Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * NFTL mount code with extensive checks
  4 *
  5 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
  6 * Copyright © 2000 Netgem S.A.
  7 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  8 */
  9
 10#include <linux/kernel.h>
 11#include <asm/errno.h>
 12#include <linux/delay.h>
 13#include <linux/slab.h>
 14#include <linux/mtd/mtd.h>
 15#include <linux/mtd/rawnand.h>
 16#include <linux/mtd/nftl.h>
 17
 18#define SECTORSIZE 512
 19
 20/* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the
 21 *	various device information of the NFTL partition and Bad Unit Table. Update
 22 *	the ReplUnitTable[] table according to the Bad Unit Table. ReplUnitTable[]
 23 *	is used for management of Erase Unit in other routines in nftl.c and nftlmount.c
 24 */
 25static int find_boot_record(struct NFTLrecord *nftl)
 26{
 27	struct nftl_uci1 h1;
 28	unsigned int block, boot_record_count = 0;
 29	size_t retlen;
 30	u8 buf[SECTORSIZE];
 31	struct NFTLMediaHeader *mh = &nftl->MediaHdr;
 32	struct mtd_info *mtd = nftl->mbd.mtd;
 33	unsigned int i;
 34
 35        /* Assume logical EraseSize == physical erasesize for starting the scan.
 36	   We'll sort it out later if we find a MediaHeader which says otherwise */
 37	/* Actually, we won't.  The new DiskOnChip driver has already scanned
 38	   the MediaHeader and adjusted the virtual erasesize it presents in
 39	   the mtd device accordingly.  We could even get rid of
 40	   nftl->EraseSize if there were any point in doing so. */
 41	nftl->EraseSize = nftl->mbd.mtd->erasesize;
 42        nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize;
 43
 44	nftl->MediaUnit = BLOCK_NIL;
 45	nftl->SpareMediaUnit = BLOCK_NIL;
 46
 47	/* search for a valid boot record */
 48	for (block = 0; block < nftl->nb_blocks; block++) {
 49		int ret;
 50
 51		/* Check for ANAND header first. Then can whinge if it's found but later
 52		   checks fail */
 53		ret = mtd_read(mtd, block * nftl->EraseSize, SECTORSIZE,
 54			       &retlen, buf);
 55		/* We ignore ret in case the ECC of the MediaHeader is invalid
 56		   (which is apparently acceptable) */
 57		if (retlen != SECTORSIZE) {
 58			static int warncount = 5;
 59
 60			if (warncount) {
 61				printk(KERN_WARNING "Block read at 0x%x of mtd%d failed: %d\n",
 62				       block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
 63				if (!--warncount)
 64					printk(KERN_WARNING "Further failures for this block will not be printed\n");
 65			}
 66			continue;
 67		}
 68
 69		if (retlen < 6 || memcmp(buf, "ANAND", 6)) {
 70			/* ANAND\0 not found. Continue */
 71#if 0
 72			printk(KERN_DEBUG "ANAND header not found at 0x%x in mtd%d\n",
 73			       block * nftl->EraseSize, nftl->mbd.mtd->index);
 74#endif
 75			continue;
 76		}
 77
 78		/* To be safer with BIOS, also use erase mark as discriminant */
 79		ret = nftl_read_oob(mtd, block * nftl->EraseSize +
 80					 SECTORSIZE + 8, 8, &retlen,
 81					 (char *)&h1);
 82		if (ret < 0) {
 83			printk(KERN_WARNING "ANAND header found at 0x%x in mtd%d, but OOB data read failed (err %d)\n",
 84			       block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
 85			continue;
 86		}
 87
 88#if 0 /* Some people seem to have devices without ECC or erase marks
 89	 on the Media Header blocks. There are enough other sanity
 90	 checks in here that we can probably do without it.
 91      */
 92		if (le16_to_cpu(h1.EraseMark | h1.EraseMark1) != ERASE_MARK) {
 93			printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but erase mark not present (0x%04x,0x%04x instead)\n",
 94			       block * nftl->EraseSize, nftl->mbd.mtd->index,
 95			       le16_to_cpu(h1.EraseMark), le16_to_cpu(h1.EraseMark1));
 96			continue;
 97		}
 98
 99		/* Finally reread to check ECC */
100		ret = mtd->read(mtd, block * nftl->EraseSize, SECTORSIZE,
101				&retlen, buf);
102		if (ret < 0) {
103			printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but ECC read failed (err %d)\n",
104			       block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
105			continue;
106		}
107
108		/* Paranoia. Check the ANAND header is still there after the ECC read */
109		if (memcmp(buf, "ANAND", 6)) {
110			printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but went away on reread!\n",
111			       block * nftl->EraseSize, nftl->mbd.mtd->index);
112			printk(KERN_NOTICE "New data are: %6ph\n", buf);
 
113			continue;
114		}
115#endif
116		/* OK, we like it. */
117
118		if (boot_record_count) {
119			/* We've already processed one. So we just check if
120			   this one is the same as the first one we found */
121			if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) {
122				printk(KERN_NOTICE "NFTL Media Headers at 0x%x and 0x%x disagree.\n",
123				       nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize);
124				/* if (debug) Print both side by side */
125				if (boot_record_count < 2) {
126					/* We haven't yet seen two real ones */
127					return -1;
128				}
129				continue;
130			}
131			if (boot_record_count == 1)
132				nftl->SpareMediaUnit = block;
133
134			/* Mark this boot record (NFTL MediaHeader) block as reserved */
135			nftl->ReplUnitTable[block] = BLOCK_RESERVED;
136
137
138			boot_record_count++;
139			continue;
140		}
141
142		/* This is the first we've seen. Copy the media header structure into place */
143		memcpy(mh, buf, sizeof(struct NFTLMediaHeader));
144
145		/* Do some sanity checks on it */
146#if 0
147The new DiskOnChip driver scans the MediaHeader itself, and presents a virtual
148erasesize based on UnitSizeFactor.  So the erasesize we read from the mtd
149device is already correct.
150		if (mh->UnitSizeFactor == 0) {
151			printk(KERN_NOTICE "NFTL: UnitSizeFactor 0x00 detected. This violates the spec but we think we know what it means...\n");
152		} else if (mh->UnitSizeFactor < 0xfc) {
153			printk(KERN_NOTICE "Sorry, we don't support UnitSizeFactor 0x%02x\n",
154			       mh->UnitSizeFactor);
155			return -1;
156		} else if (mh->UnitSizeFactor != 0xff) {
157			printk(KERN_NOTICE "WARNING: Support for NFTL with UnitSizeFactor 0x%02x is experimental\n",
158			       mh->UnitSizeFactor);
159			nftl->EraseSize = nftl->mbd.mtd->erasesize << (0xff - mh->UnitSizeFactor);
160			nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize;
161		}
162#endif
163		nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN);
164		if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) {
165			printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n");
166			printk(KERN_NOTICE "nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n",
167			       nftl->nb_boot_blocks, nftl->nb_blocks);
168			return -1;
169		}
170
171		nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize;
172		if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) {
173			printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n");
174			printk(KERN_NOTICE "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n",
175			       nftl->numvunits, nftl->nb_blocks, nftl->nb_boot_blocks);
176			return -1;
177		}
178
179		nftl->mbd.size  = nftl->numvunits * (nftl->EraseSize / SECTORSIZE);
180
181		/* If we're not using the last sectors in the device for some reason,
182		   reduce nb_blocks accordingly so we forget they're there */
183		nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN);
184
185		/* XXX: will be suppressed */
186		nftl->lastEUN = nftl->nb_blocks - 1;
187
188		/* memory alloc */
189		nftl->EUNtable = kmalloc_array(nftl->nb_blocks, sizeof(u16),
190					       GFP_KERNEL);
191		if (!nftl->EUNtable) {
192			printk(KERN_NOTICE "NFTL: allocation of EUNtable failed\n");
193			return -ENOMEM;
194		}
195
196		nftl->ReplUnitTable = kmalloc_array(nftl->nb_blocks,
197						    sizeof(u16),
198						    GFP_KERNEL);
199		if (!nftl->ReplUnitTable) {
200			kfree(nftl->EUNtable);
201			printk(KERN_NOTICE "NFTL: allocation of ReplUnitTable failed\n");
202			return -ENOMEM;
203		}
204
205		/* mark the bios blocks (blocks before NFTL MediaHeader) as reserved */
206		for (i = 0; i < nftl->nb_boot_blocks; i++)
207			nftl->ReplUnitTable[i] = BLOCK_RESERVED;
208		/* mark all remaining blocks as potentially containing data */
209		for (; i < nftl->nb_blocks; i++) {
210			nftl->ReplUnitTable[i] = BLOCK_NOTEXPLORED;
211		}
212
213		/* Mark this boot record (NFTL MediaHeader) block as reserved */
214		nftl->ReplUnitTable[block] = BLOCK_RESERVED;
215
216		/* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */
217		for (i = 0; i < nftl->nb_blocks; i++) {
218#if 0
219The new DiskOnChip driver already scanned the bad block table.  Just query it.
220			if ((i & (SECTORSIZE - 1)) == 0) {
221				/* read one sector for every SECTORSIZE of blocks */
222				ret = mtd->read(nftl->mbd.mtd,
223						block * nftl->EraseSize + i +
224						SECTORSIZE, SECTORSIZE,
225						&retlen, buf);
226				if (ret < 0) {
227					printk(KERN_NOTICE "Read of bad sector table failed (err %d)\n",
228					       ret);
229					kfree(nftl->ReplUnitTable);
230					kfree(nftl->EUNtable);
231					return -1;
232				}
233			}
234			/* mark the Bad Erase Unit as RESERVED in ReplUnitTable */
235			if (buf[i & (SECTORSIZE - 1)] != 0xff)
236				nftl->ReplUnitTable[i] = BLOCK_RESERVED;
237#endif
238			if (mtd_block_isbad(nftl->mbd.mtd,
239					    i * nftl->EraseSize))
240				nftl->ReplUnitTable[i] = BLOCK_RESERVED;
241		}
242
243		nftl->MediaUnit = block;
244		boot_record_count++;
245
246	} /* foreach (block) */
247
248	return boot_record_count?0:-1;
249}
250
251static int memcmpb(void *a, int c, int n)
252{
253	int i;
254	for (i = 0; i < n; i++) {
255		if (c != ((unsigned char *)a)[i])
256			return 1;
257	}
258	return 0;
259}
260
261/* check_free_sector: check if a free sector is actually FREE, i.e. All 0xff in data and oob area */
262static int check_free_sectors(struct NFTLrecord *nftl, unsigned int address, int len,
263			      int check_oob)
264{
 
265	struct mtd_info *mtd = nftl->mbd.mtd;
266	size_t retlen;
267	int i, ret;
268	u8 *buf;
269
270	buf = kmalloc(SECTORSIZE + mtd->oobsize, GFP_KERNEL);
271	if (!buf)
272		return -1;
273
274	ret = -1;
275	for (i = 0; i < len; i += SECTORSIZE) {
276		if (mtd_read(mtd, address, SECTORSIZE, &retlen, buf))
277			goto out;
278		if (memcmpb(buf, 0xff, SECTORSIZE) != 0)
279			goto out;
280
281		if (check_oob) {
282			if(nftl_read_oob(mtd, address, mtd->oobsize,
283					 &retlen, &buf[SECTORSIZE]) < 0)
284				goto out;
285			if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0)
286				goto out;
287		}
288		address += SECTORSIZE;
289	}
290
291	ret = 0;
292
293out:
294	kfree(buf);
295	return ret;
296}
297
298/* NFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase Unit and
299 *              Update NFTL metadata. Each erase operation is checked with check_free_sectors
300 *
301 * Return: 0 when succeed, -1 on error.
302 *
303 *  ToDo: 1. Is it necessary to check_free_sector after erasing ??
304 */
305int NFTL_formatblock(struct NFTLrecord *nftl, int block)
306{
307	size_t retlen;
308	unsigned int nb_erases, erase_mark;
309	struct nftl_uci1 uci;
310	struct erase_info *instr = &nftl->instr;
311	struct mtd_info *mtd = nftl->mbd.mtd;
312
313	/* Read the Unit Control Information #1 for Wear-Leveling */
314	if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8,
315			  8, &retlen, (char *)&uci) < 0)
316		goto default_uci1;
317
318	erase_mark = le16_to_cpu ((uci.EraseMark | uci.EraseMark1));
319	if (erase_mark != ERASE_MARK) {
320	default_uci1:
321		uci.EraseMark = cpu_to_le16(ERASE_MARK);
322		uci.EraseMark1 = cpu_to_le16(ERASE_MARK);
323		uci.WearInfo = cpu_to_le32(0);
324	}
325
326	memset(instr, 0, sizeof(struct erase_info));
327
328	/* XXX: use async erase interface, XXX: test return code */
 
329	instr->addr = block * nftl->EraseSize;
330	instr->len = nftl->EraseSize;
331	if (mtd_erase(mtd, instr)) {
 
 
332		printk("Error while formatting block %d\n", block);
333		goto fail;
334	}
335
336	/* increase and write Wear-Leveling info */
337	nb_erases = le32_to_cpu(uci.WearInfo);
338	nb_erases++;
339
340	/* wrap (almost impossible with current flash) or free block */
341	if (nb_erases == 0)
342		nb_erases = 1;
343
344	/* check the "freeness" of Erase Unit before updating metadata
345	 * FixMe:  is this check really necessary ? since we have check the
346	 *         return code after the erase operation.
347	 */
348	if (check_free_sectors(nftl, instr->addr, nftl->EraseSize, 1) != 0)
349		goto fail;
350
351	uci.WearInfo = le32_to_cpu(nb_erases);
352	if (nftl_write_oob(mtd, block * nftl->EraseSize + SECTORSIZE +
353			   8, 8, &retlen, (char *)&uci) < 0)
354		goto fail;
355	return 0;
356fail:
357	/* could not format, update the bad block table (caller is responsible
358	   for setting the ReplUnitTable to BLOCK_RESERVED on failure) */
359	mtd_block_markbad(nftl->mbd.mtd, instr->addr);
360	return -1;
361}
362
363/* check_sectors_in_chain: Check that each sector of a Virtual Unit Chain is correct.
364 *	Mark as 'IGNORE' each incorrect sector. This check is only done if the chain
365 *	was being folded when NFTL was interrupted.
366 *
367 *	The check_free_sectors in this function is necessary. There is a possible
368 *	situation that after writing the Data area, the Block Control Information is
369 *	not updated according (due to power failure or something) which leaves the block
370 *	in an inconsistent state. So we have to check if a block is really FREE in this
371 *	case. */
372static void check_sectors_in_chain(struct NFTLrecord *nftl, unsigned int first_block)
373{
374	struct mtd_info *mtd = nftl->mbd.mtd;
375	unsigned int block, i, status;
376	struct nftl_bci bci;
377	int sectors_per_block;
378	size_t retlen;
379
380	sectors_per_block = nftl->EraseSize / SECTORSIZE;
381	block = first_block;
382	for (;;) {
383		for (i = 0; i < sectors_per_block; i++) {
384			if (nftl_read_oob(mtd,
385					  block * nftl->EraseSize + i * SECTORSIZE,
386					  8, &retlen, (char *)&bci) < 0)
387				status = SECTOR_IGNORE;
388			else
389				status = bci.Status | bci.Status1;
390
391			switch(status) {
392			case SECTOR_FREE:
393				/* verify that the sector is really free. If not, mark
394				   as ignore */
395				if (memcmpb(&bci, 0xff, 8) != 0 ||
396				    check_free_sectors(nftl, block * nftl->EraseSize + i * SECTORSIZE,
397						       SECTORSIZE, 0) != 0) {
398					printk("Incorrect free sector %d in block %d: "
399					       "marking it as ignored\n",
400					       i, block);
401
402					/* sector not free actually : mark it as SECTOR_IGNORE  */
403					bci.Status = SECTOR_IGNORE;
404					bci.Status1 = SECTOR_IGNORE;
405					nftl_write_oob(mtd, block *
406						       nftl->EraseSize +
407						       i * SECTORSIZE, 8,
408						       &retlen, (char *)&bci);
409				}
410				break;
411			default:
412				break;
413			}
414		}
415
416		/* proceed to next Erase Unit on the chain */
417		block = nftl->ReplUnitTable[block];
418		if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
419			printk("incorrect ReplUnitTable[] : %d\n", block);
420		if (block == BLOCK_NIL || block >= nftl->nb_blocks)
421			break;
422	}
423}
424
425/* calc_chain_length: Walk through a Virtual Unit Chain and estimate chain length */
426static int calc_chain_length(struct NFTLrecord *nftl, unsigned int first_block)
427{
428	unsigned int length = 0, block = first_block;
429
430	for (;;) {
431		length++;
432		/* avoid infinite loops, although this is guaranteed not to
433		   happen because of the previous checks */
434		if (length >= nftl->nb_blocks) {
435			printk("nftl: length too long %d !\n", length);
436			break;
437		}
438
439		block = nftl->ReplUnitTable[block];
440		if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
441			printk("incorrect ReplUnitTable[] : %d\n", block);
442		if (block == BLOCK_NIL || block >= nftl->nb_blocks)
443			break;
444	}
445	return length;
446}
447
448/* format_chain: Format an invalid Virtual Unit chain. It frees all the Erase Units in a
449 *	Virtual Unit Chain, i.e. all the units are disconnected.
450 *
451 *	It is not strictly correct to begin from the first block of the chain because
452 *	if we stop the code, we may see again a valid chain if there was a first_block
453 *	flag in a block inside it. But is it really a problem ?
454 *
455 * FixMe: Figure out what the last statement means. What if power failure when we are
456 *	in the for (;;) loop formatting blocks ??
457 */
458static void format_chain(struct NFTLrecord *nftl, unsigned int first_block)
459{
460	unsigned int block = first_block, block1;
461
462	printk("Formatting chain at block %d\n", first_block);
463
464	for (;;) {
465		block1 = nftl->ReplUnitTable[block];
466
467		printk("Formatting block %d\n", block);
468		if (NFTL_formatblock(nftl, block) < 0) {
469			/* cannot format !!!! Mark it as Bad Unit */
470			nftl->ReplUnitTable[block] = BLOCK_RESERVED;
471		} else {
472			nftl->ReplUnitTable[block] = BLOCK_FREE;
473		}
474
475		/* goto next block on the chain */
476		block = block1;
477
478		if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
479			printk("incorrect ReplUnitTable[] : %d\n", block);
480		if (block == BLOCK_NIL || block >= nftl->nb_blocks)
481			break;
482	}
483}
484
485/* check_and_mark_free_block: Verify that a block is free in the NFTL sense (valid erase mark) or
486 *	totally free (only 0xff).
487 *
488 * Definition: Free Erase Unit -- A properly erased/formatted Free Erase Unit should have meet the
489 *	following criteria:
490 *	1. */
491static int check_and_mark_free_block(struct NFTLrecord *nftl, int block)
492{
493	struct mtd_info *mtd = nftl->mbd.mtd;
494	struct nftl_uci1 h1;
495	unsigned int erase_mark;
496	size_t retlen;
497
498	/* check erase mark. */
499	if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8, 8,
500			  &retlen, (char *)&h1) < 0)
501		return -1;
502
503	erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1));
504	if (erase_mark != ERASE_MARK) {
505		/* if no erase mark, the block must be totally free. This is
506		   possible in two cases : empty filesystem or interrupted erase (very unlikely) */
507		if (check_free_sectors (nftl, block * nftl->EraseSize, nftl->EraseSize, 1) != 0)
508			return -1;
509
510		/* free block : write erase mark */
511		h1.EraseMark = cpu_to_le16(ERASE_MARK);
512		h1.EraseMark1 = cpu_to_le16(ERASE_MARK);
513		h1.WearInfo = cpu_to_le32(0);
514		if (nftl_write_oob(mtd,
515				   block * nftl->EraseSize + SECTORSIZE + 8, 8,
516				   &retlen, (char *)&h1) < 0)
517			return -1;
518	} else {
519#if 0
520		/* if erase mark present, need to skip it when doing check */
521		for (i = 0; i < nftl->EraseSize; i += SECTORSIZE) {
522			/* check free sector */
523			if (check_free_sectors (nftl, block * nftl->EraseSize + i,
524						SECTORSIZE, 0) != 0)
525				return -1;
526
527			if (nftl_read_oob(mtd, block * nftl->EraseSize + i,
528					  16, &retlen, buf) < 0)
529				return -1;
530			if (i == SECTORSIZE) {
531				/* skip erase mark */
532				if (memcmpb(buf, 0xff, 8))
533					return -1;
534			} else {
535				if (memcmpb(buf, 0xff, 16))
536					return -1;
537			}
538		}
539#endif
540	}
541
542	return 0;
543}
544
545/* get_fold_mark: Read fold mark from Unit Control Information #2, we use FOLD_MARK_IN_PROGRESS
546 *	to indicate that we are in the progression of a Virtual Unit Chain folding. If the UCI #2
547 *	is FOLD_MARK_IN_PROGRESS when mounting the NFTL, the (previous) folding process is interrupted
548 *	for some reason. A clean up/check of the VUC is necessary in this case.
549 *
550 * WARNING: return 0 if read error
551 */
552static int get_fold_mark(struct NFTLrecord *nftl, unsigned int block)
553{
554	struct mtd_info *mtd = nftl->mbd.mtd;
555	struct nftl_uci2 uci;
556	size_t retlen;
557
558	if (nftl_read_oob(mtd, block * nftl->EraseSize + 2 * SECTORSIZE + 8,
559			  8, &retlen, (char *)&uci) < 0)
560		return 0;
561
562	return le16_to_cpu((uci.FoldMark | uci.FoldMark1));
563}
564
565int NFTL_mount(struct NFTLrecord *s)
566{
567	int i;
568	unsigned int first_logical_block, logical_block, rep_block, erase_mark;
569	unsigned int block, first_block, is_first_block;
570	int chain_length, do_format_chain;
571	struct nftl_uci0 h0;
572	struct nftl_uci1 h1;
573	struct mtd_info *mtd = s->mbd.mtd;
574	size_t retlen;
575
576	/* search for NFTL MediaHeader and Spare NFTL Media Header */
577	if (find_boot_record(s) < 0) {
578		printk("Could not find valid boot record\n");
579		return -1;
580	}
581
582	/* init the logical to physical table */
583	for (i = 0; i < s->nb_blocks; i++) {
584		s->EUNtable[i] = BLOCK_NIL;
585	}
586
587	/* first pass : explore each block chain */
588	first_logical_block = 0;
589	for (first_block = 0; first_block < s->nb_blocks; first_block++) {
590		/* if the block was not already explored, we can look at it */
591		if (s->ReplUnitTable[first_block] == BLOCK_NOTEXPLORED) {
592			block = first_block;
593			chain_length = 0;
594			do_format_chain = 0;
595
596			for (;;) {
597				/* read the block header. If error, we format the chain */
598				if (nftl_read_oob(mtd,
599						  block * s->EraseSize + 8, 8,
600						  &retlen, (char *)&h0) < 0 ||
601				    nftl_read_oob(mtd,
602						  block * s->EraseSize +
603						  SECTORSIZE + 8, 8,
604						  &retlen, (char *)&h1) < 0) {
605					s->ReplUnitTable[block] = BLOCK_NIL;
606					do_format_chain = 1;
607					break;
608				}
609
610				logical_block = le16_to_cpu ((h0.VirtUnitNum | h0.SpareVirtUnitNum));
611				rep_block = le16_to_cpu ((h0.ReplUnitNum | h0.SpareReplUnitNum));
 
612				erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1));
613
614				is_first_block = !(logical_block >> 15);
615				logical_block = logical_block & 0x7fff;
616
617				/* invalid/free block test */
618				if (erase_mark != ERASE_MARK || logical_block >= s->nb_blocks) {
619					if (chain_length == 0) {
620						/* if not currently in a chain, we can handle it safely */
621						if (check_and_mark_free_block(s, block) < 0) {
622							/* not really free: format it */
623							printk("Formatting block %d\n", block);
624							if (NFTL_formatblock(s, block) < 0) {
625								/* could not format: reserve the block */
626								s->ReplUnitTable[block] = BLOCK_RESERVED;
627							} else {
628								s->ReplUnitTable[block] = BLOCK_FREE;
629							}
630						} else {
631							/* free block: mark it */
632							s->ReplUnitTable[block] = BLOCK_FREE;
633						}
634						/* directly examine the next block. */
635						goto examine_ReplUnitTable;
636					} else {
637						/* the block was in a chain : this is bad. We
638						   must format all the chain */
639						printk("Block %d: free but referenced in chain %d\n",
640						       block, first_block);
641						s->ReplUnitTable[block] = BLOCK_NIL;
642						do_format_chain = 1;
643						break;
644					}
645				}
646
647				/* we accept only first blocks here */
648				if (chain_length == 0) {
649					/* this block is not the first block in chain :
650					   ignore it, it will be included in a chain
651					   later, or marked as not explored */
652					if (!is_first_block)
653						goto examine_ReplUnitTable;
654					first_logical_block = logical_block;
655				} else {
656					if (logical_block != first_logical_block) {
657						printk("Block %d: incorrect logical block: %d expected: %d\n",
658						       block, logical_block, first_logical_block);
659						/* the chain is incorrect : we must format it,
660						   but we need to read it completely */
661						do_format_chain = 1;
662					}
663					if (is_first_block) {
664						/* we accept that a block is marked as first
665						   block while being last block in a chain
666						   only if the chain is being folded */
667						if (get_fold_mark(s, block) != FOLD_MARK_IN_PROGRESS ||
668						    rep_block != 0xffff) {
669							printk("Block %d: incorrectly marked as first block in chain\n",
670							       block);
671							/* the chain is incorrect : we must format it,
672							   but we need to read it completely */
673							do_format_chain = 1;
674						} else {
675							printk("Block %d: folding in progress - ignoring first block flag\n",
676							       block);
677						}
678					}
679				}
680				chain_length++;
681				if (rep_block == 0xffff) {
682					/* no more blocks after */
683					s->ReplUnitTable[block] = BLOCK_NIL;
684					break;
685				} else if (rep_block >= s->nb_blocks) {
686					printk("Block %d: referencing invalid block %d\n",
687					       block, rep_block);
688					do_format_chain = 1;
689					s->ReplUnitTable[block] = BLOCK_NIL;
690					break;
691				} else if (s->ReplUnitTable[rep_block] != BLOCK_NOTEXPLORED) {
692					/* same problem as previous 'is_first_block' test:
693					   we accept that the last block of a chain has
694					   the first_block flag set if folding is in
695					   progress. We handle here the case where the
696					   last block appeared first */
697					if (s->ReplUnitTable[rep_block] == BLOCK_NIL &&
698					    s->EUNtable[first_logical_block] == rep_block &&
699					    get_fold_mark(s, first_block) == FOLD_MARK_IN_PROGRESS) {
700						/* EUNtable[] will be set after */
701						printk("Block %d: folding in progress - ignoring first block flag\n",
702						       rep_block);
703						s->ReplUnitTable[block] = rep_block;
704						s->EUNtable[first_logical_block] = BLOCK_NIL;
705					} else {
706						printk("Block %d: referencing block %d already in another chain\n",
707						       block, rep_block);
708						/* XXX: should handle correctly fold in progress chains */
709						do_format_chain = 1;
710						s->ReplUnitTable[block] = BLOCK_NIL;
711					}
712					break;
713				} else {
714					/* this is OK */
715					s->ReplUnitTable[block] = rep_block;
716					block = rep_block;
717				}
718			}
719
720			/* the chain was completely explored. Now we can decide
721			   what to do with it */
722			if (do_format_chain) {
723				/* invalid chain : format it */
724				format_chain(s, first_block);
725			} else {
726				unsigned int first_block1, chain_to_format, chain_length1;
727				int fold_mark;
728
729				/* valid chain : get foldmark */
730				fold_mark = get_fold_mark(s, first_block);
731				if (fold_mark == 0) {
732					/* cannot get foldmark : format the chain */
733					printk("Could read foldmark at block %d\n", first_block);
734					format_chain(s, first_block);
735				} else {
736					if (fold_mark == FOLD_MARK_IN_PROGRESS)
737						check_sectors_in_chain(s, first_block);
738
739					/* now handle the case where we find two chains at the
740					   same virtual address : we select the longer one,
741					   because the shorter one is the one which was being
742					   folded if the folding was not done in place */
743					first_block1 = s->EUNtable[first_logical_block];
744					if (first_block1 != BLOCK_NIL) {
745						/* XXX: what to do if same length ? */
746						chain_length1 = calc_chain_length(s, first_block1);
747						printk("Two chains at blocks %d (len=%d) and %d (len=%d)\n",
748						       first_block1, chain_length1, first_block, chain_length);
749
750						if (chain_length >= chain_length1) {
751							chain_to_format = first_block1;
752							s->EUNtable[first_logical_block] = first_block;
753						} else {
754							chain_to_format = first_block;
755						}
756						format_chain(s, chain_to_format);
757					} else {
758						s->EUNtable[first_logical_block] = first_block;
759					}
760				}
761			}
762		}
763	examine_ReplUnitTable:;
764	}
765
766	/* second pass to format unreferenced blocks  and init free block count */
767	s->numfreeEUNs = 0;
768	s->LastFreeEUN = le16_to_cpu(s->MediaHdr.FirstPhysicalEUN);
769
770	for (block = 0; block < s->nb_blocks; block++) {
771		if (s->ReplUnitTable[block] == BLOCK_NOTEXPLORED) {
772			printk("Unreferenced block %d, formatting it\n", block);
773			if (NFTL_formatblock(s, block) < 0)
774				s->ReplUnitTable[block] = BLOCK_RESERVED;
775			else
776				s->ReplUnitTable[block] = BLOCK_FREE;
777		}
778		if (s->ReplUnitTable[block] == BLOCK_FREE) {
779			s->numfreeEUNs++;
780			s->LastFreeEUN = block;
781		}
782	}
783
784	return 0;
785}
v4.6
 
  1/*
  2 * NFTL mount code with extensive checks
  3 *
  4 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
  5 * Copyright © 2000 Netgem S.A.
  6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License as published by
 10 * the Free Software Foundation; either version 2 of the License, or
 11 * (at your option) any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program; if not, write to the Free Software
 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 21 */
 22
 23#include <linux/kernel.h>
 24#include <asm/errno.h>
 25#include <linux/delay.h>
 26#include <linux/slab.h>
 27#include <linux/mtd/mtd.h>
 28#include <linux/mtd/nand.h>
 29#include <linux/mtd/nftl.h>
 30
 31#define SECTORSIZE 512
 32
 33/* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the
 34 *	various device information of the NFTL partition and Bad Unit Table. Update
 35 *	the ReplUnitTable[] table according to the Bad Unit Table. ReplUnitTable[]
 36 *	is used for management of Erase Unit in other routines in nftl.c and nftlmount.c
 37 */
 38static int find_boot_record(struct NFTLrecord *nftl)
 39{
 40	struct nftl_uci1 h1;
 41	unsigned int block, boot_record_count = 0;
 42	size_t retlen;
 43	u8 buf[SECTORSIZE];
 44	struct NFTLMediaHeader *mh = &nftl->MediaHdr;
 45	struct mtd_info *mtd = nftl->mbd.mtd;
 46	unsigned int i;
 47
 48        /* Assume logical EraseSize == physical erasesize for starting the scan.
 49	   We'll sort it out later if we find a MediaHeader which says otherwise */
 50	/* Actually, we won't.  The new DiskOnChip driver has already scanned
 51	   the MediaHeader and adjusted the virtual erasesize it presents in
 52	   the mtd device accordingly.  We could even get rid of
 53	   nftl->EraseSize if there were any point in doing so. */
 54	nftl->EraseSize = nftl->mbd.mtd->erasesize;
 55        nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize;
 56
 57	nftl->MediaUnit = BLOCK_NIL;
 58	nftl->SpareMediaUnit = BLOCK_NIL;
 59
 60	/* search for a valid boot record */
 61	for (block = 0; block < nftl->nb_blocks; block++) {
 62		int ret;
 63
 64		/* Check for ANAND header first. Then can whinge if it's found but later
 65		   checks fail */
 66		ret = mtd_read(mtd, block * nftl->EraseSize, SECTORSIZE,
 67			       &retlen, buf);
 68		/* We ignore ret in case the ECC of the MediaHeader is invalid
 69		   (which is apparently acceptable) */
 70		if (retlen != SECTORSIZE) {
 71			static int warncount = 5;
 72
 73			if (warncount) {
 74				printk(KERN_WARNING "Block read at 0x%x of mtd%d failed: %d\n",
 75				       block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
 76				if (!--warncount)
 77					printk(KERN_WARNING "Further failures for this block will not be printed\n");
 78			}
 79			continue;
 80		}
 81
 82		if (retlen < 6 || memcmp(buf, "ANAND", 6)) {
 83			/* ANAND\0 not found. Continue */
 84#if 0
 85			printk(KERN_DEBUG "ANAND header not found at 0x%x in mtd%d\n",
 86			       block * nftl->EraseSize, nftl->mbd.mtd->index);
 87#endif
 88			continue;
 89		}
 90
 91		/* To be safer with BIOS, also use erase mark as discriminant */
 92		ret = nftl_read_oob(mtd, block * nftl->EraseSize +
 93					 SECTORSIZE + 8, 8, &retlen,
 94					 (char *)&h1);
 95		if (ret < 0) {
 96			printk(KERN_WARNING "ANAND header found at 0x%x in mtd%d, but OOB data read failed (err %d)\n",
 97			       block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
 98			continue;
 99		}
100
101#if 0 /* Some people seem to have devices without ECC or erase marks
102	 on the Media Header blocks. There are enough other sanity
103	 checks in here that we can probably do without it.
104      */
105		if (le16_to_cpu(h1.EraseMark | h1.EraseMark1) != ERASE_MARK) {
106			printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but erase mark not present (0x%04x,0x%04x instead)\n",
107			       block * nftl->EraseSize, nftl->mbd.mtd->index,
108			       le16_to_cpu(h1.EraseMark), le16_to_cpu(h1.EraseMark1));
109			continue;
110		}
111
112		/* Finally reread to check ECC */
113		ret = mtd->read(mtd, block * nftl->EraseSize, SECTORSIZE,
114				&retlen, buf);
115		if (ret < 0) {
116			printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but ECC read failed (err %d)\n",
117			       block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
118			continue;
119		}
120
121		/* Paranoia. Check the ANAND header is still there after the ECC read */
122		if (memcmp(buf, "ANAND", 6)) {
123			printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but went away on reread!\n",
124			       block * nftl->EraseSize, nftl->mbd.mtd->index);
125			printk(KERN_NOTICE "New data are: %02x %02x %02x %02x %02x %02x\n",
126			       buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
127			continue;
128		}
129#endif
130		/* OK, we like it. */
131
132		if (boot_record_count) {
133			/* We've already processed one. So we just check if
134			   this one is the same as the first one we found */
135			if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) {
136				printk(KERN_NOTICE "NFTL Media Headers at 0x%x and 0x%x disagree.\n",
137				       nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize);
138				/* if (debug) Print both side by side */
139				if (boot_record_count < 2) {
140					/* We haven't yet seen two real ones */
141					return -1;
142				}
143				continue;
144			}
145			if (boot_record_count == 1)
146				nftl->SpareMediaUnit = block;
147
148			/* Mark this boot record (NFTL MediaHeader) block as reserved */
149			nftl->ReplUnitTable[block] = BLOCK_RESERVED;
150
151
152			boot_record_count++;
153			continue;
154		}
155
156		/* This is the first we've seen. Copy the media header structure into place */
157		memcpy(mh, buf, sizeof(struct NFTLMediaHeader));
158
159		/* Do some sanity checks on it */
160#if 0
161The new DiskOnChip driver scans the MediaHeader itself, and presents a virtual
162erasesize based on UnitSizeFactor.  So the erasesize we read from the mtd
163device is already correct.
164		if (mh->UnitSizeFactor == 0) {
165			printk(KERN_NOTICE "NFTL: UnitSizeFactor 0x00 detected. This violates the spec but we think we know what it means...\n");
166		} else if (mh->UnitSizeFactor < 0xfc) {
167			printk(KERN_NOTICE "Sorry, we don't support UnitSizeFactor 0x%02x\n",
168			       mh->UnitSizeFactor);
169			return -1;
170		} else if (mh->UnitSizeFactor != 0xff) {
171			printk(KERN_NOTICE "WARNING: Support for NFTL with UnitSizeFactor 0x%02x is experimental\n",
172			       mh->UnitSizeFactor);
173			nftl->EraseSize = nftl->mbd.mtd->erasesize << (0xff - mh->UnitSizeFactor);
174			nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize;
175		}
176#endif
177		nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN);
178		if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) {
179			printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n");
180			printk(KERN_NOTICE "nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n",
181			       nftl->nb_boot_blocks, nftl->nb_blocks);
182			return -1;
183		}
184
185		nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize;
186		if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) {
187			printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n");
188			printk(KERN_NOTICE "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n",
189			       nftl->numvunits, nftl->nb_blocks, nftl->nb_boot_blocks);
190			return -1;
191		}
192
193		nftl->mbd.size  = nftl->numvunits * (nftl->EraseSize / SECTORSIZE);
194
195		/* If we're not using the last sectors in the device for some reason,
196		   reduce nb_blocks accordingly so we forget they're there */
197		nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN);
198
199		/* XXX: will be suppressed */
200		nftl->lastEUN = nftl->nb_blocks - 1;
201
202		/* memory alloc */
203		nftl->EUNtable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL);
 
204		if (!nftl->EUNtable) {
205			printk(KERN_NOTICE "NFTL: allocation of EUNtable failed\n");
206			return -ENOMEM;
207		}
208
209		nftl->ReplUnitTable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL);
 
 
210		if (!nftl->ReplUnitTable) {
211			kfree(nftl->EUNtable);
212			printk(KERN_NOTICE "NFTL: allocation of ReplUnitTable failed\n");
213			return -ENOMEM;
214		}
215
216		/* mark the bios blocks (blocks before NFTL MediaHeader) as reserved */
217		for (i = 0; i < nftl->nb_boot_blocks; i++)
218			nftl->ReplUnitTable[i] = BLOCK_RESERVED;
219		/* mark all remaining blocks as potentially containing data */
220		for (; i < nftl->nb_blocks; i++) {
221			nftl->ReplUnitTable[i] = BLOCK_NOTEXPLORED;
222		}
223
224		/* Mark this boot record (NFTL MediaHeader) block as reserved */
225		nftl->ReplUnitTable[block] = BLOCK_RESERVED;
226
227		/* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */
228		for (i = 0; i < nftl->nb_blocks; i++) {
229#if 0
230The new DiskOnChip driver already scanned the bad block table.  Just query it.
231			if ((i & (SECTORSIZE - 1)) == 0) {
232				/* read one sector for every SECTORSIZE of blocks */
233				ret = mtd->read(nftl->mbd.mtd,
234						block * nftl->EraseSize + i +
235						SECTORSIZE, SECTORSIZE,
236						&retlen, buf);
237				if (ret < 0) {
238					printk(KERN_NOTICE "Read of bad sector table failed (err %d)\n",
239					       ret);
240					kfree(nftl->ReplUnitTable);
241					kfree(nftl->EUNtable);
242					return -1;
243				}
244			}
245			/* mark the Bad Erase Unit as RESERVED in ReplUnitTable */
246			if (buf[i & (SECTORSIZE - 1)] != 0xff)
247				nftl->ReplUnitTable[i] = BLOCK_RESERVED;
248#endif
249			if (mtd_block_isbad(nftl->mbd.mtd,
250					    i * nftl->EraseSize))
251				nftl->ReplUnitTable[i] = BLOCK_RESERVED;
252		}
253
254		nftl->MediaUnit = block;
255		boot_record_count++;
256
257	} /* foreach (block) */
258
259	return boot_record_count?0:-1;
260}
261
262static int memcmpb(void *a, int c, int n)
263{
264	int i;
265	for (i = 0; i < n; i++) {
266		if (c != ((unsigned char *)a)[i])
267			return 1;
268	}
269	return 0;
270}
271
272/* check_free_sector: check if a free sector is actually FREE, i.e. All 0xff in data and oob area */
273static int check_free_sectors(struct NFTLrecord *nftl, unsigned int address, int len,
274			      int check_oob)
275{
276	u8 buf[SECTORSIZE + nftl->mbd.mtd->oobsize];
277	struct mtd_info *mtd = nftl->mbd.mtd;
278	size_t retlen;
279	int i;
 
 
 
 
 
280
 
281	for (i = 0; i < len; i += SECTORSIZE) {
282		if (mtd_read(mtd, address, SECTORSIZE, &retlen, buf))
283			return -1;
284		if (memcmpb(buf, 0xff, SECTORSIZE) != 0)
285			return -1;
286
287		if (check_oob) {
288			if(nftl_read_oob(mtd, address, mtd->oobsize,
289					 &retlen, &buf[SECTORSIZE]) < 0)
290				return -1;
291			if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0)
292				return -1;
293		}
294		address += SECTORSIZE;
295	}
296
297	return 0;
 
 
 
 
298}
299
300/* NFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase Unit and
301 *              Update NFTL metadata. Each erase operation is checked with check_free_sectors
302 *
303 * Return: 0 when succeed, -1 on error.
304 *
305 *  ToDo: 1. Is it necessary to check_free_sector after erasing ??
306 */
307int NFTL_formatblock(struct NFTLrecord *nftl, int block)
308{
309	size_t retlen;
310	unsigned int nb_erases, erase_mark;
311	struct nftl_uci1 uci;
312	struct erase_info *instr = &nftl->instr;
313	struct mtd_info *mtd = nftl->mbd.mtd;
314
315	/* Read the Unit Control Information #1 for Wear-Leveling */
316	if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8,
317			  8, &retlen, (char *)&uci) < 0)
318		goto default_uci1;
319
320	erase_mark = le16_to_cpu ((uci.EraseMark | uci.EraseMark1));
321	if (erase_mark != ERASE_MARK) {
322	default_uci1:
323		uci.EraseMark = cpu_to_le16(ERASE_MARK);
324		uci.EraseMark1 = cpu_to_le16(ERASE_MARK);
325		uci.WearInfo = cpu_to_le32(0);
326	}
327
328	memset(instr, 0, sizeof(struct erase_info));
329
330	/* XXX: use async erase interface, XXX: test return code */
331	instr->mtd = nftl->mbd.mtd;
332	instr->addr = block * nftl->EraseSize;
333	instr->len = nftl->EraseSize;
334	mtd_erase(mtd, instr);
335
336	if (instr->state == MTD_ERASE_FAILED) {
337		printk("Error while formatting block %d\n", block);
338		goto fail;
339	}
340
341		/* increase and write Wear-Leveling info */
342		nb_erases = le32_to_cpu(uci.WearInfo);
343		nb_erases++;
344
345		/* wrap (almost impossible with current flash) or free block */
346		if (nb_erases == 0)
347			nb_erases = 1;
348
349		/* check the "freeness" of Erase Unit before updating metadata
350		 * FixMe:  is this check really necessary ? since we have check the
351		 *         return code after the erase operation. */
352		if (check_free_sectors(nftl, instr->addr, nftl->EraseSize, 1) != 0)
353			goto fail;
354
355		uci.WearInfo = le32_to_cpu(nb_erases);
356		if (nftl_write_oob(mtd, block * nftl->EraseSize + SECTORSIZE +
357				   8, 8, &retlen, (char *)&uci) < 0)
358			goto fail;
359		return 0;
 
360fail:
361	/* could not format, update the bad block table (caller is responsible
362	   for setting the ReplUnitTable to BLOCK_RESERVED on failure) */
363	mtd_block_markbad(nftl->mbd.mtd, instr->addr);
364	return -1;
365}
366
367/* check_sectors_in_chain: Check that each sector of a Virtual Unit Chain is correct.
368 *	Mark as 'IGNORE' each incorrect sector. This check is only done if the chain
369 *	was being folded when NFTL was interrupted.
370 *
371 *	The check_free_sectors in this function is necessary. There is a possible
372 *	situation that after writing the Data area, the Block Control Information is
373 *	not updated according (due to power failure or something) which leaves the block
374 *	in an inconsistent state. So we have to check if a block is really FREE in this
375 *	case. */
376static void check_sectors_in_chain(struct NFTLrecord *nftl, unsigned int first_block)
377{
378	struct mtd_info *mtd = nftl->mbd.mtd;
379	unsigned int block, i, status;
380	struct nftl_bci bci;
381	int sectors_per_block;
382	size_t retlen;
383
384	sectors_per_block = nftl->EraseSize / SECTORSIZE;
385	block = first_block;
386	for (;;) {
387		for (i = 0; i < sectors_per_block; i++) {
388			if (nftl_read_oob(mtd,
389					  block * nftl->EraseSize + i * SECTORSIZE,
390					  8, &retlen, (char *)&bci) < 0)
391				status = SECTOR_IGNORE;
392			else
393				status = bci.Status | bci.Status1;
394
395			switch(status) {
396			case SECTOR_FREE:
397				/* verify that the sector is really free. If not, mark
398				   as ignore */
399				if (memcmpb(&bci, 0xff, 8) != 0 ||
400				    check_free_sectors(nftl, block * nftl->EraseSize + i * SECTORSIZE,
401						       SECTORSIZE, 0) != 0) {
402					printk("Incorrect free sector %d in block %d: "
403					       "marking it as ignored\n",
404					       i, block);
405
406					/* sector not free actually : mark it as SECTOR_IGNORE  */
407					bci.Status = SECTOR_IGNORE;
408					bci.Status1 = SECTOR_IGNORE;
409					nftl_write_oob(mtd, block *
410						       nftl->EraseSize +
411						       i * SECTORSIZE, 8,
412						       &retlen, (char *)&bci);
413				}
414				break;
415			default:
416				break;
417			}
418		}
419
420		/* proceed to next Erase Unit on the chain */
421		block = nftl->ReplUnitTable[block];
422		if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
423			printk("incorrect ReplUnitTable[] : %d\n", block);
424		if (block == BLOCK_NIL || block >= nftl->nb_blocks)
425			break;
426	}
427}
428
429/* calc_chain_length: Walk through a Virtual Unit Chain and estimate chain length */
430static int calc_chain_length(struct NFTLrecord *nftl, unsigned int first_block)
431{
432	unsigned int length = 0, block = first_block;
433
434	for (;;) {
435		length++;
436		/* avoid infinite loops, although this is guaranteed not to
437		   happen because of the previous checks */
438		if (length >= nftl->nb_blocks) {
439			printk("nftl: length too long %d !\n", length);
440			break;
441		}
442
443		block = nftl->ReplUnitTable[block];
444		if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
445			printk("incorrect ReplUnitTable[] : %d\n", block);
446		if (block == BLOCK_NIL || block >= nftl->nb_blocks)
447			break;
448	}
449	return length;
450}
451
452/* format_chain: Format an invalid Virtual Unit chain. It frees all the Erase Units in a
453 *	Virtual Unit Chain, i.e. all the units are disconnected.
454 *
455 *	It is not strictly correct to begin from the first block of the chain because
456 *	if we stop the code, we may see again a valid chain if there was a first_block
457 *	flag in a block inside it. But is it really a problem ?
458 *
459 * FixMe: Figure out what the last statement means. What if power failure when we are
460 *	in the for (;;) loop formatting blocks ??
461 */
462static void format_chain(struct NFTLrecord *nftl, unsigned int first_block)
463{
464	unsigned int block = first_block, block1;
465
466	printk("Formatting chain at block %d\n", first_block);
467
468	for (;;) {
469		block1 = nftl->ReplUnitTable[block];
470
471		printk("Formatting block %d\n", block);
472		if (NFTL_formatblock(nftl, block) < 0) {
473			/* cannot format !!!! Mark it as Bad Unit */
474			nftl->ReplUnitTable[block] = BLOCK_RESERVED;
475		} else {
476			nftl->ReplUnitTable[block] = BLOCK_FREE;
477		}
478
479		/* goto next block on the chain */
480		block = block1;
481
482		if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
483			printk("incorrect ReplUnitTable[] : %d\n", block);
484		if (block == BLOCK_NIL || block >= nftl->nb_blocks)
485			break;
486	}
487}
488
489/* check_and_mark_free_block: Verify that a block is free in the NFTL sense (valid erase mark) or
490 *	totally free (only 0xff).
491 *
492 * Definition: Free Erase Unit -- A properly erased/formatted Free Erase Unit should have meet the
493 *	following criteria:
494 *	1. */
495static int check_and_mark_free_block(struct NFTLrecord *nftl, int block)
496{
497	struct mtd_info *mtd = nftl->mbd.mtd;
498	struct nftl_uci1 h1;
499	unsigned int erase_mark;
500	size_t retlen;
501
502	/* check erase mark. */
503	if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8, 8,
504			  &retlen, (char *)&h1) < 0)
505		return -1;
506
507	erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1));
508	if (erase_mark != ERASE_MARK) {
509		/* if no erase mark, the block must be totally free. This is
510		   possible in two cases : empty filesystem or interrupted erase (very unlikely) */
511		if (check_free_sectors (nftl, block * nftl->EraseSize, nftl->EraseSize, 1) != 0)
512			return -1;
513
514		/* free block : write erase mark */
515		h1.EraseMark = cpu_to_le16(ERASE_MARK);
516		h1.EraseMark1 = cpu_to_le16(ERASE_MARK);
517		h1.WearInfo = cpu_to_le32(0);
518		if (nftl_write_oob(mtd,
519				   block * nftl->EraseSize + SECTORSIZE + 8, 8,
520				   &retlen, (char *)&h1) < 0)
521			return -1;
522	} else {
523#if 0
524		/* if erase mark present, need to skip it when doing check */
525		for (i = 0; i < nftl->EraseSize; i += SECTORSIZE) {
526			/* check free sector */
527			if (check_free_sectors (nftl, block * nftl->EraseSize + i,
528						SECTORSIZE, 0) != 0)
529				return -1;
530
531			if (nftl_read_oob(mtd, block * nftl->EraseSize + i,
532					  16, &retlen, buf) < 0)
533				return -1;
534			if (i == SECTORSIZE) {
535				/* skip erase mark */
536				if (memcmpb(buf, 0xff, 8))
537					return -1;
538			} else {
539				if (memcmpb(buf, 0xff, 16))
540					return -1;
541			}
542		}
543#endif
544	}
545
546	return 0;
547}
548
549/* get_fold_mark: Read fold mark from Unit Control Information #2, we use FOLD_MARK_IN_PROGRESS
550 *	to indicate that we are in the progression of a Virtual Unit Chain folding. If the UCI #2
551 *	is FOLD_MARK_IN_PROGRESS when mounting the NFTL, the (previous) folding process is interrupted
552 *	for some reason. A clean up/check of the VUC is necessary in this case.
553 *
554 * WARNING: return 0 if read error
555 */
556static int get_fold_mark(struct NFTLrecord *nftl, unsigned int block)
557{
558	struct mtd_info *mtd = nftl->mbd.mtd;
559	struct nftl_uci2 uci;
560	size_t retlen;
561
562	if (nftl_read_oob(mtd, block * nftl->EraseSize + 2 * SECTORSIZE + 8,
563			  8, &retlen, (char *)&uci) < 0)
564		return 0;
565
566	return le16_to_cpu((uci.FoldMark | uci.FoldMark1));
567}
568
569int NFTL_mount(struct NFTLrecord *s)
570{
571	int i;
572	unsigned int first_logical_block, logical_block, rep_block, nb_erases, erase_mark;
573	unsigned int block, first_block, is_first_block;
574	int chain_length, do_format_chain;
575	struct nftl_uci0 h0;
576	struct nftl_uci1 h1;
577	struct mtd_info *mtd = s->mbd.mtd;
578	size_t retlen;
579
580	/* search for NFTL MediaHeader and Spare NFTL Media Header */
581	if (find_boot_record(s) < 0) {
582		printk("Could not find valid boot record\n");
583		return -1;
584	}
585
586	/* init the logical to physical table */
587	for (i = 0; i < s->nb_blocks; i++) {
588		s->EUNtable[i] = BLOCK_NIL;
589	}
590
591	/* first pass : explore each block chain */
592	first_logical_block = 0;
593	for (first_block = 0; first_block < s->nb_blocks; first_block++) {
594		/* if the block was not already explored, we can look at it */
595		if (s->ReplUnitTable[first_block] == BLOCK_NOTEXPLORED) {
596			block = first_block;
597			chain_length = 0;
598			do_format_chain = 0;
599
600			for (;;) {
601				/* read the block header. If error, we format the chain */
602				if (nftl_read_oob(mtd,
603						  block * s->EraseSize + 8, 8,
604						  &retlen, (char *)&h0) < 0 ||
605				    nftl_read_oob(mtd,
606						  block * s->EraseSize +
607						  SECTORSIZE + 8, 8,
608						  &retlen, (char *)&h1) < 0) {
609					s->ReplUnitTable[block] = BLOCK_NIL;
610					do_format_chain = 1;
611					break;
612				}
613
614				logical_block = le16_to_cpu ((h0.VirtUnitNum | h0.SpareVirtUnitNum));
615				rep_block = le16_to_cpu ((h0.ReplUnitNum | h0.SpareReplUnitNum));
616				nb_erases = le32_to_cpu (h1.WearInfo);
617				erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1));
618
619				is_first_block = !(logical_block >> 15);
620				logical_block = logical_block & 0x7fff;
621
622				/* invalid/free block test */
623				if (erase_mark != ERASE_MARK || logical_block >= s->nb_blocks) {
624					if (chain_length == 0) {
625						/* if not currently in a chain, we can handle it safely */
626						if (check_and_mark_free_block(s, block) < 0) {
627							/* not really free: format it */
628							printk("Formatting block %d\n", block);
629							if (NFTL_formatblock(s, block) < 0) {
630								/* could not format: reserve the block */
631								s->ReplUnitTable[block] = BLOCK_RESERVED;
632							} else {
633								s->ReplUnitTable[block] = BLOCK_FREE;
634							}
635						} else {
636							/* free block: mark it */
637							s->ReplUnitTable[block] = BLOCK_FREE;
638						}
639						/* directly examine the next block. */
640						goto examine_ReplUnitTable;
641					} else {
642						/* the block was in a chain : this is bad. We
643						   must format all the chain */
644						printk("Block %d: free but referenced in chain %d\n",
645						       block, first_block);
646						s->ReplUnitTable[block] = BLOCK_NIL;
647						do_format_chain = 1;
648						break;
649					}
650				}
651
652				/* we accept only first blocks here */
653				if (chain_length == 0) {
654					/* this block is not the first block in chain :
655					   ignore it, it will be included in a chain
656					   later, or marked as not explored */
657					if (!is_first_block)
658						goto examine_ReplUnitTable;
659					first_logical_block = logical_block;
660				} else {
661					if (logical_block != first_logical_block) {
662						printk("Block %d: incorrect logical block: %d expected: %d\n",
663						       block, logical_block, first_logical_block);
664						/* the chain is incorrect : we must format it,
665						   but we need to read it completely */
666						do_format_chain = 1;
667					}
668					if (is_first_block) {
669						/* we accept that a block is marked as first
670						   block while being last block in a chain
671						   only if the chain is being folded */
672						if (get_fold_mark(s, block) != FOLD_MARK_IN_PROGRESS ||
673						    rep_block != 0xffff) {
674							printk("Block %d: incorrectly marked as first block in chain\n",
675							       block);
676							/* the chain is incorrect : we must format it,
677							   but we need to read it completely */
678							do_format_chain = 1;
679						} else {
680							printk("Block %d: folding in progress - ignoring first block flag\n",
681							       block);
682						}
683					}
684				}
685				chain_length++;
686				if (rep_block == 0xffff) {
687					/* no more blocks after */
688					s->ReplUnitTable[block] = BLOCK_NIL;
689					break;
690				} else if (rep_block >= s->nb_blocks) {
691					printk("Block %d: referencing invalid block %d\n",
692					       block, rep_block);
693					do_format_chain = 1;
694					s->ReplUnitTable[block] = BLOCK_NIL;
695					break;
696				} else if (s->ReplUnitTable[rep_block] != BLOCK_NOTEXPLORED) {
697					/* same problem as previous 'is_first_block' test:
698					   we accept that the last block of a chain has
699					   the first_block flag set if folding is in
700					   progress. We handle here the case where the
701					   last block appeared first */
702					if (s->ReplUnitTable[rep_block] == BLOCK_NIL &&
703					    s->EUNtable[first_logical_block] == rep_block &&
704					    get_fold_mark(s, first_block) == FOLD_MARK_IN_PROGRESS) {
705						/* EUNtable[] will be set after */
706						printk("Block %d: folding in progress - ignoring first block flag\n",
707						       rep_block);
708						s->ReplUnitTable[block] = rep_block;
709						s->EUNtable[first_logical_block] = BLOCK_NIL;
710					} else {
711						printk("Block %d: referencing block %d already in another chain\n",
712						       block, rep_block);
713						/* XXX: should handle correctly fold in progress chains */
714						do_format_chain = 1;
715						s->ReplUnitTable[block] = BLOCK_NIL;
716					}
717					break;
718				} else {
719					/* this is OK */
720					s->ReplUnitTable[block] = rep_block;
721					block = rep_block;
722				}
723			}
724
725			/* the chain was completely explored. Now we can decide
726			   what to do with it */
727			if (do_format_chain) {
728				/* invalid chain : format it */
729				format_chain(s, first_block);
730			} else {
731				unsigned int first_block1, chain_to_format, chain_length1;
732				int fold_mark;
733
734				/* valid chain : get foldmark */
735				fold_mark = get_fold_mark(s, first_block);
736				if (fold_mark == 0) {
737					/* cannot get foldmark : format the chain */
738					printk("Could read foldmark at block %d\n", first_block);
739					format_chain(s, first_block);
740				} else {
741					if (fold_mark == FOLD_MARK_IN_PROGRESS)
742						check_sectors_in_chain(s, first_block);
743
744					/* now handle the case where we find two chains at the
745					   same virtual address : we select the longer one,
746					   because the shorter one is the one which was being
747					   folded if the folding was not done in place */
748					first_block1 = s->EUNtable[first_logical_block];
749					if (first_block1 != BLOCK_NIL) {
750						/* XXX: what to do if same length ? */
751						chain_length1 = calc_chain_length(s, first_block1);
752						printk("Two chains at blocks %d (len=%d) and %d (len=%d)\n",
753						       first_block1, chain_length1, first_block, chain_length);
754
755						if (chain_length >= chain_length1) {
756							chain_to_format = first_block1;
757							s->EUNtable[first_logical_block] = first_block;
758						} else {
759							chain_to_format = first_block;
760						}
761						format_chain(s, chain_to_format);
762					} else {
763						s->EUNtable[first_logical_block] = first_block;
764					}
765				}
766			}
767		}
768	examine_ReplUnitTable:;
769	}
770
771	/* second pass to format unreferenced blocks  and init free block count */
772	s->numfreeEUNs = 0;
773	s->LastFreeEUN = le16_to_cpu(s->MediaHdr.FirstPhysicalEUN);
774
775	for (block = 0; block < s->nb_blocks; block++) {
776		if (s->ReplUnitTable[block] == BLOCK_NOTEXPLORED) {
777			printk("Unreferenced block %d, formatting it\n", block);
778			if (NFTL_formatblock(s, block) < 0)
779				s->ReplUnitTable[block] = BLOCK_RESERVED;
780			else
781				s->ReplUnitTable[block] = BLOCK_FREE;
782		}
783		if (s->ReplUnitTable[block] == BLOCK_FREE) {
784			s->numfreeEUNs++;
785			s->LastFreeEUN = block;
786		}
787	}
788
789	return 0;
790}