Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Driver for SMM665 Power Controller / Monitor
  4 *
  5 * Copyright (C) 2010 Ericsson AB.
  6 *
 
 
 
 
  7 * This driver should also work for SMM465, SMM764, and SMM766, but is untested
  8 * for those chips. Only monitoring functionality is implemented.
  9 *
 10 * Datasheets:
 11 * http://www.summitmicro.com/prod_select/summary/SMM665/SMM665B_2089_20.pdf
 12 * http://www.summitmicro.com/prod_select/summary/SMM766B/SMM766B_2122.pdf
 13 */
 14
 15#include <linux/kernel.h>
 16#include <linux/module.h>
 17#include <linux/init.h>
 18#include <linux/err.h>
 19#include <linux/slab.h>
 20#include <linux/i2c.h>
 21#include <linux/hwmon.h>
 22#include <linux/hwmon-sysfs.h>
 23#include <linux/delay.h>
 24#include <linux/jiffies.h>
 25
 26/* Internal reference voltage (VREF, x 1000 */
 27#define SMM665_VREF_ADC_X1000	1250
 28
 29/* module parameters */
 30static int vref = SMM665_VREF_ADC_X1000;
 31module_param(vref, int, 0);
 32MODULE_PARM_DESC(vref, "Reference voltage in mV");
 33
 34enum chips { smm465, smm665, smm665c, smm764, smm766 };
 35
 36/*
 37 * ADC channel addresses
 38 */
 39#define	SMM665_MISC16_ADC_DATA_A	0x00
 40#define	SMM665_MISC16_ADC_DATA_B	0x01
 41#define	SMM665_MISC16_ADC_DATA_C	0x02
 42#define	SMM665_MISC16_ADC_DATA_D	0x03
 43#define	SMM665_MISC16_ADC_DATA_E	0x04
 44#define	SMM665_MISC16_ADC_DATA_F	0x05
 45#define	SMM665_MISC16_ADC_DATA_VDD	0x06
 46#define	SMM665_MISC16_ADC_DATA_12V	0x07
 47#define	SMM665_MISC16_ADC_DATA_INT_TEMP	0x08
 48#define	SMM665_MISC16_ADC_DATA_AIN1	0x09
 49#define	SMM665_MISC16_ADC_DATA_AIN2	0x0a
 50
 51/*
 52 * Command registers
 53 */
 54#define	SMM665_MISC8_CMD_STS		0x80
 55#define	SMM665_MISC8_STATUS1		0x81
 56#define	SMM665_MISC8_STATUSS2		0x82
 57#define	SMM665_MISC8_IO_POLARITY	0x83
 58#define	SMM665_MISC8_PUP_POLARITY	0x84
 59#define	SMM665_MISC8_ADOC_STATUS1	0x85
 60#define	SMM665_MISC8_ADOC_STATUS2	0x86
 61#define	SMM665_MISC8_WRITE_PROT		0x87
 62#define	SMM665_MISC8_STS_TRACK		0x88
 63
 64/*
 65 * Configuration registers and register groups
 66 */
 67#define SMM665_ADOC_ENABLE		0x0d
 68#define SMM665_LIMIT_BASE		0x80	/* First limit register */
 69
 70/*
 71 * Limit register bit masks
 72 */
 73#define SMM665_TRIGGER_RST		0x8000
 74#define SMM665_TRIGGER_HEALTHY		0x4000
 75#define SMM665_TRIGGER_POWEROFF		0x2000
 76#define SMM665_TRIGGER_SHUTDOWN		0x1000
 77#define SMM665_ADC_MASK			0x03ff
 78
 79#define smm665_is_critical(lim)	((lim) & (SMM665_TRIGGER_RST \
 80					| SMM665_TRIGGER_POWEROFF \
 81					| SMM665_TRIGGER_SHUTDOWN))
 82/*
 83 * Fault register bit definitions
 84 * Values are merged from status registers 1/2,
 85 * with status register 1 providing the upper 8 bits.
 86 */
 87#define SMM665_FAULT_A		0x0001
 88#define SMM665_FAULT_B		0x0002
 89#define SMM665_FAULT_C		0x0004
 90#define SMM665_FAULT_D		0x0008
 91#define SMM665_FAULT_E		0x0010
 92#define SMM665_FAULT_F		0x0020
 93#define SMM665_FAULT_VDD	0x0040
 94#define SMM665_FAULT_12V	0x0080
 95#define SMM665_FAULT_TEMP	0x0100
 96#define SMM665_FAULT_AIN1	0x0200
 97#define SMM665_FAULT_AIN2	0x0400
 98
 99/*
100 * I2C Register addresses
101 *
102 * The configuration register needs to be the configured base register.
103 * The command/status register address is derived from it.
104 */
105#define SMM665_REGMASK		0x78
106#define SMM665_CMDREG_BASE	0x48
107#define SMM665_CONFREG_BASE	0x50
108
109/*
110 *  Equations given by chip manufacturer to calculate voltage/temperature values
111 *  vref = Reference voltage on VREF_ADC pin (module parameter)
112 *  adc  = 10bit ADC value read back from registers
113 */
114
115/* Voltage A-F and VDD */
116#define SMM665_VMON_ADC_TO_VOLTS(adc)  ((adc) * vref / 256)
117
118/* Voltage 12VIN */
119#define SMM665_12VIN_ADC_TO_VOLTS(adc) ((adc) * vref * 3 / 256)
120
121/* Voltage AIN1, AIN2 */
122#define SMM665_AIN_ADC_TO_VOLTS(adc)   ((adc) * vref / 512)
123
124/* Temp Sensor */
125#define SMM665_TEMP_ADC_TO_CELSIUS(adc) (((adc) <= 511) ?		   \
126					 ((int)(adc) * 1000 / 4) :	   \
127					 (((int)(adc) - 0x400) * 1000 / 4))
128
129#define SMM665_NUM_ADC		11
130
131/*
132 * Chip dependent ADC conversion time, in uS
133 */
134#define SMM665_ADC_WAIT_SMM665	70
135#define SMM665_ADC_WAIT_SMM766	185
136
137struct smm665_data {
138	enum chips type;
139	int conversion_time;		/* ADC conversion time */
140	struct i2c_client *client;
141	struct mutex update_lock;
142	bool valid;
143	unsigned long last_updated;	/* in jiffies */
144	u16 adc[SMM665_NUM_ADC];	/* adc values (raw) */
145	u16 faults;			/* fault status */
146	/* The following values are in mV */
147	int critical_min_limit[SMM665_NUM_ADC];
148	int alarm_min_limit[SMM665_NUM_ADC];
149	int critical_max_limit[SMM665_NUM_ADC];
150	int alarm_max_limit[SMM665_NUM_ADC];
151	struct i2c_client *cmdreg;
152};
153
154/*
155 * smm665_read16()
156 *
157 * Read 16 bit value from <reg>, <reg+1>. Upper 8 bits are in <reg>.
158 */
159static int smm665_read16(struct i2c_client *client, int reg)
160{
161	int rv, val;
162
163	rv = i2c_smbus_read_byte_data(client, reg);
164	if (rv < 0)
165		return rv;
166	val = rv << 8;
167	rv = i2c_smbus_read_byte_data(client, reg + 1);
168	if (rv < 0)
169		return rv;
170	val |= rv;
171	return val;
172}
173
174/*
175 * Read adc value.
176 */
177static int smm665_read_adc(struct smm665_data *data, int adc)
178{
179	struct i2c_client *client = data->cmdreg;
180	int rv;
181	int radc;
182
183	/*
184	 * Algorithm for reading ADC, per SMM665 datasheet
185	 *
186	 *  {[S][addr][W][Ack]} {[offset][Ack]} {[S][addr][R][Nack]}
187	 * [wait conversion time]
188	 *  {[S][addr][R][Ack]} {[datahi][Ack]} {[datalo][Ack][P]}
189	 *
190	 * To implement the first part of this exchange,
191	 * do a full read transaction and expect a failure/Nack.
192	 * This sets up the address pointer on the SMM665
193	 * and starts the ADC conversion.
194	 * Then do a two-byte read transaction.
195	 */
196	rv = i2c_smbus_read_byte_data(client, adc << 3);
197	if (rv != -ENXIO) {
198		/*
199		 * We expect ENXIO to reflect NACK
200		 * (per Documentation/i2c/fault-codes.rst).
201		 * Everything else is an error.
202		 */
203		dev_dbg(&client->dev,
204			"Unexpected return code %d when setting ADC index", rv);
205		return (rv < 0) ? rv : -EIO;
206	}
207
208	udelay(data->conversion_time);
209
210	/*
211	 * Now read two bytes.
212	 *
213	 * Neither i2c_smbus_read_byte() nor
214	 * i2c_smbus_read_block_data() worked here,
215	 * so use i2c_smbus_read_word_swapped() instead.
216	 * We could also try to use i2c_master_recv(),
217	 * but that is not always supported.
218	 */
219	rv = i2c_smbus_read_word_swapped(client, 0);
220	if (rv < 0) {
221		dev_dbg(&client->dev, "Failed to read ADC value: error %d", rv);
222		return rv;
223	}
224	/*
225	 * Validate/verify readback adc channel (in bit 11..14).
226	 */
227	radc = (rv >> 11) & 0x0f;
228	if (radc != adc) {
229		dev_dbg(&client->dev, "Unexpected RADC: Expected %d got %d",
230			adc, radc);
231		return -EIO;
232	}
233
234	return rv & SMM665_ADC_MASK;
235}
236
237static struct smm665_data *smm665_update_device(struct device *dev)
238{
239	struct smm665_data *data = dev_get_drvdata(dev);
240	struct i2c_client *client = data->client;
241	struct smm665_data *ret = data;
242
243	mutex_lock(&data->update_lock);
244
245	if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
246		int i, val;
247
248		/*
249		 * read status registers
250		 */
251		val = smm665_read16(client, SMM665_MISC8_STATUS1);
252		if (unlikely(val < 0)) {
253			ret = ERR_PTR(val);
254			goto abort;
255		}
256		data->faults = val;
257
258		/* Read adc registers */
259		for (i = 0; i < SMM665_NUM_ADC; i++) {
260			val = smm665_read_adc(data, i);
261			if (unlikely(val < 0)) {
262				ret = ERR_PTR(val);
263				goto abort;
264			}
265			data->adc[i] = val;
266		}
267		data->last_updated = jiffies;
268		data->valid = 1;
269	}
270abort:
271	mutex_unlock(&data->update_lock);
272	return ret;
273}
274
275/* Return converted value from given adc */
276static int smm665_convert(u16 adcval, int index)
277{
278	int val = 0;
279
280	switch (index) {
281	case SMM665_MISC16_ADC_DATA_12V:
282		val = SMM665_12VIN_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
283		break;
284
285	case SMM665_MISC16_ADC_DATA_VDD:
286	case SMM665_MISC16_ADC_DATA_A:
287	case SMM665_MISC16_ADC_DATA_B:
288	case SMM665_MISC16_ADC_DATA_C:
289	case SMM665_MISC16_ADC_DATA_D:
290	case SMM665_MISC16_ADC_DATA_E:
291	case SMM665_MISC16_ADC_DATA_F:
292		val = SMM665_VMON_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
293		break;
294
295	case SMM665_MISC16_ADC_DATA_AIN1:
296	case SMM665_MISC16_ADC_DATA_AIN2:
297		val = SMM665_AIN_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
298		break;
299
300	case SMM665_MISC16_ADC_DATA_INT_TEMP:
301		val = SMM665_TEMP_ADC_TO_CELSIUS(adcval & SMM665_ADC_MASK);
302		break;
303
304	default:
305		/* If we get here, the developer messed up */
306		WARN_ON_ONCE(1);
307		break;
308	}
309
310	return val;
311}
312
313static int smm665_get_min(struct device *dev, int index)
314{
315	struct smm665_data *data = dev_get_drvdata(dev);
316
317	return data->alarm_min_limit[index];
318}
319
320static int smm665_get_max(struct device *dev, int index)
321{
322	struct smm665_data *data = dev_get_drvdata(dev);
323
324	return data->alarm_max_limit[index];
325}
326
327static int smm665_get_lcrit(struct device *dev, int index)
328{
329	struct smm665_data *data = dev_get_drvdata(dev);
330
331	return data->critical_min_limit[index];
332}
333
334static int smm665_get_crit(struct device *dev, int index)
335{
336	struct smm665_data *data = dev_get_drvdata(dev);
337
338	return data->critical_max_limit[index];
339}
340
341static ssize_t smm665_show_crit_alarm(struct device *dev,
342				      struct device_attribute *da, char *buf)
343{
344	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
345	struct smm665_data *data = smm665_update_device(dev);
346	int val = 0;
347
348	if (IS_ERR(data))
349		return PTR_ERR(data);
350
351	if (data->faults & (1 << attr->index))
352		val = 1;
353
354	return snprintf(buf, PAGE_SIZE, "%d\n", val);
355}
356
357static ssize_t smm665_show_input(struct device *dev,
358				 struct device_attribute *da, char *buf)
359{
360	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
361	struct smm665_data *data = smm665_update_device(dev);
362	int adc = attr->index;
363	int val;
364
365	if (IS_ERR(data))
366		return PTR_ERR(data);
367
368	val = smm665_convert(data->adc[adc], adc);
369	return snprintf(buf, PAGE_SIZE, "%d\n", val);
370}
371
372#define SMM665_SHOW(what) \
373static ssize_t smm665_show_##what(struct device *dev, \
374				    struct device_attribute *da, char *buf) \
375{ \
376	struct sensor_device_attribute *attr = to_sensor_dev_attr(da); \
377	const int val = smm665_get_##what(dev, attr->index); \
378	return snprintf(buf, PAGE_SIZE, "%d\n", val); \
379}
380
381SMM665_SHOW(min);
382SMM665_SHOW(max);
383SMM665_SHOW(lcrit);
384SMM665_SHOW(crit);
385
386/*
387 * These macros are used below in constructing device attribute objects
388 * for use with sysfs_create_group() to make a sysfs device file
389 * for each register.
390 */
391
392#define SMM665_ATTR(name, type, cmd_idx) \
393	static SENSOR_DEVICE_ATTR(name##_##type, S_IRUGO, \
394				  smm665_show_##type, NULL, cmd_idx)
395
396/* Construct a sensor_device_attribute structure for each register */
397
398/* Input voltages */
399SMM665_ATTR(in1, input, SMM665_MISC16_ADC_DATA_12V);
400SMM665_ATTR(in2, input, SMM665_MISC16_ADC_DATA_VDD);
401SMM665_ATTR(in3, input, SMM665_MISC16_ADC_DATA_A);
402SMM665_ATTR(in4, input, SMM665_MISC16_ADC_DATA_B);
403SMM665_ATTR(in5, input, SMM665_MISC16_ADC_DATA_C);
404SMM665_ATTR(in6, input, SMM665_MISC16_ADC_DATA_D);
405SMM665_ATTR(in7, input, SMM665_MISC16_ADC_DATA_E);
406SMM665_ATTR(in8, input, SMM665_MISC16_ADC_DATA_F);
407SMM665_ATTR(in9, input, SMM665_MISC16_ADC_DATA_AIN1);
408SMM665_ATTR(in10, input, SMM665_MISC16_ADC_DATA_AIN2);
409
410/* Input voltages min */
411SMM665_ATTR(in1, min, SMM665_MISC16_ADC_DATA_12V);
412SMM665_ATTR(in2, min, SMM665_MISC16_ADC_DATA_VDD);
413SMM665_ATTR(in3, min, SMM665_MISC16_ADC_DATA_A);
414SMM665_ATTR(in4, min, SMM665_MISC16_ADC_DATA_B);
415SMM665_ATTR(in5, min, SMM665_MISC16_ADC_DATA_C);
416SMM665_ATTR(in6, min, SMM665_MISC16_ADC_DATA_D);
417SMM665_ATTR(in7, min, SMM665_MISC16_ADC_DATA_E);
418SMM665_ATTR(in8, min, SMM665_MISC16_ADC_DATA_F);
419SMM665_ATTR(in9, min, SMM665_MISC16_ADC_DATA_AIN1);
420SMM665_ATTR(in10, min, SMM665_MISC16_ADC_DATA_AIN2);
421
422/* Input voltages max */
423SMM665_ATTR(in1, max, SMM665_MISC16_ADC_DATA_12V);
424SMM665_ATTR(in2, max, SMM665_MISC16_ADC_DATA_VDD);
425SMM665_ATTR(in3, max, SMM665_MISC16_ADC_DATA_A);
426SMM665_ATTR(in4, max, SMM665_MISC16_ADC_DATA_B);
427SMM665_ATTR(in5, max, SMM665_MISC16_ADC_DATA_C);
428SMM665_ATTR(in6, max, SMM665_MISC16_ADC_DATA_D);
429SMM665_ATTR(in7, max, SMM665_MISC16_ADC_DATA_E);
430SMM665_ATTR(in8, max, SMM665_MISC16_ADC_DATA_F);
431SMM665_ATTR(in9, max, SMM665_MISC16_ADC_DATA_AIN1);
432SMM665_ATTR(in10, max, SMM665_MISC16_ADC_DATA_AIN2);
433
434/* Input voltages lcrit */
435SMM665_ATTR(in1, lcrit, SMM665_MISC16_ADC_DATA_12V);
436SMM665_ATTR(in2, lcrit, SMM665_MISC16_ADC_DATA_VDD);
437SMM665_ATTR(in3, lcrit, SMM665_MISC16_ADC_DATA_A);
438SMM665_ATTR(in4, lcrit, SMM665_MISC16_ADC_DATA_B);
439SMM665_ATTR(in5, lcrit, SMM665_MISC16_ADC_DATA_C);
440SMM665_ATTR(in6, lcrit, SMM665_MISC16_ADC_DATA_D);
441SMM665_ATTR(in7, lcrit, SMM665_MISC16_ADC_DATA_E);
442SMM665_ATTR(in8, lcrit, SMM665_MISC16_ADC_DATA_F);
443SMM665_ATTR(in9, lcrit, SMM665_MISC16_ADC_DATA_AIN1);
444SMM665_ATTR(in10, lcrit, SMM665_MISC16_ADC_DATA_AIN2);
445
446/* Input voltages crit */
447SMM665_ATTR(in1, crit, SMM665_MISC16_ADC_DATA_12V);
448SMM665_ATTR(in2, crit, SMM665_MISC16_ADC_DATA_VDD);
449SMM665_ATTR(in3, crit, SMM665_MISC16_ADC_DATA_A);
450SMM665_ATTR(in4, crit, SMM665_MISC16_ADC_DATA_B);
451SMM665_ATTR(in5, crit, SMM665_MISC16_ADC_DATA_C);
452SMM665_ATTR(in6, crit, SMM665_MISC16_ADC_DATA_D);
453SMM665_ATTR(in7, crit, SMM665_MISC16_ADC_DATA_E);
454SMM665_ATTR(in8, crit, SMM665_MISC16_ADC_DATA_F);
455SMM665_ATTR(in9, crit, SMM665_MISC16_ADC_DATA_AIN1);
456SMM665_ATTR(in10, crit, SMM665_MISC16_ADC_DATA_AIN2);
457
458/* critical alarms */
459SMM665_ATTR(in1, crit_alarm, SMM665_FAULT_12V);
460SMM665_ATTR(in2, crit_alarm, SMM665_FAULT_VDD);
461SMM665_ATTR(in3, crit_alarm, SMM665_FAULT_A);
462SMM665_ATTR(in4, crit_alarm, SMM665_FAULT_B);
463SMM665_ATTR(in5, crit_alarm, SMM665_FAULT_C);
464SMM665_ATTR(in6, crit_alarm, SMM665_FAULT_D);
465SMM665_ATTR(in7, crit_alarm, SMM665_FAULT_E);
466SMM665_ATTR(in8, crit_alarm, SMM665_FAULT_F);
467SMM665_ATTR(in9, crit_alarm, SMM665_FAULT_AIN1);
468SMM665_ATTR(in10, crit_alarm, SMM665_FAULT_AIN2);
469
470/* Temperature */
471SMM665_ATTR(temp1, input, SMM665_MISC16_ADC_DATA_INT_TEMP);
472SMM665_ATTR(temp1, min, SMM665_MISC16_ADC_DATA_INT_TEMP);
473SMM665_ATTR(temp1, max, SMM665_MISC16_ADC_DATA_INT_TEMP);
474SMM665_ATTR(temp1, lcrit, SMM665_MISC16_ADC_DATA_INT_TEMP);
475SMM665_ATTR(temp1, crit, SMM665_MISC16_ADC_DATA_INT_TEMP);
476SMM665_ATTR(temp1, crit_alarm, SMM665_FAULT_TEMP);
477
478/*
479 * Finally, construct an array of pointers to members of the above objects,
480 * as required for sysfs_create_group()
481 */
482static struct attribute *smm665_attrs[] = {
483	&sensor_dev_attr_in1_input.dev_attr.attr,
484	&sensor_dev_attr_in1_min.dev_attr.attr,
485	&sensor_dev_attr_in1_max.dev_attr.attr,
486	&sensor_dev_attr_in1_lcrit.dev_attr.attr,
487	&sensor_dev_attr_in1_crit.dev_attr.attr,
488	&sensor_dev_attr_in1_crit_alarm.dev_attr.attr,
489
490	&sensor_dev_attr_in2_input.dev_attr.attr,
491	&sensor_dev_attr_in2_min.dev_attr.attr,
492	&sensor_dev_attr_in2_max.dev_attr.attr,
493	&sensor_dev_attr_in2_lcrit.dev_attr.attr,
494	&sensor_dev_attr_in2_crit.dev_attr.attr,
495	&sensor_dev_attr_in2_crit_alarm.dev_attr.attr,
496
497	&sensor_dev_attr_in3_input.dev_attr.attr,
498	&sensor_dev_attr_in3_min.dev_attr.attr,
499	&sensor_dev_attr_in3_max.dev_attr.attr,
500	&sensor_dev_attr_in3_lcrit.dev_attr.attr,
501	&sensor_dev_attr_in3_crit.dev_attr.attr,
502	&sensor_dev_attr_in3_crit_alarm.dev_attr.attr,
503
504	&sensor_dev_attr_in4_input.dev_attr.attr,
505	&sensor_dev_attr_in4_min.dev_attr.attr,
506	&sensor_dev_attr_in4_max.dev_attr.attr,
507	&sensor_dev_attr_in4_lcrit.dev_attr.attr,
508	&sensor_dev_attr_in4_crit.dev_attr.attr,
509	&sensor_dev_attr_in4_crit_alarm.dev_attr.attr,
510
511	&sensor_dev_attr_in5_input.dev_attr.attr,
512	&sensor_dev_attr_in5_min.dev_attr.attr,
513	&sensor_dev_attr_in5_max.dev_attr.attr,
514	&sensor_dev_attr_in5_lcrit.dev_attr.attr,
515	&sensor_dev_attr_in5_crit.dev_attr.attr,
516	&sensor_dev_attr_in5_crit_alarm.dev_attr.attr,
517
518	&sensor_dev_attr_in6_input.dev_attr.attr,
519	&sensor_dev_attr_in6_min.dev_attr.attr,
520	&sensor_dev_attr_in6_max.dev_attr.attr,
521	&sensor_dev_attr_in6_lcrit.dev_attr.attr,
522	&sensor_dev_attr_in6_crit.dev_attr.attr,
523	&sensor_dev_attr_in6_crit_alarm.dev_attr.attr,
524
525	&sensor_dev_attr_in7_input.dev_attr.attr,
526	&sensor_dev_attr_in7_min.dev_attr.attr,
527	&sensor_dev_attr_in7_max.dev_attr.attr,
528	&sensor_dev_attr_in7_lcrit.dev_attr.attr,
529	&sensor_dev_attr_in7_crit.dev_attr.attr,
530	&sensor_dev_attr_in7_crit_alarm.dev_attr.attr,
531
532	&sensor_dev_attr_in8_input.dev_attr.attr,
533	&sensor_dev_attr_in8_min.dev_attr.attr,
534	&sensor_dev_attr_in8_max.dev_attr.attr,
535	&sensor_dev_attr_in8_lcrit.dev_attr.attr,
536	&sensor_dev_attr_in8_crit.dev_attr.attr,
537	&sensor_dev_attr_in8_crit_alarm.dev_attr.attr,
538
539	&sensor_dev_attr_in9_input.dev_attr.attr,
540	&sensor_dev_attr_in9_min.dev_attr.attr,
541	&sensor_dev_attr_in9_max.dev_attr.attr,
542	&sensor_dev_attr_in9_lcrit.dev_attr.attr,
543	&sensor_dev_attr_in9_crit.dev_attr.attr,
544	&sensor_dev_attr_in9_crit_alarm.dev_attr.attr,
545
546	&sensor_dev_attr_in10_input.dev_attr.attr,
547	&sensor_dev_attr_in10_min.dev_attr.attr,
548	&sensor_dev_attr_in10_max.dev_attr.attr,
549	&sensor_dev_attr_in10_lcrit.dev_attr.attr,
550	&sensor_dev_attr_in10_crit.dev_attr.attr,
551	&sensor_dev_attr_in10_crit_alarm.dev_attr.attr,
552
553	&sensor_dev_attr_temp1_input.dev_attr.attr,
554	&sensor_dev_attr_temp1_min.dev_attr.attr,
555	&sensor_dev_attr_temp1_max.dev_attr.attr,
556	&sensor_dev_attr_temp1_lcrit.dev_attr.attr,
557	&sensor_dev_attr_temp1_crit.dev_attr.attr,
558	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
559
560	NULL,
561};
562
563ATTRIBUTE_GROUPS(smm665);
564
565static int smm665_probe(struct i2c_client *client,
566			const struct i2c_device_id *id)
567{
568	struct i2c_adapter *adapter = client->adapter;
569	struct smm665_data *data;
570	struct device *hwmon_dev;
571	int i, ret;
572
573	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA
574				     | I2C_FUNC_SMBUS_WORD_DATA))
575		return -ENODEV;
576
577	if (i2c_smbus_read_byte_data(client, SMM665_ADOC_ENABLE) < 0)
578		return -ENODEV;
579
580	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
581	if (!data)
582		return -ENOMEM;
583
584	i2c_set_clientdata(client, data);
585	mutex_init(&data->update_lock);
586
587	data->client = client;
588	data->type = id->driver_data;
589	data->cmdreg = i2c_new_dummy_device(adapter, (client->addr & ~SMM665_REGMASK)
590				     | SMM665_CMDREG_BASE);
591	if (IS_ERR(data->cmdreg))
592		return PTR_ERR(data->cmdreg);
593
594	switch (data->type) {
595	case smm465:
596	case smm665:
597		data->conversion_time = SMM665_ADC_WAIT_SMM665;
598		break;
599	case smm665c:
600	case smm764:
601	case smm766:
602		data->conversion_time = SMM665_ADC_WAIT_SMM766;
603		break;
604	}
605
606	ret = -ENODEV;
607	if (i2c_smbus_read_byte_data(data->cmdreg, SMM665_MISC8_CMD_STS) < 0)
608		goto out_unregister;
609
610	/*
611	 * Read limits.
612	 *
613	 * Limit registers start with register SMM665_LIMIT_BASE.
614	 * Each channel uses 8 registers, providing four limit values
615	 * per channel. Each limit value requires two registers, with the
616	 * high byte in the first register and the low byte in the second
617	 * register. The first two limits are under limit values, followed
618	 * by two over limit values.
619	 *
620	 * Limit register order matches the ADC register order, so we use
621	 * ADC register defines throughout the code to index limit registers.
622	 *
623	 * We save the first retrieved value both as "critical" and "alarm"
624	 * value. The second value overwrites either the critical or the
625	 * alarm value, depending on its configuration. This ensures that both
626	 * critical and alarm values are initialized, even if both registers are
627	 * configured as critical or non-critical.
628	 */
629	for (i = 0; i < SMM665_NUM_ADC; i++) {
630		int val;
631
632		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8);
633		if (unlikely(val < 0))
634			goto out_unregister;
635		data->critical_min_limit[i] = data->alarm_min_limit[i]
636		  = smm665_convert(val, i);
637		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 2);
638		if (unlikely(val < 0))
639			goto out_unregister;
640		if (smm665_is_critical(val))
641			data->critical_min_limit[i] = smm665_convert(val, i);
642		else
643			data->alarm_min_limit[i] = smm665_convert(val, i);
644		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 4);
645		if (unlikely(val < 0))
646			goto out_unregister;
647		data->critical_max_limit[i] = data->alarm_max_limit[i]
648		  = smm665_convert(val, i);
649		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 6);
650		if (unlikely(val < 0))
651			goto out_unregister;
652		if (smm665_is_critical(val))
653			data->critical_max_limit[i] = smm665_convert(val, i);
654		else
655			data->alarm_max_limit[i] = smm665_convert(val, i);
656	}
657
658	hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev,
659							   client->name, data,
660							   smm665_groups);
661	if (IS_ERR(hwmon_dev)) {
662		ret = PTR_ERR(hwmon_dev);
663		goto out_unregister;
664	}
665
666	return 0;
667
668out_unregister:
669	i2c_unregister_device(data->cmdreg);
670	return ret;
671}
672
673static int smm665_remove(struct i2c_client *client)
674{
675	struct smm665_data *data = i2c_get_clientdata(client);
676
677	i2c_unregister_device(data->cmdreg);
678	return 0;
679}
680
681static const struct i2c_device_id smm665_id[] = {
682	{"smm465", smm465},
683	{"smm665", smm665},
684	{"smm665c", smm665c},
685	{"smm764", smm764},
686	{"smm766", smm766},
687	{}
688};
689
690MODULE_DEVICE_TABLE(i2c, smm665_id);
691
692/* This is the driver that will be inserted */
693static struct i2c_driver smm665_driver = {
694	.driver = {
695		   .name = "smm665",
696		   },
697	.probe = smm665_probe,
698	.remove = smm665_remove,
699	.id_table = smm665_id,
700};
701
702module_i2c_driver(smm665_driver);
703
704MODULE_AUTHOR("Guenter Roeck");
705MODULE_DESCRIPTION("SMM665 driver");
706MODULE_LICENSE("GPL");
v4.6
 
  1/*
  2 * Driver for SMM665 Power Controller / Monitor
  3 *
  4 * Copyright (C) 2010 Ericsson AB.
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License as published by
  8 * the Free Software Foundation; version 2 of the License.
  9 *
 10 * This driver should also work for SMM465, SMM764, and SMM766, but is untested
 11 * for those chips. Only monitoring functionality is implemented.
 12 *
 13 * Datasheets:
 14 * http://www.summitmicro.com/prod_select/summary/SMM665/SMM665B_2089_20.pdf
 15 * http://www.summitmicro.com/prod_select/summary/SMM766B/SMM766B_2122.pdf
 16 */
 17
 18#include <linux/kernel.h>
 19#include <linux/module.h>
 20#include <linux/init.h>
 21#include <linux/err.h>
 22#include <linux/slab.h>
 23#include <linux/i2c.h>
 24#include <linux/hwmon.h>
 25#include <linux/hwmon-sysfs.h>
 26#include <linux/delay.h>
 27#include <linux/jiffies.h>
 28
 29/* Internal reference voltage (VREF, x 1000 */
 30#define SMM665_VREF_ADC_X1000	1250
 31
 32/* module parameters */
 33static int vref = SMM665_VREF_ADC_X1000;
 34module_param(vref, int, 0);
 35MODULE_PARM_DESC(vref, "Reference voltage in mV");
 36
 37enum chips { smm465, smm665, smm665c, smm764, smm766 };
 38
 39/*
 40 * ADC channel addresses
 41 */
 42#define	SMM665_MISC16_ADC_DATA_A	0x00
 43#define	SMM665_MISC16_ADC_DATA_B	0x01
 44#define	SMM665_MISC16_ADC_DATA_C	0x02
 45#define	SMM665_MISC16_ADC_DATA_D	0x03
 46#define	SMM665_MISC16_ADC_DATA_E	0x04
 47#define	SMM665_MISC16_ADC_DATA_F	0x05
 48#define	SMM665_MISC16_ADC_DATA_VDD	0x06
 49#define	SMM665_MISC16_ADC_DATA_12V	0x07
 50#define	SMM665_MISC16_ADC_DATA_INT_TEMP	0x08
 51#define	SMM665_MISC16_ADC_DATA_AIN1	0x09
 52#define	SMM665_MISC16_ADC_DATA_AIN2	0x0a
 53
 54/*
 55 * Command registers
 56 */
 57#define	SMM665_MISC8_CMD_STS		0x80
 58#define	SMM665_MISC8_STATUS1		0x81
 59#define	SMM665_MISC8_STATUSS2		0x82
 60#define	SMM665_MISC8_IO_POLARITY	0x83
 61#define	SMM665_MISC8_PUP_POLARITY	0x84
 62#define	SMM665_MISC8_ADOC_STATUS1	0x85
 63#define	SMM665_MISC8_ADOC_STATUS2	0x86
 64#define	SMM665_MISC8_WRITE_PROT		0x87
 65#define	SMM665_MISC8_STS_TRACK		0x88
 66
 67/*
 68 * Configuration registers and register groups
 69 */
 70#define SMM665_ADOC_ENABLE		0x0d
 71#define SMM665_LIMIT_BASE		0x80	/* First limit register */
 72
 73/*
 74 * Limit register bit masks
 75 */
 76#define SMM665_TRIGGER_RST		0x8000
 77#define SMM665_TRIGGER_HEALTHY		0x4000
 78#define SMM665_TRIGGER_POWEROFF		0x2000
 79#define SMM665_TRIGGER_SHUTDOWN		0x1000
 80#define SMM665_ADC_MASK			0x03ff
 81
 82#define smm665_is_critical(lim)	((lim) & (SMM665_TRIGGER_RST \
 83					| SMM665_TRIGGER_POWEROFF \
 84					| SMM665_TRIGGER_SHUTDOWN))
 85/*
 86 * Fault register bit definitions
 87 * Values are merged from status registers 1/2,
 88 * with status register 1 providing the upper 8 bits.
 89 */
 90#define SMM665_FAULT_A		0x0001
 91#define SMM665_FAULT_B		0x0002
 92#define SMM665_FAULT_C		0x0004
 93#define SMM665_FAULT_D		0x0008
 94#define SMM665_FAULT_E		0x0010
 95#define SMM665_FAULT_F		0x0020
 96#define SMM665_FAULT_VDD	0x0040
 97#define SMM665_FAULT_12V	0x0080
 98#define SMM665_FAULT_TEMP	0x0100
 99#define SMM665_FAULT_AIN1	0x0200
100#define SMM665_FAULT_AIN2	0x0400
101
102/*
103 * I2C Register addresses
104 *
105 * The configuration register needs to be the configured base register.
106 * The command/status register address is derived from it.
107 */
108#define SMM665_REGMASK		0x78
109#define SMM665_CMDREG_BASE	0x48
110#define SMM665_CONFREG_BASE	0x50
111
112/*
113 *  Equations given by chip manufacturer to calculate voltage/temperature values
114 *  vref = Reference voltage on VREF_ADC pin (module parameter)
115 *  adc  = 10bit ADC value read back from registers
116 */
117
118/* Voltage A-F and VDD */
119#define SMM665_VMON_ADC_TO_VOLTS(adc)  ((adc) * vref / 256)
120
121/* Voltage 12VIN */
122#define SMM665_12VIN_ADC_TO_VOLTS(adc) ((adc) * vref * 3 / 256)
123
124/* Voltage AIN1, AIN2 */
125#define SMM665_AIN_ADC_TO_VOLTS(adc)   ((adc) * vref / 512)
126
127/* Temp Sensor */
128#define SMM665_TEMP_ADC_TO_CELSIUS(adc) (((adc) <= 511) ?		   \
129					 ((int)(adc) * 1000 / 4) :	   \
130					 (((int)(adc) - 0x400) * 1000 / 4))
131
132#define SMM665_NUM_ADC		11
133
134/*
135 * Chip dependent ADC conversion time, in uS
136 */
137#define SMM665_ADC_WAIT_SMM665	70
138#define SMM665_ADC_WAIT_SMM766	185
139
140struct smm665_data {
141	enum chips type;
142	int conversion_time;		/* ADC conversion time */
143	struct i2c_client *client;
144	struct mutex update_lock;
145	bool valid;
146	unsigned long last_updated;	/* in jiffies */
147	u16 adc[SMM665_NUM_ADC];	/* adc values (raw) */
148	u16 faults;			/* fault status */
149	/* The following values are in mV */
150	int critical_min_limit[SMM665_NUM_ADC];
151	int alarm_min_limit[SMM665_NUM_ADC];
152	int critical_max_limit[SMM665_NUM_ADC];
153	int alarm_max_limit[SMM665_NUM_ADC];
154	struct i2c_client *cmdreg;
155};
156
157/*
158 * smm665_read16()
159 *
160 * Read 16 bit value from <reg>, <reg+1>. Upper 8 bits are in <reg>.
161 */
162static int smm665_read16(struct i2c_client *client, int reg)
163{
164	int rv, val;
165
166	rv = i2c_smbus_read_byte_data(client, reg);
167	if (rv < 0)
168		return rv;
169	val = rv << 8;
170	rv = i2c_smbus_read_byte_data(client, reg + 1);
171	if (rv < 0)
172		return rv;
173	val |= rv;
174	return val;
175}
176
177/*
178 * Read adc value.
179 */
180static int smm665_read_adc(struct smm665_data *data, int adc)
181{
182	struct i2c_client *client = data->cmdreg;
183	int rv;
184	int radc;
185
186	/*
187	 * Algorithm for reading ADC, per SMM665 datasheet
188	 *
189	 *  {[S][addr][W][Ack]} {[offset][Ack]} {[S][addr][R][Nack]}
190	 * [wait conversion time]
191	 *  {[S][addr][R][Ack]} {[datahi][Ack]} {[datalo][Ack][P]}
192	 *
193	 * To implement the first part of this exchange,
194	 * do a full read transaction and expect a failure/Nack.
195	 * This sets up the address pointer on the SMM665
196	 * and starts the ADC conversion.
197	 * Then do a two-byte read transaction.
198	 */
199	rv = i2c_smbus_read_byte_data(client, adc << 3);
200	if (rv != -ENXIO) {
201		/*
202		 * We expect ENXIO to reflect NACK
203		 * (per Documentation/i2c/fault-codes).
204		 * Everything else is an error.
205		 */
206		dev_dbg(&client->dev,
207			"Unexpected return code %d when setting ADC index", rv);
208		return (rv < 0) ? rv : -EIO;
209	}
210
211	udelay(data->conversion_time);
212
213	/*
214	 * Now read two bytes.
215	 *
216	 * Neither i2c_smbus_read_byte() nor
217	 * i2c_smbus_read_block_data() worked here,
218	 * so use i2c_smbus_read_word_swapped() instead.
219	 * We could also try to use i2c_master_recv(),
220	 * but that is not always supported.
221	 */
222	rv = i2c_smbus_read_word_swapped(client, 0);
223	if (rv < 0) {
224		dev_dbg(&client->dev, "Failed to read ADC value: error %d", rv);
225		return rv;
226	}
227	/*
228	 * Validate/verify readback adc channel (in bit 11..14).
229	 */
230	radc = (rv >> 11) & 0x0f;
231	if (radc != adc) {
232		dev_dbg(&client->dev, "Unexpected RADC: Expected %d got %d",
233			adc, radc);
234		return -EIO;
235	}
236
237	return rv & SMM665_ADC_MASK;
238}
239
240static struct smm665_data *smm665_update_device(struct device *dev)
241{
242	struct smm665_data *data = dev_get_drvdata(dev);
243	struct i2c_client *client = data->client;
244	struct smm665_data *ret = data;
245
246	mutex_lock(&data->update_lock);
247
248	if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
249		int i, val;
250
251		/*
252		 * read status registers
253		 */
254		val = smm665_read16(client, SMM665_MISC8_STATUS1);
255		if (unlikely(val < 0)) {
256			ret = ERR_PTR(val);
257			goto abort;
258		}
259		data->faults = val;
260
261		/* Read adc registers */
262		for (i = 0; i < SMM665_NUM_ADC; i++) {
263			val = smm665_read_adc(data, i);
264			if (unlikely(val < 0)) {
265				ret = ERR_PTR(val);
266				goto abort;
267			}
268			data->adc[i] = val;
269		}
270		data->last_updated = jiffies;
271		data->valid = 1;
272	}
273abort:
274	mutex_unlock(&data->update_lock);
275	return ret;
276}
277
278/* Return converted value from given adc */
279static int smm665_convert(u16 adcval, int index)
280{
281	int val = 0;
282
283	switch (index) {
284	case SMM665_MISC16_ADC_DATA_12V:
285		val = SMM665_12VIN_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
286		break;
287
288	case SMM665_MISC16_ADC_DATA_VDD:
289	case SMM665_MISC16_ADC_DATA_A:
290	case SMM665_MISC16_ADC_DATA_B:
291	case SMM665_MISC16_ADC_DATA_C:
292	case SMM665_MISC16_ADC_DATA_D:
293	case SMM665_MISC16_ADC_DATA_E:
294	case SMM665_MISC16_ADC_DATA_F:
295		val = SMM665_VMON_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
296		break;
297
298	case SMM665_MISC16_ADC_DATA_AIN1:
299	case SMM665_MISC16_ADC_DATA_AIN2:
300		val = SMM665_AIN_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
301		break;
302
303	case SMM665_MISC16_ADC_DATA_INT_TEMP:
304		val = SMM665_TEMP_ADC_TO_CELSIUS(adcval & SMM665_ADC_MASK);
305		break;
306
307	default:
308		/* If we get here, the developer messed up */
309		WARN_ON_ONCE(1);
310		break;
311	}
312
313	return val;
314}
315
316static int smm665_get_min(struct device *dev, int index)
317{
318	struct smm665_data *data = dev_get_drvdata(dev);
319
320	return data->alarm_min_limit[index];
321}
322
323static int smm665_get_max(struct device *dev, int index)
324{
325	struct smm665_data *data = dev_get_drvdata(dev);
326
327	return data->alarm_max_limit[index];
328}
329
330static int smm665_get_lcrit(struct device *dev, int index)
331{
332	struct smm665_data *data = dev_get_drvdata(dev);
333
334	return data->critical_min_limit[index];
335}
336
337static int smm665_get_crit(struct device *dev, int index)
338{
339	struct smm665_data *data = dev_get_drvdata(dev);
340
341	return data->critical_max_limit[index];
342}
343
344static ssize_t smm665_show_crit_alarm(struct device *dev,
345				      struct device_attribute *da, char *buf)
346{
347	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
348	struct smm665_data *data = smm665_update_device(dev);
349	int val = 0;
350
351	if (IS_ERR(data))
352		return PTR_ERR(data);
353
354	if (data->faults & (1 << attr->index))
355		val = 1;
356
357	return snprintf(buf, PAGE_SIZE, "%d\n", val);
358}
359
360static ssize_t smm665_show_input(struct device *dev,
361				 struct device_attribute *da, char *buf)
362{
363	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
364	struct smm665_data *data = smm665_update_device(dev);
365	int adc = attr->index;
366	int val;
367
368	if (IS_ERR(data))
369		return PTR_ERR(data);
370
371	val = smm665_convert(data->adc[adc], adc);
372	return snprintf(buf, PAGE_SIZE, "%d\n", val);
373}
374
375#define SMM665_SHOW(what) \
376static ssize_t smm665_show_##what(struct device *dev, \
377				    struct device_attribute *da, char *buf) \
378{ \
379	struct sensor_device_attribute *attr = to_sensor_dev_attr(da); \
380	const int val = smm665_get_##what(dev, attr->index); \
381	return snprintf(buf, PAGE_SIZE, "%d\n", val); \
382}
383
384SMM665_SHOW(min);
385SMM665_SHOW(max);
386SMM665_SHOW(lcrit);
387SMM665_SHOW(crit);
388
389/*
390 * These macros are used below in constructing device attribute objects
391 * for use with sysfs_create_group() to make a sysfs device file
392 * for each register.
393 */
394
395#define SMM665_ATTR(name, type, cmd_idx) \
396	static SENSOR_DEVICE_ATTR(name##_##type, S_IRUGO, \
397				  smm665_show_##type, NULL, cmd_idx)
398
399/* Construct a sensor_device_attribute structure for each register */
400
401/* Input voltages */
402SMM665_ATTR(in1, input, SMM665_MISC16_ADC_DATA_12V);
403SMM665_ATTR(in2, input, SMM665_MISC16_ADC_DATA_VDD);
404SMM665_ATTR(in3, input, SMM665_MISC16_ADC_DATA_A);
405SMM665_ATTR(in4, input, SMM665_MISC16_ADC_DATA_B);
406SMM665_ATTR(in5, input, SMM665_MISC16_ADC_DATA_C);
407SMM665_ATTR(in6, input, SMM665_MISC16_ADC_DATA_D);
408SMM665_ATTR(in7, input, SMM665_MISC16_ADC_DATA_E);
409SMM665_ATTR(in8, input, SMM665_MISC16_ADC_DATA_F);
410SMM665_ATTR(in9, input, SMM665_MISC16_ADC_DATA_AIN1);
411SMM665_ATTR(in10, input, SMM665_MISC16_ADC_DATA_AIN2);
412
413/* Input voltages min */
414SMM665_ATTR(in1, min, SMM665_MISC16_ADC_DATA_12V);
415SMM665_ATTR(in2, min, SMM665_MISC16_ADC_DATA_VDD);
416SMM665_ATTR(in3, min, SMM665_MISC16_ADC_DATA_A);
417SMM665_ATTR(in4, min, SMM665_MISC16_ADC_DATA_B);
418SMM665_ATTR(in5, min, SMM665_MISC16_ADC_DATA_C);
419SMM665_ATTR(in6, min, SMM665_MISC16_ADC_DATA_D);
420SMM665_ATTR(in7, min, SMM665_MISC16_ADC_DATA_E);
421SMM665_ATTR(in8, min, SMM665_MISC16_ADC_DATA_F);
422SMM665_ATTR(in9, min, SMM665_MISC16_ADC_DATA_AIN1);
423SMM665_ATTR(in10, min, SMM665_MISC16_ADC_DATA_AIN2);
424
425/* Input voltages max */
426SMM665_ATTR(in1, max, SMM665_MISC16_ADC_DATA_12V);
427SMM665_ATTR(in2, max, SMM665_MISC16_ADC_DATA_VDD);
428SMM665_ATTR(in3, max, SMM665_MISC16_ADC_DATA_A);
429SMM665_ATTR(in4, max, SMM665_MISC16_ADC_DATA_B);
430SMM665_ATTR(in5, max, SMM665_MISC16_ADC_DATA_C);
431SMM665_ATTR(in6, max, SMM665_MISC16_ADC_DATA_D);
432SMM665_ATTR(in7, max, SMM665_MISC16_ADC_DATA_E);
433SMM665_ATTR(in8, max, SMM665_MISC16_ADC_DATA_F);
434SMM665_ATTR(in9, max, SMM665_MISC16_ADC_DATA_AIN1);
435SMM665_ATTR(in10, max, SMM665_MISC16_ADC_DATA_AIN2);
436
437/* Input voltages lcrit */
438SMM665_ATTR(in1, lcrit, SMM665_MISC16_ADC_DATA_12V);
439SMM665_ATTR(in2, lcrit, SMM665_MISC16_ADC_DATA_VDD);
440SMM665_ATTR(in3, lcrit, SMM665_MISC16_ADC_DATA_A);
441SMM665_ATTR(in4, lcrit, SMM665_MISC16_ADC_DATA_B);
442SMM665_ATTR(in5, lcrit, SMM665_MISC16_ADC_DATA_C);
443SMM665_ATTR(in6, lcrit, SMM665_MISC16_ADC_DATA_D);
444SMM665_ATTR(in7, lcrit, SMM665_MISC16_ADC_DATA_E);
445SMM665_ATTR(in8, lcrit, SMM665_MISC16_ADC_DATA_F);
446SMM665_ATTR(in9, lcrit, SMM665_MISC16_ADC_DATA_AIN1);
447SMM665_ATTR(in10, lcrit, SMM665_MISC16_ADC_DATA_AIN2);
448
449/* Input voltages crit */
450SMM665_ATTR(in1, crit, SMM665_MISC16_ADC_DATA_12V);
451SMM665_ATTR(in2, crit, SMM665_MISC16_ADC_DATA_VDD);
452SMM665_ATTR(in3, crit, SMM665_MISC16_ADC_DATA_A);
453SMM665_ATTR(in4, crit, SMM665_MISC16_ADC_DATA_B);
454SMM665_ATTR(in5, crit, SMM665_MISC16_ADC_DATA_C);
455SMM665_ATTR(in6, crit, SMM665_MISC16_ADC_DATA_D);
456SMM665_ATTR(in7, crit, SMM665_MISC16_ADC_DATA_E);
457SMM665_ATTR(in8, crit, SMM665_MISC16_ADC_DATA_F);
458SMM665_ATTR(in9, crit, SMM665_MISC16_ADC_DATA_AIN1);
459SMM665_ATTR(in10, crit, SMM665_MISC16_ADC_DATA_AIN2);
460
461/* critical alarms */
462SMM665_ATTR(in1, crit_alarm, SMM665_FAULT_12V);
463SMM665_ATTR(in2, crit_alarm, SMM665_FAULT_VDD);
464SMM665_ATTR(in3, crit_alarm, SMM665_FAULT_A);
465SMM665_ATTR(in4, crit_alarm, SMM665_FAULT_B);
466SMM665_ATTR(in5, crit_alarm, SMM665_FAULT_C);
467SMM665_ATTR(in6, crit_alarm, SMM665_FAULT_D);
468SMM665_ATTR(in7, crit_alarm, SMM665_FAULT_E);
469SMM665_ATTR(in8, crit_alarm, SMM665_FAULT_F);
470SMM665_ATTR(in9, crit_alarm, SMM665_FAULT_AIN1);
471SMM665_ATTR(in10, crit_alarm, SMM665_FAULT_AIN2);
472
473/* Temperature */
474SMM665_ATTR(temp1, input, SMM665_MISC16_ADC_DATA_INT_TEMP);
475SMM665_ATTR(temp1, min, SMM665_MISC16_ADC_DATA_INT_TEMP);
476SMM665_ATTR(temp1, max, SMM665_MISC16_ADC_DATA_INT_TEMP);
477SMM665_ATTR(temp1, lcrit, SMM665_MISC16_ADC_DATA_INT_TEMP);
478SMM665_ATTR(temp1, crit, SMM665_MISC16_ADC_DATA_INT_TEMP);
479SMM665_ATTR(temp1, crit_alarm, SMM665_FAULT_TEMP);
480
481/*
482 * Finally, construct an array of pointers to members of the above objects,
483 * as required for sysfs_create_group()
484 */
485static struct attribute *smm665_attrs[] = {
486	&sensor_dev_attr_in1_input.dev_attr.attr,
487	&sensor_dev_attr_in1_min.dev_attr.attr,
488	&sensor_dev_attr_in1_max.dev_attr.attr,
489	&sensor_dev_attr_in1_lcrit.dev_attr.attr,
490	&sensor_dev_attr_in1_crit.dev_attr.attr,
491	&sensor_dev_attr_in1_crit_alarm.dev_attr.attr,
492
493	&sensor_dev_attr_in2_input.dev_attr.attr,
494	&sensor_dev_attr_in2_min.dev_attr.attr,
495	&sensor_dev_attr_in2_max.dev_attr.attr,
496	&sensor_dev_attr_in2_lcrit.dev_attr.attr,
497	&sensor_dev_attr_in2_crit.dev_attr.attr,
498	&sensor_dev_attr_in2_crit_alarm.dev_attr.attr,
499
500	&sensor_dev_attr_in3_input.dev_attr.attr,
501	&sensor_dev_attr_in3_min.dev_attr.attr,
502	&sensor_dev_attr_in3_max.dev_attr.attr,
503	&sensor_dev_attr_in3_lcrit.dev_attr.attr,
504	&sensor_dev_attr_in3_crit.dev_attr.attr,
505	&sensor_dev_attr_in3_crit_alarm.dev_attr.attr,
506
507	&sensor_dev_attr_in4_input.dev_attr.attr,
508	&sensor_dev_attr_in4_min.dev_attr.attr,
509	&sensor_dev_attr_in4_max.dev_attr.attr,
510	&sensor_dev_attr_in4_lcrit.dev_attr.attr,
511	&sensor_dev_attr_in4_crit.dev_attr.attr,
512	&sensor_dev_attr_in4_crit_alarm.dev_attr.attr,
513
514	&sensor_dev_attr_in5_input.dev_attr.attr,
515	&sensor_dev_attr_in5_min.dev_attr.attr,
516	&sensor_dev_attr_in5_max.dev_attr.attr,
517	&sensor_dev_attr_in5_lcrit.dev_attr.attr,
518	&sensor_dev_attr_in5_crit.dev_attr.attr,
519	&sensor_dev_attr_in5_crit_alarm.dev_attr.attr,
520
521	&sensor_dev_attr_in6_input.dev_attr.attr,
522	&sensor_dev_attr_in6_min.dev_attr.attr,
523	&sensor_dev_attr_in6_max.dev_attr.attr,
524	&sensor_dev_attr_in6_lcrit.dev_attr.attr,
525	&sensor_dev_attr_in6_crit.dev_attr.attr,
526	&sensor_dev_attr_in6_crit_alarm.dev_attr.attr,
527
528	&sensor_dev_attr_in7_input.dev_attr.attr,
529	&sensor_dev_attr_in7_min.dev_attr.attr,
530	&sensor_dev_attr_in7_max.dev_attr.attr,
531	&sensor_dev_attr_in7_lcrit.dev_attr.attr,
532	&sensor_dev_attr_in7_crit.dev_attr.attr,
533	&sensor_dev_attr_in7_crit_alarm.dev_attr.attr,
534
535	&sensor_dev_attr_in8_input.dev_attr.attr,
536	&sensor_dev_attr_in8_min.dev_attr.attr,
537	&sensor_dev_attr_in8_max.dev_attr.attr,
538	&sensor_dev_attr_in8_lcrit.dev_attr.attr,
539	&sensor_dev_attr_in8_crit.dev_attr.attr,
540	&sensor_dev_attr_in8_crit_alarm.dev_attr.attr,
541
542	&sensor_dev_attr_in9_input.dev_attr.attr,
543	&sensor_dev_attr_in9_min.dev_attr.attr,
544	&sensor_dev_attr_in9_max.dev_attr.attr,
545	&sensor_dev_attr_in9_lcrit.dev_attr.attr,
546	&sensor_dev_attr_in9_crit.dev_attr.attr,
547	&sensor_dev_attr_in9_crit_alarm.dev_attr.attr,
548
549	&sensor_dev_attr_in10_input.dev_attr.attr,
550	&sensor_dev_attr_in10_min.dev_attr.attr,
551	&sensor_dev_attr_in10_max.dev_attr.attr,
552	&sensor_dev_attr_in10_lcrit.dev_attr.attr,
553	&sensor_dev_attr_in10_crit.dev_attr.attr,
554	&sensor_dev_attr_in10_crit_alarm.dev_attr.attr,
555
556	&sensor_dev_attr_temp1_input.dev_attr.attr,
557	&sensor_dev_attr_temp1_min.dev_attr.attr,
558	&sensor_dev_attr_temp1_max.dev_attr.attr,
559	&sensor_dev_attr_temp1_lcrit.dev_attr.attr,
560	&sensor_dev_attr_temp1_crit.dev_attr.attr,
561	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
562
563	NULL,
564};
565
566ATTRIBUTE_GROUPS(smm665);
567
568static int smm665_probe(struct i2c_client *client,
569			const struct i2c_device_id *id)
570{
571	struct i2c_adapter *adapter = client->adapter;
572	struct smm665_data *data;
573	struct device *hwmon_dev;
574	int i, ret;
575
576	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA
577				     | I2C_FUNC_SMBUS_WORD_DATA))
578		return -ENODEV;
579
580	if (i2c_smbus_read_byte_data(client, SMM665_ADOC_ENABLE) < 0)
581		return -ENODEV;
582
583	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
584	if (!data)
585		return -ENOMEM;
586
587	i2c_set_clientdata(client, data);
588	mutex_init(&data->update_lock);
589
590	data->client = client;
591	data->type = id->driver_data;
592	data->cmdreg = i2c_new_dummy(adapter, (client->addr & ~SMM665_REGMASK)
593				     | SMM665_CMDREG_BASE);
594	if (!data->cmdreg)
595		return -ENOMEM;
596
597	switch (data->type) {
598	case smm465:
599	case smm665:
600		data->conversion_time = SMM665_ADC_WAIT_SMM665;
601		break;
602	case smm665c:
603	case smm764:
604	case smm766:
605		data->conversion_time = SMM665_ADC_WAIT_SMM766;
606		break;
607	}
608
609	ret = -ENODEV;
610	if (i2c_smbus_read_byte_data(data->cmdreg, SMM665_MISC8_CMD_STS) < 0)
611		goto out_unregister;
612
613	/*
614	 * Read limits.
615	 *
616	 * Limit registers start with register SMM665_LIMIT_BASE.
617	 * Each channel uses 8 registers, providing four limit values
618	 * per channel. Each limit value requires two registers, with the
619	 * high byte in the first register and the low byte in the second
620	 * register. The first two limits are under limit values, followed
621	 * by two over limit values.
622	 *
623	 * Limit register order matches the ADC register order, so we use
624	 * ADC register defines throughout the code to index limit registers.
625	 *
626	 * We save the first retrieved value both as "critical" and "alarm"
627	 * value. The second value overwrites either the critical or the
628	 * alarm value, depending on its configuration. This ensures that both
629	 * critical and alarm values are initialized, even if both registers are
630	 * configured as critical or non-critical.
631	 */
632	for (i = 0; i < SMM665_NUM_ADC; i++) {
633		int val;
634
635		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8);
636		if (unlikely(val < 0))
637			goto out_unregister;
638		data->critical_min_limit[i] = data->alarm_min_limit[i]
639		  = smm665_convert(val, i);
640		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 2);
641		if (unlikely(val < 0))
642			goto out_unregister;
643		if (smm665_is_critical(val))
644			data->critical_min_limit[i] = smm665_convert(val, i);
645		else
646			data->alarm_min_limit[i] = smm665_convert(val, i);
647		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 4);
648		if (unlikely(val < 0))
649			goto out_unregister;
650		data->critical_max_limit[i] = data->alarm_max_limit[i]
651		  = smm665_convert(val, i);
652		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 6);
653		if (unlikely(val < 0))
654			goto out_unregister;
655		if (smm665_is_critical(val))
656			data->critical_max_limit[i] = smm665_convert(val, i);
657		else
658			data->alarm_max_limit[i] = smm665_convert(val, i);
659	}
660
661	hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev,
662							   client->name, data,
663							   smm665_groups);
664	if (IS_ERR(hwmon_dev)) {
665		ret = PTR_ERR(hwmon_dev);
666		goto out_unregister;
667	}
668
669	return 0;
670
671out_unregister:
672	i2c_unregister_device(data->cmdreg);
673	return ret;
674}
675
676static int smm665_remove(struct i2c_client *client)
677{
678	struct smm665_data *data = i2c_get_clientdata(client);
679
680	i2c_unregister_device(data->cmdreg);
681	return 0;
682}
683
684static const struct i2c_device_id smm665_id[] = {
685	{"smm465", smm465},
686	{"smm665", smm665},
687	{"smm665c", smm665c},
688	{"smm764", smm764},
689	{"smm766", smm766},
690	{}
691};
692
693MODULE_DEVICE_TABLE(i2c, smm665_id);
694
695/* This is the driver that will be inserted */
696static struct i2c_driver smm665_driver = {
697	.driver = {
698		   .name = "smm665",
699		   },
700	.probe = smm665_probe,
701	.remove = smm665_remove,
702	.id_table = smm665_id,
703};
704
705module_i2c_driver(smm665_driver);
706
707MODULE_AUTHOR("Guenter Roeck");
708MODULE_DESCRIPTION("SMM665 driver");
709MODULE_LICENSE("GPL");