Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * emc1403.c - SMSC Thermal Driver
4 *
5 * Copyright (C) 2008 Intel Corp
6 *
7 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8 *
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 */
11
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/slab.h>
15#include <linux/i2c.h>
16#include <linux/hwmon.h>
17#include <linux/hwmon-sysfs.h>
18#include <linux/err.h>
19#include <linux/sysfs.h>
20#include <linux/mutex.h>
21#include <linux/regmap.h>
22
23#define THERMAL_PID_REG 0xfd
24#define THERMAL_SMSC_ID_REG 0xfe
25#define THERMAL_REVISION_REG 0xff
26
27enum emc1403_chip { emc1402, emc1403, emc1404 };
28
29struct thermal_data {
30 struct regmap *regmap;
31 struct mutex mutex;
32 const struct attribute_group *groups[4];
33};
34
35static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
36 char *buf)
37{
38 struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
39 struct thermal_data *data = dev_get_drvdata(dev);
40 unsigned int val;
41 int retval;
42
43 retval = regmap_read(data->regmap, sda->index, &val);
44 if (retval < 0)
45 return retval;
46 return sprintf(buf, "%d000\n", val);
47}
48
49static ssize_t bit_show(struct device *dev, struct device_attribute *attr,
50 char *buf)
51{
52 struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr);
53 struct thermal_data *data = dev_get_drvdata(dev);
54 unsigned int val;
55 int retval;
56
57 retval = regmap_read(data->regmap, sda->nr, &val);
58 if (retval < 0)
59 return retval;
60 return sprintf(buf, "%d\n", !!(val & sda->index));
61}
62
63static ssize_t temp_store(struct device *dev, struct device_attribute *attr,
64 const char *buf, size_t count)
65{
66 struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
67 struct thermal_data *data = dev_get_drvdata(dev);
68 unsigned long val;
69 int retval;
70
71 if (kstrtoul(buf, 10, &val))
72 return -EINVAL;
73 retval = regmap_write(data->regmap, sda->index,
74 DIV_ROUND_CLOSEST(val, 1000));
75 if (retval < 0)
76 return retval;
77 return count;
78}
79
80static ssize_t bit_store(struct device *dev, struct device_attribute *attr,
81 const char *buf, size_t count)
82{
83 struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr);
84 struct thermal_data *data = dev_get_drvdata(dev);
85 unsigned long val;
86 int retval;
87
88 if (kstrtoul(buf, 10, &val))
89 return -EINVAL;
90
91 retval = regmap_update_bits(data->regmap, sda->nr, sda->index,
92 val ? sda->index : 0);
93 if (retval < 0)
94 return retval;
95 return count;
96}
97
98static ssize_t show_hyst_common(struct device *dev,
99 struct device_attribute *attr, char *buf,
100 bool is_min)
101{
102 struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
103 struct thermal_data *data = dev_get_drvdata(dev);
104 struct regmap *regmap = data->regmap;
105 unsigned int limit;
106 unsigned int hyst;
107 int retval;
108
109 retval = regmap_read(regmap, sda->index, &limit);
110 if (retval < 0)
111 return retval;
112
113 retval = regmap_read(regmap, 0x21, &hyst);
114 if (retval < 0)
115 return retval;
116
117 return sprintf(buf, "%d000\n", is_min ? limit + hyst : limit - hyst);
118}
119
120static ssize_t hyst_show(struct device *dev, struct device_attribute *attr,
121 char *buf)
122{
123 return show_hyst_common(dev, attr, buf, false);
124}
125
126static ssize_t min_hyst_show(struct device *dev,
127 struct device_attribute *attr, char *buf)
128{
129 return show_hyst_common(dev, attr, buf, true);
130}
131
132static ssize_t hyst_store(struct device *dev, struct device_attribute *attr,
133 const char *buf, size_t count)
134{
135 struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
136 struct thermal_data *data = dev_get_drvdata(dev);
137 struct regmap *regmap = data->regmap;
138 unsigned int limit;
139 int retval;
140 int hyst;
141 unsigned long val;
142
143 if (kstrtoul(buf, 10, &val))
144 return -EINVAL;
145
146 mutex_lock(&data->mutex);
147 retval = regmap_read(regmap, sda->index, &limit);
148 if (retval < 0)
149 goto fail;
150
151 hyst = limit * 1000 - val;
152 hyst = clamp_val(DIV_ROUND_CLOSEST(hyst, 1000), 0, 255);
153 retval = regmap_write(regmap, 0x21, hyst);
154 if (retval == 0)
155 retval = count;
156fail:
157 mutex_unlock(&data->mutex);
158 return retval;
159}
160
161/*
162 * Sensors. We pass the actual i2c register to the methods.
163 */
164
165static SENSOR_DEVICE_ATTR_RW(temp1_min, temp, 0x06);
166static SENSOR_DEVICE_ATTR_RW(temp1_max, temp, 0x05);
167static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp, 0x20);
168static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0x00);
169static SENSOR_DEVICE_ATTR_2_RO(temp1_min_alarm, bit, 0x36, 0x01);
170static SENSOR_DEVICE_ATTR_2_RO(temp1_max_alarm, bit, 0x35, 0x01);
171static SENSOR_DEVICE_ATTR_2_RO(temp1_crit_alarm, bit, 0x37, 0x01);
172static SENSOR_DEVICE_ATTR_RO(temp1_min_hyst, min_hyst, 0x06);
173static SENSOR_DEVICE_ATTR_RO(temp1_max_hyst, hyst, 0x05);
174static SENSOR_DEVICE_ATTR_RW(temp1_crit_hyst, hyst, 0x20);
175
176static SENSOR_DEVICE_ATTR_RW(temp2_min, temp, 0x08);
177static SENSOR_DEVICE_ATTR_RW(temp2_max, temp, 0x07);
178static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp, 0x19);
179static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 0x01);
180static SENSOR_DEVICE_ATTR_2_RO(temp2_fault, bit, 0x1b, 0x02);
181static SENSOR_DEVICE_ATTR_2_RO(temp2_min_alarm, bit, 0x36, 0x02);
182static SENSOR_DEVICE_ATTR_2_RO(temp2_max_alarm, bit, 0x35, 0x02);
183static SENSOR_DEVICE_ATTR_2_RO(temp2_crit_alarm, bit, 0x37, 0x02);
184static SENSOR_DEVICE_ATTR_RO(temp2_min_hyst, min_hyst, 0x08);
185static SENSOR_DEVICE_ATTR_RO(temp2_max_hyst, hyst, 0x07);
186static SENSOR_DEVICE_ATTR_RO(temp2_crit_hyst, hyst, 0x19);
187
188static SENSOR_DEVICE_ATTR_RW(temp3_min, temp, 0x16);
189static SENSOR_DEVICE_ATTR_RW(temp3_max, temp, 0x15);
190static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp, 0x1A);
191static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 0x23);
192static SENSOR_DEVICE_ATTR_2_RO(temp3_fault, bit, 0x1b, 0x04);
193static SENSOR_DEVICE_ATTR_2_RO(temp3_min_alarm, bit, 0x36, 0x04);
194static SENSOR_DEVICE_ATTR_2_RO(temp3_max_alarm, bit, 0x35, 0x04);
195static SENSOR_DEVICE_ATTR_2_RO(temp3_crit_alarm, bit, 0x37, 0x04);
196static SENSOR_DEVICE_ATTR_RO(temp3_min_hyst, min_hyst, 0x16);
197static SENSOR_DEVICE_ATTR_RO(temp3_max_hyst, hyst, 0x15);
198static SENSOR_DEVICE_ATTR_RO(temp3_crit_hyst, hyst, 0x1A);
199
200static SENSOR_DEVICE_ATTR_RW(temp4_min, temp, 0x2D);
201static SENSOR_DEVICE_ATTR_RW(temp4_max, temp, 0x2C);
202static SENSOR_DEVICE_ATTR_RW(temp4_crit, temp, 0x30);
203static SENSOR_DEVICE_ATTR_RO(temp4_input, temp, 0x2A);
204static SENSOR_DEVICE_ATTR_2_RO(temp4_fault, bit, 0x1b, 0x08);
205static SENSOR_DEVICE_ATTR_2_RO(temp4_min_alarm, bit, 0x36, 0x08);
206static SENSOR_DEVICE_ATTR_2_RO(temp4_max_alarm, bit, 0x35, 0x08);
207static SENSOR_DEVICE_ATTR_2_RO(temp4_crit_alarm, bit, 0x37, 0x08);
208static SENSOR_DEVICE_ATTR_RO(temp4_min_hyst, min_hyst, 0x2D);
209static SENSOR_DEVICE_ATTR_RO(temp4_max_hyst, hyst, 0x2C);
210static SENSOR_DEVICE_ATTR_RO(temp4_crit_hyst, hyst, 0x30);
211
212static SENSOR_DEVICE_ATTR_2_RW(power_state, bit, 0x03, 0x40);
213
214static struct attribute *emc1402_attrs[] = {
215 &sensor_dev_attr_temp1_min.dev_attr.attr,
216 &sensor_dev_attr_temp1_max.dev_attr.attr,
217 &sensor_dev_attr_temp1_crit.dev_attr.attr,
218 &sensor_dev_attr_temp1_input.dev_attr.attr,
219 &sensor_dev_attr_temp1_min_hyst.dev_attr.attr,
220 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
221 &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
222
223 &sensor_dev_attr_temp2_min.dev_attr.attr,
224 &sensor_dev_attr_temp2_max.dev_attr.attr,
225 &sensor_dev_attr_temp2_crit.dev_attr.attr,
226 &sensor_dev_attr_temp2_input.dev_attr.attr,
227 &sensor_dev_attr_temp2_min_hyst.dev_attr.attr,
228 &sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
229 &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
230
231 &sensor_dev_attr_power_state.dev_attr.attr,
232 NULL
233};
234
235static const struct attribute_group emc1402_group = {
236 .attrs = emc1402_attrs,
237};
238
239static struct attribute *emc1403_attrs[] = {
240 &sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
241 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
242 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
243
244 &sensor_dev_attr_temp2_fault.dev_attr.attr,
245 &sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
246 &sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
247 &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
248
249 &sensor_dev_attr_temp3_min.dev_attr.attr,
250 &sensor_dev_attr_temp3_max.dev_attr.attr,
251 &sensor_dev_attr_temp3_crit.dev_attr.attr,
252 &sensor_dev_attr_temp3_input.dev_attr.attr,
253 &sensor_dev_attr_temp3_fault.dev_attr.attr,
254 &sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
255 &sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
256 &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
257 &sensor_dev_attr_temp3_min_hyst.dev_attr.attr,
258 &sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
259 &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
260 NULL
261};
262
263static const struct attribute_group emc1403_group = {
264 .attrs = emc1403_attrs,
265};
266
267static struct attribute *emc1404_attrs[] = {
268 &sensor_dev_attr_temp4_min.dev_attr.attr,
269 &sensor_dev_attr_temp4_max.dev_attr.attr,
270 &sensor_dev_attr_temp4_crit.dev_attr.attr,
271 &sensor_dev_attr_temp4_input.dev_attr.attr,
272 &sensor_dev_attr_temp4_fault.dev_attr.attr,
273 &sensor_dev_attr_temp4_min_alarm.dev_attr.attr,
274 &sensor_dev_attr_temp4_max_alarm.dev_attr.attr,
275 &sensor_dev_attr_temp4_crit_alarm.dev_attr.attr,
276 &sensor_dev_attr_temp4_min_hyst.dev_attr.attr,
277 &sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
278 &sensor_dev_attr_temp4_crit_hyst.dev_attr.attr,
279 NULL
280};
281
282static const struct attribute_group emc1404_group = {
283 .attrs = emc1404_attrs,
284};
285
286/*
287 * EMC14x2 uses a different register and different bits to report alarm and
288 * fault status. For simplicity, provide a separate attribute group for this
289 * chip series.
290 * Since we can not re-use the same attribute names, create a separate attribute
291 * array.
292 */
293static struct sensor_device_attribute_2 emc1402_alarms[] = {
294 SENSOR_ATTR_2_RO(temp1_min_alarm, bit, 0x02, 0x20),
295 SENSOR_ATTR_2_RO(temp1_max_alarm, bit, 0x02, 0x40),
296 SENSOR_ATTR_2_RO(temp1_crit_alarm, bit, 0x02, 0x01),
297
298 SENSOR_ATTR_2_RO(temp2_fault, bit, 0x02, 0x04),
299 SENSOR_ATTR_2_RO(temp2_min_alarm, bit, 0x02, 0x08),
300 SENSOR_ATTR_2_RO(temp2_max_alarm, bit, 0x02, 0x10),
301 SENSOR_ATTR_2_RO(temp2_crit_alarm, bit, 0x02, 0x02),
302};
303
304static struct attribute *emc1402_alarm_attrs[] = {
305 &emc1402_alarms[0].dev_attr.attr,
306 &emc1402_alarms[1].dev_attr.attr,
307 &emc1402_alarms[2].dev_attr.attr,
308 &emc1402_alarms[3].dev_attr.attr,
309 &emc1402_alarms[4].dev_attr.attr,
310 &emc1402_alarms[5].dev_attr.attr,
311 &emc1402_alarms[6].dev_attr.attr,
312 NULL,
313};
314
315static const struct attribute_group emc1402_alarm_group = {
316 .attrs = emc1402_alarm_attrs,
317};
318
319static int emc1403_detect(struct i2c_client *client,
320 struct i2c_board_info *info)
321{
322 int id;
323 /* Check if thermal chip is SMSC and EMC1403 or EMC1423 */
324
325 id = i2c_smbus_read_byte_data(client, THERMAL_SMSC_ID_REG);
326 if (id != 0x5d)
327 return -ENODEV;
328
329 id = i2c_smbus_read_byte_data(client, THERMAL_PID_REG);
330 switch (id) {
331 case 0x20:
332 strlcpy(info->type, "emc1402", I2C_NAME_SIZE);
333 break;
334 case 0x21:
335 strlcpy(info->type, "emc1403", I2C_NAME_SIZE);
336 break;
337 case 0x22:
338 strlcpy(info->type, "emc1422", I2C_NAME_SIZE);
339 break;
340 case 0x23:
341 strlcpy(info->type, "emc1423", I2C_NAME_SIZE);
342 break;
343 case 0x25:
344 strlcpy(info->type, "emc1404", I2C_NAME_SIZE);
345 break;
346 case 0x27:
347 strlcpy(info->type, "emc1424", I2C_NAME_SIZE);
348 break;
349 default:
350 return -ENODEV;
351 }
352
353 id = i2c_smbus_read_byte_data(client, THERMAL_REVISION_REG);
354 if (id < 0x01 || id > 0x04)
355 return -ENODEV;
356
357 return 0;
358}
359
360static bool emc1403_regmap_is_volatile(struct device *dev, unsigned int reg)
361{
362 switch (reg) {
363 case 0x00: /* internal diode high byte */
364 case 0x01: /* external diode 1 high byte */
365 case 0x02: /* status */
366 case 0x10: /* external diode 1 low byte */
367 case 0x1b: /* external diode fault */
368 case 0x23: /* external diode 2 high byte */
369 case 0x24: /* external diode 2 low byte */
370 case 0x29: /* internal diode low byte */
371 case 0x2a: /* externl diode 3 high byte */
372 case 0x2b: /* external diode 3 low byte */
373 case 0x35: /* high limit status */
374 case 0x36: /* low limit status */
375 case 0x37: /* therm limit status */
376 return true;
377 default:
378 return false;
379 }
380}
381
382static const struct regmap_config emc1403_regmap_config = {
383 .reg_bits = 8,
384 .val_bits = 8,
385 .cache_type = REGCACHE_RBTREE,
386 .volatile_reg = emc1403_regmap_is_volatile,
387};
388
389static int emc1403_probe(struct i2c_client *client,
390 const struct i2c_device_id *id)
391{
392 struct thermal_data *data;
393 struct device *hwmon_dev;
394
395 data = devm_kzalloc(&client->dev, sizeof(struct thermal_data),
396 GFP_KERNEL);
397 if (data == NULL)
398 return -ENOMEM;
399
400 data->regmap = devm_regmap_init_i2c(client, &emc1403_regmap_config);
401 if (IS_ERR(data->regmap))
402 return PTR_ERR(data->regmap);
403
404 mutex_init(&data->mutex);
405
406 switch (id->driver_data) {
407 case emc1404:
408 data->groups[2] = &emc1404_group;
409 fallthrough;
410 case emc1403:
411 data->groups[1] = &emc1403_group;
412 fallthrough;
413 case emc1402:
414 data->groups[0] = &emc1402_group;
415 }
416
417 if (id->driver_data == emc1402)
418 data->groups[1] = &emc1402_alarm_group;
419
420 hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev,
421 client->name, data,
422 data->groups);
423 if (IS_ERR(hwmon_dev))
424 return PTR_ERR(hwmon_dev);
425
426 dev_info(&client->dev, "%s Thermal chip found\n", id->name);
427 return 0;
428}
429
430static const unsigned short emc1403_address_list[] = {
431 0x18, 0x1c, 0x29, 0x4c, 0x4d, 0x5c, I2C_CLIENT_END
432};
433
434/* Last digit of chip name indicates number of channels */
435static const struct i2c_device_id emc1403_idtable[] = {
436 { "emc1402", emc1402 },
437 { "emc1403", emc1403 },
438 { "emc1404", emc1404 },
439 { "emc1412", emc1402 },
440 { "emc1413", emc1403 },
441 { "emc1414", emc1404 },
442 { "emc1422", emc1402 },
443 { "emc1423", emc1403 },
444 { "emc1424", emc1404 },
445 { }
446};
447MODULE_DEVICE_TABLE(i2c, emc1403_idtable);
448
449static struct i2c_driver sensor_emc1403 = {
450 .class = I2C_CLASS_HWMON,
451 .driver = {
452 .name = "emc1403",
453 },
454 .detect = emc1403_detect,
455 .probe = emc1403_probe,
456 .id_table = emc1403_idtable,
457 .address_list = emc1403_address_list,
458};
459
460module_i2c_driver(sensor_emc1403);
461
462MODULE_AUTHOR("Kalhan Trisal <kalhan.trisal@intel.com");
463MODULE_DESCRIPTION("emc1403 Thermal Driver");
464MODULE_LICENSE("GPL v2");
1/*
2 * emc1403.c - SMSC Thermal Driver
3 *
4 * Copyright (C) 2008 Intel Corp
5 *
6 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; version 2 of the License.
11 *
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
20 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
21 */
22
23#include <linux/module.h>
24#include <linux/init.h>
25#include <linux/slab.h>
26#include <linux/i2c.h>
27#include <linux/hwmon.h>
28#include <linux/hwmon-sysfs.h>
29#include <linux/err.h>
30#include <linux/sysfs.h>
31#include <linux/mutex.h>
32#include <linux/regmap.h>
33
34#define THERMAL_PID_REG 0xfd
35#define THERMAL_SMSC_ID_REG 0xfe
36#define THERMAL_REVISION_REG 0xff
37
38enum emc1403_chip { emc1402, emc1403, emc1404 };
39
40struct thermal_data {
41 struct regmap *regmap;
42 struct mutex mutex;
43 const struct attribute_group *groups[4];
44};
45
46static ssize_t show_temp(struct device *dev,
47 struct device_attribute *attr, char *buf)
48{
49 struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
50 struct thermal_data *data = dev_get_drvdata(dev);
51 unsigned int val;
52 int retval;
53
54 retval = regmap_read(data->regmap, sda->index, &val);
55 if (retval < 0)
56 return retval;
57 return sprintf(buf, "%d000\n", val);
58}
59
60static ssize_t show_bit(struct device *dev,
61 struct device_attribute *attr, char *buf)
62{
63 struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr);
64 struct thermal_data *data = dev_get_drvdata(dev);
65 unsigned int val;
66 int retval;
67
68 retval = regmap_read(data->regmap, sda->nr, &val);
69 if (retval < 0)
70 return retval;
71 return sprintf(buf, "%d\n", !!(val & sda->index));
72}
73
74static ssize_t store_temp(struct device *dev,
75 struct device_attribute *attr, const char *buf, size_t count)
76{
77 struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
78 struct thermal_data *data = dev_get_drvdata(dev);
79 unsigned long val;
80 int retval;
81
82 if (kstrtoul(buf, 10, &val))
83 return -EINVAL;
84 retval = regmap_write(data->regmap, sda->index,
85 DIV_ROUND_CLOSEST(val, 1000));
86 if (retval < 0)
87 return retval;
88 return count;
89}
90
91static ssize_t store_bit(struct device *dev,
92 struct device_attribute *attr, const char *buf, size_t count)
93{
94 struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr);
95 struct thermal_data *data = dev_get_drvdata(dev);
96 unsigned long val;
97 int retval;
98
99 if (kstrtoul(buf, 10, &val))
100 return -EINVAL;
101
102 retval = regmap_update_bits(data->regmap, sda->nr, sda->index,
103 val ? sda->index : 0);
104 if (retval < 0)
105 return retval;
106 return count;
107}
108
109static ssize_t show_hyst_common(struct device *dev,
110 struct device_attribute *attr, char *buf,
111 bool is_min)
112{
113 struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
114 struct thermal_data *data = dev_get_drvdata(dev);
115 struct regmap *regmap = data->regmap;
116 unsigned int limit;
117 unsigned int hyst;
118 int retval;
119
120 retval = regmap_read(regmap, sda->index, &limit);
121 if (retval < 0)
122 return retval;
123
124 retval = regmap_read(regmap, 0x21, &hyst);
125 if (retval < 0)
126 return retval;
127
128 return sprintf(buf, "%d000\n", is_min ? limit + hyst : limit - hyst);
129}
130
131static ssize_t show_hyst(struct device *dev,
132 struct device_attribute *attr, char *buf)
133{
134 return show_hyst_common(dev, attr, buf, false);
135}
136
137static ssize_t show_min_hyst(struct device *dev,
138 struct device_attribute *attr, char *buf)
139{
140 return show_hyst_common(dev, attr, buf, true);
141}
142
143static ssize_t store_hyst(struct device *dev,
144 struct device_attribute *attr, const char *buf, size_t count)
145{
146 struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
147 struct thermal_data *data = dev_get_drvdata(dev);
148 struct regmap *regmap = data->regmap;
149 unsigned int limit;
150 int retval;
151 int hyst;
152 unsigned long val;
153
154 if (kstrtoul(buf, 10, &val))
155 return -EINVAL;
156
157 mutex_lock(&data->mutex);
158 retval = regmap_read(regmap, sda->index, &limit);
159 if (retval < 0)
160 goto fail;
161
162 hyst = limit * 1000 - val;
163 hyst = clamp_val(DIV_ROUND_CLOSEST(hyst, 1000), 0, 255);
164 retval = regmap_write(regmap, 0x21, hyst);
165 if (retval == 0)
166 retval = count;
167fail:
168 mutex_unlock(&data->mutex);
169 return retval;
170}
171
172/*
173 * Sensors. We pass the actual i2c register to the methods.
174 */
175
176static SENSOR_DEVICE_ATTR(temp1_min, S_IRUGO | S_IWUSR,
177 show_temp, store_temp, 0x06);
178static SENSOR_DEVICE_ATTR(temp1_max, S_IRUGO | S_IWUSR,
179 show_temp, store_temp, 0x05);
180static SENSOR_DEVICE_ATTR(temp1_crit, S_IRUGO | S_IWUSR,
181 show_temp, store_temp, 0x20);
182static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, 0x00);
183static SENSOR_DEVICE_ATTR_2(temp1_min_alarm, S_IRUGO,
184 show_bit, NULL, 0x36, 0x01);
185static SENSOR_DEVICE_ATTR_2(temp1_max_alarm, S_IRUGO,
186 show_bit, NULL, 0x35, 0x01);
187static SENSOR_DEVICE_ATTR_2(temp1_crit_alarm, S_IRUGO,
188 show_bit, NULL, 0x37, 0x01);
189static SENSOR_DEVICE_ATTR(temp1_min_hyst, S_IRUGO, show_min_hyst, NULL, 0x06);
190static SENSOR_DEVICE_ATTR(temp1_max_hyst, S_IRUGO, show_hyst, NULL, 0x05);
191static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IRUGO | S_IWUSR,
192 show_hyst, store_hyst, 0x20);
193
194static SENSOR_DEVICE_ATTR(temp2_min, S_IRUGO | S_IWUSR,
195 show_temp, store_temp, 0x08);
196static SENSOR_DEVICE_ATTR(temp2_max, S_IRUGO | S_IWUSR,
197 show_temp, store_temp, 0x07);
198static SENSOR_DEVICE_ATTR(temp2_crit, S_IRUGO | S_IWUSR,
199 show_temp, store_temp, 0x19);
200static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 0x01);
201static SENSOR_DEVICE_ATTR_2(temp2_fault, S_IRUGO, show_bit, NULL, 0x1b, 0x02);
202static SENSOR_DEVICE_ATTR_2(temp2_min_alarm, S_IRUGO,
203 show_bit, NULL, 0x36, 0x02);
204static SENSOR_DEVICE_ATTR_2(temp2_max_alarm, S_IRUGO,
205 show_bit, NULL, 0x35, 0x02);
206static SENSOR_DEVICE_ATTR_2(temp2_crit_alarm, S_IRUGO,
207 show_bit, NULL, 0x37, 0x02);
208static SENSOR_DEVICE_ATTR(temp2_min_hyst, S_IRUGO, show_min_hyst, NULL, 0x08);
209static SENSOR_DEVICE_ATTR(temp2_max_hyst, S_IRUGO, show_hyst, NULL, 0x07);
210static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, show_hyst, NULL, 0x19);
211
212static SENSOR_DEVICE_ATTR(temp3_min, S_IRUGO | S_IWUSR,
213 show_temp, store_temp, 0x16);
214static SENSOR_DEVICE_ATTR(temp3_max, S_IRUGO | S_IWUSR,
215 show_temp, store_temp, 0x15);
216static SENSOR_DEVICE_ATTR(temp3_crit, S_IRUGO | S_IWUSR,
217 show_temp, store_temp, 0x1A);
218static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, show_temp, NULL, 0x23);
219static SENSOR_DEVICE_ATTR_2(temp3_fault, S_IRUGO, show_bit, NULL, 0x1b, 0x04);
220static SENSOR_DEVICE_ATTR_2(temp3_min_alarm, S_IRUGO,
221 show_bit, NULL, 0x36, 0x04);
222static SENSOR_DEVICE_ATTR_2(temp3_max_alarm, S_IRUGO,
223 show_bit, NULL, 0x35, 0x04);
224static SENSOR_DEVICE_ATTR_2(temp3_crit_alarm, S_IRUGO,
225 show_bit, NULL, 0x37, 0x04);
226static SENSOR_DEVICE_ATTR(temp3_min_hyst, S_IRUGO, show_min_hyst, NULL, 0x16);
227static SENSOR_DEVICE_ATTR(temp3_max_hyst, S_IRUGO, show_hyst, NULL, 0x15);
228static SENSOR_DEVICE_ATTR(temp3_crit_hyst, S_IRUGO, show_hyst, NULL, 0x1A);
229
230static SENSOR_DEVICE_ATTR(temp4_min, S_IRUGO | S_IWUSR,
231 show_temp, store_temp, 0x2D);
232static SENSOR_DEVICE_ATTR(temp4_max, S_IRUGO | S_IWUSR,
233 show_temp, store_temp, 0x2C);
234static SENSOR_DEVICE_ATTR(temp4_crit, S_IRUGO | S_IWUSR,
235 show_temp, store_temp, 0x30);
236static SENSOR_DEVICE_ATTR(temp4_input, S_IRUGO, show_temp, NULL, 0x2A);
237static SENSOR_DEVICE_ATTR_2(temp4_fault, S_IRUGO, show_bit, NULL, 0x1b, 0x08);
238static SENSOR_DEVICE_ATTR_2(temp4_min_alarm, S_IRUGO,
239 show_bit, NULL, 0x36, 0x08);
240static SENSOR_DEVICE_ATTR_2(temp4_max_alarm, S_IRUGO,
241 show_bit, NULL, 0x35, 0x08);
242static SENSOR_DEVICE_ATTR_2(temp4_crit_alarm, S_IRUGO,
243 show_bit, NULL, 0x37, 0x08);
244static SENSOR_DEVICE_ATTR(temp4_min_hyst, S_IRUGO, show_min_hyst, NULL, 0x2D);
245static SENSOR_DEVICE_ATTR(temp4_max_hyst, S_IRUGO, show_hyst, NULL, 0x2C);
246static SENSOR_DEVICE_ATTR(temp4_crit_hyst, S_IRUGO, show_hyst, NULL, 0x30);
247
248static SENSOR_DEVICE_ATTR_2(power_state, S_IRUGO | S_IWUSR,
249 show_bit, store_bit, 0x03, 0x40);
250
251static struct attribute *emc1402_attrs[] = {
252 &sensor_dev_attr_temp1_min.dev_attr.attr,
253 &sensor_dev_attr_temp1_max.dev_attr.attr,
254 &sensor_dev_attr_temp1_crit.dev_attr.attr,
255 &sensor_dev_attr_temp1_input.dev_attr.attr,
256 &sensor_dev_attr_temp1_min_hyst.dev_attr.attr,
257 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
258 &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
259
260 &sensor_dev_attr_temp2_min.dev_attr.attr,
261 &sensor_dev_attr_temp2_max.dev_attr.attr,
262 &sensor_dev_attr_temp2_crit.dev_attr.attr,
263 &sensor_dev_attr_temp2_input.dev_attr.attr,
264 &sensor_dev_attr_temp2_min_hyst.dev_attr.attr,
265 &sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
266 &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
267
268 &sensor_dev_attr_power_state.dev_attr.attr,
269 NULL
270};
271
272static const struct attribute_group emc1402_group = {
273 .attrs = emc1402_attrs,
274};
275
276static struct attribute *emc1403_attrs[] = {
277 &sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
278 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
279 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
280
281 &sensor_dev_attr_temp2_fault.dev_attr.attr,
282 &sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
283 &sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
284 &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
285
286 &sensor_dev_attr_temp3_min.dev_attr.attr,
287 &sensor_dev_attr_temp3_max.dev_attr.attr,
288 &sensor_dev_attr_temp3_crit.dev_attr.attr,
289 &sensor_dev_attr_temp3_input.dev_attr.attr,
290 &sensor_dev_attr_temp3_fault.dev_attr.attr,
291 &sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
292 &sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
293 &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
294 &sensor_dev_attr_temp3_min_hyst.dev_attr.attr,
295 &sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
296 &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
297 NULL
298};
299
300static const struct attribute_group emc1403_group = {
301 .attrs = emc1403_attrs,
302};
303
304static struct attribute *emc1404_attrs[] = {
305 &sensor_dev_attr_temp4_min.dev_attr.attr,
306 &sensor_dev_attr_temp4_max.dev_attr.attr,
307 &sensor_dev_attr_temp4_crit.dev_attr.attr,
308 &sensor_dev_attr_temp4_input.dev_attr.attr,
309 &sensor_dev_attr_temp4_fault.dev_attr.attr,
310 &sensor_dev_attr_temp4_min_alarm.dev_attr.attr,
311 &sensor_dev_attr_temp4_max_alarm.dev_attr.attr,
312 &sensor_dev_attr_temp4_crit_alarm.dev_attr.attr,
313 &sensor_dev_attr_temp4_min_hyst.dev_attr.attr,
314 &sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
315 &sensor_dev_attr_temp4_crit_hyst.dev_attr.attr,
316 NULL
317};
318
319static const struct attribute_group emc1404_group = {
320 .attrs = emc1404_attrs,
321};
322
323/*
324 * EMC14x2 uses a different register and different bits to report alarm and
325 * fault status. For simplicity, provide a separate attribute group for this
326 * chip series.
327 * Since we can not re-use the same attribute names, create a separate attribute
328 * array.
329 */
330static struct sensor_device_attribute_2 emc1402_alarms[] = {
331 SENSOR_ATTR_2(temp1_min_alarm, S_IRUGO, show_bit, NULL, 0x02, 0x20),
332 SENSOR_ATTR_2(temp1_max_alarm, S_IRUGO, show_bit, NULL, 0x02, 0x40),
333 SENSOR_ATTR_2(temp1_crit_alarm, S_IRUGO, show_bit, NULL, 0x02, 0x01),
334
335 SENSOR_ATTR_2(temp2_fault, S_IRUGO, show_bit, NULL, 0x02, 0x04),
336 SENSOR_ATTR_2(temp2_min_alarm, S_IRUGO, show_bit, NULL, 0x02, 0x08),
337 SENSOR_ATTR_2(temp2_max_alarm, S_IRUGO, show_bit, NULL, 0x02, 0x10),
338 SENSOR_ATTR_2(temp2_crit_alarm, S_IRUGO, show_bit, NULL, 0x02, 0x02),
339};
340
341static struct attribute *emc1402_alarm_attrs[] = {
342 &emc1402_alarms[0].dev_attr.attr,
343 &emc1402_alarms[1].dev_attr.attr,
344 &emc1402_alarms[2].dev_attr.attr,
345 &emc1402_alarms[3].dev_attr.attr,
346 &emc1402_alarms[4].dev_attr.attr,
347 &emc1402_alarms[5].dev_attr.attr,
348 &emc1402_alarms[6].dev_attr.attr,
349 NULL,
350};
351
352static const struct attribute_group emc1402_alarm_group = {
353 .attrs = emc1402_alarm_attrs,
354};
355
356static int emc1403_detect(struct i2c_client *client,
357 struct i2c_board_info *info)
358{
359 int id;
360 /* Check if thermal chip is SMSC and EMC1403 or EMC1423 */
361
362 id = i2c_smbus_read_byte_data(client, THERMAL_SMSC_ID_REG);
363 if (id != 0x5d)
364 return -ENODEV;
365
366 id = i2c_smbus_read_byte_data(client, THERMAL_PID_REG);
367 switch (id) {
368 case 0x20:
369 strlcpy(info->type, "emc1402", I2C_NAME_SIZE);
370 break;
371 case 0x21:
372 strlcpy(info->type, "emc1403", I2C_NAME_SIZE);
373 break;
374 case 0x22:
375 strlcpy(info->type, "emc1422", I2C_NAME_SIZE);
376 break;
377 case 0x23:
378 strlcpy(info->type, "emc1423", I2C_NAME_SIZE);
379 break;
380 case 0x25:
381 strlcpy(info->type, "emc1404", I2C_NAME_SIZE);
382 break;
383 case 0x27:
384 strlcpy(info->type, "emc1424", I2C_NAME_SIZE);
385 break;
386 default:
387 return -ENODEV;
388 }
389
390 id = i2c_smbus_read_byte_data(client, THERMAL_REVISION_REG);
391 if (id < 0x01 || id > 0x04)
392 return -ENODEV;
393
394 return 0;
395}
396
397static bool emc1403_regmap_is_volatile(struct device *dev, unsigned int reg)
398{
399 switch (reg) {
400 case 0x00: /* internal diode high byte */
401 case 0x01: /* external diode 1 high byte */
402 case 0x02: /* status */
403 case 0x10: /* external diode 1 low byte */
404 case 0x1b: /* external diode fault */
405 case 0x23: /* external diode 2 high byte */
406 case 0x24: /* external diode 2 low byte */
407 case 0x29: /* internal diode low byte */
408 case 0x2a: /* externl diode 3 high byte */
409 case 0x2b: /* external diode 3 low byte */
410 case 0x35: /* high limit status */
411 case 0x36: /* low limit status */
412 case 0x37: /* therm limit status */
413 return true;
414 default:
415 return false;
416 }
417}
418
419static const struct regmap_config emc1403_regmap_config = {
420 .reg_bits = 8,
421 .val_bits = 8,
422 .cache_type = REGCACHE_RBTREE,
423 .volatile_reg = emc1403_regmap_is_volatile,
424};
425
426static int emc1403_probe(struct i2c_client *client,
427 const struct i2c_device_id *id)
428{
429 struct thermal_data *data;
430 struct device *hwmon_dev;
431
432 data = devm_kzalloc(&client->dev, sizeof(struct thermal_data),
433 GFP_KERNEL);
434 if (data == NULL)
435 return -ENOMEM;
436
437 data->regmap = devm_regmap_init_i2c(client, &emc1403_regmap_config);
438 if (IS_ERR(data->regmap))
439 return PTR_ERR(data->regmap);
440
441 mutex_init(&data->mutex);
442
443 switch (id->driver_data) {
444 case emc1404:
445 data->groups[2] = &emc1404_group;
446 case emc1403:
447 data->groups[1] = &emc1403_group;
448 case emc1402:
449 data->groups[0] = &emc1402_group;
450 }
451
452 if (id->driver_data == emc1402)
453 data->groups[1] = &emc1402_alarm_group;
454
455 hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev,
456 client->name, data,
457 data->groups);
458 if (IS_ERR(hwmon_dev))
459 return PTR_ERR(hwmon_dev);
460
461 dev_info(&client->dev, "%s Thermal chip found\n", id->name);
462 return 0;
463}
464
465static const unsigned short emc1403_address_list[] = {
466 0x18, 0x1c, 0x29, 0x4c, 0x4d, 0x5c, I2C_CLIENT_END
467};
468
469/* Last digit of chip name indicates number of channels */
470static const struct i2c_device_id emc1403_idtable[] = {
471 { "emc1402", emc1402 },
472 { "emc1403", emc1403 },
473 { "emc1404", emc1404 },
474 { "emc1412", emc1402 },
475 { "emc1413", emc1403 },
476 { "emc1414", emc1404 },
477 { "emc1422", emc1402 },
478 { "emc1423", emc1403 },
479 { "emc1424", emc1404 },
480 { }
481};
482MODULE_DEVICE_TABLE(i2c, emc1403_idtable);
483
484static struct i2c_driver sensor_emc1403 = {
485 .class = I2C_CLASS_HWMON,
486 .driver = {
487 .name = "emc1403",
488 },
489 .detect = emc1403_detect,
490 .probe = emc1403_probe,
491 .id_table = emc1403_idtable,
492 .address_list = emc1403_address_list,
493};
494
495module_i2c_driver(sensor_emc1403);
496
497MODULE_AUTHOR("Kalhan Trisal <kalhan.trisal@intel.com");
498MODULE_DESCRIPTION("emc1403 Thermal Driver");
499MODULE_LICENSE("GPL v2");