Loading...
Note: File does not exist in v4.6.
1/*
2 * Copyright 2016 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26#include <linux/delay.h>
27#include "dm_services.h"
28#include "basics/dc_common.h"
29#include "core_types.h"
30#include "resource.h"
31#include "custom_float.h"
32#include "dcn10_hw_sequencer.h"
33#include "dcn10_hw_sequencer_debug.h"
34#include "dce/dce_hwseq.h"
35#include "abm.h"
36#include "dmcu.h"
37#include "dcn10_optc.h"
38#include "dcn10_dpp.h"
39#include "dcn10_mpc.h"
40#include "timing_generator.h"
41#include "opp.h"
42#include "ipp.h"
43#include "mpc.h"
44#include "reg_helper.h"
45#include "dcn10_hubp.h"
46#include "dcn10_hubbub.h"
47#include "dcn10_cm_common.h"
48#include "dc_link_dp.h"
49#include "dccg.h"
50#include "clk_mgr.h"
51#include "link_hwss.h"
52#include "dpcd_defs.h"
53#include "dsc.h"
54#include "dce/dmub_hw_lock_mgr.h"
55
56#define DC_LOGGER_INIT(logger)
57
58#define CTX \
59 hws->ctx
60#define REG(reg)\
61 hws->regs->reg
62
63#undef FN
64#define FN(reg_name, field_name) \
65 hws->shifts->field_name, hws->masks->field_name
66
67/*print is 17 wide, first two characters are spaces*/
68#define DTN_INFO_MICRO_SEC(ref_cycle) \
69 print_microsec(dc_ctx, log_ctx, ref_cycle)
70
71#define GAMMA_HW_POINTS_NUM 256
72
73void print_microsec(struct dc_context *dc_ctx,
74 struct dc_log_buffer_ctx *log_ctx,
75 uint32_t ref_cycle)
76{
77 const uint32_t ref_clk_mhz = dc_ctx->dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000;
78 static const unsigned int frac = 1000;
79 uint32_t us_x10 = (ref_cycle * frac) / ref_clk_mhz;
80
81 DTN_INFO(" %11d.%03d",
82 us_x10 / frac,
83 us_x10 % frac);
84}
85
86void dcn10_lock_all_pipes(struct dc *dc,
87 struct dc_state *context,
88 bool lock)
89{
90 struct pipe_ctx *pipe_ctx;
91 struct timing_generator *tg;
92 int i;
93
94 for (i = 0; i < dc->res_pool->pipe_count; i++) {
95 pipe_ctx = &context->res_ctx.pipe_ctx[i];
96 tg = pipe_ctx->stream_res.tg;
97
98 /*
99 * Only lock the top pipe's tg to prevent redundant
100 * (un)locking. Also skip if pipe is disabled.
101 */
102 if (pipe_ctx->top_pipe ||
103 !pipe_ctx->stream || !pipe_ctx->plane_state ||
104 !tg->funcs->is_tg_enabled(tg))
105 continue;
106
107 if (lock)
108 dc->hwss.pipe_control_lock(dc, pipe_ctx, true);
109 else
110 dc->hwss.pipe_control_lock(dc, pipe_ctx, false);
111 }
112}
113
114static void log_mpc_crc(struct dc *dc,
115 struct dc_log_buffer_ctx *log_ctx)
116{
117 struct dc_context *dc_ctx = dc->ctx;
118 struct dce_hwseq *hws = dc->hwseq;
119
120 if (REG(MPC_CRC_RESULT_GB))
121 DTN_INFO("MPC_CRC_RESULT_GB:%d MPC_CRC_RESULT_C:%d MPC_CRC_RESULT_AR:%d\n",
122 REG_READ(MPC_CRC_RESULT_GB), REG_READ(MPC_CRC_RESULT_C), REG_READ(MPC_CRC_RESULT_AR));
123 if (REG(DPP_TOP0_DPP_CRC_VAL_B_A))
124 DTN_INFO("DPP_TOP0_DPP_CRC_VAL_B_A:%d DPP_TOP0_DPP_CRC_VAL_R_G:%d\n",
125 REG_READ(DPP_TOP0_DPP_CRC_VAL_B_A), REG_READ(DPP_TOP0_DPP_CRC_VAL_R_G));
126}
127
128void dcn10_log_hubbub_state(struct dc *dc, struct dc_log_buffer_ctx *log_ctx)
129{
130 struct dc_context *dc_ctx = dc->ctx;
131 struct dcn_hubbub_wm wm;
132 int i;
133
134 memset(&wm, 0, sizeof(struct dcn_hubbub_wm));
135 dc->res_pool->hubbub->funcs->wm_read_state(dc->res_pool->hubbub, &wm);
136
137 DTN_INFO("HUBBUB WM: data_urgent pte_meta_urgent"
138 " sr_enter sr_exit dram_clk_change\n");
139
140 for (i = 0; i < 4; i++) {
141 struct dcn_hubbub_wm_set *s;
142
143 s = &wm.sets[i];
144 DTN_INFO("WM_Set[%d]:", s->wm_set);
145 DTN_INFO_MICRO_SEC(s->data_urgent);
146 DTN_INFO_MICRO_SEC(s->pte_meta_urgent);
147 DTN_INFO_MICRO_SEC(s->sr_enter);
148 DTN_INFO_MICRO_SEC(s->sr_exit);
149 DTN_INFO_MICRO_SEC(s->dram_clk_chanage);
150 DTN_INFO("\n");
151 }
152
153 DTN_INFO("\n");
154}
155
156static void dcn10_log_hubp_states(struct dc *dc, void *log_ctx)
157{
158 struct dc_context *dc_ctx = dc->ctx;
159 struct resource_pool *pool = dc->res_pool;
160 int i;
161
162 DTN_INFO(
163 "HUBP: format addr_hi width height rot mir sw_mode dcc_en blank_en clock_en ttu_dis underflow min_ttu_vblank qos_low_wm qos_high_wm\n");
164 for (i = 0; i < pool->pipe_count; i++) {
165 struct hubp *hubp = pool->hubps[i];
166 struct dcn_hubp_state *s = &(TO_DCN10_HUBP(hubp)->state);
167
168 hubp->funcs->hubp_read_state(hubp);
169
170 if (!s->blank_en) {
171 DTN_INFO("[%2d]: %5xh %6xh %5d %6d %2xh %2xh %6xh %6d %8d %8d %7d %8xh",
172 hubp->inst,
173 s->pixel_format,
174 s->inuse_addr_hi,
175 s->viewport_width,
176 s->viewport_height,
177 s->rotation_angle,
178 s->h_mirror_en,
179 s->sw_mode,
180 s->dcc_en,
181 s->blank_en,
182 s->clock_en,
183 s->ttu_disable,
184 s->underflow_status);
185 DTN_INFO_MICRO_SEC(s->min_ttu_vblank);
186 DTN_INFO_MICRO_SEC(s->qos_level_low_wm);
187 DTN_INFO_MICRO_SEC(s->qos_level_high_wm);
188 DTN_INFO("\n");
189 }
190 }
191
192 DTN_INFO("\n=========RQ========\n");
193 DTN_INFO("HUBP: drq_exp_m prq_exp_m mrq_exp_m crq_exp_m plane1_ba L:chunk_s min_chu_s meta_ch_s"
194 " min_m_c_s dpte_gr_s mpte_gr_s swath_hei pte_row_h C:chunk_s min_chu_s meta_ch_s"
195 " min_m_c_s dpte_gr_s mpte_gr_s swath_hei pte_row_h\n");
196 for (i = 0; i < pool->pipe_count; i++) {
197 struct dcn_hubp_state *s = &(TO_DCN10_HUBP(pool->hubps[i])->state);
198 struct _vcs_dpi_display_rq_regs_st *rq_regs = &s->rq_regs;
199
200 if (!s->blank_en)
201 DTN_INFO("[%2d]: %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh\n",
202 pool->hubps[i]->inst, rq_regs->drq_expansion_mode, rq_regs->prq_expansion_mode, rq_regs->mrq_expansion_mode,
203 rq_regs->crq_expansion_mode, rq_regs->plane1_base_address, rq_regs->rq_regs_l.chunk_size,
204 rq_regs->rq_regs_l.min_chunk_size, rq_regs->rq_regs_l.meta_chunk_size,
205 rq_regs->rq_regs_l.min_meta_chunk_size, rq_regs->rq_regs_l.dpte_group_size,
206 rq_regs->rq_regs_l.mpte_group_size, rq_regs->rq_regs_l.swath_height,
207 rq_regs->rq_regs_l.pte_row_height_linear, rq_regs->rq_regs_c.chunk_size, rq_regs->rq_regs_c.min_chunk_size,
208 rq_regs->rq_regs_c.meta_chunk_size, rq_regs->rq_regs_c.min_meta_chunk_size,
209 rq_regs->rq_regs_c.dpte_group_size, rq_regs->rq_regs_c.mpte_group_size,
210 rq_regs->rq_regs_c.swath_height, rq_regs->rq_regs_c.pte_row_height_linear);
211 }
212
213 DTN_INFO("========DLG========\n");
214 DTN_INFO("HUBP: rc_hbe dlg_vbe min_d_y_n rc_per_ht rc_x_a_s "
215 " dst_y_a_s dst_y_pf dst_y_vvb dst_y_rvb dst_y_vfl dst_y_rfl rf_pix_fq"
216 " vratio_pf vrat_pf_c rc_pg_vbl rc_pg_vbc rc_mc_vbl rc_mc_vbc rc_pg_fll"
217 " rc_pg_flc rc_mc_fll rc_mc_flc pr_nom_l pr_nom_c rc_pg_nl rc_pg_nc "
218 " mr_nom_l mr_nom_c rc_mc_nl rc_mc_nc rc_ld_pl rc_ld_pc rc_ld_l "
219 " rc_ld_c cha_cur0 ofst_cur1 cha_cur1 vr_af_vc0 ddrq_limt x_rt_dlay"
220 " x_rp_dlay x_rr_sfl\n");
221 for (i = 0; i < pool->pipe_count; i++) {
222 struct dcn_hubp_state *s = &(TO_DCN10_HUBP(pool->hubps[i])->state);
223 struct _vcs_dpi_display_dlg_regs_st *dlg_regs = &s->dlg_attr;
224
225 if (!s->blank_en)
226 DTN_INFO("[%2d]: %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh"
227 "% 8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh"
228 " %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh\n",
229 pool->hubps[i]->inst, dlg_regs->refcyc_h_blank_end, dlg_regs->dlg_vblank_end, dlg_regs->min_dst_y_next_start,
230 dlg_regs->refcyc_per_htotal, dlg_regs->refcyc_x_after_scaler, dlg_regs->dst_y_after_scaler,
231 dlg_regs->dst_y_prefetch, dlg_regs->dst_y_per_vm_vblank, dlg_regs->dst_y_per_row_vblank,
232 dlg_regs->dst_y_per_vm_flip, dlg_regs->dst_y_per_row_flip, dlg_regs->ref_freq_to_pix_freq,
233 dlg_regs->vratio_prefetch, dlg_regs->vratio_prefetch_c, dlg_regs->refcyc_per_pte_group_vblank_l,
234 dlg_regs->refcyc_per_pte_group_vblank_c, dlg_regs->refcyc_per_meta_chunk_vblank_l,
235 dlg_regs->refcyc_per_meta_chunk_vblank_c, dlg_regs->refcyc_per_pte_group_flip_l,
236 dlg_regs->refcyc_per_pte_group_flip_c, dlg_regs->refcyc_per_meta_chunk_flip_l,
237 dlg_regs->refcyc_per_meta_chunk_flip_c, dlg_regs->dst_y_per_pte_row_nom_l,
238 dlg_regs->dst_y_per_pte_row_nom_c, dlg_regs->refcyc_per_pte_group_nom_l,
239 dlg_regs->refcyc_per_pte_group_nom_c, dlg_regs->dst_y_per_meta_row_nom_l,
240 dlg_regs->dst_y_per_meta_row_nom_c, dlg_regs->refcyc_per_meta_chunk_nom_l,
241 dlg_regs->refcyc_per_meta_chunk_nom_c, dlg_regs->refcyc_per_line_delivery_pre_l,
242 dlg_regs->refcyc_per_line_delivery_pre_c, dlg_regs->refcyc_per_line_delivery_l,
243 dlg_regs->refcyc_per_line_delivery_c, dlg_regs->chunk_hdl_adjust_cur0, dlg_regs->dst_y_offset_cur1,
244 dlg_regs->chunk_hdl_adjust_cur1, dlg_regs->vready_after_vcount0, dlg_regs->dst_y_delta_drq_limit,
245 dlg_regs->xfc_reg_transfer_delay, dlg_regs->xfc_reg_precharge_delay,
246 dlg_regs->xfc_reg_remote_surface_flip_latency);
247 }
248
249 DTN_INFO("========TTU========\n");
250 DTN_INFO("HUBP: qos_ll_wm qos_lh_wm mn_ttu_vb qos_l_flp rc_rd_p_l rc_rd_l rc_rd_p_c"
251 " rc_rd_c rc_rd_c0 rc_rd_pc0 rc_rd_c1 rc_rd_pc1 qos_lf_l qos_rds_l"
252 " qos_lf_c qos_rds_c qos_lf_c0 qos_rds_c0 qos_lf_c1 qos_rds_c1\n");
253 for (i = 0; i < pool->pipe_count; i++) {
254 struct dcn_hubp_state *s = &(TO_DCN10_HUBP(pool->hubps[i])->state);
255 struct _vcs_dpi_display_ttu_regs_st *ttu_regs = &s->ttu_attr;
256
257 if (!s->blank_en)
258 DTN_INFO("[%2d]: %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh\n",
259 pool->hubps[i]->inst, ttu_regs->qos_level_low_wm, ttu_regs->qos_level_high_wm, ttu_regs->min_ttu_vblank,
260 ttu_regs->qos_level_flip, ttu_regs->refcyc_per_req_delivery_pre_l, ttu_regs->refcyc_per_req_delivery_l,
261 ttu_regs->refcyc_per_req_delivery_pre_c, ttu_regs->refcyc_per_req_delivery_c, ttu_regs->refcyc_per_req_delivery_cur0,
262 ttu_regs->refcyc_per_req_delivery_pre_cur0, ttu_regs->refcyc_per_req_delivery_cur1,
263 ttu_regs->refcyc_per_req_delivery_pre_cur1, ttu_regs->qos_level_fixed_l, ttu_regs->qos_ramp_disable_l,
264 ttu_regs->qos_level_fixed_c, ttu_regs->qos_ramp_disable_c, ttu_regs->qos_level_fixed_cur0,
265 ttu_regs->qos_ramp_disable_cur0, ttu_regs->qos_level_fixed_cur1, ttu_regs->qos_ramp_disable_cur1);
266 }
267 DTN_INFO("\n");
268}
269
270void dcn10_log_hw_state(struct dc *dc,
271 struct dc_log_buffer_ctx *log_ctx)
272{
273 struct dc_context *dc_ctx = dc->ctx;
274 struct resource_pool *pool = dc->res_pool;
275 int i;
276
277 DTN_INFO_BEGIN();
278
279 dcn10_log_hubbub_state(dc, log_ctx);
280
281 dcn10_log_hubp_states(dc, log_ctx);
282
283 DTN_INFO("DPP: IGAM format IGAM mode DGAM mode RGAM mode"
284 " GAMUT mode C11 C12 C13 C14 C21 C22 C23 C24 "
285 "C31 C32 C33 C34\n");
286 for (i = 0; i < pool->pipe_count; i++) {
287 struct dpp *dpp = pool->dpps[i];
288 struct dcn_dpp_state s = {0};
289
290 dpp->funcs->dpp_read_state(dpp, &s);
291
292 if (!s.is_enabled)
293 continue;
294
295 DTN_INFO("[%2d]: %11xh %-11s %-11s %-11s"
296 "%8x %08xh %08xh %08xh %08xh %08xh %08xh",
297 dpp->inst,
298 s.igam_input_format,
299 (s.igam_lut_mode == 0) ? "BypassFixed" :
300 ((s.igam_lut_mode == 1) ? "BypassFloat" :
301 ((s.igam_lut_mode == 2) ? "RAM" :
302 ((s.igam_lut_mode == 3) ? "RAM" :
303 "Unknown"))),
304 (s.dgam_lut_mode == 0) ? "Bypass" :
305 ((s.dgam_lut_mode == 1) ? "sRGB" :
306 ((s.dgam_lut_mode == 2) ? "Ycc" :
307 ((s.dgam_lut_mode == 3) ? "RAM" :
308 ((s.dgam_lut_mode == 4) ? "RAM" :
309 "Unknown")))),
310 (s.rgam_lut_mode == 0) ? "Bypass" :
311 ((s.rgam_lut_mode == 1) ? "sRGB" :
312 ((s.rgam_lut_mode == 2) ? "Ycc" :
313 ((s.rgam_lut_mode == 3) ? "RAM" :
314 ((s.rgam_lut_mode == 4) ? "RAM" :
315 "Unknown")))),
316 s.gamut_remap_mode,
317 s.gamut_remap_c11_c12,
318 s.gamut_remap_c13_c14,
319 s.gamut_remap_c21_c22,
320 s.gamut_remap_c23_c24,
321 s.gamut_remap_c31_c32,
322 s.gamut_remap_c33_c34);
323 DTN_INFO("\n");
324 }
325 DTN_INFO("\n");
326
327 DTN_INFO("MPCC: OPP DPP MPCCBOT MODE ALPHA_MODE PREMULT OVERLAP_ONLY IDLE\n");
328 for (i = 0; i < pool->pipe_count; i++) {
329 struct mpcc_state s = {0};
330
331 pool->mpc->funcs->read_mpcc_state(pool->mpc, i, &s);
332 if (s.opp_id != 0xf)
333 DTN_INFO("[%2d]: %2xh %2xh %6xh %4d %10d %7d %12d %4d\n",
334 i, s.opp_id, s.dpp_id, s.bot_mpcc_id,
335 s.mode, s.alpha_mode, s.pre_multiplied_alpha, s.overlap_only,
336 s.idle);
337 }
338 DTN_INFO("\n");
339
340 DTN_INFO("OTG: v_bs v_be v_ss v_se vpol vmax vmin vmax_sel vmin_sel h_bs h_be h_ss h_se hpol htot vtot underflow blank_en\n");
341
342 for (i = 0; i < pool->timing_generator_count; i++) {
343 struct timing_generator *tg = pool->timing_generators[i];
344 struct dcn_otg_state s = {0};
345 /* Read shared OTG state registers for all DCNx */
346 optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s);
347
348 /*
349 * For DCN2 and greater, a register on the OPP is used to
350 * determine if the CRTC is blanked instead of the OTG. So use
351 * dpg_is_blanked() if exists, otherwise fallback on otg.
352 *
353 * TODO: Implement DCN-specific read_otg_state hooks.
354 */
355 if (pool->opps[i]->funcs->dpg_is_blanked)
356 s.blank_enabled = pool->opps[i]->funcs->dpg_is_blanked(pool->opps[i]);
357 else
358 s.blank_enabled = tg->funcs->is_blanked(tg);
359
360 //only print if OTG master is enabled
361 if ((s.otg_enabled & 1) == 0)
362 continue;
363
364 DTN_INFO("[%d]: %5d %5d %5d %5d %5d %5d %5d %9d %9d %5d %5d %5d %5d %5d %5d %5d %9d %8d\n",
365 tg->inst,
366 s.v_blank_start,
367 s.v_blank_end,
368 s.v_sync_a_start,
369 s.v_sync_a_end,
370 s.v_sync_a_pol,
371 s.v_total_max,
372 s.v_total_min,
373 s.v_total_max_sel,
374 s.v_total_min_sel,
375 s.h_blank_start,
376 s.h_blank_end,
377 s.h_sync_a_start,
378 s.h_sync_a_end,
379 s.h_sync_a_pol,
380 s.h_total,
381 s.v_total,
382 s.underflow_occurred_status,
383 s.blank_enabled);
384
385 // Clear underflow for debug purposes
386 // We want to keep underflow sticky bit on for the longevity tests outside of test environment.
387 // This function is called only from Windows or Diags test environment, hence it's safe to clear
388 // it from here without affecting the original intent.
389 tg->funcs->clear_optc_underflow(tg);
390 }
391 DTN_INFO("\n");
392
393 // dcn_dsc_state struct field bytes_per_pixel was renamed to bits_per_pixel
394 // TODO: Update golden log header to reflect this name change
395 DTN_INFO("DSC: CLOCK_EN SLICE_WIDTH Bytes_pp\n");
396 for (i = 0; i < pool->res_cap->num_dsc; i++) {
397 struct display_stream_compressor *dsc = pool->dscs[i];
398 struct dcn_dsc_state s = {0};
399
400 dsc->funcs->dsc_read_state(dsc, &s);
401 DTN_INFO("[%d]: %-9d %-12d %-10d\n",
402 dsc->inst,
403 s.dsc_clock_en,
404 s.dsc_slice_width,
405 s.dsc_bits_per_pixel);
406 DTN_INFO("\n");
407 }
408 DTN_INFO("\n");
409
410 DTN_INFO("S_ENC: DSC_MODE SEC_GSP7_LINE_NUM"
411 " VBID6_LINE_REFERENCE VBID6_LINE_NUM SEC_GSP7_ENABLE SEC_STREAM_ENABLE\n");
412 for (i = 0; i < pool->stream_enc_count; i++) {
413 struct stream_encoder *enc = pool->stream_enc[i];
414 struct enc_state s = {0};
415
416 if (enc->funcs->enc_read_state) {
417 enc->funcs->enc_read_state(enc, &s);
418 DTN_INFO("[%-3d]: %-9d %-18d %-21d %-15d %-16d %-17d\n",
419 enc->id,
420 s.dsc_mode,
421 s.sec_gsp_pps_line_num,
422 s.vbid6_line_reference,
423 s.vbid6_line_num,
424 s.sec_gsp_pps_enable,
425 s.sec_stream_enable);
426 DTN_INFO("\n");
427 }
428 }
429 DTN_INFO("\n");
430
431 DTN_INFO("L_ENC: DPHY_FEC_EN DPHY_FEC_READY_SHADOW DPHY_FEC_ACTIVE_STATUS DP_LINK_TRAINING_COMPLETE\n");
432 for (i = 0; i < dc->link_count; i++) {
433 struct link_encoder *lenc = dc->links[i]->link_enc;
434
435 struct link_enc_state s = {0};
436
437 if (lenc->funcs->read_state) {
438 lenc->funcs->read_state(lenc, &s);
439 DTN_INFO("[%-3d]: %-12d %-22d %-22d %-25d\n",
440 i,
441 s.dphy_fec_en,
442 s.dphy_fec_ready_shadow,
443 s.dphy_fec_active_status,
444 s.dp_link_training_complete);
445 DTN_INFO("\n");
446 }
447 }
448 DTN_INFO("\n");
449
450 DTN_INFO("\nCALCULATED Clocks: dcfclk_khz:%d dcfclk_deep_sleep_khz:%d dispclk_khz:%d\n"
451 "dppclk_khz:%d max_supported_dppclk_khz:%d fclk_khz:%d socclk_khz:%d\n\n",
452 dc->current_state->bw_ctx.bw.dcn.clk.dcfclk_khz,
453 dc->current_state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz,
454 dc->current_state->bw_ctx.bw.dcn.clk.dispclk_khz,
455 dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz,
456 dc->current_state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz,
457 dc->current_state->bw_ctx.bw.dcn.clk.fclk_khz,
458 dc->current_state->bw_ctx.bw.dcn.clk.socclk_khz);
459
460 log_mpc_crc(dc, log_ctx);
461
462 DTN_INFO_END();
463}
464
465bool dcn10_did_underflow_occur(struct dc *dc, struct pipe_ctx *pipe_ctx)
466{
467 struct hubp *hubp = pipe_ctx->plane_res.hubp;
468 struct timing_generator *tg = pipe_ctx->stream_res.tg;
469
470 if (tg->funcs->is_optc_underflow_occurred(tg)) {
471 tg->funcs->clear_optc_underflow(tg);
472 return true;
473 }
474
475 if (hubp->funcs->hubp_get_underflow_status(hubp)) {
476 hubp->funcs->hubp_clear_underflow(hubp);
477 return true;
478 }
479 return false;
480}
481
482void dcn10_enable_power_gating_plane(
483 struct dce_hwseq *hws,
484 bool enable)
485{
486 bool force_on = true; /* disable power gating */
487
488 if (enable)
489 force_on = false;
490
491 /* DCHUBP0/1/2/3 */
492 REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN0_POWER_FORCEON, force_on);
493 REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN2_POWER_FORCEON, force_on);
494 REG_UPDATE(DOMAIN4_PG_CONFIG, DOMAIN4_POWER_FORCEON, force_on);
495 REG_UPDATE(DOMAIN6_PG_CONFIG, DOMAIN6_POWER_FORCEON, force_on);
496
497 /* DPP0/1/2/3 */
498 REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN1_POWER_FORCEON, force_on);
499 REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN3_POWER_FORCEON, force_on);
500 REG_UPDATE(DOMAIN5_PG_CONFIG, DOMAIN5_POWER_FORCEON, force_on);
501 REG_UPDATE(DOMAIN7_PG_CONFIG, DOMAIN7_POWER_FORCEON, force_on);
502}
503
504void dcn10_disable_vga(
505 struct dce_hwseq *hws)
506{
507 unsigned int in_vga1_mode = 0;
508 unsigned int in_vga2_mode = 0;
509 unsigned int in_vga3_mode = 0;
510 unsigned int in_vga4_mode = 0;
511
512 REG_GET(D1VGA_CONTROL, D1VGA_MODE_ENABLE, &in_vga1_mode);
513 REG_GET(D2VGA_CONTROL, D2VGA_MODE_ENABLE, &in_vga2_mode);
514 REG_GET(D3VGA_CONTROL, D3VGA_MODE_ENABLE, &in_vga3_mode);
515 REG_GET(D4VGA_CONTROL, D4VGA_MODE_ENABLE, &in_vga4_mode);
516
517 if (in_vga1_mode == 0 && in_vga2_mode == 0 &&
518 in_vga3_mode == 0 && in_vga4_mode == 0)
519 return;
520
521 REG_WRITE(D1VGA_CONTROL, 0);
522 REG_WRITE(D2VGA_CONTROL, 0);
523 REG_WRITE(D3VGA_CONTROL, 0);
524 REG_WRITE(D4VGA_CONTROL, 0);
525
526 /* HW Engineer's Notes:
527 * During switch from vga->extended, if we set the VGA_TEST_ENABLE and
528 * then hit the VGA_TEST_RENDER_START, then the DCHUBP timing gets updated correctly.
529 *
530 * Then vBIOS will have it poll for the VGA_TEST_RENDER_DONE and unset
531 * VGA_TEST_ENABLE, to leave it in the same state as before.
532 */
533 REG_UPDATE(VGA_TEST_CONTROL, VGA_TEST_ENABLE, 1);
534 REG_UPDATE(VGA_TEST_CONTROL, VGA_TEST_RENDER_START, 1);
535}
536
537void dcn10_dpp_pg_control(
538 struct dce_hwseq *hws,
539 unsigned int dpp_inst,
540 bool power_on)
541{
542 uint32_t power_gate = power_on ? 0 : 1;
543 uint32_t pwr_status = power_on ? 0 : 2;
544
545 if (hws->ctx->dc->debug.disable_dpp_power_gate)
546 return;
547 if (REG(DOMAIN1_PG_CONFIG) == 0)
548 return;
549
550 switch (dpp_inst) {
551 case 0: /* DPP0 */
552 REG_UPDATE(DOMAIN1_PG_CONFIG,
553 DOMAIN1_POWER_GATE, power_gate);
554
555 REG_WAIT(DOMAIN1_PG_STATUS,
556 DOMAIN1_PGFSM_PWR_STATUS, pwr_status,
557 1, 1000);
558 break;
559 case 1: /* DPP1 */
560 REG_UPDATE(DOMAIN3_PG_CONFIG,
561 DOMAIN3_POWER_GATE, power_gate);
562
563 REG_WAIT(DOMAIN3_PG_STATUS,
564 DOMAIN3_PGFSM_PWR_STATUS, pwr_status,
565 1, 1000);
566 break;
567 case 2: /* DPP2 */
568 REG_UPDATE(DOMAIN5_PG_CONFIG,
569 DOMAIN5_POWER_GATE, power_gate);
570
571 REG_WAIT(DOMAIN5_PG_STATUS,
572 DOMAIN5_PGFSM_PWR_STATUS, pwr_status,
573 1, 1000);
574 break;
575 case 3: /* DPP3 */
576 REG_UPDATE(DOMAIN7_PG_CONFIG,
577 DOMAIN7_POWER_GATE, power_gate);
578
579 REG_WAIT(DOMAIN7_PG_STATUS,
580 DOMAIN7_PGFSM_PWR_STATUS, pwr_status,
581 1, 1000);
582 break;
583 default:
584 BREAK_TO_DEBUGGER();
585 break;
586 }
587}
588
589void dcn10_hubp_pg_control(
590 struct dce_hwseq *hws,
591 unsigned int hubp_inst,
592 bool power_on)
593{
594 uint32_t power_gate = power_on ? 0 : 1;
595 uint32_t pwr_status = power_on ? 0 : 2;
596
597 if (hws->ctx->dc->debug.disable_hubp_power_gate)
598 return;
599 if (REG(DOMAIN0_PG_CONFIG) == 0)
600 return;
601
602 switch (hubp_inst) {
603 case 0: /* DCHUBP0 */
604 REG_UPDATE(DOMAIN0_PG_CONFIG,
605 DOMAIN0_POWER_GATE, power_gate);
606
607 REG_WAIT(DOMAIN0_PG_STATUS,
608 DOMAIN0_PGFSM_PWR_STATUS, pwr_status,
609 1, 1000);
610 break;
611 case 1: /* DCHUBP1 */
612 REG_UPDATE(DOMAIN2_PG_CONFIG,
613 DOMAIN2_POWER_GATE, power_gate);
614
615 REG_WAIT(DOMAIN2_PG_STATUS,
616 DOMAIN2_PGFSM_PWR_STATUS, pwr_status,
617 1, 1000);
618 break;
619 case 2: /* DCHUBP2 */
620 REG_UPDATE(DOMAIN4_PG_CONFIG,
621 DOMAIN4_POWER_GATE, power_gate);
622
623 REG_WAIT(DOMAIN4_PG_STATUS,
624 DOMAIN4_PGFSM_PWR_STATUS, pwr_status,
625 1, 1000);
626 break;
627 case 3: /* DCHUBP3 */
628 REG_UPDATE(DOMAIN6_PG_CONFIG,
629 DOMAIN6_POWER_GATE, power_gate);
630
631 REG_WAIT(DOMAIN6_PG_STATUS,
632 DOMAIN6_PGFSM_PWR_STATUS, pwr_status,
633 1, 1000);
634 break;
635 default:
636 BREAK_TO_DEBUGGER();
637 break;
638 }
639}
640
641static void power_on_plane(
642 struct dce_hwseq *hws,
643 int plane_id)
644{
645 DC_LOGGER_INIT(hws->ctx->logger);
646 if (REG(DC_IP_REQUEST_CNTL)) {
647 REG_SET(DC_IP_REQUEST_CNTL, 0,
648 IP_REQUEST_EN, 1);
649 hws->funcs.dpp_pg_control(hws, plane_id, true);
650 hws->funcs.hubp_pg_control(hws, plane_id, true);
651 REG_SET(DC_IP_REQUEST_CNTL, 0,
652 IP_REQUEST_EN, 0);
653 DC_LOG_DEBUG(
654 "Un-gated front end for pipe %d\n", plane_id);
655 }
656}
657
658static void undo_DEGVIDCN10_253_wa(struct dc *dc)
659{
660 struct dce_hwseq *hws = dc->hwseq;
661 struct hubp *hubp = dc->res_pool->hubps[0];
662
663 if (!hws->wa_state.DEGVIDCN10_253_applied)
664 return;
665
666 hubp->funcs->set_blank(hubp, true);
667
668 REG_SET(DC_IP_REQUEST_CNTL, 0,
669 IP_REQUEST_EN, 1);
670
671 hws->funcs.hubp_pg_control(hws, 0, false);
672 REG_SET(DC_IP_REQUEST_CNTL, 0,
673 IP_REQUEST_EN, 0);
674
675 hws->wa_state.DEGVIDCN10_253_applied = false;
676}
677
678static void apply_DEGVIDCN10_253_wa(struct dc *dc)
679{
680 struct dce_hwseq *hws = dc->hwseq;
681 struct hubp *hubp = dc->res_pool->hubps[0];
682 int i;
683
684 if (dc->debug.disable_stutter)
685 return;
686
687 if (!hws->wa.DEGVIDCN10_253)
688 return;
689
690 for (i = 0; i < dc->res_pool->pipe_count; i++) {
691 if (!dc->res_pool->hubps[i]->power_gated)
692 return;
693 }
694
695 /* all pipe power gated, apply work around to enable stutter. */
696
697 REG_SET(DC_IP_REQUEST_CNTL, 0,
698 IP_REQUEST_EN, 1);
699
700 hws->funcs.hubp_pg_control(hws, 0, true);
701 REG_SET(DC_IP_REQUEST_CNTL, 0,
702 IP_REQUEST_EN, 0);
703
704 hubp->funcs->set_hubp_blank_en(hubp, false);
705 hws->wa_state.DEGVIDCN10_253_applied = true;
706}
707
708void dcn10_bios_golden_init(struct dc *dc)
709{
710 struct dce_hwseq *hws = dc->hwseq;
711 struct dc_bios *bp = dc->ctx->dc_bios;
712 int i;
713 bool allow_self_fresh_force_enable = true;
714
715 if (hws->funcs.s0i3_golden_init_wa && hws->funcs.s0i3_golden_init_wa(dc))
716 return;
717
718 if (dc->res_pool->hubbub->funcs->is_allow_self_refresh_enabled)
719 allow_self_fresh_force_enable =
720 dc->res_pool->hubbub->funcs->is_allow_self_refresh_enabled(dc->res_pool->hubbub);
721
722
723 /* WA for making DF sleep when idle after resume from S0i3.
724 * DCHUBBUB_ARB_ALLOW_SELF_REFRESH_FORCE_ENABLE is set to 1 by
725 * command table, if DCHUBBUB_ARB_ALLOW_SELF_REFRESH_FORCE_ENABLE = 0
726 * before calling command table and it changed to 1 after,
727 * it should be set back to 0.
728 */
729
730 /* initialize dcn global */
731 bp->funcs->enable_disp_power_gating(bp,
732 CONTROLLER_ID_D0, ASIC_PIPE_INIT);
733
734 for (i = 0; i < dc->res_pool->pipe_count; i++) {
735 /* initialize dcn per pipe */
736 bp->funcs->enable_disp_power_gating(bp,
737 CONTROLLER_ID_D0 + i, ASIC_PIPE_DISABLE);
738 }
739
740 if (dc->res_pool->hubbub->funcs->allow_self_refresh_control)
741 if (allow_self_fresh_force_enable == false &&
742 dc->res_pool->hubbub->funcs->is_allow_self_refresh_enabled(dc->res_pool->hubbub))
743 dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub,
744 !dc->res_pool->hubbub->ctx->dc->debug.disable_stutter);
745
746}
747
748static void false_optc_underflow_wa(
749 struct dc *dc,
750 const struct dc_stream_state *stream,
751 struct timing_generator *tg)
752{
753 int i;
754 bool underflow;
755
756 if (!dc->hwseq->wa.false_optc_underflow)
757 return;
758
759 underflow = tg->funcs->is_optc_underflow_occurred(tg);
760
761 for (i = 0; i < dc->res_pool->pipe_count; i++) {
762 struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
763
764 if (old_pipe_ctx->stream != stream)
765 continue;
766
767 dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, old_pipe_ctx);
768 }
769
770 if (tg->funcs->set_blank_data_double_buffer)
771 tg->funcs->set_blank_data_double_buffer(tg, true);
772
773 if (tg->funcs->is_optc_underflow_occurred(tg) && !underflow)
774 tg->funcs->clear_optc_underflow(tg);
775}
776
777enum dc_status dcn10_enable_stream_timing(
778 struct pipe_ctx *pipe_ctx,
779 struct dc_state *context,
780 struct dc *dc)
781{
782 struct dc_stream_state *stream = pipe_ctx->stream;
783 enum dc_color_space color_space;
784 struct tg_color black_color = {0};
785
786 /* by upper caller loop, pipe0 is parent pipe and be called first.
787 * back end is set up by for pipe0. Other children pipe share back end
788 * with pipe 0. No program is needed.
789 */
790 if (pipe_ctx->top_pipe != NULL)
791 return DC_OK;
792
793 /* TODO check if timing_changed, disable stream if timing changed */
794
795 /* HW program guide assume display already disable
796 * by unplug sequence. OTG assume stop.
797 */
798 pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, true);
799
800 if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
801 pipe_ctx->clock_source,
802 &pipe_ctx->stream_res.pix_clk_params,
803 &pipe_ctx->pll_settings)) {
804 BREAK_TO_DEBUGGER();
805 return DC_ERROR_UNEXPECTED;
806 }
807
808 pipe_ctx->stream_res.tg->funcs->program_timing(
809 pipe_ctx->stream_res.tg,
810 &stream->timing,
811 pipe_ctx->pipe_dlg_param.vready_offset,
812 pipe_ctx->pipe_dlg_param.vstartup_start,
813 pipe_ctx->pipe_dlg_param.vupdate_offset,
814 pipe_ctx->pipe_dlg_param.vupdate_width,
815 pipe_ctx->stream->signal,
816 true);
817
818#if 0 /* move to after enable_crtc */
819 /* TODO: OPP FMT, ABM. etc. should be done here. */
820 /* or FPGA now. instance 0 only. TODO: move to opp.c */
821
822 inst_offset = reg_offsets[pipe_ctx->stream_res.tg->inst].fmt;
823
824 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
825 pipe_ctx->stream_res.opp,
826 &stream->bit_depth_params,
827 &stream->clamping);
828#endif
829 /* program otg blank color */
830 color_space = stream->output_color_space;
831 color_space_to_black_color(dc, color_space, &black_color);
832
833 /*
834 * The way 420 is packed, 2 channels carry Y component, 1 channel
835 * alternate between Cb and Cr, so both channels need the pixel
836 * value for Y
837 */
838 if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
839 black_color.color_r_cr = black_color.color_g_y;
840
841 if (pipe_ctx->stream_res.tg->funcs->set_blank_color)
842 pipe_ctx->stream_res.tg->funcs->set_blank_color(
843 pipe_ctx->stream_res.tg,
844 &black_color);
845
846 if (pipe_ctx->stream_res.tg->funcs->is_blanked &&
847 !pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg)) {
848 pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
849 hwss_wait_for_blank_complete(pipe_ctx->stream_res.tg);
850 false_optc_underflow_wa(dc, pipe_ctx->stream, pipe_ctx->stream_res.tg);
851 }
852
853 /* VTG is within DCHUB command block. DCFCLK is always on */
854 if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(pipe_ctx->stream_res.tg)) {
855 BREAK_TO_DEBUGGER();
856 return DC_ERROR_UNEXPECTED;
857 }
858
859 /* TODO program crtc source select for non-virtual signal*/
860 /* TODO program FMT */
861 /* TODO setup link_enc */
862 /* TODO set stream attributes */
863 /* TODO program audio */
864 /* TODO enable stream if timing changed */
865 /* TODO unblank stream if DP */
866
867 return DC_OK;
868}
869
870static void dcn10_reset_back_end_for_pipe(
871 struct dc *dc,
872 struct pipe_ctx *pipe_ctx,
873 struct dc_state *context)
874{
875 int i;
876 struct dc_link *link;
877 DC_LOGGER_INIT(dc->ctx->logger);
878 if (pipe_ctx->stream_res.stream_enc == NULL) {
879 pipe_ctx->stream = NULL;
880 return;
881 }
882
883 if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
884 link = pipe_ctx->stream->link;
885 /* DPMS may already disable or */
886 /* dpms_off status is incorrect due to fastboot
887 * feature. When system resume from S4 with second
888 * screen only, the dpms_off would be true but
889 * VBIOS lit up eDP, so check link status too.
890 */
891 if (!pipe_ctx->stream->dpms_off || link->link_status.link_active)
892 core_link_disable_stream(pipe_ctx);
893 else if (pipe_ctx->stream_res.audio)
894 dc->hwss.disable_audio_stream(pipe_ctx);
895
896 if (pipe_ctx->stream_res.audio) {
897 /*disable az_endpoint*/
898 pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
899
900 /*free audio*/
901 if (dc->caps.dynamic_audio == true) {
902 /*we have to dynamic arbitrate the audio endpoints*/
903 /*we free the resource, need reset is_audio_acquired*/
904 update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
905 pipe_ctx->stream_res.audio, false);
906 pipe_ctx->stream_res.audio = NULL;
907 }
908 }
909 }
910
911 /* by upper caller loop, parent pipe: pipe0, will be reset last.
912 * back end share by all pipes and will be disable only when disable
913 * parent pipe.
914 */
915 if (pipe_ctx->top_pipe == NULL) {
916
917 if (pipe_ctx->stream_res.abm)
918 dc->hwss.set_abm_immediate_disable(pipe_ctx);
919
920 pipe_ctx->stream_res.tg->funcs->disable_crtc(pipe_ctx->stream_res.tg);
921
922 pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, false);
923 if (pipe_ctx->stream_res.tg->funcs->set_drr)
924 pipe_ctx->stream_res.tg->funcs->set_drr(
925 pipe_ctx->stream_res.tg, NULL);
926 }
927
928 for (i = 0; i < dc->res_pool->pipe_count; i++)
929 if (&dc->current_state->res_ctx.pipe_ctx[i] == pipe_ctx)
930 break;
931
932 if (i == dc->res_pool->pipe_count)
933 return;
934
935 pipe_ctx->stream = NULL;
936 DC_LOG_DEBUG("Reset back end for pipe %d, tg:%d\n",
937 pipe_ctx->pipe_idx, pipe_ctx->stream_res.tg->inst);
938}
939
940static bool dcn10_hw_wa_force_recovery(struct dc *dc)
941{
942 struct hubp *hubp ;
943 unsigned int i;
944 bool need_recover = true;
945
946 if (!dc->debug.recovery_enabled)
947 return false;
948
949 for (i = 0; i < dc->res_pool->pipe_count; i++) {
950 struct pipe_ctx *pipe_ctx =
951 &dc->current_state->res_ctx.pipe_ctx[i];
952 if (pipe_ctx != NULL) {
953 hubp = pipe_ctx->plane_res.hubp;
954 if (hubp != NULL && hubp->funcs->hubp_get_underflow_status) {
955 if (hubp->funcs->hubp_get_underflow_status(hubp) != 0) {
956 /* one pipe underflow, we will reset all the pipes*/
957 need_recover = true;
958 }
959 }
960 }
961 }
962 if (!need_recover)
963 return false;
964 /*
965 DCHUBP_CNTL:HUBP_BLANK_EN=1
966 DCHUBBUB_SOFT_RESET:DCHUBBUB_GLOBAL_SOFT_RESET=1
967 DCHUBP_CNTL:HUBP_DISABLE=1
968 DCHUBP_CNTL:HUBP_DISABLE=0
969 DCHUBBUB_SOFT_RESET:DCHUBBUB_GLOBAL_SOFT_RESET=0
970 DCSURF_PRIMARY_SURFACE_ADDRESS
971 DCHUBP_CNTL:HUBP_BLANK_EN=0
972 */
973
974 for (i = 0; i < dc->res_pool->pipe_count; i++) {
975 struct pipe_ctx *pipe_ctx =
976 &dc->current_state->res_ctx.pipe_ctx[i];
977 if (pipe_ctx != NULL) {
978 hubp = pipe_ctx->plane_res.hubp;
979 /*DCHUBP_CNTL:HUBP_BLANK_EN=1*/
980 if (hubp != NULL && hubp->funcs->set_hubp_blank_en)
981 hubp->funcs->set_hubp_blank_en(hubp, true);
982 }
983 }
984 /*DCHUBBUB_SOFT_RESET:DCHUBBUB_GLOBAL_SOFT_RESET=1*/
985 hubbub1_soft_reset(dc->res_pool->hubbub, true);
986
987 for (i = 0; i < dc->res_pool->pipe_count; i++) {
988 struct pipe_ctx *pipe_ctx =
989 &dc->current_state->res_ctx.pipe_ctx[i];
990 if (pipe_ctx != NULL) {
991 hubp = pipe_ctx->plane_res.hubp;
992 /*DCHUBP_CNTL:HUBP_DISABLE=1*/
993 if (hubp != NULL && hubp->funcs->hubp_disable_control)
994 hubp->funcs->hubp_disable_control(hubp, true);
995 }
996 }
997 for (i = 0; i < dc->res_pool->pipe_count; i++) {
998 struct pipe_ctx *pipe_ctx =
999 &dc->current_state->res_ctx.pipe_ctx[i];
1000 if (pipe_ctx != NULL) {
1001 hubp = pipe_ctx->plane_res.hubp;
1002 /*DCHUBP_CNTL:HUBP_DISABLE=0*/
1003 if (hubp != NULL && hubp->funcs->hubp_disable_control)
1004 hubp->funcs->hubp_disable_control(hubp, true);
1005 }
1006 }
1007 /*DCHUBBUB_SOFT_RESET:DCHUBBUB_GLOBAL_SOFT_RESET=0*/
1008 hubbub1_soft_reset(dc->res_pool->hubbub, false);
1009 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1010 struct pipe_ctx *pipe_ctx =
1011 &dc->current_state->res_ctx.pipe_ctx[i];
1012 if (pipe_ctx != NULL) {
1013 hubp = pipe_ctx->plane_res.hubp;
1014 /*DCHUBP_CNTL:HUBP_BLANK_EN=0*/
1015 if (hubp != NULL && hubp->funcs->set_hubp_blank_en)
1016 hubp->funcs->set_hubp_blank_en(hubp, true);
1017 }
1018 }
1019 return true;
1020
1021}
1022
1023
1024void dcn10_verify_allow_pstate_change_high(struct dc *dc)
1025{
1026 static bool should_log_hw_state; /* prevent hw state log by default */
1027
1028 if (!hubbub1_verify_allow_pstate_change_high(dc->res_pool->hubbub)) {
1029 if (should_log_hw_state) {
1030 dcn10_log_hw_state(dc, NULL);
1031 }
1032 BREAK_TO_DEBUGGER();
1033 if (dcn10_hw_wa_force_recovery(dc)) {
1034 /*check again*/
1035 if (!hubbub1_verify_allow_pstate_change_high(dc->res_pool->hubbub))
1036 BREAK_TO_DEBUGGER();
1037 }
1038 }
1039}
1040
1041/* trigger HW to start disconnect plane from stream on the next vsync */
1042void dcn10_plane_atomic_disconnect(struct dc *dc, struct pipe_ctx *pipe_ctx)
1043{
1044 struct dce_hwseq *hws = dc->hwseq;
1045 struct hubp *hubp = pipe_ctx->plane_res.hubp;
1046 int dpp_id = pipe_ctx->plane_res.dpp->inst;
1047 struct mpc *mpc = dc->res_pool->mpc;
1048 struct mpc_tree *mpc_tree_params;
1049 struct mpcc *mpcc_to_remove = NULL;
1050 struct output_pixel_processor *opp = pipe_ctx->stream_res.opp;
1051
1052 mpc_tree_params = &(opp->mpc_tree_params);
1053 mpcc_to_remove = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, dpp_id);
1054
1055 /*Already reset*/
1056 if (mpcc_to_remove == NULL)
1057 return;
1058
1059 mpc->funcs->remove_mpcc(mpc, mpc_tree_params, mpcc_to_remove);
1060 if (opp != NULL)
1061 opp->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true;
1062
1063 dc->optimized_required = true;
1064
1065 if (hubp->funcs->hubp_disconnect)
1066 hubp->funcs->hubp_disconnect(hubp);
1067
1068 if (dc->debug.sanity_checks)
1069 hws->funcs.verify_allow_pstate_change_high(dc);
1070}
1071
1072void dcn10_plane_atomic_power_down(struct dc *dc,
1073 struct dpp *dpp,
1074 struct hubp *hubp)
1075{
1076 struct dce_hwseq *hws = dc->hwseq;
1077 DC_LOGGER_INIT(dc->ctx->logger);
1078
1079 if (REG(DC_IP_REQUEST_CNTL)) {
1080 REG_SET(DC_IP_REQUEST_CNTL, 0,
1081 IP_REQUEST_EN, 1);
1082 hws->funcs.dpp_pg_control(hws, dpp->inst, false);
1083 hws->funcs.hubp_pg_control(hws, hubp->inst, false);
1084 dpp->funcs->dpp_reset(dpp);
1085 REG_SET(DC_IP_REQUEST_CNTL, 0,
1086 IP_REQUEST_EN, 0);
1087 DC_LOG_DEBUG(
1088 "Power gated front end %d\n", hubp->inst);
1089 }
1090}
1091
1092/* disable HW used by plane.
1093 * note: cannot disable until disconnect is complete
1094 */
1095void dcn10_plane_atomic_disable(struct dc *dc, struct pipe_ctx *pipe_ctx)
1096{
1097 struct dce_hwseq *hws = dc->hwseq;
1098 struct hubp *hubp = pipe_ctx->plane_res.hubp;
1099 struct dpp *dpp = pipe_ctx->plane_res.dpp;
1100 int opp_id = hubp->opp_id;
1101
1102 dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe_ctx);
1103
1104 hubp->funcs->hubp_clk_cntl(hubp, false);
1105
1106 dpp->funcs->dpp_dppclk_control(dpp, false, false);
1107
1108 if (opp_id != 0xf && pipe_ctx->stream_res.opp->mpc_tree_params.opp_list == NULL)
1109 pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
1110 pipe_ctx->stream_res.opp,
1111 false);
1112
1113 hubp->power_gated = true;
1114 dc->optimized_required = false; /* We're powering off, no need to optimize */
1115
1116 hws->funcs.plane_atomic_power_down(dc,
1117 pipe_ctx->plane_res.dpp,
1118 pipe_ctx->plane_res.hubp);
1119
1120 pipe_ctx->stream = NULL;
1121 memset(&pipe_ctx->stream_res, 0, sizeof(pipe_ctx->stream_res));
1122 memset(&pipe_ctx->plane_res, 0, sizeof(pipe_ctx->plane_res));
1123 pipe_ctx->top_pipe = NULL;
1124 pipe_ctx->bottom_pipe = NULL;
1125 pipe_ctx->plane_state = NULL;
1126}
1127
1128void dcn10_disable_plane(struct dc *dc, struct pipe_ctx *pipe_ctx)
1129{
1130 struct dce_hwseq *hws = dc->hwseq;
1131 DC_LOGGER_INIT(dc->ctx->logger);
1132
1133 if (!pipe_ctx->plane_res.hubp || pipe_ctx->plane_res.hubp->power_gated)
1134 return;
1135
1136 hws->funcs.plane_atomic_disable(dc, pipe_ctx);
1137
1138 apply_DEGVIDCN10_253_wa(dc);
1139
1140 DC_LOG_DC("Power down front end %d\n",
1141 pipe_ctx->pipe_idx);
1142}
1143
1144void dcn10_init_pipes(struct dc *dc, struct dc_state *context)
1145{
1146 int i;
1147 struct dce_hwseq *hws = dc->hwseq;
1148 bool can_apply_seamless_boot = false;
1149
1150 for (i = 0; i < context->stream_count; i++) {
1151 if (context->streams[i]->apply_seamless_boot_optimization) {
1152 can_apply_seamless_boot = true;
1153 break;
1154 }
1155 }
1156
1157 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1158 struct timing_generator *tg = dc->res_pool->timing_generators[i];
1159 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1160
1161 /* There is assumption that pipe_ctx is not mapping irregularly
1162 * to non-preferred front end. If pipe_ctx->stream is not NULL,
1163 * we will use the pipe, so don't disable
1164 */
1165 if (pipe_ctx->stream != NULL && can_apply_seamless_boot)
1166 continue;
1167
1168 /* Blank controller using driver code instead of
1169 * command table.
1170 */
1171 if (tg->funcs->is_tg_enabled(tg)) {
1172 if (hws->funcs.init_blank != NULL) {
1173 hws->funcs.init_blank(dc, tg);
1174 tg->funcs->lock(tg);
1175 } else {
1176 tg->funcs->lock(tg);
1177 tg->funcs->set_blank(tg, true);
1178 hwss_wait_for_blank_complete(tg);
1179 }
1180 }
1181 }
1182
1183 /* num_opp will be equal to number of mpcc */
1184 for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) {
1185 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1186
1187 /* Cannot reset the MPC mux if seamless boot */
1188 if (pipe_ctx->stream != NULL && can_apply_seamless_boot)
1189 continue;
1190
1191 dc->res_pool->mpc->funcs->mpc_init_single_inst(
1192 dc->res_pool->mpc, i);
1193 }
1194
1195 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1196 struct timing_generator *tg = dc->res_pool->timing_generators[i];
1197 struct hubp *hubp = dc->res_pool->hubps[i];
1198 struct dpp *dpp = dc->res_pool->dpps[i];
1199 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1200
1201 /* There is assumption that pipe_ctx is not mapping irregularly
1202 * to non-preferred front end. If pipe_ctx->stream is not NULL,
1203 * we will use the pipe, so don't disable
1204 */
1205 if (can_apply_seamless_boot &&
1206 pipe_ctx->stream != NULL &&
1207 pipe_ctx->stream_res.tg->funcs->is_tg_enabled(
1208 pipe_ctx->stream_res.tg)) {
1209 // Enable double buffering for OTG_BLANK no matter if
1210 // seamless boot is enabled or not to suppress global sync
1211 // signals when OTG blanked. This is to prevent pipe from
1212 // requesting data while in PSR.
1213 tg->funcs->tg_init(tg);
1214 continue;
1215 }
1216
1217 /* Disable on the current state so the new one isn't cleared. */
1218 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1219
1220 dpp->funcs->dpp_reset(dpp);
1221
1222 pipe_ctx->stream_res.tg = tg;
1223 pipe_ctx->pipe_idx = i;
1224
1225 pipe_ctx->plane_res.hubp = hubp;
1226 pipe_ctx->plane_res.dpp = dpp;
1227 pipe_ctx->plane_res.mpcc_inst = dpp->inst;
1228 hubp->mpcc_id = dpp->inst;
1229 hubp->opp_id = OPP_ID_INVALID;
1230 hubp->power_gated = false;
1231
1232 dc->res_pool->opps[i]->mpc_tree_params.opp_id = dc->res_pool->opps[i]->inst;
1233 dc->res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
1234 dc->res_pool->opps[i]->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true;
1235 pipe_ctx->stream_res.opp = dc->res_pool->opps[i];
1236
1237 hws->funcs.plane_atomic_disconnect(dc, pipe_ctx);
1238
1239 if (tg->funcs->is_tg_enabled(tg))
1240 tg->funcs->unlock(tg);
1241
1242 dc->hwss.disable_plane(dc, pipe_ctx);
1243
1244 pipe_ctx->stream_res.tg = NULL;
1245 pipe_ctx->plane_res.hubp = NULL;
1246
1247 tg->funcs->tg_init(tg);
1248 }
1249}
1250
1251void dcn10_init_hw(struct dc *dc)
1252{
1253 int i, j;
1254 struct abm *abm = dc->res_pool->abm;
1255 struct dmcu *dmcu = dc->res_pool->dmcu;
1256 struct dce_hwseq *hws = dc->hwseq;
1257 struct dc_bios *dcb = dc->ctx->dc_bios;
1258 struct resource_pool *res_pool = dc->res_pool;
1259 uint32_t backlight = MAX_BACKLIGHT_LEVEL;
1260 bool is_optimized_init_done = false;
1261
1262 if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks)
1263 dc->clk_mgr->funcs->init_clocks(dc->clk_mgr);
1264
1265 // Initialize the dccg
1266 if (dc->res_pool->dccg && dc->res_pool->dccg->funcs->dccg_init)
1267 dc->res_pool->dccg->funcs->dccg_init(res_pool->dccg);
1268
1269 if (IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
1270
1271 REG_WRITE(REFCLK_CNTL, 0);
1272 REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_ENABLE, 1);
1273 REG_WRITE(DIO_MEM_PWR_CTRL, 0);
1274
1275 if (!dc->debug.disable_clock_gate) {
1276 /* enable all DCN clock gating */
1277 REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0);
1278
1279 REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0);
1280
1281 REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);
1282 }
1283
1284 //Enable ability to power gate / don't force power on permanently
1285 if (hws->funcs.enable_power_gating_plane)
1286 hws->funcs.enable_power_gating_plane(hws, true);
1287
1288 return;
1289 }
1290
1291 if (!dcb->funcs->is_accelerated_mode(dcb))
1292 hws->funcs.disable_vga(dc->hwseq);
1293
1294 hws->funcs.bios_golden_init(dc);
1295
1296 if (dc->ctx->dc_bios->fw_info_valid) {
1297 res_pool->ref_clocks.xtalin_clock_inKhz =
1298 dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
1299
1300 if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
1301 if (res_pool->dccg && res_pool->hubbub) {
1302
1303 (res_pool->dccg->funcs->get_dccg_ref_freq)(res_pool->dccg,
1304 dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency,
1305 &res_pool->ref_clocks.dccg_ref_clock_inKhz);
1306
1307 (res_pool->hubbub->funcs->get_dchub_ref_freq)(res_pool->hubbub,
1308 res_pool->ref_clocks.dccg_ref_clock_inKhz,
1309 &res_pool->ref_clocks.dchub_ref_clock_inKhz);
1310 } else {
1311 // Not all ASICs have DCCG sw component
1312 res_pool->ref_clocks.dccg_ref_clock_inKhz =
1313 res_pool->ref_clocks.xtalin_clock_inKhz;
1314 res_pool->ref_clocks.dchub_ref_clock_inKhz =
1315 res_pool->ref_clocks.xtalin_clock_inKhz;
1316 }
1317 }
1318 } else
1319 ASSERT_CRITICAL(false);
1320
1321 for (i = 0; i < dc->link_count; i++) {
1322 /* Power up AND update implementation according to the
1323 * required signal (which may be different from the
1324 * default signal on connector).
1325 */
1326 struct dc_link *link = dc->links[i];
1327
1328 if (!is_optimized_init_done)
1329 link->link_enc->funcs->hw_init(link->link_enc);
1330
1331 /* Check for enabled DIG to identify enabled display */
1332 if (link->link_enc->funcs->is_dig_enabled &&
1333 link->link_enc->funcs->is_dig_enabled(link->link_enc))
1334 link->link_status.link_active = true;
1335 }
1336
1337 /* Power gate DSCs */
1338 if (!is_optimized_init_done) {
1339 for (i = 0; i < res_pool->res_cap->num_dsc; i++)
1340 if (hws->funcs.dsc_pg_control != NULL)
1341 hws->funcs.dsc_pg_control(hws, res_pool->dscs[i]->inst, false);
1342 }
1343
1344 /* we want to turn off all dp displays before doing detection */
1345 if (dc->config.power_down_display_on_boot) {
1346 uint8_t dpcd_power_state = '\0';
1347 enum dc_status status = DC_ERROR_UNEXPECTED;
1348
1349 for (i = 0; i < dc->link_count; i++) {
1350 if (dc->links[i]->connector_signal != SIGNAL_TYPE_DISPLAY_PORT)
1351 continue;
1352
1353 /*
1354 * If any of the displays are lit up turn them off.
1355 * The reason is that some MST hubs cannot be turned off
1356 * completely until we tell them to do so.
1357 * If not turned off, then displays connected to MST hub
1358 * won't light up.
1359 */
1360 status = core_link_read_dpcd(dc->links[i], DP_SET_POWER,
1361 &dpcd_power_state, sizeof(dpcd_power_state));
1362 if (status == DC_OK && dpcd_power_state == DP_POWER_STATE_D0) {
1363 /* blank dp stream before power off receiver*/
1364 if (dc->links[i]->link_enc->funcs->get_dig_frontend) {
1365 unsigned int fe = dc->links[i]->link_enc->funcs->get_dig_frontend(dc->links[i]->link_enc);
1366
1367 for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1368 if (fe == dc->res_pool->stream_enc[j]->id) {
1369 dc->res_pool->stream_enc[j]->funcs->dp_blank(
1370 dc->res_pool->stream_enc[j]);
1371 break;
1372 }
1373 }
1374 }
1375 dp_receiver_power_ctrl(dc->links[i], false);
1376 }
1377 }
1378 }
1379
1380 /* If taking control over from VBIOS, we may want to optimize our first
1381 * mode set, so we need to skip powering down pipes until we know which
1382 * pipes we want to use.
1383 * Otherwise, if taking control is not possible, we need to power
1384 * everything down.
1385 */
1386 if (dcb->funcs->is_accelerated_mode(dcb) || dc->config.power_down_display_on_boot) {
1387 if (!is_optimized_init_done) {
1388 hws->funcs.init_pipes(dc, dc->current_state);
1389 if (dc->res_pool->hubbub->funcs->allow_self_refresh_control)
1390 dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub,
1391 !dc->res_pool->hubbub->ctx->dc->debug.disable_stutter);
1392 }
1393 }
1394
1395 if (!is_optimized_init_done) {
1396
1397 for (i = 0; i < res_pool->audio_count; i++) {
1398 struct audio *audio = res_pool->audios[i];
1399
1400 audio->funcs->hw_init(audio);
1401 }
1402
1403 for (i = 0; i < dc->link_count; i++) {
1404 struct dc_link *link = dc->links[i];
1405
1406 if (link->panel_cntl)
1407 backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
1408 }
1409
1410 if (abm != NULL)
1411 abm->funcs->abm_init(abm, backlight);
1412
1413 if (dmcu != NULL && !dmcu->auto_load_dmcu)
1414 dmcu->funcs->dmcu_init(dmcu);
1415 }
1416
1417 if (abm != NULL && dmcu != NULL)
1418 abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
1419
1420 /* power AFMT HDMI memory TODO: may move to dis/en output save power*/
1421 if (!is_optimized_init_done)
1422 REG_WRITE(DIO_MEM_PWR_CTRL, 0);
1423
1424 if (!dc->debug.disable_clock_gate) {
1425 /* enable all DCN clock gating */
1426 REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0);
1427
1428 REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0);
1429
1430 REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);
1431 }
1432 if (hws->funcs.enable_power_gating_plane)
1433 hws->funcs.enable_power_gating_plane(dc->hwseq, true);
1434
1435 if (dc->clk_mgr->funcs->notify_wm_ranges)
1436 dc->clk_mgr->funcs->notify_wm_ranges(dc->clk_mgr);
1437
1438#ifdef CONFIG_DRM_AMD_DC_DCN3_0
1439 if (dc->clk_mgr->funcs->set_hard_max_memclk)
1440 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
1441#endif
1442
1443}
1444
1445/* In headless boot cases, DIG may be turned
1446 * on which causes HW/SW discrepancies.
1447 * To avoid this, power down hardware on boot
1448 * if DIG is turned on and seamless boot not enabled
1449 */
1450void dcn10_power_down_on_boot(struct dc *dc)
1451{
1452 int i = 0;
1453 struct dc_link *edp_link;
1454
1455 if (!dc->config.power_down_display_on_boot)
1456 return;
1457
1458 edp_link = get_edp_link(dc);
1459 if (edp_link &&
1460 edp_link->link_enc->funcs->is_dig_enabled &&
1461 edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
1462 dc->hwseq->funcs.edp_backlight_control &&
1463 dc->hwss.power_down &&
1464 dc->hwss.edp_power_control) {
1465 dc->hwseq->funcs.edp_backlight_control(edp_link, false);
1466 dc->hwss.power_down(dc);
1467 dc->hwss.edp_power_control(edp_link, false);
1468 } else {
1469 for (i = 0; i < dc->link_count; i++) {
1470 struct dc_link *link = dc->links[i];
1471
1472 if (link->link_enc->funcs->is_dig_enabled &&
1473 link->link_enc->funcs->is_dig_enabled(link->link_enc) &&
1474 dc->hwss.power_down) {
1475 dc->hwss.power_down(dc);
1476 break;
1477 }
1478
1479 }
1480 }
1481
1482 /*
1483 * Call update_clocks with empty context
1484 * to send DISPLAY_OFF
1485 * Otherwise DISPLAY_OFF may not be asserted
1486 */
1487 if (dc->clk_mgr->funcs->set_low_power_state)
1488 dc->clk_mgr->funcs->set_low_power_state(dc->clk_mgr);
1489}
1490
1491void dcn10_reset_hw_ctx_wrap(
1492 struct dc *dc,
1493 struct dc_state *context)
1494{
1495 int i;
1496 struct dce_hwseq *hws = dc->hwseq;
1497
1498 /* Reset Back End*/
1499 for (i = dc->res_pool->pipe_count - 1; i >= 0 ; i--) {
1500 struct pipe_ctx *pipe_ctx_old =
1501 &dc->current_state->res_ctx.pipe_ctx[i];
1502 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1503
1504 if (!pipe_ctx_old->stream)
1505 continue;
1506
1507 if (pipe_ctx_old->top_pipe)
1508 continue;
1509
1510 if (!pipe_ctx->stream ||
1511 pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
1512 struct clock_source *old_clk = pipe_ctx_old->clock_source;
1513
1514 dcn10_reset_back_end_for_pipe(dc, pipe_ctx_old, dc->current_state);
1515 if (hws->funcs.enable_stream_gating)
1516 hws->funcs.enable_stream_gating(dc, pipe_ctx);
1517 if (old_clk)
1518 old_clk->funcs->cs_power_down(old_clk);
1519 }
1520 }
1521}
1522
1523static bool patch_address_for_sbs_tb_stereo(
1524 struct pipe_ctx *pipe_ctx, PHYSICAL_ADDRESS_LOC *addr)
1525{
1526 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1527 bool sec_split = pipe_ctx->top_pipe &&
1528 pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state;
1529 if (sec_split && plane_state->address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
1530 (pipe_ctx->stream->timing.timing_3d_format ==
1531 TIMING_3D_FORMAT_SIDE_BY_SIDE ||
1532 pipe_ctx->stream->timing.timing_3d_format ==
1533 TIMING_3D_FORMAT_TOP_AND_BOTTOM)) {
1534 *addr = plane_state->address.grph_stereo.left_addr;
1535 plane_state->address.grph_stereo.left_addr =
1536 plane_state->address.grph_stereo.right_addr;
1537 return true;
1538 } else {
1539 if (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_NONE &&
1540 plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO) {
1541 plane_state->address.type = PLN_ADDR_TYPE_GRPH_STEREO;
1542 plane_state->address.grph_stereo.right_addr =
1543 plane_state->address.grph_stereo.left_addr;
1544 }
1545 }
1546 return false;
1547}
1548
1549void dcn10_update_plane_addr(const struct dc *dc, struct pipe_ctx *pipe_ctx)
1550{
1551 bool addr_patched = false;
1552 PHYSICAL_ADDRESS_LOC addr;
1553 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1554
1555 if (plane_state == NULL)
1556 return;
1557
1558 addr_patched = patch_address_for_sbs_tb_stereo(pipe_ctx, &addr);
1559
1560 pipe_ctx->plane_res.hubp->funcs->hubp_program_surface_flip_and_addr(
1561 pipe_ctx->plane_res.hubp,
1562 &plane_state->address,
1563 plane_state->flip_immediate);
1564
1565 plane_state->status.requested_address = plane_state->address;
1566
1567 if (plane_state->flip_immediate)
1568 plane_state->status.current_address = plane_state->address;
1569
1570 if (addr_patched)
1571 pipe_ctx->plane_state->address.grph_stereo.left_addr = addr;
1572}
1573
1574bool dcn10_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
1575 const struct dc_plane_state *plane_state)
1576{
1577 struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
1578 const struct dc_transfer_func *tf = NULL;
1579 bool result = true;
1580
1581 if (dpp_base == NULL)
1582 return false;
1583
1584 if (plane_state->in_transfer_func)
1585 tf = plane_state->in_transfer_func;
1586
1587 if (plane_state->gamma_correction &&
1588 !dpp_base->ctx->dc->debug.always_use_regamma
1589 && !plane_state->gamma_correction->is_identity
1590 && dce_use_lut(plane_state->format))
1591 dpp_base->funcs->dpp_program_input_lut(dpp_base, plane_state->gamma_correction);
1592
1593 if (tf == NULL)
1594 dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_BYPASS);
1595 else if (tf->type == TF_TYPE_PREDEFINED) {
1596 switch (tf->tf) {
1597 case TRANSFER_FUNCTION_SRGB:
1598 dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_HW_sRGB);
1599 break;
1600 case TRANSFER_FUNCTION_BT709:
1601 dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_HW_xvYCC);
1602 break;
1603 case TRANSFER_FUNCTION_LINEAR:
1604 dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_BYPASS);
1605 break;
1606 case TRANSFER_FUNCTION_PQ:
1607 dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_USER_PWL);
1608 cm_helper_translate_curve_to_degamma_hw_format(tf, &dpp_base->degamma_params);
1609 dpp_base->funcs->dpp_program_degamma_pwl(dpp_base, &dpp_base->degamma_params);
1610 result = true;
1611 break;
1612 default:
1613 result = false;
1614 break;
1615 }
1616 } else if (tf->type == TF_TYPE_BYPASS) {
1617 dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_BYPASS);
1618 } else {
1619 cm_helper_translate_curve_to_degamma_hw_format(tf,
1620 &dpp_base->degamma_params);
1621 dpp_base->funcs->dpp_program_degamma_pwl(dpp_base,
1622 &dpp_base->degamma_params);
1623 result = true;
1624 }
1625
1626 return result;
1627}
1628
1629#define MAX_NUM_HW_POINTS 0x200
1630
1631static void log_tf(struct dc_context *ctx,
1632 struct dc_transfer_func *tf, uint32_t hw_points_num)
1633{
1634 // DC_LOG_GAMMA is default logging of all hw points
1635 // DC_LOG_ALL_GAMMA logs all points, not only hw points
1636 // DC_LOG_ALL_TF_POINTS logs all channels of the tf
1637 int i = 0;
1638
1639 DC_LOGGER_INIT(ctx->logger);
1640 DC_LOG_GAMMA("Gamma Correction TF");
1641 DC_LOG_ALL_GAMMA("Logging all tf points...");
1642 DC_LOG_ALL_TF_CHANNELS("Logging all channels...");
1643
1644 for (i = 0; i < hw_points_num; i++) {
1645 DC_LOG_GAMMA("R\t%d\t%llu", i, tf->tf_pts.red[i].value);
1646 DC_LOG_ALL_TF_CHANNELS("G\t%d\t%llu", i, tf->tf_pts.green[i].value);
1647 DC_LOG_ALL_TF_CHANNELS("B\t%d\t%llu", i, tf->tf_pts.blue[i].value);
1648 }
1649
1650 for (i = hw_points_num; i < MAX_NUM_HW_POINTS; i++) {
1651 DC_LOG_ALL_GAMMA("R\t%d\t%llu", i, tf->tf_pts.red[i].value);
1652 DC_LOG_ALL_TF_CHANNELS("G\t%d\t%llu", i, tf->tf_pts.green[i].value);
1653 DC_LOG_ALL_TF_CHANNELS("B\t%d\t%llu", i, tf->tf_pts.blue[i].value);
1654 }
1655}
1656
1657bool dcn10_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
1658 const struct dc_stream_state *stream)
1659{
1660 struct dpp *dpp = pipe_ctx->plane_res.dpp;
1661
1662 if (dpp == NULL)
1663 return false;
1664
1665 dpp->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
1666
1667 if (stream->out_transfer_func &&
1668 stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
1669 stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB)
1670 dpp->funcs->dpp_program_regamma_pwl(dpp, NULL, OPP_REGAMMA_SRGB);
1671
1672 /* dcn10_translate_regamma_to_hw_format takes 750us, only do it when full
1673 * update.
1674 */
1675 else if (cm_helper_translate_curve_to_hw_format(
1676 stream->out_transfer_func,
1677 &dpp->regamma_params, false)) {
1678 dpp->funcs->dpp_program_regamma_pwl(
1679 dpp,
1680 &dpp->regamma_params, OPP_REGAMMA_USER);
1681 } else
1682 dpp->funcs->dpp_program_regamma_pwl(dpp, NULL, OPP_REGAMMA_BYPASS);
1683
1684 if (stream != NULL && stream->ctx != NULL &&
1685 stream->out_transfer_func != NULL) {
1686 log_tf(stream->ctx,
1687 stream->out_transfer_func,
1688 dpp->regamma_params.hw_points_num);
1689 }
1690
1691 return true;
1692}
1693
1694void dcn10_pipe_control_lock(
1695 struct dc *dc,
1696 struct pipe_ctx *pipe,
1697 bool lock)
1698{
1699 struct dce_hwseq *hws = dc->hwseq;
1700
1701 /* use TG master update lock to lock everything on the TG
1702 * therefore only top pipe need to lock
1703 */
1704 if (!pipe || pipe->top_pipe)
1705 return;
1706
1707 if (dc->debug.sanity_checks)
1708 hws->funcs.verify_allow_pstate_change_high(dc);
1709
1710 if (lock)
1711 pipe->stream_res.tg->funcs->lock(pipe->stream_res.tg);
1712 else
1713 pipe->stream_res.tg->funcs->unlock(pipe->stream_res.tg);
1714
1715 if (dc->debug.sanity_checks)
1716 hws->funcs.verify_allow_pstate_change_high(dc);
1717}
1718
1719/**
1720 * delay_cursor_until_vupdate() - Delay cursor update if too close to VUPDATE.
1721 *
1722 * Software keepout workaround to prevent cursor update locking from stalling
1723 * out cursor updates indefinitely or from old values from being retained in
1724 * the case where the viewport changes in the same frame as the cursor.
1725 *
1726 * The idea is to calculate the remaining time from VPOS to VUPDATE. If it's
1727 * too close to VUPDATE, then stall out until VUPDATE finishes.
1728 *
1729 * TODO: Optimize cursor programming to be once per frame before VUPDATE
1730 * to avoid the need for this workaround.
1731 */
1732static void delay_cursor_until_vupdate(struct dc *dc, struct pipe_ctx *pipe_ctx)
1733{
1734 struct dc_stream_state *stream = pipe_ctx->stream;
1735 struct crtc_position position;
1736 uint32_t vupdate_start, vupdate_end;
1737 unsigned int lines_to_vupdate, us_to_vupdate, vpos;
1738 unsigned int us_per_line, us_vupdate;
1739
1740 if (!dc->hwss.calc_vupdate_position || !dc->hwss.get_position)
1741 return;
1742
1743 if (!pipe_ctx->stream_res.stream_enc || !pipe_ctx->stream_res.tg)
1744 return;
1745
1746 dc->hwss.calc_vupdate_position(dc, pipe_ctx, &vupdate_start,
1747 &vupdate_end);
1748
1749 dc->hwss.get_position(&pipe_ctx, 1, &position);
1750 vpos = position.vertical_count;
1751
1752 /* Avoid wraparound calculation issues */
1753 vupdate_start += stream->timing.v_total;
1754 vupdate_end += stream->timing.v_total;
1755 vpos += stream->timing.v_total;
1756
1757 if (vpos <= vupdate_start) {
1758 /* VPOS is in VACTIVE or back porch. */
1759 lines_to_vupdate = vupdate_start - vpos;
1760 } else if (vpos > vupdate_end) {
1761 /* VPOS is in the front porch. */
1762 return;
1763 } else {
1764 /* VPOS is in VUPDATE. */
1765 lines_to_vupdate = 0;
1766 }
1767
1768 /* Calculate time until VUPDATE in microseconds. */
1769 us_per_line =
1770 stream->timing.h_total * 10000u / stream->timing.pix_clk_100hz;
1771 us_to_vupdate = lines_to_vupdate * us_per_line;
1772
1773 /* 70 us is a conservative estimate of cursor update time*/
1774 if (us_to_vupdate > 70)
1775 return;
1776
1777 /* Stall out until the cursor update completes. */
1778 if (vupdate_end < vupdate_start)
1779 vupdate_end += stream->timing.v_total;
1780 us_vupdate = (vupdate_end - vupdate_start + 1) * us_per_line;
1781 udelay(us_to_vupdate + us_vupdate);
1782}
1783
1784void dcn10_cursor_lock(struct dc *dc, struct pipe_ctx *pipe, bool lock)
1785{
1786 /* cursor lock is per MPCC tree, so only need to lock one pipe per stream */
1787 if (!pipe || pipe->top_pipe)
1788 return;
1789
1790 /* Prevent cursor lock from stalling out cursor updates. */
1791 if (lock)
1792 delay_cursor_until_vupdate(dc, pipe);
1793
1794 if (pipe->stream && should_use_dmub_lock(pipe->stream->link)) {
1795 union dmub_hw_lock_flags hw_locks = { 0 };
1796 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
1797
1798 hw_locks.bits.lock_cursor = 1;
1799 inst_flags.opp_inst = pipe->stream_res.opp->inst;
1800
1801 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
1802 lock,
1803 &hw_locks,
1804 &inst_flags);
1805 } else
1806 dc->res_pool->mpc->funcs->cursor_lock(dc->res_pool->mpc,
1807 pipe->stream_res.opp->inst, lock);
1808}
1809
1810static bool wait_for_reset_trigger_to_occur(
1811 struct dc_context *dc_ctx,
1812 struct timing_generator *tg)
1813{
1814 bool rc = false;
1815
1816 /* To avoid endless loop we wait at most
1817 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
1818 const uint32_t frames_to_wait_on_triggered_reset = 10;
1819 int i;
1820
1821 for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
1822
1823 if (!tg->funcs->is_counter_moving(tg)) {
1824 DC_ERROR("TG counter is not moving!\n");
1825 break;
1826 }
1827
1828 if (tg->funcs->did_triggered_reset_occur(tg)) {
1829 rc = true;
1830 /* usually occurs at i=1 */
1831 DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
1832 i);
1833 break;
1834 }
1835
1836 /* Wait for one frame. */
1837 tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
1838 tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
1839 }
1840
1841 if (false == rc)
1842 DC_ERROR("GSL: Timeout on reset trigger!\n");
1843
1844 return rc;
1845}
1846
1847void dcn10_enable_timing_synchronization(
1848 struct dc *dc,
1849 int group_index,
1850 int group_size,
1851 struct pipe_ctx *grouped_pipes[])
1852{
1853 struct dc_context *dc_ctx = dc->ctx;
1854 int i;
1855
1856 DC_SYNC_INFO("Setting up OTG reset trigger\n");
1857
1858 for (i = 1; i < group_size; i++)
1859 grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
1860 grouped_pipes[i]->stream_res.tg,
1861 grouped_pipes[0]->stream_res.tg->inst);
1862
1863 DC_SYNC_INFO("Waiting for trigger\n");
1864
1865 /* Need to get only check 1 pipe for having reset as all the others are
1866 * synchronized. Look at last pipe programmed to reset.
1867 */
1868
1869 wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[1]->stream_res.tg);
1870 for (i = 1; i < group_size; i++)
1871 grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
1872 grouped_pipes[i]->stream_res.tg);
1873
1874 DC_SYNC_INFO("Sync complete\n");
1875}
1876
1877void dcn10_enable_per_frame_crtc_position_reset(
1878 struct dc *dc,
1879 int group_size,
1880 struct pipe_ctx *grouped_pipes[])
1881{
1882 struct dc_context *dc_ctx = dc->ctx;
1883 int i;
1884
1885 DC_SYNC_INFO("Setting up\n");
1886 for (i = 0; i < group_size; i++)
1887 if (grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset)
1888 grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
1889 grouped_pipes[i]->stream_res.tg,
1890 0,
1891 &grouped_pipes[i]->stream->triggered_crtc_reset);
1892
1893 DC_SYNC_INFO("Waiting for trigger\n");
1894
1895 for (i = 0; i < group_size; i++)
1896 wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
1897
1898 DC_SYNC_INFO("Multi-display sync is complete\n");
1899}
1900
1901/*static void print_rq_dlg_ttu(
1902 struct dc *dc,
1903 struct pipe_ctx *pipe_ctx)
1904{
1905 DC_LOG_BANDWIDTH_CALCS(dc->ctx->logger,
1906 "\n============== DML TTU Output parameters [%d] ==============\n"
1907 "qos_level_low_wm: %d, \n"
1908 "qos_level_high_wm: %d, \n"
1909 "min_ttu_vblank: %d, \n"
1910 "qos_level_flip: %d, \n"
1911 "refcyc_per_req_delivery_l: %d, \n"
1912 "qos_level_fixed_l: %d, \n"
1913 "qos_ramp_disable_l: %d, \n"
1914 "refcyc_per_req_delivery_pre_l: %d, \n"
1915 "refcyc_per_req_delivery_c: %d, \n"
1916 "qos_level_fixed_c: %d, \n"
1917 "qos_ramp_disable_c: %d, \n"
1918 "refcyc_per_req_delivery_pre_c: %d\n"
1919 "=============================================================\n",
1920 pipe_ctx->pipe_idx,
1921 pipe_ctx->ttu_regs.qos_level_low_wm,
1922 pipe_ctx->ttu_regs.qos_level_high_wm,
1923 pipe_ctx->ttu_regs.min_ttu_vblank,
1924 pipe_ctx->ttu_regs.qos_level_flip,
1925 pipe_ctx->ttu_regs.refcyc_per_req_delivery_l,
1926 pipe_ctx->ttu_regs.qos_level_fixed_l,
1927 pipe_ctx->ttu_regs.qos_ramp_disable_l,
1928 pipe_ctx->ttu_regs.refcyc_per_req_delivery_pre_l,
1929 pipe_ctx->ttu_regs.refcyc_per_req_delivery_c,
1930 pipe_ctx->ttu_regs.qos_level_fixed_c,
1931 pipe_ctx->ttu_regs.qos_ramp_disable_c,
1932 pipe_ctx->ttu_regs.refcyc_per_req_delivery_pre_c
1933 );
1934
1935 DC_LOG_BANDWIDTH_CALCS(dc->ctx->logger,
1936 "\n============== DML DLG Output parameters [%d] ==============\n"
1937 "refcyc_h_blank_end: %d, \n"
1938 "dlg_vblank_end: %d, \n"
1939 "min_dst_y_next_start: %d, \n"
1940 "refcyc_per_htotal: %d, \n"
1941 "refcyc_x_after_scaler: %d, \n"
1942 "dst_y_after_scaler: %d, \n"
1943 "dst_y_prefetch: %d, \n"
1944 "dst_y_per_vm_vblank: %d, \n"
1945 "dst_y_per_row_vblank: %d, \n"
1946 "ref_freq_to_pix_freq: %d, \n"
1947 "vratio_prefetch: %d, \n"
1948 "refcyc_per_pte_group_vblank_l: %d, \n"
1949 "refcyc_per_meta_chunk_vblank_l: %d, \n"
1950 "dst_y_per_pte_row_nom_l: %d, \n"
1951 "refcyc_per_pte_group_nom_l: %d, \n",
1952 pipe_ctx->pipe_idx,
1953 pipe_ctx->dlg_regs.refcyc_h_blank_end,
1954 pipe_ctx->dlg_regs.dlg_vblank_end,
1955 pipe_ctx->dlg_regs.min_dst_y_next_start,
1956 pipe_ctx->dlg_regs.refcyc_per_htotal,
1957 pipe_ctx->dlg_regs.refcyc_x_after_scaler,
1958 pipe_ctx->dlg_regs.dst_y_after_scaler,
1959 pipe_ctx->dlg_regs.dst_y_prefetch,
1960 pipe_ctx->dlg_regs.dst_y_per_vm_vblank,
1961 pipe_ctx->dlg_regs.dst_y_per_row_vblank,
1962 pipe_ctx->dlg_regs.ref_freq_to_pix_freq,
1963 pipe_ctx->dlg_regs.vratio_prefetch,
1964 pipe_ctx->dlg_regs.refcyc_per_pte_group_vblank_l,
1965 pipe_ctx->dlg_regs.refcyc_per_meta_chunk_vblank_l,
1966 pipe_ctx->dlg_regs.dst_y_per_pte_row_nom_l,
1967 pipe_ctx->dlg_regs.refcyc_per_pte_group_nom_l
1968 );
1969
1970 DC_LOG_BANDWIDTH_CALCS(dc->ctx->logger,
1971 "\ndst_y_per_meta_row_nom_l: %d, \n"
1972 "refcyc_per_meta_chunk_nom_l: %d, \n"
1973 "refcyc_per_line_delivery_pre_l: %d, \n"
1974 "refcyc_per_line_delivery_l: %d, \n"
1975 "vratio_prefetch_c: %d, \n"
1976 "refcyc_per_pte_group_vblank_c: %d, \n"
1977 "refcyc_per_meta_chunk_vblank_c: %d, \n"
1978 "dst_y_per_pte_row_nom_c: %d, \n"
1979 "refcyc_per_pte_group_nom_c: %d, \n"
1980 "dst_y_per_meta_row_nom_c: %d, \n"
1981 "refcyc_per_meta_chunk_nom_c: %d, \n"
1982 "refcyc_per_line_delivery_pre_c: %d, \n"
1983 "refcyc_per_line_delivery_c: %d \n"
1984 "========================================================\n",
1985 pipe_ctx->dlg_regs.dst_y_per_meta_row_nom_l,
1986 pipe_ctx->dlg_regs.refcyc_per_meta_chunk_nom_l,
1987 pipe_ctx->dlg_regs.refcyc_per_line_delivery_pre_l,
1988 pipe_ctx->dlg_regs.refcyc_per_line_delivery_l,
1989 pipe_ctx->dlg_regs.vratio_prefetch_c,
1990 pipe_ctx->dlg_regs.refcyc_per_pte_group_vblank_c,
1991 pipe_ctx->dlg_regs.refcyc_per_meta_chunk_vblank_c,
1992 pipe_ctx->dlg_regs.dst_y_per_pte_row_nom_c,
1993 pipe_ctx->dlg_regs.refcyc_per_pte_group_nom_c,
1994 pipe_ctx->dlg_regs.dst_y_per_meta_row_nom_c,
1995 pipe_ctx->dlg_regs.refcyc_per_meta_chunk_nom_c,
1996 pipe_ctx->dlg_regs.refcyc_per_line_delivery_pre_c,
1997 pipe_ctx->dlg_regs.refcyc_per_line_delivery_c
1998 );
1999
2000 DC_LOG_BANDWIDTH_CALCS(dc->ctx->logger,
2001 "\n============== DML RQ Output parameters [%d] ==============\n"
2002 "chunk_size: %d \n"
2003 "min_chunk_size: %d \n"
2004 "meta_chunk_size: %d \n"
2005 "min_meta_chunk_size: %d \n"
2006 "dpte_group_size: %d \n"
2007 "mpte_group_size: %d \n"
2008 "swath_height: %d \n"
2009 "pte_row_height_linear: %d \n"
2010 "========================================================\n",
2011 pipe_ctx->pipe_idx,
2012 pipe_ctx->rq_regs.rq_regs_l.chunk_size,
2013 pipe_ctx->rq_regs.rq_regs_l.min_chunk_size,
2014 pipe_ctx->rq_regs.rq_regs_l.meta_chunk_size,
2015 pipe_ctx->rq_regs.rq_regs_l.min_meta_chunk_size,
2016 pipe_ctx->rq_regs.rq_regs_l.dpte_group_size,
2017 pipe_ctx->rq_regs.rq_regs_l.mpte_group_size,
2018 pipe_ctx->rq_regs.rq_regs_l.swath_height,
2019 pipe_ctx->rq_regs.rq_regs_l.pte_row_height_linear
2020 );
2021}
2022*/
2023
2024static void mmhub_read_vm_system_aperture_settings(struct dcn10_hubp *hubp1,
2025 struct vm_system_aperture_param *apt,
2026 struct dce_hwseq *hws)
2027{
2028 PHYSICAL_ADDRESS_LOC physical_page_number;
2029 uint32_t logical_addr_low;
2030 uint32_t logical_addr_high;
2031
2032 REG_GET(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_MSB,
2033 PHYSICAL_PAGE_NUMBER_MSB, &physical_page_number.high_part);
2034 REG_GET(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_LSB,
2035 PHYSICAL_PAGE_NUMBER_LSB, &physical_page_number.low_part);
2036
2037 REG_GET(MC_VM_SYSTEM_APERTURE_LOW_ADDR,
2038 LOGICAL_ADDR, &logical_addr_low);
2039
2040 REG_GET(MC_VM_SYSTEM_APERTURE_HIGH_ADDR,
2041 LOGICAL_ADDR, &logical_addr_high);
2042
2043 apt->sys_default.quad_part = physical_page_number.quad_part << 12;
2044 apt->sys_low.quad_part = (int64_t)logical_addr_low << 18;
2045 apt->sys_high.quad_part = (int64_t)logical_addr_high << 18;
2046}
2047
2048/* Temporary read settings, future will get values from kmd directly */
2049static void mmhub_read_vm_context0_settings(struct dcn10_hubp *hubp1,
2050 struct vm_context0_param *vm0,
2051 struct dce_hwseq *hws)
2052{
2053 PHYSICAL_ADDRESS_LOC fb_base;
2054 PHYSICAL_ADDRESS_LOC fb_offset;
2055 uint32_t fb_base_value;
2056 uint32_t fb_offset_value;
2057
2058 REG_GET(DCHUBBUB_SDPIF_FB_BASE, SDPIF_FB_BASE, &fb_base_value);
2059 REG_GET(DCHUBBUB_SDPIF_FB_OFFSET, SDPIF_FB_OFFSET, &fb_offset_value);
2060
2061 REG_GET(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_HI32,
2062 PAGE_DIRECTORY_ENTRY_HI32, &vm0->pte_base.high_part);
2063 REG_GET(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_LO32,
2064 PAGE_DIRECTORY_ENTRY_LO32, &vm0->pte_base.low_part);
2065
2066 REG_GET(VM_CONTEXT0_PAGE_TABLE_START_ADDR_HI32,
2067 LOGICAL_PAGE_NUMBER_HI4, &vm0->pte_start.high_part);
2068 REG_GET(VM_CONTEXT0_PAGE_TABLE_START_ADDR_LO32,
2069 LOGICAL_PAGE_NUMBER_LO32, &vm0->pte_start.low_part);
2070
2071 REG_GET(VM_CONTEXT0_PAGE_TABLE_END_ADDR_HI32,
2072 LOGICAL_PAGE_NUMBER_HI4, &vm0->pte_end.high_part);
2073 REG_GET(VM_CONTEXT0_PAGE_TABLE_END_ADDR_LO32,
2074 LOGICAL_PAGE_NUMBER_LO32, &vm0->pte_end.low_part);
2075
2076 REG_GET(VM_L2_PROTECTION_FAULT_DEFAULT_ADDR_HI32,
2077 PHYSICAL_PAGE_ADDR_HI4, &vm0->fault_default.high_part);
2078 REG_GET(VM_L2_PROTECTION_FAULT_DEFAULT_ADDR_LO32,
2079 PHYSICAL_PAGE_ADDR_LO32, &vm0->fault_default.low_part);
2080
2081 /*
2082 * The values in VM_CONTEXT0_PAGE_TABLE_BASE_ADDR is in UMA space.
2083 * Therefore we need to do
2084 * DCN_VM_CONTEXT0_PAGE_TABLE_BASE_ADDR = VM_CONTEXT0_PAGE_TABLE_BASE_ADDR
2085 * - DCHUBBUB_SDPIF_FB_OFFSET + DCHUBBUB_SDPIF_FB_BASE
2086 */
2087 fb_base.quad_part = (uint64_t)fb_base_value << 24;
2088 fb_offset.quad_part = (uint64_t)fb_offset_value << 24;
2089 vm0->pte_base.quad_part += fb_base.quad_part;
2090 vm0->pte_base.quad_part -= fb_offset.quad_part;
2091}
2092
2093
2094void dcn10_program_pte_vm(struct dce_hwseq *hws, struct hubp *hubp)
2095{
2096 struct dcn10_hubp *hubp1 = TO_DCN10_HUBP(hubp);
2097 struct vm_system_aperture_param apt = { {{ 0 } } };
2098 struct vm_context0_param vm0 = { { { 0 } } };
2099
2100 mmhub_read_vm_system_aperture_settings(hubp1, &apt, hws);
2101 mmhub_read_vm_context0_settings(hubp1, &vm0, hws);
2102
2103 hubp->funcs->hubp_set_vm_system_aperture_settings(hubp, &apt);
2104 hubp->funcs->hubp_set_vm_context0_settings(hubp, &vm0);
2105}
2106
2107static void dcn10_enable_plane(
2108 struct dc *dc,
2109 struct pipe_ctx *pipe_ctx,
2110 struct dc_state *context)
2111{
2112 struct dce_hwseq *hws = dc->hwseq;
2113
2114 if (dc->debug.sanity_checks) {
2115 hws->funcs.verify_allow_pstate_change_high(dc);
2116 }
2117
2118 undo_DEGVIDCN10_253_wa(dc);
2119
2120 power_on_plane(dc->hwseq,
2121 pipe_ctx->plane_res.hubp->inst);
2122
2123 /* enable DCFCLK current DCHUB */
2124 pipe_ctx->plane_res.hubp->funcs->hubp_clk_cntl(pipe_ctx->plane_res.hubp, true);
2125
2126 /* make sure OPP_PIPE_CLOCK_EN = 1 */
2127 pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
2128 pipe_ctx->stream_res.opp,
2129 true);
2130
2131/* TODO: enable/disable in dm as per update type.
2132 if (plane_state) {
2133 DC_LOG_DC(dc->ctx->logger,
2134 "Pipe:%d 0x%x: addr hi:0x%x, "
2135 "addr low:0x%x, "
2136 "src: %d, %d, %d,"
2137 " %d; dst: %d, %d, %d, %d;\n",
2138 pipe_ctx->pipe_idx,
2139 plane_state,
2140 plane_state->address.grph.addr.high_part,
2141 plane_state->address.grph.addr.low_part,
2142 plane_state->src_rect.x,
2143 plane_state->src_rect.y,
2144 plane_state->src_rect.width,
2145 plane_state->src_rect.height,
2146 plane_state->dst_rect.x,
2147 plane_state->dst_rect.y,
2148 plane_state->dst_rect.width,
2149 plane_state->dst_rect.height);
2150
2151 DC_LOG_DC(dc->ctx->logger,
2152 "Pipe %d: width, height, x, y format:%d\n"
2153 "viewport:%d, %d, %d, %d\n"
2154 "recout: %d, %d, %d, %d\n",
2155 pipe_ctx->pipe_idx,
2156 plane_state->format,
2157 pipe_ctx->plane_res.scl_data.viewport.width,
2158 pipe_ctx->plane_res.scl_data.viewport.height,
2159 pipe_ctx->plane_res.scl_data.viewport.x,
2160 pipe_ctx->plane_res.scl_data.viewport.y,
2161 pipe_ctx->plane_res.scl_data.recout.width,
2162 pipe_ctx->plane_res.scl_data.recout.height,
2163 pipe_ctx->plane_res.scl_data.recout.x,
2164 pipe_ctx->plane_res.scl_data.recout.y);
2165 print_rq_dlg_ttu(dc, pipe_ctx);
2166 }
2167*/
2168 if (dc->config.gpu_vm_support)
2169 dcn10_program_pte_vm(hws, pipe_ctx->plane_res.hubp);
2170
2171 if (dc->debug.sanity_checks) {
2172 hws->funcs.verify_allow_pstate_change_high(dc);
2173 }
2174}
2175
2176void dcn10_program_gamut_remap(struct pipe_ctx *pipe_ctx)
2177{
2178 int i = 0;
2179 struct dpp_grph_csc_adjustment adjust;
2180 memset(&adjust, 0, sizeof(adjust));
2181 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2182
2183
2184 if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2185 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2186 for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2187 adjust.temperature_matrix[i] =
2188 pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2189 } else if (pipe_ctx->plane_state &&
2190 pipe_ctx->plane_state->gamut_remap_matrix.enable_remap == true) {
2191 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2192 for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2193 adjust.temperature_matrix[i] =
2194 pipe_ctx->plane_state->gamut_remap_matrix.matrix[i];
2195 }
2196
2197 pipe_ctx->plane_res.dpp->funcs->dpp_set_gamut_remap(pipe_ctx->plane_res.dpp, &adjust);
2198}
2199
2200
2201static bool dcn10_is_rear_mpo_fix_required(struct pipe_ctx *pipe_ctx, enum dc_color_space colorspace)
2202{
2203 if (pipe_ctx->plane_state && pipe_ctx->plane_state->layer_index > 0 && is_rgb_cspace(colorspace)) {
2204 if (pipe_ctx->top_pipe) {
2205 struct pipe_ctx *top = pipe_ctx->top_pipe;
2206
2207 while (top->top_pipe)
2208 top = top->top_pipe; // Traverse to top pipe_ctx
2209 if (top->plane_state && top->plane_state->layer_index == 0)
2210 return true; // Front MPO plane not hidden
2211 }
2212 }
2213 return false;
2214}
2215
2216static void dcn10_set_csc_adjustment_rgb_mpo_fix(struct pipe_ctx *pipe_ctx, uint16_t *matrix)
2217{
2218 // Override rear plane RGB bias to fix MPO brightness
2219 uint16_t rgb_bias = matrix[3];
2220
2221 matrix[3] = 0;
2222 matrix[7] = 0;
2223 matrix[11] = 0;
2224 pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_adjustment(pipe_ctx->plane_res.dpp, matrix);
2225 matrix[3] = rgb_bias;
2226 matrix[7] = rgb_bias;
2227 matrix[11] = rgb_bias;
2228}
2229
2230void dcn10_program_output_csc(struct dc *dc,
2231 struct pipe_ctx *pipe_ctx,
2232 enum dc_color_space colorspace,
2233 uint16_t *matrix,
2234 int opp_id)
2235{
2236 if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
2237 if (pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_adjustment != NULL) {
2238
2239 /* MPO is broken with RGB colorspaces when OCSC matrix
2240 * brightness offset >= 0 on DCN1 due to OCSC before MPC
2241 * Blending adds offsets from front + rear to rear plane
2242 *
2243 * Fix is to set RGB bias to 0 on rear plane, top plane
2244 * black value pixels add offset instead of rear + front
2245 */
2246
2247 int16_t rgb_bias = matrix[3];
2248 // matrix[3/7/11] are all the same offset value
2249
2250 if (rgb_bias > 0 && dcn10_is_rear_mpo_fix_required(pipe_ctx, colorspace)) {
2251 dcn10_set_csc_adjustment_rgb_mpo_fix(pipe_ctx, matrix);
2252 } else {
2253 pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_adjustment(pipe_ctx->plane_res.dpp, matrix);
2254 }
2255 }
2256 } else {
2257 if (pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_default != NULL)
2258 pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_default(pipe_ctx->plane_res.dpp, colorspace);
2259 }
2260}
2261
2262void dcn10_get_surface_visual_confirm_color(
2263 const struct pipe_ctx *pipe_ctx,
2264 struct tg_color *color)
2265{
2266 uint32_t color_value = MAX_TG_COLOR_VALUE;
2267
2268 switch (pipe_ctx->plane_res.scl_data.format) {
2269 case PIXEL_FORMAT_ARGB8888:
2270 /* set border color to red */
2271 color->color_r_cr = color_value;
2272 break;
2273
2274 case PIXEL_FORMAT_ARGB2101010:
2275 /* set border color to blue */
2276 color->color_b_cb = color_value;
2277 break;
2278 case PIXEL_FORMAT_420BPP8:
2279 /* set border color to green */
2280 color->color_g_y = color_value;
2281 break;
2282 case PIXEL_FORMAT_420BPP10:
2283 /* set border color to yellow */
2284 color->color_g_y = color_value;
2285 color->color_r_cr = color_value;
2286 break;
2287 case PIXEL_FORMAT_FP16:
2288 /* set border color to white */
2289 color->color_r_cr = color_value;
2290 color->color_b_cb = color_value;
2291 color->color_g_y = color_value;
2292 break;
2293 default:
2294 break;
2295 }
2296}
2297
2298void dcn10_get_hdr_visual_confirm_color(
2299 struct pipe_ctx *pipe_ctx,
2300 struct tg_color *color)
2301{
2302 uint32_t color_value = MAX_TG_COLOR_VALUE;
2303
2304 // Determine the overscan color based on the top-most (desktop) plane's context
2305 struct pipe_ctx *top_pipe_ctx = pipe_ctx;
2306
2307 while (top_pipe_ctx->top_pipe != NULL)
2308 top_pipe_ctx = top_pipe_ctx->top_pipe;
2309
2310 switch (top_pipe_ctx->plane_res.scl_data.format) {
2311 case PIXEL_FORMAT_ARGB2101010:
2312 if (top_pipe_ctx->stream->out_transfer_func->tf == TRANSFER_FUNCTION_PQ) {
2313 /* HDR10, ARGB2101010 - set border color to red */
2314 color->color_r_cr = color_value;
2315 } else if (top_pipe_ctx->stream->out_transfer_func->tf == TRANSFER_FUNCTION_GAMMA22) {
2316 /* FreeSync 2 ARGB2101010 - set border color to pink */
2317 color->color_r_cr = color_value;
2318 color->color_b_cb = color_value;
2319 }
2320 break;
2321 case PIXEL_FORMAT_FP16:
2322 if (top_pipe_ctx->stream->out_transfer_func->tf == TRANSFER_FUNCTION_PQ) {
2323 /* HDR10, FP16 - set border color to blue */
2324 color->color_b_cb = color_value;
2325 } else if (top_pipe_ctx->stream->out_transfer_func->tf == TRANSFER_FUNCTION_GAMMA22) {
2326 /* FreeSync 2 HDR - set border color to green */
2327 color->color_g_y = color_value;
2328 }
2329 break;
2330 default:
2331 /* SDR - set border color to Gray */
2332 color->color_r_cr = color_value/2;
2333 color->color_b_cb = color_value/2;
2334 color->color_g_y = color_value/2;
2335 break;
2336 }
2337}
2338
2339static void dcn10_update_dpp(struct dpp *dpp, struct dc_plane_state *plane_state)
2340{
2341 struct dc_bias_and_scale bns_params = {0};
2342
2343 // program the input csc
2344 dpp->funcs->dpp_setup(dpp,
2345 plane_state->format,
2346 EXPANSION_MODE_ZERO,
2347 plane_state->input_csc_color_matrix,
2348 plane_state->color_space,
2349 NULL);
2350
2351 //set scale and bias registers
2352 build_prescale_params(&bns_params, plane_state);
2353 if (dpp->funcs->dpp_program_bias_and_scale)
2354 dpp->funcs->dpp_program_bias_and_scale(dpp, &bns_params);
2355}
2356
2357void dcn10_update_mpcc(struct dc *dc, struct pipe_ctx *pipe_ctx)
2358{
2359 struct dce_hwseq *hws = dc->hwseq;
2360 struct hubp *hubp = pipe_ctx->plane_res.hubp;
2361 struct mpcc_blnd_cfg blnd_cfg = {{0}};
2362 bool per_pixel_alpha = pipe_ctx->plane_state->per_pixel_alpha && pipe_ctx->bottom_pipe;
2363 int mpcc_id;
2364 struct mpcc *new_mpcc;
2365 struct mpc *mpc = dc->res_pool->mpc;
2366 struct mpc_tree *mpc_tree_params = &(pipe_ctx->stream_res.opp->mpc_tree_params);
2367
2368 if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR) {
2369 hws->funcs.get_hdr_visual_confirm_color(
2370 pipe_ctx, &blnd_cfg.black_color);
2371 } else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE) {
2372 hws->funcs.get_surface_visual_confirm_color(
2373 pipe_ctx, &blnd_cfg.black_color);
2374 } else {
2375 color_space_to_black_color(
2376 dc, pipe_ctx->stream->output_color_space,
2377 &blnd_cfg.black_color);
2378 }
2379
2380 /*
2381 * The way 420 is packed, 2 channels carry Y component, 1 channel
2382 * alternate between Cb and Cr, so both channels need the pixel
2383 * value for Y
2384 */
2385 if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
2386 blnd_cfg.black_color.color_r_cr = blnd_cfg.black_color.color_g_y;
2387
2388 if (per_pixel_alpha)
2389 blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA;
2390 else
2391 blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_GLOBAL_ALPHA;
2392
2393 blnd_cfg.overlap_only = false;
2394 blnd_cfg.global_gain = 0xff;
2395
2396 if (pipe_ctx->plane_state->global_alpha)
2397 blnd_cfg.global_alpha = pipe_ctx->plane_state->global_alpha_value;
2398 else
2399 blnd_cfg.global_alpha = 0xff;
2400
2401 /* DCN1.0 has output CM before MPC which seems to screw with
2402 * pre-multiplied alpha.
2403 */
2404 blnd_cfg.pre_multiplied_alpha = is_rgb_cspace(
2405 pipe_ctx->stream->output_color_space)
2406 && per_pixel_alpha;
2407
2408
2409 /*
2410 * TODO: remove hack
2411 * Note: currently there is a bug in init_hw such that
2412 * on resume from hibernate, BIOS sets up MPCC0, and
2413 * we do mpcc_remove but the mpcc cannot go to idle
2414 * after remove. This cause us to pick mpcc1 here,
2415 * which causes a pstate hang for yet unknown reason.
2416 */
2417 mpcc_id = hubp->inst;
2418
2419 /* If there is no full update, don't need to touch MPC tree*/
2420 if (!pipe_ctx->plane_state->update_flags.bits.full_update) {
2421 mpc->funcs->update_blending(mpc, &blnd_cfg, mpcc_id);
2422 return;
2423 }
2424
2425 /* check if this MPCC is already being used */
2426 new_mpcc = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, mpcc_id);
2427 /* remove MPCC if being used */
2428 if (new_mpcc != NULL)
2429 mpc->funcs->remove_mpcc(mpc, mpc_tree_params, new_mpcc);
2430 else
2431 if (dc->debug.sanity_checks)
2432 mpc->funcs->assert_mpcc_idle_before_connect(
2433 dc->res_pool->mpc, mpcc_id);
2434
2435 /* Call MPC to insert new plane */
2436 new_mpcc = mpc->funcs->insert_plane(dc->res_pool->mpc,
2437 mpc_tree_params,
2438 &blnd_cfg,
2439 NULL,
2440 NULL,
2441 hubp->inst,
2442 mpcc_id);
2443
2444 ASSERT(new_mpcc != NULL);
2445
2446 hubp->opp_id = pipe_ctx->stream_res.opp->inst;
2447 hubp->mpcc_id = mpcc_id;
2448}
2449
2450static void update_scaler(struct pipe_ctx *pipe_ctx)
2451{
2452 bool per_pixel_alpha =
2453 pipe_ctx->plane_state->per_pixel_alpha && pipe_ctx->bottom_pipe;
2454
2455 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = per_pixel_alpha;
2456 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
2457 /* scaler configuration */
2458 pipe_ctx->plane_res.dpp->funcs->dpp_set_scaler(
2459 pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data);
2460}
2461
2462static void dcn10_update_dchubp_dpp(
2463 struct dc *dc,
2464 struct pipe_ctx *pipe_ctx,
2465 struct dc_state *context)
2466{
2467 struct dce_hwseq *hws = dc->hwseq;
2468 struct hubp *hubp = pipe_ctx->plane_res.hubp;
2469 struct dpp *dpp = pipe_ctx->plane_res.dpp;
2470 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2471 struct plane_size size = plane_state->plane_size;
2472 unsigned int compat_level = 0;
2473 bool should_divided_by_2 = false;
2474
2475 /* depends on DML calculation, DPP clock value may change dynamically */
2476 /* If request max dpp clk is lower than current dispclk, no need to
2477 * divided by 2
2478 */
2479 if (plane_state->update_flags.bits.full_update) {
2480
2481 /* new calculated dispclk, dppclk are stored in
2482 * context->bw_ctx.bw.dcn.clk.dispclk_khz / dppclk_khz. current
2483 * dispclk, dppclk are from dc->clk_mgr->clks.dispclk_khz.
2484 * dcn_validate_bandwidth compute new dispclk, dppclk.
2485 * dispclk will put in use after optimize_bandwidth when
2486 * ramp_up_dispclk_with_dpp is called.
2487 * there are two places for dppclk be put in use. One location
2488 * is the same as the location as dispclk. Another is within
2489 * update_dchubp_dpp which happens between pre_bandwidth and
2490 * optimize_bandwidth.
2491 * dppclk updated within update_dchubp_dpp will cause new
2492 * clock values of dispclk and dppclk not be in use at the same
2493 * time. when clocks are decreased, this may cause dppclk is
2494 * lower than previous configuration and let pipe stuck.
2495 * for example, eDP + external dp, change resolution of DP from
2496 * 1920x1080x144hz to 1280x960x60hz.
2497 * before change: dispclk = 337889 dppclk = 337889
2498 * change mode, dcn_validate_bandwidth calculate
2499 * dispclk = 143122 dppclk = 143122
2500 * update_dchubp_dpp be executed before dispclk be updated,
2501 * dispclk = 337889, but dppclk use new value dispclk /2 =
2502 * 168944. this will cause pipe pstate warning issue.
2503 * solution: between pre_bandwidth and optimize_bandwidth, while
2504 * dispclk is going to be decreased, keep dppclk = dispclk
2505 **/
2506 if (context->bw_ctx.bw.dcn.clk.dispclk_khz <
2507 dc->clk_mgr->clks.dispclk_khz)
2508 should_divided_by_2 = false;
2509 else
2510 should_divided_by_2 =
2511 context->bw_ctx.bw.dcn.clk.dppclk_khz <=
2512 dc->clk_mgr->clks.dispclk_khz / 2;
2513
2514 dpp->funcs->dpp_dppclk_control(
2515 dpp,
2516 should_divided_by_2,
2517 true);
2518
2519 if (dc->res_pool->dccg)
2520 dc->res_pool->dccg->funcs->update_dpp_dto(
2521 dc->res_pool->dccg,
2522 dpp->inst,
2523 pipe_ctx->plane_res.bw.dppclk_khz);
2524 else
2525 dc->clk_mgr->clks.dppclk_khz = should_divided_by_2 ?
2526 dc->clk_mgr->clks.dispclk_khz / 2 :
2527 dc->clk_mgr->clks.dispclk_khz;
2528 }
2529
2530 /* TODO: Need input parameter to tell current DCHUB pipe tie to which OTG
2531 * VTG is within DCHUBBUB which is commond block share by each pipe HUBP.
2532 * VTG is 1:1 mapping with OTG. Each pipe HUBP will select which VTG
2533 */
2534 if (plane_state->update_flags.bits.full_update) {
2535 hubp->funcs->hubp_vtg_sel(hubp, pipe_ctx->stream_res.tg->inst);
2536
2537 hubp->funcs->hubp_setup(
2538 hubp,
2539 &pipe_ctx->dlg_regs,
2540 &pipe_ctx->ttu_regs,
2541 &pipe_ctx->rq_regs,
2542 &pipe_ctx->pipe_dlg_param);
2543 hubp->funcs->hubp_setup_interdependent(
2544 hubp,
2545 &pipe_ctx->dlg_regs,
2546 &pipe_ctx->ttu_regs);
2547 }
2548
2549 size.surface_size = pipe_ctx->plane_res.scl_data.viewport;
2550
2551 if (plane_state->update_flags.bits.full_update ||
2552 plane_state->update_flags.bits.bpp_change)
2553 dcn10_update_dpp(dpp, plane_state);
2554
2555 if (plane_state->update_flags.bits.full_update ||
2556 plane_state->update_flags.bits.per_pixel_alpha_change ||
2557 plane_state->update_flags.bits.global_alpha_change)
2558 hws->funcs.update_mpcc(dc, pipe_ctx);
2559
2560 if (plane_state->update_flags.bits.full_update ||
2561 plane_state->update_flags.bits.per_pixel_alpha_change ||
2562 plane_state->update_flags.bits.global_alpha_change ||
2563 plane_state->update_flags.bits.scaling_change ||
2564 plane_state->update_flags.bits.position_change) {
2565 update_scaler(pipe_ctx);
2566 }
2567
2568 if (plane_state->update_flags.bits.full_update ||
2569 plane_state->update_flags.bits.scaling_change ||
2570 plane_state->update_flags.bits.position_change) {
2571 hubp->funcs->mem_program_viewport(
2572 hubp,
2573 &pipe_ctx->plane_res.scl_data.viewport,
2574 &pipe_ctx->plane_res.scl_data.viewport_c);
2575 }
2576
2577 if (pipe_ctx->stream->cursor_attributes.address.quad_part != 0) {
2578 dc->hwss.set_cursor_position(pipe_ctx);
2579 dc->hwss.set_cursor_attribute(pipe_ctx);
2580
2581 if (dc->hwss.set_cursor_sdr_white_level)
2582 dc->hwss.set_cursor_sdr_white_level(pipe_ctx);
2583 }
2584
2585 if (plane_state->update_flags.bits.full_update) {
2586 /*gamut remap*/
2587 dc->hwss.program_gamut_remap(pipe_ctx);
2588
2589 dc->hwss.program_output_csc(dc,
2590 pipe_ctx,
2591 pipe_ctx->stream->output_color_space,
2592 pipe_ctx->stream->csc_color_matrix.matrix,
2593 pipe_ctx->stream_res.opp->inst);
2594 }
2595
2596 if (plane_state->update_flags.bits.full_update ||
2597 plane_state->update_flags.bits.pixel_format_change ||
2598 plane_state->update_flags.bits.horizontal_mirror_change ||
2599 plane_state->update_flags.bits.rotation_change ||
2600 plane_state->update_flags.bits.swizzle_change ||
2601 plane_state->update_flags.bits.dcc_change ||
2602 plane_state->update_flags.bits.bpp_change ||
2603 plane_state->update_flags.bits.scaling_change ||
2604 plane_state->update_flags.bits.plane_size_change) {
2605 hubp->funcs->hubp_program_surface_config(
2606 hubp,
2607 plane_state->format,
2608 &plane_state->tiling_info,
2609 &size,
2610 plane_state->rotation,
2611 &plane_state->dcc,
2612 plane_state->horizontal_mirror,
2613 compat_level);
2614 }
2615
2616 hubp->power_gated = false;
2617
2618 hws->funcs.update_plane_addr(dc, pipe_ctx);
2619
2620 if (is_pipe_tree_visible(pipe_ctx))
2621 hubp->funcs->set_blank(hubp, false);
2622}
2623
2624void dcn10_blank_pixel_data(
2625 struct dc *dc,
2626 struct pipe_ctx *pipe_ctx,
2627 bool blank)
2628{
2629 enum dc_color_space color_space;
2630 struct tg_color black_color = {0};
2631 struct stream_resource *stream_res = &pipe_ctx->stream_res;
2632 struct dc_stream_state *stream = pipe_ctx->stream;
2633
2634 /* program otg blank color */
2635 color_space = stream->output_color_space;
2636 color_space_to_black_color(dc, color_space, &black_color);
2637
2638 /*
2639 * The way 420 is packed, 2 channels carry Y component, 1 channel
2640 * alternate between Cb and Cr, so both channels need the pixel
2641 * value for Y
2642 */
2643 if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
2644 black_color.color_r_cr = black_color.color_g_y;
2645
2646
2647 if (stream_res->tg->funcs->set_blank_color)
2648 stream_res->tg->funcs->set_blank_color(
2649 stream_res->tg,
2650 &black_color);
2651
2652 if (!blank) {
2653 if (stream_res->tg->funcs->set_blank)
2654 stream_res->tg->funcs->set_blank(stream_res->tg, blank);
2655 if (stream_res->abm) {
2656 dc->hwss.set_pipe(pipe_ctx);
2657 stream_res->abm->funcs->set_abm_level(stream_res->abm, stream->abm_level);
2658 }
2659 } else if (blank) {
2660 dc->hwss.set_abm_immediate_disable(pipe_ctx);
2661 if (stream_res->tg->funcs->set_blank) {
2662 stream_res->tg->funcs->wait_for_state(stream_res->tg, CRTC_STATE_VBLANK);
2663 stream_res->tg->funcs->set_blank(stream_res->tg, blank);
2664 }
2665 }
2666}
2667
2668void dcn10_set_hdr_multiplier(struct pipe_ctx *pipe_ctx)
2669{
2670 struct fixed31_32 multiplier = pipe_ctx->plane_state->hdr_mult;
2671 uint32_t hw_mult = 0x1f000; // 1.0 default multiplier
2672 struct custom_float_format fmt;
2673
2674 fmt.exponenta_bits = 6;
2675 fmt.mantissa_bits = 12;
2676 fmt.sign = true;
2677
2678
2679 if (!dc_fixpt_eq(multiplier, dc_fixpt_from_int(0))) // check != 0
2680 convert_to_custom_float_format(multiplier, &fmt, &hw_mult);
2681
2682 pipe_ctx->plane_res.dpp->funcs->dpp_set_hdr_multiplier(
2683 pipe_ctx->plane_res.dpp, hw_mult);
2684}
2685
2686void dcn10_program_pipe(
2687 struct dc *dc,
2688 struct pipe_ctx *pipe_ctx,
2689 struct dc_state *context)
2690{
2691 struct dce_hwseq *hws = dc->hwseq;
2692
2693 if (pipe_ctx->plane_state->update_flags.bits.full_update)
2694 dcn10_enable_plane(dc, pipe_ctx, context);
2695
2696 dcn10_update_dchubp_dpp(dc, pipe_ctx, context);
2697
2698 hws->funcs.set_hdr_multiplier(pipe_ctx);
2699
2700 if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2701 pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2702 pipe_ctx->plane_state->update_flags.bits.gamma_change)
2703 hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
2704
2705 /* dcn10_translate_regamma_to_hw_format takes 750us to finish
2706 * only do gamma programming for full update.
2707 * TODO: This can be further optimized/cleaned up
2708 * Always call this for now since it does memcmp inside before
2709 * doing heavy calculation and programming
2710 */
2711 if (pipe_ctx->plane_state->update_flags.bits.full_update)
2712 hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
2713}
2714
2715static void dcn10_program_all_pipe_in_tree(
2716 struct dc *dc,
2717 struct pipe_ctx *pipe_ctx,
2718 struct dc_state *context)
2719{
2720 struct dce_hwseq *hws = dc->hwseq;
2721
2722 if (pipe_ctx->top_pipe == NULL) {
2723 bool blank = !is_pipe_tree_visible(pipe_ctx);
2724
2725 pipe_ctx->stream_res.tg->funcs->program_global_sync(
2726 pipe_ctx->stream_res.tg,
2727 pipe_ctx->pipe_dlg_param.vready_offset,
2728 pipe_ctx->pipe_dlg_param.vstartup_start,
2729 pipe_ctx->pipe_dlg_param.vupdate_offset,
2730 pipe_ctx->pipe_dlg_param.vupdate_width);
2731
2732 pipe_ctx->stream_res.tg->funcs->set_vtg_params(
2733 pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
2734
2735 if (hws->funcs.setup_vupdate_interrupt)
2736 hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
2737
2738 hws->funcs.blank_pixel_data(dc, pipe_ctx, blank);
2739 }
2740
2741 if (pipe_ctx->plane_state != NULL)
2742 hws->funcs.program_pipe(dc, pipe_ctx, context);
2743
2744 if (pipe_ctx->bottom_pipe != NULL && pipe_ctx->bottom_pipe != pipe_ctx)
2745 dcn10_program_all_pipe_in_tree(dc, pipe_ctx->bottom_pipe, context);
2746}
2747
2748static struct pipe_ctx *dcn10_find_top_pipe_for_stream(
2749 struct dc *dc,
2750 struct dc_state *context,
2751 const struct dc_stream_state *stream)
2752{
2753 int i;
2754
2755 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2756 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2757 struct pipe_ctx *old_pipe_ctx =
2758 &dc->current_state->res_ctx.pipe_ctx[i];
2759
2760 if (!pipe_ctx->plane_state && !old_pipe_ctx->plane_state)
2761 continue;
2762
2763 if (pipe_ctx->stream != stream)
2764 continue;
2765
2766 if (!pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe)
2767 return pipe_ctx;
2768 }
2769 return NULL;
2770}
2771
2772void dcn10_apply_ctx_for_surface(
2773 struct dc *dc,
2774 const struct dc_stream_state *stream,
2775 int num_planes,
2776 struct dc_state *context)
2777{
2778 struct dce_hwseq *hws = dc->hwseq;
2779 int i;
2780 struct timing_generator *tg;
2781 uint32_t underflow_check_delay_us;
2782 bool interdependent_update = false;
2783 struct pipe_ctx *top_pipe_to_program =
2784 dcn10_find_top_pipe_for_stream(dc, context, stream);
2785 DC_LOGGER_INIT(dc->ctx->logger);
2786
2787 // Clear pipe_ctx flag
2788 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2789 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2790 pipe_ctx->update_flags.raw = 0;
2791 }
2792
2793 if (!top_pipe_to_program)
2794 return;
2795
2796 tg = top_pipe_to_program->stream_res.tg;
2797
2798 interdependent_update = top_pipe_to_program->plane_state &&
2799 top_pipe_to_program->plane_state->update_flags.bits.full_update;
2800
2801 underflow_check_delay_us = dc->debug.underflow_assert_delay_us;
2802
2803 if (underflow_check_delay_us != 0xFFFFFFFF && hws->funcs.did_underflow_occur)
2804 ASSERT(hws->funcs.did_underflow_occur(dc, top_pipe_to_program));
2805
2806 if (underflow_check_delay_us != 0xFFFFFFFF)
2807 udelay(underflow_check_delay_us);
2808
2809 if (underflow_check_delay_us != 0xFFFFFFFF && hws->funcs.did_underflow_occur)
2810 ASSERT(hws->funcs.did_underflow_occur(dc, top_pipe_to_program));
2811
2812 if (num_planes == 0) {
2813 /* OTG blank before remove all front end */
2814 hws->funcs.blank_pixel_data(dc, top_pipe_to_program, true);
2815 }
2816
2817 /* Disconnect unused mpcc */
2818 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2819 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2820 struct pipe_ctx *old_pipe_ctx =
2821 &dc->current_state->res_ctx.pipe_ctx[i];
2822
2823 if ((!pipe_ctx->plane_state ||
2824 pipe_ctx->stream_res.tg != old_pipe_ctx->stream_res.tg) &&
2825 old_pipe_ctx->plane_state &&
2826 old_pipe_ctx->stream_res.tg == tg) {
2827
2828 hws->funcs.plane_atomic_disconnect(dc, old_pipe_ctx);
2829 pipe_ctx->update_flags.bits.disable = 1;
2830
2831 DC_LOG_DC("Reset mpcc for pipe %d\n",
2832 old_pipe_ctx->pipe_idx);
2833 }
2834 }
2835
2836 if (num_planes > 0)
2837 dcn10_program_all_pipe_in_tree(dc, top_pipe_to_program, context);
2838
2839 /* Program secondary blending tree and writeback pipes */
2840 if ((stream->num_wb_info > 0) && (hws->funcs.program_all_writeback_pipes_in_tree))
2841 hws->funcs.program_all_writeback_pipes_in_tree(dc, stream, context);
2842 if (interdependent_update)
2843 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2844 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2845 /* Skip inactive pipes and ones already updated */
2846 if (!pipe_ctx->stream || pipe_ctx->stream == stream ||
2847 !pipe_ctx->plane_state || !tg->funcs->is_tg_enabled(tg))
2848 continue;
2849
2850 pipe_ctx->plane_res.hubp->funcs->hubp_setup_interdependent(
2851 pipe_ctx->plane_res.hubp,
2852 &pipe_ctx->dlg_regs,
2853 &pipe_ctx->ttu_regs);
2854 }
2855}
2856
2857void dcn10_post_unlock_program_front_end(
2858 struct dc *dc,
2859 struct dc_state *context)
2860{
2861 int i;
2862
2863 DC_LOGGER_INIT(dc->ctx->logger);
2864
2865 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2866 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2867
2868 if (!pipe_ctx->top_pipe &&
2869 !pipe_ctx->prev_odm_pipe &&
2870 pipe_ctx->stream) {
2871 struct timing_generator *tg = pipe_ctx->stream_res.tg;
2872
2873 if (context->stream_status[i].plane_count == 0)
2874 false_optc_underflow_wa(dc, pipe_ctx->stream, tg);
2875 }
2876 }
2877
2878 for (i = 0; i < dc->res_pool->pipe_count; i++)
2879 if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable)
2880 dc->hwss.disable_plane(dc, &dc->current_state->res_ctx.pipe_ctx[i]);
2881
2882 for (i = 0; i < dc->res_pool->pipe_count; i++)
2883 if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable) {
2884 dc->hwss.optimize_bandwidth(dc, context);
2885 break;
2886 }
2887
2888 if (dc->hwseq->wa.DEGVIDCN10_254)
2889 hubbub1_wm_change_req_wa(dc->res_pool->hubbub);
2890}
2891
2892static void dcn10_stereo_hw_frame_pack_wa(struct dc *dc, struct dc_state *context)
2893{
2894 uint8_t i;
2895
2896 for (i = 0; i < context->stream_count; i++) {
2897 if (context->streams[i]->timing.timing_3d_format
2898 == TIMING_3D_FORMAT_HW_FRAME_PACKING) {
2899 /*
2900 * Disable stutter
2901 */
2902 hubbub1_allow_self_refresh_control(dc->res_pool->hubbub, false);
2903 break;
2904 }
2905 }
2906}
2907
2908void dcn10_prepare_bandwidth(
2909 struct dc *dc,
2910 struct dc_state *context)
2911{
2912 struct dce_hwseq *hws = dc->hwseq;
2913 struct hubbub *hubbub = dc->res_pool->hubbub;
2914
2915 if (dc->debug.sanity_checks)
2916 hws->funcs.verify_allow_pstate_change_high(dc);
2917
2918 if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
2919 if (context->stream_count == 0)
2920 context->bw_ctx.bw.dcn.clk.phyclk_khz = 0;
2921
2922 dc->clk_mgr->funcs->update_clocks(
2923 dc->clk_mgr,
2924 context,
2925 false);
2926 }
2927
2928 dc->wm_optimized_required = hubbub->funcs->program_watermarks(hubbub,
2929 &context->bw_ctx.bw.dcn.watermarks,
2930 dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
2931 true);
2932 dcn10_stereo_hw_frame_pack_wa(dc, context);
2933
2934 if (dc->debug.pplib_wm_report_mode == WM_REPORT_OVERRIDE)
2935 dcn_bw_notify_pplib_of_wm_ranges(dc);
2936
2937 if (dc->debug.sanity_checks)
2938 hws->funcs.verify_allow_pstate_change_high(dc);
2939}
2940
2941void dcn10_optimize_bandwidth(
2942 struct dc *dc,
2943 struct dc_state *context)
2944{
2945 struct dce_hwseq *hws = dc->hwseq;
2946 struct hubbub *hubbub = dc->res_pool->hubbub;
2947
2948 if (dc->debug.sanity_checks)
2949 hws->funcs.verify_allow_pstate_change_high(dc);
2950
2951 if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
2952 if (context->stream_count == 0)
2953 context->bw_ctx.bw.dcn.clk.phyclk_khz = 0;
2954
2955 dc->clk_mgr->funcs->update_clocks(
2956 dc->clk_mgr,
2957 context,
2958 true);
2959 }
2960
2961 hubbub->funcs->program_watermarks(hubbub,
2962 &context->bw_ctx.bw.dcn.watermarks,
2963 dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
2964 true);
2965
2966 dcn10_stereo_hw_frame_pack_wa(dc, context);
2967
2968 if (dc->debug.pplib_wm_report_mode == WM_REPORT_OVERRIDE)
2969 dcn_bw_notify_pplib_of_wm_ranges(dc);
2970
2971 if (dc->debug.sanity_checks)
2972 hws->funcs.verify_allow_pstate_change_high(dc);
2973}
2974
2975void dcn10_set_drr(struct pipe_ctx **pipe_ctx,
2976 int num_pipes, unsigned int vmin, unsigned int vmax,
2977 unsigned int vmid, unsigned int vmid_frame_number)
2978{
2979 int i = 0;
2980 struct drr_params params = {0};
2981 // DRR set trigger event mapped to OTG_TRIG_A (bit 11) for manual control flow
2982 unsigned int event_triggers = 0x800;
2983 // Note DRR trigger events are generated regardless of whether num frames met.
2984 unsigned int num_frames = 2;
2985
2986 params.vertical_total_max = vmax;
2987 params.vertical_total_min = vmin;
2988 params.vertical_total_mid = vmid;
2989 params.vertical_total_mid_frame_num = vmid_frame_number;
2990
2991 /* TODO: If multiple pipes are to be supported, you need
2992 * some GSL stuff. Static screen triggers may be programmed differently
2993 * as well.
2994 */
2995 for (i = 0; i < num_pipes; i++) {
2996 pipe_ctx[i]->stream_res.tg->funcs->set_drr(
2997 pipe_ctx[i]->stream_res.tg, ¶ms);
2998 if (vmax != 0 && vmin != 0)
2999 pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
3000 pipe_ctx[i]->stream_res.tg,
3001 event_triggers, num_frames);
3002 }
3003}
3004
3005void dcn10_get_position(struct pipe_ctx **pipe_ctx,
3006 int num_pipes,
3007 struct crtc_position *position)
3008{
3009 int i = 0;
3010
3011 /* TODO: handle pipes > 1
3012 */
3013 for (i = 0; i < num_pipes; i++)
3014 pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
3015}
3016
3017void dcn10_set_static_screen_control(struct pipe_ctx **pipe_ctx,
3018 int num_pipes, const struct dc_static_screen_params *params)
3019{
3020 unsigned int i;
3021 unsigned int triggers = 0;
3022
3023 if (params->triggers.surface_update)
3024 triggers |= 0x80;
3025 if (params->triggers.cursor_update)
3026 triggers |= 0x2;
3027 if (params->triggers.force_trigger)
3028 triggers |= 0x1;
3029
3030 for (i = 0; i < num_pipes; i++)
3031 pipe_ctx[i]->stream_res.tg->funcs->
3032 set_static_screen_control(pipe_ctx[i]->stream_res.tg,
3033 triggers, params->num_frames);
3034}
3035
3036static void dcn10_config_stereo_parameters(
3037 struct dc_stream_state *stream, struct crtc_stereo_flags *flags)
3038{
3039 enum view_3d_format view_format = stream->view_format;
3040 enum dc_timing_3d_format timing_3d_format =\
3041 stream->timing.timing_3d_format;
3042 bool non_stereo_timing = false;
3043
3044 if (timing_3d_format == TIMING_3D_FORMAT_NONE ||
3045 timing_3d_format == TIMING_3D_FORMAT_SIDE_BY_SIDE ||
3046 timing_3d_format == TIMING_3D_FORMAT_TOP_AND_BOTTOM)
3047 non_stereo_timing = true;
3048
3049 if (non_stereo_timing == false &&
3050 view_format == VIEW_3D_FORMAT_FRAME_SEQUENTIAL) {
3051
3052 flags->PROGRAM_STEREO = 1;
3053 flags->PROGRAM_POLARITY = 1;
3054 if (timing_3d_format == TIMING_3D_FORMAT_INBAND_FA ||
3055 timing_3d_format == TIMING_3D_FORMAT_DP_HDMI_INBAND_FA ||
3056 timing_3d_format == TIMING_3D_FORMAT_SIDEBAND_FA) {
3057 enum display_dongle_type dongle = \
3058 stream->link->ddc->dongle_type;
3059 if (dongle == DISPLAY_DONGLE_DP_VGA_CONVERTER ||
3060 dongle == DISPLAY_DONGLE_DP_DVI_CONVERTER ||
3061 dongle == DISPLAY_DONGLE_DP_HDMI_CONVERTER)
3062 flags->DISABLE_STEREO_DP_SYNC = 1;
3063 }
3064 flags->RIGHT_EYE_POLARITY =\
3065 stream->timing.flags.RIGHT_EYE_3D_POLARITY;
3066 if (timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
3067 flags->FRAME_PACKED = 1;
3068 }
3069
3070 return;
3071}
3072
3073void dcn10_setup_stereo(struct pipe_ctx *pipe_ctx, struct dc *dc)
3074{
3075 struct crtc_stereo_flags flags = { 0 };
3076 struct dc_stream_state *stream = pipe_ctx->stream;
3077
3078 dcn10_config_stereo_parameters(stream, &flags);
3079
3080 if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_SIDEBAND_FA) {
3081 if (!dc_set_generic_gpio_for_stereo(true, dc->ctx->gpio_service))
3082 dc_set_generic_gpio_for_stereo(false, dc->ctx->gpio_service);
3083 } else {
3084 dc_set_generic_gpio_for_stereo(false, dc->ctx->gpio_service);
3085 }
3086
3087 pipe_ctx->stream_res.opp->funcs->opp_program_stereo(
3088 pipe_ctx->stream_res.opp,
3089 flags.PROGRAM_STEREO == 1 ? true:false,
3090 &stream->timing);
3091
3092 pipe_ctx->stream_res.tg->funcs->program_stereo(
3093 pipe_ctx->stream_res.tg,
3094 &stream->timing,
3095 &flags);
3096
3097 return;
3098}
3099
3100static struct hubp *get_hubp_by_inst(struct resource_pool *res_pool, int mpcc_inst)
3101{
3102 int i;
3103
3104 for (i = 0; i < res_pool->pipe_count; i++) {
3105 if (res_pool->hubps[i]->inst == mpcc_inst)
3106 return res_pool->hubps[i];
3107 }
3108 ASSERT(false);
3109 return NULL;
3110}
3111
3112void dcn10_wait_for_mpcc_disconnect(
3113 struct dc *dc,
3114 struct resource_pool *res_pool,
3115 struct pipe_ctx *pipe_ctx)
3116{
3117 struct dce_hwseq *hws = dc->hwseq;
3118 int mpcc_inst;
3119
3120 if (dc->debug.sanity_checks) {
3121 hws->funcs.verify_allow_pstate_change_high(dc);
3122 }
3123
3124 if (!pipe_ctx->stream_res.opp)
3125 return;
3126
3127 for (mpcc_inst = 0; mpcc_inst < MAX_PIPES; mpcc_inst++) {
3128 if (pipe_ctx->stream_res.opp->mpcc_disconnect_pending[mpcc_inst]) {
3129 struct hubp *hubp = get_hubp_by_inst(res_pool, mpcc_inst);
3130
3131 res_pool->mpc->funcs->wait_for_idle(res_pool->mpc, mpcc_inst);
3132 pipe_ctx->stream_res.opp->mpcc_disconnect_pending[mpcc_inst] = false;
3133 hubp->funcs->set_blank(hubp, true);
3134 }
3135 }
3136
3137 if (dc->debug.sanity_checks) {
3138 hws->funcs.verify_allow_pstate_change_high(dc);
3139 }
3140
3141}
3142
3143bool dcn10_dummy_display_power_gating(
3144 struct dc *dc,
3145 uint8_t controller_id,
3146 struct dc_bios *dcb,
3147 enum pipe_gating_control power_gating)
3148{
3149 return true;
3150}
3151
3152void dcn10_update_pending_status(struct pipe_ctx *pipe_ctx)
3153{
3154 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
3155 struct timing_generator *tg = pipe_ctx->stream_res.tg;
3156 bool flip_pending;
3157 struct dc *dc = plane_state->ctx->dc;
3158
3159 if (plane_state == NULL)
3160 return;
3161
3162 flip_pending = pipe_ctx->plane_res.hubp->funcs->hubp_is_flip_pending(
3163 pipe_ctx->plane_res.hubp);
3164
3165 plane_state->status.is_flip_pending = plane_state->status.is_flip_pending || flip_pending;
3166
3167 if (!flip_pending)
3168 plane_state->status.current_address = plane_state->status.requested_address;
3169
3170 if (plane_state->status.current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
3171 tg->funcs->is_stereo_left_eye) {
3172 plane_state->status.is_right_eye =
3173 !tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
3174 }
3175
3176 if (dc->hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied) {
3177 struct dce_hwseq *hwseq = dc->hwseq;
3178 struct timing_generator *tg = dc->res_pool->timing_generators[0];
3179 unsigned int cur_frame = tg->funcs->get_frame_count(tg);
3180
3181 if (cur_frame != hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied_on_frame) {
3182 struct hubbub *hubbub = dc->res_pool->hubbub;
3183
3184 hubbub->funcs->allow_self_refresh_control(hubbub, !dc->debug.disable_stutter);
3185 hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied = false;
3186 }
3187 }
3188}
3189
3190void dcn10_update_dchub(struct dce_hwseq *hws, struct dchub_init_data *dh_data)
3191{
3192 struct hubbub *hubbub = hws->ctx->dc->res_pool->hubbub;
3193
3194 /* In DCN, this programming sequence is owned by the hubbub */
3195 hubbub->funcs->update_dchub(hubbub, dh_data);
3196}
3197
3198static bool dcn10_can_pipe_disable_cursor(struct pipe_ctx *pipe_ctx)
3199{
3200 struct pipe_ctx *test_pipe;
3201 const struct rect *r1 = &pipe_ctx->plane_res.scl_data.recout, *r2;
3202 int r1_r = r1->x + r1->width, r1_b = r1->y + r1->height, r2_r, r2_b;
3203
3204 /**
3205 * Disable the cursor if there's another pipe above this with a
3206 * plane that contains this pipe's viewport to prevent double cursor
3207 * and incorrect scaling artifacts.
3208 */
3209 for (test_pipe = pipe_ctx->top_pipe; test_pipe;
3210 test_pipe = test_pipe->top_pipe) {
3211 if (!test_pipe->plane_state->visible)
3212 continue;
3213
3214 r2 = &test_pipe->plane_res.scl_data.recout;
3215 r2_r = r2->x + r2->width;
3216 r2_b = r2->y + r2->height;
3217
3218 if (r1->x >= r2->x && r1->y >= r2->y && r1_r <= r2_r && r1_b <= r2_b)
3219 return true;
3220 }
3221
3222 return false;
3223}
3224
3225void dcn10_set_cursor_position(struct pipe_ctx *pipe_ctx)
3226{
3227 struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
3228 struct hubp *hubp = pipe_ctx->plane_res.hubp;
3229 struct dpp *dpp = pipe_ctx->plane_res.dpp;
3230 struct dc_cursor_mi_param param = {
3231 .pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
3232 .ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.dchub_ref_clock_inKhz,
3233 .viewport = pipe_ctx->plane_res.scl_data.viewport,
3234 .h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
3235 .v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
3236 .rotation = pipe_ctx->plane_state->rotation,
3237 .mirror = pipe_ctx->plane_state->horizontal_mirror
3238 };
3239 bool pipe_split_on = (pipe_ctx->top_pipe != NULL) ||
3240 (pipe_ctx->bottom_pipe != NULL);
3241
3242 int x_plane = pipe_ctx->plane_state->dst_rect.x;
3243 int y_plane = pipe_ctx->plane_state->dst_rect.y;
3244 int x_pos = pos_cpy.x;
3245 int y_pos = pos_cpy.y;
3246
3247 /**
3248 * DC cursor is stream space, HW cursor is plane space and drawn
3249 * as part of the framebuffer.
3250 *
3251 * Cursor position can't be negative, but hotspot can be used to
3252 * shift cursor out of the plane bounds. Hotspot must be smaller
3253 * than the cursor size.
3254 */
3255
3256 /**
3257 * Translate cursor from stream space to plane space.
3258 *
3259 * If the cursor is scaled then we need to scale the position
3260 * to be in the approximately correct place. We can't do anything
3261 * about the actual size being incorrect, that's a limitation of
3262 * the hardware.
3263 */
3264 x_pos = (x_pos - x_plane) * pipe_ctx->plane_state->src_rect.width /
3265 pipe_ctx->plane_state->dst_rect.width;
3266 y_pos = (y_pos - y_plane) * pipe_ctx->plane_state->src_rect.height /
3267 pipe_ctx->plane_state->dst_rect.height;
3268
3269 /**
3270 * If the cursor's source viewport is clipped then we need to
3271 * translate the cursor to appear in the correct position on
3272 * the screen.
3273 *
3274 * This translation isn't affected by scaling so it needs to be
3275 * done *after* we adjust the position for the scale factor.
3276 *
3277 * This is only done by opt-in for now since there are still
3278 * some usecases like tiled display that might enable the
3279 * cursor on both streams while expecting dc to clip it.
3280 */
3281 if (pos_cpy.translate_by_source) {
3282 x_pos += pipe_ctx->plane_state->src_rect.x;
3283 y_pos += pipe_ctx->plane_state->src_rect.y;
3284 }
3285
3286 /**
3287 * If the position is negative then we need to add to the hotspot
3288 * to shift the cursor outside the plane.
3289 */
3290
3291 if (x_pos < 0) {
3292 pos_cpy.x_hotspot -= x_pos;
3293 x_pos = 0;
3294 }
3295
3296 if (y_pos < 0) {
3297 pos_cpy.y_hotspot -= y_pos;
3298 y_pos = 0;
3299 }
3300
3301 pos_cpy.x = (uint32_t)x_pos;
3302 pos_cpy.y = (uint32_t)y_pos;
3303
3304 if (pipe_ctx->plane_state->address.type
3305 == PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
3306 pos_cpy.enable = false;
3307
3308 if (pos_cpy.enable && dcn10_can_pipe_disable_cursor(pipe_ctx))
3309 pos_cpy.enable = false;
3310
3311 // Swap axis and mirror horizontally
3312 if (param.rotation == ROTATION_ANGLE_90) {
3313 uint32_t temp_x = pos_cpy.x;
3314
3315 pos_cpy.x = pipe_ctx->plane_res.scl_data.viewport.width -
3316 (pos_cpy.y - pipe_ctx->plane_res.scl_data.viewport.x) + pipe_ctx->plane_res.scl_data.viewport.x;
3317 pos_cpy.y = temp_x;
3318 }
3319 // Swap axis and mirror vertically
3320 else if (param.rotation == ROTATION_ANGLE_270) {
3321 uint32_t temp_y = pos_cpy.y;
3322 int viewport_height =
3323 pipe_ctx->plane_res.scl_data.viewport.height;
3324
3325 if (pipe_split_on) {
3326 if (pos_cpy.x > viewport_height) {
3327 pos_cpy.x = pos_cpy.x - viewport_height;
3328 pos_cpy.y = viewport_height - pos_cpy.x;
3329 } else {
3330 pos_cpy.y = 2 * viewport_height - pos_cpy.x;
3331 }
3332 } else
3333 pos_cpy.y = viewport_height - pos_cpy.x;
3334 pos_cpy.x = temp_y;
3335 }
3336 // Mirror horizontally and vertically
3337 else if (param.rotation == ROTATION_ANGLE_180) {
3338 int viewport_width =
3339 pipe_ctx->plane_res.scl_data.viewport.width;
3340 int viewport_x =
3341 pipe_ctx->plane_res.scl_data.viewport.x;
3342
3343 if (pipe_split_on) {
3344 if (pos_cpy.x >= viewport_width + viewport_x) {
3345 pos_cpy.x = 2 * viewport_width
3346 - pos_cpy.x + 2 * viewport_x;
3347 } else {
3348 uint32_t temp_x = pos_cpy.x;
3349
3350 pos_cpy.x = 2 * viewport_x - pos_cpy.x;
3351 if (temp_x >= viewport_x +
3352 (int)hubp->curs_attr.width || pos_cpy.x
3353 <= (int)hubp->curs_attr.width +
3354 pipe_ctx->plane_state->src_rect.x) {
3355 pos_cpy.x = temp_x + viewport_width;
3356 }
3357 }
3358 } else {
3359 pos_cpy.x = viewport_width - pos_cpy.x + 2 * viewport_x;
3360 }
3361 pos_cpy.y = pipe_ctx->plane_res.scl_data.viewport.height - pos_cpy.y;
3362 }
3363
3364 hubp->funcs->set_cursor_position(hubp, &pos_cpy, ¶m);
3365 dpp->funcs->set_cursor_position(dpp, &pos_cpy, ¶m, hubp->curs_attr.width, hubp->curs_attr.height);
3366}
3367
3368void dcn10_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
3369{
3370 struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
3371
3372 pipe_ctx->plane_res.hubp->funcs->set_cursor_attributes(
3373 pipe_ctx->plane_res.hubp, attributes);
3374 pipe_ctx->plane_res.dpp->funcs->set_cursor_attributes(
3375 pipe_ctx->plane_res.dpp, attributes);
3376}
3377
3378void dcn10_set_cursor_sdr_white_level(struct pipe_ctx *pipe_ctx)
3379{
3380 uint32_t sdr_white_level = pipe_ctx->stream->cursor_attributes.sdr_white_level;
3381 struct fixed31_32 multiplier;
3382 struct dpp_cursor_attributes opt_attr = { 0 };
3383 uint32_t hw_scale = 0x3c00; // 1.0 default multiplier
3384 struct custom_float_format fmt;
3385
3386 if (!pipe_ctx->plane_res.dpp->funcs->set_optional_cursor_attributes)
3387 return;
3388
3389 fmt.exponenta_bits = 5;
3390 fmt.mantissa_bits = 10;
3391 fmt.sign = true;
3392
3393 if (sdr_white_level > 80) {
3394 multiplier = dc_fixpt_from_fraction(sdr_white_level, 80);
3395 convert_to_custom_float_format(multiplier, &fmt, &hw_scale);
3396 }
3397
3398 opt_attr.scale = hw_scale;
3399 opt_attr.bias = 0;
3400
3401 pipe_ctx->plane_res.dpp->funcs->set_optional_cursor_attributes(
3402 pipe_ctx->plane_res.dpp, &opt_attr);
3403}
3404
3405/*
3406 * apply_front_porch_workaround TODO FPGA still need?
3407 *
3408 * This is a workaround for a bug that has existed since R5xx and has not been
3409 * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
3410 */
3411static void apply_front_porch_workaround(
3412 struct dc_crtc_timing *timing)
3413{
3414 if (timing->flags.INTERLACE == 1) {
3415 if (timing->v_front_porch < 2)
3416 timing->v_front_porch = 2;
3417 } else {
3418 if (timing->v_front_porch < 1)
3419 timing->v_front_porch = 1;
3420 }
3421}
3422
3423int dcn10_get_vupdate_offset_from_vsync(struct pipe_ctx *pipe_ctx)
3424{
3425 const struct dc_crtc_timing *dc_crtc_timing = &pipe_ctx->stream->timing;
3426 struct dc_crtc_timing patched_crtc_timing;
3427 int vesa_sync_start;
3428 int asic_blank_end;
3429 int interlace_factor;
3430 int vertical_line_start;
3431
3432 patched_crtc_timing = *dc_crtc_timing;
3433 apply_front_porch_workaround(&patched_crtc_timing);
3434
3435 interlace_factor = patched_crtc_timing.flags.INTERLACE ? 2 : 1;
3436
3437 vesa_sync_start = patched_crtc_timing.v_addressable +
3438 patched_crtc_timing.v_border_bottom +
3439 patched_crtc_timing.v_front_porch;
3440
3441 asic_blank_end = (patched_crtc_timing.v_total -
3442 vesa_sync_start -
3443 patched_crtc_timing.v_border_top)
3444 * interlace_factor;
3445
3446 vertical_line_start = asic_blank_end -
3447 pipe_ctx->pipe_dlg_param.vstartup_start + 1;
3448
3449 return vertical_line_start;
3450}
3451
3452void dcn10_calc_vupdate_position(
3453 struct dc *dc,
3454 struct pipe_ctx *pipe_ctx,
3455 uint32_t *start_line,
3456 uint32_t *end_line)
3457{
3458 const struct dc_crtc_timing *dc_crtc_timing = &pipe_ctx->stream->timing;
3459 int vline_int_offset_from_vupdate =
3460 pipe_ctx->stream->periodic_interrupt0.lines_offset;
3461 int vupdate_offset_from_vsync = dc->hwss.get_vupdate_offset_from_vsync(pipe_ctx);
3462 int start_position;
3463
3464 if (vline_int_offset_from_vupdate > 0)
3465 vline_int_offset_from_vupdate--;
3466 else if (vline_int_offset_from_vupdate < 0)
3467 vline_int_offset_from_vupdate++;
3468
3469 start_position = vline_int_offset_from_vupdate + vupdate_offset_from_vsync;
3470
3471 if (start_position >= 0)
3472 *start_line = start_position;
3473 else
3474 *start_line = dc_crtc_timing->v_total + start_position - 1;
3475
3476 *end_line = *start_line + 2;
3477
3478 if (*end_line >= dc_crtc_timing->v_total)
3479 *end_line = 2;
3480}
3481
3482static void dcn10_cal_vline_position(
3483 struct dc *dc,
3484 struct pipe_ctx *pipe_ctx,
3485 enum vline_select vline,
3486 uint32_t *start_line,
3487 uint32_t *end_line)
3488{
3489 enum vertical_interrupt_ref_point ref_point = INVALID_POINT;
3490
3491 if (vline == VLINE0)
3492 ref_point = pipe_ctx->stream->periodic_interrupt0.ref_point;
3493 else if (vline == VLINE1)
3494 ref_point = pipe_ctx->stream->periodic_interrupt1.ref_point;
3495
3496 switch (ref_point) {
3497 case START_V_UPDATE:
3498 dcn10_calc_vupdate_position(
3499 dc,
3500 pipe_ctx,
3501 start_line,
3502 end_line);
3503 break;
3504 case START_V_SYNC:
3505 // Suppose to do nothing because vsync is 0;
3506 break;
3507 default:
3508 ASSERT(0);
3509 break;
3510 }
3511}
3512
3513void dcn10_setup_periodic_interrupt(
3514 struct dc *dc,
3515 struct pipe_ctx *pipe_ctx,
3516 enum vline_select vline)
3517{
3518 struct timing_generator *tg = pipe_ctx->stream_res.tg;
3519
3520 if (vline == VLINE0) {
3521 uint32_t start_line = 0;
3522 uint32_t end_line = 0;
3523
3524 dcn10_cal_vline_position(dc, pipe_ctx, vline, &start_line, &end_line);
3525
3526 tg->funcs->setup_vertical_interrupt0(tg, start_line, end_line);
3527
3528 } else if (vline == VLINE1) {
3529 pipe_ctx->stream_res.tg->funcs->setup_vertical_interrupt1(
3530 tg,
3531 pipe_ctx->stream->periodic_interrupt1.lines_offset);
3532 }
3533}
3534
3535void dcn10_setup_vupdate_interrupt(struct dc *dc, struct pipe_ctx *pipe_ctx)
3536{
3537 struct timing_generator *tg = pipe_ctx->stream_res.tg;
3538 int start_line = dc->hwss.get_vupdate_offset_from_vsync(pipe_ctx);
3539
3540 if (start_line < 0) {
3541 ASSERT(0);
3542 start_line = 0;
3543 }
3544
3545 if (tg->funcs->setup_vertical_interrupt2)
3546 tg->funcs->setup_vertical_interrupt2(tg, start_line);
3547}
3548
3549void dcn10_unblank_stream(struct pipe_ctx *pipe_ctx,
3550 struct dc_link_settings *link_settings)
3551{
3552 struct encoder_unblank_param params = { { 0 } };
3553 struct dc_stream_state *stream = pipe_ctx->stream;
3554 struct dc_link *link = stream->link;
3555 struct dce_hwseq *hws = link->dc->hwseq;
3556
3557 /* only 3 items below are used by unblank */
3558 params.timing = pipe_ctx->stream->timing;
3559
3560 params.link_settings.link_rate = link_settings->link_rate;
3561
3562 if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
3563 if (params.timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
3564 params.timing.pix_clk_100hz /= 2;
3565 pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(pipe_ctx->stream_res.stream_enc, ¶ms);
3566 }
3567
3568 if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
3569 hws->funcs.edp_backlight_control(link, true);
3570 }
3571}
3572
3573void dcn10_send_immediate_sdp_message(struct pipe_ctx *pipe_ctx,
3574 const uint8_t *custom_sdp_message,
3575 unsigned int sdp_message_size)
3576{
3577 if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
3578 pipe_ctx->stream_res.stream_enc->funcs->send_immediate_sdp_message(
3579 pipe_ctx->stream_res.stream_enc,
3580 custom_sdp_message,
3581 sdp_message_size);
3582 }
3583}
3584enum dc_status dcn10_set_clock(struct dc *dc,
3585 enum dc_clock_type clock_type,
3586 uint32_t clk_khz,
3587 uint32_t stepping)
3588{
3589 struct dc_state *context = dc->current_state;
3590 struct dc_clock_config clock_cfg = {0};
3591 struct dc_clocks *current_clocks = &context->bw_ctx.bw.dcn.clk;
3592
3593 if (dc->clk_mgr && dc->clk_mgr->funcs->get_clock)
3594 dc->clk_mgr->funcs->get_clock(dc->clk_mgr,
3595 context, clock_type, &clock_cfg);
3596
3597 if (!dc->clk_mgr->funcs->get_clock)
3598 return DC_FAIL_UNSUPPORTED_1;
3599
3600 if (clk_khz > clock_cfg.max_clock_khz)
3601 return DC_FAIL_CLK_EXCEED_MAX;
3602
3603 if (clk_khz < clock_cfg.min_clock_khz)
3604 return DC_FAIL_CLK_BELOW_MIN;
3605
3606 if (clk_khz < clock_cfg.bw_requirequired_clock_khz)
3607 return DC_FAIL_CLK_BELOW_CFG_REQUIRED;
3608
3609 /*update internal request clock for update clock use*/
3610 if (clock_type == DC_CLOCK_TYPE_DISPCLK)
3611 current_clocks->dispclk_khz = clk_khz;
3612 else if (clock_type == DC_CLOCK_TYPE_DPPCLK)
3613 current_clocks->dppclk_khz = clk_khz;
3614 else
3615 return DC_ERROR_UNEXPECTED;
3616
3617 if (dc->clk_mgr && dc->clk_mgr->funcs->update_clocks)
3618 dc->clk_mgr->funcs->update_clocks(dc->clk_mgr,
3619 context, true);
3620 return DC_OK;
3621
3622}
3623
3624void dcn10_get_clock(struct dc *dc,
3625 enum dc_clock_type clock_type,
3626 struct dc_clock_config *clock_cfg)
3627{
3628 struct dc_state *context = dc->current_state;
3629
3630 if (dc->clk_mgr && dc->clk_mgr->funcs->get_clock)
3631 dc->clk_mgr->funcs->get_clock(dc->clk_mgr, context, clock_type, clock_cfg);
3632
3633}