Loading...
1/*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23
24#include <linux/ratelimit.h>
25#include <linux/printk.h>
26#include <linux/slab.h>
27#include <linux/list.h>
28#include <linux/types.h>
29#include <linux/bitops.h>
30#include <linux/sched.h>
31#include "kfd_priv.h"
32#include "kfd_device_queue_manager.h"
33#include "kfd_mqd_manager.h"
34#include "cik_regs.h"
35#include "kfd_kernel_queue.h"
36#include "amdgpu_amdkfd.h"
37
38/* Size of the per-pipe EOP queue */
39#define CIK_HPD_EOP_BYTES_LOG2 11
40#define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
41
42static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
43 unsigned int pasid, unsigned int vmid);
44
45static int execute_queues_cpsch(struct device_queue_manager *dqm,
46 enum kfd_unmap_queues_filter filter,
47 uint32_t filter_param);
48static int unmap_queues_cpsch(struct device_queue_manager *dqm,
49 enum kfd_unmap_queues_filter filter,
50 uint32_t filter_param);
51
52static int map_queues_cpsch(struct device_queue_manager *dqm);
53
54static void deallocate_sdma_queue(struct device_queue_manager *dqm,
55 struct queue *q);
56
57static inline void deallocate_hqd(struct device_queue_manager *dqm,
58 struct queue *q);
59static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
60static int allocate_sdma_queue(struct device_queue_manager *dqm,
61 struct queue *q);
62static void kfd_process_hw_exception(struct work_struct *work);
63
64static inline
65enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
66{
67 if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
68 return KFD_MQD_TYPE_SDMA;
69 return KFD_MQD_TYPE_CP;
70}
71
72static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
73{
74 int i;
75 int pipe_offset = mec * dqm->dev->shared_resources.num_pipe_per_mec
76 + pipe * dqm->dev->shared_resources.num_queue_per_pipe;
77
78 /* queue is available for KFD usage if bit is 1 */
79 for (i = 0; i < dqm->dev->shared_resources.num_queue_per_pipe; ++i)
80 if (test_bit(pipe_offset + i,
81 dqm->dev->shared_resources.cp_queue_bitmap))
82 return true;
83 return false;
84}
85
86unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
87{
88 return bitmap_weight(dqm->dev->shared_resources.cp_queue_bitmap,
89 KGD_MAX_QUEUES);
90}
91
92unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
93{
94 return dqm->dev->shared_resources.num_queue_per_pipe;
95}
96
97unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
98{
99 return dqm->dev->shared_resources.num_pipe_per_mec;
100}
101
102static unsigned int get_num_sdma_engines(struct device_queue_manager *dqm)
103{
104 return dqm->dev->device_info->num_sdma_engines;
105}
106
107static unsigned int get_num_xgmi_sdma_engines(struct device_queue_manager *dqm)
108{
109 return dqm->dev->device_info->num_xgmi_sdma_engines;
110}
111
112static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
113{
114 return get_num_sdma_engines(dqm) + get_num_xgmi_sdma_engines(dqm);
115}
116
117unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
118{
119 return dqm->dev->device_info->num_sdma_engines
120 * dqm->dev->device_info->num_sdma_queues_per_engine;
121}
122
123unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
124{
125 return dqm->dev->device_info->num_xgmi_sdma_engines
126 * dqm->dev->device_info->num_sdma_queues_per_engine;
127}
128
129void program_sh_mem_settings(struct device_queue_manager *dqm,
130 struct qcm_process_device *qpd)
131{
132 return dqm->dev->kfd2kgd->program_sh_mem_settings(
133 dqm->dev->kgd, qpd->vmid,
134 qpd->sh_mem_config,
135 qpd->sh_mem_ape1_base,
136 qpd->sh_mem_ape1_limit,
137 qpd->sh_mem_bases);
138}
139
140static void increment_queue_count(struct device_queue_manager *dqm,
141 enum kfd_queue_type type)
142{
143 dqm->active_queue_count++;
144 if (type == KFD_QUEUE_TYPE_COMPUTE || type == KFD_QUEUE_TYPE_DIQ)
145 dqm->active_cp_queue_count++;
146}
147
148static void decrement_queue_count(struct device_queue_manager *dqm,
149 enum kfd_queue_type type)
150{
151 dqm->active_queue_count--;
152 if (type == KFD_QUEUE_TYPE_COMPUTE || type == KFD_QUEUE_TYPE_DIQ)
153 dqm->active_cp_queue_count--;
154}
155
156int read_sdma_queue_counter(uint64_t q_rptr, uint64_t *val)
157{
158 int ret;
159 uint64_t tmp = 0;
160
161 if (!val)
162 return -EINVAL;
163 /*
164 * SDMA activity counter is stored at queue's RPTR + 0x8 location.
165 */
166 if (!access_ok((const void __user *)(q_rptr +
167 sizeof(uint64_t)), sizeof(uint64_t))) {
168 pr_err("Can't access sdma queue activity counter\n");
169 return -EFAULT;
170 }
171
172 ret = get_user(tmp, (uint64_t *)(q_rptr + sizeof(uint64_t)));
173 if (!ret) {
174 *val = tmp;
175 }
176
177 return ret;
178}
179
180static int allocate_doorbell(struct qcm_process_device *qpd, struct queue *q)
181{
182 struct kfd_dev *dev = qpd->dqm->dev;
183
184 if (!KFD_IS_SOC15(dev->device_info->asic_family)) {
185 /* On pre-SOC15 chips we need to use the queue ID to
186 * preserve the user mode ABI.
187 */
188 q->doorbell_id = q->properties.queue_id;
189 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
190 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
191 /* For SDMA queues on SOC15 with 8-byte doorbell, use static
192 * doorbell assignments based on the engine and queue id.
193 * The doobell index distance between RLC (2*i) and (2*i+1)
194 * for a SDMA engine is 512.
195 */
196 uint32_t *idx_offset =
197 dev->shared_resources.sdma_doorbell_idx;
198
199 q->doorbell_id = idx_offset[q->properties.sdma_engine_id]
200 + (q->properties.sdma_queue_id & 1)
201 * KFD_QUEUE_DOORBELL_MIRROR_OFFSET
202 + (q->properties.sdma_queue_id >> 1);
203 } else {
204 /* For CP queues on SOC15 reserve a free doorbell ID */
205 unsigned int found;
206
207 found = find_first_zero_bit(qpd->doorbell_bitmap,
208 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
209 if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
210 pr_debug("No doorbells available");
211 return -EBUSY;
212 }
213 set_bit(found, qpd->doorbell_bitmap);
214 q->doorbell_id = found;
215 }
216
217 q->properties.doorbell_off =
218 kfd_get_doorbell_dw_offset_in_bar(dev, q->process,
219 q->doorbell_id);
220
221 return 0;
222}
223
224static void deallocate_doorbell(struct qcm_process_device *qpd,
225 struct queue *q)
226{
227 unsigned int old;
228 struct kfd_dev *dev = qpd->dqm->dev;
229
230 if (!KFD_IS_SOC15(dev->device_info->asic_family) ||
231 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
232 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
233 return;
234
235 old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
236 WARN_ON(!old);
237}
238
239static int allocate_vmid(struct device_queue_manager *dqm,
240 struct qcm_process_device *qpd,
241 struct queue *q)
242{
243 int allocated_vmid = -1, i;
244
245 for (i = dqm->dev->vm_info.first_vmid_kfd;
246 i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
247 if (!dqm->vmid_pasid[i]) {
248 allocated_vmid = i;
249 break;
250 }
251 }
252
253 if (allocated_vmid < 0) {
254 pr_err("no more vmid to allocate\n");
255 return -ENOSPC;
256 }
257
258 pr_debug("vmid allocated: %d\n", allocated_vmid);
259
260 dqm->vmid_pasid[allocated_vmid] = q->process->pasid;
261
262 set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid);
263
264 qpd->vmid = allocated_vmid;
265 q->properties.vmid = allocated_vmid;
266
267 program_sh_mem_settings(dqm, qpd);
268
269 /* qpd->page_table_base is set earlier when register_process()
270 * is called, i.e. when the first queue is created.
271 */
272 dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->kgd,
273 qpd->vmid,
274 qpd->page_table_base);
275 /* invalidate the VM context after pasid and vmid mapping is set up */
276 kfd_flush_tlb(qpd_to_pdd(qpd));
277
278 if (dqm->dev->kfd2kgd->set_scratch_backing_va)
279 dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->kgd,
280 qpd->sh_hidden_private_base, qpd->vmid);
281
282 return 0;
283}
284
285static int flush_texture_cache_nocpsch(struct kfd_dev *kdev,
286 struct qcm_process_device *qpd)
287{
288 const struct packet_manager_funcs *pmf = qpd->dqm->packets.pmf;
289 int ret;
290
291 if (!qpd->ib_kaddr)
292 return -ENOMEM;
293
294 ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
295 if (ret)
296 return ret;
297
298 return amdgpu_amdkfd_submit_ib(kdev->kgd, KGD_ENGINE_MEC1, qpd->vmid,
299 qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
300 pmf->release_mem_size / sizeof(uint32_t));
301}
302
303static void deallocate_vmid(struct device_queue_manager *dqm,
304 struct qcm_process_device *qpd,
305 struct queue *q)
306{
307 /* On GFX v7, CP doesn't flush TC at dequeue */
308 if (q->device->device_info->asic_family == CHIP_HAWAII)
309 if (flush_texture_cache_nocpsch(q->device, qpd))
310 pr_err("Failed to flush TC\n");
311
312 kfd_flush_tlb(qpd_to_pdd(qpd));
313
314 /* Release the vmid mapping */
315 set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
316 dqm->vmid_pasid[qpd->vmid] = 0;
317
318 qpd->vmid = 0;
319 q->properties.vmid = 0;
320}
321
322static int create_queue_nocpsch(struct device_queue_manager *dqm,
323 struct queue *q,
324 struct qcm_process_device *qpd)
325{
326 struct mqd_manager *mqd_mgr;
327 int retval;
328
329 dqm_lock(dqm);
330
331 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
332 pr_warn("Can't create new usermode queue because %d queues were already created\n",
333 dqm->total_queue_count);
334 retval = -EPERM;
335 goto out_unlock;
336 }
337
338 if (list_empty(&qpd->queues_list)) {
339 retval = allocate_vmid(dqm, qpd, q);
340 if (retval)
341 goto out_unlock;
342 }
343 q->properties.vmid = qpd->vmid;
344 /*
345 * Eviction state logic: mark all queues as evicted, even ones
346 * not currently active. Restoring inactive queues later only
347 * updates the is_evicted flag but is a no-op otherwise.
348 */
349 q->properties.is_evicted = !!qpd->evicted;
350
351 q->properties.tba_addr = qpd->tba_addr;
352 q->properties.tma_addr = qpd->tma_addr;
353
354 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
355 q->properties.type)];
356 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
357 retval = allocate_hqd(dqm, q);
358 if (retval)
359 goto deallocate_vmid;
360 pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
361 q->pipe, q->queue);
362 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
363 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
364 retval = allocate_sdma_queue(dqm, q);
365 if (retval)
366 goto deallocate_vmid;
367 dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
368 }
369
370 retval = allocate_doorbell(qpd, q);
371 if (retval)
372 goto out_deallocate_hqd;
373
374 /* Temporarily release dqm lock to avoid a circular lock dependency */
375 dqm_unlock(dqm);
376 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
377 dqm_lock(dqm);
378
379 if (!q->mqd_mem_obj) {
380 retval = -ENOMEM;
381 goto out_deallocate_doorbell;
382 }
383 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
384 &q->gart_mqd_addr, &q->properties);
385 if (q->properties.is_active) {
386 if (!dqm->sched_running) {
387 WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
388 goto add_queue_to_list;
389 }
390
391 if (WARN(q->process->mm != current->mm,
392 "should only run in user thread"))
393 retval = -EFAULT;
394 else
395 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
396 q->queue, &q->properties, current->mm);
397 if (retval)
398 goto out_free_mqd;
399 }
400
401add_queue_to_list:
402 list_add(&q->list, &qpd->queues_list);
403 qpd->queue_count++;
404 if (q->properties.is_active)
405 increment_queue_count(dqm, q->properties.type);
406
407 /*
408 * Unconditionally increment this counter, regardless of the queue's
409 * type or whether the queue is active.
410 */
411 dqm->total_queue_count++;
412 pr_debug("Total of %d queues are accountable so far\n",
413 dqm->total_queue_count);
414 goto out_unlock;
415
416out_free_mqd:
417 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
418out_deallocate_doorbell:
419 deallocate_doorbell(qpd, q);
420out_deallocate_hqd:
421 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
422 deallocate_hqd(dqm, q);
423 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
424 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
425 deallocate_sdma_queue(dqm, q);
426deallocate_vmid:
427 if (list_empty(&qpd->queues_list))
428 deallocate_vmid(dqm, qpd, q);
429out_unlock:
430 dqm_unlock(dqm);
431 return retval;
432}
433
434static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
435{
436 bool set;
437 int pipe, bit, i;
438
439 set = false;
440
441 for (pipe = dqm->next_pipe_to_allocate, i = 0;
442 i < get_pipes_per_mec(dqm);
443 pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
444
445 if (!is_pipe_enabled(dqm, 0, pipe))
446 continue;
447
448 if (dqm->allocated_queues[pipe] != 0) {
449 bit = ffs(dqm->allocated_queues[pipe]) - 1;
450 dqm->allocated_queues[pipe] &= ~(1 << bit);
451 q->pipe = pipe;
452 q->queue = bit;
453 set = true;
454 break;
455 }
456 }
457
458 if (!set)
459 return -EBUSY;
460
461 pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
462 /* horizontal hqd allocation */
463 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
464
465 return 0;
466}
467
468static inline void deallocate_hqd(struct device_queue_manager *dqm,
469 struct queue *q)
470{
471 dqm->allocated_queues[q->pipe] |= (1 << q->queue);
472}
473
474/* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
475 * to avoid asynchronized access
476 */
477static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
478 struct qcm_process_device *qpd,
479 struct queue *q)
480{
481 int retval;
482 struct mqd_manager *mqd_mgr;
483
484 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
485 q->properties.type)];
486
487 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
488 deallocate_hqd(dqm, q);
489 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
490 deallocate_sdma_queue(dqm, q);
491 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
492 deallocate_sdma_queue(dqm, q);
493 else {
494 pr_debug("q->properties.type %d is invalid\n",
495 q->properties.type);
496 return -EINVAL;
497 }
498 dqm->total_queue_count--;
499
500 deallocate_doorbell(qpd, q);
501
502 if (!dqm->sched_running) {
503 WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
504 return 0;
505 }
506
507 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
508 KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
509 KFD_UNMAP_LATENCY_MS,
510 q->pipe, q->queue);
511 if (retval == -ETIME)
512 qpd->reset_wavefronts = true;
513
514
515 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
516
517 list_del(&q->list);
518 if (list_empty(&qpd->queues_list)) {
519 if (qpd->reset_wavefronts) {
520 pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
521 dqm->dev);
522 /* dbgdev_wave_reset_wavefronts has to be called before
523 * deallocate_vmid(), i.e. when vmid is still in use.
524 */
525 dbgdev_wave_reset_wavefronts(dqm->dev,
526 qpd->pqm->process);
527 qpd->reset_wavefronts = false;
528 }
529
530 deallocate_vmid(dqm, qpd, q);
531 }
532 qpd->queue_count--;
533 if (q->properties.is_active) {
534 decrement_queue_count(dqm, q->properties.type);
535 if (q->properties.is_gws) {
536 dqm->gws_queue_count--;
537 qpd->mapped_gws_queue = false;
538 }
539 }
540
541 return retval;
542}
543
544static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
545 struct qcm_process_device *qpd,
546 struct queue *q)
547{
548 int retval;
549 uint64_t sdma_val = 0;
550 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
551
552 /* Get the SDMA queue stats */
553 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
554 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
555 retval = read_sdma_queue_counter((uint64_t)q->properties.read_ptr,
556 &sdma_val);
557 if (retval)
558 pr_err("Failed to read SDMA queue counter for queue: %d\n",
559 q->properties.queue_id);
560 }
561
562 dqm_lock(dqm);
563 retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
564 if (!retval)
565 pdd->sdma_past_activity_counter += sdma_val;
566 dqm_unlock(dqm);
567
568 return retval;
569}
570
571static int update_queue(struct device_queue_manager *dqm, struct queue *q)
572{
573 int retval = 0;
574 struct mqd_manager *mqd_mgr;
575 struct kfd_process_device *pdd;
576 bool prev_active = false;
577
578 dqm_lock(dqm);
579 pdd = kfd_get_process_device_data(q->device, q->process);
580 if (!pdd) {
581 retval = -ENODEV;
582 goto out_unlock;
583 }
584 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
585 q->properties.type)];
586
587 /* Save previous activity state for counters */
588 prev_active = q->properties.is_active;
589
590 /* Make sure the queue is unmapped before updating the MQD */
591 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
592 retval = unmap_queues_cpsch(dqm,
593 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
594 if (retval) {
595 pr_err("unmap queue failed\n");
596 goto out_unlock;
597 }
598 } else if (prev_active &&
599 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
600 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
601 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
602
603 if (!dqm->sched_running) {
604 WARN_ONCE(1, "Update non-HWS queue while stopped\n");
605 goto out_unlock;
606 }
607
608 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
609 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN,
610 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
611 if (retval) {
612 pr_err("destroy mqd failed\n");
613 goto out_unlock;
614 }
615 }
616
617 mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties);
618
619 /*
620 * check active state vs. the previous state and modify
621 * counter accordingly. map_queues_cpsch uses the
622 * dqm->active_queue_count to determine whether a new runlist must be
623 * uploaded.
624 */
625 if (q->properties.is_active && !prev_active)
626 increment_queue_count(dqm, q->properties.type);
627 else if (!q->properties.is_active && prev_active)
628 decrement_queue_count(dqm, q->properties.type);
629
630 if (q->gws && !q->properties.is_gws) {
631 if (q->properties.is_active) {
632 dqm->gws_queue_count++;
633 pdd->qpd.mapped_gws_queue = true;
634 }
635 q->properties.is_gws = true;
636 } else if (!q->gws && q->properties.is_gws) {
637 if (q->properties.is_active) {
638 dqm->gws_queue_count--;
639 pdd->qpd.mapped_gws_queue = false;
640 }
641 q->properties.is_gws = false;
642 }
643
644 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS)
645 retval = map_queues_cpsch(dqm);
646 else if (q->properties.is_active &&
647 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
648 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
649 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
650 if (WARN(q->process->mm != current->mm,
651 "should only run in user thread"))
652 retval = -EFAULT;
653 else
654 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
655 q->pipe, q->queue,
656 &q->properties, current->mm);
657 }
658
659out_unlock:
660 dqm_unlock(dqm);
661 return retval;
662}
663
664static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
665 struct qcm_process_device *qpd)
666{
667 struct queue *q;
668 struct mqd_manager *mqd_mgr;
669 struct kfd_process_device *pdd;
670 int retval, ret = 0;
671
672 dqm_lock(dqm);
673 if (qpd->evicted++ > 0) /* already evicted, do nothing */
674 goto out;
675
676 pdd = qpd_to_pdd(qpd);
677 pr_info_ratelimited("Evicting PASID 0x%x queues\n",
678 pdd->process->pasid);
679
680 /* Mark all queues as evicted. Deactivate all active queues on
681 * the qpd.
682 */
683 list_for_each_entry(q, &qpd->queues_list, list) {
684 q->properties.is_evicted = true;
685 if (!q->properties.is_active)
686 continue;
687
688 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
689 q->properties.type)];
690 q->properties.is_active = false;
691 decrement_queue_count(dqm, q->properties.type);
692 if (q->properties.is_gws) {
693 dqm->gws_queue_count--;
694 qpd->mapped_gws_queue = false;
695 }
696
697 if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
698 continue;
699
700 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
701 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN,
702 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
703 if (retval && !ret)
704 /* Return the first error, but keep going to
705 * maintain a consistent eviction state
706 */
707 ret = retval;
708 }
709
710out:
711 dqm_unlock(dqm);
712 return ret;
713}
714
715static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
716 struct qcm_process_device *qpd)
717{
718 struct queue *q;
719 struct kfd_process_device *pdd;
720 int retval = 0;
721
722 dqm_lock(dqm);
723 if (qpd->evicted++ > 0) /* already evicted, do nothing */
724 goto out;
725
726 pdd = qpd_to_pdd(qpd);
727 pr_info_ratelimited("Evicting PASID 0x%x queues\n",
728 pdd->process->pasid);
729
730 /* Mark all queues as evicted. Deactivate all active queues on
731 * the qpd.
732 */
733 list_for_each_entry(q, &qpd->queues_list, list) {
734 q->properties.is_evicted = true;
735 if (!q->properties.is_active)
736 continue;
737
738 q->properties.is_active = false;
739 decrement_queue_count(dqm, q->properties.type);
740 }
741 retval = execute_queues_cpsch(dqm,
742 qpd->is_debug ?
743 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
744 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
745
746out:
747 dqm_unlock(dqm);
748 return retval;
749}
750
751static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
752 struct qcm_process_device *qpd)
753{
754 struct mm_struct *mm = NULL;
755 struct queue *q;
756 struct mqd_manager *mqd_mgr;
757 struct kfd_process_device *pdd;
758 uint64_t pd_base;
759 int retval, ret = 0;
760
761 pdd = qpd_to_pdd(qpd);
762 /* Retrieve PD base */
763 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm);
764
765 dqm_lock(dqm);
766 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
767 goto out;
768 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
769 qpd->evicted--;
770 goto out;
771 }
772
773 pr_info_ratelimited("Restoring PASID 0x%x queues\n",
774 pdd->process->pasid);
775
776 /* Update PD Base in QPD */
777 qpd->page_table_base = pd_base;
778 pr_debug("Updated PD address to 0x%llx\n", pd_base);
779
780 if (!list_empty(&qpd->queues_list)) {
781 dqm->dev->kfd2kgd->set_vm_context_page_table_base(
782 dqm->dev->kgd,
783 qpd->vmid,
784 qpd->page_table_base);
785 kfd_flush_tlb(pdd);
786 }
787
788 /* Take a safe reference to the mm_struct, which may otherwise
789 * disappear even while the kfd_process is still referenced.
790 */
791 mm = get_task_mm(pdd->process->lead_thread);
792 if (!mm) {
793 ret = -EFAULT;
794 goto out;
795 }
796
797 /* Remove the eviction flags. Activate queues that are not
798 * inactive for other reasons.
799 */
800 list_for_each_entry(q, &qpd->queues_list, list) {
801 q->properties.is_evicted = false;
802 if (!QUEUE_IS_ACTIVE(q->properties))
803 continue;
804
805 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
806 q->properties.type)];
807 q->properties.is_active = true;
808 increment_queue_count(dqm, q->properties.type);
809 if (q->properties.is_gws) {
810 dqm->gws_queue_count++;
811 qpd->mapped_gws_queue = true;
812 }
813
814 if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
815 continue;
816
817 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
818 q->queue, &q->properties, mm);
819 if (retval && !ret)
820 /* Return the first error, but keep going to
821 * maintain a consistent eviction state
822 */
823 ret = retval;
824 }
825 qpd->evicted = 0;
826out:
827 if (mm)
828 mmput(mm);
829 dqm_unlock(dqm);
830 return ret;
831}
832
833static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
834 struct qcm_process_device *qpd)
835{
836 struct queue *q;
837 struct kfd_process_device *pdd;
838 uint64_t pd_base;
839 int retval = 0;
840
841 pdd = qpd_to_pdd(qpd);
842 /* Retrieve PD base */
843 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm);
844
845 dqm_lock(dqm);
846 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
847 goto out;
848 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
849 qpd->evicted--;
850 goto out;
851 }
852
853 pr_info_ratelimited("Restoring PASID 0x%x queues\n",
854 pdd->process->pasid);
855
856 /* Update PD Base in QPD */
857 qpd->page_table_base = pd_base;
858 pr_debug("Updated PD address to 0x%llx\n", pd_base);
859
860 /* activate all active queues on the qpd */
861 list_for_each_entry(q, &qpd->queues_list, list) {
862 q->properties.is_evicted = false;
863 if (!QUEUE_IS_ACTIVE(q->properties))
864 continue;
865
866 q->properties.is_active = true;
867 increment_queue_count(dqm, q->properties.type);
868 }
869 retval = execute_queues_cpsch(dqm,
870 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
871 qpd->evicted = 0;
872out:
873 dqm_unlock(dqm);
874 return retval;
875}
876
877static int register_process(struct device_queue_manager *dqm,
878 struct qcm_process_device *qpd)
879{
880 struct device_process_node *n;
881 struct kfd_process_device *pdd;
882 uint64_t pd_base;
883 int retval;
884
885 n = kzalloc(sizeof(*n), GFP_KERNEL);
886 if (!n)
887 return -ENOMEM;
888
889 n->qpd = qpd;
890
891 pdd = qpd_to_pdd(qpd);
892 /* Retrieve PD base */
893 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm);
894
895 dqm_lock(dqm);
896 list_add(&n->list, &dqm->queues);
897
898 /* Update PD Base in QPD */
899 qpd->page_table_base = pd_base;
900 pr_debug("Updated PD address to 0x%llx\n", pd_base);
901
902 retval = dqm->asic_ops.update_qpd(dqm, qpd);
903
904 dqm->processes_count++;
905
906 dqm_unlock(dqm);
907
908 /* Outside the DQM lock because under the DQM lock we can't do
909 * reclaim or take other locks that others hold while reclaiming.
910 */
911 kfd_inc_compute_active(dqm->dev);
912
913 return retval;
914}
915
916static int unregister_process(struct device_queue_manager *dqm,
917 struct qcm_process_device *qpd)
918{
919 int retval;
920 struct device_process_node *cur, *next;
921
922 pr_debug("qpd->queues_list is %s\n",
923 list_empty(&qpd->queues_list) ? "empty" : "not empty");
924
925 retval = 0;
926 dqm_lock(dqm);
927
928 list_for_each_entry_safe(cur, next, &dqm->queues, list) {
929 if (qpd == cur->qpd) {
930 list_del(&cur->list);
931 kfree(cur);
932 dqm->processes_count--;
933 goto out;
934 }
935 }
936 /* qpd not found in dqm list */
937 retval = 1;
938out:
939 dqm_unlock(dqm);
940
941 /* Outside the DQM lock because under the DQM lock we can't do
942 * reclaim or take other locks that others hold while reclaiming.
943 */
944 if (!retval)
945 kfd_dec_compute_active(dqm->dev);
946
947 return retval;
948}
949
950static int
951set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
952 unsigned int vmid)
953{
954 return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
955 dqm->dev->kgd, pasid, vmid);
956}
957
958static void init_interrupts(struct device_queue_manager *dqm)
959{
960 unsigned int i;
961
962 for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++)
963 if (is_pipe_enabled(dqm, 0, i))
964 dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd, i);
965}
966
967static int initialize_nocpsch(struct device_queue_manager *dqm)
968{
969 int pipe, queue;
970
971 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
972
973 dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
974 sizeof(unsigned int), GFP_KERNEL);
975 if (!dqm->allocated_queues)
976 return -ENOMEM;
977
978 mutex_init(&dqm->lock_hidden);
979 INIT_LIST_HEAD(&dqm->queues);
980 dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
981 dqm->active_cp_queue_count = 0;
982 dqm->gws_queue_count = 0;
983
984 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
985 int pipe_offset = pipe * get_queues_per_pipe(dqm);
986
987 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
988 if (test_bit(pipe_offset + queue,
989 dqm->dev->shared_resources.cp_queue_bitmap))
990 dqm->allocated_queues[pipe] |= 1 << queue;
991 }
992
993 memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
994
995 dqm->sdma_bitmap = ~0ULL >> (64 - get_num_sdma_queues(dqm));
996 dqm->xgmi_sdma_bitmap = ~0ULL >> (64 - get_num_xgmi_sdma_queues(dqm));
997
998 return 0;
999}
1000
1001static void uninitialize(struct device_queue_manager *dqm)
1002{
1003 int i;
1004
1005 WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
1006
1007 kfree(dqm->allocated_queues);
1008 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
1009 kfree(dqm->mqd_mgrs[i]);
1010 mutex_destroy(&dqm->lock_hidden);
1011}
1012
1013static int start_nocpsch(struct device_queue_manager *dqm)
1014{
1015 pr_info("SW scheduler is used");
1016 init_interrupts(dqm);
1017
1018 if (dqm->dev->device_info->asic_family == CHIP_HAWAII)
1019 return pm_init(&dqm->packets, dqm);
1020 dqm->sched_running = true;
1021
1022 return 0;
1023}
1024
1025static int stop_nocpsch(struct device_queue_manager *dqm)
1026{
1027 if (dqm->dev->device_info->asic_family == CHIP_HAWAII)
1028 pm_uninit(&dqm->packets, false);
1029 dqm->sched_running = false;
1030
1031 return 0;
1032}
1033
1034static void pre_reset(struct device_queue_manager *dqm)
1035{
1036 dqm_lock(dqm);
1037 dqm->is_resetting = true;
1038 dqm_unlock(dqm);
1039}
1040
1041static int allocate_sdma_queue(struct device_queue_manager *dqm,
1042 struct queue *q)
1043{
1044 int bit;
1045
1046 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1047 if (dqm->sdma_bitmap == 0) {
1048 pr_err("No more SDMA queue to allocate\n");
1049 return -ENOMEM;
1050 }
1051
1052 bit = __ffs64(dqm->sdma_bitmap);
1053 dqm->sdma_bitmap &= ~(1ULL << bit);
1054 q->sdma_id = bit;
1055 q->properties.sdma_engine_id = q->sdma_id %
1056 get_num_sdma_engines(dqm);
1057 q->properties.sdma_queue_id = q->sdma_id /
1058 get_num_sdma_engines(dqm);
1059 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1060 if (dqm->xgmi_sdma_bitmap == 0) {
1061 pr_err("No more XGMI SDMA queue to allocate\n");
1062 return -ENOMEM;
1063 }
1064 bit = __ffs64(dqm->xgmi_sdma_bitmap);
1065 dqm->xgmi_sdma_bitmap &= ~(1ULL << bit);
1066 q->sdma_id = bit;
1067 /* sdma_engine_id is sdma id including
1068 * both PCIe-optimized SDMAs and XGMI-
1069 * optimized SDMAs. The calculation below
1070 * assumes the first N engines are always
1071 * PCIe-optimized ones
1072 */
1073 q->properties.sdma_engine_id = get_num_sdma_engines(dqm) +
1074 q->sdma_id % get_num_xgmi_sdma_engines(dqm);
1075 q->properties.sdma_queue_id = q->sdma_id /
1076 get_num_xgmi_sdma_engines(dqm);
1077 }
1078
1079 pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1080 pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1081
1082 return 0;
1083}
1084
1085static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1086 struct queue *q)
1087{
1088 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1089 if (q->sdma_id >= get_num_sdma_queues(dqm))
1090 return;
1091 dqm->sdma_bitmap |= (1ULL << q->sdma_id);
1092 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1093 if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1094 return;
1095 dqm->xgmi_sdma_bitmap |= (1ULL << q->sdma_id);
1096 }
1097}
1098
1099/*
1100 * Device Queue Manager implementation for cp scheduler
1101 */
1102
1103static int set_sched_resources(struct device_queue_manager *dqm)
1104{
1105 int i, mec;
1106 struct scheduling_resources res;
1107
1108 res.vmid_mask = dqm->dev->shared_resources.compute_vmid_bitmap;
1109
1110 res.queue_mask = 0;
1111 for (i = 0; i < KGD_MAX_QUEUES; ++i) {
1112 mec = (i / dqm->dev->shared_resources.num_queue_per_pipe)
1113 / dqm->dev->shared_resources.num_pipe_per_mec;
1114
1115 if (!test_bit(i, dqm->dev->shared_resources.cp_queue_bitmap))
1116 continue;
1117
1118 /* only acquire queues from the first MEC */
1119 if (mec > 0)
1120 continue;
1121
1122 /* This situation may be hit in the future if a new HW
1123 * generation exposes more than 64 queues. If so, the
1124 * definition of res.queue_mask needs updating
1125 */
1126 if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1127 pr_err("Invalid queue enabled by amdgpu: %d\n", i);
1128 break;
1129 }
1130
1131 res.queue_mask |= 1ull
1132 << amdgpu_queue_mask_bit_to_set_resource_bit(
1133 (struct amdgpu_device *)dqm->dev->kgd, i);
1134 }
1135 res.gws_mask = ~0ull;
1136 res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1137
1138 pr_debug("Scheduling resources:\n"
1139 "vmid mask: 0x%8X\n"
1140 "queue mask: 0x%8llX\n",
1141 res.vmid_mask, res.queue_mask);
1142
1143 return pm_send_set_resources(&dqm->packets, &res);
1144}
1145
1146static int initialize_cpsch(struct device_queue_manager *dqm)
1147{
1148 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1149
1150 mutex_init(&dqm->lock_hidden);
1151 INIT_LIST_HEAD(&dqm->queues);
1152 dqm->active_queue_count = dqm->processes_count = 0;
1153 dqm->active_cp_queue_count = 0;
1154 dqm->gws_queue_count = 0;
1155 dqm->active_runlist = false;
1156 dqm->sdma_bitmap = ~0ULL >> (64 - get_num_sdma_queues(dqm));
1157 dqm->xgmi_sdma_bitmap = ~0ULL >> (64 - get_num_xgmi_sdma_queues(dqm));
1158
1159 INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception);
1160
1161 return 0;
1162}
1163
1164static int start_cpsch(struct device_queue_manager *dqm)
1165{
1166 int retval;
1167
1168 retval = 0;
1169
1170 retval = pm_init(&dqm->packets, dqm);
1171 if (retval)
1172 goto fail_packet_manager_init;
1173
1174 retval = set_sched_resources(dqm);
1175 if (retval)
1176 goto fail_set_sched_resources;
1177
1178 pr_debug("Allocating fence memory\n");
1179
1180 /* allocate fence memory on the gart */
1181 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1182 &dqm->fence_mem);
1183
1184 if (retval)
1185 goto fail_allocate_vidmem;
1186
1187 dqm->fence_addr = dqm->fence_mem->cpu_ptr;
1188 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1189
1190 init_interrupts(dqm);
1191
1192 dqm_lock(dqm);
1193 /* clear hang status when driver try to start the hw scheduler */
1194 dqm->is_hws_hang = false;
1195 dqm->is_resetting = false;
1196 dqm->sched_running = true;
1197 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1198 dqm_unlock(dqm);
1199
1200 return 0;
1201fail_allocate_vidmem:
1202fail_set_sched_resources:
1203 pm_uninit(&dqm->packets, false);
1204fail_packet_manager_init:
1205 return retval;
1206}
1207
1208static int stop_cpsch(struct device_queue_manager *dqm)
1209{
1210 bool hanging;
1211
1212 dqm_lock(dqm);
1213 if (!dqm->is_hws_hang)
1214 unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1215 hanging = dqm->is_hws_hang || dqm->is_resetting;
1216 dqm->sched_running = false;
1217 dqm_unlock(dqm);
1218
1219 pm_release_ib(&dqm->packets);
1220
1221 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1222 pm_uninit(&dqm->packets, hanging);
1223
1224 return 0;
1225}
1226
1227static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1228 struct kernel_queue *kq,
1229 struct qcm_process_device *qpd)
1230{
1231 dqm_lock(dqm);
1232 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1233 pr_warn("Can't create new kernel queue because %d queues were already created\n",
1234 dqm->total_queue_count);
1235 dqm_unlock(dqm);
1236 return -EPERM;
1237 }
1238
1239 /*
1240 * Unconditionally increment this counter, regardless of the queue's
1241 * type or whether the queue is active.
1242 */
1243 dqm->total_queue_count++;
1244 pr_debug("Total of %d queues are accountable so far\n",
1245 dqm->total_queue_count);
1246
1247 list_add(&kq->list, &qpd->priv_queue_list);
1248 increment_queue_count(dqm, kq->queue->properties.type);
1249 qpd->is_debug = true;
1250 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1251 dqm_unlock(dqm);
1252
1253 return 0;
1254}
1255
1256static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1257 struct kernel_queue *kq,
1258 struct qcm_process_device *qpd)
1259{
1260 dqm_lock(dqm);
1261 list_del(&kq->list);
1262 decrement_queue_count(dqm, kq->queue->properties.type);
1263 qpd->is_debug = false;
1264 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1265 /*
1266 * Unconditionally decrement this counter, regardless of the queue's
1267 * type.
1268 */
1269 dqm->total_queue_count--;
1270 pr_debug("Total of %d queues are accountable so far\n",
1271 dqm->total_queue_count);
1272 dqm_unlock(dqm);
1273}
1274
1275static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1276 struct qcm_process_device *qpd)
1277{
1278 int retval;
1279 struct mqd_manager *mqd_mgr;
1280
1281 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1282 pr_warn("Can't create new usermode queue because %d queues were already created\n",
1283 dqm->total_queue_count);
1284 retval = -EPERM;
1285 goto out;
1286 }
1287
1288 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1289 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1290 dqm_lock(dqm);
1291 retval = allocate_sdma_queue(dqm, q);
1292 dqm_unlock(dqm);
1293 if (retval)
1294 goto out;
1295 }
1296
1297 retval = allocate_doorbell(qpd, q);
1298 if (retval)
1299 goto out_deallocate_sdma_queue;
1300
1301 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1302 q->properties.type)];
1303
1304 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1305 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1306 dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
1307 q->properties.tba_addr = qpd->tba_addr;
1308 q->properties.tma_addr = qpd->tma_addr;
1309 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
1310 if (!q->mqd_mem_obj) {
1311 retval = -ENOMEM;
1312 goto out_deallocate_doorbell;
1313 }
1314
1315 dqm_lock(dqm);
1316 /*
1317 * Eviction state logic: mark all queues as evicted, even ones
1318 * not currently active. Restoring inactive queues later only
1319 * updates the is_evicted flag but is a no-op otherwise.
1320 */
1321 q->properties.is_evicted = !!qpd->evicted;
1322 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
1323 &q->gart_mqd_addr, &q->properties);
1324
1325 list_add(&q->list, &qpd->queues_list);
1326 qpd->queue_count++;
1327
1328 if (q->properties.is_active) {
1329 increment_queue_count(dqm, q->properties.type);
1330
1331 execute_queues_cpsch(dqm,
1332 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1333 }
1334
1335 /*
1336 * Unconditionally increment this counter, regardless of the queue's
1337 * type or whether the queue is active.
1338 */
1339 dqm->total_queue_count++;
1340
1341 pr_debug("Total of %d queues are accountable so far\n",
1342 dqm->total_queue_count);
1343
1344 dqm_unlock(dqm);
1345 return retval;
1346
1347out_deallocate_doorbell:
1348 deallocate_doorbell(qpd, q);
1349out_deallocate_sdma_queue:
1350 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1351 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1352 dqm_lock(dqm);
1353 deallocate_sdma_queue(dqm, q);
1354 dqm_unlock(dqm);
1355 }
1356out:
1357 return retval;
1358}
1359
1360int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
1361 unsigned int fence_value,
1362 unsigned int timeout_ms)
1363{
1364 unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
1365
1366 while (*fence_addr != fence_value) {
1367 if (time_after(jiffies, end_jiffies)) {
1368 pr_err("qcm fence wait loop timeout expired\n");
1369 /* In HWS case, this is used to halt the driver thread
1370 * in order not to mess up CP states before doing
1371 * scandumps for FW debugging.
1372 */
1373 while (halt_if_hws_hang)
1374 schedule();
1375
1376 return -ETIME;
1377 }
1378 schedule();
1379 }
1380
1381 return 0;
1382}
1383
1384/* dqm->lock mutex has to be locked before calling this function */
1385static int map_queues_cpsch(struct device_queue_manager *dqm)
1386{
1387 int retval;
1388
1389 if (!dqm->sched_running)
1390 return 0;
1391 if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
1392 return 0;
1393 if (dqm->active_runlist)
1394 return 0;
1395
1396 retval = pm_send_runlist(&dqm->packets, &dqm->queues);
1397 pr_debug("%s sent runlist\n", __func__);
1398 if (retval) {
1399 pr_err("failed to execute runlist\n");
1400 return retval;
1401 }
1402 dqm->active_runlist = true;
1403
1404 return retval;
1405}
1406
1407/* dqm->lock mutex has to be locked before calling this function */
1408static int unmap_queues_cpsch(struct device_queue_manager *dqm,
1409 enum kfd_unmap_queues_filter filter,
1410 uint32_t filter_param)
1411{
1412 int retval = 0;
1413
1414 if (!dqm->sched_running)
1415 return 0;
1416 if (dqm->is_hws_hang)
1417 return -EIO;
1418 if (!dqm->active_runlist)
1419 return retval;
1420
1421 retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
1422 filter, filter_param, false, 0);
1423 if (retval)
1424 return retval;
1425
1426 *dqm->fence_addr = KFD_FENCE_INIT;
1427 pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
1428 KFD_FENCE_COMPLETED);
1429 /* should be timed out */
1430 retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
1431 queue_preemption_timeout_ms);
1432 if (retval) {
1433 pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
1434 dqm->is_hws_hang = true;
1435 /* It's possible we're detecting a HWS hang in the
1436 * middle of a GPU reset. No need to schedule another
1437 * reset in this case.
1438 */
1439 if (!dqm->is_resetting)
1440 schedule_work(&dqm->hw_exception_work);
1441 return retval;
1442 }
1443
1444 pm_release_ib(&dqm->packets);
1445 dqm->active_runlist = false;
1446
1447 return retval;
1448}
1449
1450/* dqm->lock mutex has to be locked before calling this function */
1451static int execute_queues_cpsch(struct device_queue_manager *dqm,
1452 enum kfd_unmap_queues_filter filter,
1453 uint32_t filter_param)
1454{
1455 int retval;
1456
1457 if (dqm->is_hws_hang)
1458 return -EIO;
1459 retval = unmap_queues_cpsch(dqm, filter, filter_param);
1460 if (retval)
1461 return retval;
1462
1463 return map_queues_cpsch(dqm);
1464}
1465
1466static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1467 struct qcm_process_device *qpd,
1468 struct queue *q)
1469{
1470 int retval;
1471 struct mqd_manager *mqd_mgr;
1472 uint64_t sdma_val = 0;
1473 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
1474
1475 /* Get the SDMA queue stats */
1476 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
1477 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1478 retval = read_sdma_queue_counter((uint64_t)q->properties.read_ptr,
1479 &sdma_val);
1480 if (retval)
1481 pr_err("Failed to read SDMA queue counter for queue: %d\n",
1482 q->properties.queue_id);
1483 }
1484
1485 retval = 0;
1486
1487 /* remove queue from list to prevent rescheduling after preemption */
1488 dqm_lock(dqm);
1489
1490 if (qpd->is_debug) {
1491 /*
1492 * error, currently we do not allow to destroy a queue
1493 * of a currently debugged process
1494 */
1495 retval = -EBUSY;
1496 goto failed_try_destroy_debugged_queue;
1497
1498 }
1499
1500 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1501 q->properties.type)];
1502
1503 deallocate_doorbell(qpd, q);
1504
1505 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
1506 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1507 deallocate_sdma_queue(dqm, q);
1508 pdd->sdma_past_activity_counter += sdma_val;
1509 }
1510
1511 list_del(&q->list);
1512 qpd->queue_count--;
1513 if (q->properties.is_active) {
1514 decrement_queue_count(dqm, q->properties.type);
1515 retval = execute_queues_cpsch(dqm,
1516 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1517 if (retval == -ETIME)
1518 qpd->reset_wavefronts = true;
1519 if (q->properties.is_gws) {
1520 dqm->gws_queue_count--;
1521 qpd->mapped_gws_queue = false;
1522 }
1523 }
1524
1525 /*
1526 * Unconditionally decrement this counter, regardless of the queue's
1527 * type
1528 */
1529 dqm->total_queue_count--;
1530 pr_debug("Total of %d queues are accountable so far\n",
1531 dqm->total_queue_count);
1532
1533 dqm_unlock(dqm);
1534
1535 /* Do free_mqd after dqm_unlock(dqm) to avoid circular locking */
1536 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1537
1538 return retval;
1539
1540failed_try_destroy_debugged_queue:
1541
1542 dqm_unlock(dqm);
1543 return retval;
1544}
1545
1546/*
1547 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1548 * stay in user mode.
1549 */
1550#define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1551/* APE1 limit is inclusive and 64K aligned. */
1552#define APE1_LIMIT_ALIGNMENT 0xFFFF
1553
1554static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1555 struct qcm_process_device *qpd,
1556 enum cache_policy default_policy,
1557 enum cache_policy alternate_policy,
1558 void __user *alternate_aperture_base,
1559 uint64_t alternate_aperture_size)
1560{
1561 bool retval = true;
1562
1563 if (!dqm->asic_ops.set_cache_memory_policy)
1564 return retval;
1565
1566 dqm_lock(dqm);
1567
1568 if (alternate_aperture_size == 0) {
1569 /* base > limit disables APE1 */
1570 qpd->sh_mem_ape1_base = 1;
1571 qpd->sh_mem_ape1_limit = 0;
1572 } else {
1573 /*
1574 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1575 * SH_MEM_APE1_BASE[31:0], 0x0000 }
1576 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1577 * SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1578 * Verify that the base and size parameters can be
1579 * represented in this format and convert them.
1580 * Additionally restrict APE1 to user-mode addresses.
1581 */
1582
1583 uint64_t base = (uintptr_t)alternate_aperture_base;
1584 uint64_t limit = base + alternate_aperture_size - 1;
1585
1586 if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
1587 (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
1588 retval = false;
1589 goto out;
1590 }
1591
1592 qpd->sh_mem_ape1_base = base >> 16;
1593 qpd->sh_mem_ape1_limit = limit >> 16;
1594 }
1595
1596 retval = dqm->asic_ops.set_cache_memory_policy(
1597 dqm,
1598 qpd,
1599 default_policy,
1600 alternate_policy,
1601 alternate_aperture_base,
1602 alternate_aperture_size);
1603
1604 if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1605 program_sh_mem_settings(dqm, qpd);
1606
1607 pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1608 qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1609 qpd->sh_mem_ape1_limit);
1610
1611out:
1612 dqm_unlock(dqm);
1613 return retval;
1614}
1615
1616static int set_trap_handler(struct device_queue_manager *dqm,
1617 struct qcm_process_device *qpd,
1618 uint64_t tba_addr,
1619 uint64_t tma_addr)
1620{
1621 uint64_t *tma;
1622
1623 if (dqm->dev->cwsr_enabled) {
1624 /* Jump from CWSR trap handler to user trap */
1625 tma = (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1626 tma[0] = tba_addr;
1627 tma[1] = tma_addr;
1628 } else {
1629 qpd->tba_addr = tba_addr;
1630 qpd->tma_addr = tma_addr;
1631 }
1632
1633 return 0;
1634}
1635
1636static int process_termination_nocpsch(struct device_queue_manager *dqm,
1637 struct qcm_process_device *qpd)
1638{
1639 struct queue *q, *next;
1640 struct device_process_node *cur, *next_dpn;
1641 int retval = 0;
1642 bool found = false;
1643
1644 dqm_lock(dqm);
1645
1646 /* Clear all user mode queues */
1647 list_for_each_entry_safe(q, next, &qpd->queues_list, list) {
1648 int ret;
1649
1650 ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
1651 if (ret)
1652 retval = ret;
1653 }
1654
1655 /* Unregister process */
1656 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1657 if (qpd == cur->qpd) {
1658 list_del(&cur->list);
1659 kfree(cur);
1660 dqm->processes_count--;
1661 found = true;
1662 break;
1663 }
1664 }
1665
1666 dqm_unlock(dqm);
1667
1668 /* Outside the DQM lock because under the DQM lock we can't do
1669 * reclaim or take other locks that others hold while reclaiming.
1670 */
1671 if (found)
1672 kfd_dec_compute_active(dqm->dev);
1673
1674 return retval;
1675}
1676
1677static int get_wave_state(struct device_queue_manager *dqm,
1678 struct queue *q,
1679 void __user *ctl_stack,
1680 u32 *ctl_stack_used_size,
1681 u32 *save_area_used_size)
1682{
1683 struct mqd_manager *mqd_mgr;
1684 int r;
1685
1686 dqm_lock(dqm);
1687
1688 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
1689 q->properties.is_active || !q->device->cwsr_enabled) {
1690 r = -EINVAL;
1691 goto dqm_unlock;
1692 }
1693
1694 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
1695
1696 if (!mqd_mgr->get_wave_state) {
1697 r = -EINVAL;
1698 goto dqm_unlock;
1699 }
1700
1701 r = mqd_mgr->get_wave_state(mqd_mgr, q->mqd, ctl_stack,
1702 ctl_stack_used_size, save_area_used_size);
1703
1704dqm_unlock:
1705 dqm_unlock(dqm);
1706 return r;
1707}
1708
1709static int process_termination_cpsch(struct device_queue_manager *dqm,
1710 struct qcm_process_device *qpd)
1711{
1712 int retval;
1713 struct queue *q, *next;
1714 struct kernel_queue *kq, *kq_next;
1715 struct mqd_manager *mqd_mgr;
1716 struct device_process_node *cur, *next_dpn;
1717 enum kfd_unmap_queues_filter filter =
1718 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
1719 bool found = false;
1720
1721 retval = 0;
1722
1723 dqm_lock(dqm);
1724
1725 /* Clean all kernel queues */
1726 list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
1727 list_del(&kq->list);
1728 decrement_queue_count(dqm, kq->queue->properties.type);
1729 qpd->is_debug = false;
1730 dqm->total_queue_count--;
1731 filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
1732 }
1733
1734 /* Clear all user mode queues */
1735 list_for_each_entry(q, &qpd->queues_list, list) {
1736 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1737 deallocate_sdma_queue(dqm, q);
1738 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1739 deallocate_sdma_queue(dqm, q);
1740
1741 if (q->properties.is_active) {
1742 decrement_queue_count(dqm, q->properties.type);
1743 if (q->properties.is_gws) {
1744 dqm->gws_queue_count--;
1745 qpd->mapped_gws_queue = false;
1746 }
1747 }
1748
1749 dqm->total_queue_count--;
1750 }
1751
1752 /* Unregister process */
1753 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1754 if (qpd == cur->qpd) {
1755 list_del(&cur->list);
1756 kfree(cur);
1757 dqm->processes_count--;
1758 found = true;
1759 break;
1760 }
1761 }
1762
1763 retval = execute_queues_cpsch(dqm, filter, 0);
1764 if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) {
1765 pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
1766 dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
1767 qpd->reset_wavefronts = false;
1768 }
1769
1770 dqm_unlock(dqm);
1771
1772 /* Outside the DQM lock because under the DQM lock we can't do
1773 * reclaim or take other locks that others hold while reclaiming.
1774 */
1775 if (found)
1776 kfd_dec_compute_active(dqm->dev);
1777
1778 /* Lastly, free mqd resources.
1779 * Do free_mqd() after dqm_unlock to avoid circular locking.
1780 */
1781 list_for_each_entry_safe(q, next, &qpd->queues_list, list) {
1782 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1783 q->properties.type)];
1784 list_del(&q->list);
1785 qpd->queue_count--;
1786 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1787 }
1788
1789 return retval;
1790}
1791
1792static int init_mqd_managers(struct device_queue_manager *dqm)
1793{
1794 int i, j;
1795 struct mqd_manager *mqd_mgr;
1796
1797 for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
1798 mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
1799 if (!mqd_mgr) {
1800 pr_err("mqd manager [%d] initialization failed\n", i);
1801 goto out_free;
1802 }
1803 dqm->mqd_mgrs[i] = mqd_mgr;
1804 }
1805
1806 return 0;
1807
1808out_free:
1809 for (j = 0; j < i; j++) {
1810 kfree(dqm->mqd_mgrs[j]);
1811 dqm->mqd_mgrs[j] = NULL;
1812 }
1813
1814 return -ENOMEM;
1815}
1816
1817/* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
1818static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
1819{
1820 int retval;
1821 struct kfd_dev *dev = dqm->dev;
1822 struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
1823 uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
1824 get_num_all_sdma_engines(dqm) *
1825 dev->device_info->num_sdma_queues_per_engine +
1826 dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size;
1827
1828 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->kgd, size,
1829 &(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
1830 (void *)&(mem_obj->cpu_ptr), false);
1831
1832 return retval;
1833}
1834
1835struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1836{
1837 struct device_queue_manager *dqm;
1838
1839 pr_debug("Loading device queue manager\n");
1840
1841 dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
1842 if (!dqm)
1843 return NULL;
1844
1845 switch (dev->device_info->asic_family) {
1846 /* HWS is not available on Hawaii. */
1847 case CHIP_HAWAII:
1848 /* HWS depends on CWSR for timely dequeue. CWSR is not
1849 * available on Tonga.
1850 *
1851 * FIXME: This argument also applies to Kaveri.
1852 */
1853 case CHIP_TONGA:
1854 dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
1855 break;
1856 default:
1857 dqm->sched_policy = sched_policy;
1858 break;
1859 }
1860
1861 dqm->dev = dev;
1862 switch (dqm->sched_policy) {
1863 case KFD_SCHED_POLICY_HWS:
1864 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1865 /* initialize dqm for cp scheduling */
1866 dqm->ops.create_queue = create_queue_cpsch;
1867 dqm->ops.initialize = initialize_cpsch;
1868 dqm->ops.start = start_cpsch;
1869 dqm->ops.stop = stop_cpsch;
1870 dqm->ops.pre_reset = pre_reset;
1871 dqm->ops.destroy_queue = destroy_queue_cpsch;
1872 dqm->ops.update_queue = update_queue;
1873 dqm->ops.register_process = register_process;
1874 dqm->ops.unregister_process = unregister_process;
1875 dqm->ops.uninitialize = uninitialize;
1876 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
1877 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
1878 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1879 dqm->ops.set_trap_handler = set_trap_handler;
1880 dqm->ops.process_termination = process_termination_cpsch;
1881 dqm->ops.evict_process_queues = evict_process_queues_cpsch;
1882 dqm->ops.restore_process_queues = restore_process_queues_cpsch;
1883 dqm->ops.get_wave_state = get_wave_state;
1884 break;
1885 case KFD_SCHED_POLICY_NO_HWS:
1886 /* initialize dqm for no cp scheduling */
1887 dqm->ops.start = start_nocpsch;
1888 dqm->ops.stop = stop_nocpsch;
1889 dqm->ops.pre_reset = pre_reset;
1890 dqm->ops.create_queue = create_queue_nocpsch;
1891 dqm->ops.destroy_queue = destroy_queue_nocpsch;
1892 dqm->ops.update_queue = update_queue;
1893 dqm->ops.register_process = register_process;
1894 dqm->ops.unregister_process = unregister_process;
1895 dqm->ops.initialize = initialize_nocpsch;
1896 dqm->ops.uninitialize = uninitialize;
1897 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1898 dqm->ops.set_trap_handler = set_trap_handler;
1899 dqm->ops.process_termination = process_termination_nocpsch;
1900 dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
1901 dqm->ops.restore_process_queues =
1902 restore_process_queues_nocpsch;
1903 dqm->ops.get_wave_state = get_wave_state;
1904 break;
1905 default:
1906 pr_err("Invalid scheduling policy %d\n", dqm->sched_policy);
1907 goto out_free;
1908 }
1909
1910 switch (dev->device_info->asic_family) {
1911 case CHIP_CARRIZO:
1912 device_queue_manager_init_vi(&dqm->asic_ops);
1913 break;
1914
1915 case CHIP_KAVERI:
1916 device_queue_manager_init_cik(&dqm->asic_ops);
1917 break;
1918
1919 case CHIP_HAWAII:
1920 device_queue_manager_init_cik_hawaii(&dqm->asic_ops);
1921 break;
1922
1923 case CHIP_TONGA:
1924 case CHIP_FIJI:
1925 case CHIP_POLARIS10:
1926 case CHIP_POLARIS11:
1927 case CHIP_POLARIS12:
1928 case CHIP_VEGAM:
1929 device_queue_manager_init_vi_tonga(&dqm->asic_ops);
1930 break;
1931
1932 case CHIP_VEGA10:
1933 case CHIP_VEGA12:
1934 case CHIP_VEGA20:
1935 case CHIP_RAVEN:
1936 case CHIP_RENOIR:
1937 case CHIP_ARCTURUS:
1938 device_queue_manager_init_v9(&dqm->asic_ops);
1939 break;
1940 case CHIP_NAVI10:
1941 case CHIP_NAVI12:
1942 case CHIP_NAVI14:
1943 case CHIP_SIENNA_CICHLID:
1944 case CHIP_NAVY_FLOUNDER:
1945 device_queue_manager_init_v10_navi10(&dqm->asic_ops);
1946 break;
1947 default:
1948 WARN(1, "Unexpected ASIC family %u",
1949 dev->device_info->asic_family);
1950 goto out_free;
1951 }
1952
1953 if (init_mqd_managers(dqm))
1954 goto out_free;
1955
1956 if (allocate_hiq_sdma_mqd(dqm)) {
1957 pr_err("Failed to allocate hiq sdma mqd trunk buffer\n");
1958 goto out_free;
1959 }
1960
1961 if (!dqm->ops.initialize(dqm))
1962 return dqm;
1963
1964out_free:
1965 kfree(dqm);
1966 return NULL;
1967}
1968
1969static void deallocate_hiq_sdma_mqd(struct kfd_dev *dev,
1970 struct kfd_mem_obj *mqd)
1971{
1972 WARN(!mqd, "No hiq sdma mqd trunk to free");
1973
1974 amdgpu_amdkfd_free_gtt_mem(dev->kgd, mqd->gtt_mem);
1975}
1976
1977void device_queue_manager_uninit(struct device_queue_manager *dqm)
1978{
1979 dqm->ops.uninitialize(dqm);
1980 deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
1981 kfree(dqm);
1982}
1983
1984int kfd_process_vm_fault(struct device_queue_manager *dqm,
1985 unsigned int pasid)
1986{
1987 struct kfd_process_device *pdd;
1988 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1989 int ret = 0;
1990
1991 if (!p)
1992 return -EINVAL;
1993 pdd = kfd_get_process_device_data(dqm->dev, p);
1994 if (pdd)
1995 ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
1996 kfd_unref_process(p);
1997
1998 return ret;
1999}
2000
2001static void kfd_process_hw_exception(struct work_struct *work)
2002{
2003 struct device_queue_manager *dqm = container_of(work,
2004 struct device_queue_manager, hw_exception_work);
2005 amdgpu_amdkfd_gpu_reset(dqm->dev->kgd);
2006}
2007
2008#if defined(CONFIG_DEBUG_FS)
2009
2010static void seq_reg_dump(struct seq_file *m,
2011 uint32_t (*dump)[2], uint32_t n_regs)
2012{
2013 uint32_t i, count;
2014
2015 for (i = 0, count = 0; i < n_regs; i++) {
2016 if (count == 0 ||
2017 dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
2018 seq_printf(m, "%s %08x: %08x",
2019 i ? "\n" : "",
2020 dump[i][0], dump[i][1]);
2021 count = 7;
2022 } else {
2023 seq_printf(m, " %08x", dump[i][1]);
2024 count--;
2025 }
2026 }
2027
2028 seq_puts(m, "\n");
2029}
2030
2031int dqm_debugfs_hqds(struct seq_file *m, void *data)
2032{
2033 struct device_queue_manager *dqm = data;
2034 uint32_t (*dump)[2], n_regs;
2035 int pipe, queue;
2036 int r = 0;
2037
2038 if (!dqm->sched_running) {
2039 seq_printf(m, " Device is stopped\n");
2040
2041 return 0;
2042 }
2043
2044 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->kgd,
2045 KFD_CIK_HIQ_PIPE, KFD_CIK_HIQ_QUEUE,
2046 &dump, &n_regs);
2047 if (!r) {
2048 seq_printf(m, " HIQ on MEC %d Pipe %d Queue %d\n",
2049 KFD_CIK_HIQ_PIPE/get_pipes_per_mec(dqm)+1,
2050 KFD_CIK_HIQ_PIPE%get_pipes_per_mec(dqm),
2051 KFD_CIK_HIQ_QUEUE);
2052 seq_reg_dump(m, dump, n_regs);
2053
2054 kfree(dump);
2055 }
2056
2057 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
2058 int pipe_offset = pipe * get_queues_per_pipe(dqm);
2059
2060 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
2061 if (!test_bit(pipe_offset + queue,
2062 dqm->dev->shared_resources.cp_queue_bitmap))
2063 continue;
2064
2065 r = dqm->dev->kfd2kgd->hqd_dump(
2066 dqm->dev->kgd, pipe, queue, &dump, &n_regs);
2067 if (r)
2068 break;
2069
2070 seq_printf(m, " CP Pipe %d, Queue %d\n",
2071 pipe, queue);
2072 seq_reg_dump(m, dump, n_regs);
2073
2074 kfree(dump);
2075 }
2076 }
2077
2078 for (pipe = 0; pipe < get_num_all_sdma_engines(dqm); pipe++) {
2079 for (queue = 0;
2080 queue < dqm->dev->device_info->num_sdma_queues_per_engine;
2081 queue++) {
2082 r = dqm->dev->kfd2kgd->hqd_sdma_dump(
2083 dqm->dev->kgd, pipe, queue, &dump, &n_regs);
2084 if (r)
2085 break;
2086
2087 seq_printf(m, " SDMA Engine %d, RLC %d\n",
2088 pipe, queue);
2089 seq_reg_dump(m, dump, n_regs);
2090
2091 kfree(dump);
2092 }
2093 }
2094
2095 return r;
2096}
2097
2098int dqm_debugfs_execute_queues(struct device_queue_manager *dqm)
2099{
2100 int r = 0;
2101
2102 dqm_lock(dqm);
2103 dqm->active_runlist = true;
2104 r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
2105 dqm_unlock(dqm);
2106
2107 return r;
2108}
2109
2110#endif
1/*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23
24#include <linux/slab.h>
25#include <linux/list.h>
26#include <linux/types.h>
27#include <linux/printk.h>
28#include <linux/bitops.h>
29#include <linux/sched.h>
30#include "kfd_priv.h"
31#include "kfd_device_queue_manager.h"
32#include "kfd_mqd_manager.h"
33#include "cik_regs.h"
34#include "kfd_kernel_queue.h"
35
36/* Size of the per-pipe EOP queue */
37#define CIK_HPD_EOP_BYTES_LOG2 11
38#define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
39
40static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
41 unsigned int pasid, unsigned int vmid);
42
43static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
44 struct queue *q,
45 struct qcm_process_device *qpd);
46
47static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock);
48static int destroy_queues_cpsch(struct device_queue_manager *dqm,
49 bool preempt_static_queues, bool lock);
50
51static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
52 struct queue *q,
53 struct qcm_process_device *qpd);
54
55static void deallocate_sdma_queue(struct device_queue_manager *dqm,
56 unsigned int sdma_queue_id);
57
58static inline
59enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
60{
61 if (type == KFD_QUEUE_TYPE_SDMA)
62 return KFD_MQD_TYPE_SDMA;
63 return KFD_MQD_TYPE_CP;
64}
65
66unsigned int get_first_pipe(struct device_queue_manager *dqm)
67{
68 BUG_ON(!dqm || !dqm->dev);
69 return dqm->dev->shared_resources.first_compute_pipe;
70}
71
72unsigned int get_pipes_num(struct device_queue_manager *dqm)
73{
74 BUG_ON(!dqm || !dqm->dev);
75 return dqm->dev->shared_resources.compute_pipe_count;
76}
77
78static inline unsigned int get_pipes_num_cpsch(void)
79{
80 return PIPE_PER_ME_CP_SCHEDULING;
81}
82
83void program_sh_mem_settings(struct device_queue_manager *dqm,
84 struct qcm_process_device *qpd)
85{
86 return dqm->dev->kfd2kgd->program_sh_mem_settings(
87 dqm->dev->kgd, qpd->vmid,
88 qpd->sh_mem_config,
89 qpd->sh_mem_ape1_base,
90 qpd->sh_mem_ape1_limit,
91 qpd->sh_mem_bases);
92}
93
94static int allocate_vmid(struct device_queue_manager *dqm,
95 struct qcm_process_device *qpd,
96 struct queue *q)
97{
98 int bit, allocated_vmid;
99
100 if (dqm->vmid_bitmap == 0)
101 return -ENOMEM;
102
103 bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM);
104 clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
105
106 /* Kaveri kfd vmid's starts from vmid 8 */
107 allocated_vmid = bit + KFD_VMID_START_OFFSET;
108 pr_debug("kfd: vmid allocation %d\n", allocated_vmid);
109 qpd->vmid = allocated_vmid;
110 q->properties.vmid = allocated_vmid;
111
112 set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
113 program_sh_mem_settings(dqm, qpd);
114
115 return 0;
116}
117
118static void deallocate_vmid(struct device_queue_manager *dqm,
119 struct qcm_process_device *qpd,
120 struct queue *q)
121{
122 int bit = qpd->vmid - KFD_VMID_START_OFFSET;
123
124 /* Release the vmid mapping */
125 set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
126
127 set_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
128 qpd->vmid = 0;
129 q->properties.vmid = 0;
130}
131
132static int create_queue_nocpsch(struct device_queue_manager *dqm,
133 struct queue *q,
134 struct qcm_process_device *qpd,
135 int *allocated_vmid)
136{
137 int retval;
138
139 BUG_ON(!dqm || !q || !qpd || !allocated_vmid);
140
141 pr_debug("kfd: In func %s\n", __func__);
142 print_queue(q);
143
144 mutex_lock(&dqm->lock);
145
146 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
147 pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
148 dqm->total_queue_count);
149 mutex_unlock(&dqm->lock);
150 return -EPERM;
151 }
152
153 if (list_empty(&qpd->queues_list)) {
154 retval = allocate_vmid(dqm, qpd, q);
155 if (retval != 0) {
156 mutex_unlock(&dqm->lock);
157 return retval;
158 }
159 }
160 *allocated_vmid = qpd->vmid;
161 q->properties.vmid = qpd->vmid;
162
163 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
164 retval = create_compute_queue_nocpsch(dqm, q, qpd);
165 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
166 retval = create_sdma_queue_nocpsch(dqm, q, qpd);
167
168 if (retval != 0) {
169 if (list_empty(&qpd->queues_list)) {
170 deallocate_vmid(dqm, qpd, q);
171 *allocated_vmid = 0;
172 }
173 mutex_unlock(&dqm->lock);
174 return retval;
175 }
176
177 list_add(&q->list, &qpd->queues_list);
178 if (q->properties.is_active)
179 dqm->queue_count++;
180
181 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
182 dqm->sdma_queue_count++;
183
184 /*
185 * Unconditionally increment this counter, regardless of the queue's
186 * type or whether the queue is active.
187 */
188 dqm->total_queue_count++;
189 pr_debug("Total of %d queues are accountable so far\n",
190 dqm->total_queue_count);
191
192 mutex_unlock(&dqm->lock);
193 return 0;
194}
195
196static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
197{
198 bool set;
199 int pipe, bit, i;
200
201 set = false;
202
203 for (pipe = dqm->next_pipe_to_allocate, i = 0; i < get_pipes_num(dqm);
204 pipe = ((pipe + 1) % get_pipes_num(dqm)), ++i) {
205 if (dqm->allocated_queues[pipe] != 0) {
206 bit = find_first_bit(
207 (unsigned long *)&dqm->allocated_queues[pipe],
208 QUEUES_PER_PIPE);
209
210 clear_bit(bit,
211 (unsigned long *)&dqm->allocated_queues[pipe]);
212 q->pipe = pipe;
213 q->queue = bit;
214 set = true;
215 break;
216 }
217 }
218
219 if (set == false)
220 return -EBUSY;
221
222 pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n",
223 __func__, q->pipe, q->queue);
224 /* horizontal hqd allocation */
225 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_num(dqm);
226
227 return 0;
228}
229
230static inline void deallocate_hqd(struct device_queue_manager *dqm,
231 struct queue *q)
232{
233 set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]);
234}
235
236static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
237 struct queue *q,
238 struct qcm_process_device *qpd)
239{
240 int retval;
241 struct mqd_manager *mqd;
242
243 BUG_ON(!dqm || !q || !qpd);
244
245 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
246 if (mqd == NULL)
247 return -ENOMEM;
248
249 retval = allocate_hqd(dqm, q);
250 if (retval != 0)
251 return retval;
252
253 retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
254 &q->gart_mqd_addr, &q->properties);
255 if (retval != 0) {
256 deallocate_hqd(dqm, q);
257 return retval;
258 }
259
260 pr_debug("kfd: loading mqd to hqd on pipe (%d) queue (%d)\n",
261 q->pipe,
262 q->queue);
263
264 retval = mqd->load_mqd(mqd, q->mqd, q->pipe,
265 q->queue, (uint32_t __user *) q->properties.write_ptr);
266 if (retval != 0) {
267 deallocate_hqd(dqm, q);
268 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
269 return retval;
270 }
271
272 return 0;
273}
274
275static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
276 struct qcm_process_device *qpd,
277 struct queue *q)
278{
279 int retval;
280 struct mqd_manager *mqd;
281
282 BUG_ON(!dqm || !q || !q->mqd || !qpd);
283
284 retval = 0;
285
286 pr_debug("kfd: In Func %s\n", __func__);
287
288 mutex_lock(&dqm->lock);
289
290 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
291 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
292 if (mqd == NULL) {
293 retval = -ENOMEM;
294 goto out;
295 }
296 deallocate_hqd(dqm, q);
297 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
298 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
299 if (mqd == NULL) {
300 retval = -ENOMEM;
301 goto out;
302 }
303 dqm->sdma_queue_count--;
304 deallocate_sdma_queue(dqm, q->sdma_id);
305 } else {
306 pr_debug("q->properties.type is invalid (%d)\n",
307 q->properties.type);
308 retval = -EINVAL;
309 goto out;
310 }
311
312 retval = mqd->destroy_mqd(mqd, q->mqd,
313 KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
314 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
315 q->pipe, q->queue);
316
317 if (retval != 0)
318 goto out;
319
320 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
321
322 list_del(&q->list);
323 if (list_empty(&qpd->queues_list))
324 deallocate_vmid(dqm, qpd, q);
325 if (q->properties.is_active)
326 dqm->queue_count--;
327
328 /*
329 * Unconditionally decrement this counter, regardless of the queue's
330 * type
331 */
332 dqm->total_queue_count--;
333 pr_debug("Total of %d queues are accountable so far\n",
334 dqm->total_queue_count);
335
336out:
337 mutex_unlock(&dqm->lock);
338 return retval;
339}
340
341static int update_queue(struct device_queue_manager *dqm, struct queue *q)
342{
343 int retval;
344 struct mqd_manager *mqd;
345 bool prev_active = false;
346
347 BUG_ON(!dqm || !q || !q->mqd);
348
349 mutex_lock(&dqm->lock);
350 mqd = dqm->ops.get_mqd_manager(dqm,
351 get_mqd_type_from_queue_type(q->properties.type));
352 if (mqd == NULL) {
353 mutex_unlock(&dqm->lock);
354 return -ENOMEM;
355 }
356
357 if (q->properties.is_active == true)
358 prev_active = true;
359
360 /*
361 *
362 * check active state vs. the previous state
363 * and modify counter accordingly
364 */
365 retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
366 if ((q->properties.is_active == true) && (prev_active == false))
367 dqm->queue_count++;
368 else if ((q->properties.is_active == false) && (prev_active == true))
369 dqm->queue_count--;
370
371 if (sched_policy != KFD_SCHED_POLICY_NO_HWS)
372 retval = execute_queues_cpsch(dqm, false);
373
374 mutex_unlock(&dqm->lock);
375 return retval;
376}
377
378static struct mqd_manager *get_mqd_manager_nocpsch(
379 struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
380{
381 struct mqd_manager *mqd;
382
383 BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX);
384
385 pr_debug("kfd: In func %s mqd type %d\n", __func__, type);
386
387 mqd = dqm->mqds[type];
388 if (!mqd) {
389 mqd = mqd_manager_init(type, dqm->dev);
390 if (mqd == NULL)
391 pr_err("kfd: mqd manager is NULL");
392 dqm->mqds[type] = mqd;
393 }
394
395 return mqd;
396}
397
398static int register_process_nocpsch(struct device_queue_manager *dqm,
399 struct qcm_process_device *qpd)
400{
401 struct device_process_node *n;
402 int retval;
403
404 BUG_ON(!dqm || !qpd);
405
406 pr_debug("kfd: In func %s\n", __func__);
407
408 n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL);
409 if (!n)
410 return -ENOMEM;
411
412 n->qpd = qpd;
413
414 mutex_lock(&dqm->lock);
415 list_add(&n->list, &dqm->queues);
416
417 retval = dqm->ops_asic_specific.register_process(dqm, qpd);
418
419 dqm->processes_count++;
420
421 mutex_unlock(&dqm->lock);
422
423 return retval;
424}
425
426static int unregister_process_nocpsch(struct device_queue_manager *dqm,
427 struct qcm_process_device *qpd)
428{
429 int retval;
430 struct device_process_node *cur, *next;
431
432 BUG_ON(!dqm || !qpd);
433
434 pr_debug("In func %s\n", __func__);
435
436 pr_debug("qpd->queues_list is %s\n",
437 list_empty(&qpd->queues_list) ? "empty" : "not empty");
438
439 retval = 0;
440 mutex_lock(&dqm->lock);
441
442 list_for_each_entry_safe(cur, next, &dqm->queues, list) {
443 if (qpd == cur->qpd) {
444 list_del(&cur->list);
445 kfree(cur);
446 dqm->processes_count--;
447 goto out;
448 }
449 }
450 /* qpd not found in dqm list */
451 retval = 1;
452out:
453 mutex_unlock(&dqm->lock);
454 return retval;
455}
456
457static int
458set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
459 unsigned int vmid)
460{
461 uint32_t pasid_mapping;
462
463 pasid_mapping = (pasid == 0) ? 0 :
464 (uint32_t)pasid |
465 ATC_VMID_PASID_MAPPING_VALID;
466
467 return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
468 dqm->dev->kgd, pasid_mapping,
469 vmid);
470}
471
472int init_pipelines(struct device_queue_manager *dqm,
473 unsigned int pipes_num, unsigned int first_pipe)
474{
475 void *hpdptr;
476 struct mqd_manager *mqd;
477 unsigned int i, err, inx;
478 uint64_t pipe_hpd_addr;
479
480 BUG_ON(!dqm || !dqm->dev);
481
482 pr_debug("kfd: In func %s\n", __func__);
483
484 /*
485 * Allocate memory for the HPDs. This is hardware-owned per-pipe data.
486 * The driver never accesses this memory after zeroing it.
487 * It doesn't even have to be saved/restored on suspend/resume
488 * because it contains no data when there are no active queues.
489 */
490
491 err = kfd_gtt_sa_allocate(dqm->dev, CIK_HPD_EOP_BYTES * pipes_num,
492 &dqm->pipeline_mem);
493
494 if (err) {
495 pr_err("kfd: error allocate vidmem num pipes: %d\n",
496 pipes_num);
497 return -ENOMEM;
498 }
499
500 hpdptr = dqm->pipeline_mem->cpu_ptr;
501 dqm->pipelines_addr = dqm->pipeline_mem->gpu_addr;
502
503 memset(hpdptr, 0, CIK_HPD_EOP_BYTES * pipes_num);
504
505 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
506 if (mqd == NULL) {
507 kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
508 return -ENOMEM;
509 }
510
511 for (i = 0; i < pipes_num; i++) {
512 inx = i + first_pipe;
513 /*
514 * HPD buffer on GTT is allocated by amdkfd, no need to waste
515 * space in GTT for pipelines we don't initialize
516 */
517 pipe_hpd_addr = dqm->pipelines_addr + i * CIK_HPD_EOP_BYTES;
518 pr_debug("kfd: pipeline address %llX\n", pipe_hpd_addr);
519 /* = log2(bytes/4)-1 */
520 dqm->dev->kfd2kgd->init_pipeline(dqm->dev->kgd, inx,
521 CIK_HPD_EOP_BYTES_LOG2 - 3, pipe_hpd_addr);
522 }
523
524 return 0;
525}
526
527static void init_interrupts(struct device_queue_manager *dqm)
528{
529 unsigned int i;
530
531 BUG_ON(dqm == NULL);
532
533 for (i = 0 ; i < get_pipes_num(dqm) ; i++)
534 dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd,
535 i + get_first_pipe(dqm));
536}
537
538static int init_scheduler(struct device_queue_manager *dqm)
539{
540 int retval;
541
542 BUG_ON(!dqm);
543
544 pr_debug("kfd: In %s\n", __func__);
545
546 retval = init_pipelines(dqm, get_pipes_num(dqm), get_first_pipe(dqm));
547 return retval;
548}
549
550static int initialize_nocpsch(struct device_queue_manager *dqm)
551{
552 int i;
553
554 BUG_ON(!dqm);
555
556 pr_debug("kfd: In func %s num of pipes: %d\n",
557 __func__, get_pipes_num(dqm));
558
559 mutex_init(&dqm->lock);
560 INIT_LIST_HEAD(&dqm->queues);
561 dqm->queue_count = dqm->next_pipe_to_allocate = 0;
562 dqm->sdma_queue_count = 0;
563 dqm->allocated_queues = kcalloc(get_pipes_num(dqm),
564 sizeof(unsigned int), GFP_KERNEL);
565 if (!dqm->allocated_queues) {
566 mutex_destroy(&dqm->lock);
567 return -ENOMEM;
568 }
569
570 for (i = 0; i < get_pipes_num(dqm); i++)
571 dqm->allocated_queues[i] = (1 << QUEUES_PER_PIPE) - 1;
572
573 dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1;
574 dqm->sdma_bitmap = (1 << CIK_SDMA_QUEUES) - 1;
575
576 init_scheduler(dqm);
577 return 0;
578}
579
580static void uninitialize_nocpsch(struct device_queue_manager *dqm)
581{
582 int i;
583
584 BUG_ON(!dqm);
585
586 BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
587
588 kfree(dqm->allocated_queues);
589 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
590 kfree(dqm->mqds[i]);
591 mutex_destroy(&dqm->lock);
592 kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
593}
594
595static int start_nocpsch(struct device_queue_manager *dqm)
596{
597 init_interrupts(dqm);
598 return 0;
599}
600
601static int stop_nocpsch(struct device_queue_manager *dqm)
602{
603 return 0;
604}
605
606static int allocate_sdma_queue(struct device_queue_manager *dqm,
607 unsigned int *sdma_queue_id)
608{
609 int bit;
610
611 if (dqm->sdma_bitmap == 0)
612 return -ENOMEM;
613
614 bit = find_first_bit((unsigned long *)&dqm->sdma_bitmap,
615 CIK_SDMA_QUEUES);
616
617 clear_bit(bit, (unsigned long *)&dqm->sdma_bitmap);
618 *sdma_queue_id = bit;
619
620 return 0;
621}
622
623static void deallocate_sdma_queue(struct device_queue_manager *dqm,
624 unsigned int sdma_queue_id)
625{
626 if (sdma_queue_id >= CIK_SDMA_QUEUES)
627 return;
628 set_bit(sdma_queue_id, (unsigned long *)&dqm->sdma_bitmap);
629}
630
631static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
632 struct queue *q,
633 struct qcm_process_device *qpd)
634{
635 struct mqd_manager *mqd;
636 int retval;
637
638 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
639 if (!mqd)
640 return -ENOMEM;
641
642 retval = allocate_sdma_queue(dqm, &q->sdma_id);
643 if (retval != 0)
644 return retval;
645
646 q->properties.sdma_queue_id = q->sdma_id % CIK_SDMA_QUEUES_PER_ENGINE;
647 q->properties.sdma_engine_id = q->sdma_id / CIK_SDMA_ENGINE_NUM;
648
649 pr_debug("kfd: sdma id is: %d\n", q->sdma_id);
650 pr_debug(" sdma queue id: %d\n", q->properties.sdma_queue_id);
651 pr_debug(" sdma engine id: %d\n", q->properties.sdma_engine_id);
652
653 dqm->ops_asic_specific.init_sdma_vm(dqm, q, qpd);
654 retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
655 &q->gart_mqd_addr, &q->properties);
656 if (retval != 0) {
657 deallocate_sdma_queue(dqm, q->sdma_id);
658 return retval;
659 }
660
661 retval = mqd->load_mqd(mqd, q->mqd, 0,
662 0, NULL);
663 if (retval != 0) {
664 deallocate_sdma_queue(dqm, q->sdma_id);
665 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
666 return retval;
667 }
668
669 return 0;
670}
671
672/*
673 * Device Queue Manager implementation for cp scheduler
674 */
675
676static int set_sched_resources(struct device_queue_manager *dqm)
677{
678 struct scheduling_resources res;
679 unsigned int queue_num, queue_mask;
680
681 BUG_ON(!dqm);
682
683 pr_debug("kfd: In func %s\n", __func__);
684
685 queue_num = get_pipes_num_cpsch() * QUEUES_PER_PIPE;
686 queue_mask = (1 << queue_num) - 1;
687 res.vmid_mask = (1 << VMID_PER_DEVICE) - 1;
688 res.vmid_mask <<= KFD_VMID_START_OFFSET;
689 res.queue_mask = queue_mask << (get_first_pipe(dqm) * QUEUES_PER_PIPE);
690 res.gws_mask = res.oac_mask = res.gds_heap_base =
691 res.gds_heap_size = 0;
692
693 pr_debug("kfd: scheduling resources:\n"
694 " vmid mask: 0x%8X\n"
695 " queue mask: 0x%8llX\n",
696 res.vmid_mask, res.queue_mask);
697
698 return pm_send_set_resources(&dqm->packets, &res);
699}
700
701static int initialize_cpsch(struct device_queue_manager *dqm)
702{
703 int retval;
704
705 BUG_ON(!dqm);
706
707 pr_debug("kfd: In func %s num of pipes: %d\n",
708 __func__, get_pipes_num_cpsch());
709
710 mutex_init(&dqm->lock);
711 INIT_LIST_HEAD(&dqm->queues);
712 dqm->queue_count = dqm->processes_count = 0;
713 dqm->sdma_queue_count = 0;
714 dqm->active_runlist = false;
715 retval = dqm->ops_asic_specific.initialize(dqm);
716 if (retval != 0)
717 goto fail_init_pipelines;
718
719 return 0;
720
721fail_init_pipelines:
722 mutex_destroy(&dqm->lock);
723 return retval;
724}
725
726static int start_cpsch(struct device_queue_manager *dqm)
727{
728 struct device_process_node *node;
729 int retval;
730
731 BUG_ON(!dqm);
732
733 retval = 0;
734
735 retval = pm_init(&dqm->packets, dqm);
736 if (retval != 0)
737 goto fail_packet_manager_init;
738
739 retval = set_sched_resources(dqm);
740 if (retval != 0)
741 goto fail_set_sched_resources;
742
743 pr_debug("kfd: allocating fence memory\n");
744
745 /* allocate fence memory on the gart */
746 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
747 &dqm->fence_mem);
748
749 if (retval != 0)
750 goto fail_allocate_vidmem;
751
752 dqm->fence_addr = dqm->fence_mem->cpu_ptr;
753 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
754
755 init_interrupts(dqm);
756
757 list_for_each_entry(node, &dqm->queues, list)
758 if (node->qpd->pqm->process && dqm->dev)
759 kfd_bind_process_to_device(dqm->dev,
760 node->qpd->pqm->process);
761
762 execute_queues_cpsch(dqm, true);
763
764 return 0;
765fail_allocate_vidmem:
766fail_set_sched_resources:
767 pm_uninit(&dqm->packets);
768fail_packet_manager_init:
769 return retval;
770}
771
772static int stop_cpsch(struct device_queue_manager *dqm)
773{
774 struct device_process_node *node;
775 struct kfd_process_device *pdd;
776
777 BUG_ON(!dqm);
778
779 destroy_queues_cpsch(dqm, true, true);
780
781 list_for_each_entry(node, &dqm->queues, list) {
782 pdd = qpd_to_pdd(node->qpd);
783 pdd->bound = false;
784 }
785 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
786 pm_uninit(&dqm->packets);
787
788 return 0;
789}
790
791static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
792 struct kernel_queue *kq,
793 struct qcm_process_device *qpd)
794{
795 BUG_ON(!dqm || !kq || !qpd);
796
797 pr_debug("kfd: In func %s\n", __func__);
798
799 mutex_lock(&dqm->lock);
800 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
801 pr_warn("amdkfd: Can't create new kernel queue because %d queues were already created\n",
802 dqm->total_queue_count);
803 mutex_unlock(&dqm->lock);
804 return -EPERM;
805 }
806
807 /*
808 * Unconditionally increment this counter, regardless of the queue's
809 * type or whether the queue is active.
810 */
811 dqm->total_queue_count++;
812 pr_debug("Total of %d queues are accountable so far\n",
813 dqm->total_queue_count);
814
815 list_add(&kq->list, &qpd->priv_queue_list);
816 dqm->queue_count++;
817 qpd->is_debug = true;
818 execute_queues_cpsch(dqm, false);
819 mutex_unlock(&dqm->lock);
820
821 return 0;
822}
823
824static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
825 struct kernel_queue *kq,
826 struct qcm_process_device *qpd)
827{
828 BUG_ON(!dqm || !kq);
829
830 pr_debug("kfd: In %s\n", __func__);
831
832 mutex_lock(&dqm->lock);
833 /* here we actually preempt the DIQ */
834 destroy_queues_cpsch(dqm, true, false);
835 list_del(&kq->list);
836 dqm->queue_count--;
837 qpd->is_debug = false;
838 execute_queues_cpsch(dqm, false);
839 /*
840 * Unconditionally decrement this counter, regardless of the queue's
841 * type.
842 */
843 dqm->total_queue_count--;
844 pr_debug("Total of %d queues are accountable so far\n",
845 dqm->total_queue_count);
846 mutex_unlock(&dqm->lock);
847}
848
849static void select_sdma_engine_id(struct queue *q)
850{
851 static int sdma_id;
852
853 q->sdma_id = sdma_id;
854 sdma_id = (sdma_id + 1) % 2;
855}
856
857static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
858 struct qcm_process_device *qpd, int *allocate_vmid)
859{
860 int retval;
861 struct mqd_manager *mqd;
862
863 BUG_ON(!dqm || !q || !qpd);
864
865 retval = 0;
866
867 if (allocate_vmid)
868 *allocate_vmid = 0;
869
870 mutex_lock(&dqm->lock);
871
872 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
873 pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
874 dqm->total_queue_count);
875 retval = -EPERM;
876 goto out;
877 }
878
879 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
880 select_sdma_engine_id(q);
881
882 mqd = dqm->ops.get_mqd_manager(dqm,
883 get_mqd_type_from_queue_type(q->properties.type));
884
885 if (mqd == NULL) {
886 mutex_unlock(&dqm->lock);
887 return -ENOMEM;
888 }
889
890 dqm->ops_asic_specific.init_sdma_vm(dqm, q, qpd);
891 retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
892 &q->gart_mqd_addr, &q->properties);
893 if (retval != 0)
894 goto out;
895
896 list_add(&q->list, &qpd->queues_list);
897 if (q->properties.is_active) {
898 dqm->queue_count++;
899 retval = execute_queues_cpsch(dqm, false);
900 }
901
902 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
903 dqm->sdma_queue_count++;
904 /*
905 * Unconditionally increment this counter, regardless of the queue's
906 * type or whether the queue is active.
907 */
908 dqm->total_queue_count++;
909
910 pr_debug("Total of %d queues are accountable so far\n",
911 dqm->total_queue_count);
912
913out:
914 mutex_unlock(&dqm->lock);
915 return retval;
916}
917
918int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
919 unsigned int fence_value,
920 unsigned long timeout)
921{
922 BUG_ON(!fence_addr);
923 timeout += jiffies;
924
925 while (*fence_addr != fence_value) {
926 if (time_after(jiffies, timeout)) {
927 pr_err("kfd: qcm fence wait loop timeout expired\n");
928 return -ETIME;
929 }
930 schedule();
931 }
932
933 return 0;
934}
935
936static int destroy_sdma_queues(struct device_queue_manager *dqm,
937 unsigned int sdma_engine)
938{
939 return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
940 KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES, 0, false,
941 sdma_engine);
942}
943
944static int destroy_queues_cpsch(struct device_queue_manager *dqm,
945 bool preempt_static_queues, bool lock)
946{
947 int retval;
948 enum kfd_preempt_type_filter preempt_type;
949 struct kfd_process_device *pdd;
950
951 BUG_ON(!dqm);
952
953 retval = 0;
954
955 if (lock)
956 mutex_lock(&dqm->lock);
957 if (dqm->active_runlist == false)
958 goto out;
959
960 pr_debug("kfd: Before destroying queues, sdma queue count is : %u\n",
961 dqm->sdma_queue_count);
962
963 if (dqm->sdma_queue_count > 0) {
964 destroy_sdma_queues(dqm, 0);
965 destroy_sdma_queues(dqm, 1);
966 }
967
968 preempt_type = preempt_static_queues ?
969 KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES :
970 KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES;
971
972 retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
973 preempt_type, 0, false, 0);
974 if (retval != 0)
975 goto out;
976
977 *dqm->fence_addr = KFD_FENCE_INIT;
978 pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
979 KFD_FENCE_COMPLETED);
980 /* should be timed out */
981 retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
982 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
983 if (retval != 0) {
984 pdd = kfd_get_process_device_data(dqm->dev,
985 kfd_get_process(current));
986 pdd->reset_wavefronts = true;
987 goto out;
988 }
989 pm_release_ib(&dqm->packets);
990 dqm->active_runlist = false;
991
992out:
993 if (lock)
994 mutex_unlock(&dqm->lock);
995 return retval;
996}
997
998static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock)
999{
1000 int retval;
1001
1002 BUG_ON(!dqm);
1003
1004 if (lock)
1005 mutex_lock(&dqm->lock);
1006
1007 retval = destroy_queues_cpsch(dqm, false, false);
1008 if (retval != 0) {
1009 pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption");
1010 goto out;
1011 }
1012
1013 if (dqm->queue_count <= 0 || dqm->processes_count <= 0) {
1014 retval = 0;
1015 goto out;
1016 }
1017
1018 if (dqm->active_runlist) {
1019 retval = 0;
1020 goto out;
1021 }
1022
1023 retval = pm_send_runlist(&dqm->packets, &dqm->queues);
1024 if (retval != 0) {
1025 pr_err("kfd: failed to execute runlist");
1026 goto out;
1027 }
1028 dqm->active_runlist = true;
1029
1030out:
1031 if (lock)
1032 mutex_unlock(&dqm->lock);
1033 return retval;
1034}
1035
1036static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1037 struct qcm_process_device *qpd,
1038 struct queue *q)
1039{
1040 int retval;
1041 struct mqd_manager *mqd;
1042 bool preempt_all_queues;
1043
1044 BUG_ON(!dqm || !qpd || !q);
1045
1046 preempt_all_queues = false;
1047
1048 retval = 0;
1049
1050 /* remove queue from list to prevent rescheduling after preemption */
1051 mutex_lock(&dqm->lock);
1052
1053 if (qpd->is_debug) {
1054 /*
1055 * error, currently we do not allow to destroy a queue
1056 * of a currently debugged process
1057 */
1058 retval = -EBUSY;
1059 goto failed_try_destroy_debugged_queue;
1060
1061 }
1062
1063 mqd = dqm->ops.get_mqd_manager(dqm,
1064 get_mqd_type_from_queue_type(q->properties.type));
1065 if (!mqd) {
1066 retval = -ENOMEM;
1067 goto failed;
1068 }
1069
1070 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1071 dqm->sdma_queue_count--;
1072
1073 list_del(&q->list);
1074 if (q->properties.is_active)
1075 dqm->queue_count--;
1076
1077 execute_queues_cpsch(dqm, false);
1078
1079 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
1080
1081 /*
1082 * Unconditionally decrement this counter, regardless of the queue's
1083 * type
1084 */
1085 dqm->total_queue_count--;
1086 pr_debug("Total of %d queues are accountable so far\n",
1087 dqm->total_queue_count);
1088
1089 mutex_unlock(&dqm->lock);
1090
1091 return 0;
1092
1093failed:
1094failed_try_destroy_debugged_queue:
1095
1096 mutex_unlock(&dqm->lock);
1097 return retval;
1098}
1099
1100/*
1101 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1102 * stay in user mode.
1103 */
1104#define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1105/* APE1 limit is inclusive and 64K aligned. */
1106#define APE1_LIMIT_ALIGNMENT 0xFFFF
1107
1108static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1109 struct qcm_process_device *qpd,
1110 enum cache_policy default_policy,
1111 enum cache_policy alternate_policy,
1112 void __user *alternate_aperture_base,
1113 uint64_t alternate_aperture_size)
1114{
1115 bool retval;
1116
1117 pr_debug("kfd: In func %s\n", __func__);
1118
1119 mutex_lock(&dqm->lock);
1120
1121 if (alternate_aperture_size == 0) {
1122 /* base > limit disables APE1 */
1123 qpd->sh_mem_ape1_base = 1;
1124 qpd->sh_mem_ape1_limit = 0;
1125 } else {
1126 /*
1127 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1128 * SH_MEM_APE1_BASE[31:0], 0x0000 }
1129 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1130 * SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1131 * Verify that the base and size parameters can be
1132 * represented in this format and convert them.
1133 * Additionally restrict APE1 to user-mode addresses.
1134 */
1135
1136 uint64_t base = (uintptr_t)alternate_aperture_base;
1137 uint64_t limit = base + alternate_aperture_size - 1;
1138
1139 if (limit <= base)
1140 goto out;
1141
1142 if ((base & APE1_FIXED_BITS_MASK) != 0)
1143 goto out;
1144
1145 if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT)
1146 goto out;
1147
1148 qpd->sh_mem_ape1_base = base >> 16;
1149 qpd->sh_mem_ape1_limit = limit >> 16;
1150 }
1151
1152 retval = dqm->ops_asic_specific.set_cache_memory_policy(
1153 dqm,
1154 qpd,
1155 default_policy,
1156 alternate_policy,
1157 alternate_aperture_base,
1158 alternate_aperture_size);
1159
1160 if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1161 program_sh_mem_settings(dqm, qpd);
1162
1163 pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1164 qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1165 qpd->sh_mem_ape1_limit);
1166
1167 mutex_unlock(&dqm->lock);
1168 return retval;
1169
1170out:
1171 mutex_unlock(&dqm->lock);
1172 return false;
1173}
1174
1175struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1176{
1177 struct device_queue_manager *dqm;
1178
1179 BUG_ON(!dev);
1180
1181 pr_debug("kfd: loading device queue manager\n");
1182
1183 dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL);
1184 if (!dqm)
1185 return NULL;
1186
1187 dqm->dev = dev;
1188 switch (sched_policy) {
1189 case KFD_SCHED_POLICY_HWS:
1190 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1191 /* initialize dqm for cp scheduling */
1192 dqm->ops.create_queue = create_queue_cpsch;
1193 dqm->ops.initialize = initialize_cpsch;
1194 dqm->ops.start = start_cpsch;
1195 dqm->ops.stop = stop_cpsch;
1196 dqm->ops.destroy_queue = destroy_queue_cpsch;
1197 dqm->ops.update_queue = update_queue;
1198 dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
1199 dqm->ops.register_process = register_process_nocpsch;
1200 dqm->ops.unregister_process = unregister_process_nocpsch;
1201 dqm->ops.uninitialize = uninitialize_nocpsch;
1202 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
1203 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
1204 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1205 break;
1206 case KFD_SCHED_POLICY_NO_HWS:
1207 /* initialize dqm for no cp scheduling */
1208 dqm->ops.start = start_nocpsch;
1209 dqm->ops.stop = stop_nocpsch;
1210 dqm->ops.create_queue = create_queue_nocpsch;
1211 dqm->ops.destroy_queue = destroy_queue_nocpsch;
1212 dqm->ops.update_queue = update_queue;
1213 dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
1214 dqm->ops.register_process = register_process_nocpsch;
1215 dqm->ops.unregister_process = unregister_process_nocpsch;
1216 dqm->ops.initialize = initialize_nocpsch;
1217 dqm->ops.uninitialize = uninitialize_nocpsch;
1218 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1219 break;
1220 default:
1221 BUG();
1222 break;
1223 }
1224
1225 switch (dev->device_info->asic_family) {
1226 case CHIP_CARRIZO:
1227 device_queue_manager_init_vi(&dqm->ops_asic_specific);
1228 break;
1229
1230 case CHIP_KAVERI:
1231 device_queue_manager_init_cik(&dqm->ops_asic_specific);
1232 break;
1233 }
1234
1235 if (dqm->ops.initialize(dqm) != 0) {
1236 kfree(dqm);
1237 return NULL;
1238 }
1239
1240 return dqm;
1241}
1242
1243void device_queue_manager_uninit(struct device_queue_manager *dqm)
1244{
1245 BUG_ON(!dqm);
1246
1247 dqm->ops.uninitialize(dqm);
1248 kfree(dqm);
1249}