * as part of their gpio_direction_output() semantics, platforms and individual
877 * drivers shall *NOT* touch pin control GPIO calls.
878 */
879int pinctrl_gpio_direction_output(unsigned gpio)
880{
881 return pinctrl_gpio_direction(gpio, false);
882}
883EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
884
885/**
886 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
887 * @gpio: the GPIO pin number from the GPIO subsystem number space
888 * @config: the configuration to apply to the GPIO
889 *
890 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
891 * they need to call the underlying pin controller to change GPIO config
892 * (for example set debounce time).
893 */
894int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
895{
896 unsigned long configs[] = { config };
897 struct pinctrl_gpio_range *range;
898 struct pinctrl_dev *pctldev;
899 int ret, pin;
900
901 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
902 if (ret)
903 return ret;
904
905 mutex_lock(&pctldev->mutex);
906 pin = gpio_to_pin(range, gpio);
907 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
908 mutex_unlock(&pctldev->mutex);
909
910 return ret;
911}
912EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
913
914static struct pinctrl_state *find_state(struct pinctrl *p,
915 const char *name)
916{
917 struct pinctrl_state *state;
918
919 list_for_each_entry(state, &p->states, node)
920 if (!strcmp(state->name, name))
921 return state;
922
923 return NULL;
924}
925
926static struct pinctrl_state *create_state(struct pinctrl *p,
927 const char *name)
928{
929 struct pinctrl_state *state;
930
931 state = kzalloc(sizeof(*state), GFP_KERNEL);
932 if (!state)
933 return ERR_PTR(-ENOMEM);
934
935 state->name = name;
936 INIT_LIST_HEAD(&state->settings);
937
938 list_add_tail(&state->node, &p->states);
939
940 return state;
941}
942
943static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
944 const struct pinctrl_map *map)
945{
946 struct pinctrl_state *state;
947 struct pinctrl_setting *setting;
948 int ret;
949
950 state = find_state(p, map->name);
951 if (!state)
952 state = create_state(p, map->name);
953 if (IS_ERR(state))
954 return PTR_ERR(state);
955
956 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
957 return 0;
958
959 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
960 if (!setting)
961 return -ENOMEM;
962
963 setting->type = map->type;
964
965 if (pctldev)
966 setting->pctldev = pctldev;
967 else
968 setting->pctldev =
969 get_pinctrl_dev_from_devname(map->ctrl_dev_name);
970 if (!setting->pctldev) {
971 kfree(setting);
972 /* Do not defer probing of hogs (circular loop) */
973 if (!strcmp(map->ctrl_dev_name, map->dev_name))
974 return -ENODEV;
975 /*
976 * OK let us guess that the driver is not there yet, and
977 * let's defer obtaining this pinctrl handle to later...
978 */
979 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
980 map->ctrl_dev_name);
981 return -EPROBE_DEFER;
982 }
983
984 setting->dev_name = map->dev_name;
985
986 switch (map->type) {
987 case PIN_MAP_TYPE_MUX_GROUP:
988 ret = pinmux_map_to_setting(map, setting);
989 break;
990 case PIN_MAP_TYPE_CONFIGS_PIN:
991 case PIN_MAP_TYPE_CONFIGS_GROUP:
992 ret = pinconf_map_to_setting(map, setting);
993 break;
994 default:
995 ret = -EINVAL;
996 break;
997 }
998 if (ret < 0) {
999 kfree(setting);
1000 return ret;
1001 }
1002
1003 list_add_tail(&setting->node, &state->settings);
1004
1005 return 0;
1006}
1007
1008static struct pinctrl *find_pinctrl(struct device *dev)
1009{
1010 struct pinctrl *p;
1011
1012 mutex_lock(&pinctrl_list_mutex);
1013 list_for_each_entry(p, &pinctrl_list, node)
1014 if (p->dev == dev) {
1015 mutex_unlock(&pinctrl_list_mutex);
1016 return p;
1017 }
1018
1019 mutex_unlock(&pinctrl_list_mutex);
1020 return NULL;
1021}
1022
1023static void pinctrl_free(struct pinctrl *p, bool inlist);
1024
1025static struct pinctrl *create_pinctrl(struct device *dev,
1026 struct pinctrl_dev *pctldev)
1027{
1028 struct pinctrl *p;
1029 const char *devname;
1030 struct pinctrl_maps *maps_node;
1031 int i;
1032 const struct pinctrl_map *map;
1033 int ret;
1034
1035 /*
1036 * create the state cookie holder struct pinctrl for each
1037 * mapping, this is what consumers will get when requesting
1038 * a pin control handle with pinctrl_get()
1039 */
1040 p = kzalloc(sizeof(*p), GFP_KERNEL);
1041 if (!p)
1042 return ERR_PTR(-ENOMEM);
1043 p->dev = dev;
1044 INIT_LIST_HEAD(&p->states);
1045 INIT_LIST_HEAD(&p->dt_maps);
1046
1047 ret = pinctrl_dt_to_map(p, pctldev);
1048 if (ret < 0) {
1049 kfree(p);
1050 return ERR_PTR(ret);
1051 }
1052
1053 devname = dev_name(dev);
1054
1055 mutex_lock(&pinctrl_maps_mutex);
1056 /* Iterate over the pin control maps to locate the right ones */
1057 for_each_maps(maps_node, i, map) {
1058 /* Map must be for this device */
1059 if (strcmp(map->dev_name, devname))
1060 continue;
1061 /*
1062 * If pctldev is not null, we are claiming hog for it,
1063 * that means, setting that is served by pctldev by itself.
1064 *
1065 * Thus we must skip map that is for this device but is served
1066 * by other device.
1067 */
1068 if (pctldev &&
1069 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1070 continue;
1071
1072 ret = add_setting(p, pctldev, map);
1073 /*
1074 * At this point the adding of a setting may:
1075 *
1076 * - Defer, if the pinctrl device is not yet available
1077 * - Fail, if the pinctrl device is not yet available,
1078 * AND the setting is a hog. We cannot defer that, since
1079 * the hog will kick in immediately after the device
1080 * is registered.
1081 *
1082 * If the error returned was not -EPROBE_DEFER then we
1083 * accumulate the errors to see if we end up with
1084 * an -EPROBE_DEFER later, as that is the worst case.
1085 */
1086 if (ret == -EPROBE_DEFER) {
1087 pinctrl_free(p, false);
1088 mutex_unlock(&pinctrl_maps_mutex);
1089 return ERR_PTR(ret);
1090 }
1091 }
1092 mutex_unlock(&pinctrl_maps_mutex);
1093
1094 if (ret < 0) {
1095 /* If some other error than deferral occurred, return here */
1096 pinctrl_free(p, false);
1097 return ERR_PTR(ret);
1098 }
1099
1100 kref_init(&p->users);
1101
1102 /* Add the pinctrl handle to the global list */
1103 mutex_lock(&pinctrl_list_mutex);
1104 list_add_tail(&p->node, &pinctrl_list);
1105 mutex_unlock(&pinctrl_list_mutex);
1106
1107 return p;
1108}
1109
1110/**
1111 * pinctrl_get() - retrieves the pinctrl handle for a device
1112 * @dev: the device to obtain the handle for
1113 */
1114struct pinctrl *pinctrl_get(struct device *dev)
1115{
1116 struct pinctrl *p;
1117
1118 if (WARN_ON(!dev))
1119 return ERR_PTR(-EINVAL);
1120
1121 /*
1122 * See if somebody else (such as the device core) has already
1123 * obtained a handle to the pinctrl for this device. In that case,
1124 * return another pointer to it.
1125 */
1126 p = find_pinctrl(dev);
1127 if (p) {
1128 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1129 kref_get(&p->users);
1130 return p;
1131 }
1132
1133 return create_pinctrl(dev, NULL);
1134}
1135EXPORT_SYMBOL_GPL(pinctrl_get);
1136
1137static void pinctrl_free_setting(bool disable_setting,
1138 struct pinctrl_setting *setting)
1139{
1140 switch (setting->type) {
1141 case PIN_MAP_TYPE_MUX_GROUP:
1142 if (disable_setting)
1143 pinmux_disable_setting(setting);
1144 pinmux_free_setting(setting);
1145 break;
1146 case PIN_MAP_TYPE_CONFIGS_PIN:
1147 case PIN_MAP_TYPE_CONFIGS_GROUP:
1148 pinconf_free_setting(setting);
1149 break;
1150 default:
1151 break;
1152 }
1153}
1154
1155static void pinctrl_free(struct pinctrl *p, bool inlist)
1156{
1157 struct pinctrl_state *state, *n1;
1158 struct pinctrl_setting *setting, *n2;
1159
1160 mutex_lock(&pinctrl_list_mutex);
1161 list_for_each_entry_safe(state, n1, &p->states, node) {
1162 list_for_each_entry_safe(setting, n2, &state->settings, node) {
1163 pinctrl_free_setting(state == p->state, setting);
1164 list_del(&setting->node);
1165 kfree(setting);
1166 }
1167 list_del(&state->node);
1168 kfree(state);
1169 }
1170
1171 pinctrl_dt_free_maps(p);
1172
1173 if (inlist)
1174 list_del(&p->node);
1175 kfree(p);
1176 mutex_unlock(&pinctrl_list_mutex);
1177}
1178
1179/**
1180 * pinctrl_release() - release the pinctrl handle
1181 * @kref: the kref in the pinctrl being released
1182 */
1183static void pinctrl_release(struct kref *kref)
1184{
1185 struct pinctrl *p = container_of(kref, struct pinctrl, users);
1186
1187 pinctrl_free(p, true);
1188}
1189
1190/**
1191 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1192 * @p: the pinctrl handle to release
1193 */
1194void pinctrl_put(struct pinctrl *p)
1195{
1196 kref_put(&p->users, pinctrl_release);
1197}
1198EXPORT_SYMBOL_GPL(pinctrl_put);
1199
1200/**
1201 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1202 * @p: the pinctrl handle to retrieve the state from
1203 * @name: the state name to retrieve
1204 */
1205struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1206 const char *name)
1207{
1208 struct pinctrl_state *state;
1209
1210 state = find_state(p, name);
1211 if (!state) {
1212 if (pinctrl_dummy_state) {
1213 /* create dummy state */
1214 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1215 name);
1216 state = create_state(p, name);
1217 } else
1218 state = ERR_PTR(-ENODEV);
1219 }
1220
1221 return state;
1222}
1223EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1224
1225static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1226 struct device *consumer)
1227{
1228 if (pctldev->desc->link_consumers)
1229 device_link_add(consumer, pctldev->dev,
1230 DL_FLAG_PM_RUNTIME |
1231 DL_FLAG_AUTOREMOVE_CONSUMER);
1232}
1233
1234/**
1235 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1236 * @p: the pinctrl handle for the device that requests configuration
1237 * @state: the state handle to select/activate/program
1238 */
1239static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1240{
1241 struct pinctrl_setting *setting, *setting2;
1242 struct pinctrl_state *old_state = p->state;
1243 int ret;
1244
1245 if (p->state) {
1246 /*
1247 * For each pinmux setting in the old state, forget SW's record
1248 * of mux owner for that pingroup. Any pingroups which are
1249 * still owned by the new state will be re-acquired by the call
1250 * to pinmux_enable_setting() in the loop below.
1251 */
1252 list_for_each_entry(setting, &p->state->settings, node) {
1253 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1254 continue;
1255 pinmux_disable_setting(setting);
1256 }
1257 }
1258
1259 p->state = NULL;
1260
1261 /* Apply all the settings for the new state */
1262 list_for_each_entry(setting, &state->settings, node) {
1263 switch (setting->type) {
1264 case PIN_MAP_TYPE_MUX_GROUP:
1265 ret = pinmux_enable_setting(setting);
1266 break;
1267 case PIN_MAP_TYPE_CONFIGS_PIN:
1268 case PIN_MAP_TYPE_CONFIGS_GROUP:
1269 ret = pinconf_apply_setting(setting);
1270 break;
1271 default:
1272 ret = -EINVAL;
1273 break;
1274 }
1275
1276 if (ret < 0) {
1277 goto unapply_new_state;
1278 }
1279
1280 /* Do not link hogs (circular dependency) */
1281 if (p != setting->pctldev->p)
1282 pinctrl_link_add(setting->pctldev, p->dev);
1283 }
1284
1285 p->state = state;
1286
1287 return 0;
1288
1289unapply_new_state:
1290 dev_err(p->dev, "Error applying setting, reverse things back\n");
1291
1292 list_for_each_entry(setting2, &state->settings, node) {
1293 if (&setting2->node == &setting->node)
1294 break;
1295 /*
1296 * All we can do here is pinmux_disable_setting.
1297 * That means that some pins are muxed differently now
1298 * than they were before applying the setting (We can't
1299 * "unmux a pin"!), but it's not a big deal since the pins
1300 * are free to be muxed by another apply_setting.
1301 */
1302 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1303 pinmux_disable_setting(setting2);
1304 }
1305
1306 /* There's no infinite recursive loop here because p->state is NULL */
1307 if (old_state)
1308 pinctrl_select_state(p, old_state);
1309
1310 return ret;
1311}
1312
1313/**
1314 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1315 * @p: the pinctrl handle for the device that requests configuration
1316 * @state: the state handle to select/activate/program
1317 */
1318int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1319{
1320 if (p->state == state)
1321 return 0;
1322
1323 return pinctrl_commit_state(p, state);
1324}
1325EXPORT_SYMBOL_GPL(pinctrl_select_state);
1326
1327static void devm_pinctrl_release(struct device *dev, void *res)
1328{
1329 pinctrl_put(*(struct pinctrl **)res);
1330}
1331
1332/**
1333 * devm_pinctrl_get() - Resource managed pinctrl_get()
1334 * @dev: the device to obtain the handle for
1335 *
1336 * If there is a need to explicitly destroy the returned struct pinctrl,
1337 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1338 */
1339struct pinctrl *devm_pinctrl_get(struct device *dev)
1340{
1341 struct pinctrl **ptr, *p;
1342
1343 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1344 if (!ptr)
1345 return ERR_PTR(-ENOMEM);
1346
1347 p = pinctrl_get(dev);
1348 if (!IS_ERR(p)) {
1349 *ptr = p;
1350 devres_add(dev, ptr);
1351 } else {
1352 devres_free(ptr);
1353 }
1354
1355 return p;
1356}
1357EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1358
1359static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1360{
1361 struct pinctrl **p = res;
1362
1363 return *p == data;
1364}
1365
1366/**
1367 * devm_pinctrl_put() - Resource managed pinctrl_put()
1368 * @p: the pinctrl handle to release
1369 *
1370 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1371 * this function will not need to be called and the resource management
1372 * code will ensure that the resource is freed.
1373 */
1374void devm_pinctrl_put(struct pinctrl *p)
1375{
1376 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1377 devm_pinctrl_match, p));
1378}
1379EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1380
1381/**
1382 * pinctrl_register_mappings() - register a set of pin controller mappings
1383 * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1384 * keeps a reference to the passed in maps, so they should _not_ be
1385 * marked with __initdata.
1386 * @num_maps: the number of maps in the mapping table
1387 */
1388int pinctrl_register_mappings(const struct pinctrl_map *maps,
1389 unsigned num_maps)
1390{
1391 int i, ret;
1392 struct pinctrl_maps *maps_node;
1393
1394 pr_debug("add %u pinctrl maps\n", num_maps);
1395
1396 /* First sanity check the new mapping */
1397 for (i = 0; i < num_maps; i++) {
1398 if (!maps[i].dev_name) {
1399 pr_err("failed to register map %s (%d): no device given\n",
1400 maps[i].name, i);
1401 return -EINVAL;
1402 }
1403
1404 if (!maps[i].name) {
1405 pr_err("failed to register map %d: no map name given\n",
1406 i);
1407 return -EINVAL;
1408 }
1409
1410 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1411 !maps[i].ctrl_dev_name) {
1412 pr_err("failed to register map %s (%d): no pin control device given\n",
1413 maps[i].name, i);
1414 return -EINVAL;
1415 }
1416
1417 switch (maps[i].type) {
1418 case PIN_MAP_TYPE_DUMMY_STATE:
1419 break;
1420 case PIN_MAP_TYPE_MUX_GROUP:
1421 ret = pinmux_validate_map(&maps[i], i);
1422 if (ret < 0)
1423 return ret;
1424 break;
1425 case PIN_MAP_TYPE_CONFIGS_PIN:
1426 case PIN_MAP_TYPE_CONFIGS_GROUP:
1427 ret = pinconf_validate_map(&maps[i], i);
1428 if (ret < 0)
1429 return ret;
1430 break;
1431 default:
1432 pr_err("failed to register map %s (%d): invalid type given\n",
1433 maps[i].name, i);
1434 return -EINVAL;
1435 }
1436 }
1437
1438 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1439 if (!maps_node)
1440 return -ENOMEM;
1441
1442 maps_node->maps = maps;
1443 maps_node->num_maps = num_maps;
1444
1445 mutex_lock(&pinctrl_maps_mutex);
1446 list_add_tail(&maps_node->node, &pinctrl_maps);
1447 mutex_unlock(&pinctrl_maps_mutex);
1448
1449 return 0;
1450}
1451EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1452
1453/**
1454 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1455 * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
1456 * when registering the mappings.
1457 */
1458void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1459{
1460 struct pinctrl_maps *maps_node;
1461
1462 mutex_lock(&pinctrl_maps_mutex);
1463 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1464 if (maps_node->maps == map) {
1465 list_del(&maps_node->node);
1466 kfree(maps_node);
1467 mutex_unlock(&pinctrl_maps_mutex);
1468 return;
1469 }
1470 }
1471 mutex_unlock(&pinctrl_maps_mutex);
1472}
1473EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1474
1475/**
1476 * pinctrl_force_sleep() - turn a given controller device into sleep state
1477 * @pctldev: pin controller device
1478 */
1479int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1480{
1481 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1482 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1483 return 0;
1484}
1485EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1486
1487/**
1488 * pinctrl_force_default() - turn a given controller device into default state
1489 * @pctldev: pin controller device
1490 */
1491int pinctrl_force_default(struct pinctrl_dev *pctldev)
1492{
1493 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1494 return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1495 return 0;
1496}
1497EXPORT_SYMBOL_GPL(pinctrl_force_default);
1498
1499/**
1500 * pinctrl_init_done() - tell pinctrl probe is done
1501 *
1502 * We'll use this time to switch the pins from "init" to "default" unless the
1503 * driver selected some other state.
1504 *
1505 * @dev: device to that's done probing
1506 */
1507int pinctrl_init_done(struct device *dev)
1508{
1509 struct dev_pin_info *pins = dev->pins;
1510 int ret;
1511
1512 if (!pins)
1513 return 0;
1514
1515 if (IS_ERR(pins->init_state))
1516 return 0; /* No such state */
1517
1518 if (pins->p->state != pins->init_state)
1519 return 0; /* Not at init anyway */
1520
1521 if (IS_ERR(pins->default_state))
1522 return 0; /* No default state */
1523
1524 ret = pinctrl_select_state(pins->p, pins->default_state);
1525 if (ret)
1526 dev_err(dev, "failed to activate default pinctrl state\n");
1527
1528 return ret;
1529}
1530
1531static int pinctrl_select_bound_state(struct device *dev,
1532 struct pinctrl_state *state)
1533{
1534 struct dev_pin_info *pins = dev->pins;
1535 int ret;
1536
1537 if (IS_ERR(state))
1538 return 0; /* No such state */
1539 ret = pinctrl_select_state(pins->p, state);
1540 if (ret)
1541 dev_err(dev, "failed to activate pinctrl state %s\n",
1542 state->name);
1543 return ret;
1544}
1545
1546/**
1547 * pinctrl_select_default_state() - select default pinctrl state
1548 * @dev: device to select default state for
1549 */
1550int pinctrl_select_default_state(struct device *dev)
1551{
1552 if (!dev->pins)
1553 return 0;
1554
1555 return pinctrl_select_bound_state(dev, dev->pins->default_state);
1556}
1557EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1558
1559#ifdef CONFIG_PM
1560
1561/**
1562 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1563 * @dev: device to select default state for
1564 */
1565int pinctrl_pm_select_default_state(struct device *dev)
1566{
1567 return pinctrl_select_default_state(dev);
1568}
1569EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1570
1571/**
1572 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1573 * @dev: device to select sleep state for
1574 */
1575int pinctrl_pm_select_sleep_state(struct device *dev)
1576{
1577 if (!dev->pins)
1578 return 0;
1579
1580 return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1581}
1582EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1583
1584/**
1585 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1586 * @dev: device to select idle state for
1587 */
1588int pinctrl_pm_select_idle_state(struct device *dev)
1589{
1590 if (!dev->pins)
1591 return 0;
1592
1593 return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1594}
1595EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1596#endif
1597
1598#ifdef CONFIG_DEBUG_FS
1599
1600static int pinctrl_pins_show(struct seq_file *s, void *what)
1601{
1602 struct pinctrl_dev *pctldev = s->private;
1603 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1604 unsigned i, pin;
1605 struct pinctrl_gpio_range *range;
1606 unsigned int gpio_num;
1607 struct gpio_chip *chip;
1608
1609 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1610
1611 mutex_lock(&pctldev->mutex);
1612
1613 /* The pin number can be retrived from the pin controller descriptor */
1614 for (i = 0; i < pctldev->desc->npins; i++) {
1615 struct pin_desc *desc;
1616
1617 pin = pctldev->desc->pins[i].number;
1618 desc = pin_desc_get(pctldev, pin);
1619 /* Pin space may be sparse */
1620 if (!desc)
1621 continue;
1622
1623 seq_printf(s, "pin %d (%s) ", pin, desc->name);
1624
1625#ifdef CONFIG_GPIOLIB
1626 gpio_num = 0;
1627 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1628 if ((pin >= range->pin_base) &&
1629 (pin < (range->pin_base + range->npins))) {
1630 gpio_num = range->base + (pin - range->pin_base);
1631 break;
1632 }
1633 }
1634 chip = gpio_to_chip(gpio_num);
1635 if (chip && chip->gpiodev && chip->gpiodev->base)
1636 seq_printf(s, "%u:%s ", gpio_num -
1637 chip->gpiodev->base, chip->label);
1638 else
1639 seq_puts(s, "0:? ");
1640#endif
1641
1642 /* Driver-specific info per pin */
1643 if (ops->pin_dbg_show)
1644 ops->pin_dbg_show(pctldev, s, pin);
1645
1646 seq_puts(s, "\n");
1647 }
1648
1649 mutex_unlock(&pctldev->mutex);
1650
1651 return 0;
1652}
1653DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1654
1655static int pinctrl_groups_show(struct seq_file *s, void *what)
1656{
1657 struct pinctrl_dev *pctldev = s->private;
1658 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1659 unsigned ngroups, selector = 0;
1660
1661 mutex_lock(&pctldev->mutex);
1662
1663 ngroups = ops->get_groups_count(pctldev);
1664
1665 seq_puts(s, "registered pin groups:\n");
1666 while (selector < ngroups) {
1667 const unsigned *pins = NULL;
1668 unsigned num_pins = 0;
1669 const char *gname = ops->get_group_name(pctldev, selector);
1670 const char *pname;
1671 int ret = 0;
1672 int i;
1673
1674 if (ops->get_group_pins)
1675 ret = ops->get_group_pins(pctldev, selector,
1676 &pins, &num_pins);
1677 if (ret)
1678 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1679 gname);
1680 else {
1681 seq_printf(s, "group: %s\n", gname);
1682 for (i = 0; i < num_pins; i++) {
1683 pname = pin_get_name(pctldev, pins[i]);
1684 if (WARN_ON(!pname)) {
1685 mutex_unlock(&pctldev->mutex);
1686 return -EINVAL;
1687 }
1688 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1689 }
1690 seq_puts(s, "\n");
1691 }
1692 selector++;
1693 }
1694
1695 mutex_unlock(&pctldev->mutex);
1696
1697 return 0;
1698}
1699DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1700
1701static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1702{
1703 struct pinctrl_dev *pctldev = s->private;
1704 struct pinctrl_gpio_range *range;
1705
1706 seq_puts(s, "GPIO ranges handled:\n");
1707
1708 mutex_lock(&pctldev->mutex);
1709
1710 /* Loop over the ranges */
1711 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1712 if (range->pins) {
1713 int a;
1714 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1715 range->id, range->name,
1716 range->base, (range->base + range->npins - 1));
1717 for (a = 0; a < range->npins - 1; a++)
1718 seq_printf(s, "%u, ", range->pins[a]);
1719 seq_printf(s, "%u}\n", range->pins[a]);
1720 }
1721 else
1722 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1723 range->id, range->name,
1724 range->base, (range->base + range->npins - 1),
1725 range->pin_base,
1726 (range->pin_base + range->npins - 1));
1727 }
1728
1729 mutex_unlock(&pctldev->mutex);
1730
1731 return 0;
1732}
1733DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1734
1735static int pinctrl_devices_show(struct seq_file *s, void *what)
1736{
1737 struct pinctrl_dev *pctldev;
1738
1739 seq_puts(s, "name [pinmux] [pinconf]\n");
1740
1741 mutex_lock(&pinctrldev_list_mutex);
1742
1743 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1744 seq_printf(s, "%s ", pctldev->desc->name);
1745 if (pctldev->desc->pmxops)
1746 seq_puts(s, "yes ");
1747 else
1748 seq_puts(s, "no ");
1749 if (pctldev->desc->confops)
1750 seq_puts(s, "yes");
1751 else
1752 seq_puts(s, "no");
1753 seq_puts(s, "\n");
1754 }
1755
1756 mutex_unlock(&pinctrldev_list_mutex);
1757
1758 return 0;
1759}
1760DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1761
1762static inline const char *map_type(enum pinctrl_map_type type)
1763{
1764 static const char * const names[] = {
1765 "INVALID",
1766 "DUMMY_STATE",
1767 "MUX_GROUP",
1768 "CONFIGS_PIN",
1769 "CONFIGS_GROUP",
1770 };
1771
1772 if (type >= ARRAY_SIZE(names))
1773 return "UNKNOWN";
1774
1775 return names[type];
1776}
1777
1778static int pinctrl_maps_show(struct seq_file *s, void *what)
1779{
1780 struct pinctrl_maps *maps_node;
1781 int i;
1782 const struct pinctrl_map *map;
1783
1784 seq_puts(s, "Pinctrl maps:\n");
1785
1786 mutex_lock(&pinctrl_maps_mutex);
1787 for_each_maps(maps_node, i, map) {
1788 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1789 map->dev_name, map->name, map_type(map->type),
1790 map->type);
1791
1792 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1793 seq_printf(s, "controlling device %s\n",
1794 map->ctrl_dev_name);
1795
1796 switch (map->type) {
1797 case PIN_MAP_TYPE_MUX_GROUP:
1798 pinmux_show_map(s, map);
1799 break;
1800 case PIN_MAP_TYPE_CONFIGS_PIN:
1801 case PIN_MAP_TYPE_CONFIGS_GROUP:
1802 pinconf_show_map(s, map);
1803 break;
1804 default:
1805 break;
1806 }
1807
1808 seq_putc(s, '\n');
1809 }
1810 mutex_unlock(&pinctrl_maps_mutex);
1811
1812 return 0;
1813}
1814DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1815
1816static int pinctrl_show(struct seq_file *s, void *what)
1817{
1818 struct pinctrl *p;
1819 struct pinctrl_state *state;
1820 struct pinctrl_setting *setting;
1821
1822 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1823
1824 mutex_lock(&pinctrl_list_mutex);
1825
1826 list_for_each_entry(p, &pinctrl_list, node) {
1827 seq_printf(s, "device: %s current state: %s\n",
1828 dev_name(p->dev),
1829 p->state ? p->state->name : "none");
1830
1831 list_for_each_entry(state, &p->states, node) {
1832 seq_printf(s, " state: %s\n", state->name);
1833
1834 list_for_each_entry(setting, &state->settings, node) {
1835 struct pinctrl_dev *pctldev = setting->pctldev;
1836
1837 seq_printf(s, " type: %s controller %s ",
1838 map_type(setting->type),
1839 pinctrl_dev_get_name(pctldev));
1840
1841 switch (setting->type) {
1842 case PIN_MAP_TYPE_MUX_GROUP:
1843 pinmux_show_setting(s, setting);
1844 break;
1845 case PIN_MAP_TYPE_CONFIGS_PIN:
1846 case PIN_MAP_TYPE_CONFIGS_GROUP:
1847 pinconf_show_setting(s, setting);
1848 break;
1849 default:
1850 break;
1851 }
1852 }
1853 }
1854 }
1855
1856 mutex_unlock(&pinctrl_list_mutex);
1857
1858 return 0;
1859}
1860DEFINE_SHOW_ATTRIBUTE(pinctrl);
1861
1862static struct dentry *debugfs_root;
1863
1864static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1865{
1866 struct dentry *device_root;
1867 const char *debugfs_name;
1868
1869 if (pctldev->desc->name &&
1870 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1871 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1872 "%s-%s", dev_name(pctldev->dev),
1873 pctldev->desc->name);
1874 if (!debugfs_name) {
1875 pr_warn("failed to determine debugfs dir name for %s\n",
1876 dev_name(pctldev->dev));
1877 return;
1878 }
1879 } else {
1880 debugfs_name = dev_name(pctldev->dev);
1881 }
1882
1883 device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1884 pctldev->device_root = device_root;
1885
1886 if (IS_ERR(device_root) || !device_root) {
1887 pr_warn("failed to create debugfs directory for %s\n",
1888 dev_name(pctldev->dev));
1889 return;
1890 }
1891 debugfs_create_file("pins", S_IFREG | S_IRUGO,
1892 device_root, pctldev, &pinctrl_pins_fops);
1893 debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1894 device_root, pctldev, &pinctrl_groups_fops);
1895 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1896 device_root, pctldev, &pinctrl_gpioranges_fops);
1897 if (pctldev->desc->pmxops)
1898 pinmux_init_device_debugfs(device_root, pctldev);
1899 if (pctldev->desc->confops)
1900 pinconf_init_device_debugfs(device_root, pctldev);
1901}
1902
1903static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1904{
1905 debugfs_remove_recursive(pctldev->device_root);
1906}
1907
1908static void pinctrl_init_debugfs(void)
1909{
1910 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1911 if (IS_ERR(debugfs_root) || !debugfs_root) {
1912 pr_warn("failed to create debugfs directory\n");
1913 debugfs_root = NULL;
1914 return;
1915 }
1916
1917 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1918 debugfs_root, NULL, &pinctrl_devices_fops);
1919 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1920 debugfs_root, NULL, &pinctrl_maps_fops);
1921 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1922 debugfs_root, NULL, &pinctrl_fops);
1923}
1924
1925#else /* CONFIG_DEBUG_FS */
1926
1927static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1928{
1929}
1930
1931static void pinctrl_init_debugfs(void)
1932{
1933}
1934
1935static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1936{
1937}
1938
1939#endif
1940
1941static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1942{
1943 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1944
1945 if (!ops ||
1946 !ops->get_groups_count ||
1947 !ops->get_group_name)
1948 return -EINVAL;
1949
1950 return 0;
1951}
1952
1953/**
1954 * pinctrl_init_controller() - init a pin controller device
1955 * @pctldesc: descriptor for this pin controller
1956 * @dev: parent device for this pin controller
1957 * @driver_data: private pin controller data for this pin controller
1958 */
1959static struct pinctrl_dev *
1960pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1961 void *driver_data)
1962{
1963 struct pinctrl_dev *pctldev;
1964 int ret;
1965
1966 if (!pctldesc)
1967 return ERR_PTR(-EINVAL);
1968 if (!pctldesc->name)
1969 return ERR_PTR(-EINVAL);
1970
1971 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1972 if (!pctldev)
1973 return ERR_PTR(-ENOMEM);
1974
1975 /* Initialize pin control device struct */
1976 pctldev->owner = pctldesc->owner;
1977 pctldev->desc = pctldesc;
1978 pctldev->driver_data = driver_data;
1979 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1980#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
1981 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
1982#endif
1983#ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
1984 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
1985#endif
1986 INIT_LIST_HEAD(&pctldev->gpio_ranges);
1987 INIT_LIST_HEAD(&pctldev->node);
1988 pctldev->dev = dev;
1989 mutex_init(&pctldev->mutex);
1990
1991 /* check core ops for sanity */
1992 ret = pinctrl_check_ops(pctldev);
1993 if (ret) {
1994 dev_err(dev, "pinctrl ops lacks necessary functions\n");
1995 goto out_err;
1996 }
1997
1998 /* If we're implementing pinmuxing, check the ops for sanity */
1999 if (pctldesc->pmxops) {
2000 ret = pinmux_check_ops(pctldev);
2001 if (ret)
2002 goto out_err;
2003 }
2004
2005 /* If we're implementing pinconfig, check the ops for sanity */
2006 if (pctldesc->confops) {
2007 ret = pinconf_check_ops(pctldev);
2008 if (ret)
2009 goto out_err;
2010 }
2011
2012 /* Register all the pins */
2013 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
2014 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2015 if (ret) {
2016 dev_err(dev, "error during pin registration\n");
2017 pinctrl_free_pindescs(pctldev, pctldesc->pins,
2018 pctldesc->npins);
2019 goto out_err;
2020 }
2021
2022 return pctldev;
2023
2024out_err:
2025 mutex_destroy(&pctldev->mutex);
2026 kfree(pctldev);
2027 return ERR_PTR(ret);
2028}
2029
2030static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2031{
2032 pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2033 if (PTR_ERR(pctldev->p) == -ENODEV) {
2034 dev_dbg(pctldev->dev, "no hogs found\n");
2035
2036 return 0;
2037 }
2038
2039 if (IS_ERR(pctldev->p)) {
2040 dev_err(pctldev->dev, "error claiming hogs: %li\n",
2041 PTR_ERR(pctldev->p));
2042
2043 return PTR_ERR(pctldev->p);
2044 }
2045
2046 pctldev->hog_default =
2047 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2048 if (IS_ERR(pctldev->hog_default)) {
2049 dev_dbg(pctldev->dev,
2050 "failed to lookup the default state\n");
2051 } else {
2052 if (pinctrl_select_state(pctldev->p,
2053 pctldev->hog_default))
2054 dev_err(pctldev->dev,
2055 "failed to select default state\n");
2056 }
2057
2058 pctldev->hog_sleep =
2059 pinctrl_lookup_state(pctldev->p,
2060 PINCTRL_STATE_SLEEP);
2061 if (IS_ERR(pctldev->hog_sleep))
2062 dev_dbg(pctldev->dev,
2063 "failed to lookup the sleep state\n");
2064
2065 return 0;
2066}
2067
2068int pinctrl_enable(struct pinctrl_dev *pctldev)
2069{
2070 int error;
2071
2072 error = pinctrl_claim_hogs(pctldev);
2073 if (error) {
2074 dev_err(pctldev->dev, "could not claim hogs: %i\n",
2075 error);
2076 mutex_destroy(&pctldev->mutex);
2077 kfree(pctldev);
2078
2079 return error;
2080 }
2081
2082 mutex_lock(&pinctrldev_list_mutex);
2083 list_add_tail(&pctldev->node, &pinctrldev_list);
2084 mutex_unlock(&pinctrldev_list_mutex);
2085
2086 pinctrl_init_device_debugfs(pctldev);
2087
2088 return 0;
2089}
2090EXPORT_SYMBOL_GPL(pinctrl_enable);
2091
2092/**
2093 * pinctrl_register() - register a pin controller device
2094 * @pctldesc: descriptor for this pin controller
2095 * @dev: parent device for this pin controller
2096 * @driver_data: private pin controller data for this pin controller
2097 *
2098 * Note that pinctrl_register() is known to have problems as the pin
2099 * controller driver functions are called before the driver has a
2100 * struct pinctrl_dev handle. To avoid issues later on, please use the
2101 * new pinctrl_register_and_init() below instead.
2102 */
2103struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2104 struct device *dev, void *driver_data)
2105{
2106 struct pinctrl_dev *pctldev;
2107 int error;
2108
2109 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2110 if (IS_ERR(pctldev))
2111 return pctldev;
2112
2113 error = pinctrl_enable(pctldev);
2114 if (error)
2115 return ERR_PTR(error);
2116
2117 return pctldev;
2118
2119}
2120EXPORT_SYMBOL_GPL(pinctrl_register);
2121
2122/**
2123 * pinctrl_register_and_init() - register and init pin controller device
2124 * @pctldesc: descriptor for this pin controller
2125 * @dev: parent device for this pin controller
2126 * @driver_data: private pin controller data for this pin controller
2127 * @pctldev: pin controller device
2128 *
2129 * Note that pinctrl_enable() still needs to be manually called after
2130 * this once the driver is ready.
2131 */
2132int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2133 struct device *dev, void *driver_data,
2134 struct pinctrl_dev **pctldev)
2135{
2136 struct pinctrl_dev *p;
2137
2138 p = pinctrl_init_controller(pctldesc, dev, driver_data);
2139 if (IS_ERR(p))
2140 return PTR_ERR(p);
2141
2142 /*
2143 * We have pinctrl_start() call functions in the pin controller
2144 * driver with create_pinctrl() for at least dt_node_to_map(). So
2145 * let's make sure pctldev is properly initialized for the
2146 * pin controller driver before we do anything.
2147 */
2148 *pctldev = p;
2149
2150 return 0;
2151}
2152EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2153
2154/**
2155 * pinctrl_unregister() - unregister pinmux
2156 * @pctldev: pin controller to unregister
2157 *
2158 * Called by pinmux drivers to unregister a pinmux.
2159 */
2160void pinctrl_unregister(struct pinctrl_dev *pctldev)
2161{
2162 struct pinctrl_gpio_range *range, *n;
2163
2164 if (!pctldev)
2165 return;
2166
2167 mutex_lock(&pctldev->mutex);
2168 pinctrl_remove_device_debugfs(pctldev);
2169 mutex_unlock(&pctldev->mutex);
2170
2171 if (!IS_ERR_OR_NULL(pctldev->p))
2172 pinctrl_put(pctldev->p);
2173
2174 mutex_lock(&pinctrldev_list_mutex);
2175 mutex_lock(&pctldev->mutex);
2176 /* TODO: check that no pinmuxes are still active? */
2177 list_del(&pctldev->node);
2178 pinmux_generic_free_functions(pctldev);
2179 pinctrl_generic_free_groups(pctldev);
2180 /* Destroy descriptor tree */
2181 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2182 pctldev->desc->npins);
2183 /* remove gpio ranges map */
2184 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2185 list_del(&range->node);
2186
2187 mutex_unlock(&pctldev->mutex);
2188 mutex_destroy(&pctldev->mutex);
2189 kfree(pctldev);
2190 mutex_unlock(&pinctrldev_list_mutex);
2191}
2192EXPORT_SYMBOL_GPL(pinctrl_unregister);
2193
2194static void devm_pinctrl_dev_release(struct device *dev, void *res)
2195{
2196 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2197
2198 pinctrl_unregister(pctldev);
2199}
2200
2201static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2202{
2203 struct pctldev **r = res;
2204
2205 if (WARN_ON(!r || !*r))
2206 return 0;
2207
2208 return *r == data;
2209}
2210
2211/**
2212 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2213 * @dev: parent device for this pin controller
2214 * @pctldesc: descriptor for this pin controller
2215 * @driver_data: private pin controller data for this pin controller
2216 *
2217 * Returns an error pointer if pincontrol register failed. Otherwise
2218 * it returns valid pinctrl handle.
2219 *
2220 * The pinctrl device will be automatically released when the device is unbound.
2221 */
2222struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2223 struct pinctrl_desc *pctldesc,
2224 void *driver_data)
2225{
2226 struct pinctrl_dev **ptr, *pctldev;
2227
2228 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2229 if (!ptr)
2230 return ERR_PTR(-ENOMEM);
2231
2232 pctldev = pinctrl_register(pctldesc, dev, driver_data);
2233 if (IS_ERR(pctldev)) {
2234 devres_free(ptr);
2235 return pctldev;
2236 }
2237
2238 *ptr = pctldev;
2239 devres_add(dev, ptr);
2240
2241 return pctldev;
2242}
2243EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2244
2245/**
2246 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2247 * @dev: parent device for this pin controller
2248 * @pctldesc: descriptor for this pin controller
2249 * @driver_data: private pin controller data for this pin controller
2250 * @pctldev: pin controller device
2251 *
2252 * Returns zero on success or an error number on failure.
2253 *
2254 * The pinctrl device will be automatically released when the device is unbound.
2255 */
2256int devm_pinctrl_register_and_init(struct device *dev,
2257 struct pinctrl_desc *pctldesc,
2258 void *driver_data,
2259 struct pinctrl_dev **pctldev)
2260{
2261 struct pinctrl_dev **ptr;
2262 int error;
2263
2264 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2265 if (!ptr)
2266 return -ENOMEM;
2267
2268 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2269 if (error) {
2270 devres_free(ptr);
2271 return error;
2272 }
2273
2274 *ptr = *pctldev;
2275 devres_add(dev, ptr);
2276
2277 return 0;
2278}
2279EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2280
2281/**
2282 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2283 * @dev: device for which which resource was allocated
2284 * @pctldev: the pinctrl device to unregister.
2285 */
2286void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2287{
2288 WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2289 devm_pinctrl_dev_match, pctldev));
2290}
2291EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2292
2293static int __init pinctrl_init(void)
2294{
2295 pr_info("initialized pinctrl subsystem\n");
2296 pinctrl_init_debugfs();
2297 return 0;
2298}
2299
2300/* init early since many drivers really need to initialized pinmux early */
2301core_initcall(pinctrl_init);
1/*
2 * Core driver for the pin control subsystem
3 *
4 * Copyright (C) 2011-2012 ST-Ericsson SA
5 * Written on behalf of Linaro for ST-Ericsson
6 * Based on bits of regulator core, gpio core and clk core
7 *
8 * Author: Linus Walleij <linus.walleij@linaro.org>
9 *
10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11 *
12 * License terms: GNU General Public License (GPL) version 2
13 */
14#define pr_fmt(fmt) "pinctrl core: " fmt
15
16#include <linux/kernel.h>
17#include <linux/kref.h>
18#include <linux/export.h>
19#include <linux/init.h>
20#include <linux/device.h>
21#include <linux/slab.h>
22#include <linux/err.h>
23#include <linux/list.h>
24#include <linux/sysfs.h>
25#include <linux/debugfs.h>
26#include <linux/seq_file.h>
27#include <linux/pinctrl/consumer.h>
28#include <linux/pinctrl/pinctrl.h>
29#include <linux/pinctrl/machine.h>
30
31#ifdef CONFIG_GPIOLIB
32#include <asm-generic/gpio.h>
33#endif
34
35#include "core.h"
36#include "devicetree.h"
37#include "pinmux.h"
38#include "pinconf.h"
39
40
41static bool pinctrl_dummy_state;
42
43/* Mutex taken to protect pinctrl_list */
44static DEFINE_MUTEX(pinctrl_list_mutex);
45
46/* Mutex taken to protect pinctrl_maps */
47DEFINE_MUTEX(pinctrl_maps_mutex);
48
49/* Mutex taken to protect pinctrldev_list */
50static DEFINE_MUTEX(pinctrldev_list_mutex);
51
52/* Global list of pin control devices (struct pinctrl_dev) */
53static LIST_HEAD(pinctrldev_list);
54
55/* List of pin controller handles (struct pinctrl) */
56static LIST_HEAD(pinctrl_list);
57
58/* List of pinctrl maps (struct pinctrl_maps) */
59LIST_HEAD(pinctrl_maps);
60
61
62/**
63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
64 *
65 * Usually this function is called by platforms without pinctrl driver support
66 * but run with some shared drivers using pinctrl APIs.
67 * After calling this function, the pinctrl core will return successfully
68 * with creating a dummy state for the driver to keep going smoothly.
69 */
70void pinctrl_provide_dummies(void)
71{
72 pinctrl_dummy_state = true;
73}
74
75const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76{
77 /* We're not allowed to register devices without name */
78 return pctldev->desc->name;
79}
80EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81
82const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83{
84 return dev_name(pctldev->dev);
85}
86EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87
88void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89{
90 return pctldev->driver_data;
91}
92EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93
94/**
95 * get_pinctrl_dev_from_devname() - look up pin controller device
96 * @devname: the name of a device instance, as returned by dev_name()
97 *
98 * Looks up a pin control device matching a certain device name or pure device
99 * pointer, the pure device pointer will take precedence.
100 */
101struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102{
103 struct pinctrl_dev *pctldev = NULL;
104
105 if (!devname)
106 return NULL;
107
108 mutex_lock(&pinctrldev_list_mutex);
109
110 list_for_each_entry(pctldev, &pinctrldev_list, node) {
111 if (!strcmp(dev_name(pctldev->dev), devname)) {
112 /* Matched on device name */
113 mutex_unlock(&pinctrldev_list_mutex);
114 return pctldev;
115 }
116 }
117
118 mutex_unlock(&pinctrldev_list_mutex);
119
120 return NULL;
121}
122
123struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
124{
125 struct pinctrl_dev *pctldev;
126
127 mutex_lock(&pinctrldev_list_mutex);
128
129 list_for_each_entry(pctldev, &pinctrldev_list, node)
130 if (pctldev->dev->of_node == np) {
131 mutex_unlock(&pinctrldev_list_mutex);
132 return pctldev;
133 }
134
135 mutex_unlock(&pinctrldev_list_mutex);
136
137 return NULL;
138}
139
140/**
141 * pin_get_from_name() - look up a pin number from a name
142 * @pctldev: the pin control device to lookup the pin on
143 * @name: the name of the pin to look up
144 */
145int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
146{
147 unsigned i, pin;
148
149 /* The pin number can be retrived from the pin controller descriptor */
150 for (i = 0; i < pctldev->desc->npins; i++) {
151 struct pin_desc *desc;
152
153 pin = pctldev->desc->pins[i].number;
154 desc = pin_desc_get(pctldev, pin);
155 /* Pin space may be sparse */
156 if (desc && !strcmp(name, desc->name))
157 return pin;
158 }
159
160 return -EINVAL;
161}
162
163/**
164 * pin_get_name_from_id() - look up a pin name from a pin id
165 * @pctldev: the pin control device to lookup the pin on
166 * @name: the name of the pin to look up
167 */
168const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
169{
170 const struct pin_desc *desc;
171
172 desc = pin_desc_get(pctldev, pin);
173 if (desc == NULL) {
174 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
175 pin);
176 return NULL;
177 }
178
179 return desc->name;
180}
181
182/**
183 * pin_is_valid() - check if pin exists on controller
184 * @pctldev: the pin control device to check the pin on
185 * @pin: pin to check, use the local pin controller index number
186 *
187 * This tells us whether a certain pin exist on a certain pin controller or
188 * not. Pin lists may be sparse, so some pins may not exist.
189 */
190bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
191{
192 struct pin_desc *pindesc;
193
194 if (pin < 0)
195 return false;
196
197 mutex_lock(&pctldev->mutex);
198 pindesc = pin_desc_get(pctldev, pin);
199 mutex_unlock(&pctldev->mutex);
200
201 return pindesc != NULL;
202}
203EXPORT_SYMBOL_GPL(pin_is_valid);
204
205/* Deletes a range of pin descriptors */
206static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
207 const struct pinctrl_pin_desc *pins,
208 unsigned num_pins)
209{
210 int i;
211
212 for (i = 0; i < num_pins; i++) {
213 struct pin_desc *pindesc;
214
215 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
216 pins[i].number);
217 if (pindesc != NULL) {
218 radix_tree_delete(&pctldev->pin_desc_tree,
219 pins[i].number);
220 if (pindesc->dynamic_name)
221 kfree(pindesc->name);
222 }
223 kfree(pindesc);
224 }
225}
226
227static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
228 unsigned number, const char *name)
229{
230 struct pin_desc *pindesc;
231
232 pindesc = pin_desc_get(pctldev, number);
233 if (pindesc != NULL) {
234 dev_err(pctldev->dev, "pin %d already registered\n", number);
235 return -EINVAL;
236 }
237
238 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
239 if (pindesc == NULL) {
240 dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
241 return -ENOMEM;
242 }
243
244 /* Set owner */
245 pindesc->pctldev = pctldev;
246
247 /* Copy basic pin info */
248 if (name) {
249 pindesc->name = name;
250 } else {
251 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
252 if (pindesc->name == NULL) {
253 kfree(pindesc);
254 return -ENOMEM;
255 }
256 pindesc->dynamic_name = true;
257 }
258
259 radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
260 pr_debug("registered pin %d (%s) on %s\n",
261 number, pindesc->name, pctldev->desc->name);
262 return 0;
263}
264
265static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
266 struct pinctrl_pin_desc const *pins,
267 unsigned num_descs)
268{
269 unsigned i;
270 int ret = 0;
271
272 for (i = 0; i < num_descs; i++) {
273 ret = pinctrl_register_one_pin(pctldev,
274 pins[i].number, pins[i].name);
275 if (ret)
276 return ret;
277 }
278
279 return 0;
280}
281
282/**
283 * gpio_to_pin() - GPIO range GPIO number to pin number translation
284 * @range: GPIO range used for the translation
285 * @gpio: gpio pin to translate to a pin number
286 *
287 * Finds the pin number for a given GPIO using the specified GPIO range
288 * as a base for translation. The distinction between linear GPIO ranges
289 * and pin list based GPIO ranges is managed correctly by this function.
290 *
291 * This function assumes the gpio is part of the specified GPIO range, use
292 * only after making sure this is the case (e.g. by calling it on the
293 * result of successful pinctrl_get_device_gpio_range calls)!
294 */
295static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
296 unsigned int gpio)
297{
298 unsigned int offset = gpio - range->base;
299 if (range->pins)
300 return range->pins[offset];
301 else
302 return range->pin_base + offset;
303}
304
305/**
306 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
307 * @pctldev: pin controller device to check
308 * @gpio: gpio pin to check taken from the global GPIO pin space
309 *
310 * Tries to match a GPIO pin number to the ranges handled by a certain pin
311 * controller, return the range or NULL
312 */
313static struct pinctrl_gpio_range *
314pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
315{
316 struct pinctrl_gpio_range *range = NULL;
317
318 mutex_lock(&pctldev->mutex);
319 /* Loop over the ranges */
320 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
321 /* Check if we're in the valid range */
322 if (gpio >= range->base &&
323 gpio < range->base + range->npins) {
324 mutex_unlock(&pctldev->mutex);
325 return range;
326 }
327 }
328 mutex_unlock(&pctldev->mutex);
329 return NULL;
330}
331
332/**
333 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
334 * the same GPIO chip are in range
335 * @gpio: gpio pin to check taken from the global GPIO pin space
336 *
337 * This function is complement of pinctrl_match_gpio_range(). If the return
338 * value of pinctrl_match_gpio_range() is NULL, this function could be used
339 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
340 * of the same GPIO chip don't have back-end pinctrl interface.
341 * If the return value is true, it means that pinctrl device is ready & the
342 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
343 * is false, it means that pinctrl device may not be ready.
344 */
345#ifdef CONFIG_GPIOLIB
346static bool pinctrl_ready_for_gpio_range(unsigned gpio)
347{
348 struct pinctrl_dev *pctldev;
349 struct pinctrl_gpio_range *range = NULL;
350 struct gpio_chip *chip = gpio_to_chip(gpio);
351
352 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
353 return false;
354
355 mutex_lock(&pinctrldev_list_mutex);
356
357 /* Loop over the pin controllers */
358 list_for_each_entry(pctldev, &pinctrldev_list, node) {
359 /* Loop over the ranges */
360 mutex_lock(&pctldev->mutex);
361 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
362 /* Check if any gpio range overlapped with gpio chip */
363 if (range->base + range->npins - 1 < chip->base ||
364 range->base > chip->base + chip->ngpio - 1)
365 continue;
366 mutex_unlock(&pctldev->mutex);
367 mutex_unlock(&pinctrldev_list_mutex);
368 return true;
369 }
370 mutex_unlock(&pctldev->mutex);
371 }
372
373 mutex_unlock(&pinctrldev_list_mutex);
374
375 return false;
376}
377#else
378static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
379#endif
380
381/**
382 * pinctrl_get_device_gpio_range() - find device for GPIO range
383 * @gpio: the pin to locate the pin controller for
384 * @outdev: the pin control device if found
385 * @outrange: the GPIO range if found
386 *
387 * Find the pin controller handling a certain GPIO pin from the pinspace of
388 * the GPIO subsystem, return the device and the matching GPIO range. Returns
389 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
390 * may still have not been registered.
391 */
392static int pinctrl_get_device_gpio_range(unsigned gpio,
393 struct pinctrl_dev **outdev,
394 struct pinctrl_gpio_range **outrange)
395{
396 struct pinctrl_dev *pctldev = NULL;
397
398 mutex_lock(&pinctrldev_list_mutex);
399
400 /* Loop over the pin controllers */
401 list_for_each_entry(pctldev, &pinctrldev_list, node) {
402 struct pinctrl_gpio_range *range;
403
404 range = pinctrl_match_gpio_range(pctldev, gpio);
405 if (range != NULL) {
406 *outdev = pctldev;
407 *outrange = range;
408 mutex_unlock(&pinctrldev_list_mutex);
409 return 0;
410 }
411 }
412
413 mutex_unlock(&pinctrldev_list_mutex);
414
415 return -EPROBE_DEFER;
416}
417
418/**
419 * pinctrl_add_gpio_range() - register a GPIO range for a controller
420 * @pctldev: pin controller device to add the range to
421 * @range: the GPIO range to add
422 *
423 * This adds a range of GPIOs to be handled by a certain pin controller. Call
424 * this to register handled ranges after registering your pin controller.
425 */
426void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
427 struct pinctrl_gpio_range *range)
428{
429 mutex_lock(&pctldev->mutex);
430 list_add_tail(&range->node, &pctldev->gpio_ranges);
431 mutex_unlock(&pctldev->mutex);
432}
433EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
434
435void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
436 struct pinctrl_gpio_range *ranges,
437 unsigned nranges)
438{
439 int i;
440
441 for (i = 0; i < nranges; i++)
442 pinctrl_add_gpio_range(pctldev, &ranges[i]);
443}
444EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
445
446struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
447 struct pinctrl_gpio_range *range)
448{
449 struct pinctrl_dev *pctldev;
450
451 pctldev = get_pinctrl_dev_from_devname(devname);
452
453 /*
454 * If we can't find this device, let's assume that is because
455 * it has not probed yet, so the driver trying to register this
456 * range need to defer probing.
457 */
458 if (!pctldev) {
459 return ERR_PTR(-EPROBE_DEFER);
460 }
461 pinctrl_add_gpio_range(pctldev, range);
462
463 return pctldev;
464}
465EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
466
467int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
468 const unsigned **pins, unsigned *num_pins)
469{
470 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
471 int gs;
472
473 if (!pctlops->get_group_pins)
474 return -EINVAL;
475
476 gs = pinctrl_get_group_selector(pctldev, pin_group);
477 if (gs < 0)
478 return gs;
479
480 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
481}
482EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
483
484struct pinctrl_gpio_range *
485pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
486 unsigned int pin)
487{
488 struct pinctrl_gpio_range *range;
489
490 /* Loop over the ranges */
491 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
492 /* Check if we're in the valid range */
493 if (range->pins) {
494 int a;
495 for (a = 0; a < range->npins; a++) {
496 if (range->pins[a] == pin)
497 return range;
498 }
499 } else if (pin >= range->pin_base &&
500 pin < range->pin_base + range->npins)
501 return range;
502 }
503
504 return NULL;
505}
506EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
507
508/**
509 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
510 * @pctldev: the pin controller device to look in
511 * @pin: a controller-local number to find the range for
512 */
513struct pinctrl_gpio_range *
514pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
515 unsigned int pin)
516{
517 struct pinctrl_gpio_range *range;
518
519 mutex_lock(&pctldev->mutex);
520 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
521 mutex_unlock(&pctldev->mutex);
522
523 return range;
524}
525EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
526
527/**
528 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
529 * @pctldev: pin controller device to remove the range from
530 * @range: the GPIO range to remove
531 */
532void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
533 struct pinctrl_gpio_range *range)
534{
535 mutex_lock(&pctldev->mutex);
536 list_del(&range->node);
537 mutex_unlock(&pctldev->mutex);
538}
539EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
540
541/**
542 * pinctrl_get_group_selector() - returns the group selector for a group
543 * @pctldev: the pin controller handling the group
544 * @pin_group: the pin group to look up
545 */
546int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
547 const char *pin_group)
548{
549 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
550 unsigned ngroups = pctlops->get_groups_count(pctldev);
551 unsigned group_selector = 0;
552
553 while (group_selector < ngroups) {
554 const char *gname = pctlops->get_group_name(pctldev,
555 group_selector);
556 if (!strcmp(gname, pin_group)) {
557 dev_dbg(pctldev->dev,
558 "found group selector %u for %s\n",
559 group_selector,
560 pin_group);
561 return group_selector;
562 }
563
564 group_selector++;
565 }
566
567 dev_err(pctldev->dev, "does not have pin group %s\n",
568 pin_group);
569
570 return -EINVAL;
571}
572
573/**
574 * pinctrl_request_gpio() - request a single pin to be used as GPIO
575 * @gpio: the GPIO pin number from the GPIO subsystem number space
576 *
577 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
578 * as part of their gpio_request() semantics, platforms and individual drivers
579 * shall *NOT* request GPIO pins to be muxed in.
580 */
581int pinctrl_request_gpio(unsigned gpio)
582{
583 struct pinctrl_dev *pctldev;
584 struct pinctrl_gpio_range *range;
585 int ret;
586 int pin;
587
588 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
589 if (ret) {
590 if (pinctrl_ready_for_gpio_range(gpio))
591 ret = 0;
592 return ret;
593 }
594
595 mutex_lock(&pctldev->mutex);
596
597 /* Convert to the pin controllers number space */
598 pin = gpio_to_pin(range, gpio);
599
600 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
601
602 mutex_unlock(&pctldev->mutex);
603
604 return ret;
605}
606EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
607
608/**
609 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
610 * @gpio: the GPIO pin number from the GPIO subsystem number space
611 *
612 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
613 * as part of their gpio_free() semantics, platforms and individual drivers
614 * shall *NOT* request GPIO pins to be muxed out.
615 */
616void pinctrl_free_gpio(unsigned gpio)
617{
618 struct pinctrl_dev *pctldev;
619 struct pinctrl_gpio_range *range;
620 int ret;
621 int pin;
622
623 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
624 if (ret) {
625 return;
626 }
627 mutex_lock(&pctldev->mutex);
628
629 /* Convert to the pin controllers number space */
630 pin = gpio_to_pin(range, gpio);
631
632 pinmux_free_gpio(pctldev, pin, range);
633
634 mutex_unlock(&pctldev->mutex);
635}
636EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
637
638static int pinctrl_gpio_direction(unsigned gpio, bool input)
639{
640 struct pinctrl_dev *pctldev;
641 struct pinctrl_gpio_range *range;
642 int ret;
643 int pin;
644
645 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
646 if (ret) {
647 return ret;
648 }
649
650 mutex_lock(&pctldev->mutex);
651
652 /* Convert to the pin controllers number space */
653 pin = gpio_to_pin(range, gpio);
654 ret = pinmux_gpio_direction(pctldev, range, pin, input);
655
656 mutex_unlock(&pctldev->mutex);
657
658 return ret;
659}
660
661/**
662 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
663 * @gpio: the GPIO pin number from the GPIO subsystem number space
664 *
665 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
666 * as part of their gpio_direction_input() semantics, platforms and individual
667 * drivers shall *NOT* touch pin control GPIO calls.
668 */
669int pinctrl_gpio_direction_input(unsigned gpio)
670{
671 return pinctrl_gpio_direction(gpio, true);
672}
673EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
674
675/**
676 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
677 * @gpio: the GPIO pin number from the GPIO subsystem number space
678 *
679 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
680 * as part of their gpio_direction_output() semantics, platforms and individual
681 * drivers shall *NOT* touch pin control GPIO calls.
682 */
683int pinctrl_gpio_direction_output(unsigned gpio)
684{
685 return pinctrl_gpio_direction(gpio, false);
686}
687EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
688
689static struct pinctrl_state *find_state(struct pinctrl *p,
690 const char *name)
691{
692 struct pinctrl_state *state;
693
694 list_for_each_entry(state, &p->states, node)
695 if (!strcmp(state->name, name))
696 return state;
697
698 return NULL;
699}
700
701static struct pinctrl_state *create_state(struct pinctrl *p,
702 const char *name)
703{
704 struct pinctrl_state *state;
705
706 state = kzalloc(sizeof(*state), GFP_KERNEL);
707 if (state == NULL) {
708 dev_err(p->dev,
709 "failed to alloc struct pinctrl_state\n");
710 return ERR_PTR(-ENOMEM);
711 }
712
713 state->name = name;
714 INIT_LIST_HEAD(&state->settings);
715
716 list_add_tail(&state->node, &p->states);
717
718 return state;
719}
720
721static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
722{
723 struct pinctrl_state *state;
724 struct pinctrl_setting *setting;
725 int ret;
726
727 state = find_state(p, map->name);
728 if (!state)
729 state = create_state(p, map->name);
730 if (IS_ERR(state))
731 return PTR_ERR(state);
732
733 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
734 return 0;
735
736 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
737 if (setting == NULL) {
738 dev_err(p->dev,
739 "failed to alloc struct pinctrl_setting\n");
740 return -ENOMEM;
741 }
742
743 setting->type = map->type;
744
745 setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
746 if (setting->pctldev == NULL) {
747 kfree(setting);
748 /* Do not defer probing of hogs (circular loop) */
749 if (!strcmp(map->ctrl_dev_name, map->dev_name))
750 return -ENODEV;
751 /*
752 * OK let us guess that the driver is not there yet, and
753 * let's defer obtaining this pinctrl handle to later...
754 */
755 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
756 map->ctrl_dev_name);
757 return -EPROBE_DEFER;
758 }
759
760 setting->dev_name = map->dev_name;
761
762 switch (map->type) {
763 case PIN_MAP_TYPE_MUX_GROUP:
764 ret = pinmux_map_to_setting(map, setting);
765 break;
766 case PIN_MAP_TYPE_CONFIGS_PIN:
767 case PIN_MAP_TYPE_CONFIGS_GROUP:
768 ret = pinconf_map_to_setting(map, setting);
769 break;
770 default:
771 ret = -EINVAL;
772 break;
773 }
774 if (ret < 0) {
775 kfree(setting);
776 return ret;
777 }
778
779 list_add_tail(&setting->node, &state->settings);
780
781 return 0;
782}
783
784static struct pinctrl *find_pinctrl(struct device *dev)
785{
786 struct pinctrl *p;
787
788 mutex_lock(&pinctrl_list_mutex);
789 list_for_each_entry(p, &pinctrl_list, node)
790 if (p->dev == dev) {
791 mutex_unlock(&pinctrl_list_mutex);
792 return p;
793 }
794
795 mutex_unlock(&pinctrl_list_mutex);
796 return NULL;
797}
798
799static void pinctrl_free(struct pinctrl *p, bool inlist);
800
801static struct pinctrl *create_pinctrl(struct device *dev)
802{
803 struct pinctrl *p;
804 const char *devname;
805 struct pinctrl_maps *maps_node;
806 int i;
807 struct pinctrl_map const *map;
808 int ret;
809
810 /*
811 * create the state cookie holder struct pinctrl for each
812 * mapping, this is what consumers will get when requesting
813 * a pin control handle with pinctrl_get()
814 */
815 p = kzalloc(sizeof(*p), GFP_KERNEL);
816 if (p == NULL) {
817 dev_err(dev, "failed to alloc struct pinctrl\n");
818 return ERR_PTR(-ENOMEM);
819 }
820 p->dev = dev;
821 INIT_LIST_HEAD(&p->states);
822 INIT_LIST_HEAD(&p->dt_maps);
823
824 ret = pinctrl_dt_to_map(p);
825 if (ret < 0) {
826 kfree(p);
827 return ERR_PTR(ret);
828 }
829
830 devname = dev_name(dev);
831
832 mutex_lock(&pinctrl_maps_mutex);
833 /* Iterate over the pin control maps to locate the right ones */
834 for_each_maps(maps_node, i, map) {
835 /* Map must be for this device */
836 if (strcmp(map->dev_name, devname))
837 continue;
838
839 ret = add_setting(p, map);
840 /*
841 * At this point the adding of a setting may:
842 *
843 * - Defer, if the pinctrl device is not yet available
844 * - Fail, if the pinctrl device is not yet available,
845 * AND the setting is a hog. We cannot defer that, since
846 * the hog will kick in immediately after the device
847 * is registered.
848 *
849 * If the error returned was not -EPROBE_DEFER then we
850 * accumulate the errors to see if we end up with
851 * an -EPROBE_DEFER later, as that is the worst case.
852 */
853 if (ret == -EPROBE_DEFER) {
854 pinctrl_free(p, false);
855 mutex_unlock(&pinctrl_maps_mutex);
856 return ERR_PTR(ret);
857 }
858 }
859 mutex_unlock(&pinctrl_maps_mutex);
860
861 if (ret < 0) {
862 /* If some other error than deferral occured, return here */
863 pinctrl_free(p, false);
864 return ERR_PTR(ret);
865 }
866
867 kref_init(&p->users);
868
869 /* Add the pinctrl handle to the global list */
870 mutex_lock(&pinctrl_list_mutex);
871 list_add_tail(&p->node, &pinctrl_list);
872 mutex_unlock(&pinctrl_list_mutex);
873
874 return p;
875}
876
877/**
878 * pinctrl_get() - retrieves the pinctrl handle for a device
879 * @dev: the device to obtain the handle for
880 */
881struct pinctrl *pinctrl_get(struct device *dev)
882{
883 struct pinctrl *p;
884
885 if (WARN_ON(!dev))
886 return ERR_PTR(-EINVAL);
887
888 /*
889 * See if somebody else (such as the device core) has already
890 * obtained a handle to the pinctrl for this device. In that case,
891 * return another pointer to it.
892 */
893 p = find_pinctrl(dev);
894 if (p != NULL) {
895 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
896 kref_get(&p->users);
897 return p;
898 }
899
900 return create_pinctrl(dev);
901}
902EXPORT_SYMBOL_GPL(pinctrl_get);
903
904static void pinctrl_free_setting(bool disable_setting,
905 struct pinctrl_setting *setting)
906{
907 switch (setting->type) {
908 case PIN_MAP_TYPE_MUX_GROUP:
909 if (disable_setting)
910 pinmux_disable_setting(setting);
911 pinmux_free_setting(setting);
912 break;
913 case PIN_MAP_TYPE_CONFIGS_PIN:
914 case PIN_MAP_TYPE_CONFIGS_GROUP:
915 pinconf_free_setting(setting);
916 break;
917 default:
918 break;
919 }
920}
921
922static void pinctrl_free(struct pinctrl *p, bool inlist)
923{
924 struct pinctrl_state *state, *n1;
925 struct pinctrl_setting *setting, *n2;
926
927 mutex_lock(&pinctrl_list_mutex);
928 list_for_each_entry_safe(state, n1, &p->states, node) {
929 list_for_each_entry_safe(setting, n2, &state->settings, node) {
930 pinctrl_free_setting(state == p->state, setting);
931 list_del(&setting->node);
932 kfree(setting);
933 }
934 list_del(&state->node);
935 kfree(state);
936 }
937
938 pinctrl_dt_free_maps(p);
939
940 if (inlist)
941 list_del(&p->node);
942 kfree(p);
943 mutex_unlock(&pinctrl_list_mutex);
944}
945
946/**
947 * pinctrl_release() - release the pinctrl handle
948 * @kref: the kref in the pinctrl being released
949 */
950static void pinctrl_release(struct kref *kref)
951{
952 struct pinctrl *p = container_of(kref, struct pinctrl, users);
953
954 pinctrl_free(p, true);
955}
956
957/**
958 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
959 * @p: the pinctrl handle to release
960 */
961void pinctrl_put(struct pinctrl *p)
962{
963 kref_put(&p->users, pinctrl_release);
964}
965EXPORT_SYMBOL_GPL(pinctrl_put);
966
967/**
968 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
969 * @p: the pinctrl handle to retrieve the state from
970 * @name: the state name to retrieve
971 */
972struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
973 const char *name)
974{
975 struct pinctrl_state *state;
976
977 state = find_state(p, name);
978 if (!state) {
979 if (pinctrl_dummy_state) {
980 /* create dummy state */
981 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
982 name);
983 state = create_state(p, name);
984 } else
985 state = ERR_PTR(-ENODEV);
986 }
987
988 return state;
989}
990EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
991
992/**
993 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
994 * @p: the pinctrl handle for the device that requests configuration
995 * @state: the state handle to select/activate/program
996 */
997int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
998{
999 struct pinctrl_setting *setting, *setting2;
1000 struct pinctrl_state *old_state = p->state;
1001 int ret;
1002
1003 if (p->state == state)
1004 return 0;
1005
1006 if (p->state) {
1007 /*
1008 * For each pinmux setting in the old state, forget SW's record
1009 * of mux owner for that pingroup. Any pingroups which are
1010 * still owned by the new state will be re-acquired by the call
1011 * to pinmux_enable_setting() in the loop below.
1012 */
1013 list_for_each_entry(setting, &p->state->settings, node) {
1014 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1015 continue;
1016 pinmux_disable_setting(setting);
1017 }
1018 }
1019
1020 p->state = NULL;
1021
1022 /* Apply all the settings for the new state */
1023 list_for_each_entry(setting, &state->settings, node) {
1024 switch (setting->type) {
1025 case PIN_MAP_TYPE_MUX_GROUP:
1026 ret = pinmux_enable_setting(setting);
1027 break;
1028 case PIN_MAP_TYPE_CONFIGS_PIN:
1029 case PIN_MAP_TYPE_CONFIGS_GROUP:
1030 ret = pinconf_apply_setting(setting);
1031 break;
1032 default:
1033 ret = -EINVAL;
1034 break;
1035 }
1036
1037 if (ret < 0) {
1038 goto unapply_new_state;
1039 }
1040 }
1041
1042 p->state = state;
1043
1044 return 0;
1045
1046unapply_new_state:
1047 dev_err(p->dev, "Error applying setting, reverse things back\n");
1048
1049 list_for_each_entry(setting2, &state->settings, node) {
1050 if (&setting2->node == &setting->node)
1051 break;
1052 /*
1053 * All we can do here is pinmux_disable_setting.
1054 * That means that some pins are muxed differently now
1055 * than they were before applying the setting (We can't
1056 * "unmux a pin"!), but it's not a big deal since the pins
1057 * are free to be muxed by another apply_setting.
1058 */
1059 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1060 pinmux_disable_setting(setting2);
1061 }
1062
1063 /* There's no infinite recursive loop here because p->state is NULL */
1064 if (old_state)
1065 pinctrl_select_state(p, old_state);
1066
1067 return ret;
1068}
1069EXPORT_SYMBOL_GPL(pinctrl_select_state);
1070
1071static void devm_pinctrl_release(struct device *dev, void *res)
1072{
1073 pinctrl_put(*(struct pinctrl **)res);
1074}
1075
1076/**
1077 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1078 * @dev: the device to obtain the handle for
1079 *
1080 * If there is a need to explicitly destroy the returned struct pinctrl,
1081 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1082 */
1083struct pinctrl *devm_pinctrl_get(struct device *dev)
1084{
1085 struct pinctrl **ptr, *p;
1086
1087 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1088 if (!ptr)
1089 return ERR_PTR(-ENOMEM);
1090
1091 p = pinctrl_get(dev);
1092 if (!IS_ERR(p)) {
1093 *ptr = p;
1094 devres_add(dev, ptr);
1095 } else {
1096 devres_free(ptr);
1097 }
1098
1099 return p;
1100}
1101EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1102
1103static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1104{
1105 struct pinctrl **p = res;
1106
1107 return *p == data;
1108}
1109
1110/**
1111 * devm_pinctrl_put() - Resource managed pinctrl_put()
1112 * @p: the pinctrl handle to release
1113 *
1114 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1115 * this function will not need to be called and the resource management
1116 * code will ensure that the resource is freed.
1117 */
1118void devm_pinctrl_put(struct pinctrl *p)
1119{
1120 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1121 devm_pinctrl_match, p));
1122}
1123EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1124
1125int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1126 bool dup)
1127{
1128 int i, ret;
1129 struct pinctrl_maps *maps_node;
1130
1131 pr_debug("add %u pinctrl maps\n", num_maps);
1132
1133 /* First sanity check the new mapping */
1134 for (i = 0; i < num_maps; i++) {
1135 if (!maps[i].dev_name) {
1136 pr_err("failed to register map %s (%d): no device given\n",
1137 maps[i].name, i);
1138 return -EINVAL;
1139 }
1140
1141 if (!maps[i].name) {
1142 pr_err("failed to register map %d: no map name given\n",
1143 i);
1144 return -EINVAL;
1145 }
1146
1147 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1148 !maps[i].ctrl_dev_name) {
1149 pr_err("failed to register map %s (%d): no pin control device given\n",
1150 maps[i].name, i);
1151 return -EINVAL;
1152 }
1153
1154 switch (maps[i].type) {
1155 case PIN_MAP_TYPE_DUMMY_STATE:
1156 break;
1157 case PIN_MAP_TYPE_MUX_GROUP:
1158 ret = pinmux_validate_map(&maps[i], i);
1159 if (ret < 0)
1160 return ret;
1161 break;
1162 case PIN_MAP_TYPE_CONFIGS_PIN:
1163 case PIN_MAP_TYPE_CONFIGS_GROUP:
1164 ret = pinconf_validate_map(&maps[i], i);
1165 if (ret < 0)
1166 return ret;
1167 break;
1168 default:
1169 pr_err("failed to register map %s (%d): invalid type given\n",
1170 maps[i].name, i);
1171 return -EINVAL;
1172 }
1173 }
1174
1175 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1176 if (!maps_node) {
1177 pr_err("failed to alloc struct pinctrl_maps\n");
1178 return -ENOMEM;
1179 }
1180
1181 maps_node->num_maps = num_maps;
1182 if (dup) {
1183 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1184 GFP_KERNEL);
1185 if (!maps_node->maps) {
1186 pr_err("failed to duplicate mapping table\n");
1187 kfree(maps_node);
1188 return -ENOMEM;
1189 }
1190 } else {
1191 maps_node->maps = maps;
1192 }
1193
1194 mutex_lock(&pinctrl_maps_mutex);
1195 list_add_tail(&maps_node->node, &pinctrl_maps);
1196 mutex_unlock(&pinctrl_maps_mutex);
1197
1198 return 0;
1199}
1200
1201/**
1202 * pinctrl_register_mappings() - register a set of pin controller mappings
1203 * @maps: the pincontrol mappings table to register. This should probably be
1204 * marked with __initdata so it can be discarded after boot. This
1205 * function will perform a shallow copy for the mapping entries.
1206 * @num_maps: the number of maps in the mapping table
1207 */
1208int pinctrl_register_mappings(struct pinctrl_map const *maps,
1209 unsigned num_maps)
1210{
1211 return pinctrl_register_map(maps, num_maps, true);
1212}
1213
1214void pinctrl_unregister_map(struct pinctrl_map const *map)
1215{
1216 struct pinctrl_maps *maps_node;
1217
1218 mutex_lock(&pinctrl_maps_mutex);
1219 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1220 if (maps_node->maps == map) {
1221 list_del(&maps_node->node);
1222 kfree(maps_node);
1223 mutex_unlock(&pinctrl_maps_mutex);
1224 return;
1225 }
1226 }
1227 mutex_unlock(&pinctrl_maps_mutex);
1228}
1229
1230/**
1231 * pinctrl_force_sleep() - turn a given controller device into sleep state
1232 * @pctldev: pin controller device
1233 */
1234int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1235{
1236 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1237 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1238 return 0;
1239}
1240EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1241
1242/**
1243 * pinctrl_force_default() - turn a given controller device into default state
1244 * @pctldev: pin controller device
1245 */
1246int pinctrl_force_default(struct pinctrl_dev *pctldev)
1247{
1248 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1249 return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1250 return 0;
1251}
1252EXPORT_SYMBOL_GPL(pinctrl_force_default);
1253
1254/**
1255 * pinctrl_init_done() - tell pinctrl probe is done
1256 *
1257 * We'll use this time to switch the pins from "init" to "default" unless the
1258 * driver selected some other state.
1259 *
1260 * @dev: device to that's done probing
1261 */
1262int pinctrl_init_done(struct device *dev)
1263{
1264 struct dev_pin_info *pins = dev->pins;
1265 int ret;
1266
1267 if (!pins)
1268 return 0;
1269
1270 if (IS_ERR(pins->init_state))
1271 return 0; /* No such state */
1272
1273 if (pins->p->state != pins->init_state)
1274 return 0; /* Not at init anyway */
1275
1276 if (IS_ERR(pins->default_state))
1277 return 0; /* No default state */
1278
1279 ret = pinctrl_select_state(pins->p, pins->default_state);
1280 if (ret)
1281 dev_err(dev, "failed to activate default pinctrl state\n");
1282
1283 return ret;
1284}
1285
1286#ifdef CONFIG_PM
1287
1288/**
1289 * pinctrl_pm_select_state() - select pinctrl state for PM
1290 * @dev: device to select default state for
1291 * @state: state to set
1292 */
1293static int pinctrl_pm_select_state(struct device *dev,
1294 struct pinctrl_state *state)
1295{
1296 struct dev_pin_info *pins = dev->pins;
1297 int ret;
1298
1299 if (IS_ERR(state))
1300 return 0; /* No such state */
1301 ret = pinctrl_select_state(pins->p, state);
1302 if (ret)
1303 dev_err(dev, "failed to activate pinctrl state %s\n",
1304 state->name);
1305 return ret;
1306}
1307
1308/**
1309 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1310 * @dev: device to select default state for
1311 */
1312int pinctrl_pm_select_default_state(struct device *dev)
1313{
1314 if (!dev->pins)
1315 return 0;
1316
1317 return pinctrl_pm_select_state(dev, dev->pins->default_state);
1318}
1319EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1320
1321/**
1322 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1323 * @dev: device to select sleep state for
1324 */
1325int pinctrl_pm_select_sleep_state(struct device *dev)
1326{
1327 if (!dev->pins)
1328 return 0;
1329
1330 return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1331}
1332EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1333
1334/**
1335 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1336 * @dev: device to select idle state for
1337 */
1338int pinctrl_pm_select_idle_state(struct device *dev)
1339{
1340 if (!dev->pins)
1341 return 0;
1342
1343 return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1344}
1345EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1346#endif
1347
1348#ifdef CONFIG_DEBUG_FS
1349
1350static int pinctrl_pins_show(struct seq_file *s, void *what)
1351{
1352 struct pinctrl_dev *pctldev = s->private;
1353 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1354 unsigned i, pin;
1355
1356 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1357
1358 mutex_lock(&pctldev->mutex);
1359
1360 /* The pin number can be retrived from the pin controller descriptor */
1361 for (i = 0; i < pctldev->desc->npins; i++) {
1362 struct pin_desc *desc;
1363
1364 pin = pctldev->desc->pins[i].number;
1365 desc = pin_desc_get(pctldev, pin);
1366 /* Pin space may be sparse */
1367 if (desc == NULL)
1368 continue;
1369
1370 seq_printf(s, "pin %d (%s) ", pin,
1371 desc->name ? desc->name : "unnamed");
1372
1373 /* Driver-specific info per pin */
1374 if (ops->pin_dbg_show)
1375 ops->pin_dbg_show(pctldev, s, pin);
1376
1377 seq_puts(s, "\n");
1378 }
1379
1380 mutex_unlock(&pctldev->mutex);
1381
1382 return 0;
1383}
1384
1385static int pinctrl_groups_show(struct seq_file *s, void *what)
1386{
1387 struct pinctrl_dev *pctldev = s->private;
1388 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1389 unsigned ngroups, selector = 0;
1390
1391 mutex_lock(&pctldev->mutex);
1392
1393 ngroups = ops->get_groups_count(pctldev);
1394
1395 seq_puts(s, "registered pin groups:\n");
1396 while (selector < ngroups) {
1397 const unsigned *pins = NULL;
1398 unsigned num_pins = 0;
1399 const char *gname = ops->get_group_name(pctldev, selector);
1400 const char *pname;
1401 int ret = 0;
1402 int i;
1403
1404 if (ops->get_group_pins)
1405 ret = ops->get_group_pins(pctldev, selector,
1406 &pins, &num_pins);
1407 if (ret)
1408 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1409 gname);
1410 else {
1411 seq_printf(s, "group: %s\n", gname);
1412 for (i = 0; i < num_pins; i++) {
1413 pname = pin_get_name(pctldev, pins[i]);
1414 if (WARN_ON(!pname)) {
1415 mutex_unlock(&pctldev->mutex);
1416 return -EINVAL;
1417 }
1418 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1419 }
1420 seq_puts(s, "\n");
1421 }
1422 selector++;
1423 }
1424
1425 mutex_unlock(&pctldev->mutex);
1426
1427 return 0;
1428}
1429
1430static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1431{
1432 struct pinctrl_dev *pctldev = s->private;
1433 struct pinctrl_gpio_range *range = NULL;
1434
1435 seq_puts(s, "GPIO ranges handled:\n");
1436
1437 mutex_lock(&pctldev->mutex);
1438
1439 /* Loop over the ranges */
1440 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1441 if (range->pins) {
1442 int a;
1443 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1444 range->id, range->name,
1445 range->base, (range->base + range->npins - 1));
1446 for (a = 0; a < range->npins - 1; a++)
1447 seq_printf(s, "%u, ", range->pins[a]);
1448 seq_printf(s, "%u}\n", range->pins[a]);
1449 }
1450 else
1451 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1452 range->id, range->name,
1453 range->base, (range->base + range->npins - 1),
1454 range->pin_base,
1455 (range->pin_base + range->npins - 1));
1456 }
1457
1458 mutex_unlock(&pctldev->mutex);
1459
1460 return 0;
1461}
1462
1463static int pinctrl_devices_show(struct seq_file *s, void *what)
1464{
1465 struct pinctrl_dev *pctldev;
1466
1467 seq_puts(s, "name [pinmux] [pinconf]\n");
1468
1469 mutex_lock(&pinctrldev_list_mutex);
1470
1471 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1472 seq_printf(s, "%s ", pctldev->desc->name);
1473 if (pctldev->desc->pmxops)
1474 seq_puts(s, "yes ");
1475 else
1476 seq_puts(s, "no ");
1477 if (pctldev->desc->confops)
1478 seq_puts(s, "yes");
1479 else
1480 seq_puts(s, "no");
1481 seq_puts(s, "\n");
1482 }
1483
1484 mutex_unlock(&pinctrldev_list_mutex);
1485
1486 return 0;
1487}
1488
1489static inline const char *map_type(enum pinctrl_map_type type)
1490{
1491 static const char * const names[] = {
1492 "INVALID",
1493 "DUMMY_STATE",
1494 "MUX_GROUP",
1495 "CONFIGS_PIN",
1496 "CONFIGS_GROUP",
1497 };
1498
1499 if (type >= ARRAY_SIZE(names))
1500 return "UNKNOWN";
1501
1502 return names[type];
1503}
1504
1505static int pinctrl_maps_show(struct seq_file *s, void *what)
1506{
1507 struct pinctrl_maps *maps_node;
1508 int i;
1509 struct pinctrl_map const *map;
1510
1511 seq_puts(s, "Pinctrl maps:\n");
1512
1513 mutex_lock(&pinctrl_maps_mutex);
1514 for_each_maps(maps_node, i, map) {
1515 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1516 map->dev_name, map->name, map_type(map->type),
1517 map->type);
1518
1519 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1520 seq_printf(s, "controlling device %s\n",
1521 map->ctrl_dev_name);
1522
1523 switch (map->type) {
1524 case PIN_MAP_TYPE_MUX_GROUP:
1525 pinmux_show_map(s, map);
1526 break;
1527 case PIN_MAP_TYPE_CONFIGS_PIN:
1528 case PIN_MAP_TYPE_CONFIGS_GROUP:
1529 pinconf_show_map(s, map);
1530 break;
1531 default:
1532 break;
1533 }
1534
1535 seq_printf(s, "\n");
1536 }
1537 mutex_unlock(&pinctrl_maps_mutex);
1538
1539 return 0;
1540}
1541
1542static int pinctrl_show(struct seq_file *s, void *what)
1543{
1544 struct pinctrl *p;
1545 struct pinctrl_state *state;
1546 struct pinctrl_setting *setting;
1547
1548 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1549
1550 mutex_lock(&pinctrl_list_mutex);
1551
1552 list_for_each_entry(p, &pinctrl_list, node) {
1553 seq_printf(s, "device: %s current state: %s\n",
1554 dev_name(p->dev),
1555 p->state ? p->state->name : "none");
1556
1557 list_for_each_entry(state, &p->states, node) {
1558 seq_printf(s, " state: %s\n", state->name);
1559
1560 list_for_each_entry(setting, &state->settings, node) {
1561 struct pinctrl_dev *pctldev = setting->pctldev;
1562
1563 seq_printf(s, " type: %s controller %s ",
1564 map_type(setting->type),
1565 pinctrl_dev_get_name(pctldev));
1566
1567 switch (setting->type) {
1568 case PIN_MAP_TYPE_MUX_GROUP:
1569 pinmux_show_setting(s, setting);
1570 break;
1571 case PIN_MAP_TYPE_CONFIGS_PIN:
1572 case PIN_MAP_TYPE_CONFIGS_GROUP:
1573 pinconf_show_setting(s, setting);
1574 break;
1575 default:
1576 break;
1577 }
1578 }
1579 }
1580 }
1581
1582 mutex_unlock(&pinctrl_list_mutex);
1583
1584 return 0;
1585}
1586
1587static int pinctrl_pins_open(struct inode *inode, struct file *file)
1588{
1589 return single_open(file, pinctrl_pins_show, inode->i_private);
1590}
1591
1592static int pinctrl_groups_open(struct inode *inode, struct file *file)
1593{
1594 return single_open(file, pinctrl_groups_show, inode->i_private);
1595}
1596
1597static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1598{
1599 return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1600}
1601
1602static int pinctrl_devices_open(struct inode *inode, struct file *file)
1603{
1604 return single_open(file, pinctrl_devices_show, NULL);
1605}
1606
1607static int pinctrl_maps_open(struct inode *inode, struct file *file)
1608{
1609 return single_open(file, pinctrl_maps_show, NULL);
1610}
1611
1612static int pinctrl_open(struct inode *inode, struct file *file)
1613{
1614 return single_open(file, pinctrl_show, NULL);
1615}
1616
1617static const struct file_operations pinctrl_pins_ops = {
1618 .open = pinctrl_pins_open,
1619 .read = seq_read,
1620 .llseek = seq_lseek,
1621 .release = single_release,
1622};
1623
1624static const struct file_operations pinctrl_groups_ops = {
1625 .open = pinctrl_groups_open,
1626 .read = seq_read,
1627 .llseek = seq_lseek,
1628 .release = single_release,
1629};
1630
1631static const struct file_operations pinctrl_gpioranges_ops = {
1632 .open = pinctrl_gpioranges_open,
1633 .read = seq_read,
1634 .llseek = seq_lseek,
1635 .release = single_release,
1636};
1637
1638static const struct file_operations pinctrl_devices_ops = {
1639 .open = pinctrl_devices_open,
1640 .read = seq_read,
1641 .llseek = seq_lseek,
1642 .release = single_release,
1643};
1644
1645static const struct file_operations pinctrl_maps_ops = {
1646 .open = pinctrl_maps_open,
1647 .read = seq_read,
1648 .llseek = seq_lseek,
1649 .release = single_release,
1650};
1651
1652static const struct file_operations pinctrl_ops = {
1653 .open = pinctrl_open,
1654 .read = seq_read,
1655 .llseek = seq_lseek,
1656 .release = single_release,
1657};
1658
1659static struct dentry *debugfs_root;
1660
1661static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1662{
1663 struct dentry *device_root;
1664
1665 device_root = debugfs_create_dir(dev_name(pctldev->dev),
1666 debugfs_root);
1667 pctldev->device_root = device_root;
1668
1669 if (IS_ERR(device_root) || !device_root) {
1670 pr_warn("failed to create debugfs directory for %s\n",
1671 dev_name(pctldev->dev));
1672 return;
1673 }
1674 debugfs_create_file("pins", S_IFREG | S_IRUGO,
1675 device_root, pctldev, &pinctrl_pins_ops);
1676 debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1677 device_root, pctldev, &pinctrl_groups_ops);
1678 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1679 device_root, pctldev, &pinctrl_gpioranges_ops);
1680 if (pctldev->desc->pmxops)
1681 pinmux_init_device_debugfs(device_root, pctldev);
1682 if (pctldev->desc->confops)
1683 pinconf_init_device_debugfs(device_root, pctldev);
1684}
1685
1686static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1687{
1688 debugfs_remove_recursive(pctldev->device_root);
1689}
1690
1691static void pinctrl_init_debugfs(void)
1692{
1693 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1694 if (IS_ERR(debugfs_root) || !debugfs_root) {
1695 pr_warn("failed to create debugfs directory\n");
1696 debugfs_root = NULL;
1697 return;
1698 }
1699
1700 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1701 debugfs_root, NULL, &pinctrl_devices_ops);
1702 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1703 debugfs_root, NULL, &pinctrl_maps_ops);
1704 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1705 debugfs_root, NULL, &pinctrl_ops);
1706}
1707
1708#else /* CONFIG_DEBUG_FS */
1709
1710static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1711{
1712}
1713
1714static void pinctrl_init_debugfs(void)
1715{
1716}
1717
1718static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1719{
1720}
1721
1722#endif
1723
1724static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1725{
1726 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1727
1728 if (!ops ||
1729 !ops->get_groups_count ||
1730 !ops->get_group_name)
1731 return -EINVAL;
1732
1733 if (ops->dt_node_to_map && !ops->dt_free_map)
1734 return -EINVAL;
1735
1736 return 0;
1737}
1738
1739/**
1740 * pinctrl_register() - register a pin controller device
1741 * @pctldesc: descriptor for this pin controller
1742 * @dev: parent device for this pin controller
1743 * @driver_data: private pin controller data for this pin controller
1744 */
1745struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1746 struct device *dev, void *driver_data)
1747{
1748 struct pinctrl_dev *pctldev;
1749 int ret;
1750
1751 if (!pctldesc)
1752 return ERR_PTR(-EINVAL);
1753 if (!pctldesc->name)
1754 return ERR_PTR(-EINVAL);
1755
1756 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1757 if (pctldev == NULL) {
1758 dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1759 return ERR_PTR(-ENOMEM);
1760 }
1761
1762 /* Initialize pin control device struct */
1763 pctldev->owner = pctldesc->owner;
1764 pctldev->desc = pctldesc;
1765 pctldev->driver_data = driver_data;
1766 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1767 INIT_LIST_HEAD(&pctldev->gpio_ranges);
1768 pctldev->dev = dev;
1769 mutex_init(&pctldev->mutex);
1770
1771 /* check core ops for sanity */
1772 ret = pinctrl_check_ops(pctldev);
1773 if (ret) {
1774 dev_err(dev, "pinctrl ops lacks necessary functions\n");
1775 goto out_err;
1776 }
1777
1778 /* If we're implementing pinmuxing, check the ops for sanity */
1779 if (pctldesc->pmxops) {
1780 ret = pinmux_check_ops(pctldev);
1781 if (ret)
1782 goto out_err;
1783 }
1784
1785 /* If we're implementing pinconfig, check the ops for sanity */
1786 if (pctldesc->confops) {
1787 ret = pinconf_check_ops(pctldev);
1788 if (ret)
1789 goto out_err;
1790 }
1791
1792 /* Register all the pins */
1793 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
1794 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1795 if (ret) {
1796 dev_err(dev, "error during pin registration\n");
1797 pinctrl_free_pindescs(pctldev, pctldesc->pins,
1798 pctldesc->npins);
1799 goto out_err;
1800 }
1801
1802 mutex_lock(&pinctrldev_list_mutex);
1803 list_add_tail(&pctldev->node, &pinctrldev_list);
1804 mutex_unlock(&pinctrldev_list_mutex);
1805
1806 pctldev->p = pinctrl_get(pctldev->dev);
1807
1808 if (!IS_ERR(pctldev->p)) {
1809 pctldev->hog_default =
1810 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1811 if (IS_ERR(pctldev->hog_default)) {
1812 dev_dbg(dev, "failed to lookup the default state\n");
1813 } else {
1814 if (pinctrl_select_state(pctldev->p,
1815 pctldev->hog_default))
1816 dev_err(dev,
1817 "failed to select default state\n");
1818 }
1819
1820 pctldev->hog_sleep =
1821 pinctrl_lookup_state(pctldev->p,
1822 PINCTRL_STATE_SLEEP);
1823 if (IS_ERR(pctldev->hog_sleep))
1824 dev_dbg(dev, "failed to lookup the sleep state\n");
1825 }
1826
1827 pinctrl_init_device_debugfs(pctldev);
1828
1829 return pctldev;
1830
1831out_err:
1832 mutex_destroy(&pctldev->mutex);
1833 kfree(pctldev);
1834 return ERR_PTR(ret);
1835}
1836EXPORT_SYMBOL_GPL(pinctrl_register);
1837
1838/**
1839 * pinctrl_unregister() - unregister pinmux
1840 * @pctldev: pin controller to unregister
1841 *
1842 * Called by pinmux drivers to unregister a pinmux.
1843 */
1844void pinctrl_unregister(struct pinctrl_dev *pctldev)
1845{
1846 struct pinctrl_gpio_range *range, *n;
1847 if (pctldev == NULL)
1848 return;
1849
1850 mutex_lock(&pctldev->mutex);
1851 pinctrl_remove_device_debugfs(pctldev);
1852 mutex_unlock(&pctldev->mutex);
1853
1854 if (!IS_ERR(pctldev->p))
1855 pinctrl_put(pctldev->p);
1856
1857 mutex_lock(&pinctrldev_list_mutex);
1858 mutex_lock(&pctldev->mutex);
1859 /* TODO: check that no pinmuxes are still active? */
1860 list_del(&pctldev->node);
1861 /* Destroy descriptor tree */
1862 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1863 pctldev->desc->npins);
1864 /* remove gpio ranges map */
1865 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1866 list_del(&range->node);
1867
1868 mutex_unlock(&pctldev->mutex);
1869 mutex_destroy(&pctldev->mutex);
1870 kfree(pctldev);
1871 mutex_unlock(&pinctrldev_list_mutex);
1872}
1873EXPORT_SYMBOL_GPL(pinctrl_unregister);
1874
1875static int __init pinctrl_init(void)
1876{
1877 pr_info("initialized pinctrl subsystem\n");
1878 pinctrl_init_debugfs();
1879 return 0;
1880}
1881
1882/* init early since many drivers really need to initialized pinmux early */
1883core_initcall(pinctrl_init);