Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for SMM665 Power Controller / Monitor
4 *
5 * Copyright (C) 2010 Ericsson AB.
6 *
7 * This driver should also work for SMM465, SMM764, and SMM766, but is untested
8 * for those chips. Only monitoring functionality is implemented.
9 *
10 * Datasheets:
11 * http://www.summitmicro.com/prod_select/summary/SMM665/SMM665B_2089_20.pdf
12 * http://www.summitmicro.com/prod_select/summary/SMM766B/SMM766B_2122.pdf
13 */
14
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/init.h>
18#include <linux/err.h>
19#include <linux/slab.h>
20#include <linux/i2c.h>
21#include <linux/hwmon.h>
22#include <linux/hwmon-sysfs.h>
23#include <linux/delay.h>
24#include <linux/jiffies.h>
25
26/* Internal reference voltage (VREF, x 1000 */
27#define SMM665_VREF_ADC_X1000 1250
28
29/* module parameters */
30static int vref = SMM665_VREF_ADC_X1000;
31module_param(vref, int, 0);
32MODULE_PARM_DESC(vref, "Reference voltage in mV");
33
34enum chips { smm465, smm665, smm665c, smm764, smm766 };
35
36/*
37 * ADC channel addresses
38 */
39#define SMM665_MISC16_ADC_DATA_A 0x00
40#define SMM665_MISC16_ADC_DATA_B 0x01
41#define SMM665_MISC16_ADC_DATA_C 0x02
42#define SMM665_MISC16_ADC_DATA_D 0x03
43#define SMM665_MISC16_ADC_DATA_E 0x04
44#define SMM665_MISC16_ADC_DATA_F 0x05
45#define SMM665_MISC16_ADC_DATA_VDD 0x06
46#define SMM665_MISC16_ADC_DATA_12V 0x07
47#define SMM665_MISC16_ADC_DATA_INT_TEMP 0x08
48#define SMM665_MISC16_ADC_DATA_AIN1 0x09
49#define SMM665_MISC16_ADC_DATA_AIN2 0x0a
50
51/*
52 * Command registers
53 */
54#define SMM665_MISC8_CMD_STS 0x80
55#define SMM665_MISC8_STATUS1 0x81
56#define SMM665_MISC8_STATUSS2 0x82
57#define SMM665_MISC8_IO_POLARITY 0x83
58#define SMM665_MISC8_PUP_POLARITY 0x84
59#define SMM665_MISC8_ADOC_STATUS1 0x85
60#define SMM665_MISC8_ADOC_STATUS2 0x86
61#define SMM665_MISC8_WRITE_PROT 0x87
62#define SMM665_MISC8_STS_TRACK 0x88
63
64/*
65 * Configuration registers and register groups
66 */
67#define SMM665_ADOC_ENABLE 0x0d
68#define SMM665_LIMIT_BASE 0x80 /* First limit register */
69
70/*
71 * Limit register bit masks
72 */
73#define SMM665_TRIGGER_RST 0x8000
74#define SMM665_TRIGGER_HEALTHY 0x4000
75#define SMM665_TRIGGER_POWEROFF 0x2000
76#define SMM665_TRIGGER_SHUTDOWN 0x1000
77#define SMM665_ADC_MASK 0x03ff
78
79#define smm665_is_critical(lim) ((lim) & (SMM665_TRIGGER_RST \
80 | SMM665_TRIGGER_POWEROFF \
81 | SMM665_TRIGGER_SHUTDOWN))
82/*
83 * Fault register bit definitions
84 * Values are merged from status registers 1/2,
85 * with status register 1 providing the upper 8 bits.
86 */
87#define SMM665_FAULT_A 0x0001
88#define SMM665_FAULT_B 0x0002
89#define SMM665_FAULT_C 0x0004
90#define SMM665_FAULT_D 0x0008
91#define SMM665_FAULT_E 0x0010
92#define SMM665_FAULT_F 0x0020
93#define SMM665_FAULT_VDD 0x0040
94#define SMM665_FAULT_12V 0x0080
95#define SMM665_FAULT_TEMP 0x0100
96#define SMM665_FAULT_AIN1 0x0200
97#define SMM665_FAULT_AIN2 0x0400
98
99/*
100 * I2C Register addresses
101 *
102 * The configuration register needs to be the configured base register.
103 * The command/status register address is derived from it.
104 */
105#define SMM665_REGMASK 0x78
106#define SMM665_CMDREG_BASE 0x48
107#define SMM665_CONFREG_BASE 0x50
108
109/*
110 * Equations given by chip manufacturer to calculate voltage/temperature values
111 * vref = Reference voltage on VREF_ADC pin (module parameter)
112 * adc = 10bit ADC value read back from registers
113 */
114
115/* Voltage A-F and VDD */
116#define SMM665_VMON_ADC_TO_VOLTS(adc) ((adc) * vref / 256)
117
118/* Voltage 12VIN */
119#define SMM665_12VIN_ADC_TO_VOLTS(adc) ((adc) * vref * 3 / 256)
120
121/* Voltage AIN1, AIN2 */
122#define SMM665_AIN_ADC_TO_VOLTS(adc) ((adc) * vref / 512)
123
124/* Temp Sensor */
125#define SMM665_TEMP_ADC_TO_CELSIUS(adc) (((adc) <= 511) ? \
126 ((int)(adc) * 1000 / 4) : \
127 (((int)(adc) - 0x400) * 1000 / 4))
128
129#define SMM665_NUM_ADC 11
130
131/*
132 * Chip dependent ADC conversion time, in uS
133 */
134#define SMM665_ADC_WAIT_SMM665 70
135#define SMM665_ADC_WAIT_SMM766 185
136
137struct smm665_data {
138 enum chips type;
139 int conversion_time; /* ADC conversion time */
140 struct i2c_client *client;
141 struct mutex update_lock;
142 bool valid;
143 unsigned long last_updated; /* in jiffies */
144 u16 adc[SMM665_NUM_ADC]; /* adc values (raw) */
145 u16 faults; /* fault status */
146 /* The following values are in mV */
147 int critical_min_limit[SMM665_NUM_ADC];
148 int alarm_min_limit[SMM665_NUM_ADC];
149 int critical_max_limit[SMM665_NUM_ADC];
150 int alarm_max_limit[SMM665_NUM_ADC];
151 struct i2c_client *cmdreg;
152};
153
154/*
155 * smm665_read16()
156 *
157 * Read 16 bit value from <reg>, <reg+1>. Upper 8 bits are in <reg>.
158 */
159static int smm665_read16(struct i2c_client *client, int reg)
160{
161 int rv, val;
162
163 rv = i2c_smbus_read_byte_data(client, reg);
164 if (rv < 0)
165 return rv;
166 val = rv << 8;
167 rv = i2c_smbus_read_byte_data(client, reg + 1);
168 if (rv < 0)
169 return rv;
170 val |= rv;
171 return val;
172}
173
174/*
175 * Read adc value.
176 */
177static int smm665_read_adc(struct smm665_data *data, int adc)
178{
179 struct i2c_client *client = data->cmdreg;
180 int rv;
181 int radc;
182
183 /*
184 * Algorithm for reading ADC, per SMM665 datasheet
185 *
186 * {[S][addr][W][Ack]} {[offset][Ack]} {[S][addr][R][Nack]}
187 * [wait conversion time]
188 * {[S][addr][R][Ack]} {[datahi][Ack]} {[datalo][Ack][P]}
189 *
190 * To implement the first part of this exchange,
191 * do a full read transaction and expect a failure/Nack.
192 * This sets up the address pointer on the SMM665
193 * and starts the ADC conversion.
194 * Then do a two-byte read transaction.
195 */
196 rv = i2c_smbus_read_byte_data(client, adc << 3);
197 if (rv != -ENXIO) {
198 /*
199 * We expect ENXIO to reflect NACK
200 * (per Documentation/i2c/fault-codes.rst).
201 * Everything else is an error.
202 */
203 dev_dbg(&client->dev,
204 "Unexpected return code %d when setting ADC index", rv);
205 return (rv < 0) ? rv : -EIO;
206 }
207
208 udelay(data->conversion_time);
209
210 /*
211 * Now read two bytes.
212 *
213 * Neither i2c_smbus_read_byte() nor
214 * i2c_smbus_read_block_data() worked here,
215 * so use i2c_smbus_read_word_swapped() instead.
216 * We could also try to use i2c_master_recv(),
217 * but that is not always supported.
218 */
219 rv = i2c_smbus_read_word_swapped(client, 0);
220 if (rv < 0) {
221 dev_dbg(&client->dev, "Failed to read ADC value: error %d", rv);
222 return rv;
223 }
224 /*
225 * Validate/verify readback adc channel (in bit 11..14).
226 */
227 radc = (rv >> 11) & 0x0f;
228 if (radc != adc) {
229 dev_dbg(&client->dev, "Unexpected RADC: Expected %d got %d",
230 adc, radc);
231 return -EIO;
232 }
233
234 return rv & SMM665_ADC_MASK;
235}
236
237static struct smm665_data *smm665_update_device(struct device *dev)
238{
239 struct smm665_data *data = dev_get_drvdata(dev);
240 struct i2c_client *client = data->client;
241 struct smm665_data *ret = data;
242
243 mutex_lock(&data->update_lock);
244
245 if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
246 int i, val;
247
248 /*
249 * read status registers
250 */
251 val = smm665_read16(client, SMM665_MISC8_STATUS1);
252 if (unlikely(val < 0)) {
253 ret = ERR_PTR(val);
254 goto abort;
255 }
256 data->faults = val;
257
258 /* Read adc registers */
259 for (i = 0; i < SMM665_NUM_ADC; i++) {
260 val = smm665_read_adc(data, i);
261 if (unlikely(val < 0)) {
262 ret = ERR_PTR(val);
263 goto abort;
264 }
265 data->adc[i] = val;
266 }
267 data->last_updated = jiffies;
268 data->valid = 1;
269 }
270abort:
271 mutex_unlock(&data->update_lock);
272 return ret;
273}
274
275/* Return converted value from given adc */
276static int smm665_convert(u16 adcval, int index)
277{
278 int val = 0;
279
280 switch (index) {
281 case SMM665_MISC16_ADC_DATA_12V:
282 val = SMM665_12VIN_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
283 break;
284
285 case SMM665_MISC16_ADC_DATA_VDD:
286 case SMM665_MISC16_ADC_DATA_A:
287 case SMM665_MISC16_ADC_DATA_B:
288 case SMM665_MISC16_ADC_DATA_C:
289 case SMM665_MISC16_ADC_DATA_D:
290 case SMM665_MISC16_ADC_DATA_E:
291 case SMM665_MISC16_ADC_DATA_F:
292 val = SMM665_VMON_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
293 break;
294
295 case SMM665_MISC16_ADC_DATA_AIN1:
296 case SMM665_MISC16_ADC_DATA_AIN2:
297 val = SMM665_AIN_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
298 break;
299
300 case SMM665_MISC16_ADC_DATA_INT_TEMP:
301 val = SMM665_TEMP_ADC_TO_CELSIUS(adcval & SMM665_ADC_MASK);
302 break;
303
304 default:
305 /* If we get here, the developer messed up */
306 WARN_ON_ONCE(1);
307 break;
308 }
309
310 return val;
311}
312
313static int smm665_get_min(struct device *dev, int index)
314{
315 struct smm665_data *data = dev_get_drvdata(dev);
316
317 return data->alarm_min_limit[index];
318}
319
320static int smm665_get_max(struct device *dev, int index)
321{
322 struct smm665_data *data = dev_get_drvdata(dev);
323
324 return data->alarm_max_limit[index];
325}
326
327static int smm665_get_lcrit(struct device *dev, int index)
328{
329 struct smm665_data *data = dev_get_drvdata(dev);
330
331 return data->critical_min_limit[index];
332}
333
334static int smm665_get_crit(struct device *dev, int index)
335{
336 struct smm665_data *data = dev_get_drvdata(dev);
337
338 return data->critical_max_limit[index];
339}
340
341static ssize_t smm665_show_crit_alarm(struct device *dev,
342 struct device_attribute *da, char *buf)
343{
344 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
345 struct smm665_data *data = smm665_update_device(dev);
346 int val = 0;
347
348 if (IS_ERR(data))
349 return PTR_ERR(data);
350
351 if (data->faults & (1 << attr->index))
352 val = 1;
353
354 return snprintf(buf, PAGE_SIZE, "%d\n", val);
355}
356
357static ssize_t smm665_show_input(struct device *dev,
358 struct device_attribute *da, char *buf)
359{
360 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
361 struct smm665_data *data = smm665_update_device(dev);
362 int adc = attr->index;
363 int val;
364
365 if (IS_ERR(data))
366 return PTR_ERR(data);
367
368 val = smm665_convert(data->adc[adc], adc);
369 return snprintf(buf, PAGE_SIZE, "%d\n", val);
370}
371
372#define SMM665_SHOW(what) \
373static ssize_t smm665_show_##what(struct device *dev, \
374 struct device_attribute *da, char *buf) \
375{ \
376 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); \
377 const int val = smm665_get_##what(dev, attr->index); \
378 return snprintf(buf, PAGE_SIZE, "%d\n", val); \
379}
380
381SMM665_SHOW(min);
382SMM665_SHOW(max);
383SMM665_SHOW(lcrit);
384SMM665_SHOW(crit);
385
386/*
387 * These macros are used below in constructing device attribute objects
388 * for use with sysfs_create_group() to make a sysfs device file
389 * for each register.
390 */
391
392#define SMM665_ATTR(name, type, cmd_idx) \
393 static SENSOR_DEVICE_ATTR(name##_##type, S_IRUGO, \
394 smm665_show_##type, NULL, cmd_idx)
395
396/* Construct a sensor_device_attribute structure for each register */
397
398/* Input voltages */
399SMM665_ATTR(in1, input, SMM665_MISC16_ADC_DATA_12V);
400SMM665_ATTR(in2, input, SMM665_MISC16_ADC_DATA_VDD);
401SMM665_ATTR(in3, input, SMM665_MISC16_ADC_DATA_A);
402SMM665_ATTR(in4, input, SMM665_MISC16_ADC_DATA_B);
403SMM665_ATTR(in5, input, SMM665_MISC16_ADC_DATA_C);
404SMM665_ATTR(in6, input, SMM665_MISC16_ADC_DATA_D);
405SMM665_ATTR(in7, input, SMM665_MISC16_ADC_DATA_E);
406SMM665_ATTR(in8, input, SMM665_MISC16_ADC_DATA_F);
407SMM665_ATTR(in9, input, SMM665_MISC16_ADC_DATA_AIN1);
408SMM665_ATTR(in10, input, SMM665_MISC16_ADC_DATA_AIN2);
409
410/* Input voltages min */
411SMM665_ATTR(in1, min, SMM665_MISC16_ADC_DATA_12V);
412SMM665_ATTR(in2, min, SMM665_MISC16_ADC_DATA_VDD);
413SMM665_ATTR(in3, min, SMM665_MISC16_ADC_DATA_A);
414SMM665_ATTR(in4, min, SMM665_MISC16_ADC_DATA_B);
415SMM665_ATTR(in5, min, SMM665_MISC16_ADC_DATA_C);
416SMM665_ATTR(in6, min, SMM665_MISC16_ADC_DATA_D);
417SMM665_ATTR(in7, min, SMM665_MISC16_ADC_DATA_E);
418SMM665_ATTR(in8, min, SMM665_MISC16_ADC_DATA_F);
419SMM665_ATTR(in9, min, SMM665_MISC16_ADC_DATA_AIN1);
420SMM665_ATTR(in10, min, SMM665_MISC16_ADC_DATA_AIN2);
421
422/* Input voltages max */
423SMM665_ATTR(in1, max, SMM665_MISC16_ADC_DATA_12V);
424SMM665_ATTR(in2, max, SMM665_MISC16_ADC_DATA_VDD);
425SMM665_ATTR(in3, max, SMM665_MISC16_ADC_DATA_A);
426SMM665_ATTR(in4, max, SMM665_MISC16_ADC_DATA_B);
427SMM665_ATTR(in5, max, SMM665_MISC16_ADC_DATA_C);
428SMM665_ATTR(in6, max, SMM665_MISC16_ADC_DATA_D);
429SMM665_ATTR(in7, max, SMM665_MISC16_ADC_DATA_E);
430SMM665_ATTR(in8, max, SMM665_MISC16_ADC_DATA_F);
431SMM665_ATTR(in9, max, SMM665_MISC16_ADC_DATA_AIN1);
432SMM665_ATTR(in10, max, SMM665_MISC16_ADC_DATA_AIN2);
433
434/* Input voltages lcrit */
435SMM665_ATTR(in1, lcrit, SMM665_MISC16_ADC_DATA_12V);
436SMM665_ATTR(in2, lcrit, SMM665_MISC16_ADC_DATA_VDD);
437SMM665_ATTR(in3, lcrit, SMM665_MISC16_ADC_DATA_A);
438SMM665_ATTR(in4, lcrit, SMM665_MISC16_ADC_DATA_B);
439SMM665_ATTR(in5, lcrit, SMM665_MISC16_ADC_DATA_C);
440SMM665_ATTR(in6, lcrit, SMM665_MISC16_ADC_DATA_D);
441SMM665_ATTR(in7, lcrit, SMM665_MISC16_ADC_DATA_E);
442SMM665_ATTR(in8, lcrit, SMM665_MISC16_ADC_DATA_F);
443SMM665_ATTR(in9, lcrit, SMM665_MISC16_ADC_DATA_AIN1);
444SMM665_ATTR(in10, lcrit, SMM665_MISC16_ADC_DATA_AIN2);
445
446/* Input voltages crit */
447SMM665_ATTR(in1, crit, SMM665_MISC16_ADC_DATA_12V);
448SMM665_ATTR(in2, crit, SMM665_MISC16_ADC_DATA_VDD);
449SMM665_ATTR(in3, crit, SMM665_MISC16_ADC_DATA_A);
450SMM665_ATTR(in4, crit, SMM665_MISC16_ADC_DATA_B);
451SMM665_ATTR(in5, crit, SMM665_MISC16_ADC_DATA_C);
452SMM665_ATTR(in6, crit, SMM665_MISC16_ADC_DATA_D);
453SMM665_ATTR(in7, crit, SMM665_MISC16_ADC_DATA_E);
454SMM665_ATTR(in8, crit, SMM665_MISC16_ADC_DATA_F);
455SMM665_ATTR(in9, crit, SMM665_MISC16_ADC_DATA_AIN1);
456SMM665_ATTR(in10, crit, SMM665_MISC16_ADC_DATA_AIN2);
457
458/* critical alarms */
459SMM665_ATTR(in1, crit_alarm, SMM665_FAULT_12V);
460SMM665_ATTR(in2, crit_alarm, SMM665_FAULT_VDD);
461SMM665_ATTR(in3, crit_alarm, SMM665_FAULT_A);
462SMM665_ATTR(in4, crit_alarm, SMM665_FAULT_B);
463SMM665_ATTR(in5, crit_alarm, SMM665_FAULT_C);
464SMM665_ATTR(in6, crit_alarm, SMM665_FAULT_D);
465SMM665_ATTR(in7, crit_alarm, SMM665_FAULT_E);
466SMM665_ATTR(in8, crit_alarm, SMM665_FAULT_F);
467SMM665_ATTR(in9, crit_alarm, SMM665_FAULT_AIN1);
468SMM665_ATTR(in10, crit_alarm, SMM665_FAULT_AIN2);
469
470/* Temperature */
471SMM665_ATTR(temp1, input, SMM665_MISC16_ADC_DATA_INT_TEMP);
472SMM665_ATTR(temp1, min, SMM665_MISC16_ADC_DATA_INT_TEMP);
473SMM665_ATTR(temp1, max, SMM665_MISC16_ADC_DATA_INT_TEMP);
474SMM665_ATTR(temp1, lcrit, SMM665_MISC16_ADC_DATA_INT_TEMP);
475SMM665_ATTR(temp1, crit, SMM665_MISC16_ADC_DATA_INT_TEMP);
476SMM665_ATTR(temp1, crit_alarm, SMM665_FAULT_TEMP);
477
478/*
479 * Finally, construct an array of pointers to members of the above objects,
480 * as required for sysfs_create_group()
481 */
482static struct attribute *smm665_attrs[] = {
483 &sensor_dev_attr_in1_input.dev_attr.attr,
484 &sensor_dev_attr_in1_min.dev_attr.attr,
485 &sensor_dev_attr_in1_max.dev_attr.attr,
486 &sensor_dev_attr_in1_lcrit.dev_attr.attr,
487 &sensor_dev_attr_in1_crit.dev_attr.attr,
488 &sensor_dev_attr_in1_crit_alarm.dev_attr.attr,
489
490 &sensor_dev_attr_in2_input.dev_attr.attr,
491 &sensor_dev_attr_in2_min.dev_attr.attr,
492 &sensor_dev_attr_in2_max.dev_attr.attr,
493 &sensor_dev_attr_in2_lcrit.dev_attr.attr,
494 &sensor_dev_attr_in2_crit.dev_attr.attr,
495 &sensor_dev_attr_in2_crit_alarm.dev_attr.attr,
496
497 &sensor_dev_attr_in3_input.dev_attr.attr,
498 &sensor_dev_attr_in3_min.dev_attr.attr,
499 &sensor_dev_attr_in3_max.dev_attr.attr,
500 &sensor_dev_attr_in3_lcrit.dev_attr.attr,
501 &sensor_dev_attr_in3_crit.dev_attr.attr,
502 &sensor_dev_attr_in3_crit_alarm.dev_attr.attr,
503
504 &sensor_dev_attr_in4_input.dev_attr.attr,
505 &sensor_dev_attr_in4_min.dev_attr.attr,
506 &sensor_dev_attr_in4_max.dev_attr.attr,
507 &sensor_dev_attr_in4_lcrit.dev_attr.attr,
508 &sensor_dev_attr_in4_crit.dev_attr.attr,
509 &sensor_dev_attr_in4_crit_alarm.dev_attr.attr,
510
511 &sensor_dev_attr_in5_input.dev_attr.attr,
512 &sensor_dev_attr_in5_min.dev_attr.attr,
513 &sensor_dev_attr_in5_max.dev_attr.attr,
514 &sensor_dev_attr_in5_lcrit.dev_attr.attr,
515 &sensor_dev_attr_in5_crit.dev_attr.attr,
516 &sensor_dev_attr_in5_crit_alarm.dev_attr.attr,
517
518 &sensor_dev_attr_in6_input.dev_attr.attr,
519 &sensor_dev_attr_in6_min.dev_attr.attr,
520 &sensor_dev_attr_in6_max.dev_attr.attr,
521 &sensor_dev_attr_in6_lcrit.dev_attr.attr,
522 &sensor_dev_attr_in6_crit.dev_attr.attr,
523 &sensor_dev_attr_in6_crit_alarm.dev_attr.attr,
524
525 &sensor_dev_attr_in7_input.dev_attr.attr,
526 &sensor_dev_attr_in7_min.dev_attr.attr,
527 &sensor_dev_attr_in7_max.dev_attr.attr,
528 &sensor_dev_attr_in7_lcrit.dev_attr.attr,
529 &sensor_dev_attr_in7_crit.dev_attr.attr,
530 &sensor_dev_attr_in7_crit_alarm.dev_attr.attr,
531
532 &sensor_dev_attr_in8_input.dev_attr.attr,
533 &sensor_dev_attr_in8_min.dev_attr.attr,
534 &sensor_dev_attr_in8_max.dev_attr.attr,
535 &sensor_dev_attr_in8_lcrit.dev_attr.attr,
536 &sensor_dev_attr_in8_crit.dev_attr.attr,
537 &sensor_dev_attr_in8_crit_alarm.dev_attr.attr,
538
539 &sensor_dev_attr_in9_input.dev_attr.attr,
540 &sensor_dev_attr_in9_min.dev_attr.attr,
541 &sensor_dev_attr_in9_max.dev_attr.attr,
542 &sensor_dev_attr_in9_lcrit.dev_attr.attr,
543 &sensor_dev_attr_in9_crit.dev_attr.attr,
544 &sensor_dev_attr_in9_crit_alarm.dev_attr.attr,
545
546 &sensor_dev_attr_in10_input.dev_attr.attr,
547 &sensor_dev_attr_in10_min.dev_attr.attr,
548 &sensor_dev_attr_in10_max.dev_attr.attr,
549 &sensor_dev_attr_in10_lcrit.dev_attr.attr,
550 &sensor_dev_attr_in10_crit.dev_attr.attr,
551 &sensor_dev_attr_in10_crit_alarm.dev_attr.attr,
552
553 &sensor_dev_attr_temp1_input.dev_attr.attr,
554 &sensor_dev_attr_temp1_min.dev_attr.attr,
555 &sensor_dev_attr_temp1_max.dev_attr.attr,
556 &sensor_dev_attr_temp1_lcrit.dev_attr.attr,
557 &sensor_dev_attr_temp1_crit.dev_attr.attr,
558 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
559
560 NULL,
561};
562
563ATTRIBUTE_GROUPS(smm665);
564
565static int smm665_probe(struct i2c_client *client,
566 const struct i2c_device_id *id)
567{
568 struct i2c_adapter *adapter = client->adapter;
569 struct smm665_data *data;
570 struct device *hwmon_dev;
571 int i, ret;
572
573 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA
574 | I2C_FUNC_SMBUS_WORD_DATA))
575 return -ENODEV;
576
577 if (i2c_smbus_read_byte_data(client, SMM665_ADOC_ENABLE) < 0)
578 return -ENODEV;
579
580 data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
581 if (!data)
582 return -ENOMEM;
583
584 i2c_set_clientdata(client, data);
585 mutex_init(&data->update_lock);
586
587 data->client = client;
588 data->type = id->driver_data;
589 data->cmdreg = i2c_new_dummy_device(adapter, (client->addr & ~SMM665_REGMASK)
590 | SMM665_CMDREG_BASE);
591 if (IS_ERR(data->cmdreg))
592 return PTR_ERR(data->cmdreg);
593
594 switch (data->type) {
595 case smm465:
596 case smm665:
597 data->conversion_time = SMM665_ADC_WAIT_SMM665;
598 break;
599 case smm665c:
600 case smm764:
601 case smm766:
602 data->conversion_time = SMM665_ADC_WAIT_SMM766;
603 break;
604 }
605
606 ret = -ENODEV;
607 if (i2c_smbus_read_byte_data(data->cmdreg, SMM665_MISC8_CMD_STS) < 0)
608 goto out_unregister;
609
610 /*
611 * Read limits.
612 *
613 * Limit registers start with register SMM665_LIMIT_BASE.
614 * Each channel uses 8 registers, providing four limit values
615 * per channel. Each limit value requires two registers, with the
616 * high byte in the first register and the low byte in the second
617 * register. The first two limits are under limit values, followed
618 * by two over limit values.
619 *
620 * Limit register order matches the ADC register order, so we use
621 * ADC register defines throughout the code to index limit registers.
622 *
623 * We save the first retrieved value both as "critical" and "alarm"
624 * value. The second value overwrites either the critical or the
625 * alarm value, depending on its configuration. This ensures that both
626 * critical and alarm values are initialized, even if both registers are
627 * configured as critical or non-critical.
628 */
629 for (i = 0; i < SMM665_NUM_ADC; i++) {
630 int val;
631
632 val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8);
633 if (unlikely(val < 0))
634 goto out_unregister;
635 data->critical_min_limit[i] = data->alarm_min_limit[i]
636 = smm665_convert(val, i);
637 val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 2);
638 if (unlikely(val < 0))
639 goto out_unregister;
640 if (smm665_is_critical(val))
641 data->critical_min_limit[i] = smm665_convert(val, i);
642 else
643 data->alarm_min_limit[i] = smm665_convert(val, i);
644 val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 4);
645 if (unlikely(val < 0))
646 goto out_unregister;
647 data->critical_max_limit[i] = data->alarm_max_limit[i]
648 = smm665_convert(val, i);
649 val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 6);
650 if (unlikely(val < 0))
651 goto out_unregister;
652 if (smm665_is_critical(val))
653 data->critical_max_limit[i] = smm665_convert(val, i);
654 else
655 data->alarm_max_limit[i] = smm665_convert(val, i);
656 }
657
658 hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev,
659 client->name, data,
660 smm665_groups);
661 if (IS_ERR(hwmon_dev)) {
662 ret = PTR_ERR(hwmon_dev);
663 goto out_unregister;
664 }
665
666 return 0;
667
668out_unregister:
669 i2c_unregister_device(data->cmdreg);
670 return ret;
671}
672
673static int smm665_remove(struct i2c_client *client)
674{
675 struct smm665_data *data = i2c_get_clientdata(client);
676
677 i2c_unregister_device(data->cmdreg);
678 return 0;
679}
680
681static const struct i2c_device_id smm665_id[] = {
682 {"smm465", smm465},
683 {"smm665", smm665},
684 {"smm665c", smm665c},
685 {"smm764", smm764},
686 {"smm766", smm766},
687 {}
688};
689
690MODULE_DEVICE_TABLE(i2c, smm665_id);
691
692/* This is the driver that will be inserted */
693static struct i2c_driver smm665_driver = {
694 .driver = {
695 .name = "smm665",
696 },
697 .probe = smm665_probe,
698 .remove = smm665_remove,
699 .id_table = smm665_id,
700};
701
702module_i2c_driver(smm665_driver);
703
704MODULE_AUTHOR("Guenter Roeck");
705MODULE_DESCRIPTION("SMM665 driver");
706MODULE_LICENSE("GPL");
1/*
2 * Driver for SMM665 Power Controller / Monitor
3 *
4 * Copyright (C) 2010 Ericsson AB.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 *
10 * This driver should also work for SMM465, SMM764, and SMM766, but is untested
11 * for those chips. Only monitoring functionality is implemented.
12 *
13 * Datasheets:
14 * http://www.summitmicro.com/prod_select/summary/SMM665/SMM665B_2089_20.pdf
15 * http://www.summitmicro.com/prod_select/summary/SMM766B/SMM766B_2122.pdf
16 */
17
18#include <linux/kernel.h>
19#include <linux/module.h>
20#include <linux/init.h>
21#include <linux/err.h>
22#include <linux/slab.h>
23#include <linux/i2c.h>
24#include <linux/hwmon.h>
25#include <linux/hwmon-sysfs.h>
26#include <linux/delay.h>
27#include <linux/jiffies.h>
28
29/* Internal reference voltage (VREF, x 1000 */
30#define SMM665_VREF_ADC_X1000 1250
31
32/* module parameters */
33static int vref = SMM665_VREF_ADC_X1000;
34module_param(vref, int, 0);
35MODULE_PARM_DESC(vref, "Reference voltage in mV");
36
37enum chips { smm465, smm665, smm665c, smm764, smm766 };
38
39/*
40 * ADC channel addresses
41 */
42#define SMM665_MISC16_ADC_DATA_A 0x00
43#define SMM665_MISC16_ADC_DATA_B 0x01
44#define SMM665_MISC16_ADC_DATA_C 0x02
45#define SMM665_MISC16_ADC_DATA_D 0x03
46#define SMM665_MISC16_ADC_DATA_E 0x04
47#define SMM665_MISC16_ADC_DATA_F 0x05
48#define SMM665_MISC16_ADC_DATA_VDD 0x06
49#define SMM665_MISC16_ADC_DATA_12V 0x07
50#define SMM665_MISC16_ADC_DATA_INT_TEMP 0x08
51#define SMM665_MISC16_ADC_DATA_AIN1 0x09
52#define SMM665_MISC16_ADC_DATA_AIN2 0x0a
53
54/*
55 * Command registers
56 */
57#define SMM665_MISC8_CMD_STS 0x80
58#define SMM665_MISC8_STATUS1 0x81
59#define SMM665_MISC8_STATUSS2 0x82
60#define SMM665_MISC8_IO_POLARITY 0x83
61#define SMM665_MISC8_PUP_POLARITY 0x84
62#define SMM665_MISC8_ADOC_STATUS1 0x85
63#define SMM665_MISC8_ADOC_STATUS2 0x86
64#define SMM665_MISC8_WRITE_PROT 0x87
65#define SMM665_MISC8_STS_TRACK 0x88
66
67/*
68 * Configuration registers and register groups
69 */
70#define SMM665_ADOC_ENABLE 0x0d
71#define SMM665_LIMIT_BASE 0x80 /* First limit register */
72
73/*
74 * Limit register bit masks
75 */
76#define SMM665_TRIGGER_RST 0x8000
77#define SMM665_TRIGGER_HEALTHY 0x4000
78#define SMM665_TRIGGER_POWEROFF 0x2000
79#define SMM665_TRIGGER_SHUTDOWN 0x1000
80#define SMM665_ADC_MASK 0x03ff
81
82#define smm665_is_critical(lim) ((lim) & (SMM665_TRIGGER_RST \
83 | SMM665_TRIGGER_POWEROFF \
84 | SMM665_TRIGGER_SHUTDOWN))
85/*
86 * Fault register bit definitions
87 * Values are merged from status registers 1/2,
88 * with status register 1 providing the upper 8 bits.
89 */
90#define SMM665_FAULT_A 0x0001
91#define SMM665_FAULT_B 0x0002
92#define SMM665_FAULT_C 0x0004
93#define SMM665_FAULT_D 0x0008
94#define SMM665_FAULT_E 0x0010
95#define SMM665_FAULT_F 0x0020
96#define SMM665_FAULT_VDD 0x0040
97#define SMM665_FAULT_12V 0x0080
98#define SMM665_FAULT_TEMP 0x0100
99#define SMM665_FAULT_AIN1 0x0200
100#define SMM665_FAULT_AIN2 0x0400
101
102/*
103 * I2C Register addresses
104 *
105 * The configuration register needs to be the configured base register.
106 * The command/status register address is derived from it.
107 */
108#define SMM665_REGMASK 0x78
109#define SMM665_CMDREG_BASE 0x48
110#define SMM665_CONFREG_BASE 0x50
111
112/*
113 * Equations given by chip manufacturer to calculate voltage/temperature values
114 * vref = Reference voltage on VREF_ADC pin (module parameter)
115 * adc = 10bit ADC value read back from registers
116 */
117
118/* Voltage A-F and VDD */
119#define SMM665_VMON_ADC_TO_VOLTS(adc) ((adc) * vref / 256)
120
121/* Voltage 12VIN */
122#define SMM665_12VIN_ADC_TO_VOLTS(adc) ((adc) * vref * 3 / 256)
123
124/* Voltage AIN1, AIN2 */
125#define SMM665_AIN_ADC_TO_VOLTS(adc) ((adc) * vref / 512)
126
127/* Temp Sensor */
128#define SMM665_TEMP_ADC_TO_CELSIUS(adc) (((adc) <= 511) ? \
129 ((int)(adc) * 1000 / 4) : \
130 (((int)(adc) - 0x400) * 1000 / 4))
131
132#define SMM665_NUM_ADC 11
133
134/*
135 * Chip dependent ADC conversion time, in uS
136 */
137#define SMM665_ADC_WAIT_SMM665 70
138#define SMM665_ADC_WAIT_SMM766 185
139
140struct smm665_data {
141 enum chips type;
142 int conversion_time; /* ADC conversion time */
143 struct i2c_client *client;
144 struct mutex update_lock;
145 bool valid;
146 unsigned long last_updated; /* in jiffies */
147 u16 adc[SMM665_NUM_ADC]; /* adc values (raw) */
148 u16 faults; /* fault status */
149 /* The following values are in mV */
150 int critical_min_limit[SMM665_NUM_ADC];
151 int alarm_min_limit[SMM665_NUM_ADC];
152 int critical_max_limit[SMM665_NUM_ADC];
153 int alarm_max_limit[SMM665_NUM_ADC];
154 struct i2c_client *cmdreg;
155};
156
157/*
158 * smm665_read16()
159 *
160 * Read 16 bit value from <reg>, <reg+1>. Upper 8 bits are in <reg>.
161 */
162static int smm665_read16(struct i2c_client *client, int reg)
163{
164 int rv, val;
165
166 rv = i2c_smbus_read_byte_data(client, reg);
167 if (rv < 0)
168 return rv;
169 val = rv << 8;
170 rv = i2c_smbus_read_byte_data(client, reg + 1);
171 if (rv < 0)
172 return rv;
173 val |= rv;
174 return val;
175}
176
177/*
178 * Read adc value.
179 */
180static int smm665_read_adc(struct smm665_data *data, int adc)
181{
182 struct i2c_client *client = data->cmdreg;
183 int rv;
184 int radc;
185
186 /*
187 * Algorithm for reading ADC, per SMM665 datasheet
188 *
189 * {[S][addr][W][Ack]} {[offset][Ack]} {[S][addr][R][Nack]}
190 * [wait conversion time]
191 * {[S][addr][R][Ack]} {[datahi][Ack]} {[datalo][Ack][P]}
192 *
193 * To implement the first part of this exchange,
194 * do a full read transaction and expect a failure/Nack.
195 * This sets up the address pointer on the SMM665
196 * and starts the ADC conversion.
197 * Then do a two-byte read transaction.
198 */
199 rv = i2c_smbus_read_byte_data(client, adc << 3);
200 if (rv != -ENXIO) {
201 /*
202 * We expect ENXIO to reflect NACK
203 * (per Documentation/i2c/fault-codes).
204 * Everything else is an error.
205 */
206 dev_dbg(&client->dev,
207 "Unexpected return code %d when setting ADC index", rv);
208 return (rv < 0) ? rv : -EIO;
209 }
210
211 udelay(data->conversion_time);
212
213 /*
214 * Now read two bytes.
215 *
216 * Neither i2c_smbus_read_byte() nor
217 * i2c_smbus_read_block_data() worked here,
218 * so use i2c_smbus_read_word_swapped() instead.
219 * We could also try to use i2c_master_recv(),
220 * but that is not always supported.
221 */
222 rv = i2c_smbus_read_word_swapped(client, 0);
223 if (rv < 0) {
224 dev_dbg(&client->dev, "Failed to read ADC value: error %d", rv);
225 return rv;
226 }
227 /*
228 * Validate/verify readback adc channel (in bit 11..14).
229 */
230 radc = (rv >> 11) & 0x0f;
231 if (radc != adc) {
232 dev_dbg(&client->dev, "Unexpected RADC: Expected %d got %d",
233 adc, radc);
234 return -EIO;
235 }
236
237 return rv & SMM665_ADC_MASK;
238}
239
240static struct smm665_data *smm665_update_device(struct device *dev)
241{
242 struct smm665_data *data = dev_get_drvdata(dev);
243 struct i2c_client *client = data->client;
244 struct smm665_data *ret = data;
245
246 mutex_lock(&data->update_lock);
247
248 if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
249 int i, val;
250
251 /*
252 * read status registers
253 */
254 val = smm665_read16(client, SMM665_MISC8_STATUS1);
255 if (unlikely(val < 0)) {
256 ret = ERR_PTR(val);
257 goto abort;
258 }
259 data->faults = val;
260
261 /* Read adc registers */
262 for (i = 0; i < SMM665_NUM_ADC; i++) {
263 val = smm665_read_adc(data, i);
264 if (unlikely(val < 0)) {
265 ret = ERR_PTR(val);
266 goto abort;
267 }
268 data->adc[i] = val;
269 }
270 data->last_updated = jiffies;
271 data->valid = 1;
272 }
273abort:
274 mutex_unlock(&data->update_lock);
275 return ret;
276}
277
278/* Return converted value from given adc */
279static int smm665_convert(u16 adcval, int index)
280{
281 int val = 0;
282
283 switch (index) {
284 case SMM665_MISC16_ADC_DATA_12V:
285 val = SMM665_12VIN_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
286 break;
287
288 case SMM665_MISC16_ADC_DATA_VDD:
289 case SMM665_MISC16_ADC_DATA_A:
290 case SMM665_MISC16_ADC_DATA_B:
291 case SMM665_MISC16_ADC_DATA_C:
292 case SMM665_MISC16_ADC_DATA_D:
293 case SMM665_MISC16_ADC_DATA_E:
294 case SMM665_MISC16_ADC_DATA_F:
295 val = SMM665_VMON_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
296 break;
297
298 case SMM665_MISC16_ADC_DATA_AIN1:
299 case SMM665_MISC16_ADC_DATA_AIN2:
300 val = SMM665_AIN_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
301 break;
302
303 case SMM665_MISC16_ADC_DATA_INT_TEMP:
304 val = SMM665_TEMP_ADC_TO_CELSIUS(adcval & SMM665_ADC_MASK);
305 break;
306
307 default:
308 /* If we get here, the developer messed up */
309 WARN_ON_ONCE(1);
310 break;
311 }
312
313 return val;
314}
315
316static int smm665_get_min(struct device *dev, int index)
317{
318 struct smm665_data *data = dev_get_drvdata(dev);
319
320 return data->alarm_min_limit[index];
321}
322
323static int smm665_get_max(struct device *dev, int index)
324{
325 struct smm665_data *data = dev_get_drvdata(dev);
326
327 return data->alarm_max_limit[index];
328}
329
330static int smm665_get_lcrit(struct device *dev, int index)
331{
332 struct smm665_data *data = dev_get_drvdata(dev);
333
334 return data->critical_min_limit[index];
335}
336
337static int smm665_get_crit(struct device *dev, int index)
338{
339 struct smm665_data *data = dev_get_drvdata(dev);
340
341 return data->critical_max_limit[index];
342}
343
344static ssize_t smm665_show_crit_alarm(struct device *dev,
345 struct device_attribute *da, char *buf)
346{
347 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
348 struct smm665_data *data = smm665_update_device(dev);
349 int val = 0;
350
351 if (IS_ERR(data))
352 return PTR_ERR(data);
353
354 if (data->faults & (1 << attr->index))
355 val = 1;
356
357 return snprintf(buf, PAGE_SIZE, "%d\n", val);
358}
359
360static ssize_t smm665_show_input(struct device *dev,
361 struct device_attribute *da, char *buf)
362{
363 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
364 struct smm665_data *data = smm665_update_device(dev);
365 int adc = attr->index;
366 int val;
367
368 if (IS_ERR(data))
369 return PTR_ERR(data);
370
371 val = smm665_convert(data->adc[adc], adc);
372 return snprintf(buf, PAGE_SIZE, "%d\n", val);
373}
374
375#define SMM665_SHOW(what) \
376static ssize_t smm665_show_##what(struct device *dev, \
377 struct device_attribute *da, char *buf) \
378{ \
379 struct sensor_device_attribute *attr = to_sensor_dev_attr(da); \
380 const int val = smm665_get_##what(dev, attr->index); \
381 return snprintf(buf, PAGE_SIZE, "%d\n", val); \
382}
383
384SMM665_SHOW(min);
385SMM665_SHOW(max);
386SMM665_SHOW(lcrit);
387SMM665_SHOW(crit);
388
389/*
390 * These macros are used below in constructing device attribute objects
391 * for use with sysfs_create_group() to make a sysfs device file
392 * for each register.
393 */
394
395#define SMM665_ATTR(name, type, cmd_idx) \
396 static SENSOR_DEVICE_ATTR(name##_##type, S_IRUGO, \
397 smm665_show_##type, NULL, cmd_idx)
398
399/* Construct a sensor_device_attribute structure for each register */
400
401/* Input voltages */
402SMM665_ATTR(in1, input, SMM665_MISC16_ADC_DATA_12V);
403SMM665_ATTR(in2, input, SMM665_MISC16_ADC_DATA_VDD);
404SMM665_ATTR(in3, input, SMM665_MISC16_ADC_DATA_A);
405SMM665_ATTR(in4, input, SMM665_MISC16_ADC_DATA_B);
406SMM665_ATTR(in5, input, SMM665_MISC16_ADC_DATA_C);
407SMM665_ATTR(in6, input, SMM665_MISC16_ADC_DATA_D);
408SMM665_ATTR(in7, input, SMM665_MISC16_ADC_DATA_E);
409SMM665_ATTR(in8, input, SMM665_MISC16_ADC_DATA_F);
410SMM665_ATTR(in9, input, SMM665_MISC16_ADC_DATA_AIN1);
411SMM665_ATTR(in10, input, SMM665_MISC16_ADC_DATA_AIN2);
412
413/* Input voltages min */
414SMM665_ATTR(in1, min, SMM665_MISC16_ADC_DATA_12V);
415SMM665_ATTR(in2, min, SMM665_MISC16_ADC_DATA_VDD);
416SMM665_ATTR(in3, min, SMM665_MISC16_ADC_DATA_A);
417SMM665_ATTR(in4, min, SMM665_MISC16_ADC_DATA_B);
418SMM665_ATTR(in5, min, SMM665_MISC16_ADC_DATA_C);
419SMM665_ATTR(in6, min, SMM665_MISC16_ADC_DATA_D);
420SMM665_ATTR(in7, min, SMM665_MISC16_ADC_DATA_E);
421SMM665_ATTR(in8, min, SMM665_MISC16_ADC_DATA_F);
422SMM665_ATTR(in9, min, SMM665_MISC16_ADC_DATA_AIN1);
423SMM665_ATTR(in10, min, SMM665_MISC16_ADC_DATA_AIN2);
424
425/* Input voltages max */
426SMM665_ATTR(in1, max, SMM665_MISC16_ADC_DATA_12V);
427SMM665_ATTR(in2, max, SMM665_MISC16_ADC_DATA_VDD);
428SMM665_ATTR(in3, max, SMM665_MISC16_ADC_DATA_A);
429SMM665_ATTR(in4, max, SMM665_MISC16_ADC_DATA_B);
430SMM665_ATTR(in5, max, SMM665_MISC16_ADC_DATA_C);
431SMM665_ATTR(in6, max, SMM665_MISC16_ADC_DATA_D);
432SMM665_ATTR(in7, max, SMM665_MISC16_ADC_DATA_E);
433SMM665_ATTR(in8, max, SMM665_MISC16_ADC_DATA_F);
434SMM665_ATTR(in9, max, SMM665_MISC16_ADC_DATA_AIN1);
435SMM665_ATTR(in10, max, SMM665_MISC16_ADC_DATA_AIN2);
436
437/* Input voltages lcrit */
438SMM665_ATTR(in1, lcrit, SMM665_MISC16_ADC_DATA_12V);
439SMM665_ATTR(in2, lcrit, SMM665_MISC16_ADC_DATA_VDD);
440SMM665_ATTR(in3, lcrit, SMM665_MISC16_ADC_DATA_A);
441SMM665_ATTR(in4, lcrit, SMM665_MISC16_ADC_DATA_B);
442SMM665_ATTR(in5, lcrit, SMM665_MISC16_ADC_DATA_C);
443SMM665_ATTR(in6, lcrit, SMM665_MISC16_ADC_DATA_D);
444SMM665_ATTR(in7, lcrit, SMM665_MISC16_ADC_DATA_E);
445SMM665_ATTR(in8, lcrit, SMM665_MISC16_ADC_DATA_F);
446SMM665_ATTR(in9, lcrit, SMM665_MISC16_ADC_DATA_AIN1);
447SMM665_ATTR(in10, lcrit, SMM665_MISC16_ADC_DATA_AIN2);
448
449/* Input voltages crit */
450SMM665_ATTR(in1, crit, SMM665_MISC16_ADC_DATA_12V);
451SMM665_ATTR(in2, crit, SMM665_MISC16_ADC_DATA_VDD);
452SMM665_ATTR(in3, crit, SMM665_MISC16_ADC_DATA_A);
453SMM665_ATTR(in4, crit, SMM665_MISC16_ADC_DATA_B);
454SMM665_ATTR(in5, crit, SMM665_MISC16_ADC_DATA_C);
455SMM665_ATTR(in6, crit, SMM665_MISC16_ADC_DATA_D);
456SMM665_ATTR(in7, crit, SMM665_MISC16_ADC_DATA_E);
457SMM665_ATTR(in8, crit, SMM665_MISC16_ADC_DATA_F);
458SMM665_ATTR(in9, crit, SMM665_MISC16_ADC_DATA_AIN1);
459SMM665_ATTR(in10, crit, SMM665_MISC16_ADC_DATA_AIN2);
460
461/* critical alarms */
462SMM665_ATTR(in1, crit_alarm, SMM665_FAULT_12V);
463SMM665_ATTR(in2, crit_alarm, SMM665_FAULT_VDD);
464SMM665_ATTR(in3, crit_alarm, SMM665_FAULT_A);
465SMM665_ATTR(in4, crit_alarm, SMM665_FAULT_B);
466SMM665_ATTR(in5, crit_alarm, SMM665_FAULT_C);
467SMM665_ATTR(in6, crit_alarm, SMM665_FAULT_D);
468SMM665_ATTR(in7, crit_alarm, SMM665_FAULT_E);
469SMM665_ATTR(in8, crit_alarm, SMM665_FAULT_F);
470SMM665_ATTR(in9, crit_alarm, SMM665_FAULT_AIN1);
471SMM665_ATTR(in10, crit_alarm, SMM665_FAULT_AIN2);
472
473/* Temperature */
474SMM665_ATTR(temp1, input, SMM665_MISC16_ADC_DATA_INT_TEMP);
475SMM665_ATTR(temp1, min, SMM665_MISC16_ADC_DATA_INT_TEMP);
476SMM665_ATTR(temp1, max, SMM665_MISC16_ADC_DATA_INT_TEMP);
477SMM665_ATTR(temp1, lcrit, SMM665_MISC16_ADC_DATA_INT_TEMP);
478SMM665_ATTR(temp1, crit, SMM665_MISC16_ADC_DATA_INT_TEMP);
479SMM665_ATTR(temp1, crit_alarm, SMM665_FAULT_TEMP);
480
481/*
482 * Finally, construct an array of pointers to members of the above objects,
483 * as required for sysfs_create_group()
484 */
485static struct attribute *smm665_attrs[] = {
486 &sensor_dev_attr_in1_input.dev_attr.attr,
487 &sensor_dev_attr_in1_min.dev_attr.attr,
488 &sensor_dev_attr_in1_max.dev_attr.attr,
489 &sensor_dev_attr_in1_lcrit.dev_attr.attr,
490 &sensor_dev_attr_in1_crit.dev_attr.attr,
491 &sensor_dev_attr_in1_crit_alarm.dev_attr.attr,
492
493 &sensor_dev_attr_in2_input.dev_attr.attr,
494 &sensor_dev_attr_in2_min.dev_attr.attr,
495 &sensor_dev_attr_in2_max.dev_attr.attr,
496 &sensor_dev_attr_in2_lcrit.dev_attr.attr,
497 &sensor_dev_attr_in2_crit.dev_attr.attr,
498 &sensor_dev_attr_in2_crit_alarm.dev_attr.attr,
499
500 &sensor_dev_attr_in3_input.dev_attr.attr,
501 &sensor_dev_attr_in3_min.dev_attr.attr,
502 &sensor_dev_attr_in3_max.dev_attr.attr,
503 &sensor_dev_attr_in3_lcrit.dev_attr.attr,
504 &sensor_dev_attr_in3_crit.dev_attr.attr,
505 &sensor_dev_attr_in3_crit_alarm.dev_attr.attr,
506
507 &sensor_dev_attr_in4_input.dev_attr.attr,
508 &sensor_dev_attr_in4_min.dev_attr.attr,
509 &sensor_dev_attr_in4_max.dev_attr.attr,
510 &sensor_dev_attr_in4_lcrit.dev_attr.attr,
511 &sensor_dev_attr_in4_crit.dev_attr.attr,
512 &sensor_dev_attr_in4_crit_alarm.dev_attr.attr,
513
514 &sensor_dev_attr_in5_input.dev_attr.attr,
515 &sensor_dev_attr_in5_min.dev_attr.attr,
516 &sensor_dev_attr_in5_max.dev_attr.attr,
517 &sensor_dev_attr_in5_lcrit.dev_attr.attr,
518 &sensor_dev_attr_in5_crit.dev_attr.attr,
519 &sensor_dev_attr_in5_crit_alarm.dev_attr.attr,
520
521 &sensor_dev_attr_in6_input.dev_attr.attr,
522 &sensor_dev_attr_in6_min.dev_attr.attr,
523 &sensor_dev_attr_in6_max.dev_attr.attr,
524 &sensor_dev_attr_in6_lcrit.dev_attr.attr,
525 &sensor_dev_attr_in6_crit.dev_attr.attr,
526 &sensor_dev_attr_in6_crit_alarm.dev_attr.attr,
527
528 &sensor_dev_attr_in7_input.dev_attr.attr,
529 &sensor_dev_attr_in7_min.dev_attr.attr,
530 &sensor_dev_attr_in7_max.dev_attr.attr,
531 &sensor_dev_attr_in7_lcrit.dev_attr.attr,
532 &sensor_dev_attr_in7_crit.dev_attr.attr,
533 &sensor_dev_attr_in7_crit_alarm.dev_attr.attr,
534
535 &sensor_dev_attr_in8_input.dev_attr.attr,
536 &sensor_dev_attr_in8_min.dev_attr.attr,
537 &sensor_dev_attr_in8_max.dev_attr.attr,
538 &sensor_dev_attr_in8_lcrit.dev_attr.attr,
539 &sensor_dev_attr_in8_crit.dev_attr.attr,
540 &sensor_dev_attr_in8_crit_alarm.dev_attr.attr,
541
542 &sensor_dev_attr_in9_input.dev_attr.attr,
543 &sensor_dev_attr_in9_min.dev_attr.attr,
544 &sensor_dev_attr_in9_max.dev_attr.attr,
545 &sensor_dev_attr_in9_lcrit.dev_attr.attr,
546 &sensor_dev_attr_in9_crit.dev_attr.attr,
547 &sensor_dev_attr_in9_crit_alarm.dev_attr.attr,
548
549 &sensor_dev_attr_in10_input.dev_attr.attr,
550 &sensor_dev_attr_in10_min.dev_attr.attr,
551 &sensor_dev_attr_in10_max.dev_attr.attr,
552 &sensor_dev_attr_in10_lcrit.dev_attr.attr,
553 &sensor_dev_attr_in10_crit.dev_attr.attr,
554 &sensor_dev_attr_in10_crit_alarm.dev_attr.attr,
555
556 &sensor_dev_attr_temp1_input.dev_attr.attr,
557 &sensor_dev_attr_temp1_min.dev_attr.attr,
558 &sensor_dev_attr_temp1_max.dev_attr.attr,
559 &sensor_dev_attr_temp1_lcrit.dev_attr.attr,
560 &sensor_dev_attr_temp1_crit.dev_attr.attr,
561 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
562
563 NULL,
564};
565
566ATTRIBUTE_GROUPS(smm665);
567
568static int smm665_probe(struct i2c_client *client,
569 const struct i2c_device_id *id)
570{
571 struct i2c_adapter *adapter = client->adapter;
572 struct smm665_data *data;
573 struct device *hwmon_dev;
574 int i, ret;
575
576 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA
577 | I2C_FUNC_SMBUS_WORD_DATA))
578 return -ENODEV;
579
580 if (i2c_smbus_read_byte_data(client, SMM665_ADOC_ENABLE) < 0)
581 return -ENODEV;
582
583 data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
584 if (!data)
585 return -ENOMEM;
586
587 i2c_set_clientdata(client, data);
588 mutex_init(&data->update_lock);
589
590 data->client = client;
591 data->type = id->driver_data;
592 data->cmdreg = i2c_new_dummy(adapter, (client->addr & ~SMM665_REGMASK)
593 | SMM665_CMDREG_BASE);
594 if (!data->cmdreg)
595 return -ENOMEM;
596
597 switch (data->type) {
598 case smm465:
599 case smm665:
600 data->conversion_time = SMM665_ADC_WAIT_SMM665;
601 break;
602 case smm665c:
603 case smm764:
604 case smm766:
605 data->conversion_time = SMM665_ADC_WAIT_SMM766;
606 break;
607 }
608
609 ret = -ENODEV;
610 if (i2c_smbus_read_byte_data(data->cmdreg, SMM665_MISC8_CMD_STS) < 0)
611 goto out_unregister;
612
613 /*
614 * Read limits.
615 *
616 * Limit registers start with register SMM665_LIMIT_BASE.
617 * Each channel uses 8 registers, providing four limit values
618 * per channel. Each limit value requires two registers, with the
619 * high byte in the first register and the low byte in the second
620 * register. The first two limits are under limit values, followed
621 * by two over limit values.
622 *
623 * Limit register order matches the ADC register order, so we use
624 * ADC register defines throughout the code to index limit registers.
625 *
626 * We save the first retrieved value both as "critical" and "alarm"
627 * value. The second value overwrites either the critical or the
628 * alarm value, depending on its configuration. This ensures that both
629 * critical and alarm values are initialized, even if both registers are
630 * configured as critical or non-critical.
631 */
632 for (i = 0; i < SMM665_NUM_ADC; i++) {
633 int val;
634
635 val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8);
636 if (unlikely(val < 0))
637 goto out_unregister;
638 data->critical_min_limit[i] = data->alarm_min_limit[i]
639 = smm665_convert(val, i);
640 val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 2);
641 if (unlikely(val < 0))
642 goto out_unregister;
643 if (smm665_is_critical(val))
644 data->critical_min_limit[i] = smm665_convert(val, i);
645 else
646 data->alarm_min_limit[i] = smm665_convert(val, i);
647 val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 4);
648 if (unlikely(val < 0))
649 goto out_unregister;
650 data->critical_max_limit[i] = data->alarm_max_limit[i]
651 = smm665_convert(val, i);
652 val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 6);
653 if (unlikely(val < 0))
654 goto out_unregister;
655 if (smm665_is_critical(val))
656 data->critical_max_limit[i] = smm665_convert(val, i);
657 else
658 data->alarm_max_limit[i] = smm665_convert(val, i);
659 }
660
661 hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev,
662 client->name, data,
663 smm665_groups);
664 if (IS_ERR(hwmon_dev)) {
665 ret = PTR_ERR(hwmon_dev);
666 goto out_unregister;
667 }
668
669 return 0;
670
671out_unregister:
672 i2c_unregister_device(data->cmdreg);
673 return ret;
674}
675
676static int smm665_remove(struct i2c_client *client)
677{
678 struct smm665_data *data = i2c_get_clientdata(client);
679
680 i2c_unregister_device(data->cmdreg);
681 return 0;
682}
683
684static const struct i2c_device_id smm665_id[] = {
685 {"smm465", smm465},
686 {"smm665", smm665},
687 {"smm665c", smm665c},
688 {"smm764", smm764},
689 {"smm766", smm766},
690 {}
691};
692
693MODULE_DEVICE_TABLE(i2c, smm665_id);
694
695/* This is the driver that will be inserted */
696static struct i2c_driver smm665_driver = {
697 .driver = {
698 .name = "smm665",
699 },
700 .probe = smm665_probe,
701 .remove = smm665_remove,
702 .id_table = smm665_id,
703};
704
705module_i2c_driver(smm665_driver);
706
707MODULE_AUTHOR("Guenter Roeck");
708MODULE_DESCRIPTION("SMM665 driver");
709MODULE_LICENSE("GPL");