Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
   3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
   4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/module.h>
   8#include <linux/kernel.h>
   9#include <linux/slab.h>
  10#include <linux/netdevice.h>
  11#include <linux/if_arp.h>
  12#include <linux/workqueue.h>
  13#include <linux/can.h>
  14#include <linux/can/can-ml.h>
  15#include <linux/can/dev.h>
  16#include <linux/can/skb.h>
  17#include <linux/can/netlink.h>
  18#include <linux/can/led.h>
  19#include <linux/of.h>
  20#include <net/rtnetlink.h>
  21
  22#define MOD_DESC "CAN device driver interface"
  23
  24MODULE_DESCRIPTION(MOD_DESC);
  25MODULE_LICENSE("GPL v2");
  26MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
  27
  28/* CAN DLC to real data length conversion helpers */
  29
  30static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
  31			     8, 12, 16, 20, 24, 32, 48, 64};
  32
  33/* get data length from can_dlc with sanitized can_dlc */
  34u8 can_dlc2len(u8 can_dlc)
  35{
  36	return dlc2len[can_dlc & 0x0F];
  37}
  38EXPORT_SYMBOL_GPL(can_dlc2len);
  39
  40static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,		/* 0 - 8 */
  41			     9, 9, 9, 9,			/* 9 - 12 */
  42			     10, 10, 10, 10,			/* 13 - 16 */
  43			     11, 11, 11, 11,			/* 17 - 20 */
  44			     12, 12, 12, 12,			/* 21 - 24 */
  45			     13, 13, 13, 13, 13, 13, 13, 13,	/* 25 - 32 */
  46			     14, 14, 14, 14, 14, 14, 14, 14,	/* 33 - 40 */
  47			     14, 14, 14, 14, 14, 14, 14, 14,	/* 41 - 48 */
  48			     15, 15, 15, 15, 15, 15, 15, 15,	/* 49 - 56 */
  49			     15, 15, 15, 15, 15, 15, 15, 15};	/* 57 - 64 */
  50
  51/* map the sanitized data length to an appropriate data length code */
  52u8 can_len2dlc(u8 len)
  53{
  54	if (unlikely(len > 64))
  55		return 0xF;
  56
  57	return len2dlc[len];
  58}
  59EXPORT_SYMBOL_GPL(can_len2dlc);
  60
  61#ifdef CONFIG_CAN_CALC_BITTIMING
  62#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
  63#define CAN_CALC_SYNC_SEG 1
  64
  65/* Bit-timing calculation derived from:
 
  66 *
  67 * Code based on LinCAN sources and H8S2638 project
  68 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
  69 * Copyright 2005      Stanislav Marek
  70 * email: pisa@cmp.felk.cvut.cz
  71 *
  72 * Calculates proper bit-timing parameters for a specified bit-rate
  73 * and sample-point, which can then be used to set the bit-timing
  74 * registers of the CAN controller. You can find more information
  75 * in the header file linux/can/netlink.h.
  76 */
  77static int
  78can_update_sample_point(const struct can_bittiming_const *btc,
  79			unsigned int sample_point_nominal, unsigned int tseg,
  80			unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
  81			unsigned int *sample_point_error_ptr)
  82{
  83	unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
  84	unsigned int sample_point, best_sample_point = 0;
  85	unsigned int tseg1, tseg2;
  86	int i;
  87
  88	for (i = 0; i <= 1; i++) {
  89		tseg2 = tseg + CAN_CALC_SYNC_SEG -
  90			(sample_point_nominal * (tseg + CAN_CALC_SYNC_SEG)) /
  91			1000 - i;
  92		tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
  93		tseg1 = tseg - tseg2;
  94		if (tseg1 > btc->tseg1_max) {
  95			tseg1 = btc->tseg1_max;
  96			tseg2 = tseg - tseg1;
  97		}
  98
  99		sample_point = 1000 * (tseg + CAN_CALC_SYNC_SEG - tseg2) /
 100			(tseg + CAN_CALC_SYNC_SEG);
 101		sample_point_error = abs(sample_point_nominal - sample_point);
 102
 103		if (sample_point <= sample_point_nominal &&
 104		    sample_point_error < best_sample_point_error) {
 105			best_sample_point = sample_point;
 106			best_sample_point_error = sample_point_error;
 107			*tseg1_ptr = tseg1;
 108			*tseg2_ptr = tseg2;
 109		}
 110	}
 111
 112	if (sample_point_error_ptr)
 113		*sample_point_error_ptr = best_sample_point_error;
 114
 115	return best_sample_point;
 116}
 117
 118static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
 119			      const struct can_bittiming_const *btc)
 120{
 121	struct can_priv *priv = netdev_priv(dev);
 122	unsigned int bitrate;			/* current bitrate */
 123	unsigned int bitrate_error;		/* difference between current and nominal value */
 124	unsigned int best_bitrate_error = UINT_MAX;
 125	unsigned int sample_point_error;	/* difference between current and nominal value */
 126	unsigned int best_sample_point_error = UINT_MAX;
 127	unsigned int sample_point_nominal;	/* nominal sample point */
 128	unsigned int best_tseg = 0;		/* current best value for tseg */
 129	unsigned int best_brp = 0;		/* current best value for brp */
 130	unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
 131	u64 v64;
 132
 133	/* Use CiA recommended sample points */
 134	if (bt->sample_point) {
 135		sample_point_nominal = bt->sample_point;
 136	} else {
 137		if (bt->bitrate > 800000)
 138			sample_point_nominal = 750;
 139		else if (bt->bitrate > 500000)
 140			sample_point_nominal = 800;
 141		else
 142			sample_point_nominal = 875;
 143	}
 144
 145	/* tseg even = round down, odd = round up */
 146	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
 147	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
 148		tsegall = CAN_CALC_SYNC_SEG + tseg / 2;
 149
 150		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
 151		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
 152
 153		/* choose brp step which is possible in system */
 154		brp = (brp / btc->brp_inc) * btc->brp_inc;
 155		if (brp < btc->brp_min || brp > btc->brp_max)
 156			continue;
 157
 158		bitrate = priv->clock.freq / (brp * tsegall);
 159		bitrate_error = abs(bt->bitrate - bitrate);
 160
 161		/* tseg brp biterror */
 162		if (bitrate_error > best_bitrate_error)
 
 
 163			continue;
 164
 165		/* reset sample point error if we have a better bitrate */
 166		if (bitrate_error < best_bitrate_error)
 167			best_sample_point_error = UINT_MAX;
 168
 169		can_update_sample_point(btc, sample_point_nominal, tseg / 2,
 170					&tseg1, &tseg2, &sample_point_error);
 171		if (sample_point_error > best_sample_point_error)
 172			continue;
 173
 174		best_sample_point_error = sample_point_error;
 175		best_bitrate_error = bitrate_error;
 176		best_tseg = tseg / 2;
 177		best_brp = brp;
 178
 179		if (bitrate_error == 0 && sample_point_error == 0)
 180			break;
 181	}
 182
 183	if (best_bitrate_error) {
 184		/* Error in one-tenth of a percent */
 185		v64 = (u64)best_bitrate_error * 1000;
 186		do_div(v64, bt->bitrate);
 187		bitrate_error = (u32)v64;
 188		if (bitrate_error > CAN_CALC_MAX_ERROR) {
 189			netdev_err(dev,
 190				   "bitrate error %d.%d%% too high\n",
 191				   bitrate_error / 10, bitrate_error % 10);
 192			return -EDOM;
 
 
 
 193		}
 194		netdev_warn(dev, "bitrate error %d.%d%%\n",
 195			    bitrate_error / 10, bitrate_error % 10);
 196	}
 197
 198	/* real sample point */
 199	bt->sample_point = can_update_sample_point(btc, sample_point_nominal,
 200						   best_tseg, &tseg1, &tseg2,
 201						   NULL);
 202
 203	v64 = (u64)best_brp * 1000 * 1000 * 1000;
 204	do_div(v64, priv->clock.freq);
 205	bt->tq = (u32)v64;
 206	bt->prop_seg = tseg1 / 2;
 207	bt->phase_seg1 = tseg1 - bt->prop_seg;
 208	bt->phase_seg2 = tseg2;
 209
 210	/* check for sjw user settings */
 211	if (!bt->sjw || !btc->sjw_max) {
 212		bt->sjw = 1;
 213	} else {
 214		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
 215		if (bt->sjw > btc->sjw_max)
 216			bt->sjw = btc->sjw_max;
 217		/* bt->sjw must not be higher than tseg2 */
 218		if (tseg2 < bt->sjw)
 219			bt->sjw = tseg2;
 220	}
 221
 222	bt->brp = best_brp;
 223
 224	/* real bitrate */
 225	bt->bitrate = priv->clock.freq /
 226		(bt->brp * (CAN_CALC_SYNC_SEG + tseg1 + tseg2));
 227
 228	return 0;
 229}
 230#else /* !CONFIG_CAN_CALC_BITTIMING */
 231static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
 232			      const struct can_bittiming_const *btc)
 233{
 234	netdev_err(dev, "bit-timing calculation not available\n");
 235	return -EINVAL;
 236}
 237#endif /* CONFIG_CAN_CALC_BITTIMING */
 238
 239/* Checks the validity of the specified bit-timing parameters prop_seg,
 
 240 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
 241 * prescaler value brp. You can find more information in the header
 242 * file linux/can/netlink.h.
 243 */
 244static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
 245			       const struct can_bittiming_const *btc)
 246{
 247	struct can_priv *priv = netdev_priv(dev);
 248	int tseg1, alltseg;
 249	u64 brp64;
 250
 251	tseg1 = bt->prop_seg + bt->phase_seg1;
 252	if (!bt->sjw)
 253		bt->sjw = 1;
 254	if (bt->sjw > btc->sjw_max ||
 255	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
 256	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
 257		return -ERANGE;
 258
 259	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
 260	if (btc->brp_inc > 1)
 261		do_div(brp64, btc->brp_inc);
 262	brp64 += 500000000UL - 1;
 263	do_div(brp64, 1000000000UL); /* the practicable BRP */
 264	if (btc->brp_inc > 1)
 265		brp64 *= btc->brp_inc;
 266	bt->brp = (u32)brp64;
 267
 268	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
 269		return -EINVAL;
 270
 271	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
 272	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
 273	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
 274
 275	return 0;
 276}
 277
 278/* Checks the validity of predefined bitrate settings */
 279static int
 280can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt,
 281		     const u32 *bitrate_const,
 282		     const unsigned int bitrate_const_cnt)
 283{
 284	struct can_priv *priv = netdev_priv(dev);
 285	unsigned int i;
 286
 287	for (i = 0; i < bitrate_const_cnt; i++) {
 288		if (bt->bitrate == bitrate_const[i])
 289			break;
 290	}
 291
 292	if (i >= priv->bitrate_const_cnt)
 293		return -EINVAL;
 294
 295	return 0;
 296}
 297
 298static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
 299			     const struct can_bittiming_const *btc,
 300			     const u32 *bitrate_const,
 301			     const unsigned int bitrate_const_cnt)
 302{
 303	int err;
 304
 305	/* Depending on the given can_bittiming parameter structure the CAN
 
 
 
 
 
 306	 * timing parameters are calculated based on the provided bitrate OR
 307	 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
 308	 * provided directly which are then checked and fixed up.
 309	 */
 310	if (!bt->tq && bt->bitrate && btc)
 311		err = can_calc_bittiming(dev, bt, btc);
 312	else if (bt->tq && !bt->bitrate && btc)
 313		err = can_fixup_bittiming(dev, bt, btc);
 314	else if (!bt->tq && bt->bitrate && bitrate_const)
 315		err = can_validate_bitrate(dev, bt, bitrate_const,
 316					   bitrate_const_cnt);
 317	else
 318		err = -EINVAL;
 319
 320	return err;
 321}
 322
 323static void can_update_state_error_stats(struct net_device *dev,
 324					 enum can_state new_state)
 325{
 326	struct can_priv *priv = netdev_priv(dev);
 327
 328	if (new_state <= priv->state)
 329		return;
 330
 331	switch (new_state) {
 332	case CAN_STATE_ERROR_WARNING:
 333		priv->can_stats.error_warning++;
 334		break;
 335	case CAN_STATE_ERROR_PASSIVE:
 336		priv->can_stats.error_passive++;
 337		break;
 338	case CAN_STATE_BUS_OFF:
 339		priv->can_stats.bus_off++;
 340		break;
 341	default:
 342		break;
 343	}
 344}
 345
 346static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
 347{
 348	switch (state) {
 349	case CAN_STATE_ERROR_ACTIVE:
 350		return CAN_ERR_CRTL_ACTIVE;
 351	case CAN_STATE_ERROR_WARNING:
 352		return CAN_ERR_CRTL_TX_WARNING;
 353	case CAN_STATE_ERROR_PASSIVE:
 354		return CAN_ERR_CRTL_TX_PASSIVE;
 355	default:
 356		return 0;
 357	}
 358}
 359
 360static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
 361{
 362	switch (state) {
 363	case CAN_STATE_ERROR_ACTIVE:
 364		return CAN_ERR_CRTL_ACTIVE;
 365	case CAN_STATE_ERROR_WARNING:
 366		return CAN_ERR_CRTL_RX_WARNING;
 367	case CAN_STATE_ERROR_PASSIVE:
 368		return CAN_ERR_CRTL_RX_PASSIVE;
 369	default:
 370		return 0;
 371	}
 372}
 373
 374void can_change_state(struct net_device *dev, struct can_frame *cf,
 375		      enum can_state tx_state, enum can_state rx_state)
 376{
 377	struct can_priv *priv = netdev_priv(dev);
 378	enum can_state new_state = max(tx_state, rx_state);
 379
 380	if (unlikely(new_state == priv->state)) {
 381		netdev_warn(dev, "%s: oops, state did not change", __func__);
 382		return;
 383	}
 384
 385	netdev_dbg(dev, "New error state: %d\n", new_state);
 386
 387	can_update_state_error_stats(dev, new_state);
 388	priv->state = new_state;
 389
 390	if (!cf)
 391		return;
 392
 393	if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
 394		cf->can_id |= CAN_ERR_BUSOFF;
 395		return;
 396	}
 397
 398	cf->can_id |= CAN_ERR_CRTL;
 399	cf->data[1] |= tx_state >= rx_state ?
 400		       can_tx_state_to_frame(dev, tx_state) : 0;
 401	cf->data[1] |= tx_state <= rx_state ?
 402		       can_rx_state_to_frame(dev, rx_state) : 0;
 403}
 404EXPORT_SYMBOL_GPL(can_change_state);
 405
 406/* Local echo of CAN messages
 
 407 *
 408 * CAN network devices *should* support a local echo functionality
 409 * (see Documentation/networking/can.rst). To test the handling of CAN
 410 * interfaces that do not support the local echo both driver types are
 411 * implemented. In the case that the driver does not support the echo
 412 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
 413 * to perform the echo as a fallback solution.
 414 */
 415static void can_flush_echo_skb(struct net_device *dev)
 416{
 417	struct can_priv *priv = netdev_priv(dev);
 418	struct net_device_stats *stats = &dev->stats;
 419	int i;
 420
 421	for (i = 0; i < priv->echo_skb_max; i++) {
 422		if (priv->echo_skb[i]) {
 423			kfree_skb(priv->echo_skb[i]);
 424			priv->echo_skb[i] = NULL;
 425			stats->tx_dropped++;
 426			stats->tx_aborted_errors++;
 427		}
 428	}
 429}
 430
 431/* Put the skb on the stack to be looped backed locally lateron
 
 432 *
 433 * The function is typically called in the start_xmit function
 434 * of the device driver. The driver must protect access to
 435 * priv->echo_skb, if necessary.
 436 */
 437void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
 438		      unsigned int idx)
 439{
 440	struct can_priv *priv = netdev_priv(dev);
 441
 442	BUG_ON(idx >= priv->echo_skb_max);
 443
 444	/* check flag whether this packet has to be looped back */
 445	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
 446	    (skb->protocol != htons(ETH_P_CAN) &&
 447	     skb->protocol != htons(ETH_P_CANFD))) {
 448		kfree_skb(skb);
 449		return;
 450	}
 451
 452	if (!priv->echo_skb[idx]) {
 
 453		skb = can_create_echo_skb(skb);
 454		if (!skb)
 455			return;
 456
 457		/* make settings for echo to reduce code in irq context */
 458		skb->pkt_type = PACKET_BROADCAST;
 459		skb->ip_summed = CHECKSUM_UNNECESSARY;
 460		skb->dev = dev;
 461
 462		/* save this skb for tx interrupt echo handling */
 463		priv->echo_skb[idx] = skb;
 464	} else {
 465		/* locking problem with netif_stop_queue() ?? */
 466		netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
 467		kfree_skb(skb);
 468	}
 469}
 470EXPORT_SYMBOL_GPL(can_put_echo_skb);
 471
 472struct sk_buff *
 473__can_get_echo_skb(struct net_device *dev, unsigned int idx, u8 *len_ptr)
 
 
 
 
 
 
 474{
 475	struct can_priv *priv = netdev_priv(dev);
 476
 477	if (idx >= priv->echo_skb_max) {
 478		netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n",
 479			   __func__, idx, priv->echo_skb_max);
 480		return NULL;
 481	}
 482
 483	if (priv->echo_skb[idx]) {
 484		/* Using "struct canfd_frame::len" for the frame
 485		 * length is supported on both CAN and CANFD frames.
 486		 */
 487		struct sk_buff *skb = priv->echo_skb[idx];
 488		struct canfd_frame *cf = (struct canfd_frame *)skb->data;
 489		u8 len = cf->len;
 490
 491		*len_ptr = len;
 492		priv->echo_skb[idx] = NULL;
 493
 494		return skb;
 495	}
 496
 497	return NULL;
 498}
 499
 500/* Get the skb from the stack and loop it back locally
 501 *
 502 * The function is typically called when the TX done interrupt
 503 * is handled in the device driver. The driver must protect
 504 * access to priv->echo_skb, if necessary.
 505 */
 506unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
 507{
 508	struct sk_buff *skb;
 509	u8 len;
 510
 511	skb = __can_get_echo_skb(dev, idx, &len);
 512	if (!skb)
 513		return 0;
 514
 515	netif_rx(skb);
 516
 517	return len;
 518}
 519EXPORT_SYMBOL_GPL(can_get_echo_skb);
 520
 521/* Remove the skb from the stack and free it.
 522 *
 523 * The function is typically called when TX failed.
 524 */
 
 525void can_free_echo_skb(struct net_device *dev, unsigned int idx)
 526{
 527	struct can_priv *priv = netdev_priv(dev);
 528
 529	BUG_ON(idx >= priv->echo_skb_max);
 530
 531	if (priv->echo_skb[idx]) {
 532		dev_kfree_skb_any(priv->echo_skb[idx]);
 533		priv->echo_skb[idx] = NULL;
 534	}
 535}
 536EXPORT_SYMBOL_GPL(can_free_echo_skb);
 537
 538/* CAN device restart for bus-off recovery */
 539static void can_restart(struct net_device *dev)
 
 
 540{
 
 541	struct can_priv *priv = netdev_priv(dev);
 542	struct net_device_stats *stats = &dev->stats;
 543	struct sk_buff *skb;
 544	struct can_frame *cf;
 545	int err;
 546
 547	BUG_ON(netif_carrier_ok(dev));
 548
 549	/* No synchronization needed because the device is bus-off and
 
 550	 * no messages can come in or go out.
 551	 */
 552	can_flush_echo_skb(dev);
 553
 554	/* send restart message upstream */
 555	skb = alloc_can_err_skb(dev, &cf);
 556	if (!skb)
 
 557		goto restart;
 558
 559	cf->can_id |= CAN_ERR_RESTARTED;
 560
 561	netif_rx(skb);
 562
 563	stats->rx_packets++;
 564	stats->rx_bytes += cf->can_dlc;
 565
 566restart:
 567	netdev_dbg(dev, "restarted\n");
 568	priv->can_stats.restarts++;
 569
 570	/* Now restart the device */
 571	err = priv->do_set_mode(dev, CAN_MODE_START);
 572
 573	netif_carrier_on(dev);
 574	if (err)
 575		netdev_err(dev, "Error %d during restart", err);
 576}
 577
 578static void can_restart_work(struct work_struct *work)
 579{
 580	struct delayed_work *dwork = to_delayed_work(work);
 581	struct can_priv *priv = container_of(dwork, struct can_priv,
 582					     restart_work);
 583
 584	can_restart(priv->dev);
 585}
 586
 587int can_restart_now(struct net_device *dev)
 588{
 589	struct can_priv *priv = netdev_priv(dev);
 590
 591	/* A manual restart is only permitted if automatic restart is
 
 592	 * disabled and the device is in the bus-off state
 593	 */
 594	if (priv->restart_ms)
 595		return -EINVAL;
 596	if (priv->state != CAN_STATE_BUS_OFF)
 597		return -EBUSY;
 598
 599	cancel_delayed_work_sync(&priv->restart_work);
 600	can_restart(dev);
 601
 602	return 0;
 603}
 604
 605/* CAN bus-off
 
 606 *
 607 * This functions should be called when the device goes bus-off to
 608 * tell the netif layer that no more packets can be sent or received.
 609 * If enabled, a timer is started to trigger bus-off recovery.
 610 */
 611void can_bus_off(struct net_device *dev)
 612{
 613	struct can_priv *priv = netdev_priv(dev);
 614
 615	netdev_info(dev, "bus-off\n");
 616
 617	netif_carrier_off(dev);
 618
 619	if (priv->restart_ms)
 620		schedule_delayed_work(&priv->restart_work,
 621				      msecs_to_jiffies(priv->restart_ms));
 622}
 623EXPORT_SYMBOL_GPL(can_bus_off);
 624
 625static void can_setup(struct net_device *dev)
 626{
 627	dev->type = ARPHRD_CAN;
 628	dev->mtu = CAN_MTU;
 629	dev->hard_header_len = 0;
 630	dev->addr_len = 0;
 631	dev->tx_queue_len = 10;
 632
 633	/* New-style flags. */
 634	dev->flags = IFF_NOARP;
 635	dev->features = NETIF_F_HW_CSUM;
 636}
 637
 638struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
 639{
 640	struct sk_buff *skb;
 641
 642	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
 643			       sizeof(struct can_frame));
 644	if (unlikely(!skb))
 645		return NULL;
 646
 647	skb->protocol = htons(ETH_P_CAN);
 648	skb->pkt_type = PACKET_BROADCAST;
 649	skb->ip_summed = CHECKSUM_UNNECESSARY;
 650
 651	skb_reset_mac_header(skb);
 652	skb_reset_network_header(skb);
 653	skb_reset_transport_header(skb);
 654
 655	can_skb_reserve(skb);
 656	can_skb_prv(skb)->ifindex = dev->ifindex;
 657	can_skb_prv(skb)->skbcnt = 0;
 658
 659	*cf = skb_put_zero(skb, sizeof(struct can_frame));
 
 660
 661	return skb;
 662}
 663EXPORT_SYMBOL_GPL(alloc_can_skb);
 664
 665struct sk_buff *alloc_canfd_skb(struct net_device *dev,
 666				struct canfd_frame **cfd)
 667{
 668	struct sk_buff *skb;
 669
 670	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
 671			       sizeof(struct canfd_frame));
 672	if (unlikely(!skb))
 673		return NULL;
 674
 675	skb->protocol = htons(ETH_P_CANFD);
 676	skb->pkt_type = PACKET_BROADCAST;
 677	skb->ip_summed = CHECKSUM_UNNECESSARY;
 678
 679	skb_reset_mac_header(skb);
 680	skb_reset_network_header(skb);
 681	skb_reset_transport_header(skb);
 682
 683	can_skb_reserve(skb);
 684	can_skb_prv(skb)->ifindex = dev->ifindex;
 685	can_skb_prv(skb)->skbcnt = 0;
 686
 687	*cfd = skb_put_zero(skb, sizeof(struct canfd_frame));
 
 688
 689	return skb;
 690}
 691EXPORT_SYMBOL_GPL(alloc_canfd_skb);
 692
 693struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
 694{
 695	struct sk_buff *skb;
 696
 697	skb = alloc_can_skb(dev, cf);
 698	if (unlikely(!skb))
 699		return NULL;
 700
 701	(*cf)->can_id = CAN_ERR_FLAG;
 702	(*cf)->can_dlc = CAN_ERR_DLC;
 703
 704	return skb;
 705}
 706EXPORT_SYMBOL_GPL(alloc_can_err_skb);
 707
 708/* Allocate and setup space for the CAN network device */
 709struct net_device *alloc_candev_mqs(int sizeof_priv, unsigned int echo_skb_max,
 710				    unsigned int txqs, unsigned int rxqs)
 
 711{
 712	struct net_device *dev;
 713	struct can_priv *priv;
 714	int size;
 715
 716	/* We put the driver's priv, the CAN mid layer priv and the
 717	 * echo skb into the netdevice's priv. The memory layout for
 718	 * the netdev_priv is like this:
 719	 *
 720	 * +-------------------------+
 721	 * | driver's priv           |
 722	 * +-------------------------+
 723	 * | struct can_ml_priv      |
 724	 * +-------------------------+
 725	 * | array of struct sk_buff |
 726	 * +-------------------------+
 727	 */
 728
 729	size = ALIGN(sizeof_priv, NETDEV_ALIGN) + sizeof(struct can_ml_priv);
 730
 731	if (echo_skb_max)
 732		size = ALIGN(size, sizeof(struct sk_buff *)) +
 733			echo_skb_max * sizeof(struct sk_buff *);
 
 
 734
 735	dev = alloc_netdev_mqs(size, "can%d", NET_NAME_UNKNOWN, can_setup,
 736			       txqs, rxqs);
 737	if (!dev)
 738		return NULL;
 739
 740	priv = netdev_priv(dev);
 741	priv->dev = dev;
 742
 743	dev->ml_priv = (void *)priv + ALIGN(sizeof_priv, NETDEV_ALIGN);
 744
 745	if (echo_skb_max) {
 746		priv->echo_skb_max = echo_skb_max;
 747		priv->echo_skb = (void *)priv +
 748			(size - echo_skb_max * sizeof(struct sk_buff *));
 749	}
 750
 751	priv->state = CAN_STATE_STOPPED;
 752
 753	INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
 754
 755	return dev;
 756}
 757EXPORT_SYMBOL_GPL(alloc_candev_mqs);
 758
 759/* Free space of the CAN network device */
 
 
 760void free_candev(struct net_device *dev)
 761{
 762	free_netdev(dev);
 763}
 764EXPORT_SYMBOL_GPL(free_candev);
 765
 766/* changing MTU and control mode for CAN/CANFD devices */
 
 
 767int can_change_mtu(struct net_device *dev, int new_mtu)
 768{
 769	struct can_priv *priv = netdev_priv(dev);
 770
 771	/* Do not allow changing the MTU while running */
 772	if (dev->flags & IFF_UP)
 773		return -EBUSY;
 774
 775	/* allow change of MTU according to the CANFD ability of the device */
 776	switch (new_mtu) {
 777	case CAN_MTU:
 778		/* 'CANFD-only' controllers can not switch to CAN_MTU */
 779		if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
 780			return -EINVAL;
 781
 782		priv->ctrlmode &= ~CAN_CTRLMODE_FD;
 783		break;
 784
 785	case CANFD_MTU:
 786		/* check for potential CANFD ability */
 787		if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
 788		    !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
 789			return -EINVAL;
 790
 791		priv->ctrlmode |= CAN_CTRLMODE_FD;
 792		break;
 793
 794	default:
 795		return -EINVAL;
 796	}
 797
 798	dev->mtu = new_mtu;
 799	return 0;
 800}
 801EXPORT_SYMBOL_GPL(can_change_mtu);
 802
 803/* Common open function when the device gets opened.
 
 804 *
 805 * This function should be called in the open function of the device
 806 * driver.
 807 */
 808int open_candev(struct net_device *dev)
 809{
 810	struct can_priv *priv = netdev_priv(dev);
 811
 812	if (!priv->bittiming.bitrate) {
 813		netdev_err(dev, "bit-timing not yet defined\n");
 814		return -EINVAL;
 815	}
 816
 817	/* For CAN FD the data bitrate has to be >= the arbitration bitrate */
 818	if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
 819	    (!priv->data_bittiming.bitrate ||
 820	     priv->data_bittiming.bitrate < priv->bittiming.bitrate)) {
 821		netdev_err(dev, "incorrect/missing data bit-timing\n");
 822		return -EINVAL;
 823	}
 824
 825	/* Switch carrier on if device was stopped while in bus-off state */
 826	if (!netif_carrier_ok(dev))
 827		netif_carrier_on(dev);
 828
 
 
 829	return 0;
 830}
 831EXPORT_SYMBOL_GPL(open_candev);
 832
 833#ifdef CONFIG_OF
 834/* Common function that can be used to understand the limitation of
 835 * a transceiver when it provides no means to determine these limitations
 836 * at runtime.
 837 */
 838void of_can_transceiver(struct net_device *dev)
 839{
 840	struct device_node *dn;
 841	struct can_priv *priv = netdev_priv(dev);
 842	struct device_node *np = dev->dev.parent->of_node;
 843	int ret;
 844
 845	dn = of_get_child_by_name(np, "can-transceiver");
 846	if (!dn)
 847		return;
 848
 849	ret = of_property_read_u32(dn, "max-bitrate", &priv->bitrate_max);
 850	of_node_put(dn);
 851	if ((ret && ret != -EINVAL) || (!ret && !priv->bitrate_max))
 852		netdev_warn(dev, "Invalid value for transceiver max bitrate. Ignoring bitrate limit.\n");
 853}
 854EXPORT_SYMBOL_GPL(of_can_transceiver);
 855#endif
 856
 857/* Common close function for cleanup before the device gets closed.
 858 *
 859 * This function should be called in the close function of the device
 860 * driver.
 861 */
 862void close_candev(struct net_device *dev)
 863{
 864	struct can_priv *priv = netdev_priv(dev);
 865
 866	cancel_delayed_work_sync(&priv->restart_work);
 867	can_flush_echo_skb(dev);
 868}
 869EXPORT_SYMBOL_GPL(close_candev);
 870
 871/* CAN netlink interface */
 
 
 872static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
 873	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
 874	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
 875	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
 876	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
 877	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
 878	[IFLA_CAN_BITTIMING_CONST]
 879				= { .len = sizeof(struct can_bittiming_const) },
 880	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
 881	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
 882	[IFLA_CAN_DATA_BITTIMING]
 883				= { .len = sizeof(struct can_bittiming) },
 884	[IFLA_CAN_DATA_BITTIMING_CONST]
 885				= { .len = sizeof(struct can_bittiming_const) },
 886	[IFLA_CAN_TERMINATION]	= { .type = NLA_U16 },
 887};
 888
 889static int can_validate(struct nlattr *tb[], struct nlattr *data[],
 890			struct netlink_ext_ack *extack)
 891{
 892	bool is_can_fd = false;
 893
 894	/* Make sure that valid CAN FD configurations always consist of
 895	 * - nominal/arbitration bittiming
 896	 * - data bittiming
 897	 * - control mode with CAN_CTRLMODE_FD set
 898	 */
 899
 900	if (!data)
 901		return 0;
 902
 903	if (data[IFLA_CAN_CTRLMODE]) {
 904		struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
 905
 906		is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
 907	}
 908
 909	if (is_can_fd) {
 910		if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
 911			return -EOPNOTSUPP;
 912	}
 913
 914	if (data[IFLA_CAN_DATA_BITTIMING]) {
 915		if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
 916			return -EOPNOTSUPP;
 917	}
 918
 919	return 0;
 920}
 921
 922static int can_changelink(struct net_device *dev, struct nlattr *tb[],
 923			  struct nlattr *data[],
 924			  struct netlink_ext_ack *extack)
 925{
 926	struct can_priv *priv = netdev_priv(dev);
 927	int err;
 928
 929	/* We need synchronization with dev->stop() */
 930	ASSERT_RTNL();
 931
 932	if (data[IFLA_CAN_BITTIMING]) {
 933		struct can_bittiming bt;
 934
 935		/* Do not allow changing bittiming while running */
 936		if (dev->flags & IFF_UP)
 937			return -EBUSY;
 938
 939		/* Calculate bittiming parameters based on
 940		 * bittiming_const if set, otherwise pass bitrate
 941		 * directly via do_set_bitrate(). Bail out if neither
 942		 * is given.
 943		 */
 944		if (!priv->bittiming_const && !priv->do_set_bittiming)
 945			return -EOPNOTSUPP;
 946
 947		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
 948		err = can_get_bittiming(dev, &bt,
 949					priv->bittiming_const,
 950					priv->bitrate_const,
 951					priv->bitrate_const_cnt);
 952		if (err)
 953			return err;
 954
 955		if (priv->bitrate_max && bt.bitrate > priv->bitrate_max) {
 956			netdev_err(dev, "arbitration bitrate surpasses transceiver capabilities of %d bps\n",
 957				   priv->bitrate_max);
 958			return -EINVAL;
 959		}
 960
 961		memcpy(&priv->bittiming, &bt, sizeof(bt));
 962
 963		if (priv->do_set_bittiming) {
 964			/* Finally, set the bit-timing registers */
 965			err = priv->do_set_bittiming(dev);
 966			if (err)
 967				return err;
 968		}
 969	}
 970
 971	if (data[IFLA_CAN_CTRLMODE]) {
 972		struct can_ctrlmode *cm;
 973		u32 ctrlstatic;
 974		u32 maskedflags;
 975
 976		/* Do not allow changing controller mode while running */
 977		if (dev->flags & IFF_UP)
 978			return -EBUSY;
 979		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
 980		ctrlstatic = priv->ctrlmode_static;
 981		maskedflags = cm->flags & cm->mask;
 982
 983		/* check whether provided bits are allowed to be passed */
 984		if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
 985			return -EOPNOTSUPP;
 986
 987		/* do not check for static fd-non-iso if 'fd' is disabled */
 988		if (!(maskedflags & CAN_CTRLMODE_FD))
 989			ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
 990
 991		/* make sure static options are provided by configuration */
 992		if ((maskedflags & ctrlstatic) != ctrlstatic)
 993			return -EOPNOTSUPP;
 994
 995		/* clear bits to be modified and copy the flag values */
 996		priv->ctrlmode &= ~cm->mask;
 997		priv->ctrlmode |= maskedflags;
 998
 999		/* CAN_CTRLMODE_FD can only be set when driver supports FD */
1000		if (priv->ctrlmode & CAN_CTRLMODE_FD)
1001			dev->mtu = CANFD_MTU;
1002		else
1003			dev->mtu = CAN_MTU;
1004	}
1005
1006	if (data[IFLA_CAN_RESTART_MS]) {
1007		/* Do not allow changing restart delay while running */
1008		if (dev->flags & IFF_UP)
1009			return -EBUSY;
1010		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
1011	}
1012
1013	if (data[IFLA_CAN_RESTART]) {
1014		/* Do not allow a restart while not running */
1015		if (!(dev->flags & IFF_UP))
1016			return -EINVAL;
1017		err = can_restart_now(dev);
1018		if (err)
1019			return err;
1020	}
1021
1022	if (data[IFLA_CAN_DATA_BITTIMING]) {
1023		struct can_bittiming dbt;
1024
1025		/* Do not allow changing bittiming while running */
1026		if (dev->flags & IFF_UP)
1027			return -EBUSY;
1028
1029		/* Calculate bittiming parameters based on
1030		 * data_bittiming_const if set, otherwise pass bitrate
1031		 * directly via do_set_bitrate(). Bail out if neither
1032		 * is given.
1033		 */
1034		if (!priv->data_bittiming_const && !priv->do_set_data_bittiming)
1035			return -EOPNOTSUPP;
1036
1037		memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
1038		       sizeof(dbt));
1039		err = can_get_bittiming(dev, &dbt,
1040					priv->data_bittiming_const,
1041					priv->data_bitrate_const,
1042					priv->data_bitrate_const_cnt);
1043		if (err)
1044			return err;
1045
1046		if (priv->bitrate_max && dbt.bitrate > priv->bitrate_max) {
1047			netdev_err(dev, "canfd data bitrate surpasses transceiver capabilities of %d bps\n",
1048				   priv->bitrate_max);
1049			return -EINVAL;
1050		}
1051
1052		memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
1053
1054		if (priv->do_set_data_bittiming) {
1055			/* Finally, set the bit-timing registers */
1056			err = priv->do_set_data_bittiming(dev);
1057			if (err)
1058				return err;
1059		}
1060	}
1061
1062	if (data[IFLA_CAN_TERMINATION]) {
1063		const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]);
1064		const unsigned int num_term = priv->termination_const_cnt;
1065		unsigned int i;
1066
1067		if (!priv->do_set_termination)
1068			return -EOPNOTSUPP;
1069
1070		/* check whether given value is supported by the interface */
1071		for (i = 0; i < num_term; i++) {
1072			if (termval == priv->termination_const[i])
1073				break;
1074		}
1075		if (i >= num_term)
1076			return -EINVAL;
1077
1078		/* Finally, set the termination value */
1079		err = priv->do_set_termination(dev, termval);
1080		if (err)
1081			return err;
1082
1083		priv->termination = termval;
1084	}
1085
1086	return 0;
1087}
1088
1089static size_t can_get_size(const struct net_device *dev)
1090{
1091	struct can_priv *priv = netdev_priv(dev);
1092	size_t size = 0;
1093
1094	if (priv->bittiming.bitrate)				/* IFLA_CAN_BITTIMING */
1095		size += nla_total_size(sizeof(struct can_bittiming));
1096	if (priv->bittiming_const)				/* IFLA_CAN_BITTIMING_CONST */
1097		size += nla_total_size(sizeof(struct can_bittiming_const));
1098	size += nla_total_size(sizeof(struct can_clock));	/* IFLA_CAN_CLOCK */
1099	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_STATE */
1100	size += nla_total_size(sizeof(struct can_ctrlmode));	/* IFLA_CAN_CTRLMODE */
1101	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_RESTART_MS */
1102	if (priv->do_get_berr_counter)				/* IFLA_CAN_BERR_COUNTER */
1103		size += nla_total_size(sizeof(struct can_berr_counter));
1104	if (priv->data_bittiming.bitrate)			/* IFLA_CAN_DATA_BITTIMING */
1105		size += nla_total_size(sizeof(struct can_bittiming));
1106	if (priv->data_bittiming_const)				/* IFLA_CAN_DATA_BITTIMING_CONST */
1107		size += nla_total_size(sizeof(struct can_bittiming_const));
1108	if (priv->termination_const) {
1109		size += nla_total_size(sizeof(priv->termination));		/* IFLA_CAN_TERMINATION */
1110		size += nla_total_size(sizeof(*priv->termination_const) *	/* IFLA_CAN_TERMINATION_CONST */
1111				       priv->termination_const_cnt);
1112	}
1113	if (priv->bitrate_const)				/* IFLA_CAN_BITRATE_CONST */
1114		size += nla_total_size(sizeof(*priv->bitrate_const) *
1115				       priv->bitrate_const_cnt);
1116	if (priv->data_bitrate_const)				/* IFLA_CAN_DATA_BITRATE_CONST */
1117		size += nla_total_size(sizeof(*priv->data_bitrate_const) *
1118				       priv->data_bitrate_const_cnt);
1119	size += sizeof(priv->bitrate_max);			/* IFLA_CAN_BITRATE_MAX */
1120
1121	return size;
1122}
1123
1124static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
1125{
1126	struct can_priv *priv = netdev_priv(dev);
1127	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
1128	struct can_berr_counter bec;
1129	enum can_state state = priv->state;
1130
1131	if (priv->do_get_state)
1132		priv->do_get_state(dev, &state);
1133
1134	if ((priv->bittiming.bitrate &&
1135	     nla_put(skb, IFLA_CAN_BITTIMING,
1136		     sizeof(priv->bittiming), &priv->bittiming)) ||
1137
1138	    (priv->bittiming_const &&
1139	     nla_put(skb, IFLA_CAN_BITTIMING_CONST,
1140		     sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
1141
1142	    nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
1143	    nla_put_u32(skb, IFLA_CAN_STATE, state) ||
1144	    nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
1145	    nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
1146
1147	    (priv->do_get_berr_counter &&
1148	     !priv->do_get_berr_counter(dev, &bec) &&
1149	     nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
1150
1151	    (priv->data_bittiming.bitrate &&
1152	     nla_put(skb, IFLA_CAN_DATA_BITTIMING,
1153		     sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
1154
1155	    (priv->data_bittiming_const &&
1156	     nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
1157		     sizeof(*priv->data_bittiming_const),
1158		     priv->data_bittiming_const)) ||
1159
1160	    (priv->termination_const &&
1161	     (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) ||
1162	      nla_put(skb, IFLA_CAN_TERMINATION_CONST,
1163		      sizeof(*priv->termination_const) *
1164		      priv->termination_const_cnt,
1165		      priv->termination_const))) ||
1166
1167	    (priv->bitrate_const &&
1168	     nla_put(skb, IFLA_CAN_BITRATE_CONST,
1169		     sizeof(*priv->bitrate_const) *
1170		     priv->bitrate_const_cnt,
1171		     priv->bitrate_const)) ||
1172
1173	    (priv->data_bitrate_const &&
1174	     nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST,
1175		     sizeof(*priv->data_bitrate_const) *
1176		     priv->data_bitrate_const_cnt,
1177		     priv->data_bitrate_const)) ||
1178
1179	    (nla_put(skb, IFLA_CAN_BITRATE_MAX,
1180		     sizeof(priv->bitrate_max),
1181		     &priv->bitrate_max))
1182	    )
1183
1184		return -EMSGSIZE;
1185
1186	return 0;
1187}
1188
1189static size_t can_get_xstats_size(const struct net_device *dev)
1190{
1191	return sizeof(struct can_device_stats);
1192}
1193
1194static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
1195{
1196	struct can_priv *priv = netdev_priv(dev);
1197
1198	if (nla_put(skb, IFLA_INFO_XSTATS,
1199		    sizeof(priv->can_stats), &priv->can_stats))
1200		goto nla_put_failure;
1201	return 0;
1202
1203nla_put_failure:
1204	return -EMSGSIZE;
1205}
1206
1207static int can_newlink(struct net *src_net, struct net_device *dev,
1208		       struct nlattr *tb[], struct nlattr *data[],
1209		       struct netlink_ext_ack *extack)
1210{
1211	return -EOPNOTSUPP;
1212}
1213
1214static void can_dellink(struct net_device *dev, struct list_head *head)
1215{
1216}
1217
1218static struct rtnl_link_ops can_link_ops __read_mostly = {
1219	.kind		= "can",
1220	.maxtype	= IFLA_CAN_MAX,
1221	.policy		= can_policy,
1222	.setup		= can_setup,
1223	.validate	= can_validate,
1224	.newlink	= can_newlink,
1225	.changelink	= can_changelink,
1226	.dellink	= can_dellink,
1227	.get_size	= can_get_size,
1228	.fill_info	= can_fill_info,
1229	.get_xstats_size = can_get_xstats_size,
1230	.fill_xstats	= can_fill_xstats,
1231};
1232
1233/* Register the CAN network device */
 
 
1234int register_candev(struct net_device *dev)
1235{
1236	struct can_priv *priv = netdev_priv(dev);
1237
1238	/* Ensure termination_const, termination_const_cnt and
1239	 * do_set_termination consistency. All must be either set or
1240	 * unset.
1241	 */
1242	if ((!priv->termination_const != !priv->termination_const_cnt) ||
1243	    (!priv->termination_const != !priv->do_set_termination))
1244		return -EINVAL;
1245
1246	if (!priv->bitrate_const != !priv->bitrate_const_cnt)
1247		return -EINVAL;
1248
1249	if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt)
1250		return -EINVAL;
1251
1252	dev->rtnl_link_ops = &can_link_ops;
1253	netif_carrier_off(dev);
1254
1255	return register_netdev(dev);
1256}
1257EXPORT_SYMBOL_GPL(register_candev);
1258
1259/* Unregister the CAN network device */
 
 
1260void unregister_candev(struct net_device *dev)
1261{
1262	unregister_netdev(dev);
1263}
1264EXPORT_SYMBOL_GPL(unregister_candev);
1265
1266/* Test if a network device is a candev based device
 
1267 * and return the can_priv* if so.
1268 */
1269struct can_priv *safe_candev_priv(struct net_device *dev)
1270{
1271	if (dev->type != ARPHRD_CAN || dev->rtnl_link_ops != &can_link_ops)
1272		return NULL;
1273
1274	return netdev_priv(dev);
1275}
1276EXPORT_SYMBOL_GPL(safe_candev_priv);
1277
1278static __init int can_dev_init(void)
1279{
1280	int err;
1281
1282	can_led_notifier_init();
1283
1284	err = rtnl_link_register(&can_link_ops);
1285	if (!err)
1286		pr_info(MOD_DESC "\n");
1287
1288	return err;
1289}
1290module_init(can_dev_init);
1291
1292static __exit void can_dev_exit(void)
1293{
1294	rtnl_link_unregister(&can_link_ops);
1295
1296	can_led_notifier_exit();
1297}
1298module_exit(can_dev_exit);
1299
1300MODULE_ALIAS_RTNL_LINK("can");
v4.6
   1/*
   2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
   3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
   4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the version 2 of the GNU General Public License
   8 * as published by the Free Software Foundation
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  17 */
  18
  19#include <linux/module.h>
  20#include <linux/kernel.h>
  21#include <linux/slab.h>
  22#include <linux/netdevice.h>
  23#include <linux/if_arp.h>
 
  24#include <linux/can.h>
 
  25#include <linux/can/dev.h>
  26#include <linux/can/skb.h>
  27#include <linux/can/netlink.h>
  28#include <linux/can/led.h>
 
  29#include <net/rtnetlink.h>
  30
  31#define MOD_DESC "CAN device driver interface"
  32
  33MODULE_DESCRIPTION(MOD_DESC);
  34MODULE_LICENSE("GPL v2");
  35MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
  36
  37/* CAN DLC to real data length conversion helpers */
  38
  39static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
  40			     8, 12, 16, 20, 24, 32, 48, 64};
  41
  42/* get data length from can_dlc with sanitized can_dlc */
  43u8 can_dlc2len(u8 can_dlc)
  44{
  45	return dlc2len[can_dlc & 0x0F];
  46}
  47EXPORT_SYMBOL_GPL(can_dlc2len);
  48
  49static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,		/* 0 - 8 */
  50			     9, 9, 9, 9,			/* 9 - 12 */
  51			     10, 10, 10, 10,			/* 13 - 16 */
  52			     11, 11, 11, 11,			/* 17 - 20 */
  53			     12, 12, 12, 12,			/* 21 - 24 */
  54			     13, 13, 13, 13, 13, 13, 13, 13,	/* 25 - 32 */
  55			     14, 14, 14, 14, 14, 14, 14, 14,	/* 33 - 40 */
  56			     14, 14, 14, 14, 14, 14, 14, 14,	/* 41 - 48 */
  57			     15, 15, 15, 15, 15, 15, 15, 15,	/* 49 - 56 */
  58			     15, 15, 15, 15, 15, 15, 15, 15};	/* 57 - 64 */
  59
  60/* map the sanitized data length to an appropriate data length code */
  61u8 can_len2dlc(u8 len)
  62{
  63	if (unlikely(len > 64))
  64		return 0xF;
  65
  66	return len2dlc[len];
  67}
  68EXPORT_SYMBOL_GPL(can_len2dlc);
  69
  70#ifdef CONFIG_CAN_CALC_BITTIMING
  71#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
 
  72
  73/*
  74 * Bit-timing calculation derived from:
  75 *
  76 * Code based on LinCAN sources and H8S2638 project
  77 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
  78 * Copyright 2005      Stanislav Marek
  79 * email: pisa@cmp.felk.cvut.cz
  80 *
  81 * Calculates proper bit-timing parameters for a specified bit-rate
  82 * and sample-point, which can then be used to set the bit-timing
  83 * registers of the CAN controller. You can find more information
  84 * in the header file linux/can/netlink.h.
  85 */
  86static int can_update_spt(const struct can_bittiming_const *btc,
  87			  int sampl_pt, int tseg, int *tseg1, int *tseg2)
  88{
  89	*tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
  90	if (*tseg2 < btc->tseg2_min)
  91		*tseg2 = btc->tseg2_min;
  92	if (*tseg2 > btc->tseg2_max)
  93		*tseg2 = btc->tseg2_max;
  94	*tseg1 = tseg - *tseg2;
  95	if (*tseg1 > btc->tseg1_max) {
  96		*tseg1 = btc->tseg1_max;
  97		*tseg2 = tseg - *tseg1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  98	}
  99	return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
 
 
 
 
 100}
 101
 102static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
 103			      const struct can_bittiming_const *btc)
 104{
 105	struct can_priv *priv = netdev_priv(dev);
 106	long best_error = 1000000000, error = 0;
 107	int best_tseg = 0, best_brp = 0, brp = 0;
 108	int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
 109	int spt_error = 1000, spt = 0, sampl_pt;
 110	long rate;
 
 
 
 
 111	u64 v64;
 112
 113	/* Use CiA recommended sample points */
 114	if (bt->sample_point) {
 115		sampl_pt = bt->sample_point;
 116	} else {
 117		if (bt->bitrate > 800000)
 118			sampl_pt = 750;
 119		else if (bt->bitrate > 500000)
 120			sampl_pt = 800;
 121		else
 122			sampl_pt = 875;
 123	}
 124
 125	/* tseg even = round down, odd = round up */
 126	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
 127	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
 128		tsegall = 1 + tseg / 2;
 
 129		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
 130		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
 131		/* chose brp step which is possible in system */
 
 132		brp = (brp / btc->brp_inc) * btc->brp_inc;
 133		if ((brp < btc->brp_min) || (brp > btc->brp_max))
 134			continue;
 135		rate = priv->clock.freq / (brp * tsegall);
 136		error = bt->bitrate - rate;
 
 
 137		/* tseg brp biterror */
 138		if (error < 0)
 139			error = -error;
 140		if (error > best_error)
 141			continue;
 142		best_error = error;
 143		if (error == 0) {
 144			spt = can_update_spt(btc, sampl_pt, tseg / 2,
 145					     &tseg1, &tseg2);
 146			error = sampl_pt - spt;
 147			if (error < 0)
 148				error = -error;
 149			if (error > spt_error)
 150				continue;
 151			spt_error = error;
 152		}
 
 153		best_tseg = tseg / 2;
 154		best_brp = brp;
 155		if (error == 0)
 
 156			break;
 157	}
 158
 159	if (best_error) {
 160		/* Error in one-tenth of a percent */
 161		error = (best_error * 1000) / bt->bitrate;
 162		if (error > CAN_CALC_MAX_ERROR) {
 
 
 163			netdev_err(dev,
 164				   "bitrate error %ld.%ld%% too high\n",
 165				   error / 10, error % 10);
 166			return -EDOM;
 167		} else {
 168			netdev_warn(dev, "bitrate error %ld.%ld%%\n",
 169				    error / 10, error % 10);
 170		}
 
 
 171	}
 172
 173	/* real sample point */
 174	bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
 175					  &tseg1, &tseg2);
 
 176
 177	v64 = (u64)best_brp * 1000000000UL;
 178	do_div(v64, priv->clock.freq);
 179	bt->tq = (u32)v64;
 180	bt->prop_seg = tseg1 / 2;
 181	bt->phase_seg1 = tseg1 - bt->prop_seg;
 182	bt->phase_seg2 = tseg2;
 183
 184	/* check for sjw user settings */
 185	if (!bt->sjw || !btc->sjw_max)
 186		bt->sjw = 1;
 187	else {
 188		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
 189		if (bt->sjw > btc->sjw_max)
 190			bt->sjw = btc->sjw_max;
 191		/* bt->sjw must not be higher than tseg2 */
 192		if (tseg2 < bt->sjw)
 193			bt->sjw = tseg2;
 194	}
 195
 196	bt->brp = best_brp;
 197	/* real bit-rate */
 198	bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
 
 
 199
 200	return 0;
 201}
 202#else /* !CONFIG_CAN_CALC_BITTIMING */
 203static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
 204			      const struct can_bittiming_const *btc)
 205{
 206	netdev_err(dev, "bit-timing calculation not available\n");
 207	return -EINVAL;
 208}
 209#endif /* CONFIG_CAN_CALC_BITTIMING */
 210
 211/*
 212 * Checks the validity of the specified bit-timing parameters prop_seg,
 213 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
 214 * prescaler value brp. You can find more information in the header
 215 * file linux/can/netlink.h.
 216 */
 217static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
 218			       const struct can_bittiming_const *btc)
 219{
 220	struct can_priv *priv = netdev_priv(dev);
 221	int tseg1, alltseg;
 222	u64 brp64;
 223
 224	tseg1 = bt->prop_seg + bt->phase_seg1;
 225	if (!bt->sjw)
 226		bt->sjw = 1;
 227	if (bt->sjw > btc->sjw_max ||
 228	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
 229	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
 230		return -ERANGE;
 231
 232	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
 233	if (btc->brp_inc > 1)
 234		do_div(brp64, btc->brp_inc);
 235	brp64 += 500000000UL - 1;
 236	do_div(brp64, 1000000000UL); /* the practicable BRP */
 237	if (btc->brp_inc > 1)
 238		brp64 *= btc->brp_inc;
 239	bt->brp = (u32)brp64;
 240
 241	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
 242		return -EINVAL;
 243
 244	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
 245	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
 246	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
 247
 248	return 0;
 249}
 250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 251static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
 252			     const struct can_bittiming_const *btc)
 
 
 253{
 254	int err;
 255
 256	/* Check if the CAN device has bit-timing parameters */
 257	if (!btc)
 258		return -EOPNOTSUPP;
 259
 260	/*
 261	 * Depending on the given can_bittiming parameter structure the CAN
 262	 * timing parameters are calculated based on the provided bitrate OR
 263	 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
 264	 * provided directly which are then checked and fixed up.
 265	 */
 266	if (!bt->tq && bt->bitrate)
 267		err = can_calc_bittiming(dev, bt, btc);
 268	else if (bt->tq && !bt->bitrate)
 269		err = can_fixup_bittiming(dev, bt, btc);
 
 
 
 270	else
 271		err = -EINVAL;
 272
 273	return err;
 274}
 275
 276static void can_update_state_error_stats(struct net_device *dev,
 277					 enum can_state new_state)
 278{
 279	struct can_priv *priv = netdev_priv(dev);
 280
 281	if (new_state <= priv->state)
 282		return;
 283
 284	switch (new_state) {
 285	case CAN_STATE_ERROR_WARNING:
 286		priv->can_stats.error_warning++;
 287		break;
 288	case CAN_STATE_ERROR_PASSIVE:
 289		priv->can_stats.error_passive++;
 290		break;
 291	case CAN_STATE_BUS_OFF:
 292		priv->can_stats.bus_off++;
 293		break;
 294	default:
 295		break;
 296	}
 297}
 298
 299static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
 300{
 301	switch (state) {
 302	case CAN_STATE_ERROR_ACTIVE:
 303		return CAN_ERR_CRTL_ACTIVE;
 304	case CAN_STATE_ERROR_WARNING:
 305		return CAN_ERR_CRTL_TX_WARNING;
 306	case CAN_STATE_ERROR_PASSIVE:
 307		return CAN_ERR_CRTL_TX_PASSIVE;
 308	default:
 309		return 0;
 310	}
 311}
 312
 313static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
 314{
 315	switch (state) {
 316	case CAN_STATE_ERROR_ACTIVE:
 317		return CAN_ERR_CRTL_ACTIVE;
 318	case CAN_STATE_ERROR_WARNING:
 319		return CAN_ERR_CRTL_RX_WARNING;
 320	case CAN_STATE_ERROR_PASSIVE:
 321		return CAN_ERR_CRTL_RX_PASSIVE;
 322	default:
 323		return 0;
 324	}
 325}
 326
 327void can_change_state(struct net_device *dev, struct can_frame *cf,
 328		      enum can_state tx_state, enum can_state rx_state)
 329{
 330	struct can_priv *priv = netdev_priv(dev);
 331	enum can_state new_state = max(tx_state, rx_state);
 332
 333	if (unlikely(new_state == priv->state)) {
 334		netdev_warn(dev, "%s: oops, state did not change", __func__);
 335		return;
 336	}
 337
 338	netdev_dbg(dev, "New error state: %d\n", new_state);
 339
 340	can_update_state_error_stats(dev, new_state);
 341	priv->state = new_state;
 342
 
 
 
 343	if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
 344		cf->can_id |= CAN_ERR_BUSOFF;
 345		return;
 346	}
 347
 348	cf->can_id |= CAN_ERR_CRTL;
 349	cf->data[1] |= tx_state >= rx_state ?
 350		       can_tx_state_to_frame(dev, tx_state) : 0;
 351	cf->data[1] |= tx_state <= rx_state ?
 352		       can_rx_state_to_frame(dev, rx_state) : 0;
 353}
 354EXPORT_SYMBOL_GPL(can_change_state);
 355
 356/*
 357 * Local echo of CAN messages
 358 *
 359 * CAN network devices *should* support a local echo functionality
 360 * (see Documentation/networking/can.txt). To test the handling of CAN
 361 * interfaces that do not support the local echo both driver types are
 362 * implemented. In the case that the driver does not support the echo
 363 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
 364 * to perform the echo as a fallback solution.
 365 */
 366static void can_flush_echo_skb(struct net_device *dev)
 367{
 368	struct can_priv *priv = netdev_priv(dev);
 369	struct net_device_stats *stats = &dev->stats;
 370	int i;
 371
 372	for (i = 0; i < priv->echo_skb_max; i++) {
 373		if (priv->echo_skb[i]) {
 374			kfree_skb(priv->echo_skb[i]);
 375			priv->echo_skb[i] = NULL;
 376			stats->tx_dropped++;
 377			stats->tx_aborted_errors++;
 378		}
 379	}
 380}
 381
 382/*
 383 * Put the skb on the stack to be looped backed locally lateron
 384 *
 385 * The function is typically called in the start_xmit function
 386 * of the device driver. The driver must protect access to
 387 * priv->echo_skb, if necessary.
 388 */
 389void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
 390		      unsigned int idx)
 391{
 392	struct can_priv *priv = netdev_priv(dev);
 393
 394	BUG_ON(idx >= priv->echo_skb_max);
 395
 396	/* check flag whether this packet has to be looped back */
 397	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
 398	    (skb->protocol != htons(ETH_P_CAN) &&
 399	     skb->protocol != htons(ETH_P_CANFD))) {
 400		kfree_skb(skb);
 401		return;
 402	}
 403
 404	if (!priv->echo_skb[idx]) {
 405
 406		skb = can_create_echo_skb(skb);
 407		if (!skb)
 408			return;
 409
 410		/* make settings for echo to reduce code in irq context */
 411		skb->pkt_type = PACKET_BROADCAST;
 412		skb->ip_summed = CHECKSUM_UNNECESSARY;
 413		skb->dev = dev;
 414
 415		/* save this skb for tx interrupt echo handling */
 416		priv->echo_skb[idx] = skb;
 417	} else {
 418		/* locking problem with netif_stop_queue() ?? */
 419		netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
 420		kfree_skb(skb);
 421	}
 422}
 423EXPORT_SYMBOL_GPL(can_put_echo_skb);
 424
 425/*
 426 * Get the skb from the stack and loop it back locally
 427 *
 428 * The function is typically called when the TX done interrupt
 429 * is handled in the device driver. The driver must protect
 430 * access to priv->echo_skb, if necessary.
 431 */
 432unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
 433{
 434	struct can_priv *priv = netdev_priv(dev);
 435
 436	BUG_ON(idx >= priv->echo_skb_max);
 
 
 
 
 437
 438	if (priv->echo_skb[idx]) {
 
 
 
 439		struct sk_buff *skb = priv->echo_skb[idx];
 440		struct can_frame *cf = (struct can_frame *)skb->data;
 441		u8 dlc = cf->can_dlc;
 442
 443		netif_rx(priv->echo_skb[idx]);
 444		priv->echo_skb[idx] = NULL;
 445
 446		return dlc;
 447	}
 448
 449	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450}
 451EXPORT_SYMBOL_GPL(can_get_echo_skb);
 452
 453/*
 454  * Remove the skb from the stack and free it.
 455  *
 456  * The function is typically called when TX failed.
 457  */
 458void can_free_echo_skb(struct net_device *dev, unsigned int idx)
 459{
 460	struct can_priv *priv = netdev_priv(dev);
 461
 462	BUG_ON(idx >= priv->echo_skb_max);
 463
 464	if (priv->echo_skb[idx]) {
 465		dev_kfree_skb_any(priv->echo_skb[idx]);
 466		priv->echo_skb[idx] = NULL;
 467	}
 468}
 469EXPORT_SYMBOL_GPL(can_free_echo_skb);
 470
 471/*
 472 * CAN device restart for bus-off recovery
 473 */
 474static void can_restart(unsigned long data)
 475{
 476	struct net_device *dev = (struct net_device *)data;
 477	struct can_priv *priv = netdev_priv(dev);
 478	struct net_device_stats *stats = &dev->stats;
 479	struct sk_buff *skb;
 480	struct can_frame *cf;
 481	int err;
 482
 483	BUG_ON(netif_carrier_ok(dev));
 484
 485	/*
 486	 * No synchronization needed because the device is bus-off and
 487	 * no messages can come in or go out.
 488	 */
 489	can_flush_echo_skb(dev);
 490
 491	/* send restart message upstream */
 492	skb = alloc_can_err_skb(dev, &cf);
 493	if (skb == NULL) {
 494		err = -ENOMEM;
 495		goto restart;
 496	}
 497	cf->can_id |= CAN_ERR_RESTARTED;
 498
 499	netif_rx(skb);
 500
 501	stats->rx_packets++;
 502	stats->rx_bytes += cf->can_dlc;
 503
 504restart:
 505	netdev_dbg(dev, "restarted\n");
 506	priv->can_stats.restarts++;
 507
 508	/* Now restart the device */
 509	err = priv->do_set_mode(dev, CAN_MODE_START);
 510
 511	netif_carrier_on(dev);
 512	if (err)
 513		netdev_err(dev, "Error %d during restart", err);
 514}
 515
 
 
 
 
 
 
 
 
 
 516int can_restart_now(struct net_device *dev)
 517{
 518	struct can_priv *priv = netdev_priv(dev);
 519
 520	/*
 521	 * A manual restart is only permitted if automatic restart is
 522	 * disabled and the device is in the bus-off state
 523	 */
 524	if (priv->restart_ms)
 525		return -EINVAL;
 526	if (priv->state != CAN_STATE_BUS_OFF)
 527		return -EBUSY;
 528
 529	/* Runs as soon as possible in the timer context */
 530	mod_timer(&priv->restart_timer, jiffies);
 531
 532	return 0;
 533}
 534
 535/*
 536 * CAN bus-off
 537 *
 538 * This functions should be called when the device goes bus-off to
 539 * tell the netif layer that no more packets can be sent or received.
 540 * If enabled, a timer is started to trigger bus-off recovery.
 541 */
 542void can_bus_off(struct net_device *dev)
 543{
 544	struct can_priv *priv = netdev_priv(dev);
 545
 546	netdev_dbg(dev, "bus-off\n");
 547
 548	netif_carrier_off(dev);
 549
 550	if (priv->restart_ms)
 551		mod_timer(&priv->restart_timer,
 552			  jiffies + (priv->restart_ms * HZ) / 1000);
 553}
 554EXPORT_SYMBOL_GPL(can_bus_off);
 555
 556static void can_setup(struct net_device *dev)
 557{
 558	dev->type = ARPHRD_CAN;
 559	dev->mtu = CAN_MTU;
 560	dev->hard_header_len = 0;
 561	dev->addr_len = 0;
 562	dev->tx_queue_len = 10;
 563
 564	/* New-style flags. */
 565	dev->flags = IFF_NOARP;
 566	dev->features = NETIF_F_HW_CSUM;
 567}
 568
 569struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
 570{
 571	struct sk_buff *skb;
 572
 573	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
 574			       sizeof(struct can_frame));
 575	if (unlikely(!skb))
 576		return NULL;
 577
 578	skb->protocol = htons(ETH_P_CAN);
 579	skb->pkt_type = PACKET_BROADCAST;
 580	skb->ip_summed = CHECKSUM_UNNECESSARY;
 581
 582	skb_reset_mac_header(skb);
 583	skb_reset_network_header(skb);
 584	skb_reset_transport_header(skb);
 585
 586	can_skb_reserve(skb);
 587	can_skb_prv(skb)->ifindex = dev->ifindex;
 588	can_skb_prv(skb)->skbcnt = 0;
 589
 590	*cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
 591	memset(*cf, 0, sizeof(struct can_frame));
 592
 593	return skb;
 594}
 595EXPORT_SYMBOL_GPL(alloc_can_skb);
 596
 597struct sk_buff *alloc_canfd_skb(struct net_device *dev,
 598				struct canfd_frame **cfd)
 599{
 600	struct sk_buff *skb;
 601
 602	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
 603			       sizeof(struct canfd_frame));
 604	if (unlikely(!skb))
 605		return NULL;
 606
 607	skb->protocol = htons(ETH_P_CANFD);
 608	skb->pkt_type = PACKET_BROADCAST;
 609	skb->ip_summed = CHECKSUM_UNNECESSARY;
 610
 611	skb_reset_mac_header(skb);
 612	skb_reset_network_header(skb);
 613	skb_reset_transport_header(skb);
 614
 615	can_skb_reserve(skb);
 616	can_skb_prv(skb)->ifindex = dev->ifindex;
 617	can_skb_prv(skb)->skbcnt = 0;
 618
 619	*cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame));
 620	memset(*cfd, 0, sizeof(struct canfd_frame));
 621
 622	return skb;
 623}
 624EXPORT_SYMBOL_GPL(alloc_canfd_skb);
 625
 626struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
 627{
 628	struct sk_buff *skb;
 629
 630	skb = alloc_can_skb(dev, cf);
 631	if (unlikely(!skb))
 632		return NULL;
 633
 634	(*cf)->can_id = CAN_ERR_FLAG;
 635	(*cf)->can_dlc = CAN_ERR_DLC;
 636
 637	return skb;
 638}
 639EXPORT_SYMBOL_GPL(alloc_can_err_skb);
 640
 641/*
 642 * Allocate and setup space for the CAN network device
 643 */
 644struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
 645{
 646	struct net_device *dev;
 647	struct can_priv *priv;
 648	int size;
 649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 650	if (echo_skb_max)
 651		size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
 652			echo_skb_max * sizeof(struct sk_buff *);
 653	else
 654		size = sizeof_priv;
 655
 656	dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup);
 
 657	if (!dev)
 658		return NULL;
 659
 660	priv = netdev_priv(dev);
 
 
 
 661
 662	if (echo_skb_max) {
 663		priv->echo_skb_max = echo_skb_max;
 664		priv->echo_skb = (void *)priv +
 665			ALIGN(sizeof_priv, sizeof(struct sk_buff *));
 666	}
 667
 668	priv->state = CAN_STATE_STOPPED;
 669
 670	init_timer(&priv->restart_timer);
 671
 672	return dev;
 673}
 674EXPORT_SYMBOL_GPL(alloc_candev);
 675
 676/*
 677 * Free space of the CAN network device
 678 */
 679void free_candev(struct net_device *dev)
 680{
 681	free_netdev(dev);
 682}
 683EXPORT_SYMBOL_GPL(free_candev);
 684
 685/*
 686 * changing MTU and control mode for CAN/CANFD devices
 687 */
 688int can_change_mtu(struct net_device *dev, int new_mtu)
 689{
 690	struct can_priv *priv = netdev_priv(dev);
 691
 692	/* Do not allow changing the MTU while running */
 693	if (dev->flags & IFF_UP)
 694		return -EBUSY;
 695
 696	/* allow change of MTU according to the CANFD ability of the device */
 697	switch (new_mtu) {
 698	case CAN_MTU:
 
 
 
 
 699		priv->ctrlmode &= ~CAN_CTRLMODE_FD;
 700		break;
 701
 702	case CANFD_MTU:
 703		if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD))
 
 
 704			return -EINVAL;
 705
 706		priv->ctrlmode |= CAN_CTRLMODE_FD;
 707		break;
 708
 709	default:
 710		return -EINVAL;
 711	}
 712
 713	dev->mtu = new_mtu;
 714	return 0;
 715}
 716EXPORT_SYMBOL_GPL(can_change_mtu);
 717
 718/*
 719 * Common open function when the device gets opened.
 720 *
 721 * This function should be called in the open function of the device
 722 * driver.
 723 */
 724int open_candev(struct net_device *dev)
 725{
 726	struct can_priv *priv = netdev_priv(dev);
 727
 728	if (!priv->bittiming.bitrate) {
 729		netdev_err(dev, "bit-timing not yet defined\n");
 730		return -EINVAL;
 731	}
 732
 733	/* For CAN FD the data bitrate has to be >= the arbitration bitrate */
 734	if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
 735	    (!priv->data_bittiming.bitrate ||
 736	     (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
 737		netdev_err(dev, "incorrect/missing data bit-timing\n");
 738		return -EINVAL;
 739	}
 740
 741	/* Switch carrier on if device was stopped while in bus-off state */
 742	if (!netif_carrier_ok(dev))
 743		netif_carrier_on(dev);
 744
 745	setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
 746
 747	return 0;
 748}
 749EXPORT_SYMBOL_GPL(open_candev);
 750
 751/*
 752 * Common close function for cleanup before the device gets closed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 753 *
 754 * This function should be called in the close function of the device
 755 * driver.
 756 */
 757void close_candev(struct net_device *dev)
 758{
 759	struct can_priv *priv = netdev_priv(dev);
 760
 761	del_timer_sync(&priv->restart_timer);
 762	can_flush_echo_skb(dev);
 763}
 764EXPORT_SYMBOL_GPL(close_candev);
 765
 766/*
 767 * CAN netlink interface
 768 */
 769static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
 770	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
 771	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
 772	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
 773	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
 774	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
 775	[IFLA_CAN_BITTIMING_CONST]
 776				= { .len = sizeof(struct can_bittiming_const) },
 777	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
 778	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
 779	[IFLA_CAN_DATA_BITTIMING]
 780				= { .len = sizeof(struct can_bittiming) },
 781	[IFLA_CAN_DATA_BITTIMING_CONST]
 782				= { .len = sizeof(struct can_bittiming_const) },
 
 783};
 784
 785static int can_changelink(struct net_device *dev,
 786			  struct nlattr *tb[], struct nlattr *data[])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 787{
 788	struct can_priv *priv = netdev_priv(dev);
 789	int err;
 790
 791	/* We need synchronization with dev->stop() */
 792	ASSERT_RTNL();
 793
 794	if (data[IFLA_CAN_BITTIMING]) {
 795		struct can_bittiming bt;
 796
 797		/* Do not allow changing bittiming while running */
 798		if (dev->flags & IFF_UP)
 799			return -EBUSY;
 
 
 
 
 
 
 
 
 
 800		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
 801		err = can_get_bittiming(dev, &bt, priv->bittiming_const);
 
 
 
 802		if (err)
 803			return err;
 
 
 
 
 
 
 
 804		memcpy(&priv->bittiming, &bt, sizeof(bt));
 805
 806		if (priv->do_set_bittiming) {
 807			/* Finally, set the bit-timing registers */
 808			err = priv->do_set_bittiming(dev);
 809			if (err)
 810				return err;
 811		}
 812	}
 813
 814	if (data[IFLA_CAN_CTRLMODE]) {
 815		struct can_ctrlmode *cm;
 
 
 816
 817		/* Do not allow changing controller mode while running */
 818		if (dev->flags & IFF_UP)
 819			return -EBUSY;
 820		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
 
 
 821
 822		/* check whether changed bits are allowed to be modified */
 823		if (cm->mask & ~priv->ctrlmode_supported)
 
 
 
 
 
 
 
 
 824			return -EOPNOTSUPP;
 825
 826		/* clear bits to be modified and copy the flag values */
 827		priv->ctrlmode &= ~cm->mask;
 828		priv->ctrlmode |= (cm->flags & cm->mask);
 829
 830		/* CAN_CTRLMODE_FD can only be set when driver supports FD */
 831		if (priv->ctrlmode & CAN_CTRLMODE_FD)
 832			dev->mtu = CANFD_MTU;
 833		else
 834			dev->mtu = CAN_MTU;
 835	}
 836
 837	if (data[IFLA_CAN_RESTART_MS]) {
 838		/* Do not allow changing restart delay while running */
 839		if (dev->flags & IFF_UP)
 840			return -EBUSY;
 841		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
 842	}
 843
 844	if (data[IFLA_CAN_RESTART]) {
 845		/* Do not allow a restart while not running */
 846		if (!(dev->flags & IFF_UP))
 847			return -EINVAL;
 848		err = can_restart_now(dev);
 849		if (err)
 850			return err;
 851	}
 852
 853	if (data[IFLA_CAN_DATA_BITTIMING]) {
 854		struct can_bittiming dbt;
 855
 856		/* Do not allow changing bittiming while running */
 857		if (dev->flags & IFF_UP)
 858			return -EBUSY;
 
 
 
 
 
 
 
 
 
 859		memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
 860		       sizeof(dbt));
 861		err = can_get_bittiming(dev, &dbt, priv->data_bittiming_const);
 
 
 
 862		if (err)
 863			return err;
 
 
 
 
 
 
 
 864		memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
 865
 866		if (priv->do_set_data_bittiming) {
 867			/* Finally, set the bit-timing registers */
 868			err = priv->do_set_data_bittiming(dev);
 869			if (err)
 870				return err;
 871		}
 872	}
 873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 874	return 0;
 875}
 876
 877static size_t can_get_size(const struct net_device *dev)
 878{
 879	struct can_priv *priv = netdev_priv(dev);
 880	size_t size = 0;
 881
 882	if (priv->bittiming.bitrate)				/* IFLA_CAN_BITTIMING */
 883		size += nla_total_size(sizeof(struct can_bittiming));
 884	if (priv->bittiming_const)				/* IFLA_CAN_BITTIMING_CONST */
 885		size += nla_total_size(sizeof(struct can_bittiming_const));
 886	size += nla_total_size(sizeof(struct can_clock));	/* IFLA_CAN_CLOCK */
 887	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_STATE */
 888	size += nla_total_size(sizeof(struct can_ctrlmode));	/* IFLA_CAN_CTRLMODE */
 889	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_RESTART_MS */
 890	if (priv->do_get_berr_counter)				/* IFLA_CAN_BERR_COUNTER */
 891		size += nla_total_size(sizeof(struct can_berr_counter));
 892	if (priv->data_bittiming.bitrate)			/* IFLA_CAN_DATA_BITTIMING */
 893		size += nla_total_size(sizeof(struct can_bittiming));
 894	if (priv->data_bittiming_const)				/* IFLA_CAN_DATA_BITTIMING_CONST */
 895		size += nla_total_size(sizeof(struct can_bittiming_const));
 
 
 
 
 
 
 
 
 
 
 
 
 896
 897	return size;
 898}
 899
 900static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
 901{
 902	struct can_priv *priv = netdev_priv(dev);
 903	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
 904	struct can_berr_counter bec;
 905	enum can_state state = priv->state;
 906
 907	if (priv->do_get_state)
 908		priv->do_get_state(dev, &state);
 909
 910	if ((priv->bittiming.bitrate &&
 911	     nla_put(skb, IFLA_CAN_BITTIMING,
 912		     sizeof(priv->bittiming), &priv->bittiming)) ||
 913
 914	    (priv->bittiming_const &&
 915	     nla_put(skb, IFLA_CAN_BITTIMING_CONST,
 916		     sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
 917
 918	    nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
 919	    nla_put_u32(skb, IFLA_CAN_STATE, state) ||
 920	    nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
 921	    nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
 922
 923	    (priv->do_get_berr_counter &&
 924	     !priv->do_get_berr_counter(dev, &bec) &&
 925	     nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
 926
 927	    (priv->data_bittiming.bitrate &&
 928	     nla_put(skb, IFLA_CAN_DATA_BITTIMING,
 929		     sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
 930
 931	    (priv->data_bittiming_const &&
 932	     nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
 933		     sizeof(*priv->data_bittiming_const),
 934		     priv->data_bittiming_const)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 935		return -EMSGSIZE;
 936
 937	return 0;
 938}
 939
 940static size_t can_get_xstats_size(const struct net_device *dev)
 941{
 942	return sizeof(struct can_device_stats);
 943}
 944
 945static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
 946{
 947	struct can_priv *priv = netdev_priv(dev);
 948
 949	if (nla_put(skb, IFLA_INFO_XSTATS,
 950		    sizeof(priv->can_stats), &priv->can_stats))
 951		goto nla_put_failure;
 952	return 0;
 953
 954nla_put_failure:
 955	return -EMSGSIZE;
 956}
 957
 958static int can_newlink(struct net *src_net, struct net_device *dev,
 959		       struct nlattr *tb[], struct nlattr *data[])
 
 960{
 961	return -EOPNOTSUPP;
 962}
 963
 
 
 
 
 964static struct rtnl_link_ops can_link_ops __read_mostly = {
 965	.kind		= "can",
 966	.maxtype	= IFLA_CAN_MAX,
 967	.policy		= can_policy,
 968	.setup		= can_setup,
 
 969	.newlink	= can_newlink,
 970	.changelink	= can_changelink,
 
 971	.get_size	= can_get_size,
 972	.fill_info	= can_fill_info,
 973	.get_xstats_size = can_get_xstats_size,
 974	.fill_xstats	= can_fill_xstats,
 975};
 976
 977/*
 978 * Register the CAN network device
 979 */
 980int register_candev(struct net_device *dev)
 981{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982	dev->rtnl_link_ops = &can_link_ops;
 
 
 983	return register_netdev(dev);
 984}
 985EXPORT_SYMBOL_GPL(register_candev);
 986
 987/*
 988 * Unregister the CAN network device
 989 */
 990void unregister_candev(struct net_device *dev)
 991{
 992	unregister_netdev(dev);
 993}
 994EXPORT_SYMBOL_GPL(unregister_candev);
 995
 996/*
 997 * Test if a network device is a candev based device
 998 * and return the can_priv* if so.
 999 */
1000struct can_priv *safe_candev_priv(struct net_device *dev)
1001{
1002	if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
1003		return NULL;
1004
1005	return netdev_priv(dev);
1006}
1007EXPORT_SYMBOL_GPL(safe_candev_priv);
1008
1009static __init int can_dev_init(void)
1010{
1011	int err;
1012
1013	can_led_notifier_init();
1014
1015	err = rtnl_link_register(&can_link_ops);
1016	if (!err)
1017		printk(KERN_INFO MOD_DESC "\n");
1018
1019	return err;
1020}
1021module_init(can_dev_init);
1022
1023static __exit void can_dev_exit(void)
1024{
1025	rtnl_link_unregister(&can_link_ops);
1026
1027	can_led_notifier_exit();
1028}
1029module_exit(can_dev_exit);
1030
1031MODULE_ALIAS_RTNL_LINK("can");