Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * intel_pstate.c: Native P state management for Intel processors
   4 *
   5 * (C) Copyright 2012 Intel Corporation
   6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 
 
 
 
 
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/kernel.h>
  12#include <linux/kernel_stat.h>
  13#include <linux/module.h>
  14#include <linux/ktime.h>
  15#include <linux/hrtimer.h>
  16#include <linux/tick.h>
  17#include <linux/slab.h>
  18#include <linux/sched/cpufreq.h>
  19#include <linux/list.h>
  20#include <linux/cpu.h>
  21#include <linux/cpufreq.h>
  22#include <linux/sysfs.h>
  23#include <linux/types.h>
  24#include <linux/fs.h>
 
  25#include <linux/acpi.h>
  26#include <linux/vmalloc.h>
  27#include <linux/pm_qos.h>
  28#include <trace/events/power.h>
  29
  30#include <asm/div64.h>
  31#include <asm/msr.h>
  32#include <asm/cpu_device_id.h>
  33#include <asm/cpufeature.h>
  34#include <asm/intel-family.h>
  35
  36#define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
  37
  38#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
  39#define INTEL_CPUFREQ_TRANSITION_DELAY_HWP	5000
  40#define INTEL_CPUFREQ_TRANSITION_DELAY		500
  41
  42#ifdef CONFIG_ACPI
  43#include <acpi/processor.h>
  44#include <acpi/cppc_acpi.h>
  45#endif
  46
  47#define FRAC_BITS 8
  48#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
  49#define fp_toint(X) ((X) >> FRAC_BITS)
  50
  51#define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
  52
  53#define EXT_BITS 6
  54#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
  55#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
  56#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
  57
  58static inline int32_t mul_fp(int32_t x, int32_t y)
  59{
  60	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
  61}
  62
  63static inline int32_t div_fp(s64 x, s64 y)
  64{
  65	return div64_s64((int64_t)x << FRAC_BITS, y);
  66}
  67
  68static inline int ceiling_fp(int32_t x)
  69{
  70	int mask, ret;
  71
  72	ret = fp_toint(x);
  73	mask = (1 << FRAC_BITS) - 1;
  74	if (x & mask)
  75		ret += 1;
  76	return ret;
  77}
  78
  79static inline int32_t percent_fp(int percent)
  80{
  81	return div_fp(percent, 100);
  82}
  83
  84static inline u64 mul_ext_fp(u64 x, u64 y)
  85{
  86	return (x * y) >> EXT_FRAC_BITS;
  87}
  88
  89static inline u64 div_ext_fp(u64 x, u64 y)
  90{
  91	return div64_u64(x << EXT_FRAC_BITS, y);
  92}
  93
  94static inline int32_t percent_ext_fp(int percent)
  95{
  96	return div_ext_fp(percent, 100);
  97}
  98
  99/**
 100 * struct sample -	Store performance sample
 101 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
 102 *			performance during last sample period
 103 * @busy_scaled:	Scaled busy value which is used to calculate next
 104 *			P state. This can be different than core_avg_perf
 105 *			to account for cpu idle period
 106 * @aperf:		Difference of actual performance frequency clock count
 107 *			read from APERF MSR between last and current sample
 108 * @mperf:		Difference of maximum performance frequency clock count
 109 *			read from MPERF MSR between last and current sample
 110 * @tsc:		Difference of time stamp counter between last and
 111 *			current sample
 
 112 * @time:		Current time from scheduler
 113 *
 114 * This structure is used in the cpudata structure to store performance sample
 115 * data for choosing next P State.
 116 */
 117struct sample {
 118	int32_t core_avg_perf;
 119	int32_t busy_scaled;
 120	u64 aperf;
 121	u64 mperf;
 122	u64 tsc;
 
 123	u64 time;
 124};
 125
 126/**
 127 * struct pstate_data - Store P state data
 128 * @current_pstate:	Current requested P state
 129 * @min_pstate:		Min P state possible for this platform
 130 * @max_pstate:		Max P state possible for this platform
 131 * @max_pstate_physical:This is physical Max P state for a processor
 132 *			This can be higher than the max_pstate which can
 133 *			be limited by platform thermal design power limits
 134 * @scaling:		Scaling factor to  convert frequency to cpufreq
 135 *			frequency units
 136 * @turbo_pstate:	Max Turbo P state possible for this platform
 137 * @max_freq:		@max_pstate frequency in cpufreq units
 138 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
 139 *
 140 * Stores the per cpu model P state limits and current P state.
 141 */
 142struct pstate_data {
 143	int	current_pstate;
 144	int	min_pstate;
 145	int	max_pstate;
 146	int	max_pstate_physical;
 147	int	scaling;
 148	int	turbo_pstate;
 149	unsigned int max_freq;
 150	unsigned int turbo_freq;
 151};
 152
 153/**
 154 * struct vid_data -	Stores voltage information data
 155 * @min:		VID data for this platform corresponding to
 156 *			the lowest P state
 157 * @max:		VID data corresponding to the highest P State.
 158 * @turbo:		VID data for turbo P state
 159 * @ratio:		Ratio of (vid max - vid min) /
 160 *			(max P state - Min P State)
 161 *
 162 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 163 * This data is used in Atom platforms, where in addition to target P state,
 164 * the voltage data needs to be specified to select next P State.
 165 */
 166struct vid_data {
 167	int min;
 168	int max;
 169	int turbo;
 170	int32_t ratio;
 171};
 172
 173/**
 174 * struct global_params - Global parameters, mostly tunable via sysfs.
 175 * @no_turbo:		Whether or not to use turbo P-states.
 176 * @turbo_disabled:	Whether or not turbo P-states are available at all,
 177 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 178 *			not the maximum reported turbo P-state is different from
 179 *			the maximum reported non-turbo one.
 180 * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
 181 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 182 *			P-state capacity.
 183 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 184 *			P-state capacity.
 185 */
 186struct global_params {
 187	bool no_turbo;
 188	bool turbo_disabled;
 189	bool turbo_disabled_mf;
 190	int max_perf_pct;
 191	int min_perf_pct;
 
 
 192};
 193
 194/**
 195 * struct cpudata -	Per CPU instance data storage
 196 * @cpu:		CPU number for this instance data
 197 * @policy:		CPUFreq policy value
 198 * @update_util:	CPUFreq utility callback information
 199 * @update_util_set:	CPUFreq utility callback is set
 200 * @iowait_boost:	iowait-related boost fraction
 201 * @last_update:	Time of the last update.
 202 * @pstate:		Stores P state limits for this CPU
 203 * @vid:		Stores VID limits for this CPU
 
 204 * @last_sample_time:	Last Sample time
 205 * @aperf_mperf_shift:	APERF vs MPERF counting frequency difference
 206 * @prev_aperf:		Last APERF value read from APERF MSR
 207 * @prev_mperf:		Last MPERF value read from MPERF MSR
 208 * @prev_tsc:		Last timestamp counter (TSC) value
 209 * @prev_cummulative_iowait: IO Wait time difference from last and
 210 *			current sample
 211 * @sample:		Storage for storing last Sample data
 212 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 213 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
 214 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 215 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
 216 * @epp_powersave:	Last saved HWP energy performance preference
 217 *			(EPP) or energy performance bias (EPB),
 218 *			when policy switched to performance
 219 * @epp_policy:		Last saved policy used to set EPP/EPB
 220 * @epp_default:	Power on default HWP energy performance
 221 *			preference/bias
 222 * @epp_cached		Cached HWP energy-performance preference value
 223 * @hwp_req_cached:	Cached value of the last HWP Request MSR
 224 * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
 225 * @last_io_update:	Last time when IO wake flag was set
 226 * @sched_flags:	Store scheduler flags for possible cross CPU update
 227 * @hwp_boost_min:	Last HWP boosted min performance
 228 * @suspended:		Whether or not the driver has been suspended.
 229 *
 230 * This structure stores per CPU instance data for all CPUs.
 231 */
 232struct cpudata {
 233	int cpu;
 234
 235	unsigned int policy;
 236	struct update_util_data update_util;
 237	bool   update_util_set;
 238
 239	struct pstate_data pstate;
 240	struct vid_data vid;
 
 241
 242	u64	last_update;
 243	u64	last_sample_time;
 244	u64	aperf_mperf_shift;
 245	u64	prev_aperf;
 246	u64	prev_mperf;
 247	u64	prev_tsc;
 248	u64	prev_cummulative_iowait;
 249	struct sample sample;
 250	int32_t	min_perf_ratio;
 251	int32_t	max_perf_ratio;
 252#ifdef CONFIG_ACPI
 253	struct acpi_processor_performance acpi_perf_data;
 254	bool valid_pss_table;
 255#endif
 256	unsigned int iowait_boost;
 257	s16 epp_powersave;
 258	s16 epp_policy;
 259	s16 epp_default;
 260	s16 epp_cached;
 261	u64 hwp_req_cached;
 262	u64 hwp_cap_cached;
 263	u64 last_io_update;
 264	unsigned int sched_flags;
 265	u32 hwp_boost_min;
 266	bool suspended;
 267};
 268
 269static struct cpudata **all_cpu_data;
 270
 271/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 272 * struct pstate_funcs - Per CPU model specific callbacks
 273 * @get_max:		Callback to get maximum non turbo effective P state
 274 * @get_max_physical:	Callback to get maximum non turbo physical P state
 275 * @get_min:		Callback to get minimum P state
 276 * @get_turbo:		Callback to get turbo P state
 277 * @get_scaling:	Callback to get frequency scaling factor
 278 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
 279 * @get_val:		Callback to convert P state to actual MSR write value
 280 * @get_vid:		Callback to get VID data for Atom platforms
 
 281 *
 282 * Core and Atom CPU models have different way to get P State limits. This
 283 * structure is used to store those callbacks.
 284 */
 285struct pstate_funcs {
 286	int (*get_max)(void);
 287	int (*get_max_physical)(void);
 288	int (*get_min)(void);
 289	int (*get_turbo)(void);
 290	int (*get_scaling)(void);
 291	int (*get_aperf_mperf_shift)(void);
 292	u64 (*get_val)(struct cpudata*, int pstate);
 293	void (*get_vid)(struct cpudata *);
 
 294};
 295
 296static struct pstate_funcs pstate_funcs __read_mostly;
 297
 298static int hwp_active __read_mostly;
 299static int hwp_mode_bdw __read_mostly;
 300static bool per_cpu_limits __read_mostly;
 301static bool hwp_boost __read_mostly;
 302
 303static struct cpufreq_driver *intel_pstate_driver __read_mostly;
 304
 305#ifdef CONFIG_ACPI
 306static bool acpi_ppc;
 307#endif
 308
 309static struct global_params global;
 310
 311static DEFINE_MUTEX(intel_pstate_driver_lock);
 312static DEFINE_MUTEX(intel_pstate_limits_lock);
 313
 314#ifdef CONFIG_ACPI
 315
 316static bool intel_pstate_acpi_pm_profile_server(void)
 317{
 318	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
 319	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
 320		return true;
 321
 322	return false;
 323}
 324
 325static bool intel_pstate_get_ppc_enable_status(void)
 326{
 327	if (intel_pstate_acpi_pm_profile_server())
 328		return true;
 329
 330	return acpi_ppc;
 331}
 332
 333#ifdef CONFIG_ACPI_CPPC_LIB
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 334
 335/* The work item is needed to avoid CPU hotplug locking issues */
 336static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
 337{
 338	sched_set_itmt_support();
 
 
 339}
 340
 341static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
 342
 343static void intel_pstate_set_itmt_prio(int cpu)
 344{
 345	struct cppc_perf_caps cppc_perf;
 346	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
 347	int ret;
 348
 349	ret = cppc_get_perf_caps(cpu, &cppc_perf);
 350	if (ret)
 351		return;
 352
 353	/*
 354	 * The priorities can be set regardless of whether or not
 355	 * sched_set_itmt_support(true) has been called and it is valid to
 356	 * update them at any time after it has been called.
 357	 */
 358	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
 359
 360	if (max_highest_perf <= min_highest_perf) {
 361		if (cppc_perf.highest_perf > max_highest_perf)
 362			max_highest_perf = cppc_perf.highest_perf;
 363
 364		if (cppc_perf.highest_perf < min_highest_perf)
 365			min_highest_perf = cppc_perf.highest_perf;
 366
 367		if (max_highest_perf > min_highest_perf) {
 368			/*
 369			 * This code can be run during CPU online under the
 370			 * CPU hotplug locks, so sched_set_itmt_support()
 371			 * cannot be called from here.  Queue up a work item
 372			 * to invoke it.
 373			 */
 374			schedule_work(&sched_itmt_work);
 375		}
 376	}
 377}
 378
 379static int intel_pstate_get_cppc_guranteed(int cpu)
 380{
 381	struct cppc_perf_caps cppc_perf;
 382	int ret;
 383
 384	ret = cppc_get_perf_caps(cpu, &cppc_perf);
 385	if (ret)
 386		return ret;
 387
 388	if (cppc_perf.guaranteed_perf)
 389		return cppc_perf.guaranteed_perf;
 390
 391	return cppc_perf.nominal_perf;
 392}
 393
 394#else /* CONFIG_ACPI_CPPC_LIB */
 395static void intel_pstate_set_itmt_prio(int cpu)
 396{
 
 397}
 398#endif /* CONFIG_ACPI_CPPC_LIB */
 399
 400static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
 401{
 402	struct cpudata *cpu;
 403	int ret;
 404	int i;
 405
 406	if (hwp_active) {
 407		intel_pstate_set_itmt_prio(policy->cpu);
 408		return;
 409	}
 410
 411	if (!intel_pstate_get_ppc_enable_status())
 412		return;
 413
 414	cpu = all_cpu_data[policy->cpu];
 415
 416	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
 417						  policy->cpu);
 418	if (ret)
 419		return;
 420
 421	/*
 422	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
 423	 * guarantee that the states returned by it map to the states in our
 424	 * list directly.
 425	 */
 426	if (cpu->acpi_perf_data.control_register.space_id !=
 427						ACPI_ADR_SPACE_FIXED_HARDWARE)
 428		goto err;
 429
 430	/*
 431	 * If there is only one entry _PSS, simply ignore _PSS and continue as
 432	 * usual without taking _PSS into account
 433	 */
 434	if (cpu->acpi_perf_data.state_count < 2)
 435		goto err;
 436
 437	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
 438	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
 439		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
 440			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
 441			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
 442			 (u32) cpu->acpi_perf_data.states[i].power,
 443			 (u32) cpu->acpi_perf_data.states[i].control);
 444	}
 445
 446	/*
 447	 * The _PSS table doesn't contain whole turbo frequency range.
 448	 * This just contains +1 MHZ above the max non turbo frequency,
 449	 * with control value corresponding to max turbo ratio. But
 450	 * when cpufreq set policy is called, it will call with this
 451	 * max frequency, which will cause a reduced performance as
 452	 * this driver uses real max turbo frequency as the max
 453	 * frequency. So correct this frequency in _PSS table to
 454	 * correct max turbo frequency based on the turbo state.
 455	 * Also need to convert to MHz as _PSS freq is in MHz.
 456	 */
 457	if (!global.turbo_disabled)
 458		cpu->acpi_perf_data.states[0].core_frequency =
 459					policy->cpuinfo.max_freq / 1000;
 460	cpu->valid_pss_table = true;
 461	pr_debug("_PPC limits will be enforced\n");
 462
 463	return;
 
 464
 465 err:
 466	cpu->valid_pss_table = false;
 467	acpi_processor_unregister_performance(policy->cpu);
 468}
 469
 470static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
 471{
 472	struct cpudata *cpu;
 473
 474	cpu = all_cpu_data[policy->cpu];
 475	if (!cpu->valid_pss_table)
 476		return;
 477
 478	acpi_processor_unregister_performance(policy->cpu);
 479}
 480#else /* CONFIG_ACPI */
 481static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
 482{
 483}
 
 
 484
 485static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
 486{
 487}
 488
 489static inline bool intel_pstate_acpi_pm_profile_server(void)
 490{
 491	return false;
 492}
 493#endif /* CONFIG_ACPI */
 494
 495#ifndef CONFIG_ACPI_CPPC_LIB
 496static int intel_pstate_get_cppc_guranteed(int cpu)
 497{
 498	return -ENOTSUPP;
 499}
 500#endif /* CONFIG_ACPI_CPPC_LIB */
 501
 502static inline void update_turbo_state(void)
 503{
 504	u64 misc_en;
 505	struct cpudata *cpu;
 506
 507	cpu = all_cpu_data[0];
 508	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
 509	global.turbo_disabled =
 510		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
 511		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
 512}
 513
 514static int min_perf_pct_min(void)
 515{
 516	struct cpudata *cpu = all_cpu_data[0];
 517	int turbo_pstate = cpu->pstate.turbo_pstate;
 518
 519	return turbo_pstate ?
 520		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
 521}
 522
 523static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
 524{
 525	u64 epb;
 526	int ret;
 527
 528	if (!boot_cpu_has(X86_FEATURE_EPB))
 529		return -ENXIO;
 530
 531	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
 532	if (ret)
 533		return (s16)ret;
 534
 535	return (s16)(epb & 0x0f);
 536}
 537
 538static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
 539{
 540	s16 epp;
 541
 542	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 543		/*
 544		 * When hwp_req_data is 0, means that caller didn't read
 545		 * MSR_HWP_REQUEST, so need to read and get EPP.
 546		 */
 547		if (!hwp_req_data) {
 548			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
 549					    &hwp_req_data);
 550			if (epp)
 551				return epp;
 552		}
 553		epp = (hwp_req_data >> 24) & 0xff;
 554	} else {
 555		/* When there is no EPP present, HWP uses EPB settings */
 556		epp = intel_pstate_get_epb(cpu_data);
 557	}
 558
 559	return epp;
 560}
 561
 562static int intel_pstate_set_epb(int cpu, s16 pref)
 563{
 564	u64 epb;
 565	int ret;
 566
 567	if (!boot_cpu_has(X86_FEATURE_EPB))
 568		return -ENXIO;
 569
 570	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
 571	if (ret)
 572		return ret;
 573
 574	epb = (epb & ~0x0f) | pref;
 575	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
 576
 577	return 0;
 578}
 579
 580/*
 581 * EPP/EPB display strings corresponding to EPP index in the
 582 * energy_perf_strings[]
 583 *	index		String
 584 *-------------------------------------
 585 *	0		default
 586 *	1		performance
 587 *	2		balance_performance
 588 *	3		balance_power
 589 *	4		power
 590 */
 591static const char * const energy_perf_strings[] = {
 592	"default",
 593	"performance",
 594	"balance_performance",
 595	"balance_power",
 596	"power",
 597	NULL
 598};
 599static const unsigned int epp_values[] = {
 600	HWP_EPP_PERFORMANCE,
 601	HWP_EPP_BALANCE_PERFORMANCE,
 602	HWP_EPP_BALANCE_POWERSAVE,
 603	HWP_EPP_POWERSAVE
 604};
 605
 606static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
 607{
 608	s16 epp;
 609	int index = -EINVAL;
 610
 611	*raw_epp = 0;
 612	epp = intel_pstate_get_epp(cpu_data, 0);
 613	if (epp < 0)
 614		return epp;
 615
 616	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 617		if (epp == HWP_EPP_PERFORMANCE)
 618			return 1;
 619		if (epp == HWP_EPP_BALANCE_PERFORMANCE)
 620			return 2;
 621		if (epp == HWP_EPP_BALANCE_POWERSAVE)
 622			return 3;
 623		if (epp == HWP_EPP_POWERSAVE)
 624			return 4;
 625		*raw_epp = epp;
 626		return 0;
 627	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
 628		/*
 629		 * Range:
 630		 *	0x00-0x03	:	Performance
 631		 *	0x04-0x07	:	Balance performance
 632		 *	0x08-0x0B	:	Balance power
 633		 *	0x0C-0x0F	:	Power
 634		 * The EPB is a 4 bit value, but our ranges restrict the
 635		 * value which can be set. Here only using top two bits
 636		 * effectively.
 637		 */
 638		index = (epp >> 2) + 1;
 639	}
 640
 641	return index;
 642}
 643
 644static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
 645{
 646	int ret;
 647
 648	/*
 649	 * Use the cached HWP Request MSR value, because in the active mode the
 650	 * register itself may be updated by intel_pstate_hwp_boost_up() or
 651	 * intel_pstate_hwp_boost_down() at any time.
 652	 */
 653	u64 value = READ_ONCE(cpu->hwp_req_cached);
 654
 655	value &= ~GENMASK_ULL(31, 24);
 656	value |= (u64)epp << 24;
 657	/*
 658	 * The only other updater of hwp_req_cached in the active mode,
 659	 * intel_pstate_hwp_set(), is called under the same lock as this
 660	 * function, so it cannot run in parallel with the update below.
 661	 */
 662	WRITE_ONCE(cpu->hwp_req_cached, value);
 663	ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
 664	if (!ret)
 665		cpu->epp_cached = epp;
 666
 667	return ret;
 668}
 669
 670static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
 671					      int pref_index, bool use_raw,
 672					      u32 raw_epp)
 673{
 674	int epp = -EINVAL;
 675	int ret;
 676
 677	if (!pref_index)
 678		epp = cpu_data->epp_default;
 679
 680	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 681		if (use_raw)
 682			epp = raw_epp;
 683		else if (epp == -EINVAL)
 684			epp = epp_values[pref_index - 1];
 685
 686		/*
 687		 * To avoid confusion, refuse to set EPP to any values different
 688		 * from 0 (performance) if the current policy is "performance",
 689		 * because those values would be overridden.
 690		 */
 691		if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
 692			return -EBUSY;
 693
 694		ret = intel_pstate_set_epp(cpu_data, epp);
 695	} else {
 696		if (epp == -EINVAL)
 697			epp = (pref_index - 1) << 2;
 698		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
 699	}
 700
 701	return ret;
 702}
 703
 704static ssize_t show_energy_performance_available_preferences(
 705				struct cpufreq_policy *policy, char *buf)
 706{
 707	int i = 0;
 708	int ret = 0;
 709
 710	while (energy_perf_strings[i] != NULL)
 711		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
 712
 713	ret += sprintf(&buf[ret], "\n");
 714
 715	return ret;
 716}
 717
 718cpufreq_freq_attr_ro(energy_performance_available_preferences);
 719
 720static struct cpufreq_driver intel_pstate;
 721
 722static ssize_t store_energy_performance_preference(
 723		struct cpufreq_policy *policy, const char *buf, size_t count)
 724{
 725	struct cpudata *cpu = all_cpu_data[policy->cpu];
 726	char str_preference[21];
 727	bool raw = false;
 728	ssize_t ret;
 729	u32 epp = 0;
 730
 731	ret = sscanf(buf, "%20s", str_preference);
 732	if (ret != 1)
 733		return -EINVAL;
 734
 735	ret = match_string(energy_perf_strings, -1, str_preference);
 736	if (ret < 0) {
 737		if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
 738			return ret;
 739
 740		ret = kstrtouint(buf, 10, &epp);
 741		if (ret)
 742			return ret;
 743
 744		if (epp > 255)
 745			return -EINVAL;
 746
 747		raw = true;
 748	}
 749
 750	/*
 751	 * This function runs with the policy R/W semaphore held, which
 752	 * guarantees that the driver pointer will not change while it is
 753	 * running.
 754	 */
 755	if (!intel_pstate_driver)
 756		return -EAGAIN;
 757
 758	mutex_lock(&intel_pstate_limits_lock);
 759
 760	if (intel_pstate_driver == &intel_pstate) {
 761		ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
 762	} else {
 763		/*
 764		 * In the passive mode the governor needs to be stopped on the
 765		 * target CPU before the EPP update and restarted after it,
 766		 * which is super-heavy-weight, so make sure it is worth doing
 767		 * upfront.
 768		 */
 769		if (!raw)
 770			epp = ret ? epp_values[ret - 1] : cpu->epp_default;
 771
 772		if (cpu->epp_cached != epp) {
 773			int err;
 774
 775			cpufreq_stop_governor(policy);
 776			ret = intel_pstate_set_epp(cpu, epp);
 777			err = cpufreq_start_governor(policy);
 778			if (!ret)
 779				ret = err;
 780		}
 781	}
 782
 783	mutex_unlock(&intel_pstate_limits_lock);
 784
 785	return ret ?: count;
 786}
 787
 788static ssize_t show_energy_performance_preference(
 789				struct cpufreq_policy *policy, char *buf)
 790{
 791	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
 792	int preference, raw_epp;
 793
 794	preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
 795	if (preference < 0)
 796		return preference;
 797
 798	if (raw_epp)
 799		return  sprintf(buf, "%d\n", raw_epp);
 800	else
 801		return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
 802}
 803
 804cpufreq_freq_attr_rw(energy_performance_preference);
 805
 806static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
 807{
 808	struct cpudata *cpu;
 809	u64 cap;
 810	int ratio;
 811
 812	ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
 813	if (ratio <= 0) {
 814		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
 815		ratio = HWP_GUARANTEED_PERF(cap);
 816	}
 817
 818	cpu = all_cpu_data[policy->cpu];
 819
 820	return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
 821}
 822
 823cpufreq_freq_attr_ro(base_frequency);
 824
 825static struct freq_attr *hwp_cpufreq_attrs[] = {
 826	&energy_performance_preference,
 827	&energy_performance_available_preferences,
 828	&base_frequency,
 829	NULL,
 830};
 831
 832static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
 833				     int *current_max)
 834{
 835	u64 cap;
 836
 837	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
 838	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
 839	if (global.no_turbo || global.turbo_disabled)
 840		*current_max = HWP_GUARANTEED_PERF(cap);
 841	else
 842		*current_max = HWP_HIGHEST_PERF(cap);
 843
 844	*phy_max = HWP_HIGHEST_PERF(cap);
 845}
 846
 847static void intel_pstate_hwp_set(unsigned int cpu)
 848{
 849	struct cpudata *cpu_data = all_cpu_data[cpu];
 850	int max, min;
 851	u64 value;
 852	s16 epp;
 853
 854	max = cpu_data->max_perf_ratio;
 855	min = cpu_data->min_perf_ratio;
 856
 857	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
 858		min = max;
 859
 860	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
 861
 862	value &= ~HWP_MIN_PERF(~0L);
 863	value |= HWP_MIN_PERF(min);
 864
 865	value &= ~HWP_MAX_PERF(~0L);
 866	value |= HWP_MAX_PERF(max);
 867
 868	if (cpu_data->epp_policy == cpu_data->policy)
 869		goto skip_epp;
 870
 871	cpu_data->epp_policy = cpu_data->policy;
 872
 873	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
 874		epp = intel_pstate_get_epp(cpu_data, value);
 875		cpu_data->epp_powersave = epp;
 876		/* If EPP read was failed, then don't try to write */
 877		if (epp < 0)
 878			goto skip_epp;
 879
 880		epp = 0;
 881	} else {
 882		/* skip setting EPP, when saved value is invalid */
 883		if (cpu_data->epp_powersave < 0)
 884			goto skip_epp;
 885
 886		/*
 887		 * No need to restore EPP when it is not zero. This
 888		 * means:
 889		 *  - Policy is not changed
 890		 *  - user has manually changed
 891		 *  - Error reading EPB
 892		 */
 893		epp = intel_pstate_get_epp(cpu_data, value);
 894		if (epp)
 895			goto skip_epp;
 896
 897		epp = cpu_data->epp_powersave;
 898	}
 899	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 900		value &= ~GENMASK_ULL(31, 24);
 901		value |= (u64)epp << 24;
 902	} else {
 903		intel_pstate_set_epb(cpu, epp);
 904	}
 905skip_epp:
 906	WRITE_ONCE(cpu_data->hwp_req_cached, value);
 907	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
 908}
 909
 910static void intel_pstate_hwp_offline(struct cpudata *cpu)
 911{
 912	u64 value = READ_ONCE(cpu->hwp_req_cached);
 913	int min_perf;
 914
 915	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 916		/*
 917		 * In case the EPP has been set to "performance" by the
 918		 * active mode "performance" scaling algorithm, replace that
 919		 * temporary value with the cached EPP one.
 920		 */
 921		value &= ~GENMASK_ULL(31, 24);
 922		value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
 923		WRITE_ONCE(cpu->hwp_req_cached, value);
 924	}
 925
 926	value &= ~GENMASK_ULL(31, 0);
 927	min_perf = HWP_LOWEST_PERF(cpu->hwp_cap_cached);
 928
 929	/* Set hwp_max = hwp_min */
 930	value |= HWP_MAX_PERF(min_perf);
 931	value |= HWP_MIN_PERF(min_perf);
 932
 933	/* Set EPP to min */
 934	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
 935		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
 936
 937	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
 938}
 939
 940#define POWER_CTL_EE_ENABLE	1
 941#define POWER_CTL_EE_DISABLE	2
 942
 943static int power_ctl_ee_state;
 944
 945static void set_power_ctl_ee_state(bool input)
 946{
 947	u64 power_ctl;
 948
 949	mutex_lock(&intel_pstate_driver_lock);
 950	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
 951	if (input) {
 952		power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
 953		power_ctl_ee_state = POWER_CTL_EE_ENABLE;
 954	} else {
 955		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
 956		power_ctl_ee_state = POWER_CTL_EE_DISABLE;
 957	}
 958	wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
 959	mutex_unlock(&intel_pstate_driver_lock);
 960}
 961
 962static void intel_pstate_hwp_enable(struct cpudata *cpudata);
 963
 964static void intel_pstate_hwp_reenable(struct cpudata *cpu)
 965{
 966	intel_pstate_hwp_enable(cpu);
 967	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
 
 968}
 969
 970static int intel_pstate_suspend(struct cpufreq_policy *policy)
 
 971{
 972	struct cpudata *cpu = all_cpu_data[policy->cpu];
 973
 974	pr_debug("CPU %d suspending\n", cpu->cpu);
 975
 976	cpu->suspended = true;
 977
 978	return 0;
 979}
 980
 981static int intel_pstate_resume(struct cpufreq_policy *policy)
 982{
 983	struct cpudata *cpu = all_cpu_data[policy->cpu];
 984
 985	pr_debug("CPU %d resuming\n", cpu->cpu);
 986
 987	/* Only restore if the system default is changed */
 988	if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
 989		set_power_ctl_ee_state(true);
 990	else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
 991		set_power_ctl_ee_state(false);
 992
 993	if (cpu->suspended && hwp_active) {
 994		mutex_lock(&intel_pstate_limits_lock);
 995
 996		/* Re-enable HWP, because "online" has not done that. */
 997		intel_pstate_hwp_reenable(cpu);
 998
 999		mutex_unlock(&intel_pstate_limits_lock);
1000	}
1001
1002	cpu->suspended = false;
1003
1004	return 0;
1005}
 
1006
1007static void intel_pstate_update_policies(void)
1008{
1009	int cpu;
 
1010
1011	for_each_possible_cpu(cpu)
1012		cpufreq_update_policy(cpu);
1013}
 
 
 
 
 
 
1014
1015static void intel_pstate_update_max_freq(unsigned int cpu)
1016{
1017	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1018	struct cpudata *cpudata;
1019
1020	if (!policy)
1021		return;
1022
1023	cpudata = all_cpu_data[cpu];
1024	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1025			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1026
1027	refresh_frequency_limits(policy);
1028
1029	cpufreq_cpu_release(policy);
1030}
1031
1032static void intel_pstate_update_limits(unsigned int cpu)
1033{
1034	mutex_lock(&intel_pstate_driver_lock);
1035
1036	update_turbo_state();
1037	/*
1038	 * If turbo has been turned on or off globally, policy limits for
1039	 * all CPUs need to be updated to reflect that.
1040	 */
1041	if (global.turbo_disabled_mf != global.turbo_disabled) {
1042		global.turbo_disabled_mf = global.turbo_disabled;
1043		arch_set_max_freq_ratio(global.turbo_disabled);
1044		for_each_possible_cpu(cpu)
1045			intel_pstate_update_max_freq(cpu);
1046	} else {
1047		cpufreq_update_policy(cpu);
1048	}
1049
1050	mutex_unlock(&intel_pstate_driver_lock);
1051}
1052
 
 
1053/************************** sysfs begin ************************/
1054#define show_one(file_name, object)					\
1055	static ssize_t show_##file_name					\
1056	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
1057	{								\
1058		return sprintf(buf, "%u\n", global.object);		\
1059	}
1060
1061static ssize_t intel_pstate_show_status(char *buf);
1062static int intel_pstate_update_status(const char *buf, size_t size);
1063
1064static ssize_t show_status(struct kobject *kobj,
1065			   struct kobj_attribute *attr, char *buf)
1066{
1067	ssize_t ret;
1068
1069	mutex_lock(&intel_pstate_driver_lock);
1070	ret = intel_pstate_show_status(buf);
1071	mutex_unlock(&intel_pstate_driver_lock);
1072
1073	return ret;
1074}
1075
1076static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1077			    const char *buf, size_t count)
1078{
1079	char *p = memchr(buf, '\n', count);
1080	int ret;
1081
1082	mutex_lock(&intel_pstate_driver_lock);
1083	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1084	mutex_unlock(&intel_pstate_driver_lock);
1085
1086	return ret < 0 ? ret : count;
1087}
1088
1089static ssize_t show_turbo_pct(struct kobject *kobj,
1090				struct kobj_attribute *attr, char *buf)
1091{
1092	struct cpudata *cpu;
1093	int total, no_turbo, turbo_pct;
1094	uint32_t turbo_fp;
1095
1096	mutex_lock(&intel_pstate_driver_lock);
1097
1098	if (!intel_pstate_driver) {
1099		mutex_unlock(&intel_pstate_driver_lock);
1100		return -EAGAIN;
1101	}
1102
1103	cpu = all_cpu_data[0];
1104
1105	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1106	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1107	turbo_fp = div_fp(no_turbo, total);
1108	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1109
1110	mutex_unlock(&intel_pstate_driver_lock);
1111
1112	return sprintf(buf, "%u\n", turbo_pct);
1113}
1114
1115static ssize_t show_num_pstates(struct kobject *kobj,
1116				struct kobj_attribute *attr, char *buf)
1117{
1118	struct cpudata *cpu;
1119	int total;
1120
1121	mutex_lock(&intel_pstate_driver_lock);
1122
1123	if (!intel_pstate_driver) {
1124		mutex_unlock(&intel_pstate_driver_lock);
1125		return -EAGAIN;
1126	}
1127
1128	cpu = all_cpu_data[0];
1129	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1130
1131	mutex_unlock(&intel_pstate_driver_lock);
1132
1133	return sprintf(buf, "%u\n", total);
1134}
1135
1136static ssize_t show_no_turbo(struct kobject *kobj,
1137			     struct kobj_attribute *attr, char *buf)
1138{
1139	ssize_t ret;
1140
1141	mutex_lock(&intel_pstate_driver_lock);
1142
1143	if (!intel_pstate_driver) {
1144		mutex_unlock(&intel_pstate_driver_lock);
1145		return -EAGAIN;
1146	}
1147
1148	update_turbo_state();
1149	if (global.turbo_disabled)
1150		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1151	else
1152		ret = sprintf(buf, "%u\n", global.no_turbo);
1153
1154	mutex_unlock(&intel_pstate_driver_lock);
1155
1156	return ret;
1157}
1158
1159static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1160			      const char *buf, size_t count)
1161{
1162	unsigned int input;
1163	int ret;
1164
1165	ret = sscanf(buf, "%u", &input);
1166	if (ret != 1)
1167		return -EINVAL;
1168
1169	mutex_lock(&intel_pstate_driver_lock);
1170
1171	if (!intel_pstate_driver) {
1172		mutex_unlock(&intel_pstate_driver_lock);
1173		return -EAGAIN;
1174	}
1175
1176	mutex_lock(&intel_pstate_limits_lock);
1177
1178	update_turbo_state();
1179	if (global.turbo_disabled) {
1180		pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1181		mutex_unlock(&intel_pstate_limits_lock);
1182		mutex_unlock(&intel_pstate_driver_lock);
1183		return -EPERM;
1184	}
1185
1186	global.no_turbo = clamp_t(int, input, 0, 1);
1187
1188	if (global.no_turbo) {
1189		struct cpudata *cpu = all_cpu_data[0];
1190		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1191
1192		/* Squash the global minimum into the permitted range. */
1193		if (global.min_perf_pct > pct)
1194			global.min_perf_pct = pct;
1195	}
1196
1197	mutex_unlock(&intel_pstate_limits_lock);
1198
1199	intel_pstate_update_policies();
1200
1201	mutex_unlock(&intel_pstate_driver_lock);
1202
1203	return count;
1204}
1205
1206static void update_qos_request(enum freq_qos_req_type type)
1207{
1208	int max_state, turbo_max, freq, i, perf_pct;
1209	struct freq_qos_request *req;
1210	struct cpufreq_policy *policy;
1211
1212	for_each_possible_cpu(i) {
1213		struct cpudata *cpu = all_cpu_data[i];
1214
1215		policy = cpufreq_cpu_get(i);
1216		if (!policy)
1217			continue;
1218
1219		req = policy->driver_data;
1220		cpufreq_cpu_put(policy);
1221
1222		if (!req)
1223			continue;
1224
1225		if (hwp_active)
1226			intel_pstate_get_hwp_max(i, &turbo_max, &max_state);
1227		else
1228			turbo_max = cpu->pstate.turbo_pstate;
1229
1230		if (type == FREQ_QOS_MIN) {
1231			perf_pct = global.min_perf_pct;
1232		} else {
1233			req++;
1234			perf_pct = global.max_perf_pct;
1235		}
1236
1237		freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
1238		freq *= cpu->pstate.scaling;
1239
1240		if (freq_qos_update_request(req, freq) < 0)
1241			pr_warn("Failed to update freq constraint: CPU%d\n", i);
1242	}
1243}
1244
1245static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1246				  const char *buf, size_t count)
1247{
1248	unsigned int input;
1249	int ret;
1250
1251	ret = sscanf(buf, "%u", &input);
1252	if (ret != 1)
1253		return -EINVAL;
1254
1255	mutex_lock(&intel_pstate_driver_lock);
1256
1257	if (!intel_pstate_driver) {
1258		mutex_unlock(&intel_pstate_driver_lock);
1259		return -EAGAIN;
1260	}
1261
1262	mutex_lock(&intel_pstate_limits_lock);
1263
1264	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1265
1266	mutex_unlock(&intel_pstate_limits_lock);
1267
1268	if (intel_pstate_driver == &intel_pstate)
1269		intel_pstate_update_policies();
1270	else
1271		update_qos_request(FREQ_QOS_MAX);
1272
1273	mutex_unlock(&intel_pstate_driver_lock);
1274
 
 
1275	return count;
1276}
1277
1278static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1279				  const char *buf, size_t count)
1280{
1281	unsigned int input;
1282	int ret;
1283
1284	ret = sscanf(buf, "%u", &input);
1285	if (ret != 1)
1286		return -EINVAL;
1287
1288	mutex_lock(&intel_pstate_driver_lock);
1289
1290	if (!intel_pstate_driver) {
1291		mutex_unlock(&intel_pstate_driver_lock);
1292		return -EAGAIN;
1293	}
1294
1295	mutex_lock(&intel_pstate_limits_lock);
1296
1297	global.min_perf_pct = clamp_t(int, input,
1298				      min_perf_pct_min(), global.max_perf_pct);
1299
1300	mutex_unlock(&intel_pstate_limits_lock);
1301
1302	if (intel_pstate_driver == &intel_pstate)
1303		intel_pstate_update_policies();
1304	else
1305		update_qos_request(FREQ_QOS_MIN);
1306
1307	mutex_unlock(&intel_pstate_driver_lock);
1308
1309	return count;
1310}
1311
1312static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1313				struct kobj_attribute *attr, char *buf)
1314{
1315	return sprintf(buf, "%u\n", hwp_boost);
1316}
1317
1318static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1319				       struct kobj_attribute *b,
1320				       const char *buf, size_t count)
1321{
1322	unsigned int input;
1323	int ret;
1324
1325	ret = kstrtouint(buf, 10, &input);
1326	if (ret)
1327		return ret;
1328
1329	mutex_lock(&intel_pstate_driver_lock);
1330	hwp_boost = !!input;
1331	intel_pstate_update_policies();
1332	mutex_unlock(&intel_pstate_driver_lock);
1333
1334	return count;
1335}
1336
1337static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1338				      char *buf)
1339{
1340	u64 power_ctl;
1341	int enable;
1342
1343	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1344	enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1345	return sprintf(buf, "%d\n", !enable);
1346}
1347
1348static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1349				       const char *buf, size_t count)
1350{
1351	bool input;
1352	int ret;
1353
1354	ret = kstrtobool(buf, &input);
1355	if (ret)
1356		return ret;
1357
1358	set_power_ctl_ee_state(input);
1359
 
 
1360	return count;
1361}
1362
1363show_one(max_perf_pct, max_perf_pct);
1364show_one(min_perf_pct, min_perf_pct);
1365
1366define_one_global_rw(status);
1367define_one_global_rw(no_turbo);
1368define_one_global_rw(max_perf_pct);
1369define_one_global_rw(min_perf_pct);
1370define_one_global_ro(turbo_pct);
1371define_one_global_ro(num_pstates);
1372define_one_global_rw(hwp_dynamic_boost);
1373define_one_global_rw(energy_efficiency);
1374
1375static struct attribute *intel_pstate_attributes[] = {
1376	&status.attr,
1377	&no_turbo.attr,
 
 
1378	&turbo_pct.attr,
1379	&num_pstates.attr,
1380	NULL
1381};
1382
1383static const struct attribute_group intel_pstate_attr_group = {
1384	.attrs = intel_pstate_attributes,
1385};
1386
1387static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1388
1389static struct kobject *intel_pstate_kobject;
1390
1391static void __init intel_pstate_sysfs_expose_params(void)
1392{
 
1393	int rc;
1394
1395	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1396						&cpu_subsys.dev_root->kobj);
1397	if (WARN_ON(!intel_pstate_kobject))
1398		return;
1399
1400	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1401	if (WARN_ON(rc))
1402		return;
1403
1404	/*
1405	 * If per cpu limits are enforced there are no global limits, so
1406	 * return without creating max/min_perf_pct attributes
1407	 */
1408	if (per_cpu_limits)
1409		return;
1410
1411	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1412	WARN_ON(rc);
1413
1414	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1415	WARN_ON(rc);
1416
1417	if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1418		rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1419		WARN_ON(rc);
1420	}
1421}
1422
1423static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1424{
1425	int rc;
1426
1427	if (!hwp_active)
1428		return;
1429
1430	rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1431	WARN_ON_ONCE(rc);
1432}
1433
1434static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1435{
1436	if (!hwp_active)
1437		return;
1438
1439	sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1440}
1441
1442/************************** sysfs end ************************/
1443
1444static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1445{
1446	/* First disable HWP notification interrupt as we don't process them */
1447	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1448		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1449
1450	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1451	if (cpudata->epp_default == -EINVAL)
1452		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1453}
1454
1455static int atom_get_min_pstate(void)
1456{
1457	u64 value;
1458
1459	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1460	return (value >> 8) & 0x7F;
1461}
1462
1463static int atom_get_max_pstate(void)
1464{
1465	u64 value;
1466
1467	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1468	return (value >> 16) & 0x7F;
1469}
1470
1471static int atom_get_turbo_pstate(void)
1472{
1473	u64 value;
1474
1475	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1476	return value & 0x7F;
1477}
1478
1479static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1480{
1481	u64 val;
1482	int32_t vid_fp;
1483	u32 vid;
1484
1485	val = (u64)pstate << 8;
1486	if (global.no_turbo && !global.turbo_disabled)
1487		val |= (u64)1 << 32;
1488
1489	vid_fp = cpudata->vid.min + mul_fp(
1490		int_tofp(pstate - cpudata->pstate.min_pstate),
1491		cpudata->vid.ratio);
1492
1493	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1494	vid = ceiling_fp(vid_fp);
1495
1496	if (pstate > cpudata->pstate.max_pstate)
1497		vid = cpudata->vid.turbo;
1498
1499	return val | vid;
1500}
1501
1502static int silvermont_get_scaling(void)
1503{
1504	u64 value;
1505	int i;
1506	/* Defined in Table 35-6 from SDM (Sept 2015) */
1507	static int silvermont_freq_table[] = {
1508		83300, 100000, 133300, 116700, 80000};
1509
1510	rdmsrl(MSR_FSB_FREQ, value);
1511	i = value & 0x7;
1512	WARN_ON(i > 4);
1513
1514	return silvermont_freq_table[i];
1515}
1516
1517static int airmont_get_scaling(void)
1518{
1519	u64 value;
1520	int i;
1521	/* Defined in Table 35-10 from SDM (Sept 2015) */
1522	static int airmont_freq_table[] = {
1523		83300, 100000, 133300, 116700, 80000,
1524		93300, 90000, 88900, 87500};
1525
1526	rdmsrl(MSR_FSB_FREQ, value);
1527	i = value & 0xF;
1528	WARN_ON(i > 8);
1529
1530	return airmont_freq_table[i];
1531}
1532
1533static void atom_get_vid(struct cpudata *cpudata)
1534{
1535	u64 value;
1536
1537	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1538	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1539	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1540	cpudata->vid.ratio = div_fp(
1541		cpudata->vid.max - cpudata->vid.min,
1542		int_tofp(cpudata->pstate.max_pstate -
1543			cpudata->pstate.min_pstate));
1544
1545	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1546	cpudata->vid.turbo = value & 0x7f;
1547}
1548
1549static int core_get_min_pstate(void)
1550{
1551	u64 value;
1552
1553	rdmsrl(MSR_PLATFORM_INFO, value);
1554	return (value >> 40) & 0xFF;
1555}
1556
1557static int core_get_max_pstate_physical(void)
1558{
1559	u64 value;
1560
1561	rdmsrl(MSR_PLATFORM_INFO, value);
1562	return (value >> 8) & 0xFF;
1563}
1564
1565static int core_get_tdp_ratio(u64 plat_info)
1566{
1567	/* Check how many TDP levels present */
1568	if (plat_info & 0x600000000) {
1569		u64 tdp_ctrl;
1570		u64 tdp_ratio;
1571		int tdp_msr;
1572		int err;
1573
1574		/* Get the TDP level (0, 1, 2) to get ratios */
1575		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1576		if (err)
1577			return err;
1578
1579		/* TDP MSR are continuous starting at 0x648 */
1580		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1581		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1582		if (err)
1583			return err;
1584
1585		/* For level 1 and 2, bits[23:16] contain the ratio */
1586		if (tdp_ctrl & 0x03)
1587			tdp_ratio >>= 16;
1588
1589		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1590		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1591
1592		return (int)tdp_ratio;
1593	}
1594
1595	return -ENXIO;
1596}
1597
1598static int core_get_max_pstate(void)
1599{
1600	u64 tar;
1601	u64 plat_info;
1602	int max_pstate;
1603	int tdp_ratio;
1604	int err;
1605
1606	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1607	max_pstate = (plat_info >> 8) & 0xFF;
1608
1609	tdp_ratio = core_get_tdp_ratio(plat_info);
1610	if (tdp_ratio <= 0)
1611		return max_pstate;
1612
1613	if (hwp_active) {
1614		/* Turbo activation ratio is not used on HWP platforms */
1615		return tdp_ratio;
1616	}
1617
1618	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1619	if (!err) {
1620		int tar_levels;
1621
1622		/* Do some sanity checking for safety */
1623		tar_levels = tar & 0xff;
1624		if (tdp_ratio - 1 == tar_levels) {
1625			max_pstate = tar_levels;
1626			pr_debug("max_pstate=TAC %x\n", max_pstate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1627		}
1628	}
1629
 
1630	return max_pstate;
1631}
1632
1633static int core_get_turbo_pstate(void)
1634{
1635	u64 value;
1636	int nont, ret;
1637
1638	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1639	nont = core_get_max_pstate();
1640	ret = (value) & 255;
1641	if (ret <= nont)
1642		ret = nont;
1643	return ret;
1644}
1645
1646static inline int core_get_scaling(void)
1647{
1648	return 100000;
1649}
1650
1651static u64 core_get_val(struct cpudata *cpudata, int pstate)
1652{
1653	u64 val;
1654
1655	val = (u64)pstate << 8;
1656	if (global.no_turbo && !global.turbo_disabled)
1657		val |= (u64)1 << 32;
1658
1659	return val;
1660}
1661
1662static int knl_get_aperf_mperf_shift(void)
1663{
1664	return 10;
1665}
1666
1667static int knl_get_turbo_pstate(void)
1668{
1669	u64 value;
1670	int nont, ret;
1671
1672	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1673	nont = core_get_max_pstate();
1674	ret = (((value) >> 8) & 0xFF);
1675	if (ret <= nont)
1676		ret = nont;
1677	return ret;
1678}
1679
1680static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1681{
1682	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1683	cpu->pstate.current_pstate = pstate;
 
 
 
 
 
1684	/*
1685	 * Generally, there is no guarantee that this code will always run on
1686	 * the CPU being updated, so force the register update to run on the
1687	 * right CPU.
1688	 */
1689	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1690		      pstate_funcs.get_val(cpu, pstate));
 
 
 
 
1691}
1692
1693static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1694{
1695	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
 
1696}
1697
1698static void intel_pstate_max_within_limits(struct cpudata *cpu)
1699{
1700	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1701
1702	update_turbo_state();
1703	intel_pstate_set_pstate(cpu, pstate);
 
 
 
 
 
 
1704}
1705
1706static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1707{
1708	cpu->pstate.min_pstate = pstate_funcs.get_min();
1709	cpu->pstate.max_pstate = pstate_funcs.get_max();
1710	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1711	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1712	cpu->pstate.scaling = pstate_funcs.get_scaling();
1713	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1714
1715	if (hwp_active && !hwp_mode_bdw) {
1716		unsigned int phy_max, current_max;
1717
1718		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1719		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1720		cpu->pstate.turbo_pstate = phy_max;
1721	} else {
1722		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1723	}
1724
1725	if (pstate_funcs.get_aperf_mperf_shift)
1726		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1727
1728	if (pstate_funcs.get_vid)
1729		pstate_funcs.get_vid(cpu);
1730
1731	intel_pstate_set_min_pstate(cpu);
1732}
1733
1734/*
1735 * Long hold time will keep high perf limits for long time,
1736 * which negatively impacts perf/watt for some workloads,
1737 * like specpower. 3ms is based on experiements on some
1738 * workoads.
1739 */
1740static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1741
1742static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1743{
1744	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1745	u32 max_limit = (hwp_req & 0xff00) >> 8;
1746	u32 min_limit = (hwp_req & 0xff);
1747	u32 boost_level1;
1748
1749	/*
1750	 * Cases to consider (User changes via sysfs or boot time):
1751	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1752	 *	No boost, return.
1753	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1754	 *     Should result in one level boost only for P0.
1755	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1756	 *     Should result in two level boost:
1757	 *         (min + p1)/2 and P1.
1758	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1759	 *     Should result in three level boost:
1760	 *        (min + p1)/2, P1 and P0.
1761	 */
1762
1763	/* If max and min are equal or already at max, nothing to boost */
1764	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1765		return;
1766
1767	if (!cpu->hwp_boost_min)
1768		cpu->hwp_boost_min = min_limit;
1769
1770	/* level at half way mark between min and guranteed */
1771	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1772
1773	if (cpu->hwp_boost_min < boost_level1)
1774		cpu->hwp_boost_min = boost_level1;
1775	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1776		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1777	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1778		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1779		cpu->hwp_boost_min = max_limit;
1780	else
1781		return;
1782
1783	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1784	wrmsrl(MSR_HWP_REQUEST, hwp_req);
1785	cpu->last_update = cpu->sample.time;
1786}
1787
1788static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1789{
1790	if (cpu->hwp_boost_min) {
1791		bool expired;
1792
1793		/* Check if we are idle for hold time to boost down */
1794		expired = time_after64(cpu->sample.time, cpu->last_update +
1795				       hwp_boost_hold_time_ns);
1796		if (expired) {
1797			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1798			cpu->hwp_boost_min = 0;
1799		}
1800	}
1801	cpu->last_update = cpu->sample.time;
1802}
1803
1804static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1805						      u64 time)
1806{
1807	cpu->sample.time = time;
1808
1809	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1810		bool do_io = false;
1811
1812		cpu->sched_flags = 0;
1813		/*
1814		 * Set iowait_boost flag and update time. Since IO WAIT flag
1815		 * is set all the time, we can't just conclude that there is
1816		 * some IO bound activity is scheduled on this CPU with just
1817		 * one occurrence. If we receive at least two in two
1818		 * consecutive ticks, then we treat as boost candidate.
1819		 */
1820		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1821			do_io = true;
1822
1823		cpu->last_io_update = time;
1824
1825		if (do_io)
1826			intel_pstate_hwp_boost_up(cpu);
1827
1828	} else {
1829		intel_pstate_hwp_boost_down(cpu);
1830	}
1831}
1832
1833static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1834						u64 time, unsigned int flags)
1835{
1836	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1837
1838	cpu->sched_flags |= flags;
1839
1840	if (smp_processor_id() == cpu->cpu)
1841		intel_pstate_update_util_hwp_local(cpu, time);
1842}
1843
1844static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1845{
1846	struct sample *sample = &cpu->sample;
 
 
 
 
1847
1848	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1849}
1850
1851static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1852{
1853	u64 aperf, mperf;
1854	unsigned long flags;
1855	u64 tsc;
1856
1857	local_irq_save(flags);
1858	rdmsrl(MSR_IA32_APERF, aperf);
1859	rdmsrl(MSR_IA32_MPERF, mperf);
1860	tsc = rdtsc();
1861	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1862		local_irq_restore(flags);
1863		return false;
1864	}
1865	local_irq_restore(flags);
1866
1867	cpu->last_sample_time = cpu->sample.time;
1868	cpu->sample.time = time;
1869	cpu->sample.aperf = aperf;
1870	cpu->sample.mperf = mperf;
1871	cpu->sample.tsc =  tsc;
1872	cpu->sample.aperf -= cpu->prev_aperf;
1873	cpu->sample.mperf -= cpu->prev_mperf;
1874	cpu->sample.tsc -= cpu->prev_tsc;
1875
1876	cpu->prev_aperf = aperf;
1877	cpu->prev_mperf = mperf;
1878	cpu->prev_tsc = tsc;
1879	/*
1880	 * First time this function is invoked in a given cycle, all of the
1881	 * previous sample data fields are equal to zero or stale and they must
1882	 * be populated with meaningful numbers for things to work, so assume
1883	 * that sample.time will always be reset before setting the utilization
1884	 * update hook and make the caller skip the sample then.
1885	 */
1886	if (cpu->last_sample_time) {
1887		intel_pstate_calc_avg_perf(cpu);
1888		return true;
1889	}
1890	return false;
1891}
1892
1893static inline int32_t get_avg_frequency(struct cpudata *cpu)
1894{
1895	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1896}
1897
1898static inline int32_t get_avg_pstate(struct cpudata *cpu)
1899{
1900	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1901			  cpu->sample.core_avg_perf);
1902}
1903
1904static inline int32_t get_target_pstate(struct cpudata *cpu)
1905{
1906	struct sample *sample = &cpu->sample;
1907	int32_t busy_frac;
1908	int target, avg_pstate;
 
 
1909
1910	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1911			   sample->tsc);
1912
1913	if (busy_frac < cpu->iowait_boost)
1914		busy_frac = cpu->iowait_boost;
 
 
 
 
 
 
 
1915
1916	sample->busy_scaled = busy_frac * 100;
1917
1918	target = global.no_turbo || global.turbo_disabled ?
1919			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1920	target += target >> 2;
1921	target = mul_fp(target, busy_frac);
1922	if (target < cpu->pstate.min_pstate)
1923		target = cpu->pstate.min_pstate;
1924
1925	/*
1926	 * If the average P-state during the previous cycle was higher than the
1927	 * current target, add 50% of the difference to the target to reduce
1928	 * possible performance oscillations and offset possible performance
1929	 * loss related to moving the workload from one CPU to another within
1930	 * a package/module.
1931	 */
1932	avg_pstate = get_avg_pstate(cpu);
1933	if (avg_pstate > target)
1934		target += (avg_pstate - target) >> 1;
1935
1936	return target;
1937}
1938
1939static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1940{
1941	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1942	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1943
1944	return clamp_t(int, pstate, min_pstate, max_pstate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1945}
1946
1947static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1948{
 
 
 
 
 
 
1949	if (pstate == cpu->pstate.current_pstate)
1950		return;
1951
1952	cpu->pstate.current_pstate = pstate;
1953	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1954}
1955
1956static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1957{
1958	int from = cpu->pstate.current_pstate;
1959	struct sample *sample;
1960	int target_pstate;
1961
1962	update_turbo_state();
 
 
1963
1964	target_pstate = get_target_pstate(cpu);
1965	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1966	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1967	intel_pstate_update_pstate(cpu, target_pstate);
1968
1969	sample = &cpu->sample;
1970	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1971		fp_toint(sample->busy_scaled),
1972		from,
1973		cpu->pstate.current_pstate,
1974		sample->mperf,
1975		sample->aperf,
1976		sample->tsc,
1977		get_avg_frequency(cpu),
1978		fp_toint(cpu->iowait_boost * 100));
1979}
1980
1981static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1982				     unsigned int flags)
1983{
1984	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1985	u64 delta_ns;
1986
1987	/* Don't allow remote callbacks */
1988	if (smp_processor_id() != cpu->cpu)
1989		return;
1990
1991	delta_ns = time - cpu->last_update;
1992	if (flags & SCHED_CPUFREQ_IOWAIT) {
1993		/* Start over if the CPU may have been idle. */
1994		if (delta_ns > TICK_NSEC) {
1995			cpu->iowait_boost = ONE_EIGHTH_FP;
1996		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1997			cpu->iowait_boost <<= 1;
1998			if (cpu->iowait_boost > int_tofp(1))
1999				cpu->iowait_boost = int_tofp(1);
2000		} else {
2001			cpu->iowait_boost = ONE_EIGHTH_FP;
2002		}
2003	} else if (cpu->iowait_boost) {
2004		/* Clear iowait_boost if the CPU may have been idle. */
2005		if (delta_ns > TICK_NSEC)
2006			cpu->iowait_boost = 0;
2007		else
2008			cpu->iowait_boost >>= 1;
2009	}
2010	cpu->last_update = time;
2011	delta_ns = time - cpu->sample.time;
2012	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2013		return;
2014
2015	if (intel_pstate_sample(cpu, time))
2016		intel_pstate_adjust_pstate(cpu);
2017}
2018
2019static struct pstate_funcs core_funcs = {
2020	.get_max = core_get_max_pstate,
2021	.get_max_physical = core_get_max_pstate_physical,
2022	.get_min = core_get_min_pstate,
2023	.get_turbo = core_get_turbo_pstate,
2024	.get_scaling = core_get_scaling,
2025	.get_val = core_get_val,
2026};
2027
2028static const struct pstate_funcs silvermont_funcs = {
2029	.get_max = atom_get_max_pstate,
2030	.get_max_physical = atom_get_max_pstate,
2031	.get_min = atom_get_min_pstate,
2032	.get_turbo = atom_get_turbo_pstate,
2033	.get_val = atom_get_val,
2034	.get_scaling = silvermont_get_scaling,
2035	.get_vid = atom_get_vid,
2036};
2037
2038static const struct pstate_funcs airmont_funcs = {
2039	.get_max = atom_get_max_pstate,
2040	.get_max_physical = atom_get_max_pstate,
2041	.get_min = atom_get_min_pstate,
2042	.get_turbo = atom_get_turbo_pstate,
2043	.get_val = atom_get_val,
2044	.get_scaling = airmont_get_scaling,
2045	.get_vid = atom_get_vid,
2046};
2047
2048static const struct pstate_funcs knl_funcs = {
2049	.get_max = core_get_max_pstate,
2050	.get_max_physical = core_get_max_pstate_physical,
2051	.get_min = core_get_min_pstate,
2052	.get_turbo = knl_get_turbo_pstate,
2053	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2054	.get_scaling = core_get_scaling,
2055	.get_val = core_get_val,
2056};
2057
2058#define X86_MATCH(model, policy)					 \
2059	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2060					   X86_FEATURE_APERFMPERF, &policy)
2061
2062static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2063	X86_MATCH(SANDYBRIDGE,		core_funcs),
2064	X86_MATCH(SANDYBRIDGE_X,	core_funcs),
2065	X86_MATCH(ATOM_SILVERMONT,	silvermont_funcs),
2066	X86_MATCH(IVYBRIDGE,		core_funcs),
2067	X86_MATCH(HASWELL,		core_funcs),
2068	X86_MATCH(BROADWELL,		core_funcs),
2069	X86_MATCH(IVYBRIDGE_X,		core_funcs),
2070	X86_MATCH(HASWELL_X,		core_funcs),
2071	X86_MATCH(HASWELL_L,		core_funcs),
2072	X86_MATCH(HASWELL_G,		core_funcs),
2073	X86_MATCH(BROADWELL_G,		core_funcs),
2074	X86_MATCH(ATOM_AIRMONT,		airmont_funcs),
2075	X86_MATCH(SKYLAKE_L,		core_funcs),
2076	X86_MATCH(BROADWELL_X,		core_funcs),
2077	X86_MATCH(SKYLAKE,		core_funcs),
2078	X86_MATCH(BROADWELL_D,		core_funcs),
2079	X86_MATCH(XEON_PHI_KNL,		knl_funcs),
2080	X86_MATCH(XEON_PHI_KNM,		knl_funcs),
2081	X86_MATCH(ATOM_GOLDMONT,	core_funcs),
2082	X86_MATCH(ATOM_GOLDMONT_PLUS,	core_funcs),
2083	X86_MATCH(SKYLAKE_X,		core_funcs),
2084	{}
2085};
2086MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2087
2088static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2089	X86_MATCH(BROADWELL_D,		core_funcs),
2090	X86_MATCH(BROADWELL_X,		core_funcs),
2091	X86_MATCH(SKYLAKE_X,		core_funcs),
2092	{}
2093};
2094
2095static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2096	X86_MATCH(KABYLAKE,		core_funcs),
2097	{}
2098};
2099
2100static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2101	X86_MATCH(SKYLAKE_X,		core_funcs),
2102	X86_MATCH(SKYLAKE,		core_funcs),
2103	{}
2104};
2105
2106static int intel_pstate_init_cpu(unsigned int cpunum)
2107{
2108	struct cpudata *cpu;
2109
2110	cpu = all_cpu_data[cpunum];
2111
2112	if (!cpu) {
2113		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2114		if (!cpu)
2115			return -ENOMEM;
2116
2117		all_cpu_data[cpunum] = cpu;
2118
2119		cpu->cpu = cpunum;
2120
2121		cpu->epp_default = -EINVAL;
 
 
 
 
2122
2123		if (hwp_active) {
2124			const struct x86_cpu_id *id;
2125
2126			intel_pstate_hwp_enable(cpu);
2127
2128			id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2129			if (id && intel_pstate_acpi_pm_profile_server())
2130				hwp_boost = true;
2131		}
2132	} else if (hwp_active) {
2133		/*
2134		 * Re-enable HWP in case this happens after a resume from ACPI
2135		 * S3 if the CPU was offline during the whole system/resume
2136		 * cycle.
2137		 */
2138		intel_pstate_hwp_reenable(cpu);
2139	}
2140
2141	cpu->epp_powersave = -EINVAL;
2142	cpu->epp_policy = 0;
2143
2144	intel_pstate_get_cpu_pstates(cpu);
 
2145
2146	pr_debug("controlling: cpu %d\n", cpunum);
 
 
 
2147
2148	return 0;
 
 
 
 
2149}
2150
2151static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2152{
2153	struct cpudata *cpu = all_cpu_data[cpu_num];
2154
2155	if (hwp_active && !hwp_boost)
2156		return;
2157
2158	if (cpu->update_util_set)
2159		return;
2160
2161	/* Prevent intel_pstate_update_util() from using stale data. */
2162	cpu->sample.time = 0;
2163	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2164				     (hwp_active ?
2165				      intel_pstate_update_util_hwp :
2166				      intel_pstate_update_util));
2167	cpu->update_util_set = true;
2168}
2169
2170static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2171{
2172	struct cpudata *cpu_data = all_cpu_data[cpu];
2173
2174	if (!cpu_data->update_util_set)
2175		return;
2176
2177	cpufreq_remove_update_util_hook(cpu);
2178	cpu_data->update_util_set = false;
2179	synchronize_rcu();
2180}
2181
2182static int intel_pstate_get_max_freq(struct cpudata *cpu)
2183{
2184	return global.turbo_disabled || global.no_turbo ?
2185			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2186}
2187
2188static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2189					    unsigned int policy_min,
2190					    unsigned int policy_max)
2191{
2192	int max_freq = intel_pstate_get_max_freq(cpu);
2193	int32_t max_policy_perf, min_policy_perf;
2194	int max_state, turbo_max;
2195
2196	/*
2197	 * HWP needs some special consideration, because on BDX the
2198	 * HWP_REQUEST uses abstract value to represent performance
2199	 * rather than pure ratios.
2200	 */
2201	if (hwp_active) {
2202		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
2203	} else {
2204		max_state = global.no_turbo || global.turbo_disabled ?
2205			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2206		turbo_max = cpu->pstate.turbo_pstate;
2207	}
2208
2209	max_policy_perf = max_state * policy_max / max_freq;
2210	if (policy_max == policy_min) {
2211		min_policy_perf = max_policy_perf;
2212	} else {
2213		min_policy_perf = max_state * policy_min / max_freq;
2214		min_policy_perf = clamp_t(int32_t, min_policy_perf,
2215					  0, max_policy_perf);
2216	}
2217
2218	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2219		 cpu->cpu, max_state, min_policy_perf, max_policy_perf);
2220
2221	/* Normalize user input to [min_perf, max_perf] */
2222	if (per_cpu_limits) {
2223		cpu->min_perf_ratio = min_policy_perf;
2224		cpu->max_perf_ratio = max_policy_perf;
2225	} else {
2226		int32_t global_min, global_max;
2227
2228		/* Global limits are in percent of the maximum turbo P-state. */
2229		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2230		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2231		global_min = clamp_t(int32_t, global_min, 0, global_max);
2232
2233		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2234			 global_min, global_max);
2235
2236		cpu->min_perf_ratio = max(min_policy_perf, global_min);
2237		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2238		cpu->max_perf_ratio = min(max_policy_perf, global_max);
2239		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2240
2241		/* Make sure min_perf <= max_perf */
2242		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2243					  cpu->max_perf_ratio);
2244
2245	}
2246	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2247		 cpu->max_perf_ratio,
2248		 cpu->min_perf_ratio);
2249}
2250
2251static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2252{
2253	struct cpudata *cpu;
2254
2255	if (!policy->cpuinfo.max_freq)
2256		return -ENODEV;
2257
2258	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2259		 policy->cpuinfo.max_freq, policy->max);
2260
2261	cpu = all_cpu_data[policy->cpu];
2262	cpu->policy = policy->policy;
2263
2264	mutex_lock(&intel_pstate_limits_lock);
2265
2266	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2267
2268	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2269		/*
2270		 * NOHZ_FULL CPUs need this as the governor callback may not
2271		 * be invoked on them.
2272		 */
2273		intel_pstate_clear_update_util_hook(policy->cpu);
2274		intel_pstate_max_within_limits(cpu);
2275	} else {
2276		intel_pstate_set_update_util_hook(policy->cpu);
2277	}
2278
2279	if (hwp_active) {
2280		/*
2281		 * When hwp_boost was active before and dynamically it
2282		 * was turned off, in that case we need to clear the
2283		 * update util hook.
2284		 */
2285		if (!hwp_boost)
2286			intel_pstate_clear_update_util_hook(policy->cpu);
2287		intel_pstate_hwp_set(policy->cpu);
2288	}
2289
2290	mutex_unlock(&intel_pstate_limits_lock);
2291
2292	return 0;
2293}
2294
2295static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2296					   struct cpufreq_policy_data *policy)
2297{
2298	if (!hwp_active &&
2299	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2300	    policy->max < policy->cpuinfo.max_freq &&
2301	    policy->max > cpu->pstate.max_freq) {
2302		pr_debug("policy->max > max non turbo frequency\n");
2303		policy->max = policy->cpuinfo.max_freq;
2304	}
2305}
2306
2307static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2308					   struct cpufreq_policy_data *policy)
2309{
2310	update_turbo_state();
2311	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2312				     intel_pstate_get_max_freq(cpu));
2313
2314	intel_pstate_adjust_policy_max(cpu, policy);
2315}
2316
2317static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2318{
2319	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2320
2321	return 0;
2322}
2323
2324static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2325{
2326	struct cpudata *cpu = all_cpu_data[policy->cpu];
2327
2328	pr_debug("CPU %d going offline\n", cpu->cpu);
2329
2330	if (cpu->suspended)
2331		return 0;
2332
2333	/*
2334	 * If the CPU is an SMT thread and it goes offline with the performance
2335	 * settings different from the minimum, it will prevent its sibling
2336	 * from getting to lower performance levels, so force the minimum
2337	 * performance on CPU offline to prevent that from happening.
2338	 */
2339	if (hwp_active)
2340		intel_pstate_hwp_offline(cpu);
2341	else
2342		intel_pstate_set_min_pstate(cpu);
2343
2344	intel_pstate_exit_perf_limits(policy);
2345
2346	return 0;
2347}
2348
2349static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2350{
2351	struct cpudata *cpu = all_cpu_data[policy->cpu];
2352
2353	pr_debug("CPU %d going online\n", cpu->cpu);
2354
2355	intel_pstate_init_acpi_perf_limits(policy);
2356
2357	if (hwp_active) {
2358		/*
2359		 * Re-enable HWP and clear the "suspended" flag to let "resume"
2360		 * know that it need not do that.
2361		 */
2362		intel_pstate_hwp_reenable(cpu);
2363		cpu->suspended = false;
2364	}
2365
2366	return 0;
2367}
2368
2369static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2370{
2371	pr_debug("CPU %d stopping\n", policy->cpu);
 
2372
2373	intel_pstate_clear_update_util_hook(policy->cpu);
2374}
2375
2376static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2377{
2378	pr_debug("CPU %d exiting\n", policy->cpu);
2379
2380	policy->fast_switch_possible = false;
 
2381
2382	return 0;
2383}
2384
2385static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2386{
2387	struct cpudata *cpu;
2388	int rc;
2389
2390	rc = intel_pstate_init_cpu(policy->cpu);
2391	if (rc)
2392		return rc;
2393
2394	cpu = all_cpu_data[policy->cpu];
2395
2396	cpu->max_perf_ratio = 0xFF;
2397	cpu->min_perf_ratio = 0;
 
 
2398
2399	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2400	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2401
2402	/* cpuinfo and default policy values */
2403	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2404	update_turbo_state();
2405	global.turbo_disabled_mf = global.turbo_disabled;
2406	policy->cpuinfo.max_freq = global.turbo_disabled ?
2407			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2408	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2409
2410	if (hwp_active) {
2411		unsigned int max_freq;
2412
2413		max_freq = global.turbo_disabled ?
2414			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2415		if (max_freq < policy->cpuinfo.max_freq)
2416			policy->cpuinfo.max_freq = max_freq;
2417	}
2418
2419	intel_pstate_init_acpi_perf_limits(policy);
2420
2421	policy->fast_switch_possible = true;
2422
2423	return 0;
2424}
2425
2426static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2427{
2428	int ret = __intel_pstate_cpu_init(policy);
2429
2430	if (ret)
2431		return ret;
2432
2433	/*
2434	 * Set the policy to powersave to provide a valid fallback value in case
2435	 * the default cpufreq governor is neither powersave nor performance.
2436	 */
2437	policy->policy = CPUFREQ_POLICY_POWERSAVE;
2438
2439	if (hwp_active) {
2440		struct cpudata *cpu = all_cpu_data[policy->cpu];
2441
2442		cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2443	}
2444
2445	return 0;
2446}
2447
2448static struct cpufreq_driver intel_pstate = {
2449	.flags		= CPUFREQ_CONST_LOOPS,
2450	.verify		= intel_pstate_verify_policy,
2451	.setpolicy	= intel_pstate_set_policy,
2452	.suspend	= intel_pstate_suspend,
2453	.resume		= intel_pstate_resume,
2454	.init		= intel_pstate_cpu_init,
2455	.exit		= intel_pstate_cpu_exit,
2456	.stop_cpu	= intel_pstate_stop_cpu,
2457	.offline	= intel_pstate_cpu_offline,
2458	.online		= intel_pstate_cpu_online,
2459	.update_limits	= intel_pstate_update_limits,
2460	.name		= "intel_pstate",
2461};
2462
2463static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2464{
2465	struct cpudata *cpu = all_cpu_data[policy->cpu];
2466
2467	intel_pstate_verify_cpu_policy(cpu, policy);
2468	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2469
2470	return 0;
2471}
2472
2473/* Use of trace in passive mode:
2474 *
2475 * In passive mode the trace core_busy field (also known as the
2476 * performance field, and lablelled as such on the graphs; also known as
2477 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2478 * driver call was via the normal or fast switch path. Various graphs
2479 * output from the intel_pstate_tracer.py utility that include core_busy
2480 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2481 * so we use 10 to indicate the the normal path through the driver, and
2482 * 90 to indicate the fast switch path through the driver.
2483 * The scaled_busy field is not used, and is set to 0.
2484 */
2485
2486#define	INTEL_PSTATE_TRACE_TARGET 10
2487#define	INTEL_PSTATE_TRACE_FAST_SWITCH 90
2488
2489static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2490{
2491	struct sample *sample;
2492
2493	if (!trace_pstate_sample_enabled())
2494		return;
2495
2496	if (!intel_pstate_sample(cpu, ktime_get()))
2497		return;
2498
2499	sample = &cpu->sample;
2500	trace_pstate_sample(trace_type,
2501		0,
2502		old_pstate,
2503		cpu->pstate.current_pstate,
2504		sample->mperf,
2505		sample->aperf,
2506		sample->tsc,
2507		get_avg_frequency(cpu),
2508		fp_toint(cpu->iowait_boost * 100));
2509}
2510
2511static void intel_cpufreq_adjust_hwp(struct cpudata *cpu, u32 target_pstate,
2512				     bool fast_switch)
2513{
2514	u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2515
2516	value &= ~HWP_MIN_PERF(~0L);
2517	value |= HWP_MIN_PERF(target_pstate);
2518
2519	/*
2520	 * The entire MSR needs to be updated in order to update the HWP min
2521	 * field in it, so opportunistically update the max too if needed.
2522	 */
2523	value &= ~HWP_MAX_PERF(~0L);
2524	value |= HWP_MAX_PERF(cpu->max_perf_ratio);
2525
2526	if (value == prev)
2527		return;
2528
2529	WRITE_ONCE(cpu->hwp_req_cached, value);
2530	if (fast_switch)
2531		wrmsrl(MSR_HWP_REQUEST, value);
2532	else
2533		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2534}
2535
2536static void intel_cpufreq_adjust_perf_ctl(struct cpudata *cpu,
2537					  u32 target_pstate, bool fast_switch)
2538{
2539	if (fast_switch)
2540		wrmsrl(MSR_IA32_PERF_CTL,
2541		       pstate_funcs.get_val(cpu, target_pstate));
2542	else
2543		wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2544			      pstate_funcs.get_val(cpu, target_pstate));
2545}
2546
2547static int intel_cpufreq_update_pstate(struct cpudata *cpu, int target_pstate,
2548				       bool fast_switch)
2549{
2550	int old_pstate = cpu->pstate.current_pstate;
2551
2552	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2553	if (target_pstate != old_pstate) {
2554		cpu->pstate.current_pstate = target_pstate;
2555		if (hwp_active)
2556			intel_cpufreq_adjust_hwp(cpu, target_pstate,
2557						 fast_switch);
2558		else
2559			intel_cpufreq_adjust_perf_ctl(cpu, target_pstate,
2560						      fast_switch);
2561	}
2562
2563	intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2564			    INTEL_PSTATE_TRACE_TARGET, old_pstate);
2565
2566	return target_pstate;
2567}
2568
2569static int intel_cpufreq_target(struct cpufreq_policy *policy,
2570				unsigned int target_freq,
2571				unsigned int relation)
2572{
2573	struct cpudata *cpu = all_cpu_data[policy->cpu];
2574	struct cpufreq_freqs freqs;
2575	int target_pstate;
2576
2577	update_turbo_state();
2578
2579	freqs.old = policy->cur;
2580	freqs.new = target_freq;
2581
2582	cpufreq_freq_transition_begin(policy, &freqs);
2583
2584	switch (relation) {
2585	case CPUFREQ_RELATION_L:
2586		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2587		break;
2588	case CPUFREQ_RELATION_H:
2589		target_pstate = freqs.new / cpu->pstate.scaling;
2590		break;
2591	default:
2592		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2593		break;
2594	}
2595
2596	target_pstate = intel_cpufreq_update_pstate(cpu, target_pstate, false);
2597
2598	freqs.new = target_pstate * cpu->pstate.scaling;
2599
2600	cpufreq_freq_transition_end(policy, &freqs, false);
2601
2602	return 0;
2603}
2604
2605static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2606					      unsigned int target_freq)
2607{
2608	struct cpudata *cpu = all_cpu_data[policy->cpu];
2609	int target_pstate;
2610
2611	update_turbo_state();
2612
2613	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2614
2615	target_pstate = intel_cpufreq_update_pstate(cpu, target_pstate, true);
2616
2617	return target_pstate * cpu->pstate.scaling;
2618}
2619
2620static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2621{
2622	int max_state, turbo_max, min_freq, max_freq, ret;
2623	struct freq_qos_request *req;
2624	struct cpudata *cpu;
2625	struct device *dev;
2626
2627	dev = get_cpu_device(policy->cpu);
2628	if (!dev)
2629		return -ENODEV;
2630
2631	ret = __intel_pstate_cpu_init(policy);
2632	if (ret)
2633		return ret;
2634
2635	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2636	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2637	policy->cur = policy->cpuinfo.min_freq;
2638
2639	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2640	if (!req) {
2641		ret = -ENOMEM;
2642		goto pstate_exit;
2643	}
2644
2645	cpu = all_cpu_data[policy->cpu];
2646
2647	if (hwp_active) {
2648		u64 value;
2649
2650		intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state);
2651		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
2652		rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
2653		WRITE_ONCE(cpu->hwp_req_cached, value);
2654		cpu->epp_cached = intel_pstate_get_epp(cpu, value);
2655	} else {
2656		turbo_max = cpu->pstate.turbo_pstate;
2657		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2658	}
2659
2660	min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2661	min_freq *= cpu->pstate.scaling;
2662	max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2663	max_freq *= cpu->pstate.scaling;
2664
2665	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2666				   min_freq);
2667	if (ret < 0) {
2668		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2669		goto free_req;
2670	}
2671
2672	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2673				   max_freq);
2674	if (ret < 0) {
2675		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2676		goto remove_min_req;
2677	}
2678
2679	policy->driver_data = req;
2680
2681	return 0;
2682
2683remove_min_req:
2684	freq_qos_remove_request(req);
2685free_req:
2686	kfree(req);
2687pstate_exit:
2688	intel_pstate_exit_perf_limits(policy);
2689
2690	return ret;
2691}
2692
2693static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2694{
2695	struct freq_qos_request *req;
2696
2697	req = policy->driver_data;
2698
2699	freq_qos_remove_request(req + 1);
2700	freq_qos_remove_request(req);
2701	kfree(req);
2702
2703	return intel_pstate_cpu_exit(policy);
2704}
2705
2706static struct cpufreq_driver intel_cpufreq = {
2707	.flags		= CPUFREQ_CONST_LOOPS,
2708	.verify		= intel_cpufreq_verify_policy,
2709	.target		= intel_cpufreq_target,
2710	.fast_switch	= intel_cpufreq_fast_switch,
2711	.init		= intel_cpufreq_cpu_init,
2712	.exit		= intel_cpufreq_cpu_exit,
2713	.offline	= intel_pstate_cpu_offline,
2714	.online		= intel_pstate_cpu_online,
2715	.suspend	= intel_pstate_suspend,
2716	.resume		= intel_pstate_resume,
2717	.update_limits	= intel_pstate_update_limits,
2718	.name		= "intel_cpufreq",
2719};
2720
2721static struct cpufreq_driver *default_driver;
2722
2723static void intel_pstate_driver_cleanup(void)
2724{
2725	unsigned int cpu;
2726
2727	get_online_cpus();
2728	for_each_online_cpu(cpu) {
2729		if (all_cpu_data[cpu]) {
2730			if (intel_pstate_driver == &intel_pstate)
2731				intel_pstate_clear_update_util_hook(cpu);
2732
2733			kfree(all_cpu_data[cpu]);
2734			all_cpu_data[cpu] = NULL;
2735		}
2736	}
2737	put_online_cpus();
2738
2739	intel_pstate_driver = NULL;
2740}
2741
2742static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2743{
2744	int ret;
2745
2746	if (driver == &intel_pstate)
2747		intel_pstate_sysfs_expose_hwp_dynamic_boost();
2748
2749	memset(&global, 0, sizeof(global));
2750	global.max_perf_pct = 100;
2751
2752	intel_pstate_driver = driver;
2753	ret = cpufreq_register_driver(intel_pstate_driver);
2754	if (ret) {
2755		intel_pstate_driver_cleanup();
2756		return ret;
2757	}
2758
2759	global.min_perf_pct = min_perf_pct_min();
2760
2761	return 0;
2762}
2763
2764static ssize_t intel_pstate_show_status(char *buf)
2765{
2766	if (!intel_pstate_driver)
2767		return sprintf(buf, "off\n");
2768
2769	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2770					"active" : "passive");
2771}
2772
2773static int intel_pstate_update_status(const char *buf, size_t size)
2774{
2775	if (size == 3 && !strncmp(buf, "off", size)) {
2776		if (!intel_pstate_driver)
2777			return -EINVAL;
2778
2779		if (hwp_active)
2780			return -EBUSY;
2781
2782		cpufreq_unregister_driver(intel_pstate_driver);
2783		intel_pstate_driver_cleanup();
2784		return 0;
2785	}
2786
2787	if (size == 6 && !strncmp(buf, "active", size)) {
2788		if (intel_pstate_driver) {
2789			if (intel_pstate_driver == &intel_pstate)
2790				return 0;
2791
2792			cpufreq_unregister_driver(intel_pstate_driver);
2793		}
2794
2795		return intel_pstate_register_driver(&intel_pstate);
2796	}
2797
2798	if (size == 7 && !strncmp(buf, "passive", size)) {
2799		if (intel_pstate_driver) {
2800			if (intel_pstate_driver == &intel_cpufreq)
2801				return 0;
2802
2803			cpufreq_unregister_driver(intel_pstate_driver);
2804			intel_pstate_sysfs_hide_hwp_dynamic_boost();
2805		}
2806
2807		return intel_pstate_register_driver(&intel_cpufreq);
2808	}
2809
2810	return -EINVAL;
2811}
2812
2813static int no_load __initdata;
2814static int no_hwp __initdata;
2815static int hwp_only __initdata;
2816static unsigned int force_load __initdata;
2817
2818static int __init intel_pstate_msrs_not_valid(void)
2819{
2820	if (!pstate_funcs.get_max() ||
2821	    !pstate_funcs.get_min() ||
2822	    !pstate_funcs.get_turbo())
2823		return -ENODEV;
2824
2825	return 0;
2826}
2827
2828static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
 
 
 
 
 
 
 
 
 
 
 
2829{
2830	pstate_funcs.get_max   = funcs->get_max;
2831	pstate_funcs.get_max_physical = funcs->get_max_physical;
2832	pstate_funcs.get_min   = funcs->get_min;
2833	pstate_funcs.get_turbo = funcs->get_turbo;
2834	pstate_funcs.get_scaling = funcs->get_scaling;
2835	pstate_funcs.get_val   = funcs->get_val;
2836	pstate_funcs.get_vid   = funcs->get_vid;
2837	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
 
2838}
2839
2840#ifdef CONFIG_ACPI
 
2841
2842static bool __init intel_pstate_no_acpi_pss(void)
2843{
2844	int i;
2845
2846	for_each_possible_cpu(i) {
2847		acpi_status status;
2848		union acpi_object *pss;
2849		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2850		struct acpi_processor *pr = per_cpu(processors, i);
2851
2852		if (!pr)
2853			continue;
2854
2855		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2856		if (ACPI_FAILURE(status))
2857			continue;
2858
2859		pss = buffer.pointer;
2860		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2861			kfree(pss);
2862			return false;
2863		}
2864
2865		kfree(pss);
2866	}
2867
2868	pr_debug("ACPI _PSS not found\n");
2869	return true;
2870}
2871
2872static bool __init intel_pstate_no_acpi_pcch(void)
2873{
2874	acpi_status status;
2875	acpi_handle handle;
2876
2877	status = acpi_get_handle(NULL, "\\_SB", &handle);
2878	if (ACPI_FAILURE(status))
2879		goto not_found;
2880
2881	if (acpi_has_method(handle, "PCCH"))
2882		return false;
2883
2884not_found:
2885	pr_debug("ACPI PCCH not found\n");
2886	return true;
2887}
2888
2889static bool __init intel_pstate_has_acpi_ppc(void)
2890{
2891	int i;
2892
2893	for_each_possible_cpu(i) {
2894		struct acpi_processor *pr = per_cpu(processors, i);
2895
2896		if (!pr)
2897			continue;
2898		if (acpi_has_method(pr->handle, "_PPC"))
2899			return true;
2900	}
2901	pr_debug("ACPI _PPC not found\n");
2902	return false;
2903}
2904
2905enum {
2906	PSS,
2907	PPC,
2908};
2909
2910/* Hardware vendor-specific info that has its own power management modes */
2911static struct acpi_platform_list plat_info[] __initdata = {
2912	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
2913	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2914	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2915	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2916	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2917	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2918	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2919	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2920	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2921	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2922	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2923	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2924	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2925	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2926	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2927	{ } /* End */
2928};
2929
2930#define BITMASK_OOB	(BIT(8) | BIT(18))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2931
2932static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2933{
 
 
2934	const struct x86_cpu_id *id;
2935	u64 misc_pwr;
2936	int idx;
2937
2938	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2939	if (id) {
2940		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2941		if (misc_pwr & BITMASK_OOB) {
2942			pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
2943			pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
2944			return true;
2945		}
2946	}
2947
2948	idx = acpi_match_platform_list(plat_info);
2949	if (idx < 0)
2950		return false;
2951
2952	switch (plat_info[idx].data) {
2953	case PSS:
2954		if (!intel_pstate_no_acpi_pss())
2955			return false;
2956
2957		return intel_pstate_no_acpi_pcch();
2958	case PPC:
2959		return intel_pstate_has_acpi_ppc() && !force_load;
 
 
 
2960	}
2961
2962	return false;
2963}
2964
2965static void intel_pstate_request_control_from_smm(void)
2966{
2967	/*
2968	 * It may be unsafe to request P-states control from SMM if _PPC support
2969	 * has not been enabled.
2970	 */
2971	if (acpi_ppc)
2972		acpi_processor_pstate_control();
2973}
2974#else /* CONFIG_ACPI not enabled */
2975static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2976static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2977static inline void intel_pstate_request_control_from_smm(void) {}
2978#endif /* CONFIG_ACPI */
2979
2980#define INTEL_PSTATE_HWP_BROADWELL	0x01
2981
2982#define X86_MATCH_HWP(model, hwp_mode)					\
2983	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2984					   X86_FEATURE_HWP, hwp_mode)
2985
2986static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2987	X86_MATCH_HWP(BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
2988	X86_MATCH_HWP(BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
2989	X86_MATCH_HWP(ANY,		0),
2990	{}
2991};
2992
2993static int __init intel_pstate_init(void)
2994{
 
2995	const struct x86_cpu_id *id;
2996	int rc;
2997
2998	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2999		return -ENODEV;
3000
3001	if (no_load)
3002		return -ENODEV;
3003
3004	id = x86_match_cpu(hwp_support_ids);
3005	if (id) {
3006		copy_cpu_funcs(&core_funcs);
3007		/*
3008		 * Avoid enabling HWP for processors without EPP support,
3009		 * because that means incomplete HWP implementation which is a
3010		 * corner case and supporting it is generally problematic.
3011		 */
3012		if (!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) {
3013			hwp_active++;
3014			hwp_mode_bdw = id->driver_data;
3015			intel_pstate.attr = hwp_cpufreq_attrs;
3016			intel_cpufreq.attr = hwp_cpufreq_attrs;
3017			if (!default_driver)
3018				default_driver = &intel_pstate;
3019
3020			goto hwp_cpu_matched;
3021		}
3022	} else {
3023		id = x86_match_cpu(intel_pstate_cpu_ids);
3024		if (!id) {
3025			pr_info("CPU model not supported\n");
3026			return -ENODEV;
3027		}
3028
3029		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3030	}
 
 
3031
3032	if (intel_pstate_msrs_not_valid()) {
3033		pr_info("Invalid MSRs\n");
3034		return -ENODEV;
3035	}
3036	/* Without HWP start in the passive mode. */
3037	if (!default_driver)
3038		default_driver = &intel_cpufreq;
3039
3040hwp_cpu_matched:
3041	/*
3042	 * The Intel pstate driver will be ignored if the platform
3043	 * firmware has its own power management modes.
3044	 */
3045	if (intel_pstate_platform_pwr_mgmt_exists()) {
3046		pr_info("P-states controlled by the platform\n");
3047		return -ENODEV;
3048	}
3049
3050	if (!hwp_active && hwp_only)
3051		return -ENOTSUPP;
3052
3053	pr_info("Intel P-state driver initializing\n");
3054
3055	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3056	if (!all_cpu_data)
3057		return -ENOMEM;
3058
3059	intel_pstate_request_control_from_smm();
3060
3061	intel_pstate_sysfs_expose_params();
3062
3063	mutex_lock(&intel_pstate_driver_lock);
3064	rc = intel_pstate_register_driver(default_driver);
3065	mutex_unlock(&intel_pstate_driver_lock);
3066	if (rc)
3067		return rc;
3068
3069	if (hwp_active) {
3070		const struct x86_cpu_id *id;
3071
3072		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3073		if (id) {
3074			set_power_ctl_ee_state(false);
3075			pr_info("Disabling energy efficiency optimization\n");
3076		}
3077
3078		pr_info("HWP enabled\n");
 
 
 
 
 
 
 
3079	}
3080
3081	return 0;
 
 
3082}
3083device_initcall(intel_pstate_init);
3084
3085static int __init intel_pstate_setup(char *str)
3086{
3087	if (!str)
3088		return -EINVAL;
3089
3090	if (!strcmp(str, "disable"))
3091		no_load = 1;
3092	else if (!strcmp(str, "active"))
3093		default_driver = &intel_pstate;
3094	else if (!strcmp(str, "passive"))
3095		default_driver = &intel_cpufreq;
3096
3097	if (!strcmp(str, "no_hwp")) {
3098		pr_info("HWP disabled\n");
3099		no_hwp = 1;
3100	}
3101	if (!strcmp(str, "force"))
3102		force_load = 1;
3103	if (!strcmp(str, "hwp_only"))
3104		hwp_only = 1;
3105	if (!strcmp(str, "per_cpu_perf_limits"))
3106		per_cpu_limits = true;
3107
3108#ifdef CONFIG_ACPI
3109	if (!strcmp(str, "support_acpi_ppc"))
3110		acpi_ppc = true;
3111#endif
3112
3113	return 0;
3114}
3115early_param("intel_pstate", intel_pstate_setup);
3116
3117MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3118MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3119MODULE_LICENSE("GPL");
v4.6
 
   1/*
   2 * intel_pstate.c: Native P state management for Intel processors
   3 *
   4 * (C) Copyright 2012 Intel Corporation
   5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * as published by the Free Software Foundation; version 2
  10 * of the License.
  11 */
  12
 
 
  13#include <linux/kernel.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/module.h>
  16#include <linux/ktime.h>
  17#include <linux/hrtimer.h>
  18#include <linux/tick.h>
  19#include <linux/slab.h>
  20#include <linux/sched.h>
  21#include <linux/list.h>
  22#include <linux/cpu.h>
  23#include <linux/cpufreq.h>
  24#include <linux/sysfs.h>
  25#include <linux/types.h>
  26#include <linux/fs.h>
  27#include <linux/debugfs.h>
  28#include <linux/acpi.h>
  29#include <linux/vmalloc.h>
 
  30#include <trace/events/power.h>
  31
  32#include <asm/div64.h>
  33#include <asm/msr.h>
  34#include <asm/cpu_device_id.h>
  35#include <asm/cpufeature.h>
 
  36
  37#define ATOM_RATIOS		0x66a
  38#define ATOM_VIDS		0x66b
  39#define ATOM_TURBO_RATIOS	0x66c
  40#define ATOM_TURBO_VIDS		0x66d
 
 
 
 
 
 
  41
  42#define FRAC_BITS 8
  43#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
  44#define fp_toint(X) ((X) >> FRAC_BITS)
  45
 
 
 
 
 
 
 
  46static inline int32_t mul_fp(int32_t x, int32_t y)
  47{
  48	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
  49}
  50
  51static inline int32_t div_fp(s64 x, s64 y)
  52{
  53	return div64_s64((int64_t)x << FRAC_BITS, y);
  54}
  55
  56static inline int ceiling_fp(int32_t x)
  57{
  58	int mask, ret;
  59
  60	ret = fp_toint(x);
  61	mask = (1 << FRAC_BITS) - 1;
  62	if (x & mask)
  63		ret += 1;
  64	return ret;
  65}
  66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67/**
  68 * struct sample -	Store performance sample
  69 * @core_pct_busy:	Ratio of APERF/MPERF in percent, which is actual
  70 *			performance during last sample period
  71 * @busy_scaled:	Scaled busy value which is used to calculate next
  72 *			P state. This can be different than core_pct_busy
  73 *			to account for cpu idle period
  74 * @aperf:		Difference of actual performance frequency clock count
  75 *			read from APERF MSR between last and current sample
  76 * @mperf:		Difference of maximum performance frequency clock count
  77 *			read from MPERF MSR between last and current sample
  78 * @tsc:		Difference of time stamp counter between last and
  79 *			current sample
  80 * @freq:		Effective frequency calculated from APERF/MPERF
  81 * @time:		Current time from scheduler
  82 *
  83 * This structure is used in the cpudata structure to store performance sample
  84 * data for choosing next P State.
  85 */
  86struct sample {
  87	int32_t core_pct_busy;
  88	int32_t busy_scaled;
  89	u64 aperf;
  90	u64 mperf;
  91	u64 tsc;
  92	int freq;
  93	u64 time;
  94};
  95
  96/**
  97 * struct pstate_data - Store P state data
  98 * @current_pstate:	Current requested P state
  99 * @min_pstate:		Min P state possible for this platform
 100 * @max_pstate:		Max P state possible for this platform
 101 * @max_pstate_physical:This is physical Max P state for a processor
 102 *			This can be higher than the max_pstate which can
 103 *			be limited by platform thermal design power limits
 104 * @scaling:		Scaling factor to  convert frequency to cpufreq
 105 *			frequency units
 106 * @turbo_pstate:	Max Turbo P state possible for this platform
 
 
 107 *
 108 * Stores the per cpu model P state limits and current P state.
 109 */
 110struct pstate_data {
 111	int	current_pstate;
 112	int	min_pstate;
 113	int	max_pstate;
 114	int	max_pstate_physical;
 115	int	scaling;
 116	int	turbo_pstate;
 
 
 117};
 118
 119/**
 120 * struct vid_data -	Stores voltage information data
 121 * @min:		VID data for this platform corresponding to
 122 *			the lowest P state
 123 * @max:		VID data corresponding to the highest P State.
 124 * @turbo:		VID data for turbo P state
 125 * @ratio:		Ratio of (vid max - vid min) /
 126 *			(max P state - Min P State)
 127 *
 128 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 129 * This data is used in Atom platforms, where in addition to target P state,
 130 * the voltage data needs to be specified to select next P State.
 131 */
 132struct vid_data {
 133	int min;
 134	int max;
 135	int turbo;
 136	int32_t ratio;
 137};
 138
 139/**
 140 * struct _pid -	Stores PID data
 141 * @setpoint:		Target set point for busyness or performance
 142 * @integral:		Storage for accumulated error values
 143 * @p_gain:		PID proportional gain
 144 * @i_gain:		PID integral gain
 145 * @d_gain:		PID derivative gain
 146 * @deadband:		PID deadband
 147 * @last_err:		Last error storage for integral part of PID calculation
 148 *
 149 * Stores PID coefficients and last error for PID controller.
 
 150 */
 151struct _pid {
 152	int setpoint;
 153	int32_t integral;
 154	int32_t p_gain;
 155	int32_t i_gain;
 156	int32_t d_gain;
 157	int deadband;
 158	int32_t last_err;
 159};
 160
 161/**
 162 * struct cpudata -	Per CPU instance data storage
 163 * @cpu:		CPU number for this instance data
 
 164 * @update_util:	CPUFreq utility callback information
 
 
 
 165 * @pstate:		Stores P state limits for this CPU
 166 * @vid:		Stores VID limits for this CPU
 167 * @pid:		Stores PID parameters for this CPU
 168 * @last_sample_time:	Last Sample time
 
 169 * @prev_aperf:		Last APERF value read from APERF MSR
 170 * @prev_mperf:		Last MPERF value read from MPERF MSR
 171 * @prev_tsc:		Last timestamp counter (TSC) value
 172 * @prev_cummulative_iowait: IO Wait time difference from last and
 173 *			current sample
 174 * @sample:		Storage for storing last Sample data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175 *
 176 * This structure stores per CPU instance data for all CPUs.
 177 */
 178struct cpudata {
 179	int cpu;
 180
 
 181	struct update_util_data update_util;
 
 182
 183	struct pstate_data pstate;
 184	struct vid_data vid;
 185	struct _pid pid;
 186
 
 187	u64	last_sample_time;
 
 188	u64	prev_aperf;
 189	u64	prev_mperf;
 190	u64	prev_tsc;
 191	u64	prev_cummulative_iowait;
 192	struct sample sample;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 193};
 194
 195static struct cpudata **all_cpu_data;
 196
 197/**
 198 * struct pid_adjust_policy - Stores static PID configuration data
 199 * @sample_rate_ms:	PID calculation sample rate in ms
 200 * @sample_rate_ns:	Sample rate calculation in ns
 201 * @deadband:		PID deadband
 202 * @setpoint:		PID Setpoint
 203 * @p_gain_pct:		PID proportional gain
 204 * @i_gain_pct:		PID integral gain
 205 * @d_gain_pct:		PID derivative gain
 206 *
 207 * Stores per CPU model static PID configuration data.
 208 */
 209struct pstate_adjust_policy {
 210	int sample_rate_ms;
 211	s64 sample_rate_ns;
 212	int deadband;
 213	int setpoint;
 214	int p_gain_pct;
 215	int d_gain_pct;
 216	int i_gain_pct;
 217};
 218
 219/**
 220 * struct pstate_funcs - Per CPU model specific callbacks
 221 * @get_max:		Callback to get maximum non turbo effective P state
 222 * @get_max_physical:	Callback to get maximum non turbo physical P state
 223 * @get_min:		Callback to get minimum P state
 224 * @get_turbo:		Callback to get turbo P state
 225 * @get_scaling:	Callback to get frequency scaling factor
 
 226 * @get_val:		Callback to convert P state to actual MSR write value
 227 * @get_vid:		Callback to get VID data for Atom platforms
 228 * @get_target_pstate:	Callback to a function to calculate next P state to use
 229 *
 230 * Core and Atom CPU models have different way to get P State limits. This
 231 * structure is used to store those callbacks.
 232 */
 233struct pstate_funcs {
 234	int (*get_max)(void);
 235	int (*get_max_physical)(void);
 236	int (*get_min)(void);
 237	int (*get_turbo)(void);
 238	int (*get_scaling)(void);
 
 239	u64 (*get_val)(struct cpudata*, int pstate);
 240	void (*get_vid)(struct cpudata *);
 241	int32_t (*get_target_pstate)(struct cpudata *);
 242};
 243
 244/**
 245 * struct cpu_defaults- Per CPU model default config data
 246 * @pid_policy:	PID config data
 247 * @funcs:		Callback function data
 248 */
 249struct cpu_defaults {
 250	struct pstate_adjust_policy pid_policy;
 251	struct pstate_funcs funcs;
 252};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 253
 254static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
 255static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
 256
 257static struct pstate_adjust_policy pid_params;
 258static struct pstate_funcs pstate_funcs;
 259static int hwp_active;
 
 260
 
 
 261
 262/**
 263 * struct perf_limits - Store user and policy limits
 264 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 265 * @turbo_disabled:	Platform turbo status either from msr
 266 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 267 *			matches the maximum turbo pstate
 268 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 269 *			is minimum of either limits enforced by cpufreq policy
 270 *			or limits from user set limits via intel_pstate sysfs
 271 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 272 *			is maximum of either limits enforced by cpufreq policy
 273 *			or limits from user set limits via intel_pstate sysfs
 274 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 275 *			This value is used to limit max pstate
 276 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 277 *			This value is used to limit min pstate
 278 * @max_policy_pct:	The maximum performance in percentage enforced by
 279 *			cpufreq setpolicy interface
 280 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 281 *			intel pstate sysfs interface
 282 * @min_policy_pct:	The minimum performance in percentage enforced by
 283 *			cpufreq setpolicy interface
 284 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 285 *			intel pstate sysfs interface
 286 *
 287 * Storage for user and policy defined limits.
 288 */
 289struct perf_limits {
 290	int no_turbo;
 291	int turbo_disabled;
 292	int max_perf_pct;
 293	int min_perf_pct;
 294	int32_t max_perf;
 295	int32_t min_perf;
 296	int max_policy_pct;
 297	int max_sysfs_pct;
 298	int min_policy_pct;
 299	int min_sysfs_pct;
 300};
 301
 302static struct perf_limits performance_limits = {
 303	.no_turbo = 0,
 304	.turbo_disabled = 0,
 305	.max_perf_pct = 100,
 306	.max_perf = int_tofp(1),
 307	.min_perf_pct = 100,
 308	.min_perf = int_tofp(1),
 309	.max_policy_pct = 100,
 310	.max_sysfs_pct = 100,
 311	.min_policy_pct = 0,
 312	.min_sysfs_pct = 0,
 313};
 314
 315static struct perf_limits powersave_limits = {
 316	.no_turbo = 0,
 317	.turbo_disabled = 0,
 318	.max_perf_pct = 100,
 319	.max_perf = int_tofp(1),
 320	.min_perf_pct = 0,
 321	.min_perf = 0,
 322	.max_policy_pct = 100,
 323	.max_sysfs_pct = 100,
 324	.min_policy_pct = 0,
 325	.min_sysfs_pct = 0,
 326};
 327
 328#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
 329static struct perf_limits *limits = &performance_limits;
 330#else
 331static struct perf_limits *limits = &powersave_limits;
 332#endif
 333
 334static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
 335			     int deadband, int integral) {
 336	pid->setpoint = int_tofp(setpoint);
 337	pid->deadband  = int_tofp(deadband);
 338	pid->integral  = int_tofp(integral);
 339	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
 340}
 341
 342static inline void pid_p_gain_set(struct _pid *pid, int percent)
 
 
 343{
 344	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 345}
 346
 347static inline void pid_i_gain_set(struct _pid *pid, int percent)
 348{
 349	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
 
 
 
 
 
 
 
 
 
 
 350}
 351
 352static inline void pid_d_gain_set(struct _pid *pid, int percent)
 
 353{
 354	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
 355}
 
 356
 357static signed int pid_calc(struct _pid *pid, int32_t busy)
 358{
 359	signed int result;
 360	int32_t pterm, dterm, fp_error;
 361	int32_t integral_limit;
 362
 363	fp_error = pid->setpoint - busy;
 
 
 
 
 
 
 
 
 
 
 
 
 
 364
 365	if (abs(fp_error) <= pid->deadband)
 366		return 0;
 
 
 
 
 
 
 367
 368	pterm = mul_fp(pid->p_gain, fp_error);
 
 
 
 
 
 369
 370	pid->integral += fp_error;
 
 
 
 
 
 
 
 371
 372	/*
 373	 * We limit the integral here so that it will never
 374	 * get higher than 30.  This prevents it from becoming
 375	 * too large an input over long periods of time and allows
 376	 * it to get factored out sooner.
 377	 *
 378	 * The value of 30 was chosen through experimentation.
 
 
 
 379	 */
 380	integral_limit = int_tofp(30);
 381	if (pid->integral > integral_limit)
 382		pid->integral = integral_limit;
 383	if (pid->integral < -integral_limit)
 384		pid->integral = -integral_limit;
 385
 386	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
 387	pid->last_err = fp_error;
 388
 389	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
 390	result = result + (1 << (FRAC_BITS-1));
 391	return (signed int)fp_toint(result);
 392}
 393
 394static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
 
 
 
 
 
 
 
 
 
 
 
 395{
 396	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
 397	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
 398	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
 399
 400	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
 
 401}
 402
 403static inline void intel_pstate_reset_all_pid(void)
 404{
 405	unsigned int cpu;
 
 
 406
 407	for_each_online_cpu(cpu) {
 408		if (all_cpu_data[cpu])
 409			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
 410	}
 411}
 
 412
 413static inline void update_turbo_state(void)
 414{
 415	u64 misc_en;
 416	struct cpudata *cpu;
 417
 418	cpu = all_cpu_data[0];
 419	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
 420	limits->turbo_disabled =
 421		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
 422		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
 423}
 424
 425static void intel_pstate_hwp_set(const struct cpumask *cpumask)
 
 
 
 
 
 
 
 
 
 426{
 427	int min, hw_min, max, hw_max, cpu, range, adj_range;
 428	u64 value, cap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 429
 430	rdmsrl(MSR_HWP_CAPABILITIES, cap);
 431	hw_min = HWP_LOWEST_PERF(cap);
 432	hw_max = HWP_HIGHEST_PERF(cap);
 433	range = hw_max - hw_min;
 434
 435	for_each_cpu(cpu, cpumask) {
 436		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
 437		adj_range = limits->min_perf_pct * range / 100;
 438		min = hw_min + adj_range;
 439		value &= ~HWP_MIN_PERF(~0L);
 440		value |= HWP_MIN_PERF(min);
 441
 442		adj_range = limits->max_perf_pct * range / 100;
 443		max = hw_min + adj_range;
 444		if (limits->no_turbo) {
 445			hw_max = HWP_GUARANTEED_PERF(cap);
 446			if (hw_max < max)
 447				max = hw_max;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 448		}
 
 
 
 
 
 
 449
 450		value &= ~HWP_MAX_PERF(~0L);
 451		value |= HWP_MAX_PERF(max);
 452		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 453	}
 
 
 
 
 454}
 455
 456static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
 
 
 
 
 
 
 
 
 
 
 457{
 458	if (hwp_active)
 459		intel_pstate_hwp_set(policy->cpus);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 460
 461	return 0;
 
 
 
 
 
 
 
 
 
 
 462}
 463
 464static void intel_pstate_hwp_set_online_cpus(void)
 
 
 465{
 466	get_online_cpus();
 467	intel_pstate_hwp_set(cpu_online_mask);
 468	put_online_cpus();
 469}
 470
 471/************************** debugfs begin ************************/
 472static int pid_param_set(void *data, u64 val)
 473{
 474	*(u32 *)data = val;
 475	intel_pstate_reset_all_pid();
 
 
 
 
 476	return 0;
 477}
 478
 479static int pid_param_get(void *data, u64 *val)
 480{
 481	*val = *(u32 *)data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 482	return 0;
 483}
 484DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
 485
 486struct pid_param {
 487	char *name;
 488	void *value;
 489};
 490
 491static struct pid_param pid_files[] = {
 492	{"sample_rate_ms", &pid_params.sample_rate_ms},
 493	{"d_gain_pct", &pid_params.d_gain_pct},
 494	{"i_gain_pct", &pid_params.i_gain_pct},
 495	{"deadband", &pid_params.deadband},
 496	{"setpoint", &pid_params.setpoint},
 497	{"p_gain_pct", &pid_params.p_gain_pct},
 498	{NULL, NULL}
 499};
 500
 501static void __init intel_pstate_debug_expose_params(void)
 502{
 503	struct dentry *debugfs_parent;
 504	int i = 0;
 505
 506	if (hwp_active)
 507		return;
 508	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
 509	if (IS_ERR_OR_NULL(debugfs_parent))
 510		return;
 511	while (pid_files[i].name) {
 512		debugfs_create_file(pid_files[i].name, 0660,
 513				    debugfs_parent, pid_files[i].value,
 514				    &fops_pid_param);
 515		i++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 516	}
 
 
 517}
 518
 519/************************** debugfs end ************************/
 520
 521/************************** sysfs begin ************************/
 522#define show_one(file_name, object)					\
 523	static ssize_t show_##file_name					\
 524	(struct kobject *kobj, struct attribute *attr, char *buf)	\
 525	{								\
 526		return sprintf(buf, "%u\n", limits->object);		\
 527	}
 528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 529static ssize_t show_turbo_pct(struct kobject *kobj,
 530				struct attribute *attr, char *buf)
 531{
 532	struct cpudata *cpu;
 533	int total, no_turbo, turbo_pct;
 534	uint32_t turbo_fp;
 535
 
 
 
 
 
 
 
 536	cpu = all_cpu_data[0];
 537
 538	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
 539	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
 540	turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
 541	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
 
 
 
 542	return sprintf(buf, "%u\n", turbo_pct);
 543}
 544
 545static ssize_t show_num_pstates(struct kobject *kobj,
 546				struct attribute *attr, char *buf)
 547{
 548	struct cpudata *cpu;
 549	int total;
 550
 
 
 
 
 
 
 
 551	cpu = all_cpu_data[0];
 552	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
 
 
 
 553	return sprintf(buf, "%u\n", total);
 554}
 555
 556static ssize_t show_no_turbo(struct kobject *kobj,
 557			     struct attribute *attr, char *buf)
 558{
 559	ssize_t ret;
 560
 
 
 
 
 
 
 
 561	update_turbo_state();
 562	if (limits->turbo_disabled)
 563		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
 564	else
 565		ret = sprintf(buf, "%u\n", limits->no_turbo);
 
 
 566
 567	return ret;
 568}
 569
 570static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
 571			      const char *buf, size_t count)
 572{
 573	unsigned int input;
 574	int ret;
 575
 576	ret = sscanf(buf, "%u", &input);
 577	if (ret != 1)
 578		return -EINVAL;
 579
 
 
 
 
 
 
 
 
 
 580	update_turbo_state();
 581	if (limits->turbo_disabled) {
 582		pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
 
 
 583		return -EPERM;
 584	}
 585
 586	limits->no_turbo = clamp_t(int, input, 0, 1);
 587
 588	if (hwp_active)
 589		intel_pstate_hwp_set_online_cpus();
 
 
 
 
 
 
 
 
 
 
 
 
 590
 591	return count;
 592}
 593
 594static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 595				  const char *buf, size_t count)
 596{
 597	unsigned int input;
 598	int ret;
 599
 600	ret = sscanf(buf, "%u", &input);
 601	if (ret != 1)
 602		return -EINVAL;
 603
 604	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
 605	limits->max_perf_pct = min(limits->max_policy_pct,
 606				   limits->max_sysfs_pct);
 607	limits->max_perf_pct = max(limits->min_policy_pct,
 608				   limits->max_perf_pct);
 609	limits->max_perf_pct = max(limits->min_perf_pct,
 610				   limits->max_perf_pct);
 611	limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
 612				  int_tofp(100));
 
 
 
 
 
 
 
 
 
 
 613
 614	if (hwp_active)
 615		intel_pstate_hwp_set_online_cpus();
 616	return count;
 617}
 618
 619static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
 620				  const char *buf, size_t count)
 621{
 622	unsigned int input;
 623	int ret;
 624
 625	ret = sscanf(buf, "%u", &input);
 626	if (ret != 1)
 627		return -EINVAL;
 628
 629	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
 630	limits->min_perf_pct = max(limits->min_policy_pct,
 631				   limits->min_sysfs_pct);
 632	limits->min_perf_pct = min(limits->max_policy_pct,
 633				   limits->min_perf_pct);
 634	limits->min_perf_pct = min(limits->max_perf_pct,
 635				   limits->min_perf_pct);
 636	limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
 637				  int_tofp(100));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 638
 639	if (hwp_active)
 640		intel_pstate_hwp_set_online_cpus();
 641	return count;
 642}
 643
 644show_one(max_perf_pct, max_perf_pct);
 645show_one(min_perf_pct, min_perf_pct);
 646
 
 647define_one_global_rw(no_turbo);
 648define_one_global_rw(max_perf_pct);
 649define_one_global_rw(min_perf_pct);
 650define_one_global_ro(turbo_pct);
 651define_one_global_ro(num_pstates);
 
 
 652
 653static struct attribute *intel_pstate_attributes[] = {
 
 654	&no_turbo.attr,
 655	&max_perf_pct.attr,
 656	&min_perf_pct.attr,
 657	&turbo_pct.attr,
 658	&num_pstates.attr,
 659	NULL
 660};
 661
 662static struct attribute_group intel_pstate_attr_group = {
 663	.attrs = intel_pstate_attributes,
 664};
 665
 
 
 
 
 666static void __init intel_pstate_sysfs_expose_params(void)
 667{
 668	struct kobject *intel_pstate_kobject;
 669	int rc;
 670
 671	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
 672						&cpu_subsys.dev_root->kobj);
 673	BUG_ON(!intel_pstate_kobject);
 
 
 674	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
 675	BUG_ON(rc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 676}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 677/************************** sysfs end ************************/
 678
 679static void intel_pstate_hwp_enable(struct cpudata *cpudata)
 680{
 681	/* First disable HWP notification interrupt as we don't process them */
 682	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
 
 683
 684	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
 
 
 685}
 686
 687static int atom_get_min_pstate(void)
 688{
 689	u64 value;
 690
 691	rdmsrl(ATOM_RATIOS, value);
 692	return (value >> 8) & 0x7F;
 693}
 694
 695static int atom_get_max_pstate(void)
 696{
 697	u64 value;
 698
 699	rdmsrl(ATOM_RATIOS, value);
 700	return (value >> 16) & 0x7F;
 701}
 702
 703static int atom_get_turbo_pstate(void)
 704{
 705	u64 value;
 706
 707	rdmsrl(ATOM_TURBO_RATIOS, value);
 708	return value & 0x7F;
 709}
 710
 711static u64 atom_get_val(struct cpudata *cpudata, int pstate)
 712{
 713	u64 val;
 714	int32_t vid_fp;
 715	u32 vid;
 716
 717	val = (u64)pstate << 8;
 718	if (limits->no_turbo && !limits->turbo_disabled)
 719		val |= (u64)1 << 32;
 720
 721	vid_fp = cpudata->vid.min + mul_fp(
 722		int_tofp(pstate - cpudata->pstate.min_pstate),
 723		cpudata->vid.ratio);
 724
 725	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
 726	vid = ceiling_fp(vid_fp);
 727
 728	if (pstate > cpudata->pstate.max_pstate)
 729		vid = cpudata->vid.turbo;
 730
 731	return val | vid;
 732}
 733
 734static int silvermont_get_scaling(void)
 735{
 736	u64 value;
 737	int i;
 738	/* Defined in Table 35-6 from SDM (Sept 2015) */
 739	static int silvermont_freq_table[] = {
 740		83300, 100000, 133300, 116700, 80000};
 741
 742	rdmsrl(MSR_FSB_FREQ, value);
 743	i = value & 0x7;
 744	WARN_ON(i > 4);
 745
 746	return silvermont_freq_table[i];
 747}
 748
 749static int airmont_get_scaling(void)
 750{
 751	u64 value;
 752	int i;
 753	/* Defined in Table 35-10 from SDM (Sept 2015) */
 754	static int airmont_freq_table[] = {
 755		83300, 100000, 133300, 116700, 80000,
 756		93300, 90000, 88900, 87500};
 757
 758	rdmsrl(MSR_FSB_FREQ, value);
 759	i = value & 0xF;
 760	WARN_ON(i > 8);
 761
 762	return airmont_freq_table[i];
 763}
 764
 765static void atom_get_vid(struct cpudata *cpudata)
 766{
 767	u64 value;
 768
 769	rdmsrl(ATOM_VIDS, value);
 770	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
 771	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
 772	cpudata->vid.ratio = div_fp(
 773		cpudata->vid.max - cpudata->vid.min,
 774		int_tofp(cpudata->pstate.max_pstate -
 775			cpudata->pstate.min_pstate));
 776
 777	rdmsrl(ATOM_TURBO_VIDS, value);
 778	cpudata->vid.turbo = value & 0x7f;
 779}
 780
 781static int core_get_min_pstate(void)
 782{
 783	u64 value;
 784
 785	rdmsrl(MSR_PLATFORM_INFO, value);
 786	return (value >> 40) & 0xFF;
 787}
 788
 789static int core_get_max_pstate_physical(void)
 790{
 791	u64 value;
 792
 793	rdmsrl(MSR_PLATFORM_INFO, value);
 794	return (value >> 8) & 0xFF;
 795}
 796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 797static int core_get_max_pstate(void)
 798{
 799	u64 tar;
 800	u64 plat_info;
 801	int max_pstate;
 
 802	int err;
 803
 804	rdmsrl(MSR_PLATFORM_INFO, plat_info);
 805	max_pstate = (plat_info >> 8) & 0xFF;
 806
 
 
 
 
 
 
 
 
 
 807	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
 808	if (!err) {
 
 
 809		/* Do some sanity checking for safety */
 810		if (plat_info & 0x600000000) {
 811			u64 tdp_ctrl;
 812			u64 tdp_ratio;
 813			int tdp_msr;
 814
 815			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
 816			if (err)
 817				goto skip_tar;
 818
 819			tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
 820			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
 821			if (err)
 822				goto skip_tar;
 823
 824			/* For level 1 and 2, bits[23:16] contain the ratio */
 825			if (tdp_ctrl)
 826				tdp_ratio >>= 16;
 827
 828			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
 829			if (tdp_ratio - 1 == tar) {
 830				max_pstate = tar;
 831				pr_debug("max_pstate=TAC %x\n", max_pstate);
 832			} else {
 833				goto skip_tar;
 834			}
 835		}
 836	}
 837
 838skip_tar:
 839	return max_pstate;
 840}
 841
 842static int core_get_turbo_pstate(void)
 843{
 844	u64 value;
 845	int nont, ret;
 846
 847	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
 848	nont = core_get_max_pstate();
 849	ret = (value) & 255;
 850	if (ret <= nont)
 851		ret = nont;
 852	return ret;
 853}
 854
 855static inline int core_get_scaling(void)
 856{
 857	return 100000;
 858}
 859
 860static u64 core_get_val(struct cpudata *cpudata, int pstate)
 861{
 862	u64 val;
 863
 864	val = (u64)pstate << 8;
 865	if (limits->no_turbo && !limits->turbo_disabled)
 866		val |= (u64)1 << 32;
 867
 868	return val;
 869}
 870
 
 
 
 
 
 871static int knl_get_turbo_pstate(void)
 872{
 873	u64 value;
 874	int nont, ret;
 875
 876	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
 877	nont = core_get_max_pstate();
 878	ret = (((value) >> 8) & 0xFF);
 879	if (ret <= nont)
 880		ret = nont;
 881	return ret;
 882}
 883
 884static struct cpu_defaults core_params = {
 885	.pid_policy = {
 886		.sample_rate_ms = 10,
 887		.deadband = 0,
 888		.setpoint = 97,
 889		.p_gain_pct = 20,
 890		.d_gain_pct = 0,
 891		.i_gain_pct = 0,
 892	},
 893	.funcs = {
 894		.get_max = core_get_max_pstate,
 895		.get_max_physical = core_get_max_pstate_physical,
 896		.get_min = core_get_min_pstate,
 897		.get_turbo = core_get_turbo_pstate,
 898		.get_scaling = core_get_scaling,
 899		.get_val = core_get_val,
 900		.get_target_pstate = get_target_pstate_use_performance,
 901	},
 902};
 903
 904static struct cpu_defaults silvermont_params = {
 905	.pid_policy = {
 906		.sample_rate_ms = 10,
 907		.deadband = 0,
 908		.setpoint = 60,
 909		.p_gain_pct = 14,
 910		.d_gain_pct = 0,
 911		.i_gain_pct = 4,
 912	},
 913	.funcs = {
 914		.get_max = atom_get_max_pstate,
 915		.get_max_physical = atom_get_max_pstate,
 916		.get_min = atom_get_min_pstate,
 917		.get_turbo = atom_get_turbo_pstate,
 918		.get_val = atom_get_val,
 919		.get_scaling = silvermont_get_scaling,
 920		.get_vid = atom_get_vid,
 921		.get_target_pstate = get_target_pstate_use_cpu_load,
 922	},
 923};
 924
 925static struct cpu_defaults airmont_params = {
 926	.pid_policy = {
 927		.sample_rate_ms = 10,
 928		.deadband = 0,
 929		.setpoint = 60,
 930		.p_gain_pct = 14,
 931		.d_gain_pct = 0,
 932		.i_gain_pct = 4,
 933	},
 934	.funcs = {
 935		.get_max = atom_get_max_pstate,
 936		.get_max_physical = atom_get_max_pstate,
 937		.get_min = atom_get_min_pstate,
 938		.get_turbo = atom_get_turbo_pstate,
 939		.get_val = atom_get_val,
 940		.get_scaling = airmont_get_scaling,
 941		.get_vid = atom_get_vid,
 942		.get_target_pstate = get_target_pstate_use_cpu_load,
 943	},
 944};
 945
 946static struct cpu_defaults knl_params = {
 947	.pid_policy = {
 948		.sample_rate_ms = 10,
 949		.deadband = 0,
 950		.setpoint = 97,
 951		.p_gain_pct = 20,
 952		.d_gain_pct = 0,
 953		.i_gain_pct = 0,
 954	},
 955	.funcs = {
 956		.get_max = core_get_max_pstate,
 957		.get_max_physical = core_get_max_pstate_physical,
 958		.get_min = core_get_min_pstate,
 959		.get_turbo = knl_get_turbo_pstate,
 960		.get_scaling = core_get_scaling,
 961		.get_val = core_get_val,
 962		.get_target_pstate = get_target_pstate_use_performance,
 963	},
 964};
 965
 966static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
 967{
 968	int max_perf = cpu->pstate.turbo_pstate;
 969	int max_perf_adj;
 970	int min_perf;
 971
 972	if (limits->no_turbo || limits->turbo_disabled)
 973		max_perf = cpu->pstate.max_pstate;
 974
 975	/*
 976	 * performance can be limited by user through sysfs, by cpufreq
 977	 * policy, or by cpu specific default values determined through
 978	 * experimentation.
 979	 */
 980	max_perf_adj = fp_toint(max_perf * limits->max_perf);
 981	*max = clamp_t(int, max_perf_adj,
 982			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
 983
 984	min_perf = fp_toint(max_perf * limits->min_perf);
 985	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
 986}
 987
 988static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
 989{
 990	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
 991	cpu->pstate.current_pstate = pstate;
 992}
 993
 994static void intel_pstate_set_min_pstate(struct cpudata *cpu)
 995{
 996	int pstate = cpu->pstate.min_pstate;
 997
 998	intel_pstate_record_pstate(cpu, pstate);
 999	/*
1000	 * Generally, there is no guarantee that this code will always run on
1001	 * the CPU being updated, so force the register update to run on the
1002	 * right CPU.
1003	 */
1004	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1005		      pstate_funcs.get_val(cpu, pstate));
1006}
1007
1008static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1009{
1010	cpu->pstate.min_pstate = pstate_funcs.get_min();
1011	cpu->pstate.max_pstate = pstate_funcs.get_max();
1012	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1013	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1014	cpu->pstate.scaling = pstate_funcs.get_scaling();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015
1016	if (pstate_funcs.get_vid)
1017		pstate_funcs.get_vid(cpu);
1018
1019	intel_pstate_set_min_pstate(cpu);
1020}
1021
1022static inline void intel_pstate_calc_busy(struct cpudata *cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023{
1024	struct sample *sample = &cpu->sample;
1025	int64_t core_pct;
1026
1027	core_pct = int_tofp(sample->aperf) * int_tofp(100);
1028	core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
1029
1030	sample->core_pct_busy = (int32_t)core_pct;
1031}
1032
1033static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1034{
1035	u64 aperf, mperf;
1036	unsigned long flags;
1037	u64 tsc;
1038
1039	local_irq_save(flags);
1040	rdmsrl(MSR_IA32_APERF, aperf);
1041	rdmsrl(MSR_IA32_MPERF, mperf);
1042	tsc = rdtsc();
1043	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1044		local_irq_restore(flags);
1045		return false;
1046	}
1047	local_irq_restore(flags);
1048
1049	cpu->last_sample_time = cpu->sample.time;
1050	cpu->sample.time = time;
1051	cpu->sample.aperf = aperf;
1052	cpu->sample.mperf = mperf;
1053	cpu->sample.tsc =  tsc;
1054	cpu->sample.aperf -= cpu->prev_aperf;
1055	cpu->sample.mperf -= cpu->prev_mperf;
1056	cpu->sample.tsc -= cpu->prev_tsc;
1057
1058	cpu->prev_aperf = aperf;
1059	cpu->prev_mperf = mperf;
1060	cpu->prev_tsc = tsc;
1061	/*
1062	 * First time this function is invoked in a given cycle, all of the
1063	 * previous sample data fields are equal to zero or stale and they must
1064	 * be populated with meaningful numbers for things to work, so assume
1065	 * that sample.time will always be reset before setting the utilization
1066	 * update hook and make the caller skip the sample then.
1067	 */
1068	return !!cpu->last_sample_time;
 
 
 
 
1069}
1070
1071static inline int32_t get_avg_frequency(struct cpudata *cpu)
1072{
1073	return fp_toint(mul_fp(cpu->sample.core_pct_busy,
1074			       int_tofp(cpu->pstate.max_pstate_physical *
1075						cpu->pstate.scaling / 100)));
 
 
 
 
1076}
1077
1078static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1079{
1080	struct sample *sample = &cpu->sample;
1081	u64 cummulative_iowait, delta_iowait_us;
1082	u64 delta_iowait_mperf;
1083	u64 mperf, now;
1084	int32_t cpu_load;
1085
1086	cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
 
1087
1088	/*
1089	 * Convert iowait time into number of IO cycles spent at max_freq.
1090	 * IO is considered as busy only for the cpu_load algorithm. For
1091	 * performance this is not needed since we always try to reach the
1092	 * maximum P-State, so we are already boosting the IOs.
1093	 */
1094	delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1095	delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1096		cpu->pstate.max_pstate, MSEC_PER_SEC);
1097
1098	mperf = cpu->sample.mperf + delta_iowait_mperf;
1099	cpu->prev_cummulative_iowait = cummulative_iowait;
 
 
 
 
 
 
1100
1101	/*
1102	 * The load can be estimated as the ratio of the mperf counter
1103	 * running at a constant frequency during active periods
1104	 * (C0) and the time stamp counter running at the same frequency
1105	 * also during C-states.
 
1106	 */
1107	cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1108	cpu->sample.busy_scaled = cpu_load;
 
1109
1110	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, cpu_load);
1111}
1112
1113static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1114{
1115	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
1116	u64 duration_ns;
1117
1118	/*
1119	 * core_busy is the ratio of actual performance to max
1120	 * max_pstate is the max non turbo pstate available
1121	 * current_pstate was the pstate that was requested during
1122	 * 	the last sample period.
1123	 *
1124	 * We normalize core_busy, which was our actual percent
1125	 * performance to what we requested during the last sample
1126	 * period. The result will be a percentage of busy at a
1127	 * specified pstate.
1128	 */
1129	core_busy = cpu->sample.core_pct_busy;
1130	max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
1131	current_pstate = int_tofp(cpu->pstate.current_pstate);
1132	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
1133
1134	/*
1135	 * Since our utilization update callback will not run unless we are
1136	 * in C0, check if the actual elapsed time is significantly greater (3x)
1137	 * than our sample interval.  If it is, then we were idle for a long
1138	 * enough period of time to adjust our busyness.
1139	 */
1140	duration_ns = cpu->sample.time - cpu->last_sample_time;
1141	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1142		sample_ratio = div_fp(int_tofp(pid_params.sample_rate_ns),
1143				      int_tofp(duration_ns));
1144		core_busy = mul_fp(core_busy, sample_ratio);
1145	} else {
1146		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1147		if (sample_ratio < int_tofp(1))
1148			core_busy = 0;
1149	}
1150
1151	cpu->sample.busy_scaled = core_busy;
1152	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
1153}
1154
1155static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1156{
1157	int max_perf, min_perf;
1158
1159	update_turbo_state();
1160
1161	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1162	pstate = clamp_t(int, pstate, min_perf, max_perf);
1163	if (pstate == cpu->pstate.current_pstate)
1164		return;
1165
1166	intel_pstate_record_pstate(cpu, pstate);
1167	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1168}
1169
1170static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1171{
1172	int from, target_pstate;
1173	struct sample *sample;
 
1174
1175	from = cpu->pstate.current_pstate;
1176
1177	target_pstate = pstate_funcs.get_target_pstate(cpu);
1178
 
 
 
1179	intel_pstate_update_pstate(cpu, target_pstate);
1180
1181	sample = &cpu->sample;
1182	trace_pstate_sample(fp_toint(sample->core_pct_busy),
1183		fp_toint(sample->busy_scaled),
1184		from,
1185		cpu->pstate.current_pstate,
1186		sample->mperf,
1187		sample->aperf,
1188		sample->tsc,
1189		get_avg_frequency(cpu));
 
1190}
1191
1192static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1193				     unsigned long util, unsigned long max)
1194{
1195	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1196	u64 delta_ns = time - cpu->sample.time;
1197
1198	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1199		bool sample_taken = intel_pstate_sample(cpu, time);
 
1200
1201		if (sample_taken) {
1202			intel_pstate_calc_busy(cpu);
1203			if (!hwp_active)
1204				intel_pstate_adjust_busy_pstate(cpu);
 
 
 
 
 
 
 
1205		}
 
 
 
 
 
 
1206	}
 
 
 
 
 
 
 
1207}
1208
1209#define ICPU(model, policy) \
1210	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1211			(unsigned long)&policy }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1212
1213static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1214	ICPU(0x2a, core_params),
1215	ICPU(0x2d, core_params),
1216	ICPU(0x37, silvermont_params),
1217	ICPU(0x3a, core_params),
1218	ICPU(0x3c, core_params),
1219	ICPU(0x3d, core_params),
1220	ICPU(0x3e, core_params),
1221	ICPU(0x3f, core_params),
1222	ICPU(0x45, core_params),
1223	ICPU(0x46, core_params),
1224	ICPU(0x47, core_params),
1225	ICPU(0x4c, airmont_params),
1226	ICPU(0x4e, core_params),
1227	ICPU(0x4f, core_params),
1228	ICPU(0x5e, core_params),
1229	ICPU(0x56, core_params),
1230	ICPU(0x57, knl_params),
 
 
 
 
1231	{}
1232};
1233MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1234
1235static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1236	ICPU(0x56, core_params),
 
 
 
 
 
 
 
 
 
 
 
 
 
1237	{}
1238};
1239
1240static int intel_pstate_init_cpu(unsigned int cpunum)
1241{
1242	struct cpudata *cpu;
1243
1244	if (!all_cpu_data[cpunum])
1245		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1246					       GFP_KERNEL);
1247	if (!all_cpu_data[cpunum])
1248		return -ENOMEM;
 
1249
1250	cpu = all_cpu_data[cpunum];
1251
1252	cpu->cpu = cpunum;
1253
1254	if (hwp_active) {
1255		intel_pstate_hwp_enable(cpu);
1256		pid_params.sample_rate_ms = 50;
1257		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1258	}
1259
1260	intel_pstate_get_cpu_pstates(cpu);
 
1261
1262	intel_pstate_busy_pid_reset(cpu);
1263
1264	cpu->update_util.func = intel_pstate_update_util;
 
 
 
 
 
 
 
 
 
 
 
1265
1266	pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
 
1267
1268	return 0;
1269}
1270
1271static unsigned int intel_pstate_get(unsigned int cpu_num)
1272{
1273	struct sample *sample;
1274	struct cpudata *cpu;
1275
1276	cpu = all_cpu_data[cpu_num];
1277	if (!cpu)
1278		return 0;
1279	sample = &cpu->sample;
1280	return get_avg_frequency(cpu);
1281}
1282
1283static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1284{
1285	struct cpudata *cpu = all_cpu_data[cpu_num];
1286
 
 
 
 
 
 
1287	/* Prevent intel_pstate_update_util() from using stale data. */
1288	cpu->sample.time = 0;
1289	cpufreq_set_update_util_data(cpu_num, &cpu->update_util);
 
 
 
 
1290}
1291
1292static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1293{
1294	cpufreq_set_update_util_data(cpu, NULL);
1295	synchronize_sched();
 
 
 
 
 
 
 
 
 
 
 
 
1296}
1297
1298static void intel_pstate_set_performance_limits(struct perf_limits *limits)
 
 
1299{
1300	limits->no_turbo = 0;
1301	limits->turbo_disabled = 0;
1302	limits->max_perf_pct = 100;
1303	limits->max_perf = int_tofp(1);
1304	limits->min_perf_pct = 100;
1305	limits->min_perf = int_tofp(1);
1306	limits->max_policy_pct = 100;
1307	limits->max_sysfs_pct = 100;
1308	limits->min_policy_pct = 0;
1309	limits->min_sysfs_pct = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1310}
1311
1312static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1313{
 
 
1314	if (!policy->cpuinfo.max_freq)
1315		return -ENODEV;
1316
1317	intel_pstate_clear_update_util_hook(policy->cpu);
 
 
 
 
 
 
 
 
1318
1319	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1320		limits = &performance_limits;
1321		if (policy->max >= policy->cpuinfo.max_freq) {
1322			pr_debug("intel_pstate: set performance\n");
1323			intel_pstate_set_performance_limits(limits);
1324			goto out;
1325		}
1326	} else {
1327		pr_debug("intel_pstate: set powersave\n");
1328		limits = &powersave_limits;
 
 
 
 
 
 
 
 
 
 
1329	}
1330
1331	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1332	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1333	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1334					      policy->cpuinfo.max_freq);
1335	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1336
1337	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1338	limits->min_perf_pct = max(limits->min_policy_pct,
1339				   limits->min_sysfs_pct);
1340	limits->min_perf_pct = min(limits->max_policy_pct,
1341				   limits->min_perf_pct);
1342	limits->max_perf_pct = min(limits->max_policy_pct,
1343				   limits->max_sysfs_pct);
1344	limits->max_perf_pct = max(limits->min_policy_pct,
1345				   limits->max_perf_pct);
1346	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1347
1348	/* Make sure min_perf_pct <= max_perf_pct */
1349	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1350
1351	limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
1352				  int_tofp(100));
1353	limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
1354				  int_tofp(100));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1355
1356 out:
1357	intel_pstate_set_update_util_hook(policy->cpu);
 
 
 
 
 
 
 
 
 
 
 
1358
1359	intel_pstate_hwp_set_policy(policy);
1360
1361	return 0;
1362}
1363
1364static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1365{
1366	cpufreq_verify_within_cpu_limits(policy);
1367
1368	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1369	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1370		return -EINVAL;
 
 
 
 
 
 
 
 
 
1371
1372	return 0;
1373}
1374
1375static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1376{
1377	int cpu_num = policy->cpu;
1378	struct cpudata *cpu = all_cpu_data[cpu_num];
1379
1380	pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
 
1381
1382	intel_pstate_clear_update_util_hook(cpu_num);
 
 
1383
1384	if (hwp_active)
1385		return;
1386
1387	intel_pstate_set_min_pstate(cpu);
1388}
1389
1390static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1391{
1392	struct cpudata *cpu;
1393	int rc;
1394
1395	rc = intel_pstate_init_cpu(policy->cpu);
1396	if (rc)
1397		return rc;
1398
1399	cpu = all_cpu_data[policy->cpu];
1400
1401	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1402		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1403	else
1404		policy->policy = CPUFREQ_POLICY_POWERSAVE;
1405
1406	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1407	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1408
1409	/* cpuinfo and default policy values */
1410	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1411	policy->cpuinfo.max_freq =
1412		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1413	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1414	cpumask_set_cpu(policy->cpu, policy->cpus);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1415
1416	return 0;
1417}
1418
1419static struct cpufreq_driver intel_pstate_driver = {
1420	.flags		= CPUFREQ_CONST_LOOPS,
1421	.verify		= intel_pstate_verify_policy,
1422	.setpolicy	= intel_pstate_set_policy,
1423	.resume		= intel_pstate_hwp_set_policy,
1424	.get		= intel_pstate_get,
1425	.init		= intel_pstate_cpu_init,
 
1426	.stop_cpu	= intel_pstate_stop_cpu,
 
 
 
1427	.name		= "intel_pstate",
1428};
1429
1430static int __initdata no_load;
1431static int __initdata no_hwp;
1432static int __initdata hwp_only;
1433static unsigned int force_load;
 
 
1434
1435static int intel_pstate_msrs_not_valid(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436{
1437	if (!pstate_funcs.get_max() ||
1438	    !pstate_funcs.get_min() ||
1439	    !pstate_funcs.get_turbo())
1440		return -ENODEV;
1441
1442	return 0;
1443}
1444
1445static void copy_pid_params(struct pstate_adjust_policy *policy)
1446{
1447	pid_params.sample_rate_ms = policy->sample_rate_ms;
1448	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1449	pid_params.p_gain_pct = policy->p_gain_pct;
1450	pid_params.i_gain_pct = policy->i_gain_pct;
1451	pid_params.d_gain_pct = policy->d_gain_pct;
1452	pid_params.deadband = policy->deadband;
1453	pid_params.setpoint = policy->setpoint;
1454}
1455
1456static void copy_cpu_funcs(struct pstate_funcs *funcs)
1457{
1458	pstate_funcs.get_max   = funcs->get_max;
1459	pstate_funcs.get_max_physical = funcs->get_max_physical;
1460	pstate_funcs.get_min   = funcs->get_min;
1461	pstate_funcs.get_turbo = funcs->get_turbo;
1462	pstate_funcs.get_scaling = funcs->get_scaling;
1463	pstate_funcs.get_val   = funcs->get_val;
1464	pstate_funcs.get_vid   = funcs->get_vid;
1465	pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1466
1467}
1468
1469#if IS_ENABLED(CONFIG_ACPI)
1470#include <acpi/processor.h>
1471
1472static bool intel_pstate_no_acpi_pss(void)
1473{
1474	int i;
1475
1476	for_each_possible_cpu(i) {
1477		acpi_status status;
1478		union acpi_object *pss;
1479		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1480		struct acpi_processor *pr = per_cpu(processors, i);
1481
1482		if (!pr)
1483			continue;
1484
1485		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1486		if (ACPI_FAILURE(status))
1487			continue;
1488
1489		pss = buffer.pointer;
1490		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1491			kfree(pss);
1492			return false;
1493		}
1494
1495		kfree(pss);
1496	}
1497
 
1498	return true;
1499}
1500
1501static bool intel_pstate_has_acpi_ppc(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1502{
1503	int i;
1504
1505	for_each_possible_cpu(i) {
1506		struct acpi_processor *pr = per_cpu(processors, i);
1507
1508		if (!pr)
1509			continue;
1510		if (acpi_has_method(pr->handle, "_PPC"))
1511			return true;
1512	}
 
1513	return false;
1514}
1515
1516enum {
1517	PSS,
1518	PPC,
1519};
1520
1521struct hw_vendor_info {
1522	u16  valid;
1523	char oem_id[ACPI_OEM_ID_SIZE];
1524	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1525	int  oem_pwr_table;
 
 
 
 
 
 
 
 
 
 
 
 
 
1526};
1527
1528/* Hardware vendor-specific info that has its own power management modes */
1529static struct hw_vendor_info vendor_info[] = {
1530	{1, "HP    ", "ProLiant", PSS},
1531	{1, "ORACLE", "X4-2    ", PPC},
1532	{1, "ORACLE", "X4-2L   ", PPC},
1533	{1, "ORACLE", "X4-2B   ", PPC},
1534	{1, "ORACLE", "X3-2    ", PPC},
1535	{1, "ORACLE", "X3-2L   ", PPC},
1536	{1, "ORACLE", "X3-2B   ", PPC},
1537	{1, "ORACLE", "X4470M2 ", PPC},
1538	{1, "ORACLE", "X4270M3 ", PPC},
1539	{1, "ORACLE", "X4270M2 ", PPC},
1540	{1, "ORACLE", "X4170M2 ", PPC},
1541	{1, "ORACLE", "X4170 M3", PPC},
1542	{1, "ORACLE", "X4275 M3", PPC},
1543	{1, "ORACLE", "X6-2    ", PPC},
1544	{1, "ORACLE", "Sudbury ", PPC},
1545	{0, "", ""},
1546};
1547
1548static bool intel_pstate_platform_pwr_mgmt_exists(void)
1549{
1550	struct acpi_table_header hdr;
1551	struct hw_vendor_info *v_info;
1552	const struct x86_cpu_id *id;
1553	u64 misc_pwr;
 
1554
1555	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1556	if (id) {
1557		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1558		if ( misc_pwr & (1 << 8))
 
 
1559			return true;
 
1560	}
1561
1562	if (acpi_disabled ||
1563	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1564		return false;
1565
1566	for (v_info = vendor_info; v_info->valid; v_info++) {
1567		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1568			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
1569						ACPI_OEM_TABLE_ID_SIZE))
1570			switch (v_info->oem_pwr_table) {
1571			case PSS:
1572				return intel_pstate_no_acpi_pss();
1573			case PPC:
1574				return intel_pstate_has_acpi_ppc() &&
1575					(!force_load);
1576			}
1577	}
1578
1579	return false;
1580}
 
 
 
 
 
 
 
 
 
 
1581#else /* CONFIG_ACPI not enabled */
1582static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1583static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
 
1584#endif /* CONFIG_ACPI */
1585
 
 
 
 
 
 
1586static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1587	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
 
 
1588	{}
1589};
1590
1591static int __init intel_pstate_init(void)
1592{
1593	int cpu, rc = 0;
1594	const struct x86_cpu_id *id;
1595	struct cpu_defaults *cpu_def;
 
 
 
1596
1597	if (no_load)
1598		return -ENODEV;
1599
1600	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1601		copy_cpu_funcs(&core_params.funcs);
1602		hwp_active++;
1603		goto hwp_cpu_matched;
1604	}
 
 
 
 
 
 
 
 
 
 
1605
1606	id = x86_match_cpu(intel_pstate_cpu_ids);
1607	if (!id)
1608		return -ENODEV;
 
 
 
 
 
1609
1610	cpu_def = (struct cpu_defaults *)id->driver_data;
1611
1612	copy_pid_params(&cpu_def->pid_policy);
1613	copy_cpu_funcs(&cpu_def->funcs);
1614
1615	if (intel_pstate_msrs_not_valid())
 
1616		return -ENODEV;
 
 
 
 
1617
1618hwp_cpu_matched:
1619	/*
1620	 * The Intel pstate driver will be ignored if the platform
1621	 * firmware has its own power management modes.
1622	 */
1623	if (intel_pstate_platform_pwr_mgmt_exists())
 
1624		return -ENODEV;
 
1625
1626	pr_info("Intel P-state driver initializing.\n");
 
 
 
1627
1628	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1629	if (!all_cpu_data)
1630		return -ENOMEM;
1631
1632	if (!hwp_active && hwp_only)
1633		goto out;
 
1634
1635	rc = cpufreq_register_driver(&intel_pstate_driver);
 
 
1636	if (rc)
1637		goto out;
1638
1639	intel_pstate_debug_expose_params();
1640	intel_pstate_sysfs_expose_params();
1641
1642	if (hwp_active)
1643		pr_info("intel_pstate: HWP enabled\n");
 
 
 
1644
1645	return rc;
1646out:
1647	get_online_cpus();
1648	for_each_online_cpu(cpu) {
1649		if (all_cpu_data[cpu]) {
1650			intel_pstate_clear_update_util_hook(cpu);
1651			kfree(all_cpu_data[cpu]);
1652		}
1653	}
1654
1655	put_online_cpus();
1656	vfree(all_cpu_data);
1657	return -ENODEV;
1658}
1659device_initcall(intel_pstate_init);
1660
1661static int __init intel_pstate_setup(char *str)
1662{
1663	if (!str)
1664		return -EINVAL;
1665
1666	if (!strcmp(str, "disable"))
1667		no_load = 1;
 
 
 
 
 
1668	if (!strcmp(str, "no_hwp")) {
1669		pr_info("intel_pstate: HWP disabled\n");
1670		no_hwp = 1;
1671	}
1672	if (!strcmp(str, "force"))
1673		force_load = 1;
1674	if (!strcmp(str, "hwp_only"))
1675		hwp_only = 1;
 
 
 
 
 
 
 
 
1676	return 0;
1677}
1678early_param("intel_pstate", intel_pstate_setup);
1679
1680MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1681MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1682MODULE_LICENSE("GPL");